802 N. Twin Oaks Valley Road, Suite 105 • San Marcos, CA 92069 • U.S.A. TEL (760) 471-2100 • FAX (760) 471-2121 http://www.rfexposurelab.com # CERTIFICATE OF COMPLIANCE SAR EVALUATION **Xplore Technologies** 14000 Summit Drive, Suite 900 Austin, TX 78728 Dates of Test: August 15-23, November 21, 2016 Test Report Number: SAR.20160809 Revision C FCC ID: Q2GEM7455 & PD98260NG 4596A-EM7455 & 1000M-8260NG IC Certificate: Model(s): iX125R1 Part Number: 003-01-0235 Contains Module: Sierra Wireless Model MC7455, Intel Corp. Model 8260NGW Engineering Unit Same as Production Test Sample: Serial Number: 65JKG00077 Wireless Ruggedized Tablet Equipment Type: Classification: Portable Transmitter Next to Body TX Frequency Range: 699 - 716 MHz, 777 - 787 MHz, 814 - 849 MHz, 1710 - 1755 MHz, 1850 - 1915 MHz, 2305 - 2315 MHz, 2496 - 2690 MHz, 2412 - 2462 MHz, 5180 - 5320 MHz, 5500 - 5700 MHz, 5745 - 5825 MHz Frequency Tolerance: ± 2.5 ppm Maximum RF Output: 700 MHz (LTE) – 24.00 dBm, 782 MHz (LTE) – 24.00 dBm, 835 MHz (UMTS) – 24.00 dBm, 835 MHz (LTE) - 24.00 dBm, 1750 MHz (UMTS) - 24.00 dBm; 1750 MHz (LTE) - 24.00 dBm, 1900 MHz (UMTS) - 24.00 dBm, 1900 MHz (LTE) - 24.00 dBm, 2300 MHz (LTE) - 23.00 dBm, 2600 MHz (LTE) - 23.00 dBm, 2450 MHz (b) - 17.50 dB, 2450 MHz (g) - 17.50 dB, 2450 MHz (n20) – 17.50 dB, 2450 MHz (n40) – 17.50 dB, 5250 MHz (a) – 16.00 dB, 5250 MHz (n20) – 16.00 dB, 5250 MHz (n40) – 16.00 dB, 5250 MHz (n20) – 16.00 dB, 5250 MHz (n40) 5600 MHz (a) - 16.00 dB, 5600 MHz (n20) - 16.00 dB, 5600 MHz (n40) - 16.00 dB, 5600 MHz (ac) - 15.00 dB, 5800 MHz (a) - 16.00 dB, 5800 MHz (n20) - 16.00 dB, 5800 MHz (n40) - 16.00 dB, 5800 MHz (ac) - 15.00 dB Conducted DSSS, OFDM, WCDMA, QPSK, 16QAM Signal Modulation: Antenna Type: Internal Application Type: Certification FCC Rule Parts: Part 2, 15C, 15E, 22, 24 KDB 447498 D01 v06, KDB248227 v02r02, KDB 616217 D04 v01r02KDB 941225 D01 v03r01, KDB Test Methodology: KDB 941225 D05 v02r01 Industry Canada: RSS-102 Issue 5, Safety Code 6 Maximum SAR Value: 1.41 W/kg Reported Max. Simultaneous: 0.04 Separation Ratio Separation Distance: 0 mm > This wireless mobile and/or portable device has been shown to be compliant for localized specific absorption rate (SAR) for uncontrolled environment/general exposure limits specified in ANSI/IEEE Std. C95.1-1992 and had been tested in accordance with the measurement procedures specified in IEEE 1528-2013 and IEC 62209-2:2010 (See test report). > I attest to the accuracy of the data. All measurements were performed by myself or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. > RF Exposure Lab, LLC certifies that no party to this application is subject to a denial of Federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 853(a). Jay M. Moulton Vice President # **Table of Contents** | 1. | Introduction | 3 | ; | |----|---|----|---| | | SAR Definition [5] | 4 | ŀ | | 2. | SAR Measurement Setup | 5 |) | | | Robotic System | 5 |) | | | System Hardware | | | | | System Electronics | | | | | Probe Measurement System | | | | 3. | • | | | | 4. | · | | | | • | Head & Body Simulating Mixture Characterization | | | | 5. | | | | | ٠. | Uncontrolled Environment | | | | | Controlled Environment | | | | 6. | | | | | 7. | | | | | ٠. | Tissue Verification | | | | | Test System Verification. | | | | 8 | SAR Test Data Summary | | | | ٠. | Procedures Used To Establish Test Signal | | | | | Device Test Condition | | | | 9. | LTE Document Checklist | | | | |). FCC 3G Measurement Procedures | | | | | 10.1 Procedures Used to Establish RF Signal for SAR | | | | | 10.2 SAR Measurement Conditions for WCDMA/HSDPA/HSUPA | | | | | 11.4 SAR Measurement Conditions for LTE Bands | | | | | SAR Data Summary –LTE Band 13 | | | | | SAR Data Summary –LTE Band 12 | | | | | SAR Data Summary – 850 MHz Body – UMTS Band 5 | | | | | SAR Data Summary –LTE Band 26 | | | | | SAR Data Summary – 1750 MHz Body – UMTS Band 4 | | | | | SAR Data Summary –LTE Band 4 | | | | | SAR Data Summary – 1900 MHz Body – UMTS Band 2 | 67 | , | | | SAR Data Summary –LTE Band 25 | 68 | Š | | | SAR Data Summary –LTE Band 30 | | | | | Vice PresidentSAR Data Summary –LTE Band 7 | | | | | SAR Data Summary –LTE Band 41 | | | | | SAR Data