

| Date(s) of Evaluation |
|-----------------------|
| February 14-18, 2011  |

Test Report Issue Date

Test Report Serial No. 020911Q2G-T1079-S24M

**RF Exposure Category** 

Test Report Revision No. Rev. 1.1 (2nd Release)



April 24, 2012

Description of Test(s) Specific Absorption Rate

Gen. Pop. / Uncontrolled

| DECLARATION OF COMPLIANCE   |           |                                       |                 | SAR RF EXPOSURE EVA |             |           |                                                        | EVALUATION                         |                                            |         | FCC & IC C2PC |            |  |
|-----------------------------|-----------|---------------------------------------|-----------------|---------------------|-------------|-----------|--------------------------------------------------------|------------------------------------|--------------------------------------------|---------|---------------|------------|--|
| Test Lab Information        | Name      | CELLTECH LABS INC.                    |                 |                     |             | ess       | 21-364 Lo                                              | ougheed Roa                        | ad, Kelowi                                 | na B.C  | . V1X 7R      | 3 Canada   |  |
| Test Lab Accreditation      | ISO 17025 | A2LA Test Lab Certificate No. 2470.01 |                 |                     |             |           |                                                        |                                    |                                            |         |               |            |  |
| Applicant Information       | Name      | XPLORE TEC                            | HNOL            | OGIES COR           | P. Add      | ess       | 14000 Su                                               | mmit Drive,                        | Suite 900                                  | , Austi | n, Texas,     | 78728 USA  |  |
| Standard(s) Applied         | FCC       | 47 CFR §2.10                          | 93              |                     | IC          | ;         | Health Ca                                              | anada Safety                       | Code 6                                     |         |               |            |  |
| Procedure(s) Applied        | FCC       | OET Bulletin 6                        | 55, Sup         | plement C (E        | dition 01-0 | 1)        | KDB 4474                                               | DB 447498 KDB 941225 K             |                                            |         | KDB           | 178919     |  |
| Frocedure(s) Applied        | IC        | RSS-102 Issu                          | RSS-102 Issue 4 |                     |             | E         | 1528-200                                               | 3                                  | IEC 62209-2:2010                           |         |               |            |  |
| Application Type            | FCC/IC    | Class II Chan                         | ge - Ad         | dd Xplore iX        | 104C5 Hos   | t Table   | et PC & SkyCross High Gain Antenna (P/N: 25.90A14.001) |                                    |                                            |         | 90A14.001)    |            |  |
| Device-Under-Test Sample    | Rcpt Date | February 09, 2                        | 2011            |                     |             | Те        | st Dates                                               | February 1                         | 14-18, 201                                 | 1       |               |            |  |
| Device Identifier(s)        | FCC ID:   | Q2GGOBI3K-                            | XPL             |                     |             |           | IC:                                                    | 4596A-GC                           | BI3KXPL                                    |         |               |            |  |
|                             | WWAN      | GPRS/EDGE/                            | CDMA/           | WCDMA/HS            | PA Module   |           | Model                                                  | GOBI3000                           | )<br>}                                     |         |               |            |  |
| Device Under Test (DUT)     | HSPA      | HSDPA Release 7 HSUPA Release 6       |                 |                     |             | model     | CODIOCC                                                |                                    |                                            |         |               |            |  |
|                             | Grantee   | Xplore Technologies                   |                 |                     | Se          | erial No. | IMEI 0124                                              | 12000101                           | 751                                        |         |               |            |  |
| DUT Host Configuration(s)   | Host PC   | Rugged Table                          | t PC            |                     |             |           | Model                                                  | iX104C5                            |                                            |         |               |            |  |
| Do i nost configuration(s)  | Manuf.    | Xplore Technologies                   |                 |                     |             | Se        | erial No.                                              | N4 (Identical Prototype)           |                                            |         |               |            |  |
|                             | WLAN      | 802.11a/b/g/n WLAN Mini-PCI Module    |                 |                     |             |           | Model                                                  | 622ANHM                            | W (MAC:                                    | 00231   | 4DB62B4       | )          |  |
| Co-located Transmitter 1    | FCC ID:   | Q2GI6200-XPL                          |                 |                     |             |           | IC:                                                    | 4596A-I62                          | 00XPL                                      |         |               |            |  |
| Oo-located Transmitter 1    | Grantee   | Xplore Technologies                   |                 |                     |             | Co-       | -Transmit                                              | Supports of                        | o-transmi                                  | ssion   | with WWA      | ١N         |  |
|                             | Tx Freq.  | 2412 - 2462 MHz 5180 - 5240 M         |                 |                     | I0 MHz      | 5260      | ) - 5320 MH                                            | 0 - 5700 MHz 5745 - 5825 MHz       |                                            |         |               |            |  |
|                             | Bluetooth | Class 2 Bluetooth                     |                 |                     |             |           | Model                                                  | BCM92070MD_REF                     |                                            |         |               |            |  |
| Co-located Transmitter 2    | FCC ID:   | QDS-BRCM10                            | 043             |                     |             |           | IC:                                                    | 4324A-BRCM1043                     |                                            |         |               |            |  |
| OO-located Transmitter 2    | Manuf.    | Broadcom Co                           | rporatio        | on                  |             | Co-       | -Transmit                                              | Supports co-transmission with WWAN |                                            |         |               | ۱N         |  |
|                             | Tx Freq.  | 2402 - 2480 M                         | 1Hz             |                     |             | Co        | nd. Pwr.                                               | 1.49 dBm (Conducted)               |                                            |         |               |            |  |
| User LCD Orientation(s)     | Host PC   | 0 Degrees La                          | ndscap          | e                   |             | 90 I      | 90 Degrees Portrait                                    |                                    |                                            |         |               |            |  |
| Device Position(s) Tested   | Host PC   | Bottom Side T                         | ouch (          | 0 cm)               |             |           |                                                        |                                    |                                            |         |               |            |  |
|                             | Cell Band | 824.2-848.8 M                         | IHz (GF         | PRS/EDGE)           | 826.4-8     | 16.6 M    | Hz (WCDM                                               | A/HSPA)                            | 824.70-848.31 MHz (CDMA/EV-DO)             |         |               | MA/EV-DO)  |  |
| Transmit Frequency Range(s) | PCS Band  | 1850.2-1909.8                         | MHz (C          | GPRS/EDGE)          | 1852.4-1    | 907.5 I   | MHz (WCDI                                              | MA/HSPA)                           | 1851.25                                    | 1908.   | 75 MHz (C     | DMA/EV-DO) |  |
|                             | AWS Band  | 1712.4-1752.6                         | 3 ( WCI         | OMA/HSPA)           |             |           |                                                        |                                    |                                            |         |               |            |  |
| Max. Duty Cycle(s) Tested   | GPRS      | 25% (2 Uplink                         | Slots)          | Class 10            | WCDM        | <b>A</b>  | 100%                                                   | EV-DO                              | 100%                                       |         | CDMA          | 100%       |  |
| Antenna Type(s) Tested      | WWAN      | SkyCross Hig                          | h-Gain          | Antenna             |             | P/        | N: 25.90A1                                             | 4.001                              | Gain Sp                                    | ecifica | ıtion: -3 dE  | Bi         |  |
| Antenna-to-Antenna Spacing  | WWAN      | WWAN to WL                            | AN MA           | IN = 16 mm          | WWA         | N to W    | LAN AUX =                                              | = 94.2 mm                          | 1AWW                                       | N to B  | uetooth =     | 179 mm     |  |
| Antenna-to-User Distance(s) | WWAN      | WWAN to Bot                           | tom Sic         | de = 1.6 cm         |             | W         | WAN to Rig                                             | ght Side Edg                       | e (90° Po                                  | rtrait) | = 18.8 cm     |            |  |
| Power Source(s) Tested      | Host PC   | Lithium-ion Ba                        | attery          | 7.4\                | 1           | 76        | 600mAh                                                 |                                    |                                            | Mo      | odel: iX104   | 1          |  |
|                             |           | 0.348 W/kg                            |                 | 1g average          | 850 E       | and       | FCC/III                                                | C Snatial                          |                                            |         | kg (1g av     |            |  |
| Max. SAR Level(s) Evaluated | BODY      | 0.389 W/kg                            |                 | 1g average          | 1900        |           | FCC/IC Spatial Peak SAR Limit                          |                                    | General Population / Uncontrolled Exposure |         |               |            |  |

Celltech Labs Inc. declares under its sole responsibility that this wireless portable device is compliant with the Specific Absorption Rate (SAR) RF exposure requirements specified in FCC 47 CFR §2.1093 and Health Canada's Safety Code 6 for the General Population / Uncontrolled Exposure environment. The device was tested in accordance with the measurement standards and procedures specified in FCC OET Bulletin 65, Supplement C (Edition 01-01), Industry Canada RSS-102 Issue 4, IEEE 1528-2003 and International Standard IEC 62209-2 (Edition 1.0 2010-03). All measurements were performed in accordance with the SAR system manufacturer recommendations.

1g average

**AWS Band** 

I attest to the accuracy of data. All measurements were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

The results and statements contained in this report pertain only to the device(s) evaluated.

This test report shall not be reproduced partially, or in full, without the prior written approval of Celltech Labs Inc.

0.283 W/kg

**Test Report Approved By Sean Johnston Lab Manager** Celltech Labs Inc.

|                                                       | Applicant: | Xploi                                                                                               | re Technologies Corp. | FCC ID:        | Q2GGOBI3K-XPL                    | IC:          | 4596A-GOBI3KXPL                 | <b>S</b> xplore |  |  |  |
|-------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------|-----------------------|----------------|----------------------------------|--------------|---------------------------------|-----------------|--|--|--|
|                                                       | DUT Type:  | DUT Type: Xplore Gobi3000 Mini-PCI Express WWAN Module installed in Xplore iX104C5 Rugged Tablet PC |                       |                |                                  |              |                                 |                 |  |  |  |
| 2012 Celltech Labs Inc. This document is not to be re |            |                                                                                                     |                       | eproduced in w | hole or in part without the prio | r written pe | ermission of Celltech Labs Inc. | Page 1 of 73    |  |  |  |



| Date(s) of Evaluation |
|-----------------------|
| February 14-18, 2011  |

Test Report Serial No. 020911Q2G-T1079-S24M <u>Test Report Revision No.</u> Rev. 1.1 (2nd Release)



33

34

35

Test Report Issue Date
April 24, 2012

MEASUREMENT UNCERTAINTIES (Cont.)

**MEASUREMENT UNCERTAINTIES (Cont.)** 

**MEASUREMENT UNCERTAINTIES (Cont.)** 

<u>Description of Test(s)</u> Specific Absorption Rate RF Exposure Category
Gen. Pop. / Uncontrolled

#### TABLE OF CONTENTS 1.0 INTRODUCTION 4 2.0 SAR MEASUREMENT SYSTEM 4 3.0 SAR PROBE CALIBRATION & MEASUREMENT FREQUENCIES 4 4.0 RF OUTPUT POWER MEASUREMENTS 5 RF OUTPUT POWER MEASUREMENTS (Cont.) 6 RF OUTPUT POWER MEASUREMENTS (Cont.) RF OUTPUT POWER MEASUREMENTS (Cont.) 8 RF OUTPUT POWER MEASUREMENTS (Cont.) 9 RF OUTPUT POWER MEASUREMENTS (Cont.) 10 RF OUTPUT POWER MEASUREMENTS (Cont.) 11 5.0 FLUID DIELECTRIC PARAMETERS 12 FLUID DIELECTRIC PARAMETERS (Cont.) \_ FLUID DIELECTRIC PARAMETERS (Cont.) 14 FLUID DIELECTRIC PARAMETERS (Cont.) \_ 15 FLUID DIELECTRIC PARAMETERS (Cont.) 16 6.0 SAR MEASUREMENT SUMMARY \_ 17 7.0 CO-LOCATED TRANSMITTER(S) 18 8.0 SIMULTANEOUS TRANSMISSION ASSESSMENT 18 9.0 SAR LEVEL ADJUSTMENT FOR FLUID SENSITIVITY & PROBE CALIBRATION 19 10.0 SAR LEVEL CORRECTION for FLUID DEVIATION (IC RSS-102 / IEC 62209-2) 20 11.0 DETAILS OF SAR EVALUATION 21 12.0 SAR EVALUATION PROCEDURES 21 13.0 SYSTEM PERFORMANCE CHECK 22 14.0 SIMULATED EQUIVALENT TISSUES 23 15.0 SAR LIMITS 26 16.0 ROBOT SYSTEM SPECIFICATIONS 27 17.0 PROBE SPECIFICATIONS 28 18.0 BARSKI PLANAR PHANTOM \_ 28 19.0 DEVICE HOLDER 28 20.0 TEST EQUIPMENT LIST 29 21.0 JUSTIFICATION FOR EXTENDED SAR DIPOLE CALIBRATION \_\_\_ 30 22.0 MEASUREMENT UNCERTAINTIES (IEEE 1528-2003) 31 MEASUREMENT UNCERTAINTIES (Cont.) 32

| mercone on our contract of the |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 23.0 MEASUREMENT UNCERTAINTIES (IEC 62209-2:2010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 36 |
| MEASUREMENT UNCERTAINTIES (Cont.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| MEASUREMENT UNCERTAINTIES (Cont.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 38 |
| MEASUREMENT UNCERTAINTIES (Cont.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| MEASUREMENT UNCERTAINTIES (Cont.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40 |
| 24.0 REFERENCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 41 |
| APPENDIX A - SAR MEASUREMENT PLOTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 42 |
| APPENDIX B - SYSTEM PERFORMANCE CHECK PLOTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 57 |
| APPENDIX C - SAR TEST SETUP PHOTOGRAPHS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| APPENDIX D - ANTENNA DISTANCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
| APPENDIX E - DIPOLE CALIBRATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| APPENDIX F - PROBE CALIBRATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 72 |
| APPENDIX G - BARSKI PLANAR PHANTOM CERTIFICATE OF CONFORMITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 73 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |

| Applicant:                                                 | Xploi                                                                                     | re Technologies Corp. | FCC ID: | Q2GGOBI3K-XPL                    | IC:          | 4596A-GOBI3KXPL                 | xplore rechnologies. |  |  |  |  |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------|---------|----------------------------------|--------------|---------------------------------|----------------------|--|--|--|--|
| DUT Type:                                                  | Xplore Gobi3000 Mini-PCI Express WWAN Module installed in Xplore iX104C5 Rugged Tablet PC |                       |         |                                  |              |                                 |                      |  |  |  |  |
| 2012 Celltech Labs Inc. This document is not to be reprodu |                                                                                           |                       |         | hole or in part without the prio | r written pe | ermission of Celltech Labs Inc. | Page 2 of 73         |  |  |  |  |



| Date(s) of Evaluation |
|-----------------------|
| February 14-18, 2011  |
|                       |

Test Report Issue Date April 24, 2012



Description of Test(s)

Specific Absorption Rate

RF Exposure Category Gen. Pop. / Uncontrolled

Rev. 1.1 (2nd Release)



| REVISION HISTORY |                              |                |                   |  |  |  |  |  |  |
|------------------|------------------------------|----------------|-------------------|--|--|--|--|--|--|
| REVISION NO.     | DESCRIPTION                  | IMPLEMENTED BY | RELEASE DATE      |  |  |  |  |  |  |
| 1.0              | 1st Release                  | Jon Hughes     | February 03, 2012 |  |  |  |  |  |  |
| 4.4              | 2nd Release                  | lon Hughes     | April 24, 2012    |  |  |  |  |  |  |
| 1.1              | Added HSPA Rel. No. (Page 1) | Jon Hughes     | April 24, 2012    |  |  |  |  |  |  |

| Applicant: | Xploi                                                                                               | re Technologies Corp. | FCC ID: | Q2GGOBI3K-XPL | IC: | 4596A-GOBI3KXPL |  |  |  |  |
|------------|-----------------------------------------------------------------------------------------------------|-----------------------|---------|---------------|-----|-----------------|--|--|--|--|
| DUT Type:  | OUT Type: Xplore Gobi3000 Mini-PCI Express WWAN Module installed in Xplore iX104C5 Rugged Tablet PC |                       |         |               |     |                 |  |  |  |  |
|            |                                                                                                     |                       |         |               |     |                 |  |  |  |  |



Test Report Issue Date
April 24, 2012

Test Report Serial No. 020911Q2G-T1079-S24M

Description of Test(s)
Specific Absorption Rate

Test Report Revision No. Rev. 1.1 (2nd Release)

RF Exposure Category
Gen. Pop. / Uncontrolled



#### 1.0 INTRODUCTION

This measurement report demonstrates that the Xplore Technologies Corporation Model: iX104C5 Tablet PC, incorporating the GOBI3000 WWAN Mini-PCI Express Card FCC ID: Q2GGOBI3K-XPL and SkyCross High Gain Antenna, complies with the SAR (Specific Absorption Rate) RF exposure requirements of FCC 47 CFR §2.1093 (see reference [1]) and Health Canada's Safety Code 6 (see reference [2]) for the General Population / Uncontrolled Exposure environment. The test procedures described in FCC OET Bulletin 65, Supplement C, Edition 01-01 (see reference [3]), Industry Canada RSS-102 Issue 4 (see reference [4]), IEEE Standard 1528-2003 (see reference [5]) and IEC International Standard 62209-2:2010 (see reference [6]) were employed. A description of the product, operating configuration, detailed summary of the test results, methodology and procedures used in the evaluation, equipment used, and the various provisions of the rules are included within this test report.

#### 2.0 SAR MEASUREMENT SYSTEM

Celltech Labs Inc. SAR measurement facility utilizes the Dosimetric Assessment System (DASYTM) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 measurement system is comprised of the measurement server, robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for head and/or body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electrooptical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot utilizes a controller with built in VME-bus computer.

## 3.0 SAR PROBE CALIBRATION & MEASUREMENT FREQUENCIES

The following procedures are recommended for measurements at 150 MHz - 3 GHz to minimize probe calibration and tissue dielectric parameter discrepancies. In general, SAR measurements below 300 MHz should be within ±50 MHz of the probe calibration frequency. At 300 MHz to 3 GHz, measurements should be within ±100 MHz of the probe calibration frequency. Measurements exceeding 50% of these intervals, ±25 MHz < 300 MHz and ±50 MHz ≥300 MHz, require additional steps (per FCC KDB 450824 D01 v01r01, SAR Probe Calibration and System Verification Considerations for Measurements at 150 MHz - 3 GHz - see reference [11]).

| Probe Calibration Freq. | Device Measurement Freq. | Frequency Interval | ±50 MHz ≥ 300 MHz |
|-------------------------|--------------------------|--------------------|-------------------|
|                         | 836.6 MHz                | 1.6 MHz            | < 50 MHz          |
| 835 MHz                 | 836.4 MHz                | 1.4 MHz            | < 50 MHz          |
|                         | 836.52 MHz               | 1.52 MHz           | < 50 MHz          |
| 1800 MHz                | 1732.6 MHz               | 67.4 MHz           | > 50 MHz*         |
| 1900 MHz                | 1880.0 MHz               | 20 MHz             | < 50 MHz          |
| 2450 MHz                | 2442.0 MHz               | 8 MHz              | < 50 MHz          |

<sup>\*</sup> See Section 9.0





Test Report Issue Date
April 24, 2012

Test Report Serial No. 020911Q2G-T1079-S24M

Description of Test(s)

Specific Absorption Rate

RF Exposure Category
Gen. Pop. / Uncontrolled

Test Report Revision No.

Rev. 1.1 (2nd Release)



## 4.0 RF OUTPUT POWER MEASUREMENTS

#### **GPRS Mode**

#### Procedure used to establish test signal

The following setting was used to configure the Agilent 8960 Series E5515C wireless communications test set.

Service Selection > Test Mode A - Auto Slot Config. > off Main Service > Packet Data Network Support > GSM+GPRS Slot Config > 33 dBm (GSM850) & 30 dBm (GSM1900) BAP: Burst Average Power

Pavg: Average power over all time slots

| R                                   | RF CONDUCTED OUTPUT POWER MEASUREMENT RESULTS – GPRS Mode |                |      |                |             |         |                |      |                |  |  |  |  |
|-------------------------------------|-----------------------------------------------------------|----------------|------|----------------|-------------|---------|----------------|------|----------------|--|--|--|--|
| 2 Uplink Slots (Multislot Class 10) |                                                           |                |      |                |             |         |                |      |                |  |  |  |  |
| Mode / Band                         | Channel                                                   | Freq.<br>(MHz) |      | Average<br>wer | Mode / Band | Channel | Freq.<br>(MHz) |      | Average<br>wer |  |  |  |  |
|                                     |                                                           | (IVIITIZ)      | dBm  | Watts          |             |         | (1411 12)      | dBm  | Watts          |  |  |  |  |
|                                     | 128                                                       | 824.2          | 32.3 | 1.70           |             | 512     | 1850.2         | 29.8 | 0.95           |  |  |  |  |
| GPRS 850                            | 190                                                       | 836.6          | 32.6 | 1.82           | GPRS 1900   | 661     | 1880.0         | 29.9 | 0.98           |  |  |  |  |
|                                     | 251                                                       | 848.8          | 32.5 | 1.78           |             | 810     | 1909.8         | 29.7 | 0.93           |  |  |  |  |

Note: The EDGE mode conducted power levels specified by Qualcomm for the Gobi3000 WWAN module are  $\sim 5$  dB lower in 850 band and  $\sim 3$  dB lower in 1900 band than the conducted output power levels specified for GPRS mode and therefore EDGE mode was not evaluated.



April 24, 2012

020911Q2G-T1079-S24M Test Report Issue Date

Description of Test(s) Specific Absorption Rate

Test Report Serial No.

Test Report Revision No. Rev. 1.1 (2nd Release)

RF Exposure Category Gen. Pop. / Uncontrolled



# RF OUTPUT POWER MEASUREMENTS (Cont.)

#### **WCDMA Mode**

#### Procedure used to establish test signal

This procedure assumes the Agilent 8960 Series E5515C wireless communications test set has the following applications installed and with valid license.

Application: WCDMA Mobile Test

Rev, License: A.07.13, L

Call Setup > Shift & Preset

Cell Parameters: PS Domain Information > Present

ATT (IMSI Attach) Flag State > Set

Security Parameter - System Operations > None

Channel Type: RMC - 12.2k, 64k, 144k, 384k

> AMC - 12.2k UL / 64 DL AM RMC, 12.2k UL / 144 DL AM RMC, 12.2k UL / 384 DL AM RMC

Paging Service: RB Test Mode

Channel Parameters (UARFCN):

DL Channel: PCS: 9662 / 9800 / 9938

Cell: 4357 / 4407 / 4458

UL Channel: PCS: 9262 / 9400 / 9538 Cell: 4132 / 4182 / 4233

DL DTCH Data: All Ones RLC Reestablish: Off Off Call Limit State: Call Drop Timer: Off

SRB Config. 13.6k DCCH 25 dBm **UE Target Power:** UL CL Pwr Ctrl Mode: All Up Bits

| RF CONDUCTED OUTPUT POWER MEASUREMENT RESULTS – WCDMA Mode |         |       |       |        |                         |             |         |       |        |         |  |  |
|------------------------------------------------------------|---------|-------|-------|--------|-------------------------|-------------|---------|-------|--------|---------|--|--|
| Channel Type: 12.2k RMC                                    |         |       |       |        |                         |             |         |       |        |         |  |  |
| Mada / Dand                                                | Channel | 01    | Freq. | Channe | l Power                 | Mode / Band | Channel | Freq. | Channe | l Power |  |  |
| Mode / Band                                                |         | (MHz) | dBm   | Watts  | Wode / Band             | Chamilei    | (MHz)   | dBm   | Watts  |         |  |  |
| 14/OD144 050                                               | 4132    | 826.4 | 24.1  | 0.26   |                         | 9262        | 1852.4  | 23.9  | 0.25   |         |  |  |
| WCDMA 850<br>(Band V)                                      | 4182    | 836.4 | 24.1  | 0.26   | WCDMA 1900<br>(Band II) | 9400        | 1880.0  | 24.1  | 0.26   |         |  |  |
| (= 51 % 1)                                                 | 4233    | 846.6 | 23.8  | 0.24   | (Bandin)                | 9538        | 1907.6  | 23.9  | 0.25   |         |  |  |

| A  | Applicant: Xplore Technologies Corp.                                                                                                         |       |                         | FCC ID:   | Q2GGOBI3K-XPL            | IC:       | 4596A-GOBI3KXPL       | <b>₩</b> xplore |
|----|----------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------|-----------|--------------------------|-----------|-----------------------|-----------------|
| D  | OUT Type:                                                                                                                                    | Xplor | e Gobi3000 Mini-PCI Exp | ress WWAN | I Module installed in Xp | olore iX1 | 04C5 Rugged Tablet PC | rechnologies.   |
| 20 | 2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |       |                         |           |                          |           |                       | Page 6 of 73    |



Test Report Issue Date Description of Test(s) April 24, 2012 Specific Absorption Rate

Test Report Serial No. 020911Q2G-T1079-S24M

> RF Exposure Category Gen. Pop. / Uncontrolled

Test Report Revision No.

Rev. 1.1 (2nd Release)



## RF OUTPUT POWER MEASUREMENTS (Cont.)

| RF CC                   | RF CONDUCTED OUTPUT POWER MEASUREMENT RESULTS – WCDMA Mode (Cont.) |        |       |           |  |  |  |  |  |  |  |  |  |
|-------------------------|--------------------------------------------------------------------|--------|-------|-----------|--|--|--|--|--|--|--|--|--|
| Channel Type: 12.2k RMC |                                                                    |        |       |           |  |  |  |  |  |  |  |  |  |
|                         |                                                                    | Freq.  | Chanr | nel Power |  |  |  |  |  |  |  |  |  |
| Mode / Band             | Channel                                                            | (MHz)  | dBm   | Watts     |  |  |  |  |  |  |  |  |  |
| WCDMA                   | 1312                                                               | 1712.4 | 23.9  | 0.25      |  |  |  |  |  |  |  |  |  |
| AWS                     | 1413                                                               | 1732.6 | 24.0  | 0.25      |  |  |  |  |  |  |  |  |  |
| (Band IV)               | 1513                                                               | 1752.6 | 23.8  | 0.24      |  |  |  |  |  |  |  |  |  |

Note: The maximum conducted power levels for HSPA mode specified by Qualcomm Inc. for the Gobi3000 WWAN module are lower than the maximum conducted output power levels specified for WCDMA mode; therefore HSPA modes were not evaluated.



| Date(s) of Evaluation |
|-----------------------|
| February 14-18, 2011  |

Test Report Issue Date
April 24, 2012

# Test Report Serial No. 020911Q2G-T1079-S24M Description of Test(s)

Specific Absorption Rate

RF Exposure Category
Gen. Pop. / Uncontrolled

Test Report Revision No.

Rev. 1.1 (2nd Release)



## **RF OUTPUT POWER MEASUREMENTS (Cont.)**

#### 1xEv-Do Rel. 0 Mode

#### Procedure used to establish test signal

This procedure assumes the Agilent 8960 Series 10 E5515C Wireless Communications Test Set contains the following applications installed and with valid license.

Application Rev. License

1xEv-Do Terminal Test A.07.13, L

#### **FTAP**

- Call Setup → Shift & Preset
- Protocol Rev → 0 (1xEv-Do)
- Application Config → Enhanced Test Application Protocol → FTAP
- FTAP Rate → 307.2 kbps (2 Slot, QPSK)
- Access Network Info → Cell Parameters → Sector ID → 00840AC0 → Subnet Mask → 0
- Generator Info → Termination Parameters → Max Forward Packet Duration → 16 Slots
- Rvs Power Ctrl → All Bits Up (to get the maximum power)

#### **RTAP**

- Call Setup → Shift & Preset
- Protocol Rev → 0 (1xEv-Do)
- $\bullet \quad \text{Application Config} \to \text{Enhanced Test Application Protocol} \to \mathsf{RTAP}$
- RTAP Rate → 153.6 kbps
- Access Network Info → Cell Parameters → Sector ID → 00840AC0 → Subnet Mask → 0
- Generator Info → Termination Parameters → Max Forward Packet Duration → 16 Slots
- Rvs Power Ctrl → All Bits Up (to get the maximum power)

| RF C                                                  | RF CONDUCTED OUTPUT POWER MEASUREMENT RESULTS - 1xEv-Do Rev. 0 Mode |        |        |          |              |               |         |        |               |  |  |  |  |  |  |
|-------------------------------------------------------|---------------------------------------------------------------------|--------|--------|----------|--------------|---------------|---------|--------|---------------|--|--|--|--|--|--|
| FTAP Rate = 307 kbps (2 slot) / RTAP Rate = 76.8 kbps |                                                                     |        |        |          |              |               |         |        |               |  |  |  |  |  |  |
| Mode / Band                                           | Channel                                                             | Freq.  | Channe | el Power | Mode / Band  | Channel Freq. |         | Channe | Channel Power |  |  |  |  |  |  |
| Wode / Band                                           |                                                                     | (MHz)  | dBm    | Watts    | wiode / Band | Citatillei    | (MHz)   | dBm    | Watts         |  |  |  |  |  |  |
| 1xEv-Do                                               | 1013                                                                | 824.70 | 24.3   | 0.27     | 1xEv-Do      | 25            | 1851.25 | 24.3   | 0.27          |  |  |  |  |  |  |
| Rel. 0                                                | 384                                                                 | 836.52 | 24.5   | 0.28     | Rel. 0       | 600           | 1880.00 | 24.5   | 0.28          |  |  |  |  |  |  |
| (850)                                                 | 777                                                                 | 848.31 | 24.3   | 0.27     | (1900)       | 1175          | 1908.75 | 24.4   | 0.28          |  |  |  |  |  |  |



| Date(s) of Evaluation |
|-----------------------|
| February 14-18, 2011  |

Test Report Issue Date
April 24, 2012
Spe

<u>Test Report Serial No.</u> 020911Q2G-T1079-S24M

Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Rev. 1.1 (2nd Release)
RF Exposure Category

Gen. Pop. / Uncontrolled



# **RF OUTPUT POWER MEASUREMENTS (Cont.)**

#### 1xEv-Do Rev. A Mode

#### Procedure used to establish test signal

This procedure assumes the Agilent 8960 Series 10 E5515C Wireless Communications Test Set contains the following applications installed and with valid license.

<u>Application</u>

Rev. License

1xEv-Do Terminal Test

A.07.13, L

#### **FETAP**

- Call Setup → Shift & Preset
- Protocol Rev → A (1xEv-Do-A)
- Application Config → Enhanced Test Application Protocol → FETAP
- FTAP Rate → 307.2 kbps (2 Slot, QPSK)
- Protocol Subtype Config → Release A Physical Layer Subtype → Subtype 0
- Access Network Info → Cell Parameters → Sector ID → 00840AC0 → Subnet Mask → 0
- Generator Info → Termination Parameters > Max Forward Packet Duration → 16 Slots
- Rvs Power Ctrl → All Bits Up (to get the maximum power)

#### **RETAP**

- Call Setup → Shift & Preset
- Protocol Rev → A (1xEv-Do-A)
- Application Config → Enhanced Test Application Protocol → RETAP
- F-Traffic Format → 4 (1024, 2,128) Canonical (307.2k, QPSK)
- R-Data Pkt Size → 4096
- Protocol Subtype Config → Release A Physical Layer Subtype → Subtype 2
  - → PL Subtype 2 Access Channel MAC Subtype → Default (Subtype 0)
- $\bullet \quad \text{Access Network Info} \to \text{Cell Parameters} \to \text{Sector ID} \to 00840 \text{ACO} \to \text{Subnet Mask} \to 0$
- $\bullet \quad \text{Generator Info} \rightarrow \text{Termination Parameters} \rightarrow \text{Max Forward Packet Duration} > 16 \; \text{Slots}$ 
  - → ACK R-Data After > Subpacket 0 (All ACK)
- Rvs Power Ctrl → All Bits Up (to get the maximum power)

| RF CONDUCTED OUTPUT POWER MEASUREMENT RESULTS - 1xEv-Do Rev. A Mode |         |        |        |         |             |            |                 |      |         |  |  |  |
|---------------------------------------------------------------------|---------|--------|--------|---------|-------------|------------|-----------------|------|---------|--|--|--|
| FETAP Rate = 307 kbps (2 slot) / RETAP Rate = 2048 bps              |         |        |        |         |             |            |                 |      |         |  |  |  |
| Mode / Band                                                         | Channel | Freq.  | Channe | l Power | Mode / Band | Channel    | Freq. Channel F |      | l Power |  |  |  |
| Wode / Band                                                         |         | (MHz)  | dBm    | Watts   | Mode / Band | Citatillei | (MHz)           | dBm  | Watts   |  |  |  |
| 1xEv-Do                                                             | 1013    | 824.70 | 24.2   | 0.26    | 1xEv-Do     | 25         | 1851.25         | 24.3 | 0.27    |  |  |  |
| Rev. A                                                              | 384     | 836.52 | 24.4   | 0.28    | Rev. A      | 600        | 1880.00         | 24.4 | 0.28    |  |  |  |
| (850)                                                               | 777     | 848.31 | 24.1   | 0.26    | (1900)      | 1175       | 1908.75         | 24.2 | 0.26    |  |  |  |

SAR for Subtype 2 Physical Layer configurations is not required for Rev. A when the maximum average output of each RF channels is less than that measured in Subtype 0/1 Physical Layer configurations (FCC KDB 941225 - see reference [9]).



| Date(s) of Evaluation |
|-----------------------|
| February 14-18, 2011  |

Test Report Issue Date April 24, 2012

## Test Report Serial No. 020911Q2G-T1079-S24M

Description of Test(s)

**RF Exposure Category** Specific Absorption Rate Gen. Pop. / Uncontrolled

Test Report Revision No.

Rev. 1.1 (2nd Release)



## RF OUTPUT POWER MEASUREMENTS (Cont.)

#### **CDMA 1xRTT Mode**

## Procedure used to establish test signal

This procedure assumes the Agilent 8960 Series 10 E5515C Wireless Communications Test Set contains the following applications installed and with valid license.

**Application** 

Rev. License

CDMA2000 Mobile Test

B.12.12, L

#### 1xRTT

- Call Setup → Shift & Preset
- Protocol Rev → 6 (IS-2000-0)
- Radio Config (RC) → RC3 (Fwd3, Rvs3)
- FCH Service Option (SO) Setup → SO55
- Traffic Data Rate → Full
- Cell info → Cell Parameters → System ID (SID) → 2238 (for Cellular) and 4145 (for PCS)

 $\rightarrow$  Network ID (NID)  $\rightarrow$  65535

Rvs Power Ctrl  $\rightarrow$  All Bits Up (to get the maximum power)

|             | RF CONDUCTED OUTPUT POWER MEASUREMENT RESULTS - 1xRTT Mode |        |        |         |             |         |         |        |         |  |  |  |  |  |
|-------------|------------------------------------------------------------|--------|--------|---------|-------------|---------|---------|--------|---------|--|--|--|--|--|
| RC3, SO55   |                                                            |        |        |         |             |         |         |        |         |  |  |  |  |  |
| Mode / Band | Channel                                                    | Freq.  | Channe | l Power | Mode / Band | Channel | Freq.   | Channe | l Power |  |  |  |  |  |
| Wode / Band |                                                            | (MHz)  | dBm    | Watts   | Wode / Band | Chamile | (MHz)   | dBm    | Watts   |  |  |  |  |  |
|             | 1013                                                       | 824.70 | 24.2   | 0.26    |             | 25      | 1851.25 | 24.3   | 0.27    |  |  |  |  |  |
| 1xRTT 850   | 384                                                        | 836.52 | 24.4   | 0.28    | 1xRTT 1900  | 600     | 1880.00 | 24.4   | 0.28    |  |  |  |  |  |
|             | 777                                                        | 848.31 | 24.4   | 0.28    |             | 1175    | 1908.75 | 24.2   | 0.26    |  |  |  |  |  |

SAR is not required for 1xRTT when the maximum average output of each channel is less than 1/4 dB higher than that measured in Subtype 0/1 Physical Layer configurations for Rev. 0 (FCC KDB 941225 - see reference [9]).



Test Report Issue Date

April 24, 2012

Description of Test(s)

Specific Absorption Rate

Test Report Revision No.
Rev. 1.1 (2nd Release)
RF Exposure Category

Gen. Pop. / Uncontrolled



# **RF OUTPUT POWER MEASUREMENTS (Cont.)**

| 622ANHMW WLAN Module |           |                               |               |  |  |  |  |  |  |
|----------------------|-----------|-------------------------------|---------------|--|--|--|--|--|--|
| 2.4 GHz Band         |           |                               |               |  |  |  |  |  |  |
| 802.11n              | HT0       | OFDM                          |               |  |  |  |  |  |  |
| Duty Cycle           | 99%       |                               |               |  |  |  |  |  |  |
|                      | Frequency | Conducted Average Power (dBm) |               |  |  |  |  |  |  |
| Channel              | (MHz)     | MAIN - Chain A                | AUX - Chain B |  |  |  |  |  |  |
| 7                    | 2442      | 16.8                          | 16.8          |  |  |  |  |  |  |
| 5.3 GHz Band         |           |                               |               |  |  |  |  |  |  |
| 802.11n              | HT0       | OFDM                          |               |  |  |  |  |  |  |
| Duty Cycle           | 99%       |                               |               |  |  |  |  |  |  |
|                      | Frequency | Conducted Average Power (dBm) |               |  |  |  |  |  |  |
| Channel              | (MHz)     | MAIN - Chain A                | AUX - Chain B |  |  |  |  |  |  |
| 60                   | 5300      | 16.7                          | 16.7          |  |  |  |  |  |  |

Test Report Serial No.

020911Q2G-T1079-S24M





Test Report Issue Date
April 24, 2012

<u>Test Report Serial No.</u> 020911Q2G-T1079-S24M

Description of Test(s)

Specific Absorption Rate

RF Exposure Category

Gen. Pop. / Uncontrolled

Test Report Revision No.

