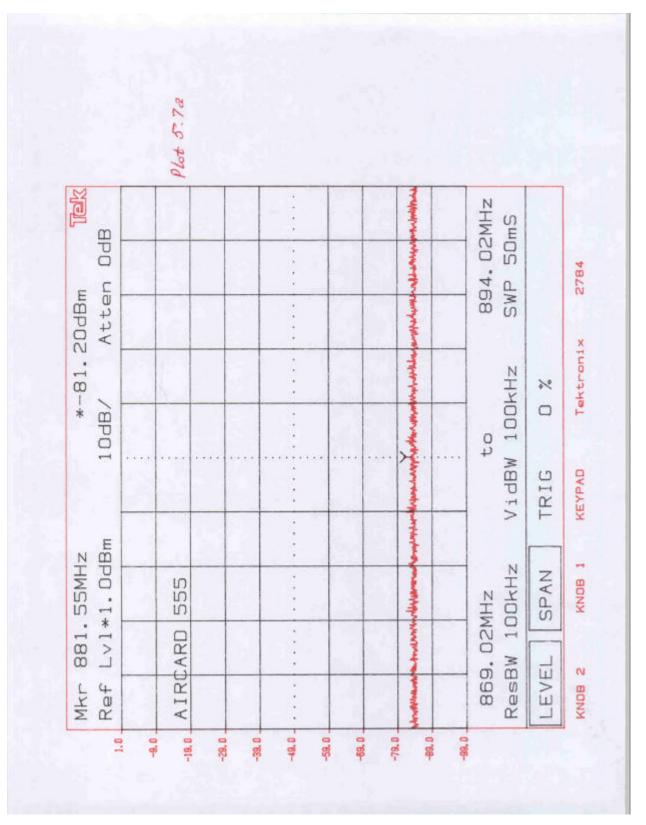
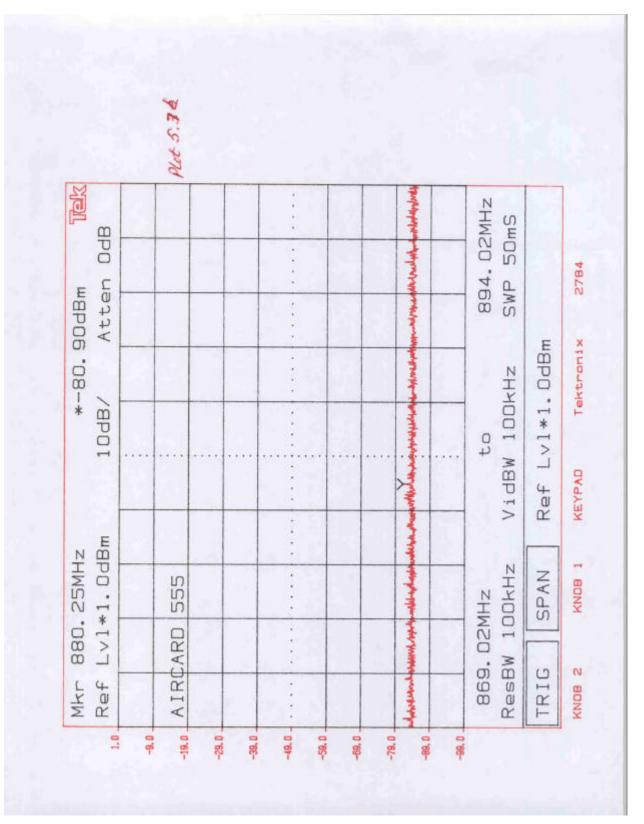