Summary – Simultaneous Evaluation | | | | 12 | | | | | 13 | | | | | 14 | 4. References | 75 |) | | Αŗ | opendix A – System Validation Plots and Data | | | | | opendix B – SAR Test Data Plots | | | | | opendix C – SAR Test Setup Photos1 | | | | | opendix D – Probe Calibration Data Sheets1 | | | | | opendix E – Dipole Calibration Data Sheets1 | | | | | pendix F – Phantom Calibration Data Sheets1 | | | | | · | | | # 1. Introduction This measurement report shows compliance of the Xplore Technologies Model iX125R1 FCC ID: Q2GEM7455 & PD98260NG with FCC Part 2, 1093, ET Docket 93-62 Rules for mobile and portable devices and IC Certificate: 4596A-EM7455 & 1000M-8260NG with RSS102 Issue 5 & Safety Code 6. The FCC have adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on August 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC regulated portable devices. [1], [6] The test results recorded herein are based on a single type test of Xplore Technologies Model iX125R1 and therefore apply only to the tested sample. The test procedures, as described in ANSI C95.1 – 1999 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [2], ANSI C95.3 – 2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields [3], IEEE Std.1528 – 2013 Recommended Practice [4], and Industry Canada Safety Code 6 Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3kHz to 300 GHz were employed. The following table indicates all the wireless technologies operating in the iX125R1 Wireless Ruggedized Tablet. The table also shows the tolerance for the power level for each mode (if applicable). | Band | Technology | Class | Setpoint
Nominal
Power
dBm | Tolerance
dBm | Lower
Tolerance
dBm | Upper
Tolerance
dBm | |----------------------------------|------------------|-------|-------------------------------------|------------------|---------------------------|---------------------------| | Band 25 – 1900 MHz | LTE – FDD | 3 | 23 | +1.0/-1.5 | 21.5 | 24.0 | | Band 2 – 1900 MHz | LTE – FDD | 3 | 23 | +1.0/-1.5 | 21.5 | 24.0 | | Band 12 – 700 MHz | LTE – FDD | 3 | 23 | +1.0/-1.5 | 21.5 | 24.0 | | Band 13 – 782 MHz | LTE – FDD | 3 | 23 | +1.0/-1.5 | 21.5 | 24.0 | | Band 5 – 850 MHz | LTE – FDD | 3 | 23 | +1.0/-1.5 | 21.5 | 24.0 | | Band 4 – 1750 MHz | LTE – FDD | 3 | 23 | +1.0/-1.5 | 21.5 | 24.0 | | Band 7 – 2600 MHz | LTE – FDD | 3 | 22 | +1.0/-1.5 | 20.5 | 23.0 | | Band 26 - 850 MHz | LTE – FDD | 3 | 23 | +1.0/-1.5 | 21.5 | 24.0 | | Band 30 - 2300 MHz | LTE – FDD | 3 | 22 | +1.0/-1.5 | 20.5 | 23.0 | | Band 41 - 2600 MHz | LTE – TDD | 3 | 22 | +1.0/-1.5 | 20.5 | 23.0 | | Band 5 – 850 MHz | UMTS | 3 | 23 | +1.0/-1.0 | 22.0 | 24.0 | | Band 4 – 1750 MHz | UMTS | 3 | 23 | +1.0/-1.0 | 22.0 | 24.0 | | Band 2 – 1900 MHz | UMTS | 3 | 23 | +1.0/-1.0 | 22.0 | 24.0 | | WLAN – 2.4 GHz | 802.11b | N/A | 16 | ±1.5 | 14.5 | 17.5 | | WLAN – 2.4 GHz | 802.11g/n(Ch. 6) | N/A | 16 | ±1.5 | 14.5 | 17.5 | | WLAN - 5 GHz Band I, II, III, IV | 802.11a | N/A | 14.5 | ±1.5 | 13.0 | 16.0 | Note: The WiFi module is pre-approved for installation in the tablet based on the Intel Corp. modular grant. No SAR testing was conducted in the report. # **SAR Definition [5]** Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). $$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$ SAR is expressed in units of watts per kilogram (W/kg). SAR can be related to the electric field at a point by $$SAR = \frac{\sigma \mid E \mid^2}{\rho}$$ where: σ = conductivity of the tissue (S/m) ρ = mass density of the tissue (kg/m³) E = rms electric field strength (V/m) # 2. SAR Measurement Setup # **Robotic System** These measurements are performed using the DASY52 automated dosimetric assessment system. The DASY52 is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of high precision robotics system (Staubli), robot controller, Intel Core2 computer, near-field probe, probe alignment sensor, and the generic twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Fig. 2.1). # **System Hardware** A cell controller system contains the power supply, robot controller teach pendant (Joystick), and a remote control used to drive the robot motors. The PC consists of the HP Intel Core2 computer with Windows XP system and SAR Measurement Software DASY52, A/D interface card, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit that performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card. Figure 2.1 SAR Measurement System Setup # **System Electronics** The DAE4
consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail in. # **Probe Measurement System** The SAR measurements were conducted with the dosimetric probe EX3DV4, designed in the classical triangular configuration (see Fig. 2.2) and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multi fiber line ending at the front of the probe tip. (see Fig. 2.3) It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY52 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped at reaching the maximum. **DAE System** # **Probe Specifications** Calibration: In air from 10 MHz to 6.0 GHz In brain and muscle simulating tissue at Frequencies of 450 MHz, 835 MHz, 1750 MHz, 1900 MHz, 2450 MHz, 2600 MHz, 3500 MHz, 5200 MHz, 5300 MHz, 5600 MHz, 5800 MHz Frequency: 10 MHz to 6 GHz **Linearity:** ±0.2dB (30 MHz to 6 GHz) **Dynamic:** 10 mW/kg to 100 W/kg Range: Linearity: ±0.2dB **Dimensions:** Overall length: 330 mm Tip length: 20 mm Body diameter: 12 mm Tip diameter: 2.5 mm Distance from probe tip to sensor center: 1 mm **Application:** SAR Dosimetry Testing Compliance tests of wireless device Figure 2.2 Triangular Probe Configurations Figure 2.3 Probe Thick-Film Technique #### **Probe Calibration Process** #### **Dosimetric Assessment Procedure** Each probe is calibrated according to a dosimetric assessment procedure described in with accuracy better than +/- 10%. The spherical isotropy was evaluated with the procedure described in and found to be better than +/-0.25dB. The sensitivity parameters (Norm X, Norm Y, Norm Z), the diode compression parameter (DCP) and the conversion factor (Conv F) of the probe is tested. #### **Free Space Assessment** The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies below 1 GHz, and in a waveguide above 1GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm². ### **Temperature Assessment *** E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium, correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor based temperature probe is used in conjunction with the E-field probe $$SAR = C \frac{\Delta T}{\Delta t}$$ $$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$ where: where: Δt = exposure time (30 seconds), σ = simulated tissue conductivity, C = heat capacity of tissue (brain or muscle), ρ = Tissue density (1.25 g/cm³ for brain tissue) ΔT = temperature increase due to RF exposure. SAR is proportional to $\Delta T / \Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. Now it's possible to quantify the electric field in the simulated tissue by equating the thermally derived SAR to the E- field; Figure 2.4 E-Field and Temperature Measurements at 900MHz Figure 2.5 E-Field and Temperature Measurements at 1800MHz ### **Data Extrapolation** The DASY52 software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given like below: with $$V_i = \text{compensated signal of channel i}$$ $(i=x,y,z)$ $$U_i = \text{input signal of channel i} \qquad (i=x,y,z)$$ $$U_i = \text{input signal of channel i} \qquad (i=x,y,z)$$ $$cf = \text{crest factor of exciting field} \qquad (DASY parameter)$$ $$dcp_i = \text{diode compression point} \qquad (DASY parameter)$$ From the compensated input signals the primary field data for each channel can be evaluated: E-field probes: with $$V_i$$ = compensated signal of channel i (i = x,y,z) Norm_i = sensor sensitivity of channel i (i = x,y,z) $\mu V/(V/m)^2$ for E-field probes ConvF = sensitivity of enhancement in solution E_i = electric field strength of channel i in V/m The RSS value of the field components gives the total field strength (Hermetian magnitude): $$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$ The primary field data are used to calculate the derived field units. $$SAR = E_{tot}^{\,2} \cdot \frac{\sigma}{\rho \cdot 1000} \hspace{1cm} \text{with} \hspace{1cm} \begin{array}{l} \text{SAR} \hspace{0.5cm} = \text{local specific absorption rate in W/g} \\ E_{tot} \hspace{0.5cm} = \text{total field strength in V/m} \\ \sigma \hspace{0.5cm} = \text{conductivity in [mho/m] or [Siemens/m]} \\ \rho \hspace{0.5cm} = \text{equivalent tissue density in g/cm}^{3} \end{array}$$ The power flow density is calculated assuming the excitation field to be a free space field. $$P_{pwe} = \frac{E_{tot}^2}{3770}$$ with $P_{pwe} = \text{equivalent power density of a plane wave in W/cm}^2$ = total electric field strength in V/m ### Scanning procedure - The DASY installation includes predefined files with recommended procedures for measurements and system check. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions. - The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. +/- 5 %. - The highest integrated SAR value is the main concern in compliance test applications. These values can mostly be found at the inner surface of the phantom and cannot be measured directly due to the sensor offset in the probe. To extrapolate the surface values, the measurement distances to the surface must be known accurately. A distance error of 0.5mm could produce SAR errors of 6% at 1800 MHz. Using predefined locations for measurements is not accurate enough. Any shift of the phantom (e.g., slight deformations after filling it with liquid) would produce high uncertainties. For an automatic and accurate detection of the phantom surface, the DASY5 system uses the mechanical surface detection. The detection is always at touch, but the probe will move backward from the surface the indicated distance before starting the measurement. - The "area scan" measures the SAR above the DUT or verification dipole on a parallel plane to the surface. It is used to locate the approximate location of the peak SAR with 2D spline interpolation. The robot performs a stepped movement along one grid axis while the local electrical field strength is measured by the probe. The probe is touching the surface of the SAM during acquisition of measurement values. The scan uses different grid spacings for different frequency measurements. Standard grid spacing for head measurements in frequency ranges 2GHz is 15 mm in x and y- dimension. For higher frequencies a finer resolution is needed, thus for the grid spacing is reduced according the following table: | Area scan grid spacing for different frequency ranges | | | | | | | |---|--------------|--|--|--|--|--| | Frequency range | Grid spacing | | | | | | | ≤ 2 GHz | ≤ 15 mm | | | | | | | 2 – 4 GHz | ≤ 12 mm | | | | | | | 4 – 6 GHz | ≤ 10 mm | | | | | | Grid spacing and orientation have no influence on the SAR result. For special applications where the standard scan method does not find the peak SAR within the grid, e.g. mobile phones with flip cover, the grid can be adapted in orientation. Results of this coarse scan are shown in annex B. • A "zoom scan" measures the field in a volume around the 2D peak SAR value acquired in the previous "coarse" scan. It uses a fine meshed grid where the robot moves the probe in steps along all the 3 axis (x,y and z-axis) starting at the bottom of the Phantom. The grid spacing for the cube measurement is varied according to the measured frequency
range, the dimensions are given in the following table: | Zoom scan grid spacing and volume for different frequency ranges | | | | | | | | | |--|---------------|--------------|--------------|--|--|--|--|--| | Frequency range | Grid spacing | Grid spacing | Minimum zoom | | | | | | | requericy range | for x, y axis | for z axis | scan volume | | | | | | | ≤ 2 GHz | ≤ 8 mm | ≤ 5 mm | ≥ 30 mm | | | | | | | 2 – 3 GHz | ≤ 5 mm | ≤ 5 mm | ≥ 28 mm | | | | | | | 3 – 4 GHz | ≤ 5 mm | ≤ 4 mm | ≥ 28 mm | | | | | | | 4 – 5 GHz | ≤ 4 mm | ≤ 3 mm | ≥ 25 mm | | | | | | | 5 – 6 GHz | ≤ 4 mm | ≤ 2 mm | ≥ 22 mm | | | | | | DASY is also able to perform repeated zoom scans if more than 1 peak is found during area scan. In this document, the evaluated peak 1g and 10g averaged SAR values are shown in the 2D-graphics in annex B. Test results relevant for the specified standard (see section 3) are shown in table form in section 7. ### **Spatial Peak SAR Evaluation** The spatial peak SAR - value for 1 and 10 g is evaluated after the Cube measurements have been done. The basis of the evaluation are the SAR values measured at the points of