

FCC Test Report FCC Part 22,24 / RSS 132,133

FOR:

iX104-AC860

MODEL #: iX104

Xplore Technologies, Inc. 14000 Summit Rd, Suite 900 Austin, Texas 78728 USA

FCC ID: Q2GIX104-145, Q2GIX104-146, Q2GIX104-147, Q2GIX104-148 IC ID: IC 4596A-IX104WBG

> TEST REPORT #: XPLOR_002_05002_FCC22/24 DATE: FEBRUARY 14, 2006

CETECOM Inc.

411 Dixon Landing Road • Milpitas, CA 95035 • U.S.A. Phone: + 1 (408) 586 6200 • Fax: + 1 (408) 586 6299 • E-mail: info@cetecomusa.com • http://www.cetecom.com *CETECOM* Inc. is a Delaware Corporation with Corporation number: 2113686 Board of Directors: Dr. Harald Ansorge, Dr. Klaus Matkey, Hans Peter May © Copyright by *CETECOM*

Table of Contents

1	ASSESSMENT	
2	ADMINISTRATIVE DATA	4
	2.1 IDENTIFICATION OF THE TESTING LABORATORY ISSUING THE EMC TEST REPORT	4
	2.2 IDENTIFICATION OF THE CLIENT	
	2.3 IDENTIFICATION OF THE MANUFACTURER	4
3	EQUIPMENT UNDER TEST (EUT)	5
	3.1 IDENTIFICATION OF THE EQUIPMENT UNDER TEST	5
	3.2 IDENTIFICATION OF ACCESSORY EQUIPMENT	6
4	SUBJECT OF INVESTIGATION	7
5	MEASUREMENTS	9
-	5.1 RADIATED POWER	9
	5.1.1 FCC 2.1046 Measurements required: RF power output	
	5.1.2 Limits:	9
	5.1.2.1 FCC 22.913 (a) Effective radiated power limits.	9
	5.1.2.2 FCC 24.232 (b)(c) Power limits.	9
	5.1.3 Radiated Output Power Measurement procedure:	9
	5.1.4 ERP Results 850 MHz band:	11
	5.1.5 EIRP Results 1900 MHz band:	
	5.2 SPURIOUS EMISSIONS RADIATED	
	5.2.1 FCC 2.1053 Measurements required: Field strength of spurious radiation	
	5.2.2 Limits:	
	5.2.2.1 FCC 22.317 Emission limitations for Broadband PCS equipment	
	5.2.2.2 Rediated out of band measurement procedure:	32
	5.2.4 Radiated out of band emissions results on EUT (GSM and EDGE):	
	5.2.5 Radiated out of band emissions results on EUT (WCDMA):	65
	5.3 RECEIVER RADIATED EMISSIONS § 2.1053 / RSS-133	
	5.3.1 Receiver Spurious on EUT	
	5.4 AC POWERLINE CONDUCTED EMISSIONS § 15.107/207	102
	5.4.1 Results EUT	103
6	TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS	104
7	REFERENCES	105
8	BLOCK DIAGRAMS	106

1 Assessment

The following is in compliance with the applicable criteria specified in FCC rules Parts 2, 22 and 24 of Title 47 of the Code of Federal Regulations and in compliance with the applicable criteria specified in Industry Canada rules RSS132 and RSS133.

Company	Description	Model #
Xplore Technologies, Inc.	Tablet Computer	iX104

Midael Ap

2006-02-14 Michael Grings Deputy Test Lab Manager

The test results of this test report relate exclusively to the test item specified in Identification of the Equipment under Test. The CETECOM Inc. USA does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the CETECOM Inc USA.

2 Administrative Data

2.1 Identification of the Testing Laboratory Issuing the EMC Test Report

Company Name:	CETECOM Inc.
Department:	EMC
Address:	411 Dixon Landing Road Milpitas, CA 95035 U.S.A.
Telephone:	+1 (408) 586 6200
Fax:	+1 (408) 586 6299
Responsible Test Lab Manager:	Lothar Schmidt
Responsible Project Leader:	Neelesh Raj
Date of test:	2006-01-23 to 2006-02-14

2.2 Identification of the Client

Applicant's Name:	Xplore Technologies, Inc.
Street Address:	14000 Summit Rd, Suite 900
City/Zip Code	Austin, Texas 78728
Country	USA
Contact Person:	Mazyar Razzaz
Phone No.	512-336-7797 ext. 226
Fax:	512-336-7791
e-mail:	mrazzaz@xploretech.com

2.3 Identification of the Manufacturer

Manufacturer's Name:	Wistron Corporation
Manufacturers Address:	21F, 88, Sec.1, Hsin Tai Wu Rd., Hsichih
City/Zip Code	Taipei Hsien 221
Country	Taiwan, R.O.C.

3 Equipment under Test (EUT)

3.1 Identification of the Equipment under Test

Marketing Name:	iX104-AC860		
Description:	Tablet Computer		
Model No:	iX104		
FCC ID:	FCC ID #	WIRELESS OPTION	
	Q2GIX104-145	HSDPA(AC860)	
	Q2GIX104-146	HSDPA(AC860) + BT	
	Q2GIX104-147	HSDPA(AC860) + WLAN	
	Q2GIX104-148	WLAN(2915ABG)+HSDPA+BT	
IC ID:	<u>IC ID #</u>	WIRELESS OPTION	
	IC 4596A-IX104WBG	HSDPA(AC860)	
	IC 4596A-IX104WBG	HSDPA(AC860) + BT	
	IC 4596A-IX104WBG	HSDPA(AC860) + WLAN	
	IC 4596A-IX104WBG	WLAN(2915ABG)+HSDPA+BT	
Frequency Range:	FCC22= 824MHz-849N	ſHz	
	FCC24= 1850MHz-191	0MHz	
Type(s) of Modulation:	GSM/EDGE/UMTS/HS	SDPA	
	<u>GSM/EDGE</u>	<u>UMTS/HSDPA</u>	
Number of Channels:	FCC22= 124	FCC22= 5	
	FCC24= 299	FCC24= 12	
Channel anaging:	<u>GSM/EDGE</u>	<u>UMTS/HSDPA</u>	
	200KHz	5MHz	
Antenna Type:	Internal- Planer Invert	ed F	

This report shall not be reproduced except in full without the written approval of: CETECOM, Inc.

Page 6 of 106

Output Power:	FCC 22:
	GSM= 0.4130W ERP@848.8MHz
	EDGE= 0.233W ERP@848.8MHz
	UMTS= 0.0828W ERP@846.6MHz
	HSDPA = N/A
	<u>FCC 24:</u>
	GSM= 0.4295W EIRP@1909.8MHz
	EDGE= 0.415W EIRP@1909.8MHz
	UMTS= 0.1774W EIRP@1907.6MHz
	HSDPA = N/A

3.2 Identification of Accessory equipment

ТҮРЕ	MANF.	MODEL	FCC ID
AC ADAPTER	LITEON	PA-1700-02	PA-1700-02

4 <u>Subject of Investigation</u>

All testing was performed on the iX104-AC860 referred to as EUT hereafter. The EUT carries a pre-certified module by Sierra Wireless model#:AC860. This report contains only radiated measurements with the EUT, for all conducted measurements please refer to FCC ID#: N7NAC860 report#:AC860_FCC_part_22_24_testreport_REVA.

The EUT is a high-performance tablet PC that runs on the Microsoft Windows XP® Professional Tablet PC Edition operating system. The EUT is a data only device used to browsing, email, downloading, and uploading data.

This report contains the following modulations GMSK, 8PSK, and WCDMA with HSDPA(16QAM) results which were found to be worst case. HSDPA is only for downlink, please refer to attached document AC_860_operational_desc.pdf for further details.