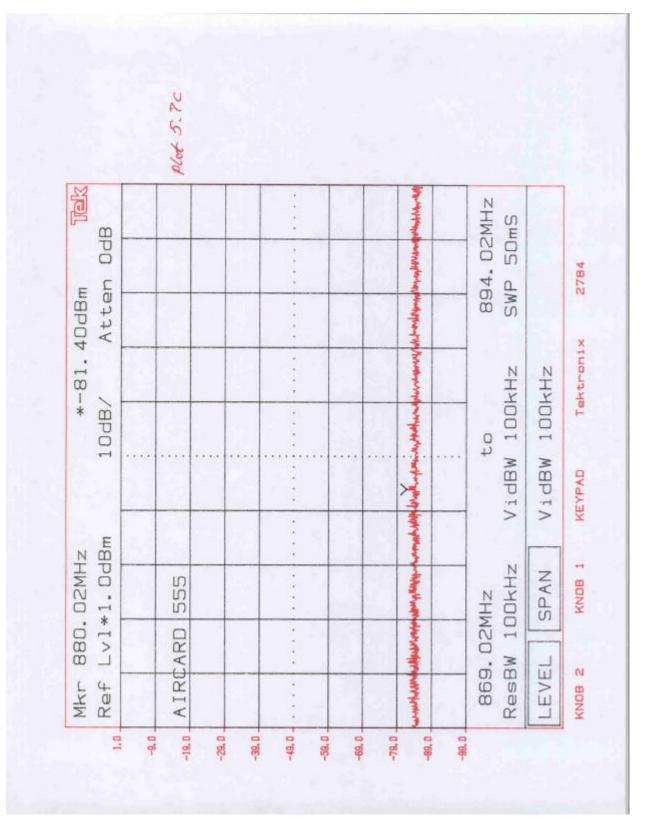

Sierra Wireless Inc. AIRCARD 555 FCC ID: N7NACRD555



Sierra Wireless Inc. AIRCARD 555 FCC ID: N7NACRD555



Sierra Wireless Inc. AIRCARD 555 FCC ID: N7NACRD555



Sierra Wireless Inc. AIRCARD 555 FCC ID: N7NACRD555

Sierra Wireless Inc. AIRCARD 555 FCC ID: N7NACRD555

Sierra Wireless Inc. AIRCARD 555 FCC ID: N7NACRD555 Date of Test: July 16-28, 2001

6.0 Field Strength of Spurious Radiation FCC 2.1053, 22.901(d), 24.238(a)

6.1 Test Procedure

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT.

The frequency range up to tenth harmonic of each of the three fundamental frequency (low, middle, and high channels) for each band (cellular and PCS) was investigated. The tests were performed with the Radio Card installed in Laptop and PDA for both polarization of the transmitter's antenna (antenna in vertical and horizontal position). The worst case of emissions was reported.

For spurious emissions attenuation, the substitution method was used. On each frequency where the Field Strength was found above 63.4 dBuV/m (which corresponds to ERP = -33 dBm), the EUT was substituted by a reference antenna (half-wave dipole - below 1 GHz, or Horn antenna - above 1GHz), connected to a signal generator. The signal generator output was adjusted to obtain the same reading as from EUT. The ERP/EIRP at the spurious emissions frequency was calculated as in section 3. The spurious emissions attenuation was calculated as the difference between ERP/EIRP at the fundamental frequency (see section 3) and at the spurious emissions frequency.

6.2 Test Equipment

EMCO 3115 Horn Antennas HP 8566B Spectrum Analyzer Tektronix 2784 Spectrum Analyzer Low Pass Filter Preamplifiers