the fine cube grid consisting of all points in the three directions x, y and z. The algorithm that finds the maximal averaged volume is separated into three different stages. - The data between the dipole center of the probe and the surface of the phantom are extrapolated. This data cannot be measured since the center of the dipole is 1 to 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is about 1 mm (see probe calibration sheet). The extrapolated data from a cube measurement can be visualized by selecting 'Graph Evaluated'. - The maximum interpolated value is searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10 g) are computed using the 3d-spline interpolation algorithm. If the volume cannot be evaluated (i.e., if a part of the grid was cut off by the boundary of the measurement area) the evaluation will be started on the corners of the bottom plane of the cube. - All neighbouring volumes are evaluated until no neighbouring volume with a higher average value is found. ### **Extrapolation** The extrapolation is based on a least square algorithm [W. Gander, Computermathematik, p.168-180]. Through the points in the first 3 cm along the z-axis, polynomials of order four are calculated. These polynomials are then used to evaluate the points between the surface and the probe tip. The points, calculated from the surface, have a distance of 1 mm from each other. #### Interpolation The interpolation of the points is done with a 3d-Spline. The 3d-Spline is composed of three one-dimensional splines with the "Not a knot"-condition [W. Gander, Computermathematik, p.141-150] (x, y and z-direction) [Numerical Recipes in C, Second Edition, p.123ff]. #### **Volume Averaging** At First the size of the cube is calculated. Then the volume is integrated with the trapezoidal algorithm. 8000 points (20x20x20) are interpolated to calculate the average. ### **Advanced Extrapolation** DASY uses the advanced extrapolation option which is able to compensate boundary effects on Efield probes. ### **SAM PHANTOM** The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. (see Fig. 2.6) ### **Phantom Specification** **Phantom:** SAM Twin Phantom (V4.0) **Shell Material:** Vivac Composite **Thickness:** 2.0 ± 0.2 mm Figure 2.6 SAM Twin Phantom #### **Device Holder for Transmitters** In combination with the SAM Twin Phantom V4.0 the Mounting Device (see Fig. 2.7), enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation point is the ear opening. The devices can be easily, accurately, and repeat ably be positioned according to the FCC, CENELEC, IEC and IEEE specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom). **Figure 2.7 Mounting Device** Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produce infinite number of configurations. To produce the worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests. # 3. Probe and Dipole Calibration See Appendix D and E. # 4. Phantom & Simulating Tissue Specifications # **Head & Body Simulating Mixture Characterization** The head and body mixtures consist of the material based on the table listed below. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. Body tissue parameters that have not been specified in P1528 are derived from the issue dielectric parameters computed from the 4-Cole-Cole equations. Table 4.1 Typical Composition of Ingredients for Tissue | Ingredients | | Simulating Tissue | | | | | | | | |---------------------------|--------|--------------------------|---------------------------|------------------|---------------|--|--|--|--| | | | 750 MHz Body | 835 MHz Body | 1750 MHz Body | 1900 MHz Body | 2300 MHz Body | 2600 MHz Body | | | | Mixing Percentage | | | | | | | | | | | Water | | | 52.50 | | 69.91 | Proprietary
Purchased from
Speag | Proprietary
Purchased from
Speag | | | | Sugar | |] | 45.00 | 1.40 Proprietary | 0.00 | | | | | | Salt | | Proprietary
