

FCC Test Report Test report no.: EMC_958FCC22-24_2005_GSM_136

FCC Part 22, 24 / RSS 132, 133 EUT Tablet PC Model: iX104C2 With GSM module Model: MC75 FCC ID: Q2GIX104-136 IC: 4596A-IX104WBG

😵 Bluetooth

Bluetooth Qualification Test Facility (BQTF)

FCC listed # 101450

IC recognized # 3925

CETECOM Inc.

411 Dixon Landing Road + Milpitas, CA 95035 + U.S.A.

Phone: + 1 (408) 586 6200 • Fax: + 1 (408) 586 6299 • E-mail: info@cetecomusa.com • <u>http://www.cetecom.com</u> *CETECOM* Inc. is a Delaware Corporation with Corporation number: 2113686 Board of Directors: Dr. Harald Ansorge, Dr. Klaus Matkey, Hans Peter May

Table of Contents

1	General information
1.1	Notes
1.2	Testing laboratory
1.3	Details of applicant
1.4	Application details
1.5	Test item
1.6	Test standards
2	Technical test
2.1	Summary of test results
2.2	Test report
1	General information
1.1	Notes

1.1 Notes

The test results of this test report relate exclusively to the test item specified in 1.5. The CETECOM Inc. does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the CETECOM Inc.

TEST REPORT PREPARED BY: EMC Engineer: Harpreet Sidhu

1.2 Testing laboratory

CETECOM Inc. 411 Dixon Landing Road, Milpitas, CA-95035, USA Phone: +1 408 586 6200 Fax: +1 408 586 6299 E-mail: <u>lothar.schmidt@cetecomusa.com</u> Internet: <u>www.cetecom.com</u>

Page 3 (45)

1.3 Details of applicant

Name	:	Xplore Technologies
Street	:	14000 Summit Road, Suite 900
City / Zip Code	:	Austin, TX 78728
Country	:	USA
Contact	:	Douglas L. Fowler
Telephone	:	+1 512 336 7797
Tele-fax	:	+1 512 336 7791
e-mail	:	dfowler@xploretech.com

1.4 Application details

Date of receipt test item	:	2005-06-15
Date of test	:	2005-06-15 to 2005-06-21

1.5 Test item

Manufacturer	:	Applicant
Marketing Name	:	iX104C2
Model No.	:	iX104C2
Description	:	Tablet PC with GSM module
FCC-ID	:	Q2GIX104-136
IC ID	:	4596A-IX104WBG

Additional information

ruantional mitor mation		
Frequency	:	824.2MHz – 848.8MHz for GSM 850,
		1850.2MHz – 1909.8MHz for PCS 1900
Type of modulation	:	GMSK
Number of channels	:	124 for GSM-850, 299 for PCS-1900
Antenna	:	Embedded
Power supply	:	via host Tablet PC
Output power	:	22.49dBm (177.42mW) max. ERP measured in GSM-850
		26.44dBm (440.55mW) max. EIRP measured in PCS-1900
Extreme temp. Tolerance	:	Lower: -30° C Upper: $+50^{\circ}$ C

1.6 Test standards

FCC Part 22, 24 / RSS 132 Issue 3 June 2005, RSS 133 issue 2 1999

Note: All radiated measurements were made in all three orthogonal planes. The values reported are the maximum values.

The Tablet PC (model# iX104C2) carries pre-certified GSM module model# MC75 with FCC ID: QIPMC75

This test report covers full radiated testing as per FCC 22/24 on Tablet PC with GSM module. All conducted measurements are covered under *test report#* 4_Siem_0504_GSM_FCC

Test report no.: EMC_958FCC22-24_2005_GSM_136 Issue date: 2005-07-01

2 Technical test

2.1 Summary of test results

No deviations from the technical specification(s) were ascertained in the course of the tests Performed		
Final Verdict: (only "passed" if all single measurements are "passed")	Passed	

Technical responsibility for area of testing:

2005-07-01 EMC & Radio Lothar Schmidt (Manager)

Signature

Date

Section

Name

Responsible for test report and project leader:

2005-07-01 EMC & Radio Harpreet Sidhu (EMC Engineer)

Date

Section

Name

Signature

Test report no.: EMC_958FCC22-24_2005_GSM_136

Issue date: 2005-07-01

2.2 Test report

TEST REPORT

Test report no.: EMC_858FCC22-24_2005_GSM_136

TEST REPORT REFERENCE

PARAMETER TO BE MEASURED	PARAGRAPH	PAGE
POWER OUTPUT	§ 22.913(a) / § 24.232 (b)	7
EMISSION LIMITS TRANSMITTER	§2.1051 / §24.238	10
RECEIVER RADIATED EMISSIONS	§ 2.1053 / RSS-133	37
CONDUCTED EMISSIONS	§ 15.107/207	43
TEST EQUIPMENT AND ANCILLARIE	CS USED FOR TESTS	44
BLOCK DIAGRAMS		45

POWER OUTPUT

§ 22.913(a) / § 24.232 (b)

Summary:

During the process of testing, the EUT was controlled via Rhode & Schwarz Universal Radio Communication tester (CMU 200) to ensure max. Power transmission and proper modulation.

This paragraph contains average output power, peak output power, EIRP & ERP measurements for the EUT. In all cases, the peak output power is within the specified limits.

Method of Measurements:

The EUT was set up for the max. Output power with pseudo random data modulation.