Rev. 1.1 (2nd Release)



# **5.0 FLUID DIELECTRIC PARAMETERS**

| FLUID DIELECTRIC PARAMETERS |                    |        |                    |                    |                        |                           |  |  |  |  |  |
|-----------------------------|--------------------|--------|--------------------|--------------------|------------------------|---------------------------|--|--|--|--|--|
| Date: Feb 14,               | Date: Feb 14, 2011 |        | uency: 835         | MHz                | Tissue: Body           |                           |  |  |  |  |  |
| Freq (GHz)                  | Test_e             | Test_s | 835MHz<br>Target_e | 835MHz<br>Target_s | Deviation Permittivity | Deviation<br>Conductivity |  |  |  |  |  |
| 0.735                       | 53.49              | 0.79   | 55.2               | 0.97               | -3.10%                 | -18.56%                   |  |  |  |  |  |
| 0.745                       | 53.73              | 0.86   | 55.2               | 0.97               | -2.66%                 | -11.34%                   |  |  |  |  |  |
| 0.755                       | 53.72              | 0.88   | 55.2               | 0.97               | -2.68%                 | -9.28%                    |  |  |  |  |  |
| 0.765                       | 53.52              | 0.89   | 55.2               | 0.97               | -3.04%                 | -8.25%                    |  |  |  |  |  |
| 0.775                       | 53.57              | 0.9    | 55.2               | 0.97               | -2.95%                 | -7.22%                    |  |  |  |  |  |
| 0.785                       | 53.58              | 0.91   | 55.2               | 0.97               | -2.93%                 | -6.19%                    |  |  |  |  |  |
| 0.795                       | 53.44              | 0.91   | 55.2               | 0.97               | -3.19%                 | -6.19%                    |  |  |  |  |  |
| 0.805                       | 53.47              | 0.93   | 55.2               | 0.97               | -3.13%                 | -4.12%                    |  |  |  |  |  |
| 0.815                       | 53.15              | 0.93   | 55.2               | 0.97               | -3.71%                 | -4.12%                    |  |  |  |  |  |
| 0.825                       | 53.44              | 0.94   | 55.2               | 0.97               | -3.19%                 | -3.09%                    |  |  |  |  |  |
| 0.835                       | 53.12              | 0.96   | 55.2               | 0.97               | -3.77%                 | -1.03%                    |  |  |  |  |  |
| 0.8365*                     | 53.1               | 0.96   | 55.2               | 0.97               | -3.80%                 | -1.03%                    |  |  |  |  |  |
| 0.845                       | 53.21              | 0.96   | 55.2               | 0.97               | -3.61%                 | -1.03%                    |  |  |  |  |  |
| 0.855                       | 53.97              | 0.96   | 55.2               | 0.97               | -2.23%                 | -1.03%                    |  |  |  |  |  |
| 0.865                       | 52.79              | 0.99   | 55.2               | 0.97               | -4.37%                 | 2.06%                     |  |  |  |  |  |
| 0.875                       | 52.57              | 1      | 55.2               | 0.97               | -4.76%                 | 3.09%                     |  |  |  |  |  |
| 0.885                       | 52.73              | 1.01   | 55.2               | 0.97               | -4.47%                 | 4.12%                     |  |  |  |  |  |
| 0.895                       | 52.51              | 1.01   | 55.2               | 0.97               | -4.87%                 | 4.12%                     |  |  |  |  |  |
| 0.905                       | 52.75              | 1.01   | 55.2               | 0.97               | -4.44%                 | 4.12%                     |  |  |  |  |  |
| 0.915                       | 52.53              | 1.01   | 55.2               | 0.97               | -4.84%                 | 4.12%                     |  |  |  |  |  |
| 0.925                       | 52.29              | 1.04   | 55.2               | 0.97               | -5.27%                 | 7.22%                     |  |  |  |  |  |
| 0.935                       | 51.48              | 1.07   | 55.2               | 0.97               | -6.74%                 | 10.31%                    |  |  |  |  |  |

<sup>\*</sup>Interpolated using DASY4 Software





Test Report Issue Date
April 24, 2012

<u>Test Report Serial No.</u> 020911Q2G-T1079-S24M

Description of Test(s)

Specific Absorption Rate

Rev. 1.1 (2nd Release)

RF Exposure Category

Gen. Pop. / Uncontrolled

Test Report Revision No.



| FLUID DIELECTRIC PARAMETERS |         |        |                     |                     |                        |                           |  |  |  |  |  |  |
|-----------------------------|---------|--------|---------------------|---------------------|------------------------|---------------------------|--|--|--|--|--|--|
| Date: Feb 1                 | 8, 2011 | Frequ  | uency: 190          | ) MHz               | Tissu                  | e: Body                   |  |  |  |  |  |  |
| Freq (GHz)                  | Test_e  | Test_s | 1900MHz<br>Target_e | 1900MHz<br>Target_s | Deviation Permittivity | Deviation<br>Conductivity |  |  |  |  |  |  |
| 1.8                         | 51.32   | 1.42   | 53.3                | 1.52                | -3.71%                 | -6.58%                    |  |  |  |  |  |  |
| 1.81                        | 51.41   | 1.45   | 53.3                | 1.52                | -3.55%                 | -4.61%                    |  |  |  |  |  |  |
| 1.82                        | 51.36   | 1.44   | 53.3                | 1.52                | -3.64%                 | -5.26%                    |  |  |  |  |  |  |
| 1.83                        | 51.26   | 1.47   | 53.3                | 1.52                | -3.83%                 | -3.29%                    |  |  |  |  |  |  |
| 1.84                        | 51.35   | 1.46   | 53.3                | 1.52                | -3.66%                 | -3.95%                    |  |  |  |  |  |  |
| 1.85                        | 51.16   | 1.47   | 53.3                | 1.52                | -4.02%                 | -3.29%                    |  |  |  |  |  |  |
| 1.86                        | 51.25   | 1.48   | 53.3                | 1.52                | -3.85%                 | -2.63%                    |  |  |  |  |  |  |
| 1.87                        | 51.18   | 1.49   | 53.3                | 1.52                | -3.98%                 | -1.97%                    |  |  |  |  |  |  |
| 1.88                        | 51.2    | 1.51   | 53.3                | 1.52                | -3.94%                 | -0.66%                    |  |  |  |  |  |  |
| 1.89                        | 51.1    | 1.51   | 53.3                | 1.52                | -4.13%                 | -0.66%                    |  |  |  |  |  |  |
| 1.9                         | 51.13   | 1.52   | 53.3                | 1.52                | -4.07%                 | 0.00%                     |  |  |  |  |  |  |
| 1.91                        | 51.03   | 1.54   | 53.3                | 1.52                | -4.26%                 | 1.32%                     |  |  |  |  |  |  |
| 1.92                        | 50.94   | 1.52   | 53.3                | 1.52                | -4.43%                 | 0.00%                     |  |  |  |  |  |  |
| 1.93                        | 51.01   | 1.53   | 53.3                | 1.52                | -4.30%                 | 0.66%                     |  |  |  |  |  |  |
| 1.94                        | 51.01   | 1.54   | 53.3                | 1.52                | -4.30%                 | 1.32%                     |  |  |  |  |  |  |
| 1.95                        | 50.97   | 1.57   | 53.3                | 1.52                | -4.37%                 | 3.29%                     |  |  |  |  |  |  |
| 1.96                        | 50.92   | 1.58   | 53.3                | 1.52                | -4.47%                 | 3.95%                     |  |  |  |  |  |  |
| 1.97                        | 50.82   | 1.59   | 53.3                | 1.52                | -4.65%                 | 4.61%                     |  |  |  |  |  |  |
| 1.98                        | 51      | 1.61   | 53.3                | 1.52                | -4.32%                 | 5.92%                     |  |  |  |  |  |  |
| 1.99                        | 51.06   | 1.63   | 53.3                | 1.52                | -4.20%                 | 7.24%                     |  |  |  |  |  |  |
| 2                           | 50.77   | 1.62   | 53.3                | 1.52                | -4.75%                 | 6.58%                     |  |  |  |  |  |  |





Test Report Issue Date
April 24, 2012

<u>Test Report Serial No.</u> 020911Q2G-T1079-S24M

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.1 (2nd Release)

RF Exposure Category
Gen. Pop. / Uncontrolled



| FLUID DIELECTRIC PARAMETERS |         |        |                     |                     |                        |                           |  |  |  |  |  |
|-----------------------------|---------|--------|---------------------|---------------------|------------------------|---------------------------|--|--|--|--|--|
| Date: Feb 1                 | 5, 2011 | Frequ  | uency: 1800         | ) MHz               | Tissu                  | e: Body                   |  |  |  |  |  |
| Freq (GHz)                  | Test_e  | Test_s | 1800MHz<br>Target_e | 1800MHz<br>Target_s | Deviation Permittivity | Deviation<br>Conductivity |  |  |  |  |  |
| 1.65                        | 52.22   | 1.36   | 53.4                | 1.49                | -2.21%                 | -8.72%                    |  |  |  |  |  |
| 1.66                        | 52.04   | 1.37   | 53.4                | 1.49                | -2.55%                 | -8.05%                    |  |  |  |  |  |
| 1.67                        | 52.29   | 1.38   | 53.4                | 1.49                | -2.08%                 | -7.38%                    |  |  |  |  |  |
| 1.68                        | 52.08   | 1.39   | 53.4                | 1.49                | -2.47%                 | -6.71%                    |  |  |  |  |  |
| 1.69                        | 52.25   | 1.42   | 53.4                | 1.49                | -2.15%                 | -4.70%                    |  |  |  |  |  |
| 1.7                         | 52.13   | 1.43   | 53.4                | 1.49                | -2.38%                 | -4.03%                    |  |  |  |  |  |
| 1.71                        | 52.01   | 1.44   | 53.4                | 1.49                | -2.60%                 | -3.36%                    |  |  |  |  |  |
| 1.72                        | 51.93   | 1.44   | 53.4                | 1.49                | -2.75%                 | -3.36%                    |  |  |  |  |  |
| 1.73                        | 52.14   | 1.45   | 53.4                | 1.49                | -2.36%                 | -2.68%                    |  |  |  |  |  |
| 1.7326*                     | 52.14   | 1.45   | 53.4                | 1.49                | -2.36%                 | -2.68%                    |  |  |  |  |  |
| 1.74                        | 51.7    | 1.45   | 53.4                | 1.49                | -3.18%                 | -2.68%                    |  |  |  |  |  |
| 1.75                        | 51.85   | 1.46   | 53.4                | 1.49                | -2.90%                 | -2.01%                    |  |  |  |  |  |
| 1.76                        | 51.86   | 1.47   | 53.4                | 1.49                | -2.88%                 | -1.34%                    |  |  |  |  |  |
| 1.77                        | 51.87   | 1.5    | 53.4                | 1.49                | -2.87%                 | 0.67%                     |  |  |  |  |  |
| 1.78                        | 51.66   | 1.5    | 53.4                | 1.49                | -3.26%                 | 0.67%                     |  |  |  |  |  |
| 1.79                        | 51.76   | 1.51   | 53.4                | 1.49                | -3.07%                 | 1.34%                     |  |  |  |  |  |
| 1.80                        | 51.65   | 1.51   | 53.4                | 1.49                | -3.28%                 | 1.34%                     |  |  |  |  |  |
| 1.81                        | 51.58   | 1.52   | 53.4                | 1.49                | -3.41%                 | 2.01%                     |  |  |  |  |  |
| 1.82                        | 51.62   | 1.52   | 53.4                | 1.49                | -3.33%                 | 2.01%                     |  |  |  |  |  |
| 1.83                        | 51.5    | 1.53   | 53.4                | 1.49                | -3.56%                 | 2.68%                     |  |  |  |  |  |
| 1.84                        | 51.49   | 1.57   | 53.4                | 1.49                | -3.58%                 | 5.37%                     |  |  |  |  |  |
| 1.85                        | 51.41   | 1.56   | 53.4                | 1.49                | -3.73%                 | 4.70%                     |  |  |  |  |  |

<sup>\*</sup>Interpolated using DASY4 Software





Test Report Issue Date
April 24, 2012

<u>Test Report Serial No.</u> 020911Q2G-T1079-S24M

Description of Test(s)

Specific Absorption Rate

RF Exposure Category
Gen. Pop. / Uncontrolled

Test Report Revision No.

Rev. 1.1 (2nd Release)



|           | FLU      | JID DIEL | ECTRIC                | PARAME | ETERS                     |                           |
|-----------|----------|----------|-----------------------|--------|---------------------------|---------------------------|
| Date: Feb | 16, 2011 | Frequ    | uency: 2450           | Tissu  | e: Body                   |                           |
| Freq      | Test_e   | Test_s   | t_s Target_e Target_s |        | Deviation<br>Permittivity | Deviation<br>Conductivity |
| 2.35      | 50.84    | 1.85     | 52.7                  | 1.95   | -3.53%                    | -5.13%                    |
| 2.36      | 50.75    | 1.85     | 52.7                  | 1.95   | -3.70%                    | -5.13%                    |
| 2.37      | 50.64    | 1.87     | 52.7                  | 1.95   | -3.91%                    | -4.10%                    |
| 2.38      | 50.44    | 1.87     | 52.7                  | 1.95   | -4.29%                    | -4.10%                    |
| 2.39      | 50.75    | 1.88     | 52.7                  | 1.95   | -3.70%                    | -3.59%                    |
| 2.4       | 50.75    | 1.89     | 52.7                  | 1.95   | -3.70%                    | -3.08%                    |
| 2.41      | 50.66    | 1.91     | 52.7                  | 1.95   | -3.87%                    | -2.05%                    |
| 2.42      | 50.43    | 1.91     | 52.7                  | 1.95   | -4.31%                    | -2.05%                    |
| 2.43      | 50.63    | 1.93     | 52.7                  | 1.95   | -3.93%                    | -1.03%                    |
| 2.44      | 50.45    | 1.96     | 52.7                  | 1.95   | -4.27%                    | 0.51%                     |
| 2.442*    | 50.5     | 1.97     | 52.7                  | 1.95   | -4.17%                    | 1.03%                     |
| 2.45      | 50.45    | 1.99     | 52.7                  | 1.95   | -4.27%                    | 2.05%                     |
| 2.46      | 50.43    | 1.98     | 52.7                  | 1.95   | -4.31%                    | 1.54%                     |
| 2.47      | 50.63    | 2        | 52.7                  | 1.95   | -3.93%                    | 2.56%                     |
| 2.48      | 50.52    | 2.01     | 52.7                  | 1.95   | -4.14%                    | 3.08%                     |
| 2.49      | 50.33    | 1.99     | 52.7                  | 1.95   | -4.50%                    | 2.05%                     |
| 2.5       | 50.34    | 2.04     | 52.7                  | 1.95   | -4.48%                    | 4.62%                     |
| 2.51      | 50.36    | 2.06     | 52.7                  | 1.95   | -4.44%                    | 5.64%                     |
| 2.52      | 50.37    | 2.06     | 52.7                  | 1.95   | -4.42%                    | 5.64%                     |
| 2.53      | 50.29    | 2.09     | 52.7                  | 1.95   | -4.57%                    | 7.18%                     |
| 2.54      | 50.18    | 2.2      | 52.7                  | 1.95   | -4.78%                    | 12.82%                    |
| 2.55      | 50.27    | 2.2      | 52.7                  | 1.95   | -4.61%                    | 12.82%                    |

<sup>\*</sup>Interpolated using DASY4 Software

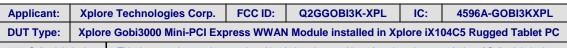


Test Report Issue Date
April 24, 2012

<u>Test Report Serial No.</u> 020911Q2G-T1079-S24M

Description of Test(s)

Specific Absorption Rate


RF Exposure Category
Gen. Pop. / Uncontrolled

Test Report Revision No.

Rev. 1.1 (2nd Release)



|            | FLUID DIELECTRIC PARAMETERS |        |             |              |                           |                           |  |  |  |  |  |  |  |  |
|------------|-----------------------------|--------|-------------|--------------|---------------------------|---------------------------|--|--|--|--|--|--|--|--|
| Date: Feb  | 17, 2011                    | Fre    | quency: 5 ( | Tissue: Body |                           |                           |  |  |  |  |  |  |  |  |
| Freq (GHz) | Test_e                      | Test_s | Target_e    | Target_s     | Deviation<br>Permittivity | Deviation<br>Conductivity |  |  |  |  |  |  |  |  |
| 5.2        | 50.36                       | 5.23   | 49          | 5.3          | 2.78%                     | -1.32%                    |  |  |  |  |  |  |  |  |
| 5.22       | 50.33                       | 5.23   | 49          | 5.3          | 2.71%                     | -1.28%                    |  |  |  |  |  |  |  |  |
| 5.24       | 50.57                       | 5.17   | 49          | 5.3          | 3.20%                     | -2.45%                    |  |  |  |  |  |  |  |  |
| 5.26       | 50.25                       | 5.26   | 49          | 5.3          | 2.55%                     | -0.74%                    |  |  |  |  |  |  |  |  |
| 5.28       | 50.34                       | 5.30   | 49          | 5.3          | 2.73%                     | 0.00%                     |  |  |  |  |  |  |  |  |
| 5.3        | 50.97                       | 5.32   | 49          | 5.3          | 4.02%                     | 0.38%                     |  |  |  |  |  |  |  |  |
| 5.32       | 51.05                       | 5.45   | 49          | 5.3          | 4.18%                     | 2.83%                     |  |  |  |  |  |  |  |  |
| 5.34       | 51.09                       | 5.54   | 49          | 5.3          | 4.27%                     | 4.53%                     |  |  |  |  |  |  |  |  |
| 5.36       | 51.08                       | 5.51   | 48.6        | 5.65         | 5.10%                     | -2.48%                    |  |  |  |  |  |  |  |  |
| 5.38       | 51.25                       | 5.62   | 48.6        | 5.65         | 5.45%                     | -0.53%                    |  |  |  |  |  |  |  |  |
| 5.4        | 51.04                       | 5.58   | 48.6        | 5.65         | 5.02%                     | -1.24%                    |  |  |  |  |  |  |  |  |
| 5.42       | 50.9                        | 5.62   | 48.6        | 5.65         | 4.73%                     | -0.53%                    |  |  |  |  |  |  |  |  |
| 5.44       | 50.99                       | 5.78   | 48.6        | 5.65         | 4.92%                     | 2.30%                     |  |  |  |  |  |  |  |  |







Test Report Issue Date April 24, 2012

Test Report Serial No. 020911Q2G-T1079-S24M

Description of Test(s)

Specific Absorption Rate

RF Exposure Category Gen. Pop. / Uncontrolled

Rev. 1.1 (2nd Release)



# **6.0 SAR MEASUREMENT SUMMARY**

|              |                    |                 |               |              | BOD          | Y SA                | R MEASUI                                   | REMENT             | RE                                      | SULT                     | S            |                      |                                |                        |                 |
|--------------|--------------------|-----------------|---------------|--------------|--------------|---------------------|--------------------------------------------|--------------------|-----------------------------------------|--------------------------|--------------|----------------------|--------------------------------|------------------------|-----------------|
| Test<br>Date | Freq.<br>Band      | Test<br>Plot #  | Test<br>Freq. |              | 1            | est Mo              | de                                         | Transmit<br>Module |                                         | Tablet Position to Plant | on (Co       | rt Power<br>nducted) | SAR<br>Drift<br>During<br>Test | Meas<br>SAR L          | sured<br>Levels |
|              | MHz                |                 | MHz           |              |              |                     |                                            |                    |                                         |                          | dBn          | Mode                 | dB                             | W/kg                   | 1g/Pk           |
|              |                    | B1              | 836.6         | 190          | GPRS Class   | s 10                | 2 Uplink Slots                             | Gobi300            | 0                                       | Bottor<br>Touch          | 32 6         | BAP                  | -0.053                         | 0.348                  | 1g              |
| Feb 14       | 850                | B2              | 836.4         | 4182         | WCDMA Re     | el99                | 12.2k RMC                                  | Gobi300            | 0                                       | Bottor<br>Touch          |              | MAP                  | 0.056                          | 0.252                  | 1g              |
|              |                    | В3              | 836.5         | 2 384        | EV-DO Re     | I. 0                | FTAP 2 slot<br>307 kbps                    | Gobi300            | 0                                       | Bottor<br>Touch          | 7/1 5        | MAP                  | 0.022                          | 0.298                  | 1g              |
| Feb 15       | 1750               | B4              | 1732.0        | 6 1413       | WCDMA Re     | el99                | 12.2k RMC                                  | Gobi300            | 0                                       | Bottor<br>Touch          | 24 (         | MAP                  | 0.056                          | 0.283                  | 1g              |
|              |                    | B5              | 1880.0        | 0 661        | GPRS Class   | s 10                | 2 Uplink Slots                             | Gobi300            | 0                                       | Bottor<br>Touch          | Ju c         | BAP                  | 0.023                          | 0.232                  | 1g              |
| Feb 18       | 1900               | В6              | 1880.0        | 9400         | WCDMA Re     | el99                | 12.2k RMC                                  | Gobi300            | 0                                       | Bottor<br>Touch          | 1 24 1       | MAP                  | 0.029                          | 0.389                  | 1g              |
|              |                    | B7              | 1880.0        | 0 600        | EV-DO Re     | I. 0                | FTAP 2 slot<br>307 kbps                    | Gobi300            | 0                                       | Bottor<br>Touch          | 74 -         | MAP                  | -0.092                         | 0.351                  | 1g              |
| Feb 16       | 2450               | B8              | 2442.0        | 0 7          | 802.11n OF   | DM                  | НТ0                                        | 622ANHN            | 1W                                      | Bottor<br>Touch          | 16 7         | Aver.                | -0.011                         | 0.463                  | 1g              |
| Feb 17       | 5300               | В9              | 5300.0        | 0 60         | 802.11n OF   | 802.11n OFDM HT0 20 |                                            |                    | 1VV                                     | Bottor<br>Touch          | 1 16 /       | Aver.                | -0.080                         | 0.601                  | 1g              |
|              |                    |                 | SAR LII       | MIT(S)       |              |                     | ВОІ                                        | DY                 |                                         | SPATIA                   | L PEAK       | RI                   | EXPOSU                         | RE CATEG               | ORY             |
| F            | CC 47 CFF          | 2.1093          |               | Health Ca    | nada Safety  | Code 6              | 1.6 W                                      | //kg               |                                         | 1g av                    | erage        | Gene                 | ral Populat                    | ion / Unco             | ntrolled        |
| Test         | Date               | ρ ( <b>Kg</b> / |               |              | emperature   | Fluid               | d Temperature                              |                    | • • • • • • • • • • • • • • • • • • • • |                          |              | spheric Pressure     |                                |                        |                 |
|              | 4, 2011            | 100             |               |              | 5 °C         |                     | 22.1 °C                                    |                    | 5 cm                                    |                          | 35           |                      |                                | 101.1 kPa              |                 |
|              | 5, 2011            | 1000            | -             |              | 8 °C<br>8 °C |                     | 22.5 °C                                    |                    | 5 cm                                    |                          | 34           |                      |                                | 101.1 kPa              |                 |
|              | 6, 2011<br>7, 2011 | 1000            |               |              | 8 °C         |                     | 23.5 °C<br>23.5 °C                         |                    | 5 cm<br>5 cm                            |                          | 34           |                      |                                | 101.1 kPa<br>101.1 kPa |                 |
|              | 8, 2011            | 100             |               |              | 6 °C         |                     | 23.4 °C                                    | _                  | 5 cm                                    |                          | 35           |                      |                                | 101.1 kPa              |                 |
| Notes        | 0, 2011            |                 |               |              |              |                     | 20                                         |                    |                                         |                          |              | , 0                  |                                |                        |                 |
|              | Detailed n         | neasure         | ment da       | ata and pl   | ots showing  | the ma              | ximum SAR lo                               | ocation of         | he D                                    | OUT are                  | reported in  | Appendix             | A.                             |                        |                 |
| 2. b         | ands fro           | m the or        | iginal s      | single-tran  | smit SAR ev  | /aluatic            | rmed in the nons as reported Permissive Ch | ed in Cellte       | ch t                                    | est repo                 | rt serial no |                      |                                |                        |                 |
| 3 7          |                    | evaluatio       | ons for       | the Gobi3    |              |                     | ed at the higher                           |                    |                                         |                          |              | configurati          | on (in acco                    | ordance w              | ith FCC         |
| 4 7          |                    | ured SA         | R level       | ls for the ( | Gobi3000 we  | re < 0.             | 8 W/kg; there                              | fore SAR           | evalu                                   | uations fo               | or the rema  | nining cha           | nnels were                     | not requi              | red (per        |
|              |                    |                 |               | , ,,         | sured by the | DASY                | 4 system                                   |                    |                                         |                          |              |                      |                                |                        |                 |
|              |                    |                 |               |              |              |                     | AR evaluation                              | <br>1S.            |                                         |                          |              |                      |                                |                        |                 |
|              |                    |                 |               |              | •            |                     | dielectric par                             |                    | asur                                    | rement to                | the comp     | letion of th         | ne SAR ev                      | aluations.             |                 |
| 。 7          | he diele           | ctric par       | ameter        | s of the s   |              | sue mi              | xture were m                               |                    |                                         |                          |              |                      |                                |                        | ielectric       |

| Applicant:                                                                                                                                   | Xplore Technologies Corp. FCC ID: Q2GGOBI3K-XPL IC: 4596A-GOI |                                                                                           | 4596A-GOBI3KXPL | <b>₩</b> xplore |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------|-----------------|--|--|--|--|--|--|
| DUT Type:                                                                                                                                    | Xplor                                                         | Xplore Gobi3000 Mini-PCI Express WWAN Module installed in Xplore iX104C5 Rugged Tablet PC |                 |                 |  |  |  |  |  |  |
| 2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |                                                               |                                                                                           |                 |                 |  |  |  |  |  |  |



Test Report Issue Date
April 24, 2012

Test Report Serial No. 020911Q2G-T1079-S24M Description of Test(s)

Specific Absorption Rate

RF Exposure Category
Gen. Pop. / Uncontrolled

Test Report Revision No.

Rev. 1.1 (2nd Release)



## 7.0 CO-LOCATED TRANSMITTER(S)

The iX104C5 Tablet PC incorporating the GOBI3000 WWAN Mini-PCI Express Card FCC ID: Q2GGOBI3K-XPL can be colocated with the following transmitters:

| Transmitter Type  | Grantee      | FCC ID       | IC ID          | Model          | Co-Transmit |
|-------------------|--------------|--------------|----------------|----------------|-------------|
| 802.11abgn WLAN   | Xplore Tech. | Q2GI6205-XPL | 4596A-I6205XPL | 62205ANHMW     | No          |
| 802.11abgn WLAN   | Xplore Tech. | Q2GI6200-XPL | 4596A-I6200XPL | 622ANHMW       | Yes         |
| Class 2 Bluetooth | Broadcom     | QDS-BRCM1043 | 4324A-BRCM1043 | BCM92070MD_REF | Yes         |

| Antenna-to-Antenna Spacing   WWAN to WLAN MAIN = 16 m | WWAN to WLAN AUX = 94.2 mm | WWAN to Bluetooth = 179 mm |
|-------------------------------------------------------|----------------------------|----------------------------|
|-------------------------------------------------------|----------------------------|----------------------------|

## 8.0 SIMULTANEOUS TRANSMISSION ASSESSMENT

This device contains multiple transmitters that may operate simultaneously and therefore, require a simultaneous transmission analysis according to the KDB Publication 447498 4) b) iii) procedures.

- iii) For each edge positioned closest to the user, simultaneous transmission SAR evaluation is not required when the simultaneous transmitting antennas along that edge are:
- (1) located < 5 cm from the edge and the sum of the stand-alone 1-g SAR is < the SAR limit for these antennas or the SAR to peak location separation ratios are < 0.3 for all antenna pairs.

| Simultaneous<br>Transmission | Tablet PC<br>Configuration | GPRS 850<br>SAR (W/kg) 1g             | 2.4 GHz 802.11n<br>WLAN MAIN<br>SAR (W/kg) 1g | 5.3 GHz 802.11n<br>WLAN MAIN<br>SAR (W/kg) 1g | ∑ SAR 1g<br>(W/kg) |
|------------------------------|----------------------------|---------------------------------------|-----------------------------------------------|-----------------------------------------------|--------------------|
| Body SAR                     | Bottom Side                | 0.348                                 | 0.463                                         | n/a                                           | 0.811              |
| Body SAR                     | Bottom Side                | 0.348                                 | n/a                                           | 0.601                                         | 0.949              |
| Simultaneous<br>Transmission | Tablet PC<br>Configuration | UMTS Band V<br>850 SAR<br>(W/kg) 1g   | 2.4 GHz 802.11n<br>WLAN MAIN<br>SAR (W/kg) 1g | 5.3 GHz 802.11n<br>WLAN MAIN<br>SAR (W/kg) 1g | ∑ SAR 1g<br>(W/kg) |
| Body SAR                     | Bottom Side                | 0.252                                 | 0.463                                         | n/a                                           | 0.715              |
| Body SAR                     | Bottom Side                | 0.252                                 | n/a                                           | 0.601                                         | 0.853              |
| Simultaneous<br>Transmission | Tablet PC<br>Configuration | UMTS Band IV<br>1750 SAR<br>(W/kg) 1g | 2.4 GHz 802.11n<br>WLAN MAIN<br>SAR (W/kg) 1g | 5.3 GHz 802.11n<br>WLAN MAIN<br>SAR (W/kg) 1g | ∑ SAR 1g<br>(W/kg) |
| Body SAR                     | Bottom Side                | 0.283                                 | 0.463                                         | n/a                                           | 0.746              |
| Body SAR                     | Bottom Side                | 0.283                                 | n/a                                           | 0.601                                         | 0.884              |
| Simultaneous<br>Transmission | Tablet PC<br>Configuration | UMTS Band II<br>1900 SAR<br>(W/kg) 1g | 2.4 GHz 802.11n<br>WLAN MAIN<br>SAR (W/kg) 1g | 5.3 GHz 802.11n<br>WLAN MAIN<br>SAR (W/kg) 1g | ∑ SAR 1g<br>(W/kg) |
| Body SAR                     | Bottom Side                | 0.389                                 | 0.463                                         | n/a                                           | 0.852              |
| Body SAR                     | Bottom Side                | 0.389                                 | n/a                                           | 0.601                                         | 0.990              |

The sum of the stand-alone 1-g SAR is < 1.6 W/kg; therefore simultaneous transmission evaluations are not required.

SAR evaluation for simultaneous transmission of the WWAN and Bluetooth is not required based on the maximum conducted output power of the Bluetooth (for which stand-alone SAR evaluation is not required) is < 60/f mW and the antenna-to-antenna separation distance (WLAN to Bluetooth) is > 5 cm.

| Applicant:       | Xplore Technologies Corp. FCC ID: Q2GGOBI3K-XPL IC: 4596A-GC |                                                                                                                           | 4596A-GOBI3KXPL | <b>₩</b> xplore |  |  |  |  |  |  |
|------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|--|--|--|--|--|--|
| DUT Type:        | Xplor                                                        | Cplore Gobi3000 Mini-PCI Express WWAN Module installed in Xplore iX104C5 Rugged Tablet PC                                 |                 |                 |  |  |  |  |  |  |
| 2012 Celltech La | abs Inc.                                                     | Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |                 |                 |  |  |  |  |  |  |



Test Report Issue Date
April 24, 2012

Test Report Serial No. 020911Q2G-T1079-S24M

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.1 (2nd Release)

RF Exposure Category
Gen. Pop. / Uncontrolled



## 9.0 SAR LEVEL ADJUSTMENT FOR FLUID SENSITIVITY & PROBE CALIBRATION

For test B4 the probe calibration and measurement frequency interval is > 50 MHz; therefore the following additional steps were implemented (per FCC KDB 450824 D01v01r01 - see reference [11]): The measured 1-g SAR may be compensated with respect to +5% tolerances in e and -5% tolerances in s, computed according to valid SAR sensitivity data, to reduce SAR underestimation and maintain conservativeness. SAR sensitivity adjustment methodology is specified in Chapter 22 of the SPEAG DASY4 Manual (see reference [14]).

% Change in SAR = Sensitivity \* % Change in Value

Measured Fluid Parameters:

| Test Plot # | Freq    | Test_e | Test_s | Target_e | Target_s | Deviation<br>Permittivity | Deviation<br>Conductivity |
|-------------|---------|--------|--------|----------|----------|---------------------------|---------------------------|
| B4          | 1.7326* | 52.14  | 1.45   | 53.4     | 1.49     | -2.36%                    | -2.68%                    |

The Sensitivity for permittivity at 1800 MHz is -0.52 The Sensitivity for conductivity at 1800 MHz is 0.51

% Change in SAR = (-0.52 \* -2.36%) + (0.43 \* -2.68%) = 1.23%

Measured SAR is adjusted for Sensitivity calculation:

SAR = 0.283 \* 1.23% = 0.286 W/kg



| Date(s) of Evaluation |
|-----------------------|
| February 14-18, 2011  |

Test Report Issue Date
April 24, 2012

#### Test Report Serial No. 020911Q2G-T1079-S24M

Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Rev. 1.1 (2nd Release)

RF Exposure Category
Gen. Pop. / Uncontrolled



## 10.0 SAR LEVEL CORRECTION for FLUID DEVIATION (IC RSS-102 / IEC 62209-2)

The SAR levels are corrected for deviation of complex permittivity in accordance with Section 6.1.1 of IEC 62209-2:2010 (see reference [6]) as shown below.

| Test<br>Plot # | Test<br>Freq.<br>(MHz) | Test_e | Test_s | Target_e | Target_s | Deviation<br>Permittivity | Deviation<br>Conductivity | Measured<br>SAR Level<br>1g (W/kg) | Corrected<br>SAR Level<br>1g (W/kg) |
|----------------|------------------------|--------|--------|----------|----------|---------------------------|---------------------------|------------------------------------|-------------------------------------|
| B1             | 836.6                  | 53.1   | 0.96   | 55.2     | 0.97     | -3.80%                    | -1.03%                    | 0.348                              | 0.348                               |
| B2             | 836.4                  | 53.1   | 0.96   | 55.2     | 0.97     | -3.80%                    | -1.03%                    | 0.252                              | 0.252                               |
| В3             | 836.52                 | 53.1   | 0.96   | 55.2     | 0.97     | -3.80%                    | -1.03%                    | 0.298                              | 0.298                               |
| B4             | 1732.6                 | 52.14  | 1.45   | 53.4     | 1.49     | -2.36%                    | -2.68%                    | 0.283                              | 0.283                               |
| B5             | 1880.0                 | 51.2   | 1.51   | 53.3     | 1.52     | -3.94%                    | -0.66%                    | 0.232                              | 0.233                               |
| B6             | 1880.0                 | 51.2   | 1.51   | 53.3     | 1.52     | -3.94%                    | -0.66%                    | 0.389                              | 0.391                               |
| В7             | 1880.0                 | 51.2   | 1.51   | 53.3     | 1.52     | -3.94%                    | -0.66%                    | 0.351                              | 0.353                               |
| B8             | 2442.0                 | 50.5   | 1.97   | 52.7     | 1.95     | -4.17%                    | 1.03%                     | 0.463                              | 0.47                                |
| B9             | 5300.0                 | 50.97  | 5.32   | 49.0     | 5.3      | 4.02%                     | 0.38%                     | 0.601                              | 0.601                               |

#### SAR Correction Formula (IEC 62209-2:2010 Section 6.1.1)

$$\Delta SAR = c_{\epsilon} \Delta \varepsilon_r + c_{\sigma} \Delta \sigma \qquad (F.1)$$

where

 $c_{\rm s} = \partial (\Delta {\sf SAR})/\partial (\varDelta \varepsilon)$  is the coefficients representing the sensitivity of SAR to permittivity where SAR is normalized to output power;

 $c_0 = \partial(\Delta SAR)/\partial(\Delta\sigma)$  is the coefficients representing the sensitivity of SAR to conductivity, where SAR is normalized to output power.

The values of  $c_{\rm e}$  and  $c_{\rm g}$  have a simple relationship with frequency that can be described using polynomial equations. For the 1 g averaged SAR  $c_{\rm e}$  and  $c_{\rm g}$  are given by

$$c_{z} = -7,854 \times 10^{-4} f^{3} + 9,402 \times 10^{-3} f^{2} - 2,742 \times 10^{-2} f - 0,2026$$
 (F.2)

$$c_a = 9.804 \times 10^{-3} f^3 - 8.661 \times 10^{-2} f^2 + 2.981 \times 10^{-2} f + 0.7829$$
 (F.3)

where

f is the frequency in GHz.





Test Report Issue Date
April 24, 2012

<u>Test Report Serial No.</u> 020911Q2G-T1079-S24M

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No. Rev. 1.1 (2nd Release)

RF Exposure Category
Gen. Pop. / Uncontrolled



Test Lab Certificate No. 2470.01

IAC-MR

#### 11.0 DETAILS OF SAR EVALUATION

#### **Test Configuration(s)**

- 1. The DUT was tested for body SAR (lap-held) with the bottom side of the Tablet PC parallel and touching the outer surface of the planar phantom.
- The detailed test setup photographs are shown in Appendix C.

#### Test Mode(s)

- 3. The SAR evaluations for GPRS mode were performed with an air-link communication established with the Agilent 8960 Series 10 E5515C Wireless Communications Test Set with 2 uplink slots (Multi-slot Class 10).
- 4. The SAR evaluations in WCDMA mode were performed with an air-link communication established with the Agilent 8960 Series 10 E5515C Wireless Communications Test Set with 12.2 kbps RMC channel and the TPC bits configured to all "1s".
- 5. The SAR evaluations in EV-DO mode were performed with an air-link communication established with the Agilent 8960 Series 10 E5515C Wireless Communications Test Set at maximum power in "all bits up" power control mode.
- 6. The SAR evaluations for the WLAN were performed using proprietary Intel CRTU test software for continuous transmission and selection of frequency band, mode, channel/frequency, transmit antenna, output power setting and maximum duty cycle.