During the testing process Sierra Wireless provided scripts to run on "Procomm Plus" which enabled the module to transmit and receive in the following:

Script File Name	Description
AC850_RESET	Resets the modem
AC850_Tx_OFF_Rx_ON	Turns off the modem's Tx and turns
	the Rx on.
AC850_TX_EDGE1900_512CH_2SLOT_MAX	EDGE1900 band, channel 512, 2 slots
	TX at max power
AC850_TX_EDGE1900_661CH_2SLOT_MAX	EDGE1900 band, channel 661, 2 slots
	TX at max power
AC850_TX_EDGE1900_810CH_2SLOT_MAX	EDGE1900 band, channel 810, 2 slots
	TX at max power
AC850_TX_EDGE850_128CH_2SLOT_MAX	EDGE850 band, channel 128, 2 slots
	TX at max power
AC850_TX_EDGE850_192CH_2SLOT_MAX	EDGE850 band, channel 192, 2 slots
	TX at max power
AC850_TX_EDGE850_251CH_2SLOT_MAX	EDGE850 band, channel 251, 2 slots
	TX at max power
AC850_TX_GSM1900_512CH_2SLOT_MAX	GSM1900 band, channel 512, 2 slots
	TX at max power
AC850_TX_GSM1900_661CH_2SLOT_MAX	GSM1900 band, channel 661, 2 slots
	TX at max power
AC850_TX_GSM1900_810CH_2SLOT_MAX	GSM1900 band, channel 810, 2 slots
	TX at max power
AC850_TX_GSM850_128CH_2SLOT_MAX	GSM850 band, channel 128, 2 slots
	TX at max power
AC850_TX_GSM850_192CH_2SLOT_MAX	GSM850 band, channel 192, 2 slots
	TX at max power
AC850_TX_GSM850_251CH_2SLOT_MAX	GSM850 band, channel 251, 2 slots
	TX at max power
AC850_TX_WCDMA1900_9262CH_MAX	WCDMA1900 band, channel 9262,
	TX at max power
AC850_TX_WCDMA1900_9400CH_MAX	WCDMA1900 band, channel 9400,
	TX at max power
AC850_TX_WCDMA1900_9538CH_MAX	WCDMA1900 band, channel 9538,
	TX at max power
AC850_TX_WCDMA850_4132CH_MAX	WCDMA850 band, channel 4132, TX
	at max power
AC850_TX_WCDMA850_4182CH_MAX	WCDMA850 band, channel 4182, TX
	at max power
AC850_TX_WCDMA850_4233CH_MAX	WCDMA850 band, channel 4233, TX
	at max power
Project Memorandum	Aug 18, 2005

Title:	Instruction Set on Running Scripts for Regulatory Testing		
Project:	AC 8x0	Memo Number:	N/A
		Revision Level:	01

The EUT was maximized in the X,Y, Z positions, all data in this report shows the worst case between horizontal and vertical polarization for above 1GHz.

The objective of the measurements done by Cetecom Inc. was to measure the performance of the EUT as specified by requirements listed in FCC rules Parts 2, 22 and 24 of Title 47 of the Code of Federal Regulations and Industry Canada rules RSS132 and RSS133.

5 <u>Measurements</u>

5.1 Radiated Power

5.1.1 FCC 2.1046 Measurements required: RF power output.

Power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on circuit elements as specified. The electrical characteristics of the radio frequency load attached to the output terminals when this test is made shall be stated.

5.1.2 Limits:

5.1.2.1 FCC 22.913 (a) Effective radiated power limits.

The effective radiated power (ERP) of mobile transmitters must not exceed 7 Watts.

5.1.2.2 FCC 24.232 (b)(c) Power limits.

(b) Mobile/portable stations are limited to 2 Watts effective isotropic radiated power (EIRP).(c) Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms equivalent voltage. The measurement results shall be properly adjusted for any limitations, such as detector response times, limited resolution bandwidth capability when compared to the emission bandwidth, sensitivity, etc., so as to obtain a true peak measurement over the full bandwidth of the channel.

5.1.3 Radiated Output Power Measurement procedure:

Based on TIA-603C August 2004

2.2.17.2 Effective Radiated Power (ERP) or Effective Isotropic Radiated Power (EIRP)

1. Connect the equipment as shown in the above diagram with the EUT's antenna in a vertical orientation.

- 2. Adjust the settings of the Digital Radiocommunication Tester (DRT) to set the EUT to its maximum power at the required channel.
- 3. Set the spectrum analyzer to the channel frequency. Set the analyzer to measure peak hold with the required settings.
- 4. Rotate the EUT 360°. Record the peak level in dBm (LVL).
- 5. Replace the EUT with a vertically polarized half wave dipole or known gain antenna. The center of the antenna should be at the same location as the center of the EUT's antenna.
- 6. Connect the antenna to a signal generator with known output power and record the path loss in dB (LOSS). LOSS = Generator Output Power (dBm) Analyzer reading (dBm).
- 7. Determine the ERP using the following equation:
 - **ERP** (dBm) = LVL (dBm) + LOSS (dB)
- 8. Determine the EIRP using the following equation: EIRP (dBm) = ERP (dBm) + 2.14 (dB)
- 9. Measurements are to be performed with the EUT set to the low, middle and high channel of each frequency band. Spectrum analyzer settings = rbw=vbw=3MHz

(**note:** Steps 5 and 6 above are performed prior to testing and **LOSS** is recorded by test software. Steps 3, 4, 7 and 8 above are performed with test software.)

5.1.4 ERP Results 850 MHz band:

Burst Peak ERP
≤38.45dBm (7W)

GSM

Frequency (MHz)	Effective Radiated Power (dBm)
824.2	23.72
837	25.57
848.8	26.16

EDGE

Frequency (MHz)	Effective Radiated Power (dBm)
824.2	22.2
837	23.63
848.8	23.67

WCDMA

Frequency (MHz)	Effective Radiated Power (dBm)
826.4	18.46
836.4	18.81
846.6	19.18

5.1.5 EIRP Results 1900 MHz band:

Burst Peak EIRP	
≤33dBm (2W)	

PCS

Frequency (MHz)	Effective Isotropic Radiated Power (dBm)
1850.2	24.81
1880.0	24.92
1909.8	26.33

EDGE

Frequency (MHz)	Effective Isotropic Radiated Power (dBm)	
1850.2	25.31	
1880.0	25.04	
1909.8	26.18	

This report shall not be reproduced except in full without the written approval of: CETECOM, Inc.

WCDMA

Frequency (MHz)	Effective Isotropic Radiated Power (dBm)	
1852.4	21.49	
1880	22.3	
1907.5	22.49	

This report shall not be reproduced except in full without the written approval of: CETECOM, Inc.

EIRP (GSM-850) CHANNEL 128

Start Frequency	Stop Frequency	Detector	Meas. Time	IF BW
819.2 MHz	829.2 MHz	Max Peak	Coupled	3 MHz

Page 13 of 106

This report shall not be reproduced except in full without the written approval of: CETECOM, Inc.

CETECOM[™]

§22.913(a)

EIRP (GSM-850) CHANNEL 192

Start Frequency	Stop Frequency	Detector	Meas. Time	IF BW
831.6 MHz	841.6 MHz	Max Peak	Coupled	3 MHz

This report shall not be reproduced except in full without the written approval of: CETECOM, Inc.

Page 14 of 106

§22.913(a)

EIRP (GSM-850) CHANNEL 251

Start Frequency	Stop Frequency	Detector	Meas. Time	IF BW
843.8 MHz	853.8 MHz	Max Peak	Coupled	3 MHz

Page 15 of 106

EIRP (EDGE-850) CHANNEL 128

Start Frequency	Stop Frequency	Detector	Meas. Time	IF BW
819.2 MHz	829.2 MHz	Max Peak	Coupled	3 MHz

Page 16 of 106

EIRP (EDGE -850) CHANNEL 192

Start Frequency	Stop Frequency	Detector	Meas. Time	IF BW
831.6 MHz	841.6 MHz	Max Peak	Coupled	3 MHz

EIRP (EDGE -850) CHANNEL 251

Start Frequency	Stop Frequency	Detector	Meas. Time	IF BW
843.8 MHz	853.8 MHz	Max Peak	Coupled	3 MHz

Page 18 of 106

Stop Frequency

CHANNEL 4132

Start Frequency

This report shall not be reproduced except in full without the written approval of: CETECOM, Inc.