Purchased | 1.40 | | 0.13 | | | | | | HEC | | from Speag | 1.00 Purchased from Speag | 0.00 | | | | | | | Bactericide | |] ' " | 0.10 | opoug | 0.00 | 1 0 | , , | | | | DGBE | | | 0.00 | 1 | 29.96 | | | | | | Dielectric Constant | Target | 55.5 | 55.20 | 53.4 | 53.30 | 52.90 | 52.51 | | | | Conductivity (S/m) Target | | 0.96 | 0.97 | 1.49 | 1.52 | 1.81 | 2.16 | | | # 5. ANSI/IEEE C95.1 – 1992 RF Exposure Limits [2] #### **Uncontrolled Environment** Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity. ### **Controlled Environment** Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means. **Table 5.1 Human Exposure Limits** | | UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g) | CONTROLLED ENVIROMENT Professional Population (W/kg) or (mW/g) | |---|--|--| | SPATIAL PEAK SAR ¹
Head | 1.60 | 8.00 | | SPATIAL AVERAGE SAR ²
Whole Body | 0.08 | 0.40 | | SPATIAL PEAK SAR ³ Hands, Feet, Ankles, Wrists | 4.00 | 20.00 | ¹ The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time. ² The Spatial Average value of the SAR averaged over the whole body. ³ The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time. # 6. Measurement Uncertainty Measurement uncertainty table is not required per KDB 865664 D01 v01r04 section 2.8.2 page 12. SAR measurement uncertainty analysis is required in the SAR report only when the highest measured SAR in a frequency band is \geq 1.5 W/kg for 1-g SAR. The equivalent ratio (1.5/1.6) should be applied to extremity and occupational exposure conditions. The highest reported value is less than 1.5 W/kg. Therefore, the measurement uncertainty table is not required. # 7. System Validation ### **Tissue Verification** **Table 7.1 Measured Tissue Parameters** | | • | 750 MHz Body | | 835 MHz Body | | 1750 MHz Body | | | |-------------------------|-----------------|-----------------------------|----------|---------------|---------------|---------------|---------------|--| | Date(s) | | Aug. | 15, 2016 | Aug. | 22, 2016 | Aug. | Aug. 22, 2016 | | | Liquid Temperature (°C) | 20.0 | Target | Measured | Target | Measured | Target | Measured | | | Dielectric Constant: ε | | 55.53 | 55.57 | 55.20 | 55.91 | 53.43 | 53.32 | | |
Conductivity: σ | | 0.96 | 0.99 | 0.97 | 0.99 | 1.49 | 1.52 | | | | | 1900 | MHz Body | 2300 1 | MHz Body | 2600 MHz Body | | | | Date(s) | | Aug. 17, 2016 Aug. 19, 2016 | | 19, 2016 | Aug. 19, 2016 | | | | | Liquid Temperature (°C) | 20.0 | Target | Measured | Target | Measured | Target | Measured | | | Dielectric Constant: ε | | 53.30 | 52.07 | 52.90 | 52.63 | 52.51 | 52.38 | | | Conductivity: σ | | 1.52 | 1.47 | 1.81 | 1.84 | 2.16 | 2.21 | | | | | 2600 MHz Body | | 1750 MHz Body | | 2600 MHz Body | | | | Date(s) | | Nov. | 21, 2016 | Nov. 29, 2016 | | Nov. 29, 2016 | | | | Liquid Temperature (°C) | 20.0 | Target | Measured | Target | Measured | Target | Measured | | | Dielectric Constant: ε | | 52.51 | 52.23 | 53.43 | 52.68 | 52.51 | 52.21 | | | Conductivity: σ | Conductivity: σ | | 2.15 | 1.49 | 1.56 | 2.16 | 2.18 | | See Appendix A for data of all the channel frequencies tested. # **Test System Verification** Prior to assessment, the system is verified to the $\pm 10\%$ of the specifications at the test frequency by using the system kit. Power is normalized to 1 watt. (Graphic Plots Attached) **Table 7.2 System Dipole Validation Target & Measured** | | Test
Frequency | Targeted
SAR _{1g}
(W/kg) | Measure
SAR _{1g} (W/kg) | Tissue Used for Verification | Deviation Target and Fast SAR to SAR (%) | Plot
Number | |-------------|-------------------|---|-------------------------------------|------------------------------|--|----------------| | 15-Aug-2016 | 750 MHz | 8.47 | 8.65 | Body | + 2.13 | 1 | | 22-Aug-2016 | 835 MHz | 9.28 | 9.53 | Body | + 2.69 | 2 | | 22-Aug-2016 | 1750 MHz | 37.70 | 38.50 | Body | + 2.12 | 3 | | 17-Aug-2016 | 1900 MHz | 40.40 | 39.80 | Body | - 1.49 | 4 | | 19-Aug-2016 | 2300 MHz | 48.10 | 48.20 | Body | + 0.21 | 5 | | 19-Aug-2016 | 2600 MHz | 54.80 | 54.10 | Body | - 1.28 | 6 | | 21-Nov-2016 | 2600 MHz | 54.80 | 52.20 | Body | - 4.74 | 7 | | 29-Nov-2016 | 1750 MHz | 37.70 | 38.20 | Body | + 1.32 | 8 | | 29-Nov-2016 | 2600 MHz | 54.80 | 53.50 | Body | - 2.37 | 9 | See Appendix A for data plots. Figure 7.1 Dipole Validation Test Setup # 8. SAR Test Data Summary See Measurement Result Data Pages See Appendix B for SAR Test Data Plots. See Appendix C for SAR Test Setup Photos. # **Procedures Used To Establish Test Signal** The device was either placed into simulated transmit mode using the manufacturer's test