Date of Test: July 16-28, 2001

6.3 Test Results

Test Result: Complies, refer to the attached data sheets
--

Radiated E	missions T	Tost Data							
Kaalalea El	nussions 1	esi Dulu							
Company:	Sierra Wire	less				Model #:	AIRCARD 555		
EUT:	PCMCIA	Card				FCC #:	N7NACRD555		
Project #:	J20054479)				Test Date:	July 19. 200	1	
Test Mode:	Tx @ 825.25 MHz					Engineer:	D. Chernom	ordik	
	Antenn					mp Used	1	Cable Used	
Number:	8	11	21		12	8	10	12	0
Model:	EMCO	LPB-	31	60-9	ACO/180	CDI_P1000	AFT18855	NPS366	None
	3115	2520A							
T	Deeding	Detector	A 4	A	Arr4 Dol	A 4	Deve Arrest	Transat	Net
Frequency	Reading	Detector	ΑΠί	Атр	Ant. Pol.		Pre-Amp	Insert.	Net
MHz	$d\mathbf{D}(\mathbf{u}\mathbf{V})$		#	#	H/V	Factor	dB	dB	dD(V/m)
	dB(µV)	P/A/Q				dB(1/m)			$dB(\mu V/m)$
1650.50	57.5	Peak	8	8	H	26.7	29.5	2.3	57.0
2475.75	63.8	Peak	8	8	H	29.1	28.5	3.0	69.3
3301.00	48.0	Peak	8	8	H	31.3	27.9	3.7	55.1
4126.25	41.6	Peak	8	8	Н	34.5	27.9	4.0	52.6
4951.50	40.3 *	Peak	8	8	V/H	34.0	28.1	4.3	52.0
5776.75	38.5 *	Peak	8	8	V/H	36.6	28.3	4.9	51.7
6602.00	37.3 *	Peak	8	8	V/H	36.6	28.0	5.3	51.2
7427.25	38.2 *	Peak	8	8	V/H	36.8	28.0	5.5	54.3
8252.50	39.0 *	Peak	8	8	V/H	37.2	27.2	6.1	55.1
	,					ole C + Trans			
			Ante	nna Fa	ctor - Pre-A	Amp + Insert	. Loss.		
	c) * Noise								
	d) All oth	er emissio	ns no	t repor	ted at least	t 10 dB below	v the limit		
	e) Test wa								

Radiated E	missions T	Test Data							
Compony	Sierra Wi	ralass				Model #:	AIRCARD	555	
Company EUT:	PCMCIA					FCC #:	N7NACRD555		
Project #:	J2005447					Test Date:	July 19. 2001		
Test Mode:							D. Chernom		
Test Mode:	1X @ 850	0.5 MHZ				Engineer:	D. Chemom	OTUIK	
	Antenna Used Pre-				Pre-A	mp Used		Cable Used	
Number:	8	11		21	12	8	10	12	0
Model:	EMCO	LPB-	31	60-9	ACO/180	CDI P1000	AFT18855	NPS366	None
	3115	2520A	01	00)	1100,100	021_11000	11110000	1112000	1,0110
	0110	202011							
Frequency	Reading	Detector	Ant	Amp	Ant. Pol.	Ant. Factor	Pre-Amp	Insert.	Net
j				r			r	Loss	
MHz	dB(µV)	P/A/Q	#	#	H/V	dB(1/m)	dB	dB	$dB(\mu V/m)$
1673.00	59.0	Peak	8	8	Н	26.7	29.5	2.3	58.5
2509.60	63.0	Peak	8	8	Н	30.6	28.5	3.4	68.5
3364.12	46.0	Peak	8	8	Н	31.3	27.9	3.7	53.1
4182.65	41.2	Peak	8	8	Н	34.5	27.9	4.0	51.8
5018.18	40.0 *	Peak	8	8	V/H	35.4	28.3	4.6	51.7
5855.71	38.5 *	Peak	8	8	V/H	36.6	28.3	4.9	51.7
6692.22	37.0 *	Peak	8	8	V/H	36.6	28.0	5.3	50.9
7528.76	38.0 *	Peak	8	8	V/H	38.3	28.0	5.8	54.1
8365.20	39.0 *	Peak	8	8	V/H	37.2	27.2	6.1	55.1
Notes:	a) Insert.	Loss = Cal	ble A	+ Cab	ole B + Cab	ole C + Transd	ucer.		
	b) Net $=$ H	Reading +	Ante	nna Fa	ctor - Pre-A	Amp + Insert.	Loss.		
	c) * Noise	e floor							
	d) All oth	er emissio	ns no	t repoi	ted at least	10 dB below	the limit		
	e) Test wa	as perform	ed at	3 m					