8	16.2MHz	836.2MHz	Max Peak	Coupled	5 MHz
Marke	r: 6	327.422445 MHz	20.06 c	JBm	
Leve	el [dBm]				
30					
00			\diamond		
20				month and a second s	
10			-		
0					χ
10					
-10					M. Mallon and
-20	MM - MMMM				014D 4004
	816.2M 8	820M Fre	825M equency [Hz]	830M	836.2M

Detector

EIRP (WCDMA-850)

Page 19 of 106

Meas. Time

§22.913(a)

IF BW

EIRP (WCDMA-850) CHANNEL 4182

Start Frequency	Stop Frequency	Detector	Meas. Time	IF BW
826.6MHz	846.6MHz	Max Peak	Coupled	5 MHz
Marker:	836.419639 MHz	20.95 dB	m	
Level [dBm]				
30				

Page 20 of 106

EIRP (WCDMA-850) CHANNEL 4233

Star	t Frequency	Stop Frequency	Detecto	r	Meas. Time	IF BW
836.8MHz 856.8MHz		856.8MHz	Max Pea	k	Coupled	5 MHz
Marke	r:	845.657715 MHz		21.32 dBm		
Leve	el [dBm]					
30						
20			\Diamond			
20				· · · · · · · · · · · · · · · · · · ·		
10						
0						
10						
-10						
-20	M-MM					MMA
-25	836.8M		845M	8501	N	856.8M

Frequency [Hz]

Page 21 of 106

This report shall not be reproduced except in full without the written approval of: CETECOM, Inc.

EIRP (PCS-1900) CHANNEL 512

Start Frequency	Stop Frequency	Detector	Meas. Time	IF BW
1.8452 GHz 1.8552 MHz		Max Peak	Coupled	3 MHz

CETECOM

EIRP (PCS-1900) CHANNEL 661

Start Frequency	Stop Frequency	Detector	Meas. Time	IF BW
1.875 GHz	1.885 MHz	Max Peak	Coupled	3 MHz

Page 23 of 106

EIRP (PCS -1900) CHANNEL 810

Start Frequency	Stop Frequency	Detector	Meas. Time	IF BW
1.9048 GHz	1.9148 MHz	Max Peak	Coupled	3 MHz

002_FCC22/24 2006 Page 24 of 106

EIRP (EDGE-1900) CHANNEL 512

Start Frequency	Stop Frequency	Detector	Meas. Time	IF BW
1.8452 GHz	1.8552 MHz	Max Peak	Coupled	3 MHz

Page 25 of 106

EIRP (EDGE-1900) CHANNEL 661

Start Frequency	Stop Frequency	Detector	Meas. Time	IF BW
1.875 GHz	1.885 MHz	Max Peak	Coupled	3 MHz

Page 26 of 106

EIRP (EDGE-1900) CHANNEL 810

Start Frequency	Stop Frequency	Detector	Meas. Time	IF BW
1.9048 GHz	1.9148 MHz	Max Peak	Coupled	3 MHz

Page 27 of 106

EIRP (WCDMA-1900) CHANNEL 9262

Start Frequency Stop Frequency		Detector	Meas. Time	IF BW
1.8422 GHz	1.8624 MHz	Max Peak	Coupled	5 MHz
Marker:	1.852603607 GHz	21.49 dBi	m	

Page 28 of 106

EIRP (WCDMA-1900) CHANNEL 9400

This report shall not be reproduced except in full without the written approval of: CETECOM, Inc.

EIRP (WCDMA-1900) CHANNEL 9538

Start Frequency	Stop Frequency	Detector	Meas. Time	IF BW
1.8976 GHz	1.9176 MHz	Max Peak	Coupled	5 MHz

RY 14, 2006 Page 30 of 106

This report shall not be reproduced except in full without the written approval of: CETECOM, Inc.

5.2 Spurious Emissions Radiated

5.2.1 FCC 2.1053 Measurements required: Field strength of spurious radiation.

(a) Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission.

5.2.2 Limits:

5.2.2.1 FCC 22.917 Emission limitations for cellular equipment.

The rules in this section govern the spectral characteristics of emissions in the Cellular Radiotelephone Service.

(a) *Out of band emissions*. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

(b) *Measurement procedure*. Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (*i.e.* 100 kHz of 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

5.2.2.2 FCC 24.238 Emission limitations for Broadband PCS equipment.

The rules in this section govern the spectral characteristics of emissions in the Broadband Personal Communications Service.

(a) *Out of band emissions*. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

(b) Measurement procedure. Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (*i.e.* 100 kHz of 1 percent of emission bandwidth, as specified). The

emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

5.2.3 <u>Radiated out of band measurement procedure:</u>

Based on TIA-603C August 2004

2.2.12 Unwanted emissions: Radiated Spurious

- 1. Connect the equipment as shown in the above diagram with the EUT's antenna in a horizontal orientation.
- 2. Adjust the settings of the Digital Radiocommunication Tester (DRT) to set the EUT to its maximum power at the required channel.
- 3. Set the spectrum analyzer to measure peak hold with the required settings.
- 4. Place the measurement antenna in a horizontal orientation. Rotate the EUT 360°. Raise the measurement antenna up to 4 meters in 0.5 meters increments and rotate the EUT 360° at each height to maximize all emissions. Measure and record all spurious emissions (LVL) up to the tenth harmonic of the carrier frequency.
- 5. Replace the EUT with a horizontally polarized half wave dipole or known gain antenna. The center of the antenna should be at the same location as the center of the EUT's antenna.
- 6. Connect the antenna to a signal generator with known output power and record the path loss in dB (LOSS). LOSS = Generator Output Power (dBm) Analyzer reading (dBm).
- Determine the level of spurious emissions using the following equation: Spurious (dBm) = LVL (dBm) + LOSS (dB):
- 8. Repeat steps 4, 5 and 6 with all antennas vertically polarized.
- 9. Determine the level of spurious emissions using the following equation:

Spurious (dBm) = **LVL** (dBm) + **LOSS** (dB):

10. Measurements are to be performed with the EUT set to the low, middle and high channel of each frequency band.

(**note:** Steps 5 and 6 above are performed prior to testing and **LOSS** is recorded by test software. Steps 3, 4 and 7 above are performed with test software.)

Spectrum analyzer settings: Res B/W: 1 MHz Vid B/W: 1 MHz

Measurement Survey:

Radiated emissions measurements were made only at the upper, middle, and lower carrier frequencies of the GSM-850 & PCS-1900 bands. It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the GSM-850 & PCS-1900 band into any of the other blocks respectively. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

5.2.4 Radiated out of band emissions results on EUT (GSM and EDGE):

RESULTS OF RADIATED TESTS GSM-850:

Harmonics	Tx ch-128 Freq. (MHz)	Level (dBm)	Tx ch-192 Freq. (MHz)	Level (dBm)	Tx ch-251 Freq. (MHz)	Level (dBm)
2	1648.4	-42.59	1674	-44.42	1697.6	-43.75
3	2472.6	-44.12	2511	-40.75	2546.4	-35.56
4	3296.8	NF	3348	-44.12	3395.2	-44.12
5	4121	-53.55	4185	-55.28	4244	-54.53
6	4945.2	-44.12	5022	-44.12	5092.8	-44.12
7	5769.4	-44.12	5859	-44.12	5941.6	-44.12
8	6593.6	-44.12	6696	-44.12	6790.4	-44.12
9	7417.8	-44.12	7533	-44.12	7639.2	-44.12
10	8242	-44.12	8370	-44.12	8488	-44.12
NF = NOISE FLOOR						

*prescans were performed on GSM and EDGE, GSM was found to be worst case.