The power was measured with R&S Spectrum Analyzer ESIB 40 (peak)

These measurements were done at 3 frequencies,

824.2 MHz, 836.6 MHz and 848.8 MHz (bottom, middle and top of operational frequency range) for GSM-850 1850.2 MHz, 1880.0 MHz and 1909.8 MHz (bottom, middle and top of operational frequency range) for PCS-1900

Page 8 (45)

ERP (GSM-850)

§22.913(a)

Limits:

Power Control Level	Burst Peak ERP
5	≤38.45dBm (7W)

EIRP

Frequency (MHz)	Power Control Level	Burst Peak (dBm)	
		EIRP	ERP
824.2	5	20.53	18.39
836.6	5 22.63		20.49
848.8	5	24.63	22.49
Measurement uncertainty	±0.5 dB		

ANALYZER SETTINGS: RBW = VBW = 3MHz

Test report no.: EMC_958FCC22-24_2005_GSM_136 Issue date

Issue date: 2005-07-01

EIRP (PCS-1900) §24.232(b)

Limits:

Power Control Level	Burst Peak EIRP
0	≤33dBm (1W)

EIRP

Frequency (MHz)	Power Control Level	Burst Peak (dBm) EIRP	
1850.2	0	25.78	
1880.0	0	26.44	
1909.8	0	26.01	
Measurement uncertainty	±0.5 dB		

ANALYZER SETTINGS: RBW = VBW = 3MHz

Page 10 (45)

(**ETE** (**O**) |

EMISSION LIMITS TRANSMITTER

§2.1051 / §24.238

Measurement Procedure:

The following steps outline the procedure used to measure the radiated emissions from the EUT. The site is constructed in accordance with ANSI C63.4 – 2003 requirements and is recognised by the FCC. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 1910 MHz. The resolution bandwidth is set as outlined in Part 24.238. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the USPCS band.

Additionally testing was done from 9 kHz to 30MHz in order to verify EUT compliance in this freq. range.

The final Radiated emission test procedure is as follows:

a) The test item was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna.

b) The antenna output was terminated in a 50-ohm load.

c) A double-ridged wave guide antenna was placed on an adjustable height antenna mast 3 meters from the test item for emission measurements.

d) Detected emissions were maximized at each frequency by rotating the test item and adjusting the receive antenna height and polarization. The maximum meter reading was recorded. The radiated emission measurements of all non-harmonic and harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and 1MHz bandwidth. If the harmonic could not be detected above the noise floor, the ambient level was recorded. The equivalent power into a dipole antenna was determined by the substitution method described for ERP measurements.

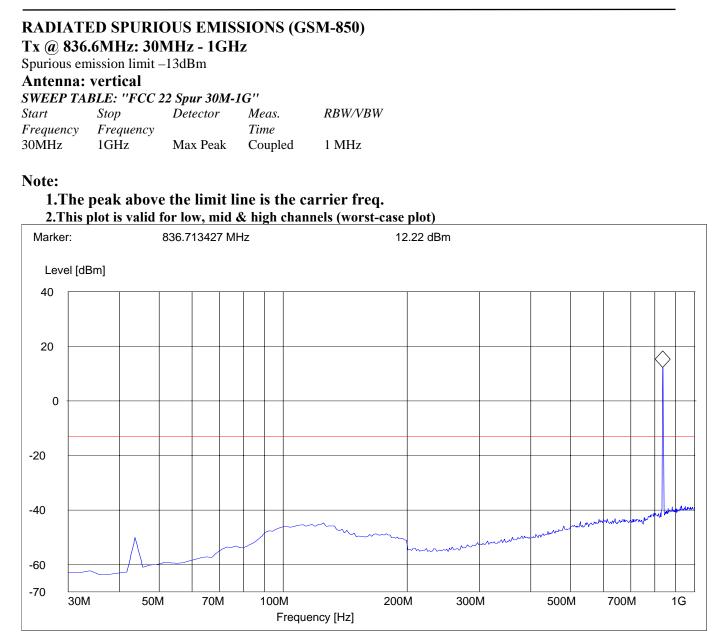
Measurement Limit:

Sec. 24.238 Emission Limits.

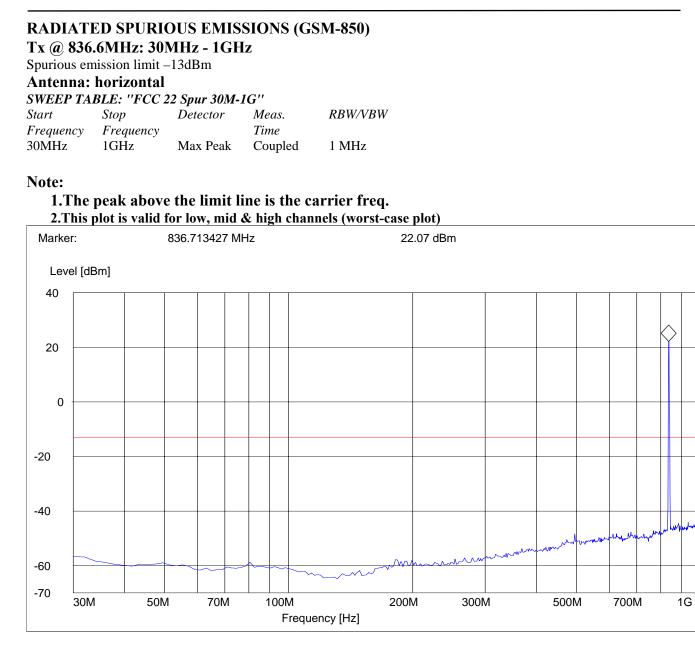
(a) On any frequency outside a licensee's frequency block (e.g. A, D, B, etc.) within the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43+10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

Measurement Results:

Radiated emissions measurements were made only at the upper, middle, and lower carrier frequencies of the GSM-850 & PCS-1900 bands. It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the GSM-850 & PCS-1900 band into any of the other blocks respectively. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.



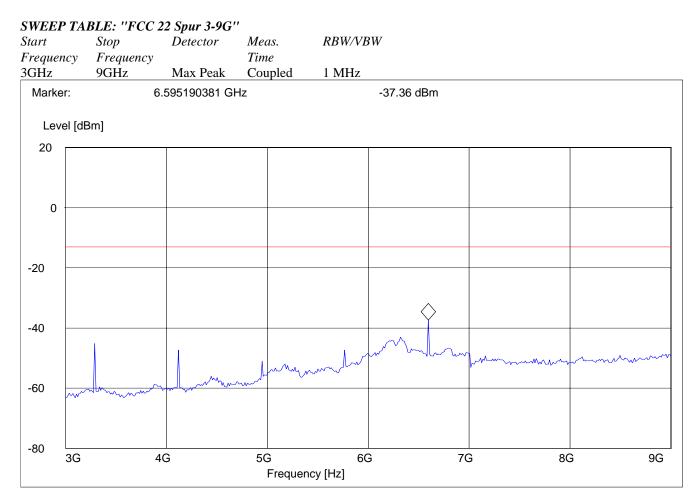
RESULTS OF RADIATED TESTS GSM-850:


Harmonics	Tx ch-128 Freq. (MHz)	Level (dBm)	Tx ch-190 Freq. (MHz)	Level (dBm)	Tx ch-251 Freq. (MHz)	Level (dBm)
2	1648.4	-41.19	1673.2	-39.13	1697.6	-35.91
3	2472.6	-38.08	2509.8	-37.09	2546.4	-33.88
4	3296.8	-45.16	3346.4	-50.21	3395.2	-53.24
5	4121	-47.30	4183	-55.19	4244	-49.77
6	4945.2	-51.02	5019.6	-50.80	5092.8	-48.99
7	5769.4	-47.34	5856.2	-46.20	5941.6	-42.86
8	6593.6	-37.36	6692.8	-39.05	6790.4	-38.23
9	7417.8	nf	7529.4	-47.94	7639.2	-42.04
10	8242	nf	8366	nf	8488	-47.27

nf: noise floor

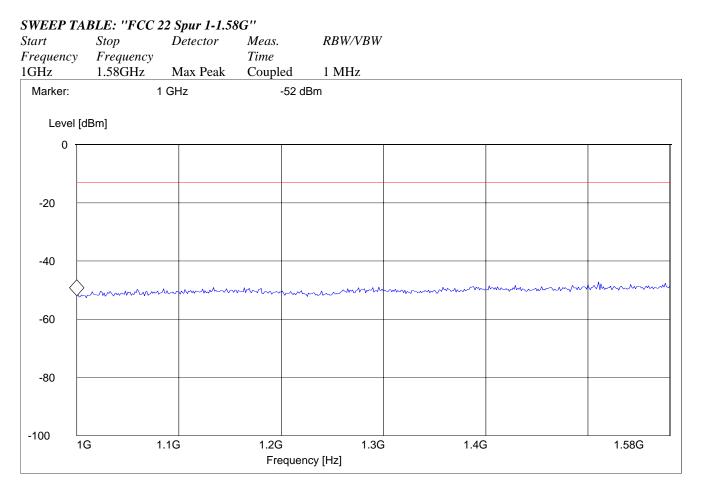
RADIATED SPURIOUS EMISSIONS (GSM-850) Tx @ 824.2MHz: 1GHz – 1.58GHz

Start	BLE: "FCC 2 Stop	Detector	Meas.	RBW/VBW		
Frequency 1GHz	Frequency 1.58GHz	Max Peak	<i>Time</i> Coupled	1 MHz		
Marker:		GHz	-51.93			
		••••=	01100			
Level [dBm]					
0						
-20						
-40						
			1. Mar.		mann	mmmmmmmmm
-60						
-80						
-100	G 1	.1G	1.2G	1.3G	1.4G	1.58G
			Frequence	cy [Hz]		



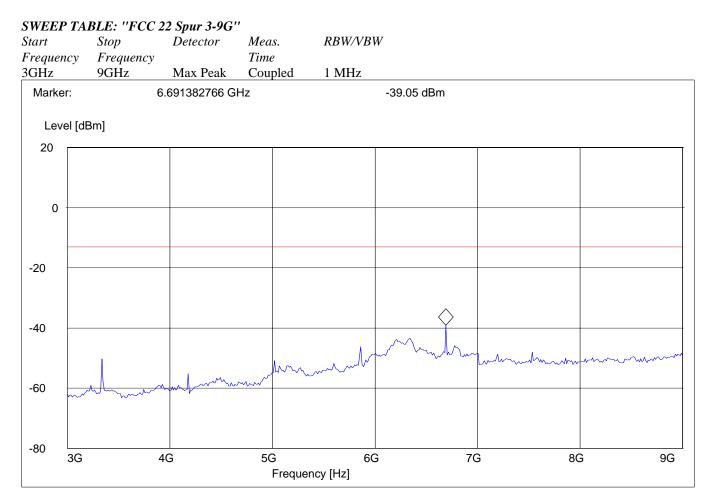
RADIATED SPURIOUS EMISSIONS (GSM-850) Tx @ 824.2MHz: 1.58GHz – 3GHz

SWEEP 'I Start	TABLE: ''FCC 2 Stop	22 Spur 1.58-3 Detector	G'' Meas.	RBW/VBW			
Frequenc	y Frequency		Time				
1.58GHz	3GHz	Max Peak	Coupled	1 MHz			
Marker:	2	.473547094 GI	Hz	-38.08	dBm		
امريم ا	[dBm]						
30 -			_				
50							
20 -							
10							
10 -							
0 -							
-10							
-20							
-30							
-40		mm	hanna	mmhomm	mhomm	mon	mann
-50	milannon	m					
-60 L	.58G 1.8G	3 2	2G 2	2.2G 2.40	G 2.60	G 2.80	G 3G
			Frequen	cy [Hz]			



RADIATED SPURIOUS EMISSIONS (GSM-850) Tx @ 824.2MHz: 3GHz – 9GHz

RADIATED SPURIOUS EMISSIONS (GSM-850) Tx @ 836.6MHz: 1GHz – 1.58GHz



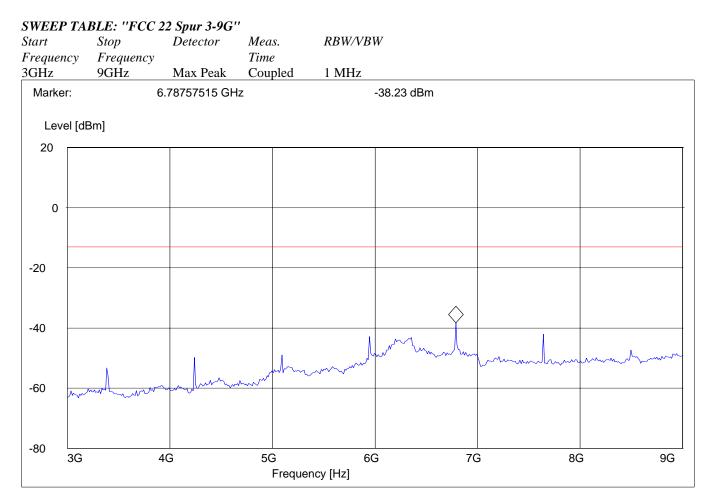
RADIATED SPURIOUS EMISSIONS (GSM-850) Tx @ 836.6MHz: 1.58GHz – 3GHz