Radiated E	nissions T	Fest Data							
Company:	Siama Wi	ralass				Model #:		555	
Company: EUT:						FCC #:	AIRCARD 555		
	PCMCIA						N7NACRD555		
Project #:	J2005447					Test Date:	July 19. 200		
lest Mode:	Tx @ 847.75 MHz					Engineer:	D. Chernom	IOTAIK	
	Antenna Used Pre					mm Used		Cable Used	
NT			, ,	21		mp Used	10	1	
Number:	8	11		21	12	8 CDI D1000	10	12	0
Model:	EMCO	LPB-	31	60-9	ACO/180	CDI_P1000	AFT18855	NPS366	None
	3115	2520A							
F	D	D . 4 4	A 4	A	A 4 D . 1		D 4	Terrerat	NT-4
Frequency	Reading	Detector	Ant	Amp	Ant. Pol.	Ant. Factor	Pre-Amp	Insert. Loss	Net
MHz	dB(µV)	P/A/Q	#	#	H/V	dB(1/m)	dB	dB	dB(µV/m)
	. ,	~		# 8		· · · · ·			
1695.5	59.5	Peak	8	8	H	26.7	29.5	2.3	59.0
2543.3	62.0	Peak	8	-	H	30.6	28.5	3.4	67.5
3391.0	45.3	Peak	8	8	H	31.3	27.9	3.7	52.4
4238.8	40.4	Peak	8	8	H	34.5	27.9	4.0	51.0
5086.5	40.1 *	Peak	8	8	V/H	35.4	28.3	4.6	51.8
5934.3	38.3 *	Peak	8	8	V/H	36.6	28.3	4.9	51.5
6782.0	37.2 *	Peak	8	8	V/H	36.6	28.0	5.3	51.1
7629.8	38.3 *	Peak	8	8	V/H	38.3	27.8	5.8	54.4
8477.5	39.0 *	Peak	8	8	V/H	37.2	27.1	6.1	55.1
37.4	\ x		1 .		1				
Notes:	· ·					$\frac{1}{1}$ $\frac{1}$			
			Ante	nna Fa	ctor - Pre-A	Amp + Insert.	Loss.		
	c) * Noise					10 15 1 1			
				-	ted at least	10 dB below	the limit		
	e) Test wa	as perform	ed at	3 m					

Radiated E	nissions T	Test Data								
Company:	Sierra Wi	reless				Model #:	AIRCARD 555			
EUT:	PCMCIA	Card				FCC #:	N7NACRD555			
Project #:	J2005447	9				Test Date:	July 20. 200	1		
Test Mode:	Tx @ 185	1.25 MHz	Z			Engineer:	D. Chernom	ordik.		
	Antenn	a Used			Pre-A	mp Used		Cable Used		
Number:	8	11	12		0	8	10	12	0	
Model:	EMCO	LPB-	EN	1CO	None	CDI_P1000	AFT18855	NPS366	None	
	3115	2520A	3	104						
Frequency	Reading	Detector	Ant	Amp	Ant. Pol.	Ant. Factor	Pre-Amp	Insert.	Net	
							_	Loss		
MHz	dB(µV)	P/A/Q	#	#	H/V	dB(1/m)	dB	dB	$dB(\mu V/m)$	
3702.50	62.1	Peak	8	8	Н	32.8	27.9	3.8	70.8	
5553.75	41.8	Peak	8	8	V	36.6	28.3	4.9	55.0	
7405.00	40.5	Peak	8	8	V	37.0	28.0	5.5	55.0	
9256.25	37.7 *	Peak	8	8	V	39.7	27.0	6.6	57.0	
11107.5	43.8 *	Peak	8	10	V	40.2	39.9	7.2	51.3	
12958.8	41.4 *	Peak	8	10	V	41.6	39.1	7.8	51.7	
14810.0	44.7 *	Peak	8	10	Н	41.1	37.4	8.4	56.8	
16661.3	41.0 *	Peak	8	10	Н	40.8	39.4	9.0	51.4	
18512.5	40.2 *	Peak	21	12	Н	40.2	32.2	9.6	57.8	
Notes:	a) Insert.	Loss = Cal	ble A	+ Cab	le B + Cab	ole C + Transd	ucer.			
	b) Net $=$ F	Reading +	Ante	nna Fa	ctor - Pre-A	Amp + Insert.	Loss.			
	c) * Noise	e floor								
	d) All oth	er emissio	ns no	t repoi	ted at least	10 dB below	the limit			
	e) Test wa	as perform	ed at	3 m						