#### Power Level(s)

7. The conducted output power levels of the DUT were measured prior to the SAR evaluations (see Section 4.0).

#### 12.0 SAR EVALUATION PROCEDURES

- a. (i) The evaluation was performed in the applicable area of the phantom depending on the type of device being tested. For devices held to the ear during normal operation, both the left and right ear positions were evaluated using the SAM phantom.
  - (ii) For body-worn and face-held devices a planar phantom was used.
- b. The SAR was determined by a pre-defined procedure within the DASY4 software. Upon completion of a reference and optical surface check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of 15mm x 15mm.
  - An area scan was determined as follows:
- c. Based on the defined area scan grid, a more detailed grid is created to increase the points by a factor of 10. The interpolation function then evaluates all field values between corresponding measurement points.
- d. A linear search is applied to find all the candidate maxima. Subsequently, all maxima are removed that are >2 dB from the global maximum. The remaining maxima are then used to position the cube scans.
  - A 1g and 10g spatial peak SAR was determined as follows:
- e. Extrapolation is used to determine the values between the dipole center of the probe and the surface of the phantom. For E-Field Probe EX3DV4 this data cannot be measured because the center of the dipole sensors is 1.0 mm away from the probe tip and the distance between the probe and the boundary must be larger than 25% of the probe diameter. The probe diameter is 2.4 mm (see probe calibration document in Appendix F). In the DASY4 software, the distance between the sensor center and phantom surface is set to 2.0 mm. This provides a distance of 1.0 mm between the probe tip and the surface. For E-Field Probe ET3DV6 this data cannot be measured, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.4 mm (see probe calibration document in Appendix E). The extrapolation of the values between the dipole center and the surface of the phantom was based on trivariate quadratics computed from the previously calculated 3D interpolated points nearest the phantom surface.
- f. Interpolated data is used to calculate the average SAR over 1g and 10g cubes by spatially discretizing the entire measured cube. The volume used to determine the averaged SAR is a 1mm grid (42875 interpolated points).
- g. A zoom scan volume of 32 mm x 32 mm x 30 mm (5 x 5 x 7 points) centered at the peak SAR location determined from the area scan is used for all zoom scans for devices with a transmit frequency < 800 MHz. Zoom scans for frequencies ≥ 800 MHz are determined with a scan volume of 30 mm x 30 mm x 30 mm (7 x 7 x 7) to ensure complete capture of the peak spatial-average SAR.



Test Report Issue Date
April 24, 2012

<u>Test Report Serial No.</u> 020911Q2G-T1079-S24M

Description of Test(s)

Specific Absorption Rate

G

Test Report Revision No.
Rev. 1.1 (2nd Release)

RF Exposure Category
Gen. Pop. / Uncontrolled



#### 13.0 SYSTEM PERFORMANCE CHECK

Prior to the SAR evaluations, daily system checks were performed using a planar phantom with 835 MHz, 1800 MHz, 1900 MHz, 2450 MHz and 5 GHz SPEAG dipoles (see Appendix B for system performance check evaluation plots) in accordance with the procedures described in IEEE Standard 1528-2003 (see reference [5]). The dielectric parameters of the simulated tissue mixtures were measured prior to the system performance checks using an HP 85070C Dielectric Probe Kit and an HP 8753ET Network Analyzer (see Appendix C). The SAR measurement system was verified to a tolerance of ±10% from the system manufacturer's dipole calibration target SAR value (see Appendix D for system manufacturer's dipole calibration procedures).

| SYSTEM PERFORMANCE CHECK EVALUATIONS |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fluid<br>Freq.                       |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dielectric Constant ε <sub>r</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Conductivity<br>σ (mho/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ρ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Amb.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Fluid          | Fluid          | Humid.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Barom.<br>Press.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Body<br>(MHz)                        | Target                                                          | Meas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dev.                                                                                                                                                                                                                                                                                                                                                                                                                                             | Target                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Meas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dev.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Target                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Meas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dev.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (Kg/m³)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (°C)           | (cm)           | (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (kPa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 835                                  | 2.49 ±10%                                                       | 2.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.6%                                                                                                                                                                                                                                                                                                                                                                                                                                             | 55.2<br>±5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 53.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -3.77%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.97<br>±5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22.1           | ≥ 15           | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 101.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1800                                 | 9.64 ±10%                                                       | 9.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.3%                                                                                                                                                                                                                                                                                                                                                                                                                                             | 53.3<br>±5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 51.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -3.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.49<br>±5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.34%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22.5           | ≥ 15           | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 101.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2450                                 | 51.6 ±10%<br>(Norm. 1W)                                         | 55.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.0%                                                                                                                                                                                                                                                                                                                                                                                                                                             | 52.7<br>±5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -4.27%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.95<br>±5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.05%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23.5           | ≥ 15           | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 101.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5200                                 | 76.3 ±10%<br>(Norm. 1W)                                         | 70.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -7.5%                                                                                                                                                                                                                                                                                                                                                                                                                                            | 49.0<br>±5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.78%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.30<br>±5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1.32%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23.5           | ≥ 15           | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 101.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1900                                 | 10.6 ±10%                                                       | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -5.7%                                                                                                                                                                                                                                                                                                                                                                                                                                            | 53.3<br>±5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 51.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -4.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.52<br>±5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23.4           | ≥ 15           | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 101.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                      |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| target                               | SAR values a                                                    | are the n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | neasured                                                                                                                                                                                                                                                                                                                                                                                                                                         | d values s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | specified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | by the S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SAR syster                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n manuf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | acturer i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n the dip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ole calib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | oration (s     | see Appe       | endix D).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| target                               | dielectric par                                                  | ameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | are the                                                                                                                                                                                                                                                                                                                                                                                                                                          | nominal v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /alues s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | pecified b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | y the SAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | manufa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | cturer in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | the dipo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ole calibr     | ation (se      | ee Appen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | dix D).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| fluid te                             | mperature re                                                    | mained v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | within +/-                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2°C from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | the diele                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ectric para                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ameter me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | asureme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ent to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | complet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ion of th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e systen       | n perform      | nance che                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | eck.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ut Powe                              | er = 250 mW                                                     | (except                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50 mW ii                                                                                                                                                                                                                                                                                                                                                                                                                                         | nput pow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | er at 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                      | Body (MHz)  835  1800  2450  5200  1900  target target fluid te | Target   Red   Target   Red   Target   Red   R | Freq.         (W/kg)           Body (MHz)         Target         Meas.           835         2.49 ±10%         2.53           1800         9.64 ±10%         9.96           2450         51.6 ±10% (Norm. 1W)         55.2           5200         76.3 ±10% (Norm. 1W)         70.6           1900         10.6 ±10%         10.0           target SAR values are the natarget dielectric parameters           fluid temperature remained values | Freq.         (W/kg)           Body (MHz)         Target         Meas.         Dev.           835         2.49 ±10%         2.53         1.6%           1800         9.64 ±10%         9.96         3.3%           2450         51.6 ±10% (Norm. 1W)         55.2         7.0%           5200         76.3 ±10% (Norm. 1W)         70.6         -7.5%           1900         10.6 ±10%         10.0         -5.7%           target SAR values are the measured target dielectric parameters are the fluid temperature remained within ±/- | Body (MHz)         Target         Meas.         Dev.         Target           835         2.49 ±10%         2.53         1.6%         55.2 ±5%           1800         9.64 ±10%         9.96         3.3%         53.3 ±5%           2450         51.6 ±10% (Norm. 1W)         55.2         7.0%         52.7 ±5%           5200         76.3 ±10% (Norm. 1W)         70.6         -7.5%         49.0 ±5%           1900         10.6 ±10%         10.0         -5.7%         53.3 ±5%           target SAR values are the measured values starget dielectric parameters are the nominal valued temperature remained within ±7.2°C from | Body (MHz)         Target         Meas.         Dev.         Target         Meas.           835         2.49 ±10%         2.53         1.6%         55.2 ±5%         53.1           1800         9.64 ±10%         9.96         3.3%         53.3 ±5%         51.7           2450         51.6 ±10% (Norm. 1W)         55.2         7.0%         52.7 ±5%         50.45           5200         76.3 ±10% (Norm. 1W)         70.6         -7.5%         49.0 ±5%         50.36           1900         10.6 ±10%         10.0         -5.7%         53.3 ±5%         51.1           target SAR values are the measured values specified target dielectric parameters are the nominal values specified target dielectric parameters are the nom | Body (MHz)         Target         Meas.         Dev.         Target         Meas.         Dev.           835         2.49 ±10%         2.53         1.6%         55.2 ±5%         53.1 -3.77%           1800         9.64 ±10%         9.96         3.3%         53.3 ±5%         51.7 -3.3%           2450         51.6 ±10% (Norm. 1W)         55.2         7.0%         52.7 ±5%         50.45 -4.27%           5200         76.3 ±10% (Norm. 1W)         70.6 -7.5%         49.0 ±5%         50.36 ±7.8%           1900         10.6 ±10%         10.0 -5.7%         53.3 ±5%         51.1 -4.1%           target SAR values are the measured values specified by the Starget dielectric parameters are the nominal values specified by | Body (MHz)         Target         Meas.         Dev.         Target         Meas.         Dev.         Target         Meas.         Dev.         Target           835         2.49 ±10%         2.53         1.6%         55.2 ±5%         53.1 -3.77%         0.97 ±5%           1800         9.64 ±10%         9.96         3.3%         53.3 ±5%         51.7 -3.3%         1.49 ±5%           2450         51.6 ±10% (Norm. 1W)         55.2         7.0%         52.7 ±5%         50.45 -4.27%         1.95 ±5%           5200         76.3 ±10% (Norm. 1W)         70.6 -7.5%         49.0 ±5%         50.36 ±5%         5.30 ±5%           1900         10.6 ±10%         10.0 -5.7%         53.3 ±5%         51.1 -4.1%         1.52 ±5%           target SAR values are the measured values specified by the SAR system target dielectric parameters are the nominal values specified by the SAR fluid temperature remained within +/-2°C from the dielectric parameter measured values specified by the same target measured values specified by the same ta | Freq.         (W/kg)         ε <sub>r</sub> σ (mho/m)           Body (MHz)         Target         Meas.         Dev.         Target         Meas.           835         2.49 ±10%         2.53         1.6%         55.2 ±5%         53.1 -3.77%         0.97 ±5%         0.96           1800         9.64 ±10%         9.96         3.3%         53.3 ±5%         51.7 -3.3%         1.49 ±5%         1.51           2450         51.6 ±10% (Norm. 1W)         55.2         7.0%         52.7 ±5%         50.45 -4.27%         1.95 ±5%         1.99           5200         76.3 ±10% (Norm. 1W)         70.6 -7.5%         49.0 ±5%         50.36 ±5%         5.30 ±5%         5.23           1900         10.6 ±10%         10.0 -5.7%         53.3 ±5%         51.1 -4.1%         1.52 ±5%         1.52           target SAR values are the measured values specified by the SAR system manufaget dielectric parameters are the nominal values specified by the SAR system fluid temperature remained within +/-2°C from the dielectric parameter measurement | Freq.         (W/kg)         ε <sub>r</sub> σ (mho/m)           Body (MHz)         Target         Meas.         Dev.         Target         Meas.         Dev.           835         2.49 ±10%         2.53         1.6%         55.2 ±5%         53.1 -3.77%         0.97 ±5%         0.96 -1.0%           1800         9.64 ±10%         9.96         3.3%         53.3 ±5%         51.7 -3.3%         1.49 ±5%         1.51 1.34%           2450         51.6 ±10% (Norm. 1W)         55.2 7.0%         52.7 ±5%         50.45 -4.27%         1.95 ±5%         1.99 2.05%           5200         76.3 ±10% (Norm. 1W)         70.6 -7.5%         49.0 ±5%         50.36 2.78%         5.30 ±5%         5.23 -1.32%           1900         10.6 ±10%         10.0 -5.7%         53.3 ±5%         51.1 -4.1%         1.52 ±5%         1.52 0.0%           target SAR values are the measured values specified by the SAR system manufacturer itarget dielectric parameters are the nominal values specified by the SAR system manufacturer if the parameters are the nominal values specified by the SAR system manufacturer in the dielectric parameter measurement to the dielectric parameter | Rody   Target   Meas.   Dev.   Target   Dev.   Target   Meas.   Dev.   Target   Dev.   Target   Meas.   Dev.   Target   Dev.   Targe | Freq.   (W/kg) | Freq.   (W/kg) | Red   Fluid   Target   Meas.   Dev.   Target   Target   Target   Target   Meas.   Dev.   Target   Meas.   Dev.   Target   Targ | Red   Red |

| Applicant:                                                                                                                                   | Xplore Technologies Corp.                                                                     |  | FCC ID:       | Q2GGOBI3K-XPL | IC: | 4596A-GOBI3KXPL | <b>X</b> Xplore |
|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|---------------|---------------|-----|-----------------|-----------------|
| DUT Type:                                                                                                                                    | pe: Xplore Gobi3000 Mini-PCI Express WWAN Module installed in Xplore iX104C5 Rugged Tablet PC |  |               |               |     |                 |                 |
| 2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |                                                                                               |  | Page 22 of 73 |               |     |                 |                 |



| Date(s) of Evaluation |
|-----------------------|
| February 14-18, 2011  |

Test Report Issue Date Description of Test(s)

April 24, 2012 Specific Absorption Rate

Test Report Revision No.
Rev. 1.1 (2nd Release)

RF Exposure Category
Gen. Pop. / Uncontrolled



## 14.0 SIMULATED EQUIVALENT TISSUES

The simulated equivalent tissue recipes listed in the table below are derived from the SAR system manufacturer's suggested recipe in the DASY4 manual (see reference [13]) in accordance with the procedures and requirements specified in IEEE Standard 1528-2003 (see reference [5]). The ingredient percentage may have been adjusted marginally in order to achieve the appropriate target dielectric parameters within the specified tolerance. The 5 GHz simulated tissue mixture was provided by SPEAG and is listed below. The dielectric parameters of the fluid (permittivity and conductivity) were measured prior to the SAR evaluations. See next pages for SPEAG 5GHz fluid data sheet.

Test Report Serial No.

020911Q2G-T1079-S24M

| 835 MHz TISSUE MIXTURE |              |  |
|------------------------|--------------|--|
| INGREDIENT             | 835 MHz BODY |  |
| Water                  | 53.79 %      |  |
| Sugar                  | 45.13 %      |  |
| Salt                   | 0.98 %       |  |
| Bactericide            | 0.10 %       |  |

| 1800 MHz TISSUE MIXTURE |               |  |  |
|-------------------------|---------------|--|--|
| INGREDIENT              | 1900 MHz BODY |  |  |
| Water                   | 70.17 %       |  |  |
| Glycol Monobutyl        | 29.43 %       |  |  |
| Salt                    | 0.40 %        |  |  |

| 1900 MHz TISSUE MIXTURE |               |  |  |
|-------------------------|---------------|--|--|
| INGREDIENT              | 1900 MHz BODY |  |  |
| Water                   | 69.85 %       |  |  |
| Glycol Monobutyl        | 29.89 %       |  |  |
| Salt                    | 0.26 %        |  |  |

| SIMULATED TISSUE MIXTURE (2450 MHz) |               |  |  |
|-------------------------------------|---------------|--|--|
| INGREDIENT                          | 2450 MHz BODY |  |  |
| Water                               | 69.98 %       |  |  |
| Glycol Monobutyl                    | 30.00 %       |  |  |
| Salt                                | 0.02 %        |  |  |

| SIMULATED TISSUE MIXTURE (5 GHz) |            |  |  |  |
|----------------------------------|------------|--|--|--|
| INGREDIENT                       | 5 GHz BODY |  |  |  |
| Water                            | 64-78%     |  |  |  |
| Mineral Oil                      | 11-18%     |  |  |  |
| Emulsifiers                      | 9-15%      |  |  |  |
| Additives and Salt               | 2-3%       |  |  |  |

| Applicant:                                                                                                                                   | : Xplore Technologies Corp.                                                                  |               | FCC ID: | Q2GGOBI3K-XPL | IC: | 4596A-GOBI3KXPL | <b>₩</b> xplore |
|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------|---------|---------------|-----|-----------------|-----------------|
| DUT Type:                                                                                                                                    | e: Xplore Gobi3000 Mini-PCI Express WWAN Module installed in Xplore iX104C5 Rugged Tablet PC |               |         |               |     | rechnologies.   |                 |
| 2012 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |                                                                                              | Page 23 of 73 |         |               |     |                 |                 |



| Date(s) of Evaluation |  |
|-----------------------|--|
| February 14-18, 2011  |  |

Test Report Serial No. 020911Q2G-T1079-S24M Test Report Revision No. Rev. 1.1 (2nd Release)



Test Report Issue Date April 24, 2012

Description of Test(s) Specific Absorption Rate

RF Exposure Category Gen. Pop. / Uncontrolled

Schmid & Partner Engineering AG

S е

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

#### Material Safety Data Sheet

#### 1 Identification of the substance and of the manufacturer / origin

| Item                  | Head Tissue Simulation Liquid HSL5800<br>Muscle Tissue Simulation Liquid MSL 5800                                                      |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Type No               | SL AAH 580, SL AAM 580                                                                                                                 |
| Series No             | N/A                                                                                                                                    |
| Manufacturer / Origin | Schmid & Partner Engineering AG Zeughausstrasse 43 8004 Zürich Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779, support@speag.com |

Use of the substance:

Liquid simulating physical parameters of Head or Muscle Tissue in the RF range to 6GHz.

#### 2 Composition / Information on ingredients

The Item is composed of the following ingredients:

Water 64 - 78% Mineral Oil 11 - 18% Emulsifiers 9 - 15% Additives and Salt 2 - 3%

Safety relevant ingredients according to EU directives:

CAS-No 107-41-5 < 4% 2-Methyl-2,4-pentandiol (Hexylene Glycol): Xi irritant, R36/38 irritant for eyes and skin

CAS-No 770-35-4 < 2% 1-Phenoxy-2-propanol (Propylene Glycol Phenyl Ether):

Xi irritant, R36 irritant for eyes N,N-bis(2-Hydroxyethyl)oleamide:

CAS-No 93-83-4 < 2%

Xi irritant, R36/38 irritant for eyes and skin

CAS-No 9004-95-9 < 0.5% Polyethylene glycol cetyl ether:

Xi irritant, R22 harmful if swallowed, R36/38 irritant for eyes and skin R50 Very toxic to aquatic organisms

According to EU guidelines and Swiss rules, the product is not a dangerous mixture and therefore not required to be marked by symbols.

#### 3 Hazards identification

Identification not required.

#### 4 First aid measures

The product reacts slightly alkaline.

After skin contact: Wash with fresh water and mild sope

Rinse out with plenty of water for several minutes with the eyelid held open. After eye contact:

Consult an ophthalmologist if necessary.

After ingestion: Do not induce vomiting. Get medical attention.

#### 5 Fire-fighting measures

Firefighting media CO2, foam, dry chemical

Carbon oxides, nitrogen and traces of oxides of chlorine and sulfur, HCI Combustion products

Due to the high water content, the liquid is self-extinguishing.

Doc No 772 - SL AAx 580 - A

Page

1(2)





Test Report Issue Date
April 24, 2012

Description of Test(s)

Specific Absorption Rate

Test Report Serial No.

RF Exposure Category
Gen. Pop. / Uncontrolled

Test Report Revision No.

Rev. 1.1 (2nd Release)



#### 6 Accidental release measures

Person-related precaution measures: wash with water and mild soap. Environmental-protection measures: do not allow to enter sewerage system.

Procedures for cleaning / absorption: Use oil-binding agents., forward for disposal. Spills may cause slippery conditions.

#### 7 Handling and storage

Handling: Keep in open container only for minimum required time in order to avoid water evaporation. Storage: tightly closed, between >0 to 40°C. Avoid direct solar irradiation of the storage containers.

#### 8 Exposure controls / personal protection

Protection measures are not generally required. For eye protection, industrial safety glasses are recommended. Personal hygiene and clean working practices are sufficient.

#### 9 Physical and chemical properties

Form: liquid

Colour: medium to dark brown, transparent to opaque

Odour: almost odourless / slightly oily

pH-Value: slightly alcalic Boiling point: 100°C Density: 1g/cm^3

#### 10 Stability and reactivity

Conditions to be avoided: heating above 40°C

The product contains water and is not compatible with strong oxidizers or magnesium.

#### 11 Toxicological information

LD50 > 40 g/kg

Further data: the product should be handled with the care usual when dealing with chemicals

#### 12 Ecological information

Contains mineral oil. Do not allow to enter waters, waste water, or soil!

#### 13 Disposal considerations

Disposal is possible by splitting the mineral oil from the emulsion with absorbing agents, with salt or ultrafiltration. Dispose as other mineral oil containing products according to local regulations. Product packing must be disposed of in compliance with respect national regulations.

#### 14 Transport information

Not subject to transport regulations.

#### 15 Regulatory information

No special labelling required.

#### 16 Other information

Release date: 6.1.2005 Responsible: FB

Doc No 772 – SL AAx 580 – A Page 2 (2)



Test Report Issue Date
April 24, 2012

<u>Test Report Serial No.</u> 020911Q2G-T1079-S24M

Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Rev. 1.1 (2nd Release)

RF Exposure Category
Gen. Pop. / Uncontrolled



## 15.0 SAR LIMITS

| SAR RF EXPOSURE LIMITS                                     |                                              |                                         |  |  |
|------------------------------------------------------------|----------------------------------------------|-----------------------------------------|--|--|
| FCC 47 CFR 2.1093                                          | (General Population / Uncontrolled Exposure) | (Occupational /<br>Controlled Exposure) |  |  |
| Spatial Average (averaged over the whole body)             | 0.08 W/kg                                    | 0.4 W/kg                                |  |  |
| Spatial Peak (averaged over any 1 g of tissue)             | 1.6 W/kg                                     | 8.0 W/kg                                |  |  |
| Spatial Peak (hands/wrists/feet/ankles averaged over 10 g) | 4.0 W/kg                                     | 20.0 W/kg                               |  |  |

The Spatial Average value of the SAR averaged over the whole body.

The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.

Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.



Test Report Issue Date April 24, 2012

Test Report Serial No. 020911Q2G-T1079-S24M

Description of Test(s) Specific Absorption Rate Gen. Pop. / Uncontrolled

Test Report Revision No. Rev. 1.1 (2nd Release) RF Exposure Category



# **16.0 ROBOT SYSTEM SPECIFICATIONS**

| <u>Specifications</u>           |                                                                                   |
|---------------------------------|-----------------------------------------------------------------------------------|
| Positioner                      | Stäubli Unimation Corp. Robot Model: RX60L                                        |
| Repeatability                   | 0.02 mm                                                                           |
| No. of axis                     | 6                                                                                 |
| Data Acquisition Electronic     | DAE) System                                                                       |
| Cell Controller                 |                                                                                   |
| Processor AMD Athlon XP 2400+   |                                                                                   |
| Clock Speed 2.0 GHz             |                                                                                   |
| Operating System                | Windows XP Professional                                                           |
| Data Converter                  |                                                                                   |
| Features                        | Signal Amplifier, multiplexer, A/D converter, and control logic                   |
| Software                        | Measurement Software: DASY4, V4.7 Build 44                                        |
| Contware                        | Postprocessing Software: SEMCAD, V1.8 Build 171                                   |
| Connecting Lines                | Optical downlink for data and status info.; Optical uplink for commands and clock |
| <b>DASY4 Measurement Server</b> |                                                                                   |
| Function                        | Real-time data evaluation for field measurements and surface detection            |
| Hardware                        | PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM                              |
| Connections                     | COM1, COM2, DAE, Robot, Ethernet, Service Interface                               |
| E-Field Probe                   |                                                                                   |
| Probe (850 Band)                |                                                                                   |
| Model                           | ET3DV6                                                                            |
| Serial No.                      | 1590                                                                              |
| Construction                    | Triangular core fiber optic detection system                                      |
| Frequency                       | 10 MHz to 6 GHz                                                                   |
| Linearity                       | ±0.2 dB (30 MHz to 3 GHz)                                                         |
| <u>Probe (1900 Band)</u>        |                                                                                   |
| Model                           | EX3DV4                                                                            |
| Serial No.                      | 3600                                                                              |
| Construction                    | Symmetrical design with triangular core                                           |
| Frequency                       | 10 MHz to 6 GHz                                                                   |
| Linearity                       | ±0.2 dB (30 MHz to 3 GHz)                                                         |
| Phantom(s)                      |                                                                                   |
| Туре                            | Barski Planar Phantom                                                             |
| Shell Material                  | Fiberglass                                                                        |
| Thickness                       | 2.0 ±0.1 mm                                                                       |
| Volume                          | Approx. 70 liters                                                                 |

| Applicant: | Xplore Technologies Corp | . FCC ID:    | Q2GGOBI3K-XPL           | IC:       | 4596A-GOBI3KXPL       |
|------------|--------------------------|--------------|-------------------------|-----------|-----------------------|
| DUT Type:  | Xplore Gobi3000 Mini-PCI | Express WWAI | N Module installed in X | olore iX1 | 04C5 Rugged Tablet PC |
|            |                          |              |                         |           |                       |





Date(s) of Evaluation

April 24, 2012

February 14-18, 2011 Test Report Issue Date

020911Q2G-T1079-S24M Description of Test(s)

Test Report Serial No.

Specific Absorption Rate

Test Report Revision No. Rev. 1.1 (2nd Release)

RF Exposure Category Gen. Pop. / Uncontrolled



#### 17.0 PROBE SPECIFICATIONS

ET3DV6 E-Field Probe

Symmetrical design with triangular core Construction:

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, glycol)

Calibration: In air from 10 MHz to 2.5 GHz

In brain simulating tissue at frequencies of 900 MHz

and 1.8 GHz (accuracy ± 8%)

10 MHz to > 6 GHz; Linearity:  $\pm$  0.2 dB Frequency:

(30 MHz to 3 GHz)

 $\pm$  0.2 dB in brain tissue (rotation around probe axis) Directivity:

 $\pm$  0.4 dB in brain tissue (rotation normal to probe axis)

5  $\mu$ W/g to > 100 mW/g; Linearity:  $\pm$  0.2 dB Dynamic Range:

Surface Detect:  $\pm$  0.2 mm repeatability in air and clear liquids over

diffuse reflecting surfaces Dimensions: Overall length: 330 mm

> Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm

Distance from probe tip to dipole centers: 2.7 mm

General dosimetry up to 3 GHz Application:

Compliance tests of mobile phone



ET3DV6 E-Field Probe

EX3DV4 E-Field Probe

Symmetrical design with triangular core Construction:

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g. DGBE)

Calibration: Basic Broadband Calibration in air: 10-3000 MHz

Conversion Factors (CF) for HSL 900 and HSL 1750

10 MHz to >6 GHz; Linearity: ±0.2 dB (30 MHz to 3 GHz) Frequency: ±0.3 dB in HSL (rotation around probe axis) Directivity:

±0.5 dB in tissue material (rotation normal to probe axis)

10  $\mu$ W/g to >100 mW/g; Linearity:  $\pm$ 0.2 dB Dynamic Range:

(noise: typically  $< 1 \mu W/g$ )

Overall length: 330 mm (Tip: 20 mm) Dimensions:

Tip diameter: 2.5 mm (Body: 12 mm)

Typical distance from probe tip to dipole centers: 1.0 mm Application: High precision dosimetric measurements in any exposure

scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to

6 GHz with precision of better than 30%.



**EX3DV4 E-Field Probe** 

#### 18.0 BARSKI PLANAR PHANTOM

The Barski planar phantom is a fiberglass shell phantom with a 2.0 mm (+/-0.2mm) thick device measurement area at the center of the phantom for SAR evaluations of devices with a larger surface area than the planar section of the SAM phantom. The planar phantom is integrated in a wooden table. The Barski planar phantom was used for the DUT SAR evaluations and the system performance check evaluations. See Appendix F for dimensions and specifications of the Barski planar phantom.



**Barski Planar Phantom** 

## 19.0 DEVICE HOLDER

The DASY4 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. For evaluations of larger devices a Plexiglas platform is attached to the device holder.



**Device Holder** 

| Applicant:       | Xploi    | re Technologies Corp.                                                                                                     | FCC ID:   | Q2GGOBI3K-XPL         | IC: | 4596A-GOBI3KXPL |  |  |
|------------------|----------|---------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------|-----|-----------------|--|--|
| DUT Type:        | Xplor    | e Gobi3000 Mini-PCI Exp                                                                                                   | olore iX1 | 04C5 Rugged Tablet PC |     |                 |  |  |
| 2012 Celltech La | abs Inc. | Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |           |                       |     |                 |  |  |



Page 28 of 73



Test Report Issue Date
April 24, 2012

Test Report Serial No. 020911Q2G-T1079-S24M

<u>Description of Test(s)</u>
Specific Absorption Rate

RF Exposure Category
Gen. Pop. / Uncontrolled

Test Report Revision No.
Rev. 1.1 (2nd Release)

RF Exposure Category



## **20.0 TEST EQUIPMENT LIST**

|       | TEST EQUIPMENT                                    | ASSET NO. | SERIAL NO. | DATE       | CALIBRATION |
|-------|---------------------------------------------------|-----------|------------|------------|-------------|
| USED  | DESCRIPTION                                       | AGGET NO. | SERIAL NO. | CALIBRATED | INTERVAL    |
| х     | Schmid & Partner DASY4 System                     | -         | -          | -          | -           |
| х     | -DASY4 Measurement Server                         | 00158     | 1078       | CNR        | CNR         |
| х     | -Robot                                            | 00046     | 599396-01  | CNR        | CNR         |
| х     | -DAE4                                             | 00019     | 353        | 27Apr10    | Biennial    |
| х     | -ET3DV6 E-Field Probe                             | 00017     | 1590       | 15Jul10    | Annual      |
| х     | -EX3DV4 E-Field Probe                             | 00213     | 3600       | 29Apr10    | Annual      |
| х     | -D835V2 Validation Dipole                         | 00217     | 4d075      | 20Apr09    | Triennial   |
| х     | -D1900V2 Validation Dipole                        | 00218     | 5d107      | 21Apr09    | Triennial   |
| х     | -D2450V2 Validation Dipole                        | 00219     | 825        | 17Apr09    | Triennial   |
| х     | -D5GHzV2 Validation Dipole                        | 00126     | 1031       | 29Apr09    | Triennial   |
| х     | -Barski Planar Phantom                            | 00155     | 03-01      | CNR        | CNR         |
| х     | HP 85070C Dielectric Probe Kit                    | 00033     | none       | CNR        | CNR         |
| х     | Gigatronics 8652A Power Meter                     | 00007     | 1835272    | 04May10    | Biennial    |
| х     | Gigatronics 80701A Power Sensor                   | 00014     | 1833699    | 04May10    | Biennial    |
| х     | Gigatronics 80701A Power Sensor                   | 00011     | 1833542    | 04May10    | Biennial    |
| х     | Pasternack PE2214-20 Directional Coupler          | 229       | none       | CNR        | CNR         |
| х     | 10dB Attenuator                                   | 00102     | none       | CNR        | CNR         |
| х     | HP 8753ET Network Analyzer                        | 00134     | US39170292 | 04May10    | Biennial    |
| x     | Agilent 8960 Series 10 Communication Test Set     | N/A       | GB46311315 | CNR        | CNR         |
| х     | Rohde & Schwarz SMR20 Signal Generator            | 00006     | 100104     | CNR        | CNR         |
| х     | Nextec NB00383 Microwave amplifier                | 00151     | 0535       | CNR        | CNR         |
| х     | Amplifier Research 5S1G4 Power Amplifier          | 00106     | 26235      | CNR        | CNR         |
| Abbr. | CNR = Calibration Not Required; N/A = Not Applica | ble       |            |            |             |

| Applicant:       | Xplor                                                                                                                         | e Technologies Corp.    | FCC ID:   | Q2GGOBI3K-XPL          | IC:       | 4596A-GOBI3KXPL       | <b>₩</b> xplore |
|------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------|------------------------|-----------|-----------------------|-----------------|
| DUT Type:        | Xplor                                                                                                                         | e Gobi3000 Mini-PCI Exp | ress WWAN | Module installed in Xp | olore iX1 | 04C5 Rugged Tablet PC | rechnologies.   |
| 2012 Celltech La | abs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |                         |           |                        |           |                       |                 |



Test Report Issue Date
April 24, 2012

Test Report Serial No. 020911Q2G-T1079-S24M

<u>Description of Test(s)</u>
Specific Absorption Rate

RF Exposure Category
Gen. Pop. / Uncontrolled

Test Report Revision No.

Rev. 1.1 (2nd Release)



## 21.0 JUSTIFICATION FOR EXTENDED SAR DIPOLE CALIBRATION

SAR dipoles calibrated less than two years ago but more than one year ago were confirmed by maintaining return loss (< - 20dB, within 20% of prior calibration) and impedance (within  $5\Omega$  from prior calibration) requirements per extended calibrations in FCC KDB 450824 (see reference [11]).

|       |                                      |                                | SPEAG VALIDATION        | ON DIPOLE |       |                  |     |
|-------|--------------------------------------|--------------------------------|-------------------------|-----------|-------|------------------|-----|
| Freq. | TSL                                  | Dipole                         | Dipole Measurement Date |           | Δ%    | Impedance<br>(Ω) | ΔΩ  |
| 835   | Body                                 | SPEAG Validation Dipole D835V2 | April 20, 2009          | -26.7     |       | 48.0             |     |
| MHz   | Бойу                                 | SN: 4d075                      | April 20, 2010          | -23.3     | 14.5% | 52.3             | 4.3 |
| 1900  | Pody                                 | SPEAG Validation               | April 21, 2009          | -22.1     |       | 45.9             |     |
| MHz   | HHz Body Dipole D1900V2<br>SN: 5d107 |                                | April 20, 2010          | -25.4     | 15.0% | 45.5             | 0.4 |
| 2450  | Pody                                 | SPEAG Validation               | Apr. 17, 2009           | -24.8     |       | 49.2             |     |
| MHz   | Body                                 | Dipole D2450V2<br>SN: 825      | Apr. 17, 2010           | -23.8     | 4.0%  | 54.2             | 5.0 |
| 5200  | Rody                                 | SPEAG Validation               | Apr. 29, 2009           | -27.7     |       | 49.7             |     |
| MHz   | Body                                 | Dipole D5GHzV2<br>SN: 1031     | Apr. 29, 2010           | -27.6     | 0.4%  | 48.5             | 1.2 |





Test Report Issue Date
April 24, 2012

<u>Test Report Serial No.</u> 020911Q2G-T1079-S24M

<u>Description of Test(s)</u>
Specific Absorption Rate

RF Exposure Category
Gen. Pop. / Uncontrolled

Test Report Revision No.
Rev. 1.1 (2nd Release)

gory



Test Lab Certificate No. 2470.01

# 22.0 MEASUREMENT UNCERTAINTIES (IEEE 1528-2003)

| UNCERTAINTY BUDGET FOR DEVICE EVALUATION                                      |                         |                         |                             |             |          |           |                                 |                                  |                                    |  |  |
|-------------------------------------------------------------------------------|-------------------------|-------------------------|-----------------------------|-------------|----------|-----------|---------------------------------|----------------------------------|------------------------------------|--|--|
| Uncertainty Component                                                         | IEEE<br>1528<br>Section | Uncertainty<br>Value ±% | Probability<br>Distribution | Divisor     | ci<br>1g | ci<br>10g | Uncertainty<br>Value ±%<br>(1g) | Uncertainty<br>Value ±%<br>(10g) | V <sub>i</sub> or V <sub>eff</sub> |  |  |
| Measurement System                                                            |                         |                         |                             |             |          |           |                                 |                                  |                                    |  |  |
| Probe Calibration (835 MHz)                                                   | E.2.1                   | 5.5                     | Normal                      | 1           | 1        | 1         | 5.5                             | 5.5                              | ×                                  |  |  |
| Axial Isotropy                                                                | E.2.2                   | 4.7                     | Rectangular                 | 1.732050808 | 0.7      | 0.7       | 1.9                             | 1.9                              | $\infty$                           |  |  |
| Hemispherical Isotropy                                                        | E.2.2                   | 9.6                     | Rectangular                 | 1.732050808 | 0.7      | 0.7       | 3.9                             | 3.9                              | $\infty$                           |  |  |
| Boundary Effect                                                               | E.2.3                   | 1                       | Rectangular                 | 1.732050808 | 1        | 1         | 0.6                             | 0.6                              | ∞                                  |  |  |
| Linearity                                                                     | E.2.4                   | 4.7                     | Rectangular                 | 1.732050808 | 1        | 1         | 2.7                             | 2.7                              | 8                                  |  |  |
| System Detection Limits                                                       | E.2.5                   | 1                       | Rectangular                 | 1.732050808 | 1        | 1         | 0.6                             | 0.6                              | ∞                                  |  |  |
| Readout Electronics                                                           | E.2.6                   | 0.3                     | Normal                      | 1           | 1        | 1         | 0.3                             | 0.3                              | ∞                                  |  |  |
| Response Time                                                                 | E.2.7                   | 0.8                     | Rectangular                 | 1.732050808 | 1        | 1         | 0.5                             | 0.5                              | ∞                                  |  |  |
| Integration Time                                                              | E.2.8                   | 2.6                     | Rectangular                 | 1.732050808 | 1        | 1         | 1.5                             | 1.5                              | ∞                                  |  |  |
| RF Ambient Conditions                                                         | E.6.1                   | 3                       | Rectangular                 | 1.732050808 | 1        | 1         | 1.7                             | 1.7                              | ∞                                  |  |  |
| Probe Positioner Mechanical Tolerance                                         | E.6.2                   | 0.4                     | Rectangular                 | 1.732050808 | 1        | 1         | 0.2                             | 0.2                              | 8                                  |  |  |
| Probe Positioning wrt Phantom Shell                                           | E.6.3                   | 2.9                     | Rectangular                 | 1.732050808 | 1        | 1         | 1.7                             | 1.7                              | 8                                  |  |  |
| Extrapolation, interpolation & integration algorithms for max. SAR evaluation | E.5                     | 1                       | Rectangular                 | 1.732050808 | 1        | 1         | 0.6                             | 0.6                              | ∞                                  |  |  |
| Test Sample Related                                                           |                         |                         |                             |             |          |           |                                 |                                  |                                    |  |  |
| Test Sample Positioning                                                       | E.4.2                   | 2.9                     | Normal                      | 1           | 1        | 1         | 2.9                             | 2.9                              | 12                                 |  |  |
| Device Holder Uncertainty                                                     | E.4.1                   | 3.6                     | Normal                      | 1           | 1        | 1         | 3.6                             | 3.6                              | 8                                  |  |  |
| SAR Drift Measurement                                                         | 6.6.2                   | 5                       | Rectangular                 | 1.732050808 | 1        | 1         | 2.9                             | 2.9                              | $\infty$                           |  |  |
| Phantom and Tissue Parameters                                                 |                         |                         |                             |             |          |           |                                 |                                  |                                    |  |  |
| Phantom Uncertainty                                                           | E.3.1                   | 4                       | Rectangular                 | 1.732050808 | 1        | 1         | 2.3                             | 2.3                              | ×                                  |  |  |
| Liquid Conductivity (target)                                                  | E.3.2                   | 5                       | Rectangular                 | 1.732050808 | 0.64     | 0.43      | 1.8                             | 1.2                              | ∞                                  |  |  |
| Liquid Conductivity (measured)                                                | E.3.3                   | 1.03                    | Normal                      | 1           | 0.64     | 0.43      | 0.7                             | 0.4                              | ∞                                  |  |  |
| Liquid Permittivity (target)                                                  | E.3.2                   | 5                       | Rectangular                 | 1.732050808 | 0.6      | 0.49      | 1.7                             | 1.4                              | ∞                                  |  |  |
| Liquid Permittivity (measured)                                                | E.3.3                   | 3.8                     | Normal                      | 1           | 0.6      | 0.49      | 2.3                             | 1.9                              | ∞                                  |  |  |
| Combined Standard Uncertainty                                                 |                         | RSS                     |                             |             |          | 10.62     | 10.39                           |                                  |                                    |  |  |
| Expanded Uncertainty (95% Confidence                                          |                         |                         |                             |             |          |           | 21.24                           | 20.78                            |                                    |  |  |