	ABLE: ''FCC 2		$G^{\prime\prime}$				
Start 5	Stop	Detector	Meas.	RBW/VBW			
Frequency			Time	1) (11			
1.58GHz	3GHz	Max Peak	Coupled	1 MHz			
Marker:	2	.510541082 G	Hz	-37.09	dBm		
1	-ID 1						
Level [abmj						
30							
20							
20							
10 🕂							
0							
-10							
-20							
-30					\land		
-40	a						
-40		~~~~~	momm	mann	mmml	man	mann
-50	multimasion	mmm					
-60	58G 1.8G	<u> </u>	2G 2	2.2G 2.40	G 2.60	G 2.8G	3G
1.5	1.60	, 2	ZG ZG Z		2.00	2.00	50
			Печиен	נאיין עט			

RADIATED SPURIOUS EMISSIONS (GSM-850) Tx @ 836.6MHz: 3GHz – 9GHz

RADIATED SPURIOUS EMISSIONS (GSM-850) Tx @ 848.8MHz: 1GHz – 1.58GHz

Start Frequency	ABLE: "FCC 2 Stop Frequency	Detector	Meas. Time	RBW/VBW			
1GHz	1.58GHz	Max Peak	Coupled	1 MHz			
Marker:		1 GHz	-50.	88 dBm			
Level [dBm]						
0 -					1	1	<u> </u>
_							
-20							
-40							
-40	X						
Y	Amm	mmmm	mmm	Mummuh	multurent	······································	
-60							
-80							
-100							
1	G	1.1G	1.2G Frequ	1.30 ency [Hz]	6 1.40	ż	1.58G



RADIATED SPURIOUS EMISSIONS (GSM-850) Tx @ 848.8MHz: 1.58GHz – 3GHz

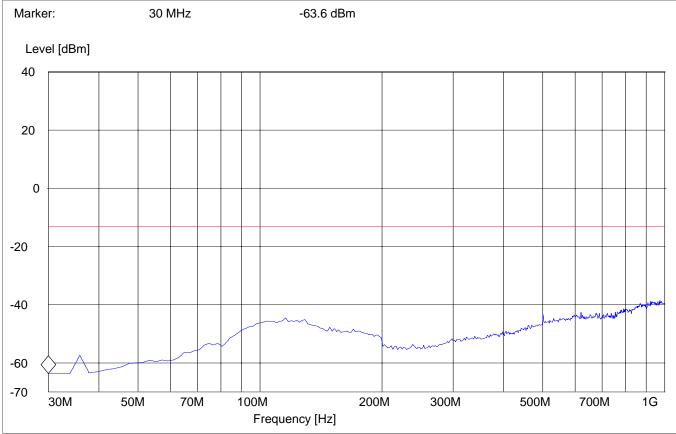
	TABLE: "FCC 2						
Start	Stop	Detector	Meas.	RBW/VBW			
Frequency		M. D. 1	Time	1 1 11			
1.58GHz	3GHz	Max Peak	Coupled	1 MHz			
Marker:	2	2.54753507 GH	lz	-33.88 dl	Зm		
Level	[dBm]						
30							
00							
20 –							
10							
10							
0 -							
-10							
-20							
20					_		
-30 -					$\langle \rangle$		
-40							
-0		~~~~	mmmm	manhan	mommun	mmhmm	which when
-50	montin	Martin and a start and a start					
-60	.58G 1.8G	<u> </u>	2G	2.2G 2.40			3G
1.	.58G 1.8G	2	ZG Frequer		G 2.60	G 2.8G	36
			Fiequer				

RADIATED SPURIOUS EMISSIONS (GSM-850) Tx @ 848.8MHz: 3GHz – 9GHz

RESULTS OF RADIATED TESTS PCS-1900:

Harmonic	Tx ch-512 Freq.(MHz)	Level (dBm)	Tx ch-661 Freq. (MHz)	Level (dBm)	Tx ch-810 Freq. (MHz)	Level (dBm)
2	3700.4	-31.10	3760	-28.13	3819.6	-28.84
3	5550.6	-39.89	5640	-37.74	5729.4	-35.71
4	7400.8	-45.40	7520	-43.76	7639.2	-45.86
5	9251	-36.87	9400	-37.09	9549	-39.54
6	11101.2	nf	11280	nf	11458.8	nf
7	12951.4	nf	13160	nf	13368.6	nf
8	14801.6	nf	15040	nf	15278.4	nf
9	16651.8	nf	16920	nf	17188.2	nf
10	18502	nf	18800	nf	19098	nf

RADIATED SPURIOUS EMISSIONS


Tx @ 1850.2MHz: 30MHz - 1GHz

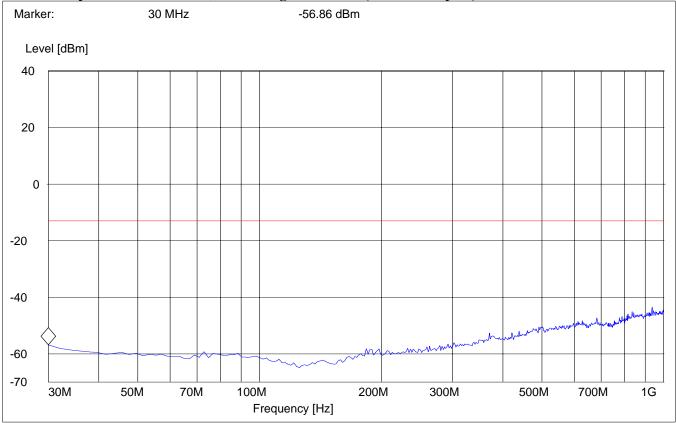
Spurious emission limit –13dBm

Antenna: vertical

SWEEP TABLE: "FCC 24 Spur 30M-1G"						
Start	Stop	Detector	Meas.	RBW/VBW		
Frequency	Frequency		Time			
30MHz	1GHz	Max Peak	Coupled	1 MHz		

Note: This plot is valid for low, mid & high channels (worst-case plot)