Page 35 of 106

RADIATED SPURIOUS EMISSIONS (GSM-850) TX: 30MHz - 1GHz Spurious emission limit –13dBm Antenna: vertical

SWEEP TABLE: "FCC 22 Spur 30M-1G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
30MHz	1GHz	Max Peak	Coupled	1 MHz	1 MHz

Note:

The peak above the limit line is the carrier freq. This plot is valid for low, mid & high channels (worst-case plot)

Page 36 of 106

RADIATED SPURIOUS EMISSIONS (GSM-850) TX: 30MHz - 1GHz Spurious emission limit –13dBm Antenna: horizontal

SWEEP TABLE: "FCC 22 Spur 30M-1G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
30MHz	1GHz	Max Peak	Coupled	1 MHz	1 MHz

Note:

The peak above the limit line is the carrier freq. This plot is valid for low, mid & high channels (worst-case plot)

Page 37 of 106

RADIATED SPURIOUS EMISSIONS (GSM-850)

Tx @ 824.2MHz: 1GHz – 1.58GHz

Spurious emission limit –13dBm

SWEEP TABLE: "FCC 22 Spur 1-1.58G"

Start F	requency	Stop Frequ	iency	Detector		Meas. T	ime	RBW	VBW
1	GHz	1.58GH	łz	Max Peak		Coupl	ed	1 MHz	1 MHz
Marker:	Marker: 1 GHz -53.15 dBm								
Level	[dBm]								
0									
-20									
-20									
-40									
		mann	vmmm	mmm	rinh	mmmm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mmm	www.
-60									
-80									
-100									
	1G	1.1G	1.2G Erog	1.3G		1.4G			1.58G

Page 38 of 106

RADIATED SPURIOUS EMISSIONS (GSM-850)

Tx @ 824.2MHz: 1.58GHz – 3GHz

Spurious emission limit –13dBm

SWEEP TABLE: "FCC 22 Spur 1.58-3G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
1.58GHz	3GHz	Max Peak	Coupled	1 MHz	1 MHz

Page 39 of 106

RADIATED SPURIOUS EMISSIONS (GSM-850)

Tx @ 824.2MHz: 3GHz – 9GHz

Spurious emission limit –13dBm

SWEEP TABLE: "FCC 22 Spur 3-9G"

Star	t Frequency	Stop Frequency	Detec	tor	Meas. Time	RBW	VBW
	3GHz	9GHz	Max P	eak	Coupled	1 MHz	1 MHz
Marke	r:	4.118236473 GHz		-53.55 dB	m		
Leve	el [dBm]						
20							
0							
-20							
-40		\land		m	m	mmmmm	unhum
-60	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Malanta			*		
-80							
-00	3G	4G 50	G Frequency [Hz]	3	7G	8G	9G

Page 40 of 106

RADIATED SPURIOUS EMISSIONS (GSM-850)

Tx @ 837MHz: 1GHz – 1.58GHz

Spurious emission limit –13dBm

~~ ~ ~ ~

Start Frequency	Stop Freque	ency	Detector	Meas. Time	RBW	VBW		
1GHz	1.58GH:	Z	Max Peak	Coupled	1 MHz	1 MHz		
Marker:	1 GHz	-52.39 (lBm					
l evel [dBm]								
0								
-20								
-40								
hunder	······································	nhammen men	v.m.m.m.m.m.m.m.m.m.m.m.m.m.m.m.m.m.m.m	Martin	Multim			
-60								
-80								
-100								

Page 41 of 106

RADIATED SPURIOUS EMISSIONS (GSM-850)

Tx @ 837 MHz: 1.58GHz – 3GHz

Spurious emission limit –13dBm

SWEEP TABLE: "FCC 22 Spur 1.58-3G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
1.58GHz 3GHz		Max Peak	Coupled	1 MHz	1 MHz

Page 42 of 106

RADIATED SPURIOUS EMISSIONS (GSM-850)

Tx @ 837MHz: 3GHz – 9GHz

Spurious emission limit -13dBm

SWEEP TABLE: "FCC 22 Spur 3-9G"

Page 43 of 106

RADIATED SPURIOUS EMISSIONS (GSM-850)

Tx @ 848.8MHz: 1GHz – 1.58GHz

Spurious emission limit –13dBm

SWEEP TABLE: "FCC 22 Spur 1-1.58G"

Start I	Frequency	Stop Fre	quency	Detector		Meas. T	Time	RBW	VBW
1	GHz	1.580	GHz	Max Peak		Coupl	ed	1 MHz	1 MHz
				•					
Marker:		1 GHz	-5	i3.11 dBm					
Leve	l [dBm]								
0	1								
-20									
-40									
	himmen	mann	~~~~~	mun	when	mmm	hmhh	······································	mithunkhwy
-60									
80									
-00									
-100	16	1 16	1 26	1 30		140			1 580
		1.10	Frec	quency [Hz]		1.40			1.500

Page 44 of 106

2.8G

2.6G

3G

RADIATED SPURIOUS EMISSIONS (GSM-850)

Tx @ 848.8MHz: 1.58GHz – 3GHz

Spurious emission limit –13dBm

-20

-30

-40

-50

-60

1.58G

1.8G

2G

2.2G

Frequency [Hz]

2.4G

SWEEP TABLE: "FCC 22 Spur 1.58-3G"

Star	t Frequency	Stop Freque	ncy	Detector Meas. Tim		ne RB	W	VBW
1	1.58GHz 3GHz Max Peak		Coupled	Coupled 1 MH:		1 MHz		
Marker: 2.54753507 GHz -35.56 dBm								
Level [dBm]								
30								
20								
10								
0 -								
Ū								
-10								

Page 45 of 106

RADIATED SPURIOUS EMISSIONS (GSM-850)

Tx @ 848.8MHz: 3GHz – 9GHz

Spurious emission limit –13dBm

-40

-60

-80

3G

4G

5G

Frequency [Hz]

SWEEP TABLE: "FCC 22 Spur 3-9G"

Start Frequency	Stop Frequency	Detector	•	Meas. Time	RBW	VBW		
3GHz	9GHz	Max Pea	Max Peak Coupled		1 MHz	1 MHz		
Marker: 4.238476954 GHz -54.53 dBm								
Level [dBm]								
20								
0								
-20								
i l					l l			

6G

7G

8G

9G

Page 46 of 106

RADIATED SPURIOUS EMISSIONS (GSM-850) IDLE: 30MHz - 1GHz Spurious emission limit –13dBm Antenna: vertical

SWEEP TABLE: "FCC 22 Spur 30M-1G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
30MHz	1GHz	Max Peak	Coupled	1 MHz	1 MHz

Page 47 of 106

RADIATED SPURIOUS EMISSIONS (GSM-850) IDLE: 30MHz - 1GHz Spurious emission limit –13dBm Antenna: horizontal

SWEEP TABLE: "FCC 22 Spur 30M-1G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
30MHz	1GHz	Max Peak	Coupled	1 MHz	1 MHz

Page 48 of 106

RADIATED SPURIOUS EMISSIONS (GSM-850) IDLE: 1GHz – 3GHz

Spurious emission limit –13dBm

SWEEP TABLE: "FCC 22 Spur 1-3G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
1GHz	3GHz	Max Peak	Coupled	1 MHz	1 MHz
Marker:	1 GHz -4	12.15 dBm			
Level [dBm]					
50					

50				
40				
40				
20				
0				
20				
-20				
				a han management
-40 <		man and man man	month market market and the second se	March 19 and 19 and 19
	mm			
-50	1G 1.5G	20	G 2.50	3G
		Frequency [Hz]		

RADIATED SPURIOUS EMISSIONS (GSM-850) IDLE: 3GHz – 9GHz

SWEEP TABLE: "FCC 22 Spur 3-9G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
3GHz	9GHz	Max Peak	Coupled	1 MHz	1 MHz

Page 50 of 106

RESULTS OF RADIATED TESTS PCS-1900:

Harmonic	Tx ch-512 Freq.(MHz)	Level (dBm)	Tx ch-661 Freq. (MHz)	Level (dBm)	Tx ch-810 Freq. (MHz)	Level (dBm)
2	3700.4	-39.79	3760	-46.69	3819.6	-46.02
3	5550.6	-42.22	5640	-49.63	5729.4	NF
4	7400.8	NF	7520	NF	7639.2	NF
5	9251	NF	9400	NF	9549	NF
6	11101.2	NF	11280	NF	11458.8	NF
7	12951.4	NF	13160	NF	13368.6	NF
8	14801.6	NF	15040	NF	15278.4	NF
9	16651.8	NF	16920	NF	17188.2	NF
10	18502	NF	18800	NF	19098	NF
NF = NOISE FLOOR						

*prescans were performed on GSM and EDGE, GSM was found to be worst case.