Test Report Issue Date
April 24, 2012

<u>Test Report Serial No.</u> 020911Q2G-T1079-S24M

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.1 (2nd Release)
RF Exposure Category

Gen. Pop. / Uncontrolled



# **MEASUREMENT UNCERTAINTIES (Cont.)**

| Uncertainty Component                                                         | IEEE<br>1528 | University by the       |                             |                 |          | UNCERTAINTY BUDGET FOR DEVICE EVALUATION |                                 |                                  |                                    |  |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------|--------------|-------------------------|-----------------------------|-----------------|----------|------------------------------------------|---------------------------------|----------------------------------|------------------------------------|--|--|--|--|--|--|--|--|
|                                                                               | Section      | Uncertainty<br>Value ±% | Probability<br>Distribution | Divisor         | ci<br>1g | ci<br>10g                                | Uncertainty<br>Value ±%<br>(1g) | Uncertainty<br>Value ±%<br>(10g) | V <sub>i</sub> or V <sub>eff</sub> |  |  |  |  |  |  |  |  |
| Measurement System                                                            |              |                         |                             |                 |          |                                          |                                 |                                  |                                    |  |  |  |  |  |  |  |  |
| Probe Calibration (1900 MHz)                                                  | E.2.1        | 5.5                     | Normal                      | 1               | 1        | 1                                        | 5.5                             | 5.5                              | ∞                                  |  |  |  |  |  |  |  |  |
| Axial Isotropy                                                                | E.2.2        | 4.7                     | Rectangular                 | 1.732050808     | 0.7      | 0.7                                      | 1.9                             | 1.9                              | ∞                                  |  |  |  |  |  |  |  |  |
| Hemispherical Isotropy                                                        | E.2.2        | 9.6                     | Rectangular                 | 1.732050808     | 0.7      | 0.7                                      | 3.9                             | 3.9                              | ∞                                  |  |  |  |  |  |  |  |  |
| Boundary Effect                                                               | E.2.3        | 1                       | Rectangular                 | 1.732050808     | 1        | 1                                        | 0.6                             | 0.6                              | ∞                                  |  |  |  |  |  |  |  |  |
| Linearity                                                                     | E.2.4        | 4.7                     | Rectangular                 | 1.732050808     | 1        | 1                                        | 2.7                             | 2.7                              | 00                                 |  |  |  |  |  |  |  |  |
| System Detection Limits                                                       | E.2.5        | 1                       | Rectangular                 | 1.732050808     | 1        | 1                                        | 0.6                             | 0.6                              | ∞                                  |  |  |  |  |  |  |  |  |
| Readout Electronics                                                           | E.2.6        | 0.3                     | Normal                      | 1               | 1        | 1                                        | 0.3                             | 0.3                              | $\infty$                           |  |  |  |  |  |  |  |  |
| Response Time                                                                 | E.2.7        | 0.8                     | Rectangular                 | 1.732050808     | 1        | 1                                        | 0.5                             | 0.5                              | ∞                                  |  |  |  |  |  |  |  |  |
| Integration Time                                                              | E.2.8        | 2.6                     | Rectangular                 | 1.732050808     | 1        | 1                                        | 1.5                             | 1.5                              | $\infty$                           |  |  |  |  |  |  |  |  |
| RF Ambient Conditions                                                         | E.6.1        | 3                       | Rectangular                 | 1.732050808     | 1        | 1                                        | 1.7                             | 1.7                              | ∞                                  |  |  |  |  |  |  |  |  |
| Probe Positioner Mechanical Tolerance                                         | E.6.2        | 0.4                     | Rectangular                 | 1.732050808     | 1        | 1                                        | 0.2                             | 0.2                              | ∞                                  |  |  |  |  |  |  |  |  |
| Probe Positioning wrt Phantom Shell                                           | E.6.3        | 2.9                     | Rectangular                 | 1.732050808     | 1        | 1                                        | 1.7                             | 1.7                              | $\infty$                           |  |  |  |  |  |  |  |  |
| Extrapolation, interpolation & integration algorithms for max. SAR evaluation | E.5          | 1                       | Rectangular                 | 1.732050808     | 1        | 1                                        | 0.6                             | 0.6                              | ∞                                  |  |  |  |  |  |  |  |  |
| Test Sample Related                                                           |              |                         |                             |                 |          |                                          |                                 |                                  |                                    |  |  |  |  |  |  |  |  |
| Test Sample Positioning                                                       | E.4.2        | 2.9                     | Normal                      | 1               | 1        | 1                                        | 2.9                             | 2.9                              | 12                                 |  |  |  |  |  |  |  |  |
| Device Holder Uncertainty                                                     | E.4.1        | 3.6                     | Normal                      | 1               | 1        | 1                                        | 3.6                             | 3.6                              | 8                                  |  |  |  |  |  |  |  |  |
| SAR Drift Measurement                                                         | 6.6.2        | 5                       | Rectangular                 | 1.732050808     | 1        | 1                                        | 2.9                             | 2.9                              | oc                                 |  |  |  |  |  |  |  |  |
| Phantom and Tissue Parameters                                                 |              |                         |                             |                 |          |                                          |                                 |                                  |                                    |  |  |  |  |  |  |  |  |
| Phantom Uncertainty                                                           | E.3.1        | 4                       | Rectangular                 | 1.732050808     | 1        | 1                                        | 2.3                             | 2.3                              | 8                                  |  |  |  |  |  |  |  |  |
| Liquid Conductivity (target)                                                  | E.3.2        | 5                       | Rectangular                 | 1.732050808     | 0.64     | 0.43                                     | 1.8                             | 1.2                              | ∞                                  |  |  |  |  |  |  |  |  |
| Liquid Conductivity (measured)                                                | E.3.3        | 0.66                    | Normal                      | 1               | 0.64     | 0.43                                     | 0.4                             | 0.3                              | ∞                                  |  |  |  |  |  |  |  |  |
| Liquid Permittivity (target)                                                  | E.3.2        | 5                       | Rectangular                 | 1.732050808     | 0.6      | 0.49                                     | 1.7                             | 1.4                              | ∞                                  |  |  |  |  |  |  |  |  |
| Liquid Permittivity (measured)                                                | E.3.3        | 3.94                    | Normal                      | 1               | 0.6      | 0.49                                     | 2.4                             | 1.9                              | ∞                                  |  |  |  |  |  |  |  |  |
| Combined Standard Uncertainty                                                 |              | RSS                     |                             |                 |          | 10.63                                    | 10.40                           |                                  |                                    |  |  |  |  |  |  |  |  |
| Expanded Uncertainty (95% Confidence                                          | Interval)    |                         | k=2                         |                 |          |                                          | 21.25                           | 20.79                            |                                    |  |  |  |  |  |  |  |  |
|                                                                               | leasuremen   | t Uncertainty           | Table in accord             | lance with IEEE | 1528-2   | 003                                      |                                 |                                  |                                    |  |  |  |  |  |  |  |  |





Test Report Issue Date April 24, 2012

Test Report Serial No. 020911Q2G-T1079-S24M

Description of Test(s) Specific Absorption Rate Test Report Revision No. Rev. 1.1 (2nd Release) RF Exposure Category

Gen. Pop. / Uncontrolled

ilac-MRA Test Lab Certificate No. 2470.01



# **MEASUREMENT UNCERTAINTIES (Cont.)**

|                                                                               | UNCERT                  | AINTY BUDG              | GET FOR DE                  | VICE EVALU     | JATIO    | N         |                                 |                                  |                                    |
|-------------------------------------------------------------------------------|-------------------------|-------------------------|-----------------------------|----------------|----------|-----------|---------------------------------|----------------------------------|------------------------------------|
| Uncertainty Component                                                         | IEEE<br>1528<br>Section | Uncertainty<br>Value ±% | Probability<br>Distribution | Divisor        | ci<br>1g | ci<br>10g | Uncertainty<br>Value ±%<br>(1g) | Uncertainty<br>Value ±%<br>(10g) | V <sub>i</sub> or V <sub>eff</sub> |
| Measurement System                                                            |                         |                         |                             |                |          |           |                                 |                                  |                                    |
| Probe Calibration (1800 MHz)                                                  | E.2.1                   | 5.5                     | Normal                      | 1              | 1        | 1         | 5.5                             | 5.5                              | 00                                 |
| Axial Isotropy                                                                | E.2.2                   | 4.7                     | Rectangular                 | 1.732050808    | 0.7      | 0.7       | 1.9                             | 1.9                              | 00                                 |
| Hemispherical Isotropy                                                        | E.2.2                   | 9.6                     | Rectangular                 | 1.732050808    | 0.7      | 0.7       | 3.9                             | 3.9                              | oc                                 |
| Boundary Effect                                                               | E.2.3                   | 1                       | Rectangular                 | 1.732050808    | 1        | 1         | 0.6                             | 0.6                              | oc                                 |
| Linearity                                                                     | E.2.4                   | 4.7                     | Rectangular                 | 1.732050808    | 1        | 1         | 2.7                             | 2.7                              | oc                                 |
| System Detection Limits                                                       | E.2.5                   | 1                       | Rectangular                 | 1.732050808    | 1        | 1         | 0.6                             | 0.6                              | oc                                 |
| Readout Electronics                                                           | E.2.6                   | 0.3                     | Normal                      | 1              | 1        | 1         | 0.3                             | 0.3                              | ∞                                  |
| Response Time                                                                 | E.2.7                   | 0.8                     | Rectangular                 | 1.732050808    | 1        | 1         | 0.5                             | 0.5                              | ∞                                  |
| Integration Time                                                              | E.2.8                   | 2.6                     | Rectangular                 | 1.732050808    | 1        | 1         | 1.5                             | 1.5                              | oc                                 |
| RF Ambient Conditions                                                         | E.6.1                   | 3                       | Rectangular                 | 1.732050808    | 1        | 1         | 1.7                             | 1.7                              | oc                                 |
| Probe Positioner Mechanical Tolerance                                         | E.6.2                   | 0.4                     | Rectangular                 | 1.732050808    | 1        | 1         | 0.2                             | 0.2                              | ∞                                  |
| Probe Positioning wrt Phantom Shell                                           | E.6.3                   | 2.9                     | Rectangular                 | 1.732050808    | 1        | 1         | 1.7                             | 1.7                              | oc                                 |
| Extrapolation, interpolation & integration algorithms for max. SAR evaluation | E.5                     | 1                       | Rectangular                 | 1.732050808    | 1        | 1         | 0.6                             | 0.6                              | oc .                               |
| Test Sample Related                                                           |                         |                         |                             |                |          |           |                                 |                                  |                                    |
| Test Sample Positioning                                                       | E.4.2                   | 2.9                     | Normal                      | 1              | 1        | 1         | 2.9                             | 2.9                              | 12                                 |
| Device Holder Uncertainty                                                     | E.4.1                   | 3.6                     | Normal                      | 1              | 1        | 1         | 3.6                             | 3.6                              | 8                                  |
| SAR Drift Measurement                                                         | 6.6.2                   | 5                       | Rectangular                 | 1.732050808    | 1        | 1         | 2.9                             | 2.9                              | ∞                                  |
| Phantom and Tissue Parameters                                                 |                         |                         |                             |                |          |           |                                 |                                  |                                    |
| Phantom Uncertainty                                                           | E.3.1                   | 4                       | Rectangular                 | 1.732050808    | 1        | 1         | 2.3                             | 2.3                              | 00                                 |
| Liquid Conductivity (target)                                                  | E.3.2                   | 5                       | Rectangular                 | 1.732050808    | 0.64     | 0.43      | 1.8                             | 1.2                              | oc                                 |
| Liquid Conductivity (measured)                                                | E.3.3                   | 2.68                    | Normal                      | 1              | 0.64     | 0.43      | 1.7                             | 1.2                              | × ×                                |
| Liquid Permittivity (target)                                                  | E.3.2                   | 5                       | Rectangular                 | 1.732050808    | 0.6      | 0.49      | 1.7                             | 1.4                              | 00                                 |
| Liquid Permittivity (measured)                                                | E.3.3                   | 2.36                    | Normal                      | 1              | 0.6      | 0.49      | 1.4                             | 1.2                              | ∞                                  |
| Combined Standard Uncertainty                                                 |                         |                         | RSS                         |                |          | 50        | 10.59                           | 10.34                            |                                    |
| <b>Expanded Uncertainty (95% Confidence</b>                                   | Interval)               |                         | k=2                         |                |          |           | 21.17                           | 20.68                            |                                    |
|                                                                               | Measuremen              | t Uncertainty T         | able in accord              | ance with IEEE | 1528-2   | 003       |                                 |                                  |                                    |



Test Report Issue Date
April 24, 2012

<u>Test Report Serial No.</u> 020911Q2G-T1079-S24M

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.1 (2nd Release)

RF Exposure Category
Gen. Pop. / Uncontrolled



# **MEASUREMENT UNCERTAINTIES (Cont.)**

|                                                                               | UNCERT                  | AINTY BUD               | GET FOR DI                  | EVICE EVAL     | UATIO    | ON        |                                 |                                  |                                    |
|-------------------------------------------------------------------------------|-------------------------|-------------------------|-----------------------------|----------------|----------|-----------|---------------------------------|----------------------------------|------------------------------------|
| Uncertainty Component                                                         | IEEE<br>1528<br>Section | Uncertainty<br>Value ±% | Probability<br>Distribution | Divisor        | ci<br>1g | ci<br>10g | Uncertainty<br>Value ±%<br>(1g) | Uncertainty<br>Value ±%<br>(10g) | V <sub>i</sub> or V <sub>eff</sub> |
| Measurement System                                                            |                         |                         |                             |                |          |           |                                 |                                  |                                    |
| Probe Calibration (2450 MHz)                                                  | E.2.1                   | 5.5                     | Normal                      | 1              | 1        | 1         | 5.5                             | 5.5                              | 8                                  |
| Axial Isotropy                                                                | E.2.2                   | 4.7                     | Rectangular                 | 1.732050808    | 0.7      | 0.7       | 1.9                             | 1.9                              | $\infty$                           |
| Hemispherical Isotropy                                                        | E.2.2                   | 9.6                     | Rectangular                 | 1.732050808    | 0.7      | 0.7       | 3.9                             | 3.9                              | $\infty$                           |
| Boundary Effect                                                               | E.2.3                   | 1                       | Rectangular                 | 1.732050808    | 1        | 1         | 0.6                             | 0.6                              | $\infty$                           |
| Linearity                                                                     | E.2.4                   | 4.7                     | Rectangular                 | 1.732050808    | 1        | 1         | 2.7                             | 2.7                              | $\infty$                           |
| System Detection Limits                                                       | E.2.5                   | 1                       | Rectangular                 | 1.732050808    | 1        | 1         | 0.6                             | 0.6                              | ∞                                  |
| Readout Electronics                                                           | E.2.6                   | 0.3                     | Normal                      | 1              | 1        | 1         | 0.3                             | 0.3                              | ∞                                  |
| Response Time                                                                 | E.2.7                   | 0.8                     | Rectangular                 | 1.732050808    | 1        | 1         | 0.5                             | 0.5                              | ∞                                  |
| Integration Time                                                              | E.2.8                   | 2.6                     | Rectangular                 | 1.732050808    | 1        | 1         | 1.5                             | 1.5                              | ∞                                  |
| RF Ambient Conditions                                                         | E.6.1                   | 3                       | Rectangular                 | 1.732050808    | 1        | 1         | 1.7                             | 1.7                              | ∞                                  |
| Probe Positioner Mechanical Tolerance                                         | E.6.2                   | 0.4                     | Rectangular                 | 1.732050808    | 1        | 1         | 0.2                             | 0.2                              | ∞                                  |
| Probe Positioning wrt Phantom Shell                                           | E.6.3                   | 2.9                     | Rectangular                 | 1.732050808    | 1        | 1         | 1.7                             | 1.7                              | ∞                                  |
| Extrapolation, interpolation & integration algorithms for max. SAR evaluation | E.5                     | 1                       | Rectangular                 | 1.732050808    | 1        | 1         | 0.6                             | 0.6                              | ∞                                  |
| Test Sample Related                                                           |                         |                         |                             |                |          |           |                                 |                                  |                                    |
| Test Sample Positioning                                                       | E.4.2                   | 2.9                     | Normal                      | 1              | 1        | 1         | 2.9                             | 2.9                              | 12                                 |
| Device Holder Uncertainty                                                     | E.4.1                   | 3.6                     | Normal                      | 1              | 1        | 1         | 3.6                             | 3.6                              | 8                                  |
| SAR Drift Measurement                                                         | 6.6.2                   | 5                       | Rectangular                 | 1.732050808    | 1        | 1         | 2.9                             | 2.9                              | $\infty$                           |
| Phantom and Tissue Parameters                                                 |                         |                         |                             |                |          |           |                                 |                                  |                                    |
| Phantom Uncertainty                                                           | E.3.1                   | 4                       | Rectangular                 | 1.732050808    | 1        | 1         | 2.3                             | 2.3                              | $\infty$                           |
| Liquid Conductivity (target)                                                  | E.3.2                   | 5                       | Rectangular                 | 1.732050808    | 0.64     | 0.43      | 1.8                             | 1.2                              | ∞                                  |
| Liquid Conductivity (measured)                                                | E.3.3                   | 1.03                    | Normal                      | 1              | 0.64     | 0.43      | 0.7                             | 0.4                              | ∞                                  |
| Liquid Permittivity (target)                                                  | E.3.2                   | 5                       | Rectangular                 | 1.732050808    | 0.6      | 0.49      | 1.7                             | 1.4                              | ∞                                  |
| Liquid Permittivity (measured)                                                | E.3.3                   | 4.17                    | Normal                      | 1              | 0.6      | 0.49      | 2.5                             | 2.0                              | ∞                                  |
| Combined Standard Uncertainty                                                 |                         |                         | RSS                         |                |          |           | 10.67                           | 10.42                            |                                    |
| Expanded Uncertainty (95% Confidence                                          | Interval)               |                         | k=2                         |                |          |           | 21.34                           | 20.85                            |                                    |
|                                                                               | <u> </u>                | certainty Table         | in accordance               | with IEEE Star | dard 1   | 528-200   |                                 |                                  |                                    |



Test Report Issue Date
April 24, 2012

<u>Test Report Serial No.</u> 020911Q2G-T1079-S24M

Description of Test(s)

Specific Absorption Rate

RF Exposure Category
Gen. Pop. / Uncontrolled

Test Report Revision No.

Rev. 1.1 (2nd Release)



# **MEASUREMENT UNCERTAINTIES (Cont.)**

| UNC                                                            | CERTAINTY               | BUDGET FO                   | OR DEVICE E | VALU     | ATION     |                                 |                                  |                                       |  |  |
|----------------------------------------------------------------|-------------------------|-----------------------------|-------------|----------|-----------|---------------------------------|----------------------------------|---------------------------------------|--|--|
| Error Description                                              | Uncertainty<br>Value ±% | Probability<br>Distribution | Divisor     | ci<br>1g | ci<br>10g | Uncertainty<br>Value ±%<br>(1g) | Uncertainty<br>Value ±%<br>(10g) | V <sub>i</sub> or<br>V <sub>eff</sub> |  |  |
| Measurement System                                             |                         |                             |             |          |           |                                 |                                  |                                       |  |  |
| Probe Calibration (5 GHz)                                      | 6.55                    | Normal                      | 1           | 1        | 1         | 6.55                            | 6.55                             | ∞                                     |  |  |
| Axial Isotropy                                                 | 4.7                     | Rectangular                 | 1.732050808 | 0.7      | 0.7       | 1.9                             | 1.9                              | ∞                                     |  |  |
| Hemispherical Isotropy                                         | 9.6                     | Rectangular                 | 1.732050808 | 0.7      | 0.7       | 3.9                             | 3.9                              | ∞                                     |  |  |
| Boundary Effect                                                | 1                       | Rectangular                 | 1.732050808 | 1        | 1         | 0.6                             | 0.6                              | ×                                     |  |  |
| Linearity                                                      | 4.7                     | Rectangular                 | 1.732050808 | 1        | 1         | 2.7                             | 2.7                              | ∞                                     |  |  |
| System Detection Limits                                        | 1                       | Rectangular                 | 1.732050808 | 1        | 1         | 0.6                             | 0.6                              | ∞                                     |  |  |
| Readout Electronics                                            | 0.3                     | Normal                      | 1           | 1        | 1         | 0.3                             | 0.3                              | ∞                                     |  |  |
| Response Time                                                  | 0.8                     | Rectangular                 | 1.732050808 | 1        | 1         | 0.5                             | 0.5                              | ∞                                     |  |  |
| Integration Time                                               | 2.6                     | Rectangular                 | 1.732050808 | 1        | 1         | 1.5                             | 1.5                              | ∞                                     |  |  |
| RF Ambient Conditions                                          | 3                       | Rectangular                 | 1.732050808 | 1        | 1         | 1.7                             | 1.7                              | ∞                                     |  |  |
| Probe Positioner Mechanical Restrictions                       | 0.8                     | Rectangular                 | 1.732050808 | 1        | 1         | 0.5                             | 0.5                              | ∞                                     |  |  |
| Probe Positioning wrt Phantom Shell                            | 5.7                     | Rectangular                 | 1.732050808 | 1        | 1         | 3.3                             | 3.3                              | 8                                     |  |  |
| Post-processing                                                | 4                       | Rectangular                 | 1.732050808 | 1        | 1         | 2.3                             | 2.3                              | ∞                                     |  |  |
| Test Sample Related                                            |                         |                             |             |          |           |                                 |                                  |                                       |  |  |
| Device positioning                                             | 2.9                     | Normal                      | 1           | 1        | 1         | 2.9                             | 2.9                              | 12                                    |  |  |
| Device holder uncertainty                                      | 3.6                     | Normal                      | 1           | 1        | 1         | 3.6                             | 3.6                              | 8                                     |  |  |
| Power drift                                                    | 5                       | Rectangular                 | 1.732050808 | 1        | 1         | 2.9                             | 2.9                              | ×                                     |  |  |
| Phantom and Setup                                              |                         |                             |             |          |           |                                 |                                  |                                       |  |  |
| Phantom uncertainty                                            | 4                       | Rectangular                 | 1.732050808 | 1        | 1         | 2.3                             | 2.3                              | ∞                                     |  |  |
| Liquid conductivity (target)                                   | 5                       | Rectangular                 | 1.732050808 | 0.64     | 0.43      | 1.8                             | 1.2                              | ×                                     |  |  |
| Liquid conductivity (measured)                                 | 0.38                    | Normal                      | 1           | 0.64     | 0.43      | 0.2                             | 0.2                              | ∞                                     |  |  |
| Liquid permittivity (target)                                   | 5                       | Rectangular                 | 1.732050808 | 0.6      | 0.49      | 1.7                             | 1.4                              | ∞                                     |  |  |
| Liquid permittivity (measured)                                 | 4.02                    | Normal                      | 1           | 0.6      | 0.49      | 2.4                             | 2.0                              | ∞                                     |  |  |
| Combined Standard Uncertainty                                  |                         | RSS                         |             |          |           | 11.78                           | 11.58                            |                                       |  |  |
| Expanded Uncertainty (95% Confidence Interval) k=2 23.57 23.15 |                         |                             |             |          |           |                                 |                                  |                                       |  |  |
| Measurement Uncertainty                                        | Γable for the 5-        | 6 GHz Range (S              | SPEAG DASY4 | Manual,  | Section   | 27.6, Septemb                   | er 2005)                         |                                       |  |  |

| Applicant:       | Xplor                                                                                                                               | Xplore Technologies Corp. FCC ID: Q2GGOBI3K-XPL IC: 4596A-GOBI3KXPL |           | <b>₩</b> xplore          |           |                       |               |  |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------|--------------------------|-----------|-----------------------|---------------|--|
| DUT Type:        | Xplor                                                                                                                               | e Gobi3000 Mini-PCI Exp                                             | ress WWAN | I Module installed in Xp | olore iX1 | 04C5 Rugged Tablet PC | rechnologies. |  |
| 2012 Celltech La | tech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |                                                                     |           |                          |           |                       |               |  |



Test Report Issue Date
April 24, 2012

<u>Test Report Serial No.</u> 020911Q2G-T1079-S24M

Description of Test(s)

Specific Absorption Rate

Rev. 1.1 (2nd Release)

RF Exposure Category

Gen. Pop. / Uncontrolled

Test Report Revision No.



# 23.0 MEASUREMENT UNCERTAINTIES (IEC 62209-2:2010)

| Measurement System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATION    | N         |                                    |                                     |                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|------------------------------------|-------------------------------------|------------------------------------|
| Probe Calibration (835 MHz)   7.2.2.1   5.5   Normal   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ci<br>1g | ci<br>10g | Standard<br>Uncertainty<br>±% (1g) | Standard<br>Uncertainty<br>±% (10g) | V <sub>i</sub> or V <sub>eff</sub> |
| Isotropy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |           |                                    |                                     |                                    |
| Boundary Effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        | 1         | 5.5                                | 5.5                                 | ∞                                  |
| Detection Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1        | 1         | 2.7                                | 2.7                                 | $\infty$                           |
| Detection Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1        | 1         | 0.6                                | 0.6                                 | ∞                                  |
| Readout Electronics         7.2.2.7         0.3         Normal         1           Response Time         7.2.2.8         0.8         Rectangular         1.732050808           Integration Time         7.2.2.9         2.6         Rectangular         1.732050808           RF Ambient Conditions         7.2.4.5         3         Rectangular         1.732050808           Probe Positioner Mechanical Restrictions         7.2.3.1         0.4         Rectangular         1.732050808           Probe Positioning wrt Phantom Shell         7.2.3.3         2.9         Rectangular         1.732050808           Post-processing         7.2.5         1         Rectangular         1.732050808           Test Sample Related         7.2.3.4.3         2.9         Normal         1           Test Sample Positioning         7.2.3.4.2         3.6         Normal         1           Device Holder Uncertainty         7.2.3.4.2         3.6         Normal         1           Drift of Output Power (meas. SAR drift)         7.2.2.10         5         Rectangular         1.732050808           Phantom and Tissue Parameters         Phantom Uncertainty         7.2.3.2         4         Rectangular         1.732050808           SAR Correction Algorithm for deviations in permittivity (measur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1        | 1         | 2.7                                | 2.7                                 | ∞                                  |
| Response Time         7.2.2.8         0.8         Rectangular         1.732050808           Integration Time         7.2.2.9         2.6         Rectangular         1.732050808           RF Ambient Conditions         7.2.4.5         3         Rectangular         1.732050808           Probe Positioner Mechanical Restrictions         7.2.3.1         0.4         Rectangular         1.732050808           Probe Positioning wrt Phantom Shell         7.2.3.3         2.9         Rectangular         1.732050808           Post-processing         7.2.5         1         Rectangular         1.732050808           Test Sample Related                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1        | 1         | 0.6                                | 0.6                                 | ∞                                  |
| Integration Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1        | 1         | 0.3                                | 0.3                                 | ∞                                  |
| RF Ambient Conditions         7.2.4.5         3         Rectangular         1.732050808           Probe Positioner Mechanical Restrictions         7.2.3.1         0.4         Rectangular         1.732050808           Probe Positioning wrt Phantom Shell         7.2.3.3         2.9         Rectangular         1.732050808           Post-processing         7.2.5         1         Rectangular         1.732050808           Test Sample Related           Test Sample Positioning         7.2.3.4.3         2.9         Normal         1           Device Holder Uncertainty         7.2.3.4.2         3.6         Normal         1           Drift of Output Power (meas. SAR drift)         7.2.2.10         5         Rectangular         1.732050808           Phantom uncertainty         7.2.3.2         4         Rectangular         1.732050808           SAR Correction Algorithm for deviations in permittivity and conductivity         7.2.4.3         1.2         Normal         1           Liquid Conductivity (measured)         7.2.4.3         1.03         Normal         1         0           Liquid Permittivity (measured)         7.2.4.4         1.23         Rectangular         1.732050808         0           Liquid Conductivity - temp. uncertainty <td< td=""><td>1</td><td>1</td><td>0.5</td><td>0.5</td><td><math>\infty</math></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1        | 1         | 0.5                                | 0.5                                 | $\infty$                           |
| Probe Positioner Mechanical Restrictions Probe Positioning wrt Phantom Shell Post-processing P | 1        | 1         | 1.5                                | 1.5                                 | ∞                                  |
| Probe Positioning wrt Phantom Shell Post-processing Post-proce | 1        | 1         | 1.7                                | 1.7                                 | ∞                                  |
| Post-processing 7.2.5 1 Rectangular 1.732050808  Test Sample Related 2.9 Normal 1 Device Holder Uncertainty 7.2.3.4.2 3.6 Normal 1 Dirit of Output Power (meas. SAR drift) 7.2.2.10 5 Rectangular 1.732050808  Phantom and Tissue Parameters Phantom Uncertainty 7.2.3.2 4 Rectangular 1.732050808  SAR Correction Algorithm for deviations in permittivity and conductivity 7.2.4.3 1.2 Normal 1 Liquid Conductivity (measured) 7.2.4.3 1.03 Normal 1 0 Liquid Permittivity (measured) 7.2.4.3 3.8 Normal 1 0 Liquid Permittivity - temp. uncertainty 7.2.4.4 1.23 Rectangular 1.732050808 0 Liquid Conductivity - temp. uncertainty 7.2.4.4 0.93 Rectangular 1.732050808 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1        | 1         | 0.2                                | 0.2                                 | ∞                                  |
| Test Sample Related Test Sample Positioning 7.2.3.4.3 2.9 Normal 1 Device Holder Uncertainty 7.2.3.4.2 3.6 Normal 1 Drift of Output Power (meas. SAR drift) 7.2.2.10 5 Rectangular 1.732050808  Phantom and Tissue Parameters Phantom Uncertainty 7.2.3.2 4 Rectangular 1.732050808  SAR Correction Algorithm for deviations in permittivity and conductivity 7.2.4.3 1.2 Normal 1 Liquid Conductivity (measured) 7.2.4.3 1.03 Normal 1 0 Liquid Permittivity (measured) 7.2.4.3 3.8 Normal 1 0 Liquid Permittivity - temp. uncertainty 7.2.4.4 1.23 Rectangular 1.732050808 0 Liquid Conductivity - temp. uncertainty 7.2.4.4 0.93 Rectangular 1.732050808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1        | 1         | 1.7                                | 1.7                                 | ∞                                  |
| Test Sample Positioning 7.2.3.4.3 2.9 Normal 1  Device Holder Uncertainty 7.2.3.4.2 3.6 Normal 1  Drift of Output Power (meas. SAR drift) 7.2.2.10 5 Rectangular 1.732050808  Phantom and Tissue Parameters  Phantom Uncertainty 7.2.3.2 4 Rectangular 1.732050808  SAR Correction Algorithm for deviations in permittivity and conductivity 7.2.4.3 1.2 Normal 1  Liquid Conductivity (measured) 7.2.4.3 1.03 Normal 1  Liquid Permittivity (measured) 7.2.4.3 3.8 Normal 1  Liquid Permittivity - temp. uncertainty 7.2.4.4 1.23 Rectangular 1.732050808 0  Liquid Conductivity - temp. uncertainty 7.2.4.4 0.93 Rectangular 1.732050808 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1        | 1         | 0.6                                | 0.6                                 | ∞                                  |
| Device Holder Uncertainty  Drift of Output Power (meas. SAR drift)  Phantom and Tissue Parameters  Phantom Uncertainty  SAR Correction Algorithm for deviations in permittivity and conductivity  Liquid Conductivity (measured)  Liquid Permittivity (measured)  Liquid Permittivity - temp. uncertainty  7.2.4.4  3.6  Normal  1.732050808  Rectangular  1.732050808  Normal  1  Normal  1  0  Liquid Permittivity (measured)  7.2.4.3  3.8  Normal  1  0  Liquid Permittivity - temp. uncertainty  7.2.4.4  1.23  Rectangular  1.732050808  0  Liquid Conductivity - temp. uncertainty  7.2.4.4  0.93  Rectangular  1.732050808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |           |                                    |                                     |                                    |
| Drift of Output Power (meas. SAR drift)  Phantom and Tissue Parameters  Phantom Uncertainty  SAR Correction Algorithm for deviations in permittivity and conductivity  Liquid Conductivity (measured)  Liquid Permittivity (measured)  Liquid Permittivity - temp. uncertainty  T.2.4.3  T.2.4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1        | 1         | 2.9                                | 2.9                                 | 12                                 |
| Phantom and Tissue ParametersPhantom Uncertainty7.2.3.24Rectangular1.732050808SAR Correction Algorithm for deviations in permittivity and conductivity7.2.4.31.2Normal1Liquid Conductivity (measured)7.2.4.31.03Normal10Liquid Permittivity (measured)7.2.4.33.8Normal10Liquid Permittivity - temp. uncertainty7.2.4.41.23Rectangular1.7320508080Liquid Conductivity - temp. uncertainty7.2.4.40.93Rectangular1.7320508080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1        | 1         | 3.6                                | 3.6                                 | 8                                  |
| Phantom Uncertainty 7.2.3.2 4 Rectangular 1.732050808  SAR Correction Algorithm for deviations in permittivity and conductivity 7.2.4.3 1.2 Normal 1  Liquid Conductivity (measured) 7.2.4.3 1.03 Normal 1 0  Liquid Permittivity (measured) 7.2.4.3 3.8 Normal 1 0  Liquid Permittivity - temp. uncertainty 7.2.4.4 1.23 Rectangular 1.732050808 0  Liquid Conductivity - temp. uncertainty 7.2.4.4 0.93 Rectangular 1.732050808 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1        | 1         | 2.9                                | 2.9                                 | ∞                                  |
| SAR Correction Algorithm for deviations in permittivity and conductivity  7.2.4.3  1.2  Normal  1  Liquid Conductivity (measured)  7.2.4.3  1.03  Normal  1  0  Liquid Permittivity (measured)  7.2.4.3  3.8  Normal  1  0  Liquid Permittivity - temp. uncertainty  7.2.4.4  1.23  Rectangular  1.732050808  0  Liquid Conductivity - temp. uncertainty  7.2.4.4  0.93  Rectangular  1.732050808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |           |                                    |                                     |                                    |
| permittivity and conductivity         7.2.4.3         1.2         Normal         1           Liquid Conductivity (measured)         7.2.4.3         1.03         Normal         1         0           Liquid Permittivity (measured)         7.2.4.3         3.8         Normal         1         0           Liquid Permittivity - temp. uncertainty         7.2.4.4         1.23         Rectangular         1.732050808         0           Liquid Conductivity - temp. uncertainty         7.2.4.4         0.93         Rectangular         1.732050808         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1        | 1         | 2.3                                | 2.3                                 | ∞                                  |
| Liquid Conductivity (measured)7.2.4.31.03Normal10Liquid Permittivity (measured)7.2.4.33.8Normal10Liquid Permittivity - temp. uncertainty7.2.4.41.23Rectangular1.7320508080Liquid Conductivity - temp. uncertainty7.2.4.40.93Rectangular1.7320508080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1        | 0.81      | 1.2                                | 0.97                                | ∞                                  |
| Liquid Permittivity (measured)  7.2.4.3  3.8  Normal  1  0  Liquid Permittivity - temp. uncertainty  7.2.4.4  1.23  Rectangular  1.732050808  0  Liquid Conductivity - temp. uncertainty  7.2.4.4  0.93  Rectangular  1.732050808  0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.78     | 0.71      | 0.8                                | 0.7                                 | 00                                 |
| Liquid Permittivity - temp. uncertainty 7.2.4.4 1.23 Rectangular 1.732050808 0 Liquid Conductivity - temp. uncertainty 7.2.4.4 0.93 Rectangular 1.732050808 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.23     | 0.26      | 0.9                                | 1.0                                 | ∞                                  |
| Liquid Conductivity - temp. uncertainty 7.2.4.4 0.93 Rectangular 1.732050808 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |           |                                    |                                     |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.78     | 0.71      | 0.6                                | 0.5                                 | ∞                                  |
| Combined Standard Uncertainty 7.3.1 RSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.23     | 0.26      | 0.1                                | 0.1                                 | ∞                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           | 9.62                               | 9.60                                |                                    |
| Expanded Uncertainty (95% Confidence Interval) 7.3.2 k=2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |           | 19.25                              | 19.20                               |                                    |





Test Report Issue Date
April 24, 2012

<u>Test Report Serial No.</u> 020911Q2G-T1079-S24M

Description of Test(s)

Specific Absorption Rate

RF Exposure Category
Gen. Pop. / Uncontrolled

Test Report Revision No.