RADIATED SPURIOUS EMISSIONS

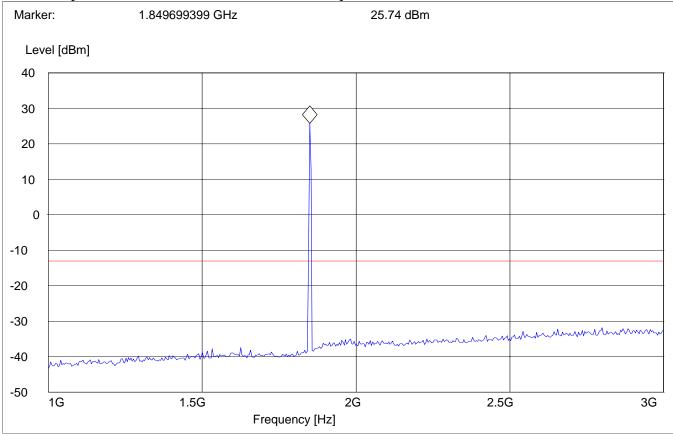

Tx @ 1850.2MHz: 30MHz - 1GHz

Spurious emission limit -13dBm

Antenna: horizontal

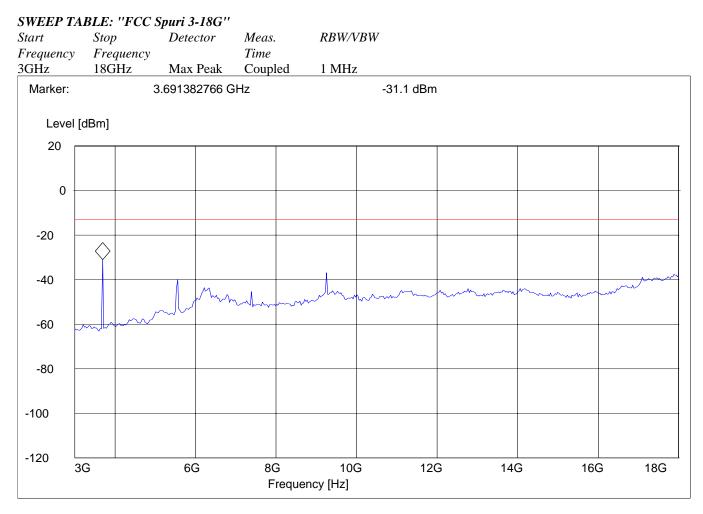
SWEEP TABLE: "FCC 24 Spur 30M-1G"						
Start	Stop	Detector	Meas.	RBW/VBW		
Frequency	Frequency		Time			
30MHz	1GHz	Max Peak	Coupled	1 MHz		

Note: This plot is valid for low, mid & high channels (worst-case plot)


RADIATED SPURIOUS EMISSIONS Tx @ 1850.2MHz: 1GHz – 3GHz

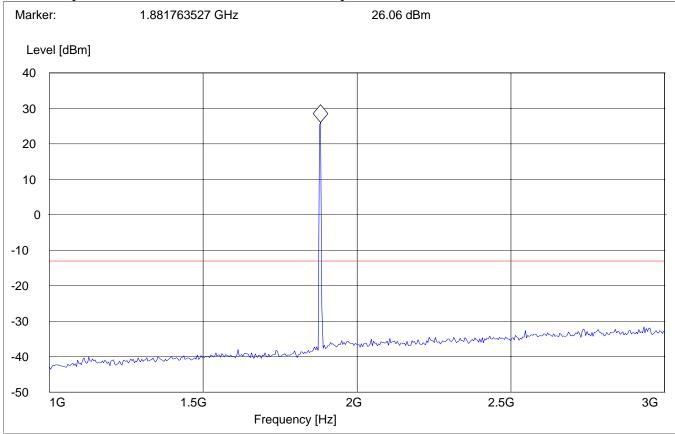
Spurious emission limit –13dBm

SWEEP TABLE: "FCC Spuri 1-3G"


Start	Stop	Detector	Meas.	RBW/VBW
Frequency	Frequency		Time	
1GHz	3GHz	Max Peak	Coupled	1 MHz

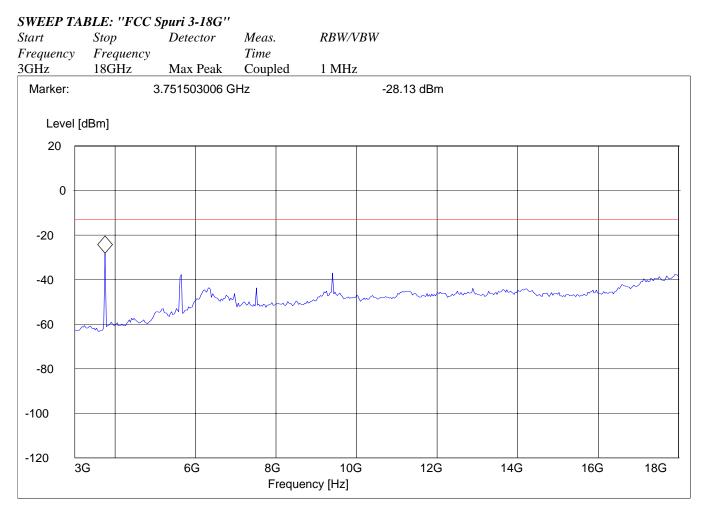
Note: The peak above the limit line is the carrier freq. at ch-512.

RADIATED SPURIOUS EMISSIONS Tx @ 1850.2MHz: 3GHz – 18GHz


RADIATED SPURIOUS EMISSIONS Tx @ 1880MHz: 1GHz – 3GHz

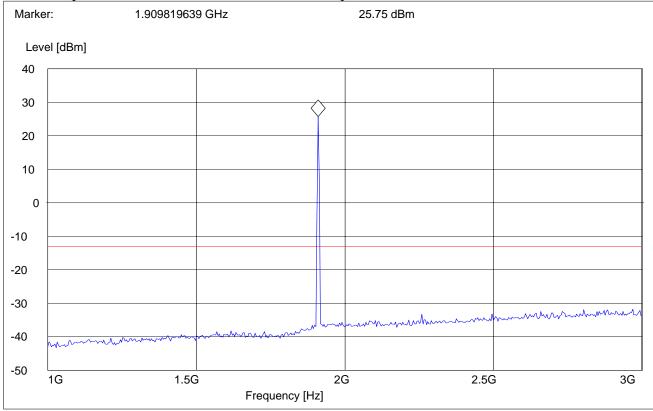
Spurious emission limit –13dBm

SWEEP TABLE: "FCC Spuri 1-3G"