Radiated E	nissions T	Fest Data								
Component	Ciama Wi					Model #		555		
Company:						Model #:	AIRCARD 555			
EUT:	PCMCIA					FCC #:	N7NACRD555			
0	J2005447					Test Date:	July 20. 200			
Test Mode:	Tx @ 188	Tx @ 1880 MHz				Engineer:	D. Chernom	lordik.		
						** 1		Q 11 11 1		
	Antenn					mp Used	10	Cable Used		
Number:	8	11	21		12	8	10	12	0	
Model:	EMCO	LPB-	31	60-9	ACO/180	CDI_P1000	AFT18855	NPS366	None	
	3115	2520A								
Frequency	Reading	Detector	Ant	Amp	Ant. Pol.	Ant. Factor	Pre-Amp	Insert.	Net	
								Loss		
MHz	dB(µV)	P/A/Q	#	#	H/V	dB(1/m)	dB	dB	$dB(\mu V/m)$	
3760.00	61.4	Peak	8	8	Н	32.8	28.0	3.8	70.0	
5640.00	40.0	Peak	8	8	V	36.6	28.3	4.9	53.2	
7520.00	38.8	Peak	8	8	V	37.8	28.0	5.8	54.4	
9400.00	37.5 *	Peak	8	8	V	39.7	27.0	6.6	56.8	
11280.0	43.5 *	Peak	8	10	V	40.2	39.9	7.2	51.0	
13160.0	41.5 *	Peak	8	10	V	41.5	39.2	7.9	51.7	
15040.0	44.5 *	Peak	8	10	Н	41.3	38.3	8.5	56.0	
16920.0	40.3 *	Peak	8	10	Н	40.8	39.4	9.0	50.7	
18800.0	40.0 *	Peak	21	12	Н	40.2	32.2	9.6	57.6	
Notes:	a) Insert. l	Loss = Cal	ble A	+ Cab	B + Cab	ole C + Transd	lucer.			
	b) Net = F	Reading +	Ante	nna Fa	ctor - Pre-A	Amp + Insert.	Loss.			
	c) * Noise	e floor				*				
	d) All oth	er emissio	ns no	t repoi	ted at least	10 dB below	the limit			
	e) Test wa									

Radiated E	nissions T	Fest Data										
Company:						Model #: AIRCARD 555						
EUT:	PCMCIA						N7NACRD5					
Project #:	J2005447	9				Test Date:	July 20. 200	1				
Test Mode:	Tx @ 1908.75 MHz					Engineer:	D. Chernom	ordik.				
	Antenn	a Used			Pre-A	mp Used		Cable Used				
Number:	8	11	21		12	8	10	12	0			
Model:	EMCO	LPB-	31	60-9	ACO/180	CDI_P1000	AFT18855	NPS366	None			
	3115	2520A										
Frequency	Reading	Detector	Ant	Amp	Ant. Pol.	Ant. Factor	Pre-Amp	Insert.	Net			
								Loss				
MHz	dB(µV)	P/A/Q	#	#	H/V	dB(1/m)	dB	dB	$dB(\mu V/m)$			
3817.50	60.5	Peak	8	8	Н	32.8	28.0	3.8	69.1			
5726.25	39.8	Peak	8	8	V	36.6	28.3	4.9	53.0			
7635.00	38.5	Peak	8	8	V	37.8	27.8	5.8	54.3			
9543.75	37.4 *	Peak	8	8	V	38.5	27.3	6.7	55.3			
11452.5	43.4 *	Peak	8	10	V	40.2	39.9	7.2	50.9			
13361.3	41.7 *	Peak	8	10	V	41.5	39.2	7.9	51.9			
15270.0	44.6 *	Peak	8	10	Н	41.3	38.3	8.5	56.1			
17178.8	40.5 *	Peak	8	10	Н	41.2	38.8	9.2	52.1			
19087.5	40.2 *	Peak	21	12	Н	40.2	32.2	9.8	58.0			
Notes:	a) Insert. l	Loss = Cal	ble A	+ Cab	ble $\overline{B + Cab}$	ole C + Transd	lucer.					
	b) Net $=$ F	Reading +	Ante	nna Fa	ctor - Pre-A	Amp + Insert.	Loss.					
	c) * Noise					•						
	d) All oth	er emissio	ns no	t repoi	ted at least	10 dB below	the limit					
		as perform										