Page 51 of 106

RADIATED SPURIOUS EMISSIONS(PCS 1900) TX: 30MHz - 1GHz Spurious emission limit –13dBm Antenna: vertical

SWEEP TABLE: "FCC 24 Spur 30M-1G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
30MHz	1GHz	Max Peak	Coupled	1 MHz	1 MHz

Note: This plot is valid for low, mid & high channels (worst-case plot)

Page 52 of 106

RADIATED SPURIOUS EMISSIONS(PCS 1900) TX: 30MHz - 1GHz Spurious emission limit –13dBm Antenna: horizontal

SWEEP TABLE: "FCC 24 Spur 30M-1G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
30MHz	1GHz	Max Peak	Coupled	1 MHz	1 MHz

Note: This plot is valid for low, mid & high channels (worst-case plot)

Page 53 of 106

RADIATED SPURIOUS EMISSIONS(PCS 1900) Tx @ 1850.2MHz: 1GHz – 3GHz

Spurious emission limit –13dBm

SWEEP TABLE: "FCC Spuri 1-3G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
1GHz	3GHz	Max Peak	Coupled	1 MHz	1 MHz

Note: The peak above the limit line is the carrier freq.

Marke	r: 1.849699399	GHz	24.42 dBm	
Leve	el [dBm]			
50				
40				
		\diamond		
20				
0				
-20				
-40	h a Mahana manana ma	man han han	Mar Marken Marken	- Arman and and and
-50				
	1G 1.5G	Frequency [Hz]	2G 2.50	G 3G

Page 54 of 106

RADIATED SPURIOUS EMISSIONS(PCS 1900)

Tx @ 1850.2MHz: 3GHz – 18GHz

Spurious emission limit -13dBm

SWEEP TABLE: "FCC Spuri 3-18G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
3GHz	18GHz	Max Peak	Coupled	1 MHz	1 MHz

Page 55 of 106

RADIATED SPURIOUS EMISSIONS(PCS 1900)

Tx @ 1880.0MHz: 1GHz – 3GHz

Spurious emission limit –13dBm

SWEEP TABLE: "FCC Spuri 1-3G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
1GHz	3GHz	Max Peak	Coupled	1 MHz	1 MHz

Note: The peak above the limit line is the carrier freq.

Markei	r: 1.881763527	' GHz	24.88 dBm	
Leve	el [dBm]			
50				
40				
		\diamond		
20				
0 -				
-20				
-40	manna	man and and a second line	Marine Marin	han the state of t
-50	1G 1.5G	20	 G2.50	G 3G
	-	Frequency [Hz]		

Page 56 of 106

RADIATED SPURIOUS EMISSIONS(PCS 1900)

Tx @ 1880.0MHz: 3GHz – 18GHz

Spurious emission limit –13dBm

SWEEP TABLE: "FCC Spuri 3-18G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
3GHz	18GHz	Max Peak	Coupled	1 MHz	1 MHz

Page 57 of 106

RADIATED SPURIOUS EMISSIONS(PCS 1900)

Tx @ 1909.8MHz: 1GHz – 3GHz

Spurious emission limit –13dBm

SWEEP TABLE: "FCC Spuri 1-3G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
1GHz	3GHz	Max Peak	Coupled	1 MHz	1 MHz

Note: The peak above the limit line is the carrier freq.

Marke	r: 1.909819639) GHz	25.78 dBm	
Leve	el [dBm]			
50				
40				
		\diamond		
20				
0				
-20				
			a a superior	mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
-40	manna	man Marka Marka Marka		
-50	1G 1.5G	2	 G 2.50	G 3G
		Frequency [Hz]		

Page 58 of 106

RADIATED SPURIOUS EMISSIONS(PCS 1900)

Tx @ 1909.8MHz: 3GHz – 18GHz

Spurious emission limit –13dBm

SWEEP TABLE: "FCC Spuri 3-18G"

Start Frequency	Stop Frequency Detector		Meas. Time	RBW	VBW
3GHz	18GHz	Max Peak	Coupled	1 MHz	1 MHz

Page 59 of 106

RADIATED SPURIOUS EMISSIONS(PCS 1900) 18GHz – 19.1GHz

Spurious emission limit –13dBm

SWEEP TABLE: "FCC 24 spuri 18-19.1G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
18GHz	19.1GHz	Max Peak	Coupled	1 MHz	1 MHz

Note: This plot is valid for low, mid & high channels (worst-case plot)

Marke	r: 19.09	97795591 GHz	-34	.37 dBm		
Leve	el [dBm]					
0						
10						
-10						
-20						
-20						
-30						
	wmm.mm.Mm.m	Mummun	Monthe	mmmmmmmm	mmmmmmm	mulus
-40						
-50						
	18G 18.20	3 18.40 Fre	6 18.60 quency [Hz]	6 18.80	5	19.1G

Page 60 of 106

RADIATED SPURIOUS EMISSIONS (IDLE MODE) EUT in Idle Mode: 30MHz – 1GHz Spurious emission limit –13dBm **Antenna: vertical**

SWEEP TABLE: "FCC 22 Spur 30M-1G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
30MHz	1GHz	Max Peak	Coupled	1 MHz	1 MHz
Marker:	30 MHz	-63.67 dBm			

Page 61 of 106

RADIATED SPURIOUS EMISSIONS (IDLE MODE) EUT in Idle Mode: 30MHz – 1GHz Spurious emission limit –13dBm **Antenna: horizontal**

SWEEP TABLE: "FCC 22 Spur 30M-1G"

-20

-40

-60 -70

30M

50M

70M

100M

Frequency [Hz]

Star	t Frequen	cy	S	top F	Frequ	ienc	cy		Detec	tor	Me	as. Time	;	RBW	T	V	VBV	V
	30MHz			1	GHz	Z		I	Max P	eak	C	oupled		1 MHz 1 M			Mŀ	łz
Marker	r:		30 N	/Hz				 -56.5	59 dBn	n								
Leve	el [dBm]																	
40																		
20								 										
0																		

200M

300M

500M

700M

1G

This report shall not be reproduced except in full without the written approval of: CETECOM, Inc.

Page 62 of 106

RADIATED SPURIOUS EMISSIONS (IDLE MODE) EUT in Idle Mode: 1GHz – 3GHz

Spurious emission limit –13dBm

<u>SWEEP TABLE: "FCC Spuri 1-3G"</u>

Star	t Frequency	Stop Fr	requency	Detec	tor	Meas. Time	RBW	VBW
	1GHz	30	GHz	Max Peak		Coupled	1 MHz	1 MHz
Marke	r:	1 GHz	-4;	2.24 dBm				
Leve	el [dBm]							
50								
40								
20								
0								
-20								
				~~~~~	mm	·······	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mm
-40 <	hannethran	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	h.M.M.M.M.M.M.M.M.M.M.M.M.M.M.M.M.M.M.M	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
-50	1G	1.5G	<u>.</u>	20	3	2.5G		3G
			Freq	uency [Hz]				

Page 63 of 106



# RADIATED SPURIOUS EMISSIONS (IDLE MODE)

EUT in Idle Mode: 3GHz – 18GHz

Spurious emission limit –13dBm

### SWEEP TABLE: "FCC 24 spuri 3-18G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
3GHz	18GHz	Max Peak	Coupled	1 MHz	1 MHz