Start	Stop	Detector	Meas.	RBW/VBW
Frequency	Frequency		Time	
1GHz	3GHz	Max Peak	Coupled	1 MHz

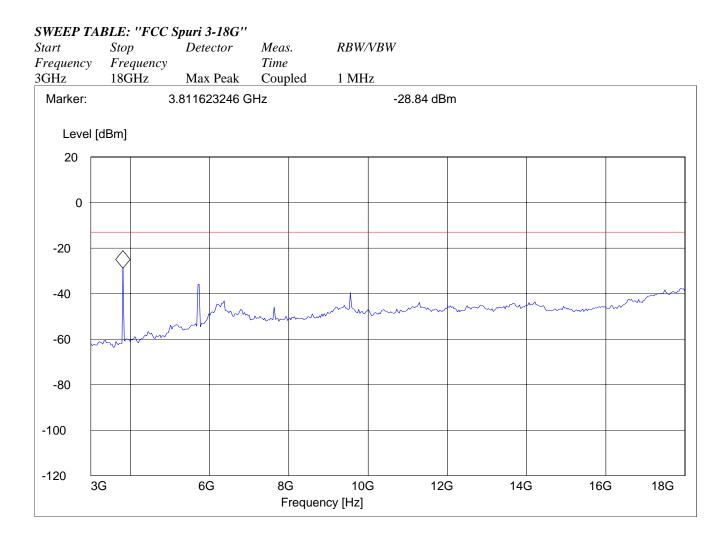
Note: The peak above the limit line is the carrier freq. at ch-661.

RADIATED SPURIOUS EMISSIONS Tx @ 1880MHz: 3GHz – 18GHz


RADIATED SPURIOUS EMISSIONS Tx @ 1909.8MHz: 1GHz – 3GHz

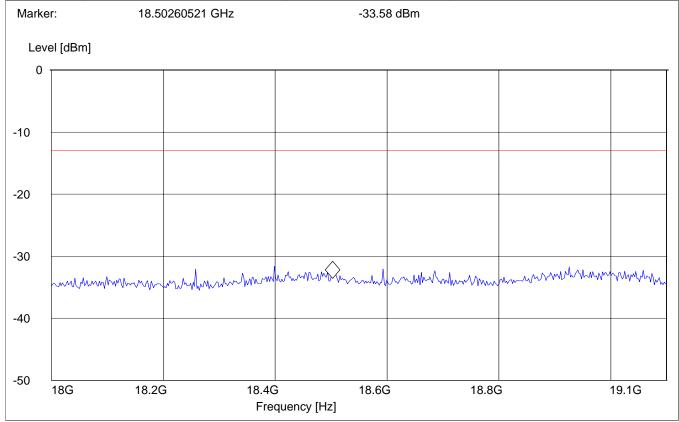
Spurious emission limit –13dBm

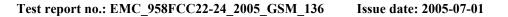
SWEEP TABLE: "FCC Spuri 1-3G"


Start	Stop	Detector	Meas.	RBW/VBW
Frequency	Frequency		Time	
1GHz	3GHz	Max Peak	Coupled	1 MHz

Note: The peak above the limit line is the carrier freq. at ch-810.

RADIATED SPURIOUS EMISSIONS Tx @ 1909.8MHz: 3GHz – 18GHz

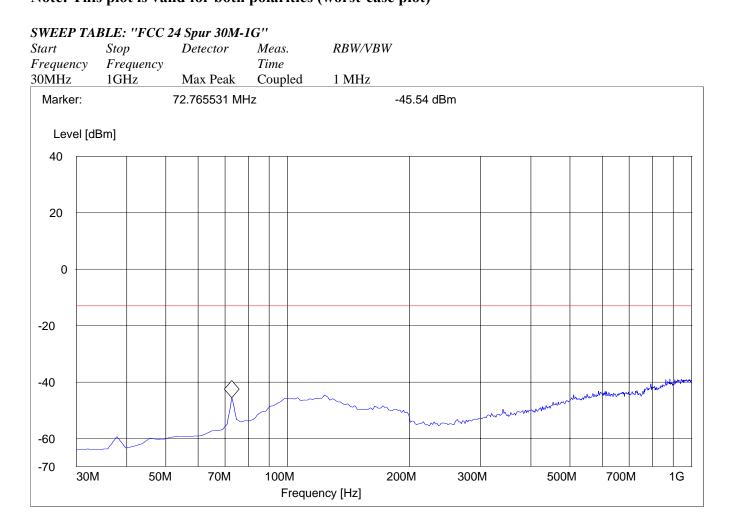

RADIATED SPURIOUS EMISSIONS 18GHz – 19.1GHz


Spurious emission limit -13dBm

SWEEP TABLE: "FCC 24 spuri 18-19.1G"

Start	Stop	Detector	Meas.	RBW/VBW
Frequency	Frequency		Time	
18GHz	19.1GHz	Max Peak	Coupled	1 MHz

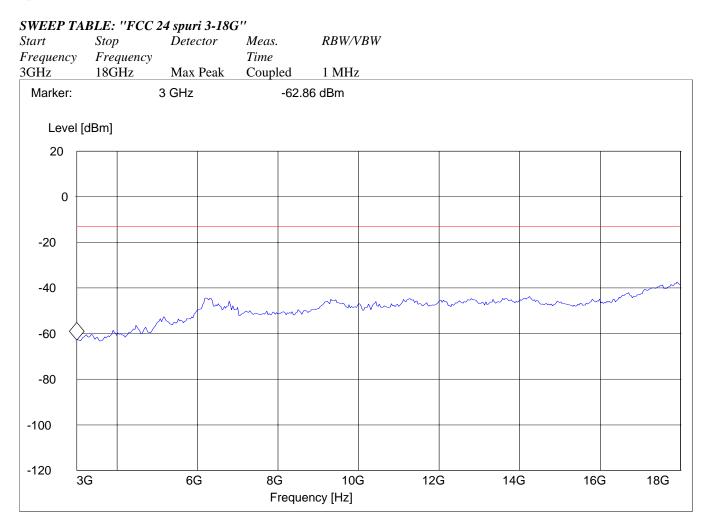
Note: This plot is valid for low, mid & high channels (worst-case plot)



RADIATED SPURIOUS EMISSIONS (IDLE MODE – GSM 850/1900)

Idle mode spurious was conducted for both GSM 850 & 1900 bands, only worst case plots are submitted in the test report.