Date of Test: July 16-28, 2001

Spurious Emissions Attenuation measured by Substitution Method

Frequency MHz	Field Strength generated by the EUT dBuv/m	Signal Generator Level required to generate same field as EUT; dBm	ERP dBm	Attenuation dB	Attenuation Limit dB	Margin dB
825.25	-	-	26.6	-	-	-
1650.5	57.0	-48.5	-43.5	70.1	40.4	-29.7
2475.75	69.3	-38.0	-33.0	59.6	40.4	-19.2

Frequency MHz	Field Strength generated by the EUT dBuv/m	Signal Generator Level required to generate same field as EUT; dBm	ERP dBm	Attenuation dB	Attenuation Limit dB	Margin dB
				UD		чь
836.5	-	-	26.6	-	-	-
1673.0	58.5	-47.8	-42.8	69.4	40.4	-29.0
1070.0	00.0	11.0	12.0	00.1	10.1	20.0
2509.6	68.5	-39.1	-34.1	60.7	40.4	-20.3

Frequency MHz	Field Strength generated by the EUT dBuv/m	Signal Generator Level required to generate same field as EUT; dBm	ERP dBm	Attenuation dB	Attenuation Limit dB	Margin dB
847.75	-	-	26.5	-	-	-
1695.5	59.0	-47.0	-42.0	68.5	40.4	-28.1
2543.3	67.5	-40.3	-35.3	61.8	40.4	-21.4

Date of Test: July 16-28, 2001

Spurious Emissions Attenuation measured by Substitution Method

Frequency	Field Strength generated by the EUT	Level required to generate same field	EIRP	Attenuation	Attenuation Limit	Margin
MHz	dBuv/m	as EUT; dBm	dBm	dB	dB	dB
1851.25	-	-	28.2	-	-	-
3702.50	70.8	-45.8	-38.8	67.0	40.4	-26.6

Frequency MHz	Field Strength generated by the EUT dBuy/m	Signal Generator Level required to generate same field as EUT; dBm	EIRP	Attenuation dB	Attenuation Limit dB	Margin dB
1880.0	-	-	28.0	-	-	-
3760.0	70.0	-46.9	-39.9	67.9	40.4	-27.5

Frequency MHz	Field Strength generated by the EUT dBuv/m	Signal Generator Level required to generate same field as EUT; dBm	EIRP dBm	Attenuation dB	Attenuation Limit dB	Margin dB
1908.75	-	-	26.4	-	-	-
3817.50	69.1	-48.0	-41.0	67.4	40.4	-27.0