Page 64 of 106



# RADIATED SPURIOUS EMISSIONS (IDLE MODE)

EUT in Idle Mode: 18GHz – 19.1GHz

Spurious emission limit –13dBm

# SWEEP TABLE: "FCC 24 spuri 18-19.1G"

Star	t Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
	18GHz	19.1GHz	Max Peak	Coupled	1 MHz	1 MHz
Marke	r:	18 GHz -3	4.08 dBm			
Leve	el [dBm]					
0						
-10						
20						
-20						
-30			A MARCON A MARCON	ь. Л. —	an analysis a structure	Marine and
	frankantu	mymmhmm	Man Mar a man Walt when when the	munhowman	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	and the second second
-40						
-50						
-30	18G -	18.2G 18.4G	18.6G	18.8G		19.1G
		Fred	quency [Hz]			



# 5.2.5 <u>Radiated out of band emissions results on EUT (WCDMA):</u>

# **RESULTS OF RADIATED TESTS WCDMA-850:**

Harmonics	Tx ch-4132 Freq. (MHz)	Level (dBm)	Tx ch-4182 Freq. (MHz)	Level (dBm)	Tx ch-4233 Freq. (MHz)	Level (dBm)			
2	1652.8	-42.25	1672.8	-42.64	1693.2	-40.71			
3	2479.2	NF	2509.2	NF	2539.8	NF			
4	3305.6	NF	3345.6	NF	3386.4	NF			
5	4132	NF	4182	NF	4233	NF			
6	4958.4	NF	5018.4	NF	5079.6	NF			
7	5784.8	NF	5854.8	NF	5926.2	NF			
8	6611.2	NF	6691.2	NF	6772.8	NF			
9	7437.6	NF	7527.6	NF	7619.4	NF			
10	8264	NF	8364	NF	8466	NF			
NF = NOISE FLOOR									

Page 66 of 106



### RADIATED SPURIOUS EMISSIONS (WCDMA-850) TX: 30MHz - 1GHz Spurious emission limit –13dBm Antenna: vertical

### SWEEP TABLE: "FCC 22 Spur 30M-1G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
30MHz	1GHz	Max Peak	Coupled	1 MHz	1 MHz

#### Note:

# The peak above the limit line is the carrier freq. This plot is valid for low, mid & high channels (worst-case plot)



Page 67 of 106



### RADIATED SPURIOUS EMISSIONS (WCDMA-850) TX: 30MHz - 1GHz Spurious emission limit –13dBm Antenna: horizontal

### SWEEP TABLE: "FCC 22 Spur 30M-1G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
30MHz	1GHz	Max Peak	Coupled	1 MHz	1 MHz

#### Note:

# The peak above the limit line is the carrier freq. This plot is valid for low, mid & high channels (worst-case plot)



Page 68 of 106



### **RADIATED SPURIOUS EMISSIONS (WCDMA-850)**

Tx @ 826.4MHz: 1GHz – 1.58GHz

Spurious emission limit –13dBm

### SWEEP TABLE: "FCC 22 Spur 1-1.58G"

Start Frequency	/ Stop I	Frequency	Detector		Meas. T	Time	RBW	VBW
1GHz	1.5	58GHz	Max Peak		Coupl	led	1 MHz	1 MHz
Marker:	1 GHz	-5	52 dBm					
Level [dBm]								
0								
-20								
-10								
Yuntur	mmmmm	mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	man man man		······································	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Marthan	man war
-60								
-80								
-100								
1G	1.1G	1.2G Eroc	1.3G	i	1.4G			1.58G

Page 69 of 106



# **RADIATED SPURIOUS EMISSIONS (WCDMA -850)**

Tx @ 826.4MHz: 1.58GHz – 3GHz

Spurious emission limit –13dBm

### SWEEP TABLE: "FCC 22 Spur 1.58-3G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
1.58GHz	3GHz Max Peak Couple		Coupled	1 MHz	1 MHz
Manulus av	4 050007070 011-				



Page 70 of 106



# **RADIATED SPURIOUS EMISSIONS (WCDMA -850)**

Tx @ 826.4MHz: 3GHz – 9GHz

Spurious emission limit –13dBm

### SWEEP TABLE: "FCC 22 Spur 3-9G"



Page 71 of 106



# **RADIATED SPURIOUS EMISSIONS (WCDMA -850)**

Tx @ 836.4MHz: 1GHz – 1.58GHz

Spurious emission limit –13dBm

### SWEEP TABLE: "FCC 22 Spur 1-1.58G"

Start Frequency		Stop	p Frequency	Detector		Meas. 7	Time	RBW	VBW
1	GHz	1	1.58GHz	Max Peak		Coupled		1 MHz	1 MHz
Marker:		1 GHz	-50	0.21 dBm					
Level [dBm]									
0									
-20									
40									
-40	$\overline{\langle}$								
	human	Mmmm	monorman	mmmmm	mmh	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mmm	mm	mmm
-60									
-80									
400									
-100	1G	1.1G	1.2G	1.3G		1.4G	i		1.58G
Frequency [Hz]									

Page 72 of 106



# **RADIATED SPURIOUS EMISSIONS (WCDMA -850)**

Tx @ 836.4MHz: 1.58GHz – 3GHz

Spurious emission limit –13dBm

### SWEEP TABLE: "FCC 22 Spur 1.58-3G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
1.58GHz	3GHz Max Peak Coupled		1 MHz	1 MHz	


Page 73 of 106



# **RADIATED SPURIOUS EMISSIONS (WCDMA -850)**

Tx @ 836.4MHz: 3GHz – 9GHz

Spurious emission limit –13dBm

#### SWEEP TABLE: "FCC 22 Spur 3-9G"



Page 74 of 106



# **RADIATED SPURIOUS EMISSIONS (WCDMA -850)**

Tx @ 846.6MHz: 1GHz – 1.58GHz

Spurious emission limit –13dBm

#### SWEEP TABLE: "FCC 22 Spur 1-1.58G"

Start I	Frequency	Stop	p Frequency	Detector		Meas. T	Time	RBW	VBW
1	GHz	1	1.58GHz	Max Peak		Coupl	ed	1 MHz	1 MHz
Marker:		1 GHz	-5	1.07 dBm					
Level	Level [dBm]								
0									
-20									
-40									
-60				heren	Much		<u> </u>	mv-funnt	umbrithin
-80									
-100	1G	1.1G	1.2G			1.4G	1		1.58G
			Freq	luency [Hz]					

Page 75 of 106



# **RADIATED SPURIOUS EMISSIONS (WCDMA -850)**

Tx @ 846.6MHz: 1.58GHz – 3GHz

Spurious emission limit –13dBm

#### SWEEP TABLE: "FCC 22 Spur 1.58-3G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
1.58GHz	3GHz	Max Peak	Coupled	1 MHz	1 MHz



Page 76 of 106



# **RADIATED SPURIOUS EMISSIONS (WCDMA-850)**

Tx @ 846.6MHz: 3GHz – 9GHz

Spurious emission limit –13dBm

#### SWEEP TABLE: "FCC 22 Spur 3-9G"



Page 77 of 106



#### RADIATED SPURIOUS EMISSIONS (WCDMA-850) IDLE: 30MHz - 1GHz Spurious emission limit –13dBm Antenna: vertical

#### SWEEP TABLE: "FCC 22 Spur 30M-1G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
30MHz	1GHz	Max Peak	Coupled	1 MHz	1 MHz



Page 78 of 106



#### RADIATED SPURIOUS EMISSIONS (WCDMA -850) IDLE: 30MHz - 1GHz Spurious emission limit -13dBm Antenna: horizontal

#### SWEEP TABLE: "FCC 22 Spur 30M-1G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
30MHz	1GHz	Max Peak	Coupled	1 MHz	1 MHz



Page 79 of 106

2.5G

3G



# RADIATED SPURIOUS EMISSIONS (WCDMA -850) IDLE: 1GHz – 3GHz

1.5G

Spurious emission limit -13dBm

-20

-40

-50

1G

## SWEEP TABLE: "FCC 22 Spur 1-3G"

Star	t Frequency	Stop Fr	requency	Detect	tor	Meas. Time	RBW	VBW	
	1GHz 3GHz Max Peak		eak	Coupled	1 MHz	1 MHz			
Marker		1 GHz	-4:	2.78 dBm					
Leve	Level [dBm]								
50									
40									
20									
0									