Antenna: vertical EUT in Idle Mode: 30MHz – 1GHz Spurious emission limit –13dBm Note: This plot is valid for both polarities (worst-case plot)



RADIATED SPURIOUS EMISSIONS (IDLE MODE – GSM 850/1900) EUT in Idle Mode: 1GHz – 3GHz

	BLE: "FCC						
Start	Stop	Detector	Meas.	RBW/VE	3W		
Frequency	Frequency	Man Daala	Time Courled	1 MII-			
1GHz	3GHz	Max Peak	Coupled	1 MHz			
Marker:		1 GHz	-42.21	dBm			
Level [d	IBm]						
40	-				1		
30							
20							
10							
0							
10							
-10							
-20							
-30							
					mannamman	man man man	~~~
-40	mmmmmm	mmmmm	mmmmm	mmm			
-50							
-50 1G		1.5G		20	G 2.5	5G 3	3G
			Frequence	cy [Hz]			

RADIATED SPURIOUS EMISSIONS (IDLE MODE – GSM 850/1900) EUT in Idle Mode: 3GHz – 18GHz

RADIATED SPURIOUS EMISSIONS (IDLE MODE – GSM 850/1900) EUT in Idle Mode: 18GHz – 19.1GHz

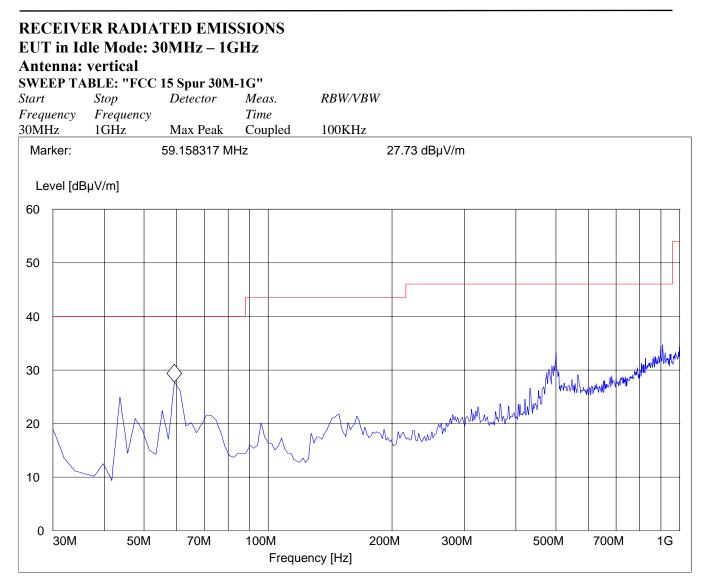
Start Frequency	TABLE: ''FCC 2 Stop v Frequency	Detector	Meas. Time	RBW/VBW			
18GHz	19.1GHz	Max Peak	Coupled	1 MHz			
Marker:	18	3 GHz	-34	.54 dBm			
Level 0	[dBm]						
-10							
-20							
-30			1 An 0.0		mmmmmm	M. Annala Mar	In Mar da
-40	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Mhhhhh		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	and the second product of the second s	Marcana Le chille a	
-50 18	3G 18.	2G	18.4G	18.60	G 18.80		19.1G

Test report no.: EMC_958FCC22-24_2005_GSM_136

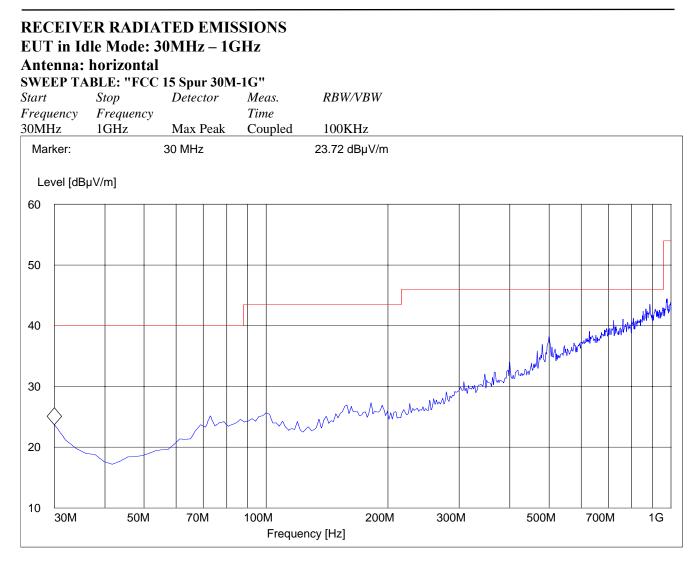
Issue date: 2005-07-01

Page 37 (45)

RECEIVER RADIATED EMISSIONS

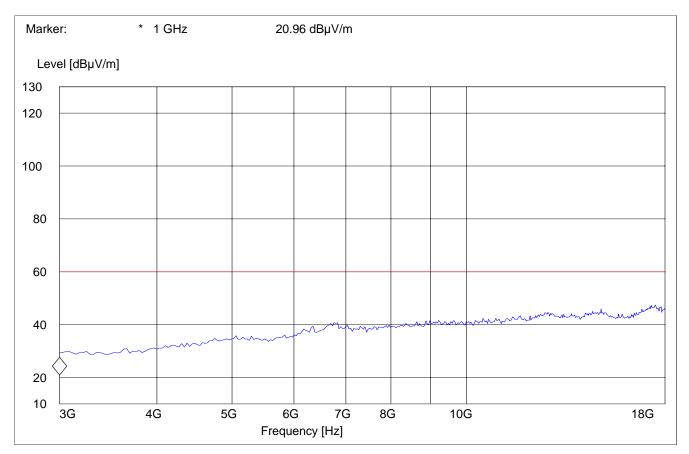

§ 2.1053 / RSS-133

NOTE:


- 1. The radiated emissions were done with different settings, using the relevant pre-amplifiers for the relevant frequency ranges. This is the reason that the graphs show different noise levels. In the range between 3GHz and 26.5GHz very short cable connections to the antenna was used to minimize the noise level.
- 2. Receiver radiated emissions were done on both 850/1900 bands, but only worst-case plots are submitted in the test reports.