Rev. 1.1 (2nd Release)



# **MEASUREMENT UNCERTAINTIES (Cont.)**

|                                                                          | UNCERTA                                             | AINTY BUDG                       | ET FOR DE                   | VICE EVALU  | JATIO    | N         |                                    |                                     |                                    |
|--------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------|-----------------------------|-------------|----------|-----------|------------------------------------|-------------------------------------|------------------------------------|
| Source of Uncertainty                                                    | IEC<br>62209-2<br>Section                           | Tolerance /<br>Uncertainty<br>±% | Probability<br>Distribution | Divisor     | ci<br>1g | ci<br>10g | Standard<br>Uncertainty<br>±% (1g) | Standard<br>Uncertainty<br>±% (10g) | V <sub>i</sub> or V <sub>eff</sub> |
| Measurement System                                                       |                                                     |                                  |                             |             |          |           |                                    |                                     |                                    |
| Probe Calibration (1900 MHz)                                             | 7.2.2.1                                             | 5.5                              | Normal                      | 1           | 1        | 1         | 5.5                                | 5.5                                 | 8                                  |
| Isotropy                                                                 | 7.2.2.2                                             | 4.7                              | Rectangular                 | 1.732050808 | 1        | 1         | 2.7                                | 2.7                                 | oc                                 |
| Boundary Effect                                                          | 7.2.2.6                                             | 1                                | Rectangular                 | 1.732050808 | 1        | 1         | 0.6                                | 0.6                                 | oc                                 |
| Linearity                                                                | 7.2.2.3                                             | 4.7                              | Rectangular                 | 1.732050808 | 1        | 1         | 2.7                                | 2.7                                 | ∞                                  |
| Detection Limits                                                         | 7.2.2.5                                             | 1                                | Rectangular                 | 1.732050808 | 1        | 1         | 0.6                                | 0.6                                 | oc                                 |
| Readout Electronics                                                      | 7.2.2.7                                             | 0.3                              | Normal                      | 1           | 1        | 1         | 0.3                                | 0.3                                 | × ×                                |
| Response Time                                                            | 7.2.2.8                                             | 0.8                              | Rectangular                 | 1.732050808 | 1        | 1         | 0.5                                | 0.5                                 | ∞                                  |
| Integration Time                                                         | 7.2.2.9                                             | 2.6                              | Rectangular                 | 1.732050808 | 1        | 1         | 1.5                                | 1.5                                 | × ×                                |
| RF Ambient Conditions                                                    | 7.2.4.5                                             | 3                                | Rectangular                 | 1.732050808 | 1        | 1         | 1.7                                | 1.7                                 | × ×                                |
| Probe Positioner Mechanical Restrictions                                 | 7.2.3.1                                             | 0.4                              | Rectangular                 | 1.732050808 | 1        | 1         | 0.2                                | 0.2                                 | ∞                                  |
| Probe Positioning wrt Phantom Shell                                      | 7.2.3.3                                             | 2.9                              | Rectangular                 | 1.732050808 | 1        | 1         | 1.7                                | 1.7                                 | oc                                 |
| Post-processing                                                          | 7.2.5                                               | 1                                | Rectangular                 | 1.732050808 | 1        | 1         | 0.6                                | 0.6                                 | ∞                                  |
| Test Sample Related                                                      |                                                     |                                  |                             |             |          |           |                                    |                                     |                                    |
| Test Sample Positioning                                                  | 7.2.3.4.3                                           | 2.9                              | Normal                      | 1           | 1        | 1         | 2.9                                | 2.9                                 | 12                                 |
| Device Holder Uncertainty                                                | 7.2.3.4.2                                           | 3.6                              | Normal                      | 1           | 1        | 1         | 3.6                                | 3.6                                 | 8                                  |
| Drift of Output Power (meas. SAR drift)                                  | 7.2.2.10                                            | 5                                | Rectangular                 | 1.732050808 | 1        | 1         | 2.9                                | 2.9                                 | 8                                  |
| Phantom and Tissue Parameters                                            |                                                     |                                  |                             |             |          |           |                                    |                                     |                                    |
| Phantom Uncertainty                                                      | 7.2.3.2                                             | 4                                | Rectangular                 | 1.732050808 | 1        | 1         | 2.3                                | 2.3                                 | ∞                                  |
| SAR Correction Algorithm for deviations in permittivity and conductivity | 7.2.4.3                                             | 1.2                              | Normal                      | 1           | 1        | 0.81      | 1.2                                | 0.97                                | 8                                  |
| Liquid Conductivity (measured)                                           | 7.2.4.3                                             | 0.66                             | Normal                      | 1           | 0.78     | 0.71      | 0.5                                | 0.5                                 | 00                                 |
| Liquid Permittivity (measured)                                           | 7.2.4.3                                             | 3.94                             | Normal                      | 1           | 0.23     | 0.26      | 0.9                                | 1.0                                 | <u>∞</u>                           |
| ,                                                                        |                                                     |                                  |                             |             |          |           |                                    | -                                   |                                    |
| Liquid Permittivity - temp. uncertainty                                  | 7.2.4.4                                             | 1.23                             | Rectangular                 | 1.732050808 | 0.78     | 0.71      | 0.6                                | 0.5                                 | ∞                                  |
| ,                                                                        | iquid Conductivity - temp. uncertainty 7.2.4.4 0.93 |                                  | Rectangular                 | 1.732050808 | 0.23     | 0.26      | 0.1                                | 0.1                                 | ∞                                  |
| Combined Standard Uncertainty                                            | 7.3.1                                               |                                  | RSS                         |             |          |           | 9.61                               | 9.59                                |                                    |
| Expanded Uncertainty (95% Confidence Interval)                           | 7.3.2                                               |                                  | k=2                         |             |          |           | 19.21                              | 19.17                               |                                    |





Test Report Issue Date
April 24, 2012

<u>Test Report Serial No.</u> 020911Q2G-T1079-S24M

Description of Test(s)

Specific Absorption Rate

RF Exposure Category
Gen. Pop. / Uncontrolled

Test Report Revision No.

Rev. 1.1 (2nd Release)



# **MEASUREMENT UNCERTAINTIES (Cont.)**

|                                                                          | UNCERTA                                                                  | AINTY BUDG                       | SET FOR DE                  | VICE EVALU      | JATIO    | N         |                                    |                                     |                                       |
|--------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------|-----------------------------|-----------------|----------|-----------|------------------------------------|-------------------------------------|---------------------------------------|
| Source of Uncertainty                                                    | IEC<br>62209-2<br>Section                                                | Tolerance /<br>Uncertainty<br>±% | Probability<br>Distribution | Divisor         | ci<br>1g | ci<br>10g | Standard<br>Uncertainty<br>±% (1g) | Standard<br>Uncertainty<br>±% (10g) | V <sub>i</sub> or<br>V <sub>eff</sub> |
| Measurement System                                                       |                                                                          |                                  |                             |                 |          |           |                                    |                                     |                                       |
| Probe Calibration (1800 MHz)                                             | 7.2.2.1                                                                  | 5.5                              | Normal                      | 1               | 1        | 1         | 5.5                                | 5.5                                 | $\infty$                              |
| Isotropy                                                                 | 7.2.2.2                                                                  | 4.7                              | Rectangular                 | 1.732050808     | 1        | 1         | 2.7                                | 2.7                                 | $\infty$                              |
| Boundary Effect                                                          | 7.2.2.6                                                                  | 1                                | Rectangular                 | 1.732050808     | 1        | 1         | 0.6                                | 0.6                                 | $\infty$                              |
| Linearity                                                                | 7.2.2.3                                                                  | 4.7                              | Rectangular                 | 1.732050808     | 1        | 1         | 2.7                                | 2.7                                 | 8                                     |
| Detection Limits                                                         | 7.2.2.5                                                                  | 1                                | Rectangular                 | 1.732050808     | 1        | 1         | 0.6                                | 0.6                                 | ∞                                     |
| Readout Electronics                                                      | 7.2.2.7                                                                  | 0.3                              | Normal                      | 1               | 1        | 1         | 0.3                                | 0.3                                 | ∞                                     |
| Response Time                                                            | 7.2.2.8                                                                  | 0.8                              | Rectangular                 | 1.732050808     | 1        | 1         | 0.5                                | 0.5                                 | 8                                     |
| Integration Time                                                         | 7.2.2.9                                                                  | 2.6                              | Rectangular                 | 1.732050808     | 1        | 1         | 1.5                                | 1.5                                 | $\infty$                              |
| RF Ambient Conditions                                                    | 7.2.4.5                                                                  | 3                                | Rectangular                 | 1.732050808     | 1        | 1         | 1.7                                | 1.7                                 | ∞                                     |
| Probe Positioner Mechanical Restrictions                                 | 7.2.3.1                                                                  | 0.4                              | Rectangular                 | 1.732050808     | 1        | 1         | 0.2                                | 0.2                                 | $\infty$                              |
| Probe Positioning wrt Phantom Shell                                      | 7.2.3.3                                                                  | 2.9                              | Rectangular                 | 1.732050808     | 1        | 1         | 1.7                                | 1.7                                 | ∞                                     |
| Post-processing                                                          | 7.2.5                                                                    | 1                                | Rectangular                 | 1.732050808     | 1        | 1         | 0.6                                | 0.6                                 | ~                                     |
| Test Sample Related                                                      |                                                                          |                                  |                             |                 |          |           |                                    |                                     |                                       |
| Test Sample Positioning                                                  | 7.2.3.4.3                                                                | 2.9                              | Normal                      | 1               | 1        | 1         | 2.9                                | 2.9                                 | 12                                    |
| Device Holder Uncertainty                                                | 7.2.3.4.2                                                                | 3.6                              | Normal                      | 1               | 1        | 1         | 3.6                                | 3.6                                 | 8                                     |
| Drift of Output Power (meas. SAR drift)                                  | 7.2.2.10                                                                 | 5                                | Rectangular                 | 1.732050808     | 1        | 1         | 2.9                                | 2.9                                 | 8                                     |
| Phantom and Tissue Parameters                                            |                                                                          |                                  |                             |                 |          |           |                                    |                                     |                                       |
| Phantom Uncertainty                                                      | 7.2.3.2                                                                  | 4                                | Rectangular                 | 1.732050808     | 1        | 1         | 2.3                                | 2.3                                 | ∞                                     |
| SAR Correction Algorithm for deviations in permittivity and conductivity | 7.2.4.3                                                                  | 1.2                              | Normal                      | 1               | 1        | 0.81      | 1.2                                | 0.97                                | 8                                     |
| Liquid Conductivity (measured)                                           | 7.2.4.3                                                                  | 2.68                             | Normal                      | 1               | 0.78     | 0.71      | 2.1                                | 1.9                                 | 8                                     |
| Liquid Permittivity (measured)                                           | 7.2.4.3                                                                  | 2.36                             | Normal                      | 1               | 0.23     | 0.26      | 0.5                                | 0.6                                 | 8                                     |
| Liquid Permittivity - temp. uncertainty                                  | 7.2.4.4                                                                  | 1.23                             | Rectangular                 | 1.732050808     | 0.78     | 0.71      | 0.6                                | 0.5                                 | 8                                     |
| Liquid Conductivity - temp. uncertainty                                  | - temp. uncertainty 7.2.4.4 0.93 Rectangular 1.732050808 0.23 0.26 0.1 0 |                                  | 0.1                         | 8               |          |           |                                    |                                     |                                       |
| Combined Standard Uncertainty                                            | 7.3.1                                                                    |                                  | RSS                         |                 |          |           | 9.79                               | 9.73                                |                                       |
| Expanded Uncertainty (95% Confidence Interval)                           | 7.3.2                                                                    |                                  | k=2                         |                 |          |           | 19.58                              | 19.46                               |                                       |
| Measurement                                                              | Uncertainty                                                              | / Table in acco                  | rdance with Int             | ernational Stan | dard IE  | C 6220    | 9-2:2010                           |                                     |                                       |





Test Report Issue Date
April 24, 2012

<u>Test Report Serial No.</u> 020911Q2G-T1079-S24M

Description of Test(s)

Specific Absorption Rate

RF Exposure Category
Gen. Pop. / Uncontrolled

Test Report Revision No.

Rev. 1.1 (2nd Release)



# **MEASUREMENT UNCERTAINTIES (Cont.)**

|                                                                                          | UNCERTA                   | INTY BUDG                        | ET FOR DE                   | VICE EVALU  | IATIO    | N         |                                    |                                     |                                    |
|------------------------------------------------------------------------------------------|---------------------------|----------------------------------|-----------------------------|-------------|----------|-----------|------------------------------------|-------------------------------------|------------------------------------|
| Source of Uncertainty                                                                    | IEC<br>62209-2<br>Section | Tolerance /<br>Uncertainty<br>±% | Probability<br>Distribution | Divisor     | ci<br>1g | ci<br>10g | Standard<br>Uncertainty<br>±% (1g) | Standard<br>Uncertainty<br>±% (10g) | V <sub>i</sub> or V <sub>eff</sub> |
| Measurement System                                                                       |                           |                                  |                             |             |          |           |                                    |                                     |                                    |
| Probe Calibration (2450 MHz)                                                             | 7.2.2.1                   | 5.5                              | Normal                      | 1           | 1        | 1         | 5.5                                | 5.5                                 | ∞                                  |
| Isotropy                                                                                 | 7.2.2.2                   | 4.7                              | Rectangular                 | 1.732050808 | 1        | 1         | 2.7                                | 2.7                                 | ∞                                  |
| Boundary Effect                                                                          | 7.2.2.6                   | 1                                | Rectangular                 | 1.732050808 | 1        | 1         | 0.6                                | 0.6                                 | ∞                                  |
| Linearity                                                                                | 7.2.2.3                   | 4.7                              | Rectangular                 | 1.732050808 | 1        | 1         | 2.7                                | 2.7                                 | ∞                                  |
| Detection Limits                                                                         | 7.2.2.5                   | 1                                | Rectangular                 | 1.732050808 | 1        | 1         | 0.6                                | 0.6                                 | ∞                                  |
| Readout Electronics                                                                      | 7.2.2.7                   | 0.3                              | Normal                      | 1           | 1        | 1         | 0.3                                | 0.3                                 | ∞                                  |
| Response Time                                                                            | 7.2.2.8                   | 0.8                              | Rectangular                 | 1.732050808 | 1        | 1         | 0.5                                | 0.5                                 | ∞                                  |
| Integration Time                                                                         | 7.2.2.9                   | 2.6                              | Rectangular                 | 1.732050808 | 1        | 1         | 1.5                                | 1.5                                 | ∞                                  |
| RF Ambient Conditions                                                                    | 7.2.4.5                   | 3                                | Rectangular                 | 1.732050808 | 1        | 1         | 1.7                                | 1.7                                 | ∞                                  |
| Probe Positioner Mechanical Restrictions                                                 | 7.2.3.1                   | 0.4                              | Rectangular                 | 1.732050808 | 1        | 1         | 0.2                                | 0.2                                 | ∞                                  |
| Probe Positioning wrt Phantom Shell                                                      | 7.2.3.3                   | 2.9                              | Rectangular                 | 1.732050808 | 1        | 1         | 1.7                                | 1.7                                 | ∞                                  |
| Post-processing                                                                          | 7.2.5                     | 1                                | Rectangular                 | 1.732050808 | 1        | 1         | 0.6                                | 0.6                                 | ∞                                  |
| Test Sample Related                                                                      |                           |                                  |                             |             |          |           |                                    |                                     |                                    |
| Test Sample Positioning                                                                  | 7.2.3.4.3                 | 2.9                              | Normal                      | 1           | 1        | 1         | 2.9                                | 2.9                                 | 12                                 |
| Device Holder Uncertainty                                                                | 7.2.3.4.2                 | 3.6                              | Normal                      | 1           | 1        | 1         | 3.6                                | 3.6                                 | 8                                  |
| Drift of Output Power (meas. SAR drift)                                                  | 7.2.2.10                  | 5                                | Rectangular                 | 1.732050808 | 1        | 1         | 2.9                                | 2.9                                 | 8                                  |
| Phantom and Tissue Parameters                                                            |                           |                                  |                             |             |          |           |                                    |                                     |                                    |
| Phantom Uncertainty                                                                      | 7.2.3.2                   | 4                                | Rectangular                 | 1.732050808 | 1        | 1         | 2.3                                | 2.3                                 | ∞                                  |
| SAR Correction Algorithm for deviations in permittivity and conductivity                 | 7.2.4.3                   | 1.2                              | Normal                      | 1           | 1        | 0.81      | 1.2                                | 0.97                                | ∞                                  |
| Liquid Conductivity (measured)                                                           | 7.2.4.3                   | 1.03                             | Normal                      | 1           | 0.78     | 0.71      | 0.8                                | 0.7                                 | 90                                 |
| Liquid Permittivity (measured)                                                           | 7.2.4.3                   | 4.17                             | Normal                      | 1           | 0.23     | 0.26      | 1.0                                | 1.1                                 | ∞                                  |
| Liquid Permittivity - temp. uncertainty                                                  | 7.2.4.4                   | 1.23                             | Rectangular                 | 1.732050808 | 0.78     | 0.71      | 0.6                                | 0.5                                 | ∞                                  |
| Liquid Conductivity - temp. uncertainty                                                  | 7.2.4.4                   | 0.93                             | Rectangular                 | 1.732050808 | 0.23     | 0.26      | 0.1                                | 0.1                                 | 00                                 |
|                                                                                          |                           |                                  |                             | ~           |          |           |                                    |                                     |                                    |
| Combined Standard Uncertainty                                                            | 7.3.1                     |                                  | RSS                         |             |          |           | 9.63                               | 9.61                                |                                    |
| Expanded Uncertainty (95% Confidence Interval)                                           | 7.3.2                     |                                  | k=2                         |             |          |           | 19.26                              | 19.22                               |                                    |
| Measurement Uncertainty Table in accordance with International Standard IEC 62209-2:2010 |                           |                                  |                             |             |          |           |                                    |                                     |                                    |





Test Report Issue Date
April 24, 2012

<u>Test Report Serial No.</u> 020911Q2G-T1079-S24M

Description of Test(s)

Specific Absorption Rate

RF Exposure Category
Gen. Pop. / Uncontrolled

Test Report Revision No.

Rev. 1.1 (2nd Release)



# **MEASUREMENT UNCERTAINTIES (Cont.)**

|                                                                          | UNCERT                    | AINTY BUDO                       | SET FOR DE                  | VICE EVALU      | JATIO    | N         |                                    |                                     |                                    |
|--------------------------------------------------------------------------|---------------------------|----------------------------------|-----------------------------|-----------------|----------|-----------|------------------------------------|-------------------------------------|------------------------------------|
| Source of Uncertainty                                                    | IEC<br>62209-2<br>Section | Tolerance /<br>Uncertainty<br>±% | Probability<br>Distribution | Divisor         | ci<br>1g | ci<br>10g | Standard<br>Uncertainty<br>±% (1g) | Standard<br>Uncertainty<br>±% (10g) | V <sub>i</sub> or V <sub>eff</sub> |
| Measurement System                                                       |                           |                                  |                             |                 |          |           |                                    |                                     |                                    |
| Probe Calibration (5 GHz)                                                | 7.2.2.1                   | 6.55                             | Normal                      | 1               | 1        | 1         | 6.55                               | 6.55                                | ∞                                  |
| Isotropy                                                                 | 7.2.2.2                   | 4.7                              | Rectangular                 | 1.732050808     | 1        | 1         | 2.7                                | 2.7                                 | ∞                                  |
| Boundary Effect                                                          | 7.2.2.6                   | 1                                | Rectangular                 | 1.732050808     | 1        | 1         | 0.6                                | 0.6                                 | ∞                                  |
| Linearity                                                                | 7.2.2.3                   | 4.7                              | Rectangular                 | 1.732050808     | 1        | 1         | 2.7                                | 2.7                                 | $\infty$                           |
| Detection Limits                                                         | 7.2.2.5                   | 1                                | Rectangular                 | 1.732050808     | 1        | 1         | 0.6                                | 0.6                                 | $\infty$                           |
| Readout Electronics                                                      | 7.2.2.7                   | 0.3                              | Normal                      | 1               | 1        | 1         | 0.3                                | 0.3                                 | $\infty$                           |
| Response Time                                                            | 7.2.2.8                   | 0.8                              | Rectangular                 | 1.732050808     | 1        | 1         | 0.5                                | 0.5                                 | $\infty$                           |
| Integration Time                                                         | 7.2.2.9                   | 2.6                              | Rectangular                 | 1.732050808     | 1        | 1         | 1.5                                | 1.5                                 | $\infty$                           |
| RF Ambient Conditions                                                    | 7.2.4.5                   | 3                                | Rectangular                 | 1.732050808     | 1        | 1         | 1.7                                | 1.7                                 | $\infty$                           |
| Probe Positioner Mechanical Restrictions                                 | 7.2.3.1                   | 0.4                              | Rectangular                 | 1.732050808     | 1        | 1         | 0.2                                | 0.2                                 | $\infty$                           |
| Probe Positioning wrt Phantom Shell                                      | 7.2.3.3                   | 2.9                              | Rectangular                 | 1.732050808     | 1        | 1         | 1.7                                | 1.7                                 | ∞                                  |
| Post-processing                                                          | 7.2.5                     | 1                                | Rectangular                 | 1.732050808     | 1        | 1         | 0.6                                | 0.6                                 | ∞                                  |
| Test Sample Related                                                      |                           |                                  |                             |                 |          |           |                                    |                                     |                                    |
| Test Sample Positioning                                                  | 7.2.3.4.3                 | 2.9                              | Normal                      | 1               | 1        | 1         | 2.9                                | 2.9                                 | 12                                 |
| Device Holder Uncertainty                                                | 7.2.3.4.2                 | 3.6                              | Normal                      | 1               | 1        | 1         | 3.6                                | 3.6                                 | 8                                  |
| Drift of Output Power (meas. SAR drift)                                  | 7.2.2.10                  | 5                                | Rectangular                 | 1.732050808     | 1        | 1         | 2.9                                | 2.9                                 | 8                                  |
| Phantom and Tissue Parameters                                            |                           |                                  |                             |                 |          |           |                                    |                                     |                                    |
| Phantom Uncertainty                                                      | 7.2.3.2                   | 4                                | Rectangular                 | 1.732050808     | 1        | 1         | 2.3                                | 2.3                                 | 8                                  |
| SAR Correction Algorithm for deviations in permittivity and conductivity | 7.2.4.3                   | 1.2                              | Normal                      | 1               | 1        | 0.81      | 1.2                                | 0.97                                | 8                                  |
| Liquid Conductivity (measured)                                           | 7.2.4.3                   | 0.38                             | Normal                      | 1               | 0.78     | 0.71      | 0.3                                | 0.3                                 | 8                                  |
| Liquid Permittivity (measured)                                           | 7.2.4.3                   | 4.02                             | Normal                      | 1               | 0.23     | 0.26      | 0.9                                | 1.0                                 | ∞                                  |
| •                                                                        |                           | -                                |                             |                 |          |           |                                    | -                                   |                                    |
| Liquid Permittivity - temp. uncertainty                                  | 7.2.4.4                   | 0.68                             | Rectangular                 | 1.732050808     | 0.78     | 0.71      | 0.3                                | 0.3                                 | ∞                                  |
| Liquid Conductivity - temp. uncertainty                                  |                           |                                  | 8                           |                 |          |           |                                    |                                     |                                    |
| Combined Standard Uncertainty                                            | 7.3.1                     |                                  | RSS                         |                 |          |           | 10.23                              | 10.21                               |                                    |
| Expanded Uncertainty (95% Confidence Interval)                           | 7.3.2                     |                                  | k=2                         |                 |          |           | 20.45                              | 20.42                               |                                    |
| Measurement                                                              | Uncertainty               | / Table in acco                  | rdance with Int             | ernational Stan | dard IE  | C 6220    | 9-2:2010                           |                                     |                                    |





Test Report Issue Date
April 24, 2012

#### <u>Test Report Serial No.</u> 020911Q2G-T1079-S24M

<u>Description of Test(s)</u>

Specific Absorption Rate

RF Exposure Category

Gen. Pop. / Uncontrolled

Test Report Revision No.
Rev. 1.1 (2nd Release)



#### 24.0 REFERENCES

- [1] Federal Communications Commission "Radiofrequency radiation exposure evaluation: portable devices", Rule Part 47 CFR §2.1093.
- [2] Health Canada "Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz", Safety Code 6: 1999.
- [3] Federal Communications Commission "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.
- [4] Industry Canada "Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)", Radio Standards Specification RSS-102 Issue 4: March 2010.
- [5] IEEE Standard 1528-2003 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques": December 2003.
- [6] International Standard IEC 62209-2 Edition 1.0 2010-03 "Human exposure to radio frequency fields from hand-held & body-mounted wireless communication devices Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)".
- [7] Federal Communications Commission, Office of Engineering and Technology "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies"; KDB 447498 D01v04: November 2009.
- [8] Federal Communications Commission, Office of Engineering and Technology "Permissive Change Policies"; KDB 178919 D01v05r01: June 2011.
- [9] Federal Communications Commission "SAR Measurement Procedures for 3G Devices"; KDB 941225 D01v02: October 2007.
- [10] Federal Communications Commission, Office of Engineering and Technology "SAR Measurement Procedures for 802.11a/b/g Transmitters"; KDB 248227 D01v01r02: May 2007.
- [11] Federal Communications Commission, Office of Engineering and Technology "Application Note: SAR Probe Calibration and System Verification Considerations for Measurements at 150 MHz 3 GHz"; KDB 450824 D01 v01r01: January 2007.
- [12] Federal Communications Commission, Office of Engineering and Technology "SAR Measurement Requirements for 3 6 GHz"; KDB 865664 Rev. 1.1: October 2006.
- [13] Schmid & Partner Engineering AG DASY4 Manual V4.6, Chapter 17 Application Note, Body Tissue Recipe: Sept. 2005.
- [14] Schmid & Partner Engineering AG DASY4 Manual V4.6, Chapter 22 Application Note, SAR Sensitivities: Sept. 2005.
- [15] ISO/IEC 17025 "General requirements for the competence of testing and calibration laboratories (ISO/IEC 17025:2005)."



Test Report Issue Date
April 24, 2012

<u>Test Report Serial No.</u> 020911Q2G-T1079-S24M

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.1 (2nd Release)

RF Exposure Category
Gen. Pop. / Uncontrolled



# **APPENDIX A - SAR MEASUREMENT PLOTS**



Date Tested: 02/14/2011

# Date(s) of Evaluation February 14-18, 2011

April 24, 2012

020911Q2G-T1079-S24M Test Report Issue Date Description of Test(s)

Test Report Serial No.

Specific Absorption Rate

Rev. 1.1 (2nd Release) **RF Exposure Category** Gen. Pop. / Uncontrolled

Test Report Revision No.



# **Test Plot #B1**

DUT: Xplore Technologies; Type: GOBI3000 in iX104C5; Serial: IMEI 012412000101751

Ambient Temp: 23.5°C; Fluid Temp: 22.1°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: GPRS 2 Uplink Frequency: 836.6 MHz; Duty Cycle: 1:4.16

Medium: M835 Medium parameters used (interpolated): f = 836.6 MHz;  $\sigma = 0.96$  mho/m;  $\epsilon_r = 53.1$ ;  $\rho = 1000$  kg/m<sup>3</sup>

- Probe: ET3DV6 SN1590; ConvF(6.33, 6.33, 6.33); Calibrated: 15/07/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

# **Body SAR - Bottom Side of Tablet PC Touching Planar Phantom**

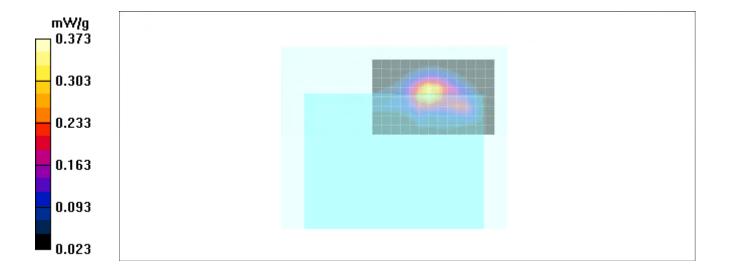
GPRS - Mid Ch - Main - Bottom Side/Area Scan (9x15x1):

Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.340 mW/g

GPRS – Mid Ch - Main - Bottom Side /Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 20.2 V/m; Power Drift = -0.053 dB

Peak SAR (extrapolated) = 0.478 W/kg

SAR(1 g) = 0.348 mW/g; SAR(10 g) = 0.232 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.373 mW/g



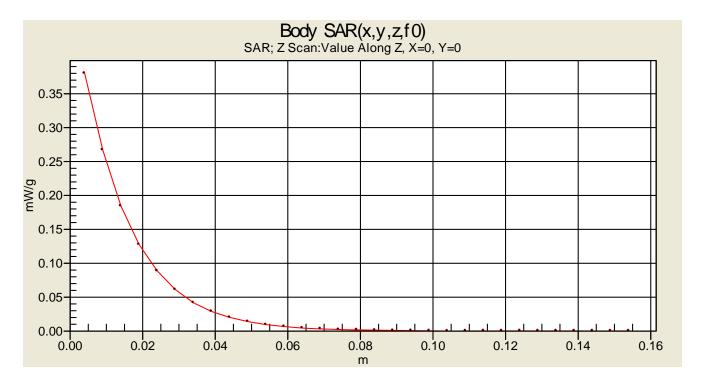


Test Report Issue Date
April 24, 2012

Test Report Serial No. 020911Q2G-T1079-S24M

Description of Test(s)

Specific Absorption Rate


Rev. 1.1 (2nd Release)

RF Exposure Category

Gen. Pop. / Uncontrolled

Test Report Revision No.









| Date(s) of Evaluation |
|-----------------------|
| February 14-18, 2011  |

Test Report Issue Date

April 24, 2012

Description of Test(s)

Specific Absorption Rate

Test Report Revision No.
Rev. 1.1 (2nd Release)

RF Exposure Category
Gen. Pop. / Uncontrolled



Date Tested: 02/14/2011

#### **Test Plot #B2**

DUT: Xplore Technologies; Type: GOBI3000 in iX104C5; Serial: IMEI 012412000101751

Ambient Temp: 23.5°C; Fluid Temp: 22.1°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: WCDMA Rel99 Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 836.4 MHz;  $\sigma = 0.96$  mho/m;  $\epsilon_r = 53.1$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Test Report Serial No.

020911Q2G-T1079-S24M

- Probe: ET3DV6 SN1590; ConvF(6.33, 6.33, 6.33); Calibrated: 15/07/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

#### **Body SAR - Bottom Side of Tablet PC Touching Planar Phantom**

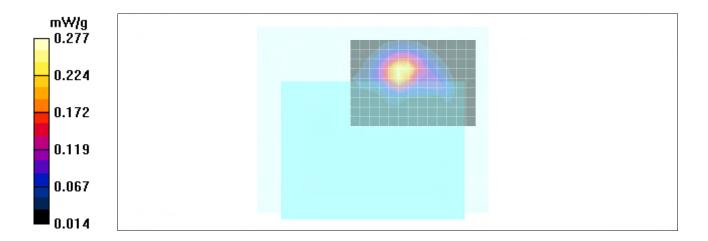
WCDMA Rel99 - Mid Ch - Main - Bottom Side /Area Scan (10x15x1):

Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.257 mW/g

WCDMA Rel99 - Mid Ch - Main - Bottom Side /Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 16.9 V/m; Power Drift = 0.056 dB

Peak SAR (extrapolated) = 0.341 W/kg

SAR(1 g) = 0.252 mW/g; SAR(10 g) = 0.167 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.277 mW/g





| Date(s) of Evaluation |
|-----------------------|
| February 14-18, 2011  |

Test Report Issue Date

April 24, 2012

Description of Test(s)

Specific Absorption Rate

Test Report Revision No.
Rev. 1.1 (2nd Release)

RF Exposure Category
Gen. Pop. / Uncontrolled



Date Tested: 02/14/2011

#### **Test Plot #B3**

DUT: Xplore Technologies; Type: GOBI3000 in iX104C5; Serial: IMEI 012412000101751

Ambient Temp: 23.5°C; Fluid Temp: 22.1°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: EVDO Rel. 0 Frequency: 836.52 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used (interpolated): f = 836.52 MHz;  $\sigma = 0.96$  mho/m;  $\epsilon_r = 53.1$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Test Report Serial No.

020911Q2G-T1079-S24M

- Probe: ET3DV6 SN1590; ConvF(6.33, 6.33, 6.33); Calibrated: 15/07/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

#### **Body SAR - Bottom Side of Tablet PC Touching Planar Phantom**

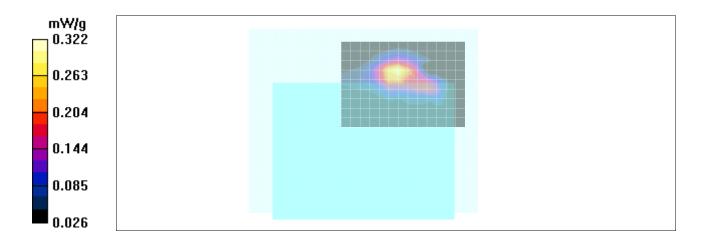
EVDO Rel. 0 - Mid Ch - Main - Bottom Side /Area Scan (10x15x1):

Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.305 mW/g

EVDO Rel. 0 - Mid Ch - Main - Bottom Side /Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 17.9 V/m; Power Drift = 0.022 dB

Peak SAR (extrapolated) = 0.413 W/kg

SAR(1 g) = 0.298 mW/g; SAR(10 g) = 0.198 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.322 mW/g





| Date(s) of Evaluation |
|-----------------------|
| February 14-18, 2011  |

Test Report Issue Date Description of Test(s)

April 24, 2012 Specific Absorption Rate

RF Exposure Category
Gen. Pop. / Uncontrolled



Date Tested: 02/15/2011

#### **Test Plot #B4**

DUT: Xplore Technologies; Type: GOBI3000 in iX104C5; Serial: IMEI 012412000101751

Ambient Temp: 23.8°C; Fluid Temp: 22.5°C; Barometric Pressure: 101.1 kPa; Humidity: 34%

Communication System: WCDMA Rel99 Frequency: 1732.6 MHz; Duty Cycle: 1:1

Medium: M1750 Medium parameters used (interpolated): f = 1732.6 MHz;  $\sigma = 1.45$  mho/m;  $\epsilon_r = 52.1$ ;  $\rho = 1000$  kg/m<sup>3</sup>

- Probe: EX3DV4 SN3600; ConvF(6.47, 6.47, 6.47); Calibrated: 29/04/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection (Locations From Previous Scan Used))Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

#### **Body SAR - Bottom Side of Tablet PC Touching Planar Phantom**

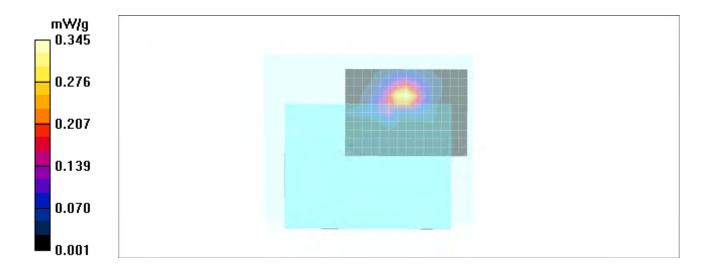
WCDMA Rel99 - Mid Ch - Main - Bottom Side /Area Scan (11x15x1):

Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.326 mW/g

WCDMA Rel99 - Mid Ch - Main - Bottom Side /Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 14.4 V/m; Power Drift = 0.056 dB

Peak SAR (extrapolated) = 0.454 W/kg

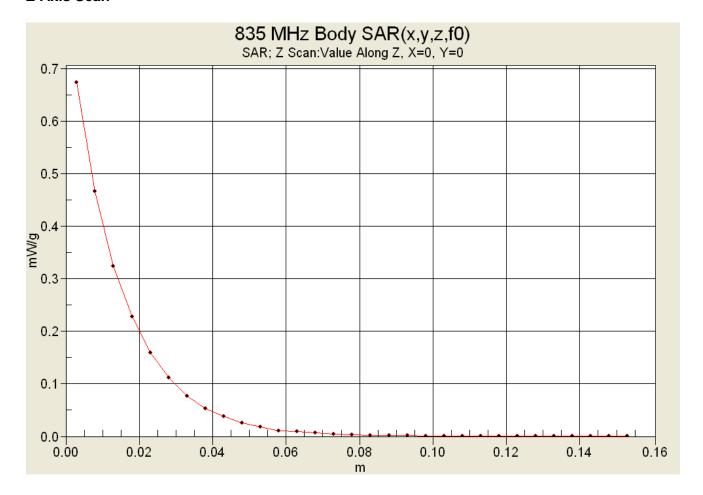
SAR(1 g) = 0.283 mW/g; SAR(10 g) = 0.183 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.345 mW/g






Test Report Issue Date April 24, 2012

Test Report Serial No. 020911Q2G-T1079-S24M Description of Test(s)

Specific Absorption Rate

Rev. 1.1 (2nd Release) RF Exposure Category Gen. Pop. / Uncontrolled









April 24, 2012

 February 14-18, 2011
 020911Q2G-T1079-S24M

 Test Report Issue Date
 Description of Test(s)

Test Report Serial No.