2G

Frequency [Hz]

# Page 80 of 106



### RADIATED SPURIOUS EMISSIONS (WCDMA -850) IDLE: 3GHz – 9GHz

#### SWEEP TABLE: "FCC 22 Spur 3-9G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
3GHz	9GHz	Max Peak	Coupled	1 MHz	1 MHz



Page 81 of 106



# **RESULTS OF RADIATED TESTS WCDMA-1900:**

Harmonic	Tx ch-9262 Freq.(MHz)	Level (dBm)	Tx ch-9400 Freq. (MHz)	Level (dBm)	Tx ch-9538 Freq. (MHz)	Level (dBm)		
2	3704.8	NF	3760	NF	3815.2	NF		
3	5557.2	-48.45	5640	-50.25	5722.8	-49.17		
4	7409.6	NF	7520	NF	7630.4	NF		
5	9262	NF	9400	NF	9538	NF		
6	11114.4	NF	11280	NF	11445.6	NF		
7	12966.8	NF	13160	NF	13353.2	NF		
8	14819.2	NF	15040	NF	15260.8	NF		
9	16671.6	NF	16920	NF	17168.4	NF		
10	18524	NF	18800	NF	19076	NF		
	NF = NOISE FLOOR							

Page 82 of 106



#### RADIATED SPURIOUS EMISSIONS(WCDMA 1900) TX: 30MHz - 1GHz Spurious emission limit –13dBm Antenna: vertical

#### SWEEP TABLE: "FCC 24 Spur 30M-1G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
30MHz	1GHz	Max Peak	Coupled	1 MHz	1 MHz

### Note: This plot is valid for low, mid & high channels (worst-case plot)



Page 83 of 106



#### RADIATED SPURIOUS EMISSIONS(WCDMA 1900) TX: 30MHz - 1GHz Spurious emission limit –13dBm Antenna: horizontal

#### SWEEP TABLE: "FCC 24 Spur 30M-1G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
30MHz	1GHz	Max Peak	Coupled	1 MHz	1 MHz

#### Note: This plot is valid for low, mid & high channels (worst-case plot)



Page 84 of 106



### RADIATED SPURIOUS EMISSIONS(WCDMA 1900) Tx @ 1852.4MHz: 1GHz – 3GHz

Spurious emission limit –13dBm

## SWEEP TABLE: "FCC Spuri 1-3G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
1GHz	3GHz	Max Peak	Coupled	1 MHz	1 MHz

#### Note: The peak above the limit line is the carrier freq.

Marke	r: 1.853707415	GHz	19.63 dBm	
Leve	el [dBm]			
50				
40				
20				
0				
-20				
			- AA Mark Alexander Marken	mmmmmmmm
-40	monterment	MA-AMAMAAAA		
-50	1G 1 5G	20	3 2.50	36
		Frequency [Hz]		

Page 85 of 106



#### RADIATED SPURIOUS EMISSIONS(WCDMA 1900) Tx @ 1852.4MHz: 3GHz – 18GHz

Spurious emission limit –13dBm

### SWEEP TABLE: "FCC Spuri 3-18G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
3GHz	18GHz	Max Peak	Coupled	1 MHz	1 MHz



Page 86 of 106



# RADIATED SPURIOUS EMISSIONS(WCDMA 1900)

Tx @ 1880.0MHz: 1GHz – 3GHz

Spurious emission limit –13dBm

### SWEEP TABLE: "FCC Spuri 1-3G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
1GHz	3GHz	Max Peak	Coupled	1 MHz	1 MHz

#### Note: The peak above the limit line is the carrier freq.



Page 87 of 106



### **RADIATED SPURIOUS EMISSIONS(WCDMA 1900)**

Tx @ 1880.0MHz: 3GHz – 18GHz

Spurious emission limit –13dBm

### SWEEP TABLE: "FCC Spuri 3-18G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
3GHz	18GHz	Max Peak	Coupled	1 MHz	1 MHz



Page 88 of 106



### RADIATED SPURIOUS EMISSIONS(WCDMA 1900) Tx @ 1907.6MHz: 1GHz – 3GHz

Spurious emission limit –13dBm

## SWEEP TABLE: "FCC Spuri 1-3G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
1GHz	3GHz	Max Peak	Coupled	1 MHz	1 MHz

#### Note: The peak above the limit line is the carrier freq.

Marke	r: 1.905811623	3 GHz	22.36	dBm	
Leve	el [dBm]				
50					
40					
20		$\diamond$			
20					
0					
-20					
-40		man man h	m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
50	mathematic a second	-			
-50	1G 1.5G	Frequency [Hz]	2G	2.5G	3G

Page 89 of 106



# **RADIATED SPURIOUS EMISSIONS(WCDMA 1900)**

Tx @ 1907.6MHz: 3GHz – 18GHz

Spurious emission limit –13dBm

### SWEEP TABLE: "FCC Spuri 3-18G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW	
3GHz	18GHz	Max Peak	Coupled	1 MHz	1 MHz	



Page 90 of 106



## RADIATED SPURIOUS EMISSIONS(WCDMA 1900) 18GHz – 19.1GHz

Spurious emission limit -13dBm

#### SWEEP TABLE: "FCC 24 spuri 18-19.1G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW		
18GHz	19.1GHz	Max Peak	Coupled	1 MHz	1 MHz		

### Note: This plot is valid for low, mid & high channels (worst-case plot)

Marke	r: 18.5	24649299 GHz	-33	.1 dBm		
Leve	el [dBm]					
0						
-10						
-20						
-30	m. A. MARAMAN A	Ann an an annum	Mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	moundation	mmm
	Warren and and WW	and and a second				
-40						
-50	18G 18.20	G 18.40 Fre	guency [Hz]		3	19.1G

Page 91 of 106



#### RADIATED SPURIOUS EMISSIONS (IDLE MODE) EUT in Idle Mode: 30MHz – 1GHz Spurious emission limit –13dBm Antenna: vertical

### SWEEP TABLE: "FCC 22 Spur 30M-1G"

Star	t Frequer	ncy	S 1	top F	requ	ienc	y	Detector	Me	eas. Time		RBW	r	V	'BW	V
	30MHz 1GHz							Max Peak	C	Coupled		1 MH	z	1	MH	[z
Marke	r:		30 N	ЛНz				-63.72 dBm								
Leve	el [dBm]															
40																
20																
0																
-20																
-40														a mar	orteres	place
-60 (	<u> </u>				$\frown$		~		Lunna and the second se		M	wendenter				
-70	30M	501	<u>л</u>	701	Л	1	00M	2001	/ VI 3001	 M	500	Л	700	/	1	G
							Fre	quency [Hz]								

Page 92 of 106



#### RADIATED SPURIOUS EMISSIONS (IDLE MODE) EUT in Idle Mode: 30MHz – 1GHz Spurious emission limit –13dBm Antenna: horizontal

#### SWEEP TABLE: "FCC 22 Spur 30M-1G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
30MHz	1GHz	Max Peak	Coupled	1 MHz	1 MHz
[					
Marker:	30 MHz	-56.84 dBm			
Level [dBm]					
40					

20																	
20																	
0																	
_20																	
-20																	
-40																	
<	$\sum$									. /	manne	month	mounder	whenyorthy	m	num	walt
-60					$\sim$		$\sim$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~								
-70	30M	501	/	701	<u>л</u>	1	001	Л	2001	/ 3001	Л	500	Л	700	/  /I	1	G
							F	requency [Hz]									

Page 93 of 106



### **RADIATED SPURIOUS EMISSIONS (IDLE MODE)** EUT in Idle Mode: 1GHz – 3GHz

Spurious emission limit –13dBm

# <u>SWEEP TABLE: "FCC Spuri 1-3G"</u>

Star	rt Frequency	Stop Fi	requency	Detec	tor	Meas. Time	RBW	VBW
	1GHz	30	GHz	Max P	eak	Coupled	1 MHz	1 MHz
Marke	:r:	1 GHz	-4.	3.54 dBm				
Lev	el [dBm]							
50								
40								
20								
0								
20								
-20								
				mmm	mmm	man	·····	m.m.m.
-40 <	Zannan	······································	h mar an Mar and the second					
-50	1G	1.50	 }	20	<u> </u>	2.5G		3G
			Freq	uency [Hz]				