Limits		SUBCLAUSE § 15.209
Frequency (MHz)	Field strength (µV/m)	Measurement distance (m)
0.009 - 0.490	2400/F (kHz)	300
0.490 - 1.705	24000/F (kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

RECEIVER RADIATED EMISSIONS EUT in Idle Mode: 1GHz – 3GHz


Note: marked peak is downlink from the base station

tart	Stop	15 Spuri 1-3G Detector	Meas.	RBW/VBW		
requency GHz	Frequency 3GHz	Max Peak	<i>Time</i> Coupled	1 MHz		
Marker:		1 GHz		dBµV/m		
l ovol [d	Bu\//∞1					
Level [d	σμν/ιιι]					
120						
110						
100						
00						
90						
80						
70						
60						
00						
50				Mar	mm mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	man have marked by the second
40	himph	mmmmm	mmm			
30						
301G		1.5G	Frequen	2G	2.5G	3G

RECEIVER RADIATED EMISSIONS EUT in Idle Mode: 3GHz – 18GHz

SWEEP TABLE: "FCC 15 spuri 3-18G"							
Start	Stop	Detector	Meas.	RBW/VBW			
Frequency	Frequency		Time				
3GHz	18GHz	Max Peak	Coupled	1 MHz			

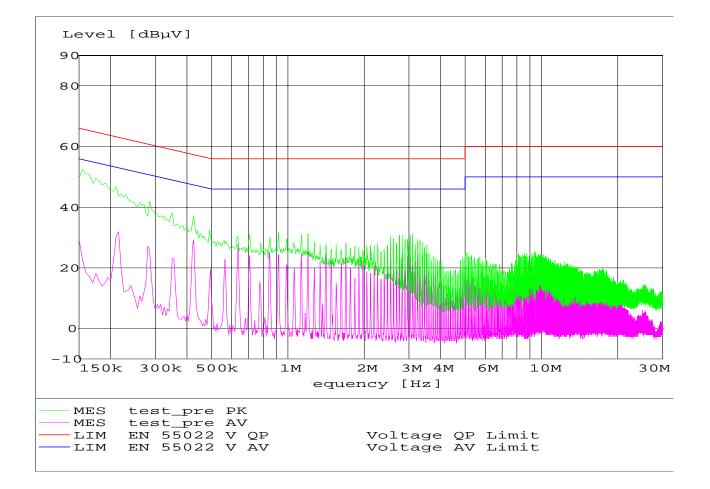
RECEIVER RADIATED EMISSIONS EUT in Idle Mode: 18GHz – 26.5GHz

tart Frequenc	TABLE: ''FCC 1 Stop cy Frequency	Detector	Meas. Time	RBW/VBW			
8GHz	26.5GHz	Max Peak	Coupled	1 MHz			
Level	l [dBµV/m]						
70							
60							
50 -							
40 —							
40	\wedge \wedge				<u> </u>		
30							
20 18	G 18.2	G	18.4G	18.60	G 18.8	 3G	19.1G
			Frequ	ency [Hz]			

CONDUCTED EMISSIONS

Measured with AC/DC power adapter plugged in LISN

Technical specification: 15.107 / 15.207 (Revised as of August 20, 2002)

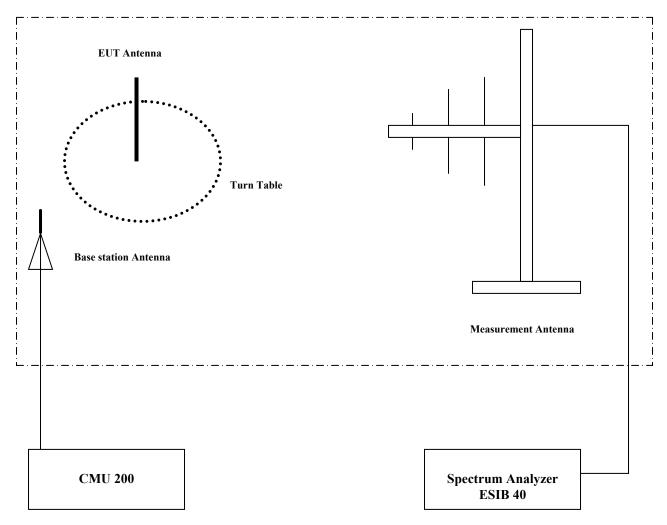

Limit

Frequency of Emission (MHz)	Conducted Limit (dBµV)				
	Quasi-Peak	Average			
0.15 - 0.5	66 to 56*	56 to 46*			
0.5 – 5	56	46			
5 - 30	60	50			

* Decreases with logarithm of the frequency

ANALYZER SETTINGS: RBW = 10KHz

§ 15.107/207



TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS

No	Instrument/Ancillary	Туре	Manufacturer	Serial No.	Cal. Due
01	Spectrum Analyzer	ESIB 40	Rohde & Schwarz	100107	May 2006
02	Spectrum Analyzer	FSEM 30	Rohde & Schwarz	826880/010	May 2006
03	Signal Generator	SMY02	Rohde & Schwarz	836878/011	May 2006
04	Power-Meter	NRVD	Rohde & Schwarz	0857.8008.	May 2006
				02	
05	Biconilog Antenna	3141	EMCO	0005-1186	May 2006
06	Horn Antenna (1-18GHz)	SAS-200/571	AH Systems	325	May 2006
07	Horn Antenna (18-26.5GHz)	3160-09	EMCO	1240	May 2006
08	Power Splitter	11667B	Hewlett Packard	645348	n/a
09	Climatic Chamber	VT4004	Voltsch	G1115	n/a
10	High Pass Filter	5HC2700	Trilithic Inc.	9926013	n/a
11	High Pass Filter	4HC1600	Trilithic Inc.	9922307	n/a
12	Pre-Amplifier	JS4-00102600	Miteq	00616	May 2006
13	Power Sensor	URV5-Z2	Rohde & Schwarz	DE30807	May 2006
14	Digital Radio Comm. Tester	CMD-55	Rohde & Schwarz	847958/008	May 2006
15	Universal Radio Comm. Tester	CMU 200	Rohde & Schwarz	832221/06	May 2006

BLOCK DIAGRAMS Radiated Testing

ANECHOIC CHAMBER

Issue date: 2005-07-01