Specific Absorption Rate

Test Report Revision No.
Rev. 1.1 (2nd Release)

RF Exposure Category
Gen. Pop. / Uncontrolled



Date Tested: 02/18/2011

#### **Test Plot #B5**

DUT: Xplore Technologies; Type: GOBI3000 in iX104C5; Serial: IMEI 012412000101751

Ambient Temp: 23.6°C; Fluid Temp: 23.4°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: GPRS 2 Uplink Frequency: 1880 MHz; Duty Cycle: 1:4.16

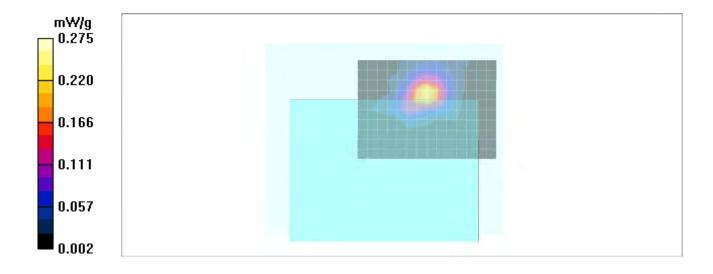
Medium: M1900 Medium parameters used: f = 1880 MHz;  $\sigma$  = 1.51 mho/m;  $\epsilon_r$  = 51.2;  $\rho$  = 1000 kg/m<sup>3</sup>

- Probe: EX3DV4 SN3600; ConvF(6.53, 6.53, 6.53); Calibrated: 29/04/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

#### **Body SAR - Bottom Side of Tablet PC Touching Planar Phantom**

GPRS - Mid Ch - Main - Bottom Side /Area Scan (11x15x1):

Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 0.237 mW/g

GPRS - Mid Ch - Main - Bottom Side/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 12.2 V/m; Power Drift = 0.023 dB

Peak SAR (extrapolated) = 0.377 W/kg

SAR(1 g) = 0.232 mW/g; SAR(10 g) = 0.138 mW/g Maximum value of SAR (measured) = 0.275 mW/g





Test Report Issue Date April 24, 2012

#### Test Report Serial No. 020911Q2G-T1079-S24M

Description of Test(s)

Specific Absorption Rate

**RF Exposure Category** Gen. Pop. / Uncontrolled

Rev. 1.1 (2nd Release)



Date Tested: 02/18/2011

#### **Test Plot #B6**

DUT: Xplore Technologies; Type: GOBI3000 in iX104C5; Serial: IMEI 012412000101751

Ambient Temp: 23.6°C; Fluid Temp: 23.4°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: WCDMA Rel99 Frequency: 1880 MHz; Duty Cycle: 1:1

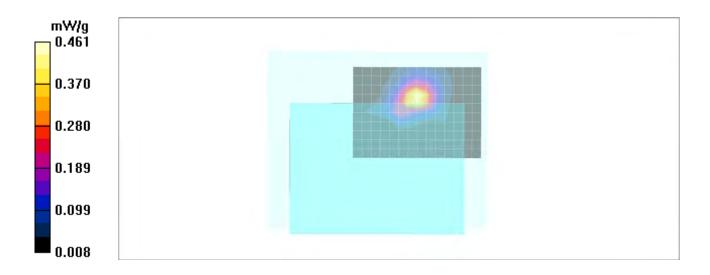
Medium: M1900 Medium parameters used: f = 1880 MHz;  $\sigma$  = 1.51 mho/m;  $\epsilon_r$  = 51.2;  $\rho$  = 1000 kg/m<sup>3</sup>

- Probe: EX3DV4 SN3600; ConvF(6.53, 6.53, 6.53); Calibrated: 29/04/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

# **Body SAR - Bottom Side of Tablet PC Touching Planar Phantom**

WCDMA Rel99 - Mid Ch - Main - Bottom Side /Area Scan (11x15x1):

Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 0.430 mW/g

WCDMA Rel99 - Mid Ch - Main - Bottom Side /Zoom Scan (7x7x7)/Cube 0:

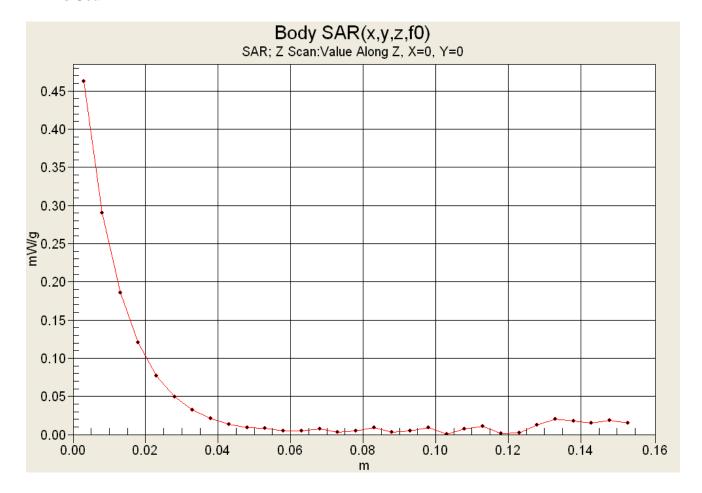
Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 16.7 V/m; Power Drift = 0.029 dB

Peak SAR (extrapolated) = 0.621 W/kg

SAR(1 g) = 0.389 mW/g; SAR(10 g) = 0.238 mW/gMaximum value of SAR (measured) = 0.461 mW/g






Test Report Issue Date April 24, 2012

Test Report Serial No. 020911Q2G-T1079-S24M Description of Test(s)

Specific Absorption Rate

Rev. 1.1 (2nd Release) RF Exposure Category Gen. Pop. / Uncontrolled









Test Report Issue Date

April 24, 2012

Description of Test(s)

Specific Absorption Rate

#### <u>Test Report Serial No.</u> 020911Q2G-T1079-S24M

RF Exposure Category
Gen. Pop. / Uncontrolled

Test Report Revision No.

Rev. 1.1 (2nd Release)



Date Tested: 02/18/2011

#### **Test Plot #B7**

DUT: Xplore Technologies; Type: GOBI3000 in iX104C5; Serial: IMEI 012412000101751

Ambient Temp: 23.6°C; Fluid Temp: 23.4°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: EVDO Rel. 0 Frequency: 1880 MHz; Duty Cycle: 1:1

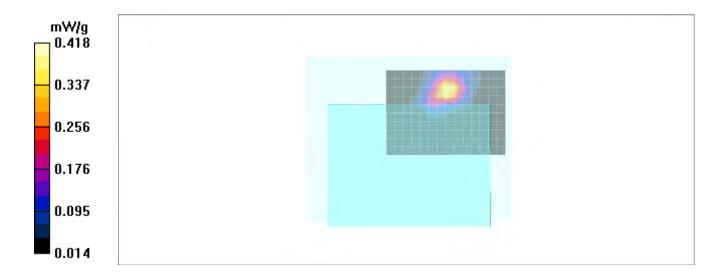
Medium: M1900 Medium parameters used: f = 1880 MHz;  $\sigma = 1.51 \text{ mho/m}$ ;  $\varepsilon_r = 51.2$ ;  $\rho = 1000 \text{ kg/m}^3$ 

- Probe: EX3DV4 SN3600; ConvF(6.53, 6.53, 6.53); Calibrated: 29/04/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

#### **Body SAR - Bottom Side of Tablet PC Touching Planar Phantom**

**EVDO Rel. 0 – Mid Ch - Main - Bottom Side /Area Scan (11x15x1):** 

Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 0.382 mW/g

EVDO Rel. 0 - Mid Ch - Main - Bottom Side /Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 15.9 V/m; Power Drift = -0.092 dB

Peak SAR (extrapolated) = 0.560 W/kg

**SAR(1 g) = 0.351 mW/g; SAR(10 g) = 0.214 mW/g** Maximum value of SAR (measured) = 0.418 mW/g





| Date(s) of Evaluation |
|-----------------------|
| February 14-18, 2011  |

Test Report Issue Date Description of Test(s)

April 24, 2012 Specific Absorption Rate

# Test Report Serial No. 020911Q2G-T1079-S24M Description of Test(s)

RF Exposure Category
Gen. Pop. / Uncontrolled

Test Report Revision No. Rev. 1.1 (2nd Release)



Date Tested: 02/16/2011

#### **Test Plot #B8**

DUT: Xplore Technologies; Type: 622ANHMW 802.11a/b/g/n in iX104C5; Serial: MAC 002314DB62B4

Ambient Temp: 23.8°C; Fluid Temp: 23.5°C; Barometric Pressure: 101.1 kPa; Humidity: 34%

Communication System: OFDM WLAN

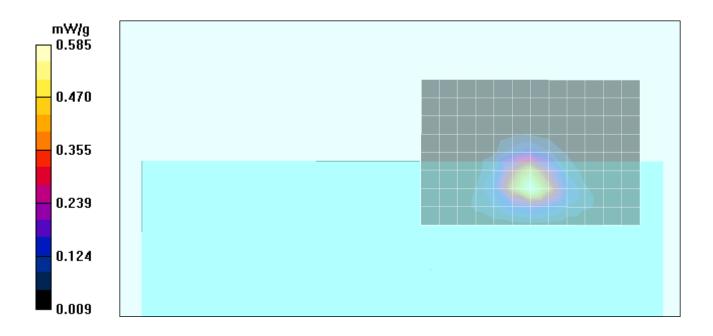
Frequency: 2442 MHz; Channel: 7; Duty Cycle: 1:1.01

Medium: M2450 Medium parameters used (Interpolated): f = 2442 MHz;  $\sigma = 1.97$  mho/m:  $\epsilon_r = 50.5$ ;  $\rho = 1000$  kg/m<sup>3</sup>

- Probe: EX3DV4 SN3600; ConvF(6.24, 6.24, 6.24); Calibrated: 29/04/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

#### **Body SAR - Bottom Side of Tablet PC Touching Planar Phantom**

Area Scan (9x13x1): Measurement grid: dx=10mm, dy=10mm


Maximum value of SAR (measured) = 0.601 mW/g

Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=3mm

Reference Value = 17.6 V/m; Power Drift = -0.011 dB

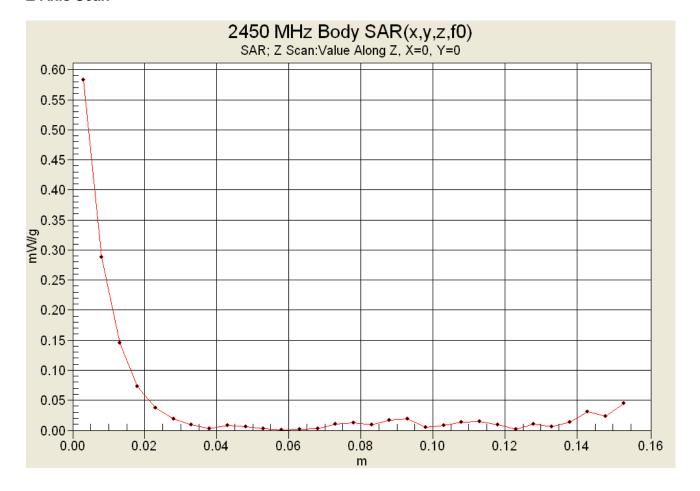
Peak SAR (extrapolated) = 0.955 W/kg

SAR(1 g) = 0.463 mW/g; SAR(10 g) = 0.208 mW/g Maximum value of SAR (measured) = 0.585 mW/g





Test Report Issue Date
April 24, 2012


Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Rev. 1.1 (2nd Release)
RF Exposure Category

Gen. Pop. / Uncontrolled



#### **Z-Axis Scan**



Test Report Serial No.

020911Q2G-T1079-S24M





April 24, 2012

February 14-18, 2011 020911Q2G-T1079-S24M

Test Report Issue Date Description of Test(s)

Test Report Serial No.

Specific Absorption Rate

Test Report Revision No.
Rev. 1.1 (2nd Release)

RF Exposure Category
Gen. Pop. / Uncontrolled



Date Tested: 02/17/2011

#### **Test Plot #B9**

DUT: Xplore Technologies; Type: 622ANHMW 802.11a/b/g/n in iX104C5; Serial: MAC 002314DB62B4

Ambient Temp: 23.8°C; Fluid Temp: 23.5°C; Barometric Pressure: 101.1 kPa; Humidity: 34%

Communication System: OFDM WLAN

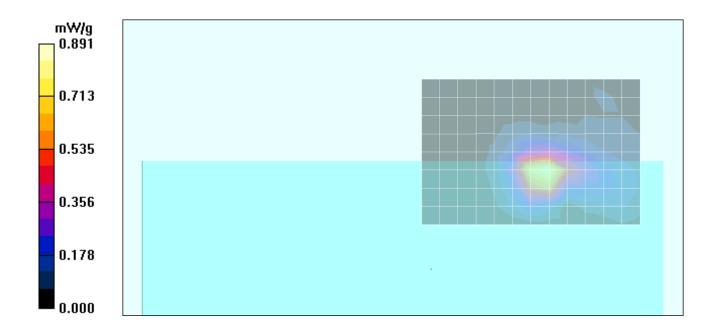
Frequency: 5300 MHz; Channel: 60; Duty Cycle: 1:1.01

Medium: M5200-5800 Medium parameters used: f = 5300 MHz;  $\sigma$  = 5.32 mho/m;  $\varepsilon_r$  = 51;  $\rho$  = 1000 kg/m<sup>3</sup>

- Probe: EX3DV4 SN3600; ConvF(3.73, 3.73, 3.73); Calibrated: 29/04/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

#### **Body SAR - Bottom Side of Tablet PC Touching Planar Phantom**

Area Scan (9x13x1): Measurement grid: dx=10mm, dy=10mm


Maximum value of SAR (measured) = 0.832 mW/g

Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=3mm

Reference Value = 13.1 V/m; Power Drift = -0.080 dB

Peak SAR (extrapolated) = 1.54 W/kg

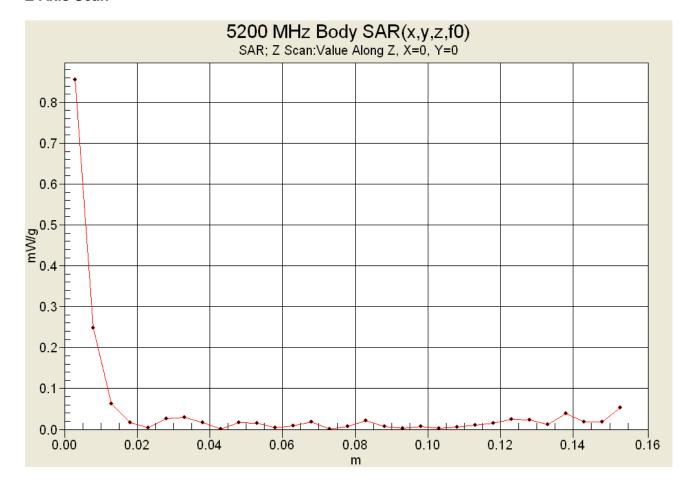
SAR(1 g) = 0.601 mW/g; SAR(10 g) = 0.228 mW/g Maximum value of SAR (measured) = 0.891 mW/g





Test Report Issue Date
April 24, 2012

Description of Test(s)
Specific Absorption Rate


Test Report Serial No.

020911Q2G-T1079-S24M

Test Report Revision No.
Rev. 1.1 (2nd Release)
RF Exposure Category

Gen. Pop. / Uncontrolled









Test Report Issue Date
April 24, 2012

<u>Test Report Serial No.</u> 020911Q2G-T1079-S24M

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.1 (2nd Release)

RF Exposure Category
Gen. Pop. / Uncontrolled



# **APPENDIX B - SYSTEM PERFORMANCE CHECK PLOTS**

| Applicant:       | Xploi                                                                                                                          | re Technologies Corp.   | FCC ID:    | Q2GGOBI3K-XPL          | IC:       | 4596A-GOBI3KXPL       | V xplc |  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------|------------------------|-----------|-----------------------|--------|--|
| DUT Type:        | Xplor                                                                                                                          | e Gobi3000 Mini-PCI Exp | oress WWAN | Nodule installed in Xp | olore iX1 | 04C5 Rugged Tablet PC | TECHN  |  |
| 2012 Celltech La | Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. |                         |            |                        |           |                       |        |  |



| Date(s) of Evaluation |
|-----------------------|
| February 14-18, 2011  |

April 24, 2012

February 14-18, 2011 020911Q2G-T1079-S24M

Test Report Issue Date Description of Test(s)

Test Report Serial No.

Specific Absorption Rate

Test Report Revision No.
Rev. 1.1 (2nd Release)

RF Exposure Category
Gen. Pop. / Uncontrolled



Date Tested: 02/14/2011

#### System Performance Check - 835 MHz Dipole - Body

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d075; Calibrated: 20/04/2009

Ambient Temp: 23.5°C; Fluid Temp: 22.1°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW

Frequency: 835 MHz; Duty Cycle: 1:1

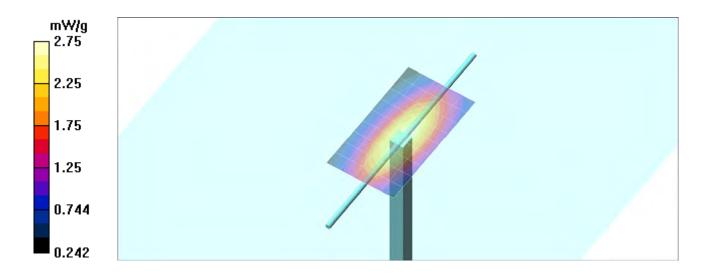
Medium: M835 Medium parameters used: f = 835 MHz;  $\sigma = 0.96$  mho/m;  $\epsilon_r = 53.1$ ;  $\rho = 1000$  kg/m<sup>3</sup>

- Probe: ET3DV6 SN1590; ConvF(6.33, 6.33, 6.33); Calibrated: 15/07/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

#### 835 MHz System Performance Check /Area Scan (6x10x1):

Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 2.74 mW/g


#### 835 MHz System Performance Check /Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.4 V/m; Power Drift = -0.097 dB

Peak SAR (extrapolated) = 3.66 W/kg

SAR(1 g) = 2.53 mW/g; SAR(10 g) = 1.65 mW/g

Maximum value of SAR (measured) = 2.75 mW/g



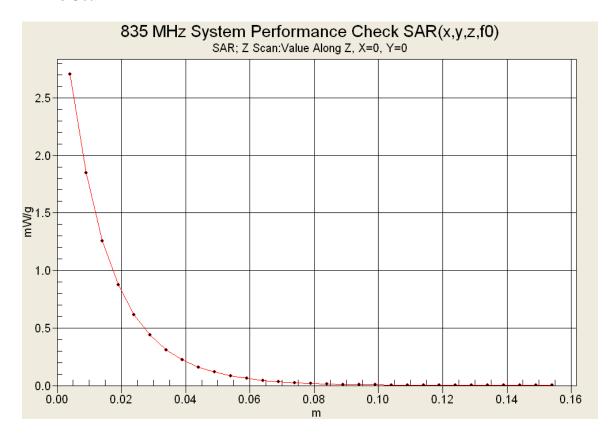


Test Report Issue Date
April 24, 2012

<u>Test Report Serial No.</u> 020911Q2G-T1079-S24M

Description of Test(s)

Specific Absorption Rate


Rev. 1.1 (2nd Release)

RF Exposure Category

Gen. Pop. / Uncontrolled

Test Report Revision No.









Test Report Issue Date

April 24, 2012

Description of Test(s)

Specific Absorption Rate

Test Report Revision No.
Rev. 1.1 (2nd Release)

RF Exposure Category
Gen. Pop. / Uncontrolled



Date Tested: 02/15/2011

# System Performance Check - 1800 MHz Dipole - Body

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: 247; Calibrated: 28/04/2010

Ambient Temp: 23.8°C; Fluid Temp: 22.5°C; Barometric Pressure: 101.1 kPa; Humidity: 34%

Communication System: CW

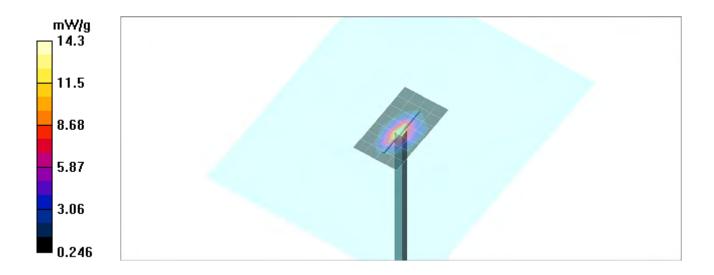
Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: M1800 Medium parameters used: f = 1800 MHz;  $\sigma = 1.51$  mho/m;  $\varepsilon_r = 51.7$ ;  $\rho = 1000$  kg/m<sup>3</sup>

- Probe: EX3DV4 SN3600; ConvF(6.47, 6.47, 6.47); Calibrated: 29/04/2010
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

**1800 MHz System Performance Check/Area Scan (5x8x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 12.4 mW/g

**1800 MHz System Performance Check/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm


Test Report Serial No.

020911Q2G-T1079-S24M

Reference Value = 90.8 V/m; Power Drift = -0.013 dB

Peak SAR (extrapolated) = 18.4 W/kg

SAR(1 g) = 9.96 mW/g; SAR(10 g) = 5.21 mW/g Maximum value of SAR (measured) = 14.3 mW/g

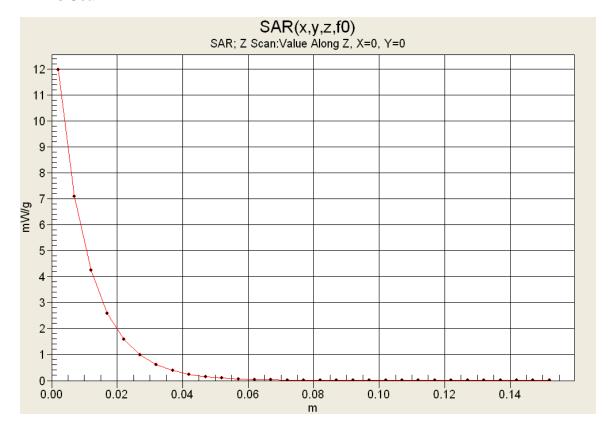




Test Report Issue Date
April 24, 2012

<u>Test Report Serial No.</u> 020911Q2G-T1079-S24M

Description of Test(s)


Specific Absorption Rate

RF Exposure Category
Gen. Pop. / Uncontrolled

Test Report Revision No.

Rev. 1.1 (2nd Release)









Test Report Issue Date April 24, 2012 Specific Absorption Rate

Test Report Serial No. 020911Q2G-T1079-S24M

Description of Test(s)

**RF Exposure Category** Gen. Pop. / Uncontrolled

Test Report Revision No.

Rev. 1.1 (2nd Release)



Date Tested: 02/16/2011

#### System Performance Check - 2450 MHz Dipole - Body

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 825; Calibrated: 17/04/2009

Ambient Temp: 23.8C; Fluid Temp: 23.5C; Barometric Pressure: 101.1 kPa; Humidity: 34%

Communication System: CW

Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: M2450 Medium parameters used: f = 2450 MHz;  $\sigma = 1.99$  mho/m;  $\epsilon_r = 50.5$ ;  $\rho = 1000$  kg/m<sup>3</sup>

- Probe: EX3DV4 SN3600; ConvF(6.24, 6.24, 6.24); Calibrated: 29/04/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

2450 MHz System Performance Check/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 17.7 mW/g

2450 MHz System Performance Check/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 90.1 V/m; Power Drift = -0.031 dB

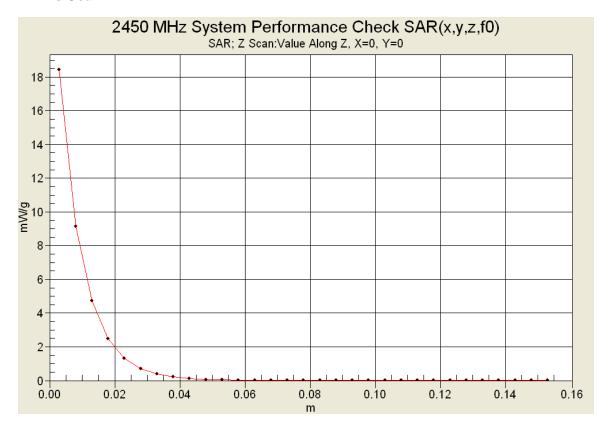
Peak SAR (extrapolated) = 28.5 W/kg

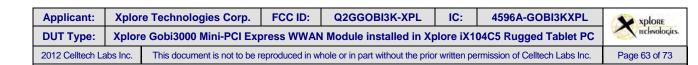
SAR(1 g) = 13.8 mW/g; SAR(10 g) = 6.38 mW/gMaximum value of SAR (measured) = 18.4 mW/g





Test Report Issue Date
April 24, 2012


<u>Test Report Serial No.</u> 020911Q2G-T1079-S24M


Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Rev. 1.1 (2nd Release)
RF Exposure Category

Gen. Pop. / Uncontrolled









Test Report Issue Date April 24, 2012

Test Report Serial No. 020911Q2G-T1079-S24M

Description of Test(s) **RF Exposure Category** Gen. Pop. / Uncontrolled Specific Absorption Rate

Test Report Revision No. Rev. 1.1 (2nd Release)





Date Tested: 02/17/2011

#### System Performance Check - 5 GHz Dipole - Body

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: 1031; Calibrated: 04/29/2009

Ambient Temp: 23.8C; Fluid Temp: 23.5C; Barometric Pressure: 101.1 kPa; Humidity: 34%

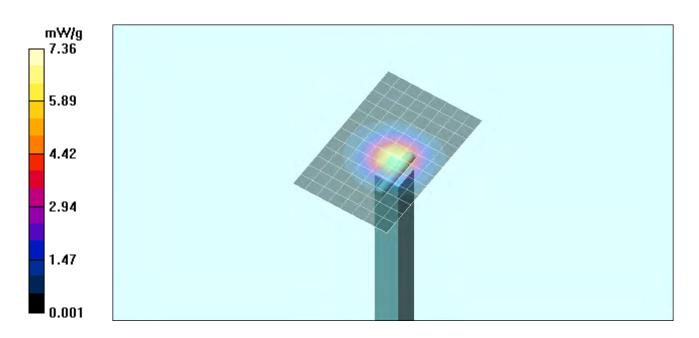
Communication System: CW

Frequency: 5200 MHz; Duty Cycle: 1:1

Medium: M5200-5800 Medium parameters used: f = 5200 MHz;  $\sigma = 5.23$  mho/m;  $\varepsilon_r = 50.4$ ;  $\rho = 1000$  kg/m<sup>3</sup>

- Probe: EX3DV4 SN3600; ConvF(3.73, 3.73, 3.73); Calibrated: 29/04/2010
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

5200 MHz System Performance Check - 50 mW/Area Scan (9x13x1): Measurement grid: dx=5mm, dy=5mm Maximum value of SAR (measured) = 6.94 mW/g


5200 MHz System Performance Check - 50 mW/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=2.5mm

Reference Value = 39.3 V/m; Power Drift = 0.037 dB

Peak SAR (extrapolated) = 13.1 W/kg

SAR(1 g) = 3.53 mW/g; SAR(10 g) = 1.000 mW/gMaximum value of SAR (measured) = 7.36 mW/g



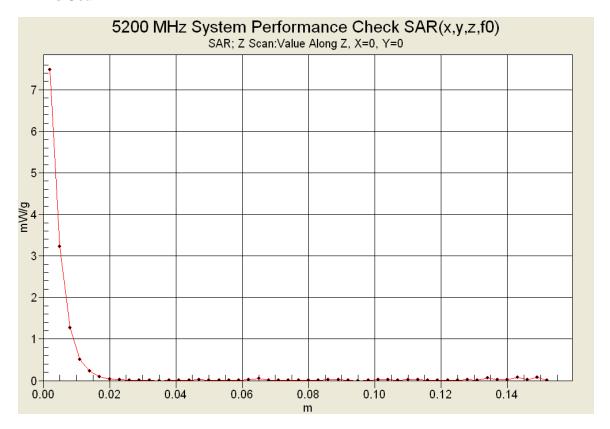


Test Report Issue Date
April 24, 2012

<u>Test Report Serial No.</u> 020911Q2G-T1079-S24M

Description of Test(s)

Specific Absorption Rate


Rev. 1.1 (2nd Release)

RF Exposure Category

Gen. Pop. / Uncontrolled

Test Report Revision No.





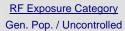




| Date(s) of Evaluation |
|-----------------------|
| February 14-18, 2011  |

Test Report Issue Date

April 24, 2012


Description of Test(s)

Specific Absorption Rate

Test Report Serial No.

020911Q2G-T1079-S24M

Test Report Revision No.
Rev. 1.1 (2nd Release)





Date Tested: 02/18/2011

#### System Performance Check - 1900 MHz Dipole - Body

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d107; Calibrated: 21/04/2009

Ambient Temp: 23.6C; Fluid Temp: 23.4C; Barometric Pressure: 101.1 kPa; Humidity: 35%

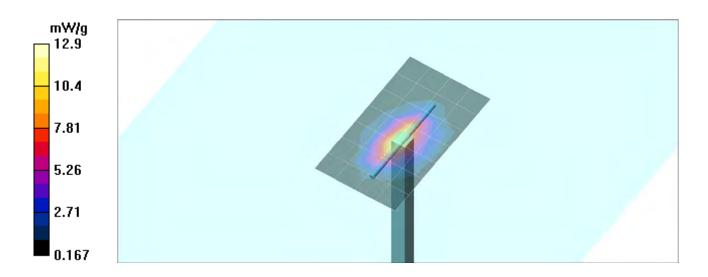
Communication System: CW

Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: M1900 Medium parameters used: f = 1900 MHz;  $\sigma$  = 1.52 mho/m;  $\epsilon_r$  = 51.1;  $\rho$  = 1000 kg/m<sup>3</sup>

- Probe: EX3DV4 SN3600; ConvF(6.53, 6.53, 6.53); Calibrated: 29/04/2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 27/04/2010
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

**1900 MHz System Performance Check Feb 15, 2011/Area Scan (5x8x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 11.7 mW/g


1900 MHz System Performance Check Feb 15, 2011/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 82.1 V/m; Power Drift = -0.113 dB

Peak SAR (extrapolated) = 19.4 W/kg

**SAR(1 g) = 10 mW/g; SAR(10 g) = 5.08 mW/g**Maximum value of SAR (measured) = 12.9 mW/g



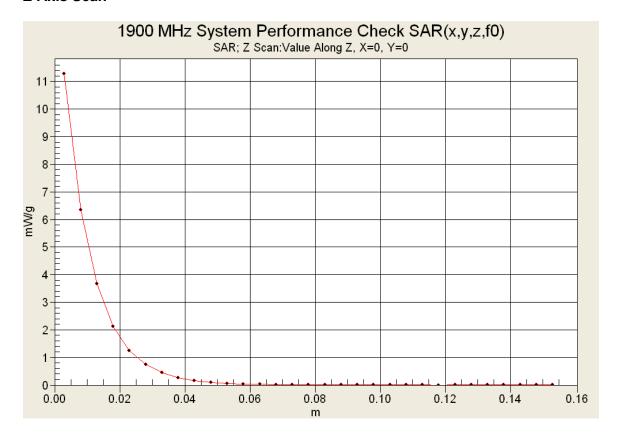


Test Report Issue Date
April 24, 2012

<u>Test Report Serial No.</u> 020911Q2G-T1079-S24M

Description of Test(s)

Specific Absorption Rate


Rev. 1.1 (2nd Release)

RF Exposure Category

Gen. Pop. / Uncontrolled

Test Report Revision No.









Test Report Issue Date
April 24, 2012

<u>Test Report Serial No.</u> 020911Q2G-T1079-S24M

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.1 (2nd Release)

RF Exposure Category
Gen. Pop. / Uncontrolled



# **APPENDIX C - SAR TEST SETUP PHOTOGRAPHS**



Test Report Issue Date April 24, 2012

Test Report Serial No. 020911Q2G-T1079-S24M

Description of Test(s) Specific Absorption Rate Test Report Revision No. Rev. 1.1 (2nd Release)

RF Exposure Category Gen. Pop. / Uncontrolled



# BODY (LAP-HELD) SAR TEST SETUP PHOTOGRAPHS Bottom Side of Tablet PC Touching Planar Phantom



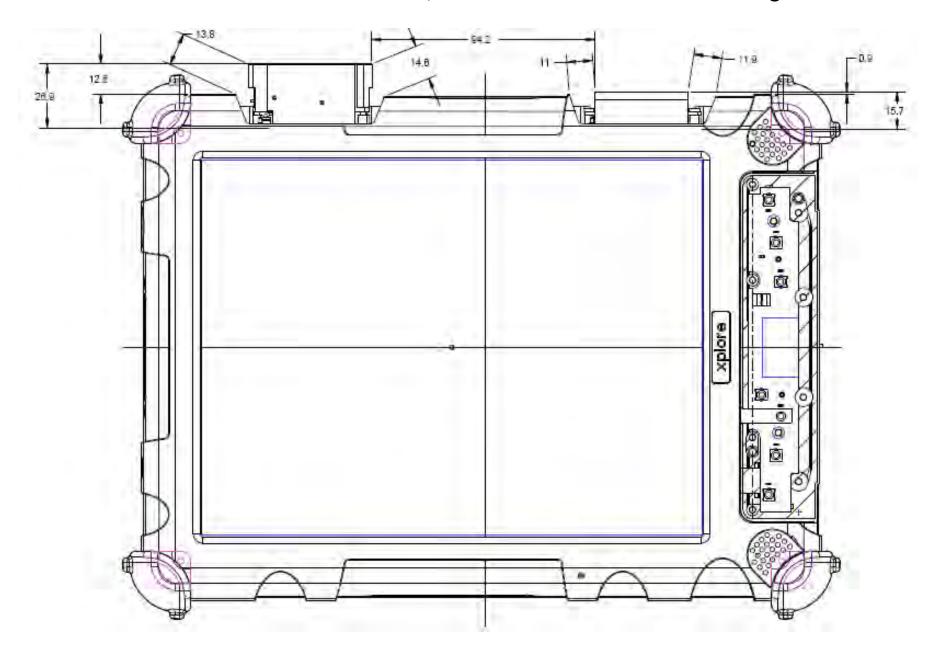


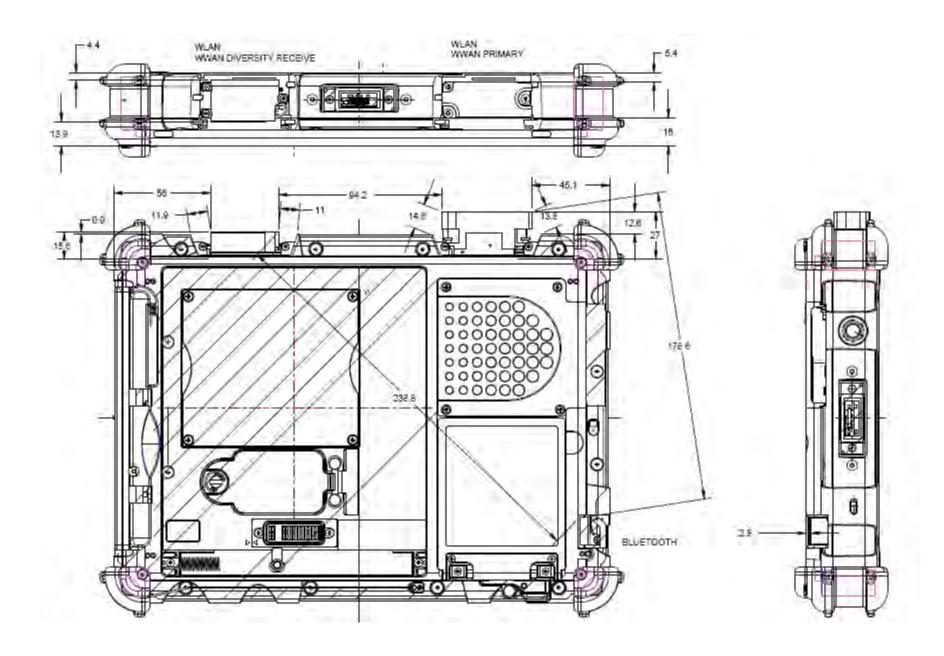




Test Report Issue Date
April 24, 2012

<u>Test Report Serial No.</u> 020911Q2G-T1079-S24M


<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.1 (2nd Release)


RF Exposure Category
Gen. Pop. / Uncontrolled



# **APPENDIX D - ANTENNA DISTANCES**

# Antenna-to-Antenna Distance / Antenna Distance to Tablet PC edges







| Date(s) of Evaluation |
|-----------------------|
| February 14-18, 2011  |

Test Report Issue Date
April 24, 2012

<u>Test Report Serial No.</u> 020911Q2G-T1079-S24M

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.1 (2nd Release)

RF Exposure Category
Gen. Pop. / Uncontrolled



#### **APPENDIX E - DIPOLE CALIBRATION**

#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S wiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

Celltech

Certificate No: D835V2-4d075\_Apr09

### **CALIBRATION CERTIFICATE**

Object

D835V2 - SN: 4d075

Calibration procedure(s)

QA CAL-05.v7

Calibration procedure for dipole validation kits

Calibration date:

April 20, 2009

Condition of the calibrated item

In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards           | ID#                | Cal Date (Certificate No.)        | Scheduled Calibration  |
|-----------------------------|--------------------|-----------------------------------|------------------------|
| Power meter EPM-442A        | GB37480704         | 08-Oct-08 (No. 217-00898)         | Oct-09                 |
| Power sensor HP 8481A       | US37292783         | 08-Oct-08 (No. 217-00898)         | Oct-09                 |
| Reference 20 dB Attenuator  | SN: 5086 (20g)     | 31-Mar-09 (No. 217-01025)         | Mar-10                 |
| Type-N mismatch combination | SN: 5047.2 / 06327 | 31-Mar-09 (No. 217-01029)         | Mar-10                 |
| Reference Probe ES3DV2      | SN: 3025           | 28-Apr-08 (No. ES3-3025_Apr08)    | Apr-09                 |
| DAE4                        | SN: 601            | 07-Mar-09 (No. DAE4-601_Mar09)    | Mar-10                 |
| Secondary Standards         | ID#                | Check Date (in house)             | Scheduled Check        |
| Power sensor HP 8481A       | MY41092317         | 18-Oct-02 (in house check Oct-07) | In house check: Oct-09 |
| RF generator R&S SMT-06     | 100005             | 4-Aug-99 (in house check Oct-07)  | In house check: Oct-09 |
| Network Analyzer HP 8753E   | US37390585 S4206   | 18-Oct-01 (in house check Oct-08) | In house check: Oct-09 |
|                             | Name               | Function                          | Signature              |
| Calibrated by:              | Jeton Kastrati     | Laboratory Technician             |                        |
|                             |                    |                                   | 156-                   |
| Approved by:                | Katja Pokovic      | Technical Manager                 | 20 11.e                |