Page 94 of 106



# RADIATED SPURIOUS EMISSIONS (IDLE MODE)

EUT in Idle Mode: 3GHz – 18GHz

Spurious emission limit –13dBm

#### SWEEP TABLE: "FCC 24 spuri 3-18G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
3GHz	18GHz	Max Peak	Coupled	1 MHz	1 MHz



Page 95 of 106



# RADIATED SPURIOUS EMISSIONS (IDLE MODE)

EUT in Idle Mode: 18GHz – 19.1GHz

Spurious emission limit –13dBm

## SWEEP TABLE: "FCC 24 spuri 18-19.1G"

Star	rt Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW		
	18GHz	19.1GHz	Max Peak	Coupled	1 MHz	1 MHz		
Marke	r:	18 GHz -3	34.9 dBm					
Leve	el [dBm]							
0								
-10								
-20								
-30								
<	Jammamman M.	how when how have the	Munderman	Mymmum	Munum	Munh		
10								
-40								
-50	18G ²	18.2G 18.4C	6 18.6G	18.8G		19.1G		
	Frequency [Hz]							



# 5.3 RECEIVER RADIATED EMISSIONS § 2.1053 / RSS-133

#### NOTE:

- 1. The radiated emissions were done with different settings, using the relevant pre-amplifiers for the relevant frequency ranges. This is the reason that the graphs show different noise levels. In the range between 3GHz and 26.5GHz very short cable connections to the antenna was used to minimize the noise level.
- 2. Receiver radiated emissions were done on both 850/1900 bands, worst-case plots are only sumbitted in this report(Worst-case was found to be WCDMA-1900).

Limits		SUBCLAUSE § RSS-133
Frequency (MHz)	Field strength (µV/m)	Measurement distance (m)
0.009 - 0.490	2400/F (kHz)	300
0.490 - 1.705	24000/F (kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

Page 97 of 106



# 5.3.1 <u>Receiver Spurious on EUT</u>

RECEIVER RADIATED EMISSIONS EUT in Idle Mode: 30MHz – 1GHz Antenna: vertical

## SWEEP TABLE: "FCC Spur 30M-1G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
30MHz	1GHz	Max Peak	Coupled	100 KHz	100 KHz

#### Note: peak reading vs. Quasi-peak limit



Page 98 of 106



### RECEIVER RADIATED EMISSIONS EUT in Idle Mode: 30MHz – 1GHz Antenna: horizontal

## SWEEP TABLE: "FCC Spur 30M-1G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
30MHz	1GHz	Max Peak	Coupled	100 KHz	100 KHz

#### Note: peak reading vs. Quasi-peak limit



# Page 99 of 106



#### **RECEIVER RADIATED EMISSIONS EUT in Idle Mode: 1GHz – 3GHz**

#### Note: marked peak is downlink from the base station

#### SWEEP TABLE: "FCC Spuri 1-3G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
1GHz	3GHz	Max Peak	Coupled	1 MHz	1 MHz

Marke	r: 1 GHz	38.44 dBµV/m		
Leve	el [dBµV/m]			
120				
110				
100				
90				
80				
70				
70				
60				
50			Marin an Marina	ummmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
40 <	Jamman Markan	www.www.		
30	10 150			
	16 1.56	Frequency [Hz]	5 2.50	, 3G

This report shall not be reproduced except in full without the written approval of: CETECOM, Inc.

**RECEIVER RADIATED EMISSIONS EUT in Idle Mode: 3GHz – 18GHz** 

#### SWEEP TABLE: "FCC spuri 3-18G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
3GHz	18GHz	Max Peak	Coupled	1 MHz	1 MHz





Page 100 of 106

Page 101 of 106



#### **RECEIVER RADIATED EMISSIONS EUT in Idle Mode: 18GHz – 19.1GHz**

#### SWEEP TABLE: "FCC spuri 18-19.1G"

Start Frequency	Stop Frequency	Detector	Meas. Time	RBW	VBW
18GHz	19.1GHz	Max Peak	Coupled	1 MHz	1 MHz





# 5.4 AC POWERLINE CONDUCTED EMISSIONS § 15.107/207

#### Technical specification: 15.107 / 15.207 (Revised as of August 20, 2002)

### Limit

Frequency of Emission (MHz)	Conducted I	Limit (dBµV)		
	Quasi-Peak	Average		
0.15 - 0.5	66 to 56*	56 to 46*		
0.5 - 5	56	46		
5 - 30	60	50		

* Decreases with logarithm of the frequency

ANALYZER SETTINGS: RBW = 10KHzVBW = 10KHz

Prescans were performed on both 850/1900 bands, full testing on the worst-case band is submitted in the test report(wcdma-1900).

# Page 103 of 106



### 5.4.1 Results EUT

#### SCAN TABLE: "EN 55022 Voltage@110vac"

Short Description: EN 55022 Voltage						
Start	Stop	Step	Detector	Meas.	IF	Transducer
Frequency	Frequency	Width		Time	Bandw.	
150.0 kHz	30.0 MHz	5.0 kHz	MaxPeak	10.0 ms	9 kHz	None
			Average			





# 6 TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS

No	Instrument/Ancill	Туре	Manufacturer	Serial No.	Cal Due	Interval
	ary					
01	Spectrum Analyzer	ESIB 40	Rohde & Schwarz	100107	May 2006	1 year
02	Spectrum Analyzer	FSEM 30	Rohde & Schwarz	100017	August 2006	1 year
03	Signal Generator	SMY02	Rohde & Schwarz	836878/01	May 2006	1 year
				1		
04	Power-Meter	NRVD	Rohde & Schwarz	0857.8008	May 2006	1 year
				.02		
05	Biconilog Antenna	3141	EMCO	0005-1186	June 2006	1 year
06	Horn Antenna (1-	SAS-200/571	AH Systems	325	June 2006	1 year
	18GHz)					
07	Horn Antenna (18-	3160-09	EMCO	1240	June 2006	1 year
	26.5GHz)					
08	Power Splitter	11667B	Hewlett Packard	645348	n/a	n/a
09	Climatic Chamber	VT4004	Voltsch	G1115	May 2006	1 year
10	High Pass Filter	5HC2700	Trilithic Inc.	9926013	n/a	n/a
11	High Pass Filter	4HC1600	Trilithic Inc.	9922307	n/a	n/a
12	Pre-Amplifier	JS4-	Miteq	00616	May 2006	1 year
		00102600				
13	Power Sensor	URV5-Z2	Rohde & Schwarz	DE30807	May 2006	1 year
14	Digital Radio	CMD 55	Dobdo & Sobwarz	847958/00	May 2006	1 year
	Comm. Tester	CMD-33	Konue & Schwarz	8	Iviay 2000	
15	Universal Radio	CMU 200	Rohde & Schwarz	832221/06	May 2006	1 year
	Comm. Tester	CIVIC 200		052221/00	1viay 2000	



# 7 <u>References</u>

Title 47—Telecommunication, CHAPTER I--FEDERAL COMMUNICATIONS COMMISSION, PART 2--FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS October 1, 2001.

Title 47—Telecommunication, CHAPTER I--FEDERAL COMMUNICATIONS COMMISSION, PART 22 PUBLIC MOBILE SERVICES October 1, 1998.

FCC Report and order 02-229 September 24, 2002.

Title 47—Telecommunication, CHAPTER I--FEDERAL COMMUNICATIONS COMMISSION, PART 24 PERSONAL COMMUNICATIONS SERVICES October 1, 1998.

ANSI / TIA-603C August 2004 Land Mobile FM or PM Communications Equipment Measurement and Performance Standard November 7, 2002.

Page 106 of 106



# 8 BLOCK DIAGRAMS

# **Radiated Testing**



# ANECHOIC CHAMBER

Spectrum Analyzer