Date of Test: July 16-28, 2001

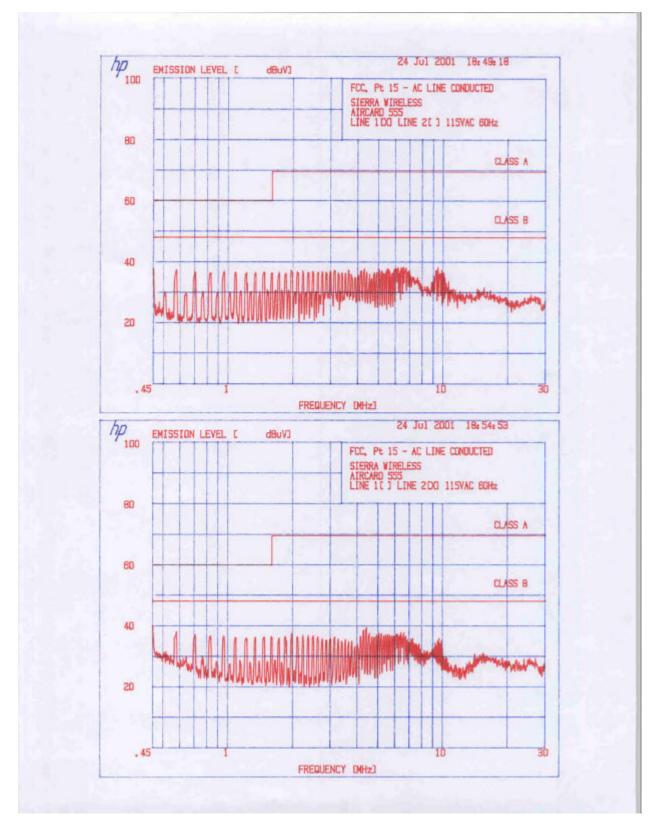
7.0 Line Conducted Emissions

FCC 15.107

7.1 Test Procedure

Test procedure described in the ANSI C63.4 Standard was employed. The Laptop was connected to the AC line through the LISNs. Both HOT and NEUTRAL leads were tested.

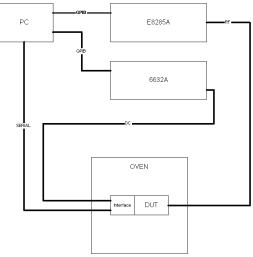
7.2 Test Equipment


HP8568A Spectrum Analyzer with 85650 Quasi-peak adapter Solar Electronics 8028-50-TS-24-BNC LISNs

7.3 Test Results

See attached plot.

ITS Intertek Testing Services


Sierra Wireless Inc. AIRCARD 555 FCC ID: N7NACRD555

Date of Test: July 16-28, 2001

- 8.0 Frequency Stability vs Temperature FCC 2.1055
- 8.1 Test Procedure

Test setup block diagram

The AIRCARD 555 was placed inside the temperature chamber. After the temperature stabilized for approximately 20 minutes, the transmitting frequency was recorded.

8.2 Test Equipment

Aglient e8285A CDMA Mobile Station Test Set HP 6632A DC Power Supply

8.3 Test Results

Test Result:Complies. Emission attenuation on the band-edges frequencies of the frequency block
is not affected by the measured frequency instability.

Transmitting Frequency: 1880 MHz

Transmitting Trequency: Toolo Initiz			
Temperature (°C)	Frequency (MHz)	Difference (Hz)	
-30	1880.000002	2.43	
-20	1879.999995	-5.02	
-10	1879.999991	-9.32	
0	1880.000007	7.50	
10	1879.999997	-2.69	
20	1880.000008	8.29	
30	1880.000003	2.63	
40	1879.999996	-3.55	
50	1880.000002	1.59	

Note: The measured frequency stability vs. temperature for the Cellular band is identical (% difference) to the above table since the transmitting frequency is locked to the same oscillator.

Date of Test: July 16-28, 2001

9.0 Frequency Stability vs Voltage FCC 2.1055

9.1 Test Procedure

For the test setup block diagram, refer to sec. 8.

The Aircard 555 was connected to a DC Power Supply. The voltage was set to 115% of the nominal value and was then decreased to 85% of the nominal value. The output frequency was recorded for each voltage setting.

9.2 Test Equipment

Aglient e8285A CDMA Mobile Station Test Set HP 6632A DC Power Supply

9.3 Test Results.

Test Result:	Complies. Emission attenuation on the band-edges frequencies of the frequency block
	is not affected by the measured frequency instability.

Transmitting Frequency: 837 MHz

Vcc,	Frequency	Difference
Volts	(MHz)	(Hz)
4.0	836.999995	-5.08
6.0	837.000006	6.23

Transmitting Frequency: 1880 MHz

Vcc, Volts	Frequency (MHz)	Difference (Hz)
4.0	1880.000003	3.31
6.0	1880.000002	2.39

Date of Test: July 16-28, 2001

10.0 Miscellaneous Comments

For setup photos see separate file "Set Up Photos"