Issued: April 22, 2009

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

# Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A not applicable or not measured

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

#### **Additional Documentation:**

d) DASY4/5 System Handbook

#### **Methods Applied and Interpretation of Parameters:**

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-4d075\_Apr09 Page 2 of 9

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                     | V5.0        |
|------------------------------|---------------------------|-------------|
| Extrapolation                | Advanced Extrapolation    |             |
| Phantom                      | Modular Flat Phantom V4.9 |             |
| Distance Dipole Center - TSL | 15 mm                     | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm         |             |
| Frequency                    | 835 MHz ± 1 MHz           |             |

### **Head TSL parameters**

The following parameters and calculations were applied.

|                                  | Temperature     | Permittivity | Conductivity     |
|----------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters      | 22.0 °C         | 41.5         | 0.90 mho/m       |
| Measured Head TSL parameters     | (22.0 ± 0.2) °C | 41.1 ± 6 %   | 0.89 mho/m ± 6 % |
| Head TSL temperature during test | (22.1 ± 0.2) °C |              |                  |

### **SAR result with Head TSL**

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                           |
|-------------------------------------------------------|--------------------|---------------------------|
| SAR measured                                          | 250 mW input power | 2.35 mW / g               |
| SAR normalized                                        | normalized to 1W   | 9.40 mW / g               |
| SAR for nominal Head TSL parameters <sup>1</sup>      | normalized to 1W   | 9.46 mW /g ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                           |
|---------------------------------------------------------|--------------------|---------------------------|
| SAR measured                                            | 250 mW input power | 1.54 mW / g               |
| SAR normalized                                          | normalized to 1W   | 6.16 mW / g               |
| SAR for nominal Head TSL parameters <sup>1</sup>        | normalized to 1W   | 6.19 mW /g ± 16.5 % (k=2) |

Certificate No: D835V2-4d075\_Apr09

<sup>&</sup>lt;sup>1</sup> Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

### **Body TSL parameters**

The following parameters and calculations were applied.

|                                  | Temperature     | Permittivity | Conductivity     |
|----------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters      | 22.0 °C         | 55.2         | 0.97 mho/m       |
| Measured Body TSL parameters     | (22.0 ± 0.2) °C | 53.9 ± 6 %   | 1.01 mho/m ± 6 % |
| Body TSL temperature during test | (22.1 ± 0.2) °C |              |                  |

### **SAR result with Body TSL**

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                            |
|-------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                          | 250 mW input power | 2.49 mW / g                |
| SAR normalized                                        | normalized to 1W   | 9.96 mW / g                |
| SAR for nominal Body TSL parameters <sup>2</sup>      | normalized to 1W   | 9.61 mW / g ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                            |
|---------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                            | 250 mW input power | 1.64 mW / g                |
| SAR normalized                                          | normalized to 1W   | 6.56 mW / g                |
| SAR for nominal Body TSL parameters <sup>2</sup>        | normalized to 1W   | 6.39 mW / g ± 16.5 % (k=2) |

Certificate No: D835V2-4d075\_Apr09

<sup>&</sup>lt;sup>2</sup> Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

#### **Appendix**

#### **Antenna Parameters with Head TSL**

| Impedance, transformed to feed point | 51.8 Ω - 3.1 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 29.1 dB       |

#### **Antenna Parameters with Body TSL**

| Impedance, transformed to feed point | 48.0 Ω - 4.1 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 26.7 dB       |

#### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.401 ns |
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG             |
|-----------------|-------------------|
| Manufactured on | November 09, 2007 |

Certificate No: D835V2-4d075\_Apr09

#### **DASY5 Validation Report for Head TSL**

Date/Time: 14.04.2009 11:20:38

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d075

Communication System: CW-835; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL 900 MHz

Medium parameters used: f = 835 MHz;  $\sigma = 0.89$  mho/m;  $\varepsilon_r = 41.1$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

#### DASY5 Configuration:

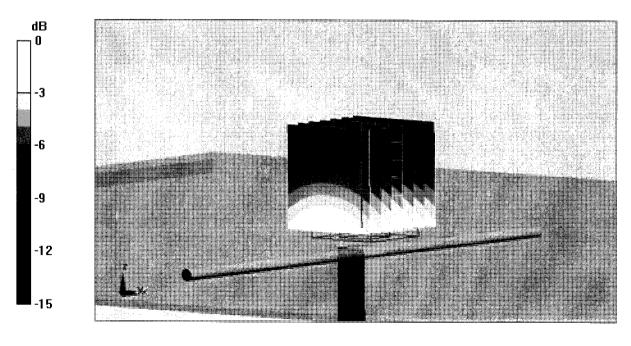
• Probe: ES3DV2 - SN3025; ConvF(5.97, 5.97, 5.97); Calibrated: 28.04.2008

• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 07.03.2009

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

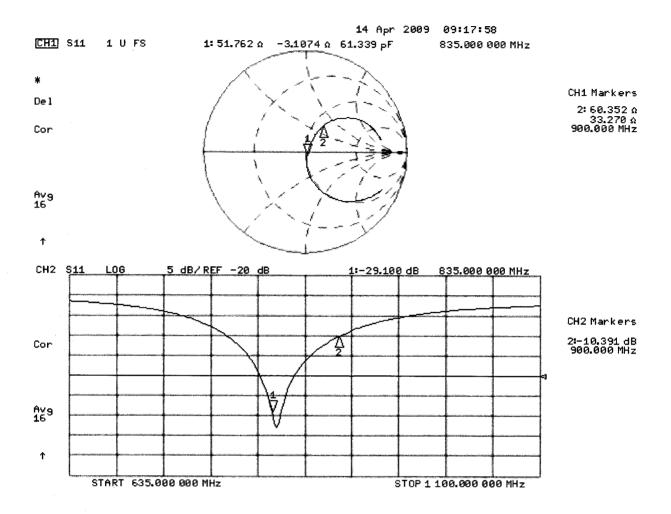
• Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45


# Pin=250mW; dip=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57 V/m; Power Drift = 0.011 dB

Peak SAR (extrapolated) = 3.47 W/kg

SAR(1 g) = 2.35 mW/g; SAR(10 g) = 1.54 mW/g


Maximum value of SAR (measured) = 2.74 mW/g



0 dB = 2.74 mW/g

Certificate No: D835V2-4d075 Apr09

### Impedance Measurement Plot for Head TSL



#### DASY5 Validation Report for Body TSL

Date/Time: 20.04.2009 09:57:39

Test Laboratory: SPEAG, Zurich, Switzerland

**DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d075** 

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL900

Medium parameters used: f = 835 MHz;  $\sigma = 1.01$  mho/m;  $\varepsilon_r = 53.9$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

#### **DASY5** Configuration:

Probe: ES3DV2 - SN3025; ConvF(5.9, 5.9, 5.9); Calibrated: 28.04.2008

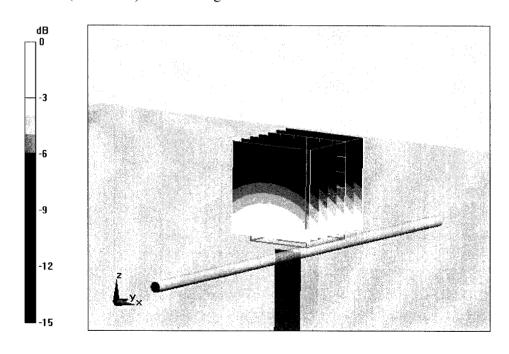
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 07.03.2009

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

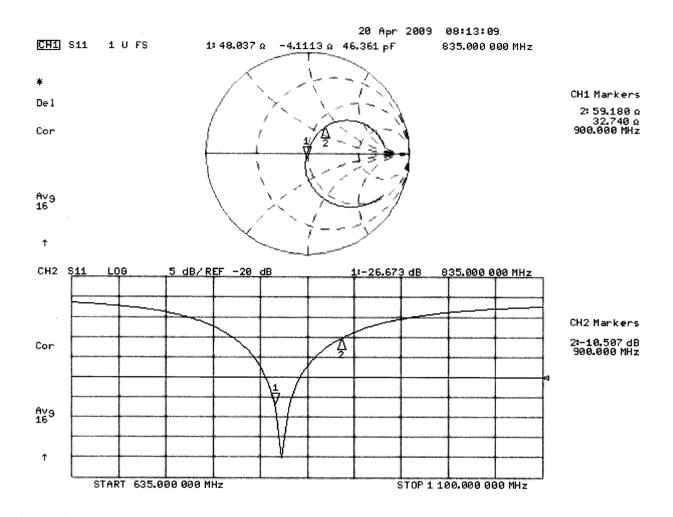
Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Pin = 250mW, d = 15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 55.4 V/m; Power Drift = -0.00173 dB

Peak SAR (extrapolated) = 3.61 W/kg


SAR(1 g) = 2.49 mW/g; SAR(10 g) = 1.64 mW/g

Maximum value of SAR (measured) = 2.9 mW/g



0 dB = 2.9 mW/g

### Impedance Measurement Plot for Body TSL



#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Celltech

Accreditation No.: SCS 108

Certificate No: D1800V2 247 Apr10

### CALIBRATION CERTIFICATE

Object

D1800V2 - SN: 247

Calibration procadure(s)

QA CAL-05.v7

Calibration procedure for dipole validation kits

Calibration date:

April 28, 2010

This calibration certificate documents the tracaability to national standards, which realize tha physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards           | ID#                | Cal Date (Certificate No.)        | Scheduled Calibration  |
|-----------------------------|--------------------|-----------------------------------|------------------------|
| Power meter EPM-442A        | GB37480704         | 06-Oct-09 (No. 217-01086)         | Oct-10                 |
| Power sensor HP 8481A       | US37292783         | 06-Oct-09 (No. 217-01086)         | Oct-10                 |
| Reference 20 dB Attenuator  | SN: 5086 (20g)     | 30-Mar-10 (No. 217-01158)         | Mar-11                 |
| Type-N mismatch combination | SN: 5047.2 / 06327 | 30-Mar-10 (No. 217-01162)         | Mar-11                 |
| Reference Probe ES3DV3      | SN: 3205           | 26-Jun-09 (No. ES3-3205_Jun09)    | Jun-10                 |
| DAE4                        | SN: 601            | 02-Mar-10 (No. DAE4-601_Mar10)    | Mar-11                 |
| Secondary Standards         | ID#                | Check Date (in house)             | Scheduled Check        |
| Power sensor HP 8481A       | MY41092317         | 18-Oct-02 (in house check Oct-09) | In house check: Oct-11 |
| RF generator R&S SMT-06     | 100005             | 4-Aug-99 (in house check Oct-09)  | In house check: Oct-11 |
| Network Analyzer HP 8753E   | US37390585 S4206   | 18-Oct-01 (in house check Oct-09) | In house check: Oct-10 |
|                             |                    |                                   |                        |
|                             | Nama               | Function                          | Cignoture              |

Calibrated by:

Name Dimce lliev Function

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: April 29, 2010

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1800V2-247\_Apr10

Page 1 of 9

#### Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S wiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

#### Additional Documentation:

d) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1800V2-247 Apr10

Page 2 of 9

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                     | V5.2                                  |
|------------------------------|---------------------------|---------------------------------------|
| Extrapolation                | Advanced Extrapolation    |                                       |
| Phantom                      | Modular Flat Phantom V5.0 | · · · · · · · · · · · · · · · · · · · |
| Distance Dipole Center - TSL | 10 mm                     | with Spacer                           |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm         |                                       |
| Frequency                    | 1800 MHz ± 1 MHz          | , ,                                   |

## **Head TSL parameters**

The following parameters and calculations were applied.

|                                  | Temperature     | Permittivity | Conductivity     |
|----------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters      | 22.0 °C         | 40.0         | 1.40 mho/m       |
| Measured Head TSL parameters     | (22.0 ± 0.2) °C | 40.5 ± 6 %   | 1.35 mho/m ± 6 % |
| Head TSL temperature during test | (22.2 ± 0.2) °C |              |                  |

### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                           |
|-------------------------------------------------------|--------------------|---------------------------|
| SAR measured                                          | 250 mW input power | 9.20 mW / g               |
| SAR normalized                                        | normalized to 1W   | 36.8 mW / g               |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 37.7 mW /g ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                           |
|---------------------------------------------------------|--------------------|---------------------------|
| SAR measured                                            | 250 mW input power | 4.85 mW / g               |
| SAR normalized                                          | normalized to 1W   | 19.4 mW / g               |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 19.6 mW /g ± 16.5 % (k=2) |

Body TSL parameters

The following parameters and calculations were applied.

|                                  | Temperature     | Permittivity | Conductivity     |
|----------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters      | 22.0 °C         | 53.3         | 1.52 mho/m       |
| Measured Body TSL parameters     | (22.0 ± 0.2) °C | 54.8 ± 6 %   | 1.47 mho/m ± 6 % |
| Body TSL temperature during test | (22.0 ± 0.2) °C |              |                  |

### SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                            |
|-------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                          | 250 mW input power | 9.64 mW / g                |
| SAR normalized                                        | normalized to 1W   | 38.6 mW / g                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 39.6 mW / g ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                            |
|---------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                            | 250 mW input power | 5.16 mW / g                |
| SAR normalized                                          | normalized to 1W   | 20.6 mW / g                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 20.9 mW / g ± 16.5 % (k=2) |

#### **Appendix**

#### **Antenna Parameters with Head TSL**

| Impedance, transformed to feed point | 48.6 Ω - 3.5 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 28.4 dB       |

#### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 44.6 Ω - 3.7 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 23.2 dB       |

#### General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.192 ns |
|----------------------------------|----------|
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

| Manufactured by | SPEAG           |
|-----------------|-----------------|
| Manufactured on | August 25, 1999 |

#### **DASY5 Validation Report for Head TSL**

Date/Time: 28.04.2010 11:41:11

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:247

Communication System: CW; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: HSL U11 BB

Medium parameters used: f = 1800 MHz;  $\sigma = 1.35 \text{ mho/m}$ ;  $\varepsilon_r = 40.5$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

#### DASY5 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(5.25, 5.25, 5.25); Calibrated: 26.06.2009

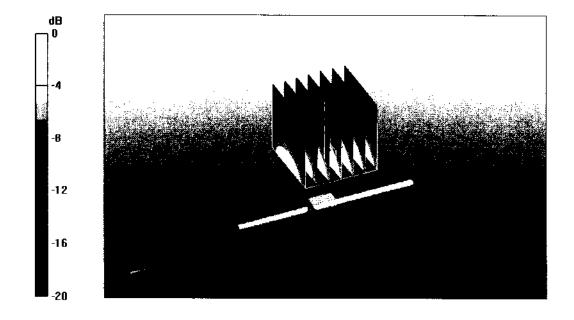
Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 02.03.2010

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

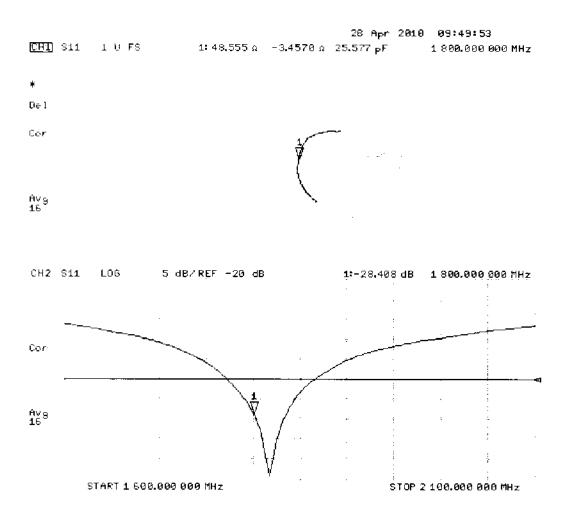
Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 57

### Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.2 V/m; Power Drift = 0.00286 dB

Peak SAR (extrapolated) = 16.6 W/kg


SAR(1 g) = 9.2 mW/g; SAR(10 g) = 4.85 mW/g

Maximum value of SAR (measured) = 11.7 mW/g



 $0 \, dB = 11.7 \, mW/g$ 

### Impedance Measurement Plot for Head TSL



#### **DASY5 Validation Report for Body**

Date/Time: 28.04.2010 12:33:53

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:247

Communication System: CW; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: MSL U10 BB

Medium parameters used: f = 1800 MHz;  $\sigma = 1.47 \text{ mho/m}$ ;  $\varepsilon_r = 54.8$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

#### DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.8, 4.8, 4.8); Calibrated: 26.06.2009

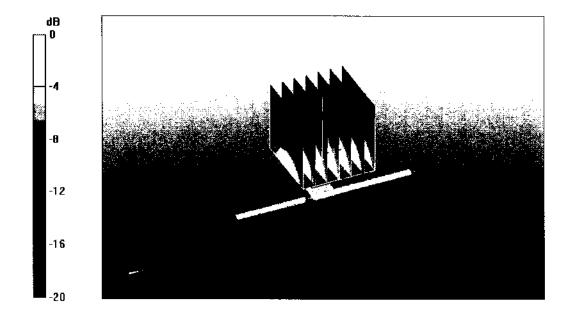
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 02.03.2010

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

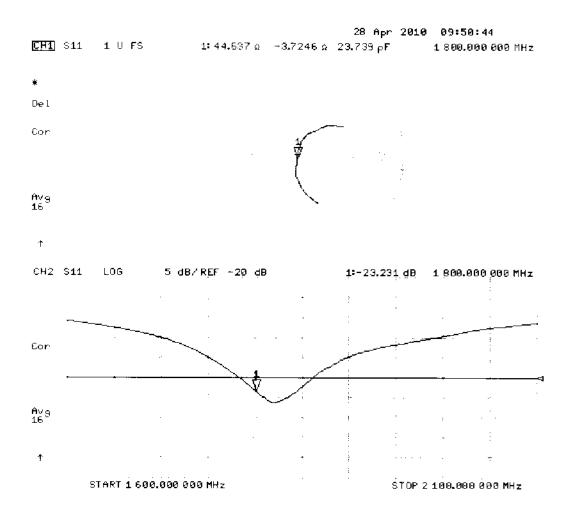
Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 57

#### Pin250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.8 V/m; Power Drift = -0.033 dB

Peak SAR (extrapolated) = 16.6 W/kg


SAR(1 g) = 9.64 mW/g; SAR(10 g) = 5.16 mW/g

Maximum value of SAR (measured) = 12.1 mW/g



0 dB = 12.1 mW/g

## Impedance Measurement Plot for Body TSL



#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

Celltech

Certificate No: D1900V2-5d107-Apr09

### **CALIBRATION CERTIFICATE**

Object D1900V2 - SN: 5d107

Calibration procedure(s) QA CAL-05.v7

Calibration procedure for dipole validation kits

Calibration date: April 21, 2009

Condition of the calibrated item In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards           | ID#                | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration  |
|-----------------------------|--------------------|-------------------------------------------|------------------------|
| Power meter EPM-442A        | GB37480704         | 08-Oct-08 (No. 217-00898)                 | Oct-09                 |
| Power sensor HP 8481A       | US37292783         | 08-Oct-08 (No. 217-00898)                 | Oct-09                 |
| Reference 20 dB Attenuator  | SN: 5086 (20g)     | 31-Mar-09 (No. 217-01025)                 | Mar-10                 |
| Type-N mismatch combination | SN: 5047.2 / 06327 | 31-Mar-09 (No. 217-01029)                 | Mar-10                 |
| Reference Probe ES3DV2      | SN: 3025           | 28-Apr-08 (No. ES3-3025_Apr08)            | Apr-09                 |
| DAE4                        | SN: 601            | 07-Mar-09 (No. DAE4-601_Mar09)            | Mar-10                 |
| Secondary Standards         | ID#                | Check Date (in house)                     | Scheduled Check        |
| Power sensor HP 8481A       | MY41092317         | 18-Oct-02 (in house check Oct-07)         | In house check: Oct-09 |
| RF generator R&S SMT-06     | 100005             | 4-Aug-99 (in house check Oct-07)          | In house check: Oct-09 |
| Network Analyzer HP 8753E   | US37390585 S4206   | 18-Oct-01 (in house check Oct-08)         | In house check: Oct-09 |

Name Function

Calibrated by: Claudio Leubler Laboratory Technician

Approved by: Katja Pokovic Technical Manager

Issued: April 24, 2009

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-5d107 Apr09

### **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

#### Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz 3 GHz), July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

#### **Additional Documentation:**

d) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1900V2-5d107 Apr09 Page 2 of 9

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                     | V5.0        |
|------------------------------|---------------------------|-------------|
| Extrapolation                | Advanced Extrapolation    |             |
| Phantom                      | Modular Flat Phantom V5.0 |             |
| Distance Dipole Center - TSL | 10 mm                     | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm         |             |
| Frequency                    | 1900 MHz ± 1 MHz          |             |

### **Head TSL parameters**

The following parameters and calculations were applied.

|                                  | Temperature     | Permittivity | Conductivity     |
|----------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters      | 22.0 °C         | 40.0         | 1.40 mho/m       |
| Measured Head TSL parameters     | (22.0 ± 0.2) °C | 38.6 ± 6 %   | 1.47 mho/m ± 6 % |
| Head TSL temperature during test | (22.0 ± 0.2) °C |              |                  |

### **SAR result with Head TSL**

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | condition          |                            |
|-------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                          | 250 mW input power | 10.6 mW / g                |
| SAR normalized                                        | normalized to 1W   | 42.4 mW / g                |
| SAR for nominal Head TSL parameters <sup>1</sup>      | normalized to 1W   | 40.9 mW / g ± 17.0 % (k=2) |

| SAR averaged over 10 cm³ (10 g) of Head TSL      | Condition          |                            |
|--------------------------------------------------|--------------------|----------------------------|
| SAR measured                                     | 250 mW input power | 5.45 mW / g                |
| SAR normalized                                   | normalized to 1W   | 21.8 mW / g                |
| SAR for nominal Head TSL parameters <sup>1</sup> | normalized to 1W   | 21.4 mW / g ± 16.5 % (k=2) |

Certificate No: D1900V2-5d107\_Apr09

<sup>&</sup>lt;sup>1</sup> Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

### **Body TSL parameters**

The following parameters and calculations were applied.

|                                  | Temperature     | Permittivity | Conductivity                            |
|----------------------------------|-----------------|--------------|-----------------------------------------|
| Nominal Body TSL parameters      | 22.0 °C         | 53.3         | 1.52 mho/m                              |
| Measured Body TSL parameters     | (22.0 ± 0.2) °C | 54.9 ± 6 %   | 1.56 mho/m ± 6 %                        |
| Body TSL temperature during test | (21.3 ± 0.2) °C |              | *************************************** |

### **SAR result with Body TSL**

| SAR averaged over 1 cm³ (1 g) of Body TSL        | Condition          |                            |
|--------------------------------------------------|--------------------|----------------------------|
| SAR measured                                     | 250 mW input power | 10.6 mW / g                |
| SAR normalized                                   | normalized to 1W   | 42.4 mW / g                |
| SAR for nominal Body TSL parameters <sup>2</sup> | normalized to 1W   | 42.1 mW / g ± 17.0 % (k=2) |

| SAR averaged over 10 cm³ (10 g) of Body TSL      | condition          |                            |
|--------------------------------------------------|--------------------|----------------------------|
| SAR measured                                     | 250 mW input power | 5.62 mW / g                |
| SAR normalized                                   | normalized to 1W   | 22.5 mW / g                |
| SAR for nominal Body TSL parameters <sup>2</sup> | normalized to 1W   | 22.4 mW / g ± 16.5 % (k=2) |

Certificate No: D1900V2-5d107\_Apr09

<sup>&</sup>lt;sup>2</sup> Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

#### **Appendix**

#### **Antenna Parameters with Head TSL**

| Impedance, transformed to feed point | 50.0 Ω + 5.5 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 25.2 dB       |

#### **Antenna Parameters with Body TSL**

| Impedance, transformed to feed point | 45.9 Ω + 6.3 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 22.1 dB       |

#### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.200 ns |
|----------------------------------|----------|
|                                  |          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semingid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG          |
|-----------------|----------------|
| Manufactured on | March 28, 2008 |

Certificate No: D1900V2-5d107\_Apr09

#### **DASY5 Validation Report for Head TSL**

Date/Time: 15.04.2009 15:01:47

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d107

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL U10 BB

Medium parameters used: f = 1900 MHz;  $\sigma = 1.47 \text{ mho/m}$ ;  $\epsilon_r = 38.6$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

#### **DASY5** Configuration:

• Probe: ES3DV2 - SN3025; ConvF(4.9, 4.9, 4.9); Calibrated: 28.04.2008

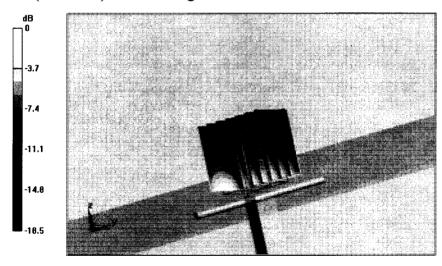
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 07.03.2009

• Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

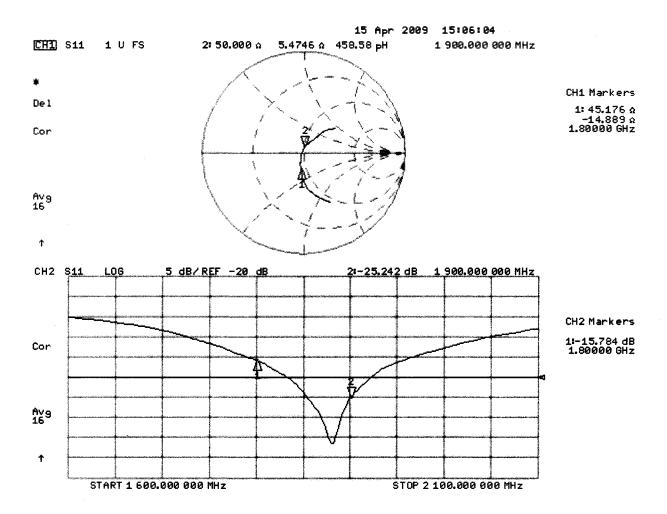
• Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

### Pin = 250 mW; dip = 10 mm, scan at 3.0 mm/Zoom Scan (dist=3.0 mm, probe 0deg)


(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.7 V/m; Power Drift = 0.031 dB

Peak SAR (extrapolated) = 20 W/kg


SAR(1 g) = 10.6 mW/g; SAR(10 g) = 5.45 mW/g

Maximum value of SAR (measured) = 13.2 mW/g



0 dB = 13.2 mW/g

### Impedance Measurement Plot for Head TSL



#### **DASY5 Validation Report for Body TSL**

Date/Time: 21.04.2009 15:29:55

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d107

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL U10 BB

Medium parameters used: f = 1900 MHz;  $\sigma = 1.56 \text{ mho/m}$ ;  $\varepsilon_r = 55$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

#### DASY5 Configuration:

• Probe: ES3DV2 - SN3025; ConvF(4.5, 4.5, 4.5); Calibrated: 28.04.2008

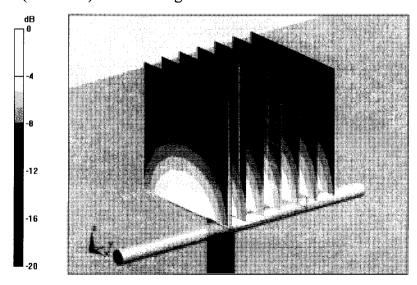
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 07.03,2009

• Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

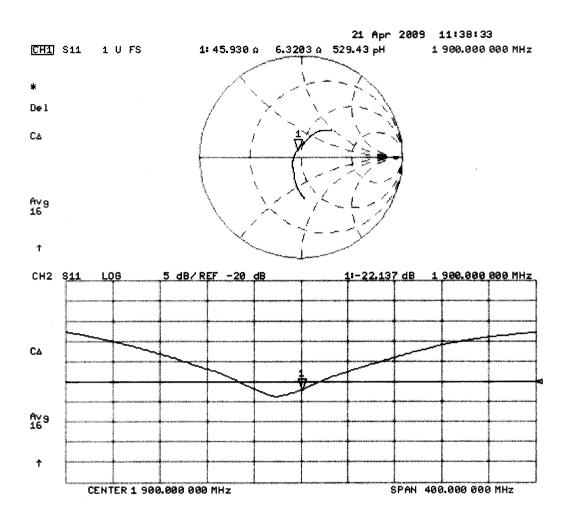
Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

#### Pin = 250 mW; dip = 10 mm, scan at 3.0mm/Zoom Scan (dist=3.4mm, probe 0deg)


(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.6 V/m; Power Drift = -0.00425 dB

Peak SAR (extrapolated) = 18.7 W/kg


SAR(1 g) = 10.6 mW/g; SAR(10 g) = 5.62 mW/g

Maximum value of SAR (measured) = 13.5 mW/g



0 dB = 13.5 mW/g

### Impedance Measurement Plot for Body TSL



#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

Celltech

Certificate No: D2450V2-825 Apr09

### **CALIBRATION CERTIFICATE**

Object

D2450V2 - SN: 825

Calibration procedure(s)

QA CAL-05.v7

Calibration procedure for dipole validation kits

Calibration date:

April 17, 2009

Condition of the calibrated item

In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards           | ID#                | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration  |
|-----------------------------|--------------------|-------------------------------------------|------------------------|
| Power meter EPM-442A        | GB37480704         | 08-Oct-08 (No. 217-00898)                 | Oct-09                 |
| Power sensor HP 8481A       | US37292783         | 08-Oct-08 (No. 217-00898)                 | Oct-09                 |
| Reference 20 dB Attenuator  | SN: 5086 (20g)     | 31-Mar-09 (No. 217-01025)                 | Mar-10                 |
| Type-N mismatch combination | SN: 5047.2 / 06327 | 31-Mar-09 (No. 217-01029)                 | Mar-10                 |
| Reference Probe ES3DV2      | SN: 3025           | 28-Apr-08 (No. ES3-3025_Apr08)            | Apr-09                 |
| DAE4                        | SN: 601            | 07-Mar-09 (No. DAE4-601_Mar09)            | Mar-10                 |
| Secondary Standards         | ID#                | Check Date (in house)                     | Scheduled Check        |
| Power sensor HP 8481A       | MY41092317         | 18-Oct-02 (in house check Oct-07)         | In house check: Oct-09 |
| RF generator R&S SMT-06     | 100005             | 4-Aug-99 (in house check Oct-07)          | In house check: Oct-09 |
| Network Analyzer HP 8753E   | US37390585 S4206   | 18-Oct-01 (in house check Oct-08)         | In house check: Oct-09 |

Calibrated by:

Name Claudio Leubler Function

Signature

Approved by:

Katja Pokovic

Technical Manager

Laboratory Technician

Issued: April 22, 2009

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-825\_Apr09

Page 1 of 9

#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

#### **Additional Documentation:**

d) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D2450V2-825\_Apr09 Page 2 of 9

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                     | V5.0        |
|------------------------------|---------------------------|-------------|
| Extrapolation                | Advanced Extrapolation    |             |
| Phantom                      | Modular Flat Phantom V5.0 |             |
| Distance Dipole Center - TSL | 10 mm                     | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm         |             |
| Frequency                    | 2450 MHz ± 1 MHz          |             |

#### **Head TSL parameters**

The following parameters and calculations were applied.

|                                  | Temperature     | Permittivity | Conductivity     |
|----------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters      | 22.0 °C         | 39.2         | 1.80 mho/m       |
| Measured Head TSL parameters     | (22.0 ± 0.2) °C | 38.0 ± 6 %   | 1.82 mho/m ± 6 % |
| Head TSL temperature during test | (22.0 ± 0.2) °C | *******      |                  |

#### **SAR result with Head TSL**

| SAR averaged over 1 cm³ (1 g) of Head TSL        | Condition          |                           |
|--------------------------------------------------|--------------------|---------------------------|
| SAR measured                                     | 250 mW input power | 13.6 mW / g               |
| SAR normalized                                   | normalized to 1W   | 54.4 mW / g               |
| SAR for nominal Head TSL parameters <sup>1</sup> | normalized to 1W   | 53.7 mW /g ± 17.0 % (k=2) |

| SAR averaged over 10 cm³ (10 g) of Head TSL      | condition          |                           |
|--------------------------------------------------|--------------------|---------------------------|
| SAR measured                                     | 250 mW input power | 6.29 mW / g               |
| SAR normalized                                   | normalized to 1W   | 25.2 mW / g               |
| SAR for nominal Head TSL parameters <sup>1</sup> | normalized to 1W   | 25.0 mW /g ± 16.5 % (k=2) |

Page 3 of 9

Certificate No: D2450V2-825\_Apr09

<sup>&</sup>lt;sup>1</sup> Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

### **Body TSL parameters**

The following parameters and calculations were applied.

|                                  | Temperature     | Permittivity | Conductivity     |
|----------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters      | 22.0 °C         | 52.7         | 1.95 mho/m       |
| Measured Body TSL parameters     | (22.0 ± 0.2) °C | 54.4 ± 6 %   | 1.98 mho/m ± 6 % |
| Body TSL temperature during test | (22.0 ± 0.2) °C |              |                  |

## **SAR result with Body TSL**

| SAR averaged over 1 cm³ (1 g) of Body TSL        | Condition          |                           |
|--------------------------------------------------|--------------------|---------------------------|
| SAR measured                                     | 250 mW input power | 12.9 mW / g               |
| SAR normalized                                   | normalized to 1W   | 51.6 mW / g               |
| SAR for nominal Body TSL parameters <sup>2</sup> | normalized to 1W   | 51.6 mW /g ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                           |
|---------------------------------------------------------|--------------------|---------------------------|
| SAR measured                                            | 250 mW input power | 6.05 mW / g               |
| SAR normalized                                          | normalized to 1W   | 24.2 mW / g               |
| SAR for nominal Body TSL parameters <sup>2</sup>        | normalized to 1W   | 24.2 mW /g ± 16.5 % (k=2) |

Certificate No: D2450V2-825\_Apr09

<sup>&</sup>lt;sup>2</sup> Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

#### **Appendix**

#### **Antenna Parameters with Head TSL**

| Impedance, transformed to feed point | 54.5 Ω + 4.7 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 24.1 dB       |

#### **Antenna Parameters with Body TSL**

| Impedance, transformed to feed point | 49.2 Ω + 5.6 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 24.8 dB       |

#### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.160 ns |
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG             |
|-----------------|-------------------|
| Manufactured on | December 11, 2008 |

Certificate No: D2450V2-825\_Apr09 Page 5 of 9

#### **DASY5 Validation Report for Head TSL**

Date/Time: 17.04.2009 12:17:23

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN825

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL U10 BB

Medium parameters used: f = 2450 MHz;  $\sigma = 1.82 \text{ mho/m}$ ;  $\varepsilon_r = 38$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

#### **DASY5** Configuration:

Probe: ES3DV2 - SN3025; ConvF(4.4, 4.4, 4.4); Calibrated: 28.04.2008

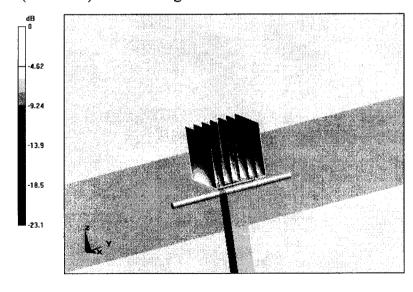
• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 07.03.2009

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

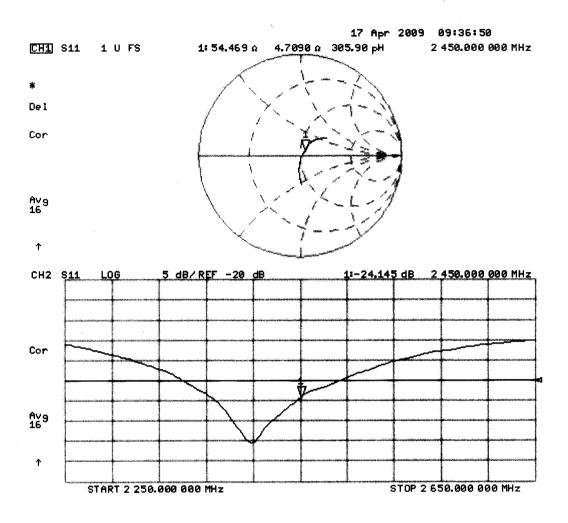
• Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

#### Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 97.1 V/m; Power Drift = 0.026 dB

Peak SAR (extrapolated) = 28.4 W/kg


SAR(1 g) = 13.6 mW/g; SAR(10 g) = 6.29 mW/g

Maximum value of SAR (measured) = 17.7 mW/g



0 dB = 17.7 mW/g

### Impedance Measurement Plot for Head TSL



#### **DASY5 Validation Report for Body TSL**

Date/Time: 17.04.2009 14:54:34

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:825

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL U10 BB

Medium parameters used: f = 2450 MHz;  $\sigma = 1.98 \text{ mho/m}$ ;  $\varepsilon_r = 54.4$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

#### **DASY5** Configuration:

Probe: ES3DV2 - SN3025; ConvF(4.07, 4.07, 4.07); Calibrated: 28.04.2008

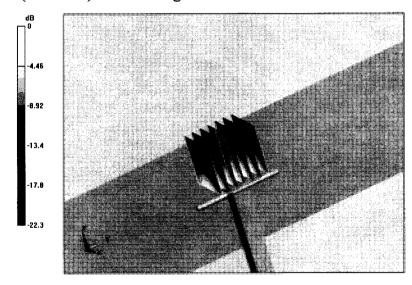
• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 07.03.2009

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

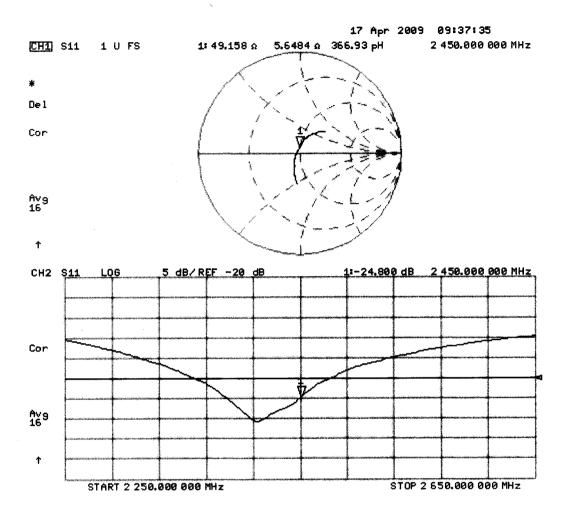
Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

#### Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 91.6 V/m; Power Drift = 0.046 dB

Peak SAR (extrapolated) = 26.1 W/kg


SAR(1 g) = 12.9 mW/g; SAR(10 g) = 6.05 mW/g

Maximum value of SAR (measured) = 16.6 mW/g



0 dB = 16.6 mW/g

## Impedance Measurement Plot for Body TSL



## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S wiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

Contificate No: D5GHzV2-1031 Apr09

## CALIBRATION CERTIFICATE

Object D5GHzV2 SN: 1031

Calibration procedure(s) QA CAL -22 v1

Calibration procedure for dipole validation kits between 3-5 GHz

Calibration date: April 29, 2009

Condition of the calibrated item In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards           | ID #               | Cal Date (Certificate No.)        | Scheduled Calibration  |
|-----------------------------|--------------------|-----------------------------------|------------------------|
| Power meter EPM-442A        | GB37480704         | 08-Oct-08 (No. 217-00898)         | Oct-09                 |
| Power sensor HP 8481A       | U\$37292783        | 08-Oct-08 (No. 217-00898)         | Oct-09                 |
| Reference 20 dB Attenuator  | SN: 5086 (20g)     | 31-Mar-09 (No. 217-01025)         | Mar-10                 |
| Type-N mismatch combination | SN: 5047.2 / 06327 | 31-Mar-09 (No. 217-01029)         | Mar-10                 |
| Reference Probe EX3DV4      | SN: 3503           | 11-Mar-09 (No. EX3-3503_Mar09)    | Mar-10                 |
| DAE4                        | SN: 601            | 07-Mar-09 (No. DAE4-601_Mar09)    | Mar-10                 |
| Secondary Standards         | 1D #               | Check Date (in house)             | Scheduled Check        |
| Power sensor HP 8481A       | MY41092317         | 18-Oct-02 (in house check Oct-07) | In house check: Oct-09 |
| RF generator R&S SMT-06     | 100005             | 4-Aug-99 (in house check Oct-07)  | In house check: Oct-09 |
| Network Analyzer HP 8753E   | US37390585 S4206   | 18-Oct-01 (in house check Oct-08) | In house check: Oct-09 |

Name

Function

Calibrated by:

Claudic Leubler

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: April 29, 2009

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D5GHzV2-1031\_Apr09 Page 1 of 8

## Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A not applicable or not measured

## Calibration is Performed According to the Following Standards:

- a) IEC Std 62209 Part 2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", Draft Version 0.9, December 2004
- b) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

#### Additional Documentation:

c) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

## **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                                                    | V5.0        |
|------------------------------|----------------------------------------------------------|-------------|
| Extrapolation                | Advanced Extrapolation                                   |             |
| Phantom                      | Modular Flat Phantom V5.0                                |             |
| Distance Dipole Center - TSL | 10 mm                                                    | with Spacer |
| Area Scan resolution         | dx, dy = 10 mm                                           |             |
| Zoom Scan Resolution         | dx, dy = 4.0 mm, dz = 2.5 mm                             |             |
| Frequency                    | 5200 MHz ± 1 MHz<br>5500 MHz ± 1 MHz<br>5800 MHz ± 1 MHz |             |

## Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

|                                  | Temperature     | Permittivity | Conductivity     |
|----------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters      | 22.0 °C         | 49.0         | 5.30 mho/m       |
| Measured Body TSL parameters     | (22.0 ± 0.2) °C | 47.5 ± 6 %   | 5.37 mho/m ± 6 % |
| Body TSL temperature during test | (22.0 ± 0.2) °C |              |                  |

## SAR result with Body TSL at 5200 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | condition          |                            |
|-------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                          | 100 mW input power | 7.63 mW / g                |
| SAR normalized                                        | normalized to 1W   | 76.3 mW / g                |
| SAR for nominal Body TSL parameters <sup>1</sup>      | normalized to 1W   | 75.8 mW / g ± 19.9 % (k=2) |

| SAR averaged over 10 cm³ (10 g) of Body TSL | condition .        | 12.2                       |
|---------------------------------------------|--------------------|----------------------------|
| SAR measured                                | 100 mW input power | 2.13 mW / g                |
| SAR normalized                              | normalized to 1W   | 21.3 mW / g                |
| SAR for nominal Body TSL parameters 1       | normalized to 1W   | 21.2 mW / g ± 19.5 % (k=2) |

<sup>&</sup>lt;sup>1</sup> Correction to nominal TSL parameters according to c), chapter "SAR Sensitivities

## Body TSL parameters at 5500 MHz

The following parameters and calculations were applied.

|                                  | Temperature     | Permittivity | Conductivity     |
|----------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters      | 22.0 °C         | 48.6         | 5.65 mho/m       |
| Measured Body TSL parameters     | (22.0 ± 0.2) °C | 46.8 ± 6 %   | 5.74 mho/m ± 6 % |
| Body TSL temperature during test | (22.0 ± 0.2) °C |              |                  |

## SAR result with Body TSL at 5500 MHz

| SAR averaged over 1 cm³ (1 g) of Body TSL        | condition          |                            |
|--------------------------------------------------|--------------------|----------------------------|
| SAR measured                                     | 100 mW input power | 8.01 mW / g                |
| SAR normalized                                   | normalized to 1W   | 80.1 mW / g                |
| SAR for nominal Body TSL parameters <sup>1</sup> | normalized to 1W   | 79.5 mW / g ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                            |
|---------------------------------------------------------|--------------------|----------------------------|
| SAR measured                                            | 100 mW input power | 2.22 mW / g                |
| SAR normalized                                          | normalized to 1W   | 22.2 mW / g                |
| SAR for nominal Body TSL parameters <sup>1</sup>        | normalized to 1W   | 22.0 mW / g ± 19.5 % (k=2) |

## Body TSL parameters at 5800 MHz

The following parameters and calculations were applied.

|                                  | Temperature     | Permittivity | Conductivity     |
|----------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters      | 22.0 °C         | 48.2         | 6.00 mho/m       |
| Measured Body TSL parameters     | (22.0 ± 0.2) °C | 46.1 ± 6 %   | 6.13 mho/m ± 6 % |
| Body TSL temperature during test | (22.0 ± 0.2) °C |              | ****             |

## SAR result with Body TSL at 5800 MHz

| SAR averaged over 1 cm³ (1 g) of Body TSL        | condition          |                            |
|--------------------------------------------------|--------------------|----------------------------|
| SAR measured                                     | 100 mW input power | 6.82 mW / g                |
| SAR normalized                                   | normalized to 1W   | 68.2 mW / g                |
| SAR for nominal Body TSL parameters <sup>1</sup> | normalized to 1W   | 67.7 mW / g ± 19.9 % (k=2) |

| SAR averaged over 10 cm³ (10 g) of Body TSL | condition          |                            |
|---------------------------------------------|--------------------|----------------------------|
| SAR measured                                | 100 mW input power | 1.89 mW / g                |
| SAR normalized                              | normalized to 1W   | 18.9 mW / g                |
| SAR for nominal Body TSL parameters '       | normalized to 1W   | 18.7 mW / g ± 19.5 % (k=2) |

Certificate No: D5GHzV2-1031\_Apr09 Page 4 of 8

<sup>&</sup>lt;sup>1</sup> Correction to nominal TSL parameters according to c), chapter "SAR Sensitivities

## **Appendix**

## Antenna Parameters with Body TSL at 5200 MHz

| Impedance, transformed to feed point | 50.1 Ω - 6.7 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | -23.5 dB        |

## Antenna Parameters with Body TSL at 5500 MHz

| Impedance, transformed to feed point | 51.6 Ω - 3.3 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | -29.0 dB        |

## Antenna Parameters with Body TSL at 5800 MHz

| Impedance, transformed to feed point | 59.4 Ω - 3.5 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | -20.8 dB        |

#### General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.197 ns |
|----------------------------------|----------|
|                                  |          |

After long term use with 40 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semingid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

| Manufactured by | SPEAG         |
|-----------------|---------------|
| Manufactured on | July 09, 2004 |

Certificate No: D5GHzV2-1031\_Apr09 Page 5 of 8

## **DASY5 Validation Report for Body TSL**

29.04.2009 13:52:12

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 5GHz; Type: D5GHz; Serial: D5GHzV2 - SN:1031

Communication System: CW-5GHz; Frequency: 5200 MHzFrequency: 5500 MHzFrequency: 5800 MHz;

Duty Cycle: 1:1

Medium: MSL 5800 MHz

Medium parameters used: f = 5200 MHz;  $\sigma = 5.37$  mbo/m;  $\varepsilon_r = 47.5$ ;  $\rho = 1000$  kg/m<sup>3</sup> Medium parameters used: f = 5500 MHz;  $\sigma = 5.74$  mbo/m;  $\varepsilon_r = 46.8$ ;  $\rho = 1000$  kg/m<sup>3</sup> Medium parameters used: f = 5800 MHz;  $\sigma = 6.13$  mho/m;  $\varepsilon_r = 46.1$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

#### DASY5 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.88, 4.88, 4.88)ConvF(4.37, 4.37, 4.37)ConvF(4.57, 4.57, 4.57); Calibrated: 11.03.2009
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

## d=10mm, Pin=100mW, f=5200 MHz/Zoom Scan (8x8x10), dist=2mm (8x8x10)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 49.6 V/m; Power Drift = 0.00494 dB

Peak SAR (extrapolated) = 28.5 W/kg

SAR(1 g) = 7.63 mW/g; SAR(10 g) = 2.13 mW/g

Maximum value of SAR (measured) = 15.7 mW/g

#### d=10mm, Pin=100mW, f=5500 MHz/Zoom Scan (8x8x10), dist=2mm (8x8x10)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 49 V/m; Power Drift = -0.016 dB

Peak SAR (extrapolated) = 32 W/kg

SAR(1 g) = 8.01 mW/g; SAR(10 g) = 2.22 mW/g

Maximum value of SAR (measured) = 16.8 mW/g

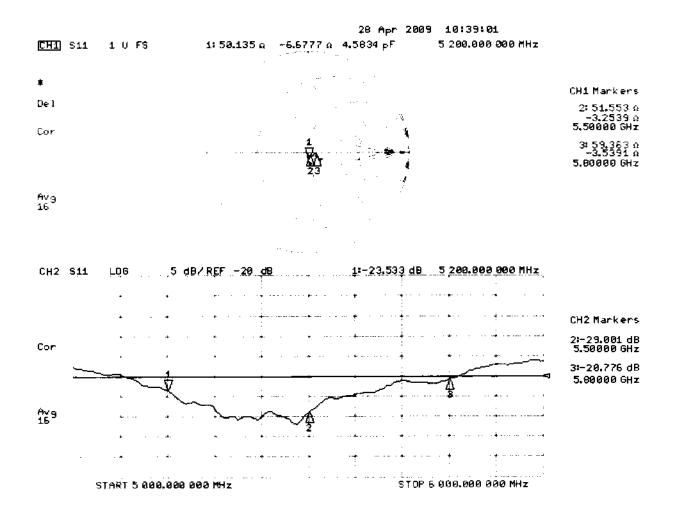
## d=10mm, Pin=100mW, f=5800 MHz/Zoom Scan (8x8x10), dist=2mm (8x8x10)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 43.7 V/m; Power Drift = -0.029 dB

Peak SAR (extrapolated) = 28.9 W/kg

SAR(1 g) = 6.82 mW/g; SAR(10 g) = 1.89 mW/g


Maximum value of SAR (measured) = 14.4 mW/g

Certificate No: D5GHzV2-1031\_Apr09 Page 6 of 8



0 dB = 14.4 mW/g

## Impedance Measurement Plot for Body TSL





Date(s) of Evaluation February 14-18, 2011

Test Report Issue Date April 24, 2012 Specific Absorption Rate

Test Report Serial No. 020911Q2G-T1079-S24M

Description of Test(s)

RF Exposure Category Gen. Pop. / Uncontrolled

Test Report Revision No.

Rev. 1.1 (2nd Release)



## **APPENDIX F - PROBE CALIBRATION**

## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





rajami na araba sa

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Celltech

Accreditation No.: SCS 108

Certificate No: ET3-1590\_Jul10

## CALIBRATION CERTIFICATE

Object ET3DV6 - SN:1590

Calibration procedure(s) QA CAL-01.v6, QA CAL-12.v8, QA CAL-23.v3 and QA CAL-25.v2

Calibration procedure for dosimetric E-field probes

Calibration date:

July 15, 2010

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%,

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards          | ID#             | Cal Date (Certificate No.)        | Scheduled Calibration  |
|----------------------------|-----------------|-----------------------------------|------------------------|
| Power meter E4419B         | GB41293874      | 1-Apr-10 (No. 217-01136)          | Apr-11                 |
| Power sensor E4412A        | MY41495277      | 1-Apr-10 (No. 217-01136)          | Apr-11                 |
| Power sensor E4412A        | MY41498087      | 1-Apr-10 (No. 217-01136)          | Apr-11                 |
| Reference 3 dB Attenuator  | SN: S5054 (3c)  | 30-Mar-10 (No. 217-01159)         | Mar-11                 |
| Reference 20 dB Attenuator | SN: S5086 (20b) | 30-Mar-10 (No. 217-01161)         | Mar-11                 |
| Reference 30 dB Attenuator | SN: S5129 (30b) | 30-Mar-10 (No. 217-01160)         | Mar-11                 |
| Reference Probe ES3DV2     | SN: 3013        | 30-Dec-09 (No. ES3-3013_Dec09)    | Dec-10                 |
| DAE4                       | SN: 660         | 20-Apr-10 (No. DAE4-660_Apr10)    | Apr-11                 |
| : Passadani Ptandarda      | 100.4           | Charle Bata Gallanan              | 0.1.1.1.1011           |
| Secondary Standards        | ID#             | Check Date (in house)             | Scheduled Check        |
| RF generator HP 8648C      | US3642U01700    | 4-Aug-99 (in house check Oct-09)  | In house check: Oct-11 |
| Network Analyzer HP 8753E  | US37390585      | 18-Oct-01 (in house check Oct-09) | In house check: Oct10  |

Name Function

Calibrated by Jeton Kastrati Laboratory Technician

Approved by: Katja Pokovic Technical Manager

Issued: July 15, 2010

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

## Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (\$A\$)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConvF DCP sensitivity in TSL / NORMx,y,z diode compression point

CF

crest factor (1/duty\_cycle) of the RF signal modulation dependent linearization parameters

A, B, C Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

## Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
   NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E<sup>2</sup>-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z; A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

# Probe ET3DV6

SN:1590

Manufactured: Ma Last calibrated: Jul

Recalibrated:

March 19, 2001

July 16, 2009

July 15, 2010

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ET3-1590\_Jul10

## DASY/EASY - Parameters of Probe: ET3DV6 SN:1590

## **Basic Calibration Parameters**

|                                            | Sensor X | Sensor Y | Sensor Z | Unc (k=2) |
|--------------------------------------------|----------|----------|----------|-----------|
| Norm (μV/(V/m) <sup>2</sup> ) <sup>A</sup> | 1.86     | 2.06     | 1.77     | ± 10.1%   |
| DCP (mV) <sup>S</sup>                      | 91,4     | 92.4     | 83.5     |           |

## **Modulation Calibration Parameters**

| UID   | Communication System Name | PAR  |   | A<br>dB | B<br>dBuV | С    | VR<br>mV | Unc <sup>E</sup><br>(k=2) |
|-------|---------------------------|------|---|---------|-----------|------|----------|---------------------------|
| 10000 | cw                        | 0.00 | × | 0.00    | 0.00      | 1.00 | 300.0    | ± 1.5%                    |
|       |                           |      | Y | 0.00    | 0.00      | 1.00 | 300.0    |                           |
|       |                           | _    | Z | 0.00    | 0.00      | 1.00 | 300.0    |                           |

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

The uncertainties of NormX,Y,Z do not affect the E<sup>2</sup>-field uncertainty inside TSL (see Pages 5 and 6)

Numerical linearization parameter: uncertainty not required.

<sup>&</sup>lt;sup>1</sup> Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value.

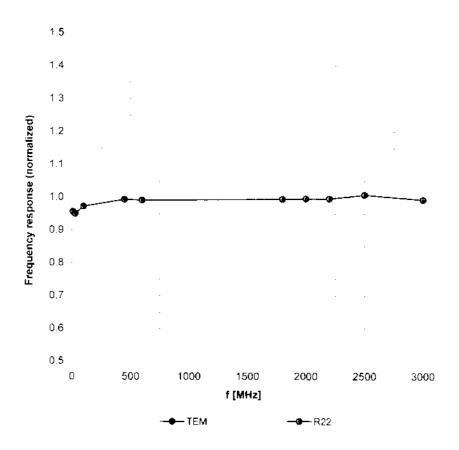
# DASY/EASY - Parameters of Probe: ET3DV6 SN:1590

## Calibration Parameter Determined in Head Tissue Simulating Media

| f [MHz] | Validity [MHz] <sup>C</sup> | Permittivity      | Conductivity   | ConvF X Co | nvF Y Co | onvF Z | Alpha | Depth Unc (k=2) |
|---------|-----------------------------|-------------------|----------------|------------|----------|--------|-------|-----------------|
| 450     | $\pm$ 50 / $\pm$ 100        | 43.5 ± 5%         | 0.87 ± 5%      | 7.25       | 7.25     | 7.25   | 0.20  | 2.19 ± 13.3%    |
| 835     | ± 50 / ± 100                | 41.5 ± 5%         | $0.90 \pm 5\%$ | 6.27       | 6.27     | 6.27   | 0.32  | 2.49 ± 11.0%    |
| 900     | ± 50 / ± 100                | <b>4</b> 1.5 ± 5% | $0.97 \pm 5\%$ | 6.12       | 6.12     | 6.12   | 0.27  | 2.86 ± 11.0%    |

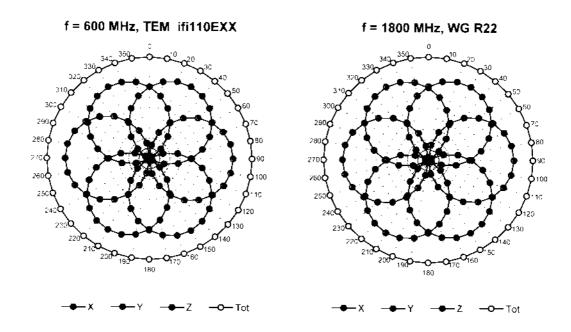
The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

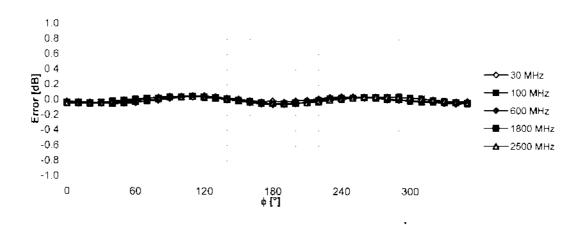
# DASY/EASY - Parameters of Probe: ET3DV6 SN:1590


## Calibration Parameter Determined in Body Tissue Simulating Media

| f [MHz] | Validity [MHz] <sup>C</sup> | Permittivity   | Conductivity   | ConvF X Cor | vFY Co | nvF Z | Alpha | Depth Unc (k=2) |
|---------|-----------------------------|----------------|----------------|-------------|--------|-------|-------|-----------------|
| 450     | ± 50 / ± 100                | $56.7 \pm 5\%$ | $0.94 \pm 5\%$ | 7.73        | 7.73   | 7.73  | 0.13  | 2.06 ± 13.3%    |
| 835     | ± 50 / ± 100                | 55.2 ± 5%      | $0.97 \pm 5\%$ | 6.33        | 6.33   | 6.33  | 0.22  | 3.60 ± 11.0%    |
| 900     | ± 50 / ± 100                | $55.0 \pm 5\%$ | $1.05 \pm 5\%$ | 6.15        | 6.15   | 6.15  | 0.28  | 2.94 ± 11.0%    |

The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

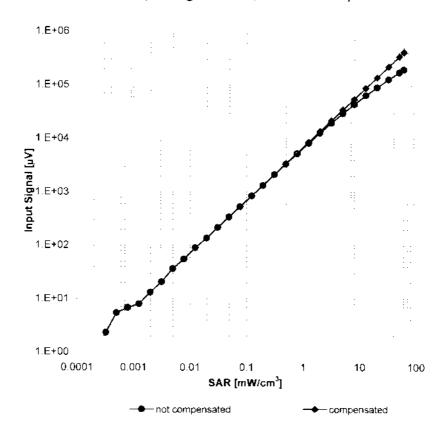

# Frequency Response of E-Field

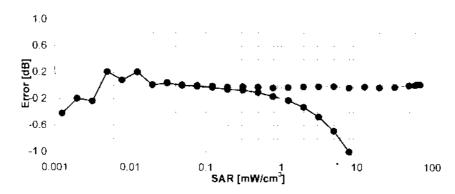

(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

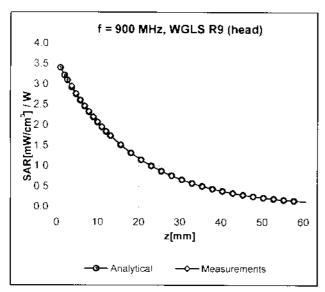
# Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$

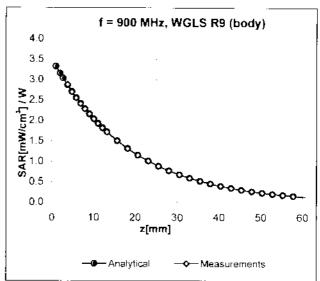



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

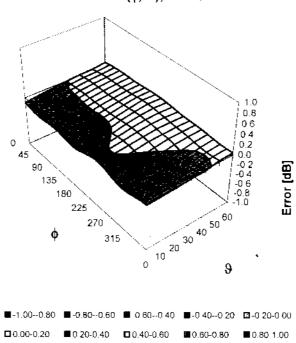
# Dynamic Range f(SAR<sub>head</sub>)


(Waveguide R22, f = 1800 MHz)






Uncertainty of Linearity Assessment: ± 0.6% (k=2)


## **Conversion Factor Assessment**





## **Deviation from Isotropy in HSL**

Error  $(\phi, \vartheta)$ , f = 900 MHz



Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

## **Other Probe Parameters**

| Sensor Arrangement                            | Triangular     |
|-----------------------------------------------|----------------|
| Connector Angle (°)                           | Not applicable |
| Mechanical Surface Detection Mode             | enabled        |
| Optical Surface Detection Mode                | enabled        |
| Probe Overall Length                          | 337 mm         |
| Probe Body Diameter                           | 10 mm          |
| Tip Length                                    | 10 mm          |
| Tip Diameter                                  | 6.8 mm         |
| Probe Tip to Sensor X Calibration Point       | 2.7 mm         |
| Probe Tip to Sensor Y Calibration Point       | 2.7 mm         |
| Probe Tip to Sensor Z Calibration Point       | 2.7 mm         |
| Recommended Measurement Distance from Surface | 4 mm           |

## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Celltech

Certificate No: EX3-3600 Apr10

Accreditation No.; SCS 108

S

C

## **CALIBRATION CERTIFICATE**

Object EX3DV4 - SN:3600

QA CAL-01.v6, QA CAL-14.v3, QA CAL-23.v3 and QA CAL-25.v2 Calibration procedure(s)

Calibration procedure for dosimetric E-field probes

April 29, 2010 Calibration date:

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards          | ID#             | Cal Date (Certificate No.)       | Scheduled Calibration  |
|----------------------------|-----------------|----------------------------------|------------------------|
| Power meter E4419B         | GB41293874      | 1-Apr-10 (No. 217-01136)         | Apr-11                 |
| Power sensor E4412A        | MY41495277      | 1-Apr-10 (No. 217-01136)         | Apr-11                 |
| Power sensor E4412A        | MY41498087      | 1-Apr-10 (No. 217-01136)         | Apr-11                 |
| Reference 3 dB Attenuator  | SN: S5054 (3c)  | 30-Mar-10 (No. 217-01159)        | Mar-11                 |
| Reference 20 dB Attenuator | SN: S5086 (20b) | 30-Mar-10 (No. 217-01161)        | Mar-11                 |
| Reference 30 dB Attenuator | SN: S5129 (30b) | 30-Mar-10 (No. 217-01160)        | Mar-11                 |
| Reference Probe ES3DV2     | SN: 3013        | 30-Dec-09 (No. ES3-3013_Dec09)   | Dec-10                 |
| DAE4                       | SN. 660         | 29-Sep-09 (No. DAE4-660_Sep09)   | Sep-10                 |
| Secondary Standards        | (D #            | Check Date (in house)            | Scheduled Check        |
| RF generator HP 8648C      | US3642U01700    | 4-Aug-99 (in house check Oct-09) | In house check: Oct-11 |
|                            | 1               |                                  |                        |

Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-09) In house check: Oct10

Name

**Function** 

Technical Manager

Approved by:

Calibrated by:

Niels Kuster Quality Manager

Issued: April 29, 2010

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Katja Pokovic

Certificate No: EX3-3600\_Apr10

Page 1 of 11

#### Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S wiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty\_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization  $\varphi$   $\varphi$  rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis.

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices; Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

#### Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx.y.z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax.y.z; Bx.y,z; Cx.y.z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
  power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
  maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3600 Apr10 Page 2 of 11

# Probe EX3DV4

SN:3600

Manufactured: January 10, 2007 Last calibrated: April 28, 2009 Recalibrated: April 29, 2010

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

## DASY - Parameters of Probe: EX3DV4 SN:3600

## **Basic Calibration Parameters**

|                          | Sensor X | Sensor Y | Sensor Z | Unc (k=2) |
|--------------------------|----------|----------|----------|-----------|
| Norm $(\mu V/(V/m)^2)^A$ | 0.51     | 0.51     | 0.40     | ± 10.1%   |
| DCP (mV) <sup>8</sup>    | 90.5     | 88.5     | 85.2     |           |

## **Modulation Calibration Parameters**

| UID   | Communication System Name | PAR  |   | A<br>dB | B<br>dBuV | С    | VR<br>mV | Unc <sup>E</sup><br>(k=2) |
|-------|---------------------------|------|---|---------|-----------|------|----------|---------------------------|
| 10000 | cw                        | 0.00 | Х | 0.00    | 0.00      | 1.00 | 300      | ± 1.5%                    |
|       |                           |      | Y | 0.00    | 0.00      | 1.00 | 300      |                           |
|       |                           |      | Z | 0.00    | 0.00      | 1.00 | 300      |                           |

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX3-3600\_Apr10 Page 4 of 11

F The uncertainties of NormX,Y,Z do not affect the E-field uncertainty inside TSL (see Pages 5 and 6).

<sup>&</sup>lt;sup>d</sup> Numerical linearization parameter; uncertainty not required.

Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value.

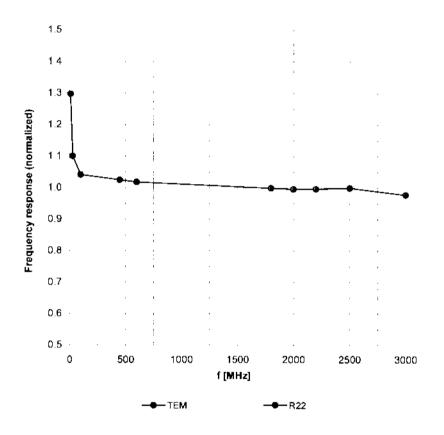
## DASY - Parameters of Probe: EX3DV4 SN:3600

## Calibration Parameter Determined in Head Tissue Simulating Media

| f [MHz] | Validity [MHz] <sup>c</sup> | Permittivity   | Conductivity   | ConvF X C | onvFY ( | ConvF Z | Alpha | Depth Unc (k=2) |
|---------|-----------------------------|----------------|----------------|-----------|---------|---------|-------|-----------------|
| 900     | ± 50 / ± 100                | 41.5 ± 5%      | $0.97\pm5\%$   | 7.79      | 7.79    | 7.79    | 0.74  | 0.61 ± 11.0%    |
| 1810    | ± 50 / ± 100                | $40.0 \pm 5\%$ | $1.40 \pm 5\%$ | 6.79      | 6.79    | 6.79    | 0.59  | 0.70 ± 11.0%    |
| 1950    | ± 50 / ± 100                | $40.0\pm5\%$   | $1.40 \pm 5\%$ | 6.46      | 6.46    | 6.46    | 0.57  | 0.72 ± 11.0%    |
| 2450    | ± 50 / ± 100                | 39.2 ± 5%      | 1.80 ± 5%      | 6.15      | 6.15    | 6.15    | 0.34  | 0.89 ± 11.0%    |

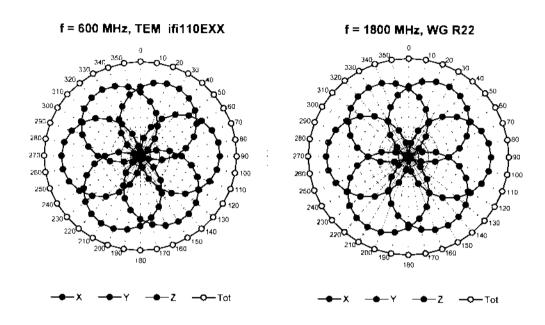
The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

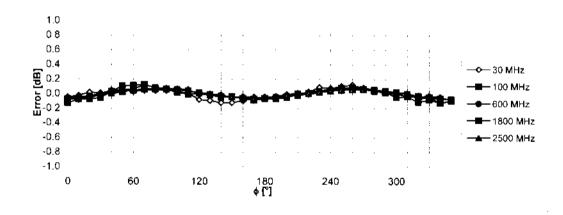
# DASY - Parameters of Probe: EX3DV4 SN:3600


## Calibration Parameter Determined in Body Tissue Simulating Media

| f [MHz] | Validity [MHz] <sup>C</sup> | Permittivity   | Conductivity     | ConvFX Co | nvFY Co | nvF Z | Alpha | Depth Unc (k=2) |
|---------|-----------------------------|----------------|------------------|-----------|---------|-------|-------|-----------------|
| 900     | ± 50 / ± 100                | 55.0 ± 5%      | 1.05 ± 5%        | 7.92      | 7.92    | 7.92  | 0.50  | 0.77 ± 11.0%    |
| 1810    | ± 50 / ± 100                | 53.3 ± 5%      | 1.52 ± 5%        | 6.47      | 6.47    | 6.47  | 0.70  | 0.64 ± 11.0%    |
| 1950    | ± 50 / ± 100                | 53.3 ± 5%      | 1.52 <b>±</b> 5% | 6.53      | 6.53    | 6.53  | 0.64  | 0.67 ± 11.0%    |
| 2450    | ± 50 / ± 100                | 52.7 ± 5%      | $1.95 \pm 5\%$   | 6.24      | 6.24    | 6.24  | 0.43  | 0.87 ± 11.0%    |
| 5200    | ± 50 / ± 100                | $49.0 \pm 5\%$ | 5.30 ± 5%        | 3.73      | 3.73    | 3.73  | 0.52  | 1.95 ± 13.1%    |
| 5500    | ± 50 / ± 100                | 48.6 ± 5%      | 5.65 ± 5%        | 3.30      | 3.30    | 3.30  | 0.58  | 1.95 ± 13.1%    |
| 5800    | ± 50 / ± 100                | 48.2 ± 5%      | 6.00 ± 5%        | 3.44      | 3.44    | 3.44  | 0.63  | 1.95 ± 13.1%    |

The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

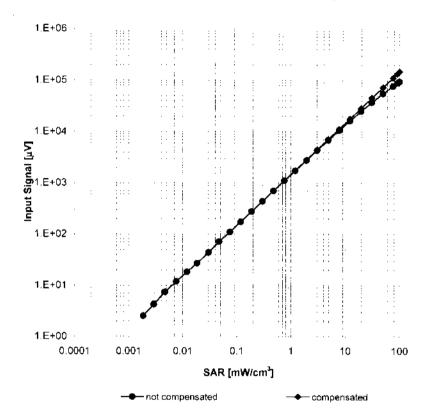

## Frequency Response of E-Field

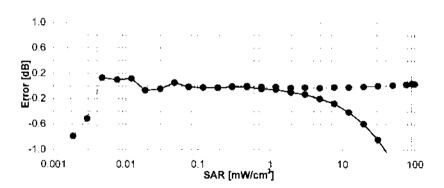

(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

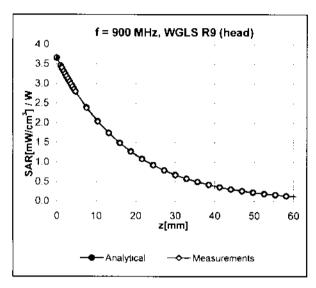
# Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$

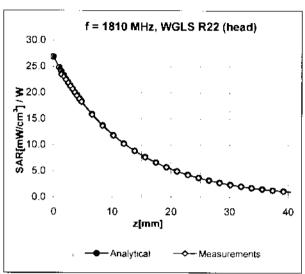



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

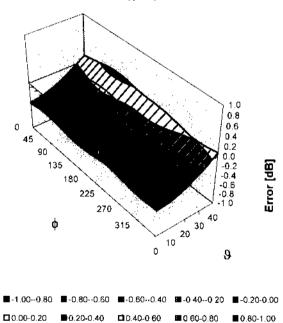
# Dynamic Range f(SAR<sub>head</sub>)


(Waveguide R22, f = 1800 MHz)






Uncertainty of Linearity Assessment: ± 0.6% (k=2)


# **Conversion Factor Assessment**





## **Deviation from Isotropy in HSL**

Error ( $\phi$ ,  $\vartheta$ ), f = 900 MHz



Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: EX3-3600\_Apr10

## **Other Probe Parameters**

| Sensor Arrangement                            | Triangular     |
|-----------------------------------------------|----------------|
| Connector Angle (°)                           | Not applicable |
| Mechanical Surface Detection Mode             | enabled        |
| Optical Surface Detection Mode                | disabled       |
| Probe Overall Length                          | 337 mm         |
| Probe Body Diameter                           | 10 mm          |
| Tip Length                                    | 9 mm           |
| Tip Diameter                                  | 2.5 mm         |
| Probe Tip to Sensor X Calibration Point       | 1 mm           |
| Probe Tip to Sensor Y Calibration Point       | 1 mm           |
| Probe Tip to Sensor Z Calibration Point       | 1 mm           |
| Recommended Measurement Distance from Surface | 2 mm           |



| Date(s) of Evaluation |
|-----------------------|
| February 14-18, 2011  |

Test Report Issue Date
April 24, 2012

Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Rev. 1.1 (2nd Release)
RF Exposure Category

Gen. Pop. / Uncontrolled



**APPENDIX G - BARSKI PLANAR PHANTOM CERTIFICATE OF CONFORMITY** 

Test Report Serial No.

020911Q2G-T1079-S24M

2378 Westlake Road Kelowna, B.C. Canada V1Z-2V2



Ph. # 250-769-6848 Fax # 250-769-6334

E-mail: <u>barskiind@shaw.ca</u>
Web: www.bcfiberglass.com

#### FIBERGLASS FABRICATORS

## Certificate of Conformity

Item: Flat Planar Phantom Unit # 03-01

Date: June 16, 2003

Manufacturer: Barski Industries (1985 Ltd)

| Test                | Requirement                                                                         | Details                                                 |
|---------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------|
| Shape               | Compliance to geometry according to drawing                                         | Supplied CAD drawing                                    |
| Material Thickness  | Compliant with the requirements                                                     | 2mm +/- 0.2mm in measurement area                       |
| Material Parameters | Dielectric parameters for required frequencies Based on Dow Chemical technical data | 100 MHz-5 GHz Relative permittivity<5 Loss Tangent<0.05 |

## Conformity

Based on the above information, we certify this product to be compliant to the requirements specified.

Signature:

Daniel Chailler





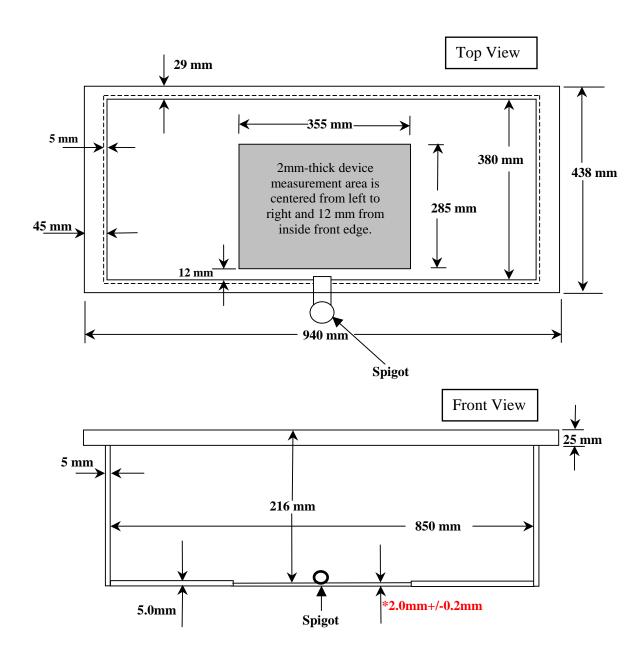
Fiberglass Planar Phantom - Top View



Fiberglass Planar Phantom - Front View



Fiberglass Planar Phantom - Back View




Fiberglass Planar Phantom - Bottom View



## **Dimensions of Fiberglass Planar Phantom**

(Manufactured by Barski Industries Ltd. - Unit# 03-01)



Note: Measurements that aren't repeated for the opposite sides are the same as the side measured. This drawing is not to scale.