codes or the actual transmission is activated through a base station simulator or similar equipment. See data pages for actual procedure used in measurement. ### **Device Test Condition** In order to verify that the device was tested at full power, conducted output power measurements were performed before and after each SAR measurement to confirm the output power unless otherwise noted. If a conducted power deviation of more than 5% occurred, the test was repeated. The power drift of each test is measured at the start of the test and again at the end of the test. The drift percentage is calculated by the formula ((end/start)-1)*100 and rounded to three decimal places. The drift percentage is calculated into the resultant SAR value on the data sheet for each test. The EUT was tested in the tablet configuration of the device. The EUT was tested in on all sides of the device where the antenna was within 25 mm of that side. All measurements for the tablet condition were conducted with the side of the device in direct contact with the phantom. The Bluetooth transmitter does simultaneously transmit with the WiFi transmitter and the WWAN transmitter simultaneously transmits with both WiFi and BT. When the BT is turned on, it transmits on Aux and the WiFi transmits on Main. Simultaneous transmission is evaluated on page 72. The device was on a minimum of 10 cm of Styrofoam during each test. The WCDMA testing was conducted using 12.2 kbps RMC configured in Test Loop Mode 1. The HSPA testing was conducted with HS-DPCCH, E-DPCCH and E-DPDCH all enabled and a 12.2 kbps RMC. FRC was configured according to HS-DPCCH Sub-Test 1 using H-set 1 and QPSK. # 9. LTE Document Checklist 1) Identify the operating frequency range of each LTE transmission band used by the device | LTE Operating | Uplink (transmit) | Downlink (Receive) | Duplex mode | |---------------|-------------------|--------------------|-------------| | Band | Low - high | Low - high | (FDD/TDD) | | 4 | 1710-1755 | 2110-2155 | FDD | | 5 & 26 | 814-849 | 859-894 | FDD | | 13 | 777-787 | 746-756 | FDD | | 12 | 704-716 | 734-746 | FDD | | 2 & 25 | 1850-1915 | 1930-1995 | FDD | | 30 | 2305-2315 | 2350-2360 | FDD | | 7 | 2500-2570 | 2620-2690 | FDD | | 41 | 2496-2690 | 2496-2690 | TDD | 2) Identify the channel bandwidths used in each frequency band; 1.4, 3, 5, 10, 15, 20 MHz etc | LTE Band Class | Bandwidth (MHz) | Frequency or Freq. Band (MHz) | |----------------|-----------------------|-------------------------------| | 4 | 1.4, 3, 5, 10, 15, 20 | 1710-1755 | | 5 | 1.4, 3, 5, 10 | 824-849 | | 26 | 1.4, 3, 5, 10, 15 | 814-849 | | 13 | 5, 10 | 777-787 | | 12 | 1.4, 3, 5, 10 | 704-716 | | 2 & 25 | 1.4, 3, 5, 10, 15, 20 | 1850-1915 | | 30 | 5, 10 | 2305-2315 | | 7 | 5, 10, 15, 20 | 2500-2570 | | 41 | 5, 10, 15, 20 | 2496-2690 | 3) Identify the high, middle and low (H, M, L) channel numbers and frequencies in each LTE frequency band | LTE Band | Bandwidth | Frequency (MHz)/Channel # | | | | | | |----------|-----------|---------------------------|-------|--------|-------|--------|-------| | Class | (MHz) | L | ow | M | id | High | | | 4 | 1.4 | 1710.7 | 19957 | 1732.5 | 20175 | 1754.3 | 20393 | | 4 | 3 | 1711.5 | 19965 | 1732.5 | 20175 | 1753.5 | 20385 | | 4 | 5 | 1712.5 | 19975 | 1732.5 | 20175 | 1752.5 | 20375 | | 4 | 10 | 1715.0 | 20000 | 1732.5 | 20175 | 1750.0 | 20350 | | 4 | 15 | 1717.5 | 20025 | 1732.5 | 20175 | 1747.5 | 20325 | | 4 | 20 | 1720.0 | 20050 | 1732.5 | 20175 | 1745.0 | 20300 | | 5 | 1.4 | 824.7 | 20407 | 836.5 | 20525 | 848.3 | 20643 | | 5 | 3 | 825.5 | 20415 | 836.5 | 20525 | 847.5 | 20635 | | 5 | 5 | 826.5 | 20425 | 836.5 | 20525 | 846.5 | 20625 | | 5 | 10 | 829.0 | 20450 | 836.5 | 20525 | 844.0 | 20600 | | 26 | 1.4 | 814.7 | 26697 | 831.5 | 26865 | 848.3 | 27033 | | 26 | 3 | 815.5 | 26705 | 831.5 | 26865 | 847.5 | 27025 | | 26 | 5 | 816.5 | 26715 | 831.5 | 26865 | 846.5 | 27015 | |--------|-----|--------|-------|--------|-------|--------|-------| | 26 | 10 | 819.0 | 26740 | 831.5 | 26865 | 844.0 | 26990 | | 26 | 15 | 821.5 | 24765 | 831.5 | 26865 | 841.5 | 26995 | | 13 | 5 | 779.5 | 23205 | 782.0 | 23230 | 784.5 | 23255 | | 13 | 10 | | | 782.0 | 23230 | | | | 12 | 1.4 | 699.7 | 23017 | 707.5 | 23095 | 715.3 | 23173 | | 12 | 3 | 700.5 | 23025 | 707.5 | 23095 | 714.5 | 23165 | | 12 | 5 | 701.5 | 23035 | 707.5 | 23095 | 713.5 | 23155 | | 12 | 10 | 704.0 | 23060 | 707.5 | 23095 | 711.0 | 23130 | | 2 & 25 | 1.4 | 1850.7 | 18607 | 1882.5 | 26365 | 1914.3 | 26715 | | 2 & 25 | 3 | 1851.5 | 18615 | 1882.5 | 26365 | 1913.5 | 26690 | | 2 & 25 | 5 | 1852.5 | 18625 | 1882.5 | 26365 | 1912.5 | 26665 | | 2 & 25 | 10 | 1855.0 | 18650 | 1882.5 | 26365 | 1910.0 | 26640 | | 2 & 25 | 15 | 1857.5 | 18675 | 1882.5 | 26365 | 1907.5 | 26615 | | 2 & 25 | 20 | 1860.0 | 18700 | 1882.5 | 26365 | 1905.0 | 26590 | | 30 | 5 | 2307.5 | 27685 | 2310 | 27710 | 2312.5 | 27735 | | 30 | 10 | | | 2310 | 27710 | | | | 7 | 5 | 2502.5 | 20775 | 2535 | 21100 | 2567.5 | 21425 | | 7 | 10 | 2505.0 | 20800 | 2535 | 21100 | 2565.0 | 21400 | | 7 | 15 | 2507.5 | 20825 | 2535 | 21100 | 2562.5 | 21375 | | 7 | 20 | 2510.0 | 20850 | 2535 | 21100 | 2560.0 | 21350 | | 41 | 5 | 2498.5 | 39675 | 2593 | 40620 | 2687.5 | 41565 | | 41 | 10 | 2501.0 | 39700 | 2593 | 40620 | 2685.0 | 41540 | | 41 | 15 | 2503.5 | 39725 | 2593 | 40620 | 2682.5 | 41515 | | 41 | 20 | 2506.0 | 39750 | 2593 | 40620 | 2680.0 | 41490 | | | | | | | | | | - 4) Specify the UE category and uplink modulations used: - UE Category: 3 - Uplink modulations: QPSK and 16QAM - 5) Include descriptions of the LTE transmitter and antenna implementation; and also identify whether it is a standalone transmitter operating independently of other wireless transmitters in the device or sharing hardware components and/or antenna(s) with other transmitters etc The device has 2 antennas: - WWAN Main Antenna - WWAN Diversity Antenna - 6) Identify the LTE voice/data requirements in each operating mode and exposure condition with respect to head and body test configurations, antenna locations, handset flip-cover or slide positions, antenna diversity conditions etc The device is a data only device. Data mode was tested in each operating mode and exposure condition in the body configuration. See test setup photos to see all configurations tested. - 7) Identify if Maximum Power Reduction (MPR) is optional or mandatory, i.e. built-in by design: - a) Only mandatory MPR may be considered during SAR testing, when the maximum output power is permanently limited by the MPR implemented within the UE; and only for the applicable RB (resource block) configurations specified in LTE standards MPR is mandatory, built-in by design on all production units. It was enabled during testing. | Modulation | Ch | annel Band | width/transmis | ssion Bandwidtl | h Configura | ition | MPR | | |------------|-----|--------------------|----------------|-----------------|-------------|-------|------|--| | | | | (1 | RB) | | | (dB) | | | | 1.4 | 1.4 3.0 5 10 15 20 | | | | | | | | | MHz | MHZ | MHz | MHz | MHz | MHz | | | | QPSK | > 5 | > 4 | > 8 | > 12 | > 16 | > 18 | ≤ 1 | | | 16QAM | ≤ 5 | ≤ 4 | ≤ 8 | ≤ 12 | ≤ 16 | ≤ 18 | ≤ 1 | | | 16QAM | > 5 | > 4 | > 8 | > 12 | > 16 | > 18 | ≤ 2 | | b) A-MPR (additional MPR) must be disabled A-MPR was disabled during testing. 8) Include the maximum average conducted output power on the required test channels for each channel bandwidth and UL modulation used in each frequency band: The maximum average conducted output power for
the testing is listed on pages 33-60 of this report. The below table shows the factory set point with the allowable tolerance. | LTE Band | Power Class | Modulation | • | ducted Power
Bm) | |----------|-------------|------------|-----------|---------------------| | | | | Set point | Tolerance (+/-) | | 4 | 3 | QPSK | 23.0 | +1.0/-1.5 | | 4 | 3 | 16QAM | 22.0 | +1.0/-1.5 | | 5 & 26 | 3 | QPSK | 23.0 | +1.0/-1.5 | | 5 & 26 | 3 | 16QAM | 22.0 | +1.0/-1.5 | | 13 | 3 | QPSK | 23.0 | +1.0/-1.5 | | 13 | 3 | 16QAM | 22.0 | +1.0/-1.5 | | 12 | 3 | QPSK | 23.0 | +1.0/-1.5 | | 12 | 3 | 16QAM | 22.0 | +1.0/-1.5 | | 2 & 25 | 3 | QPSK | 23.0 | +1.0/-1.5 | | 2 & 25 | 3 | 16QAM | 22.0 | +1.0/-1.5 | | 30 | 3 | QPSK | 22.0 | +1.0/-1.5 | | 30 | 3 | 16QAM | 21.0 | +1.0/-1.5 | | 7 | 3 | QPSK | 22.0 | +1.0/-1.5 | | 7 | 3 | 16QAM | 21.0 | +1.0/-1.5 | | 41 | 3 | QPSK | 23.0 | +1.0/-1.5 | | 41 | 3 | 16QAM | 22.0 | +1.0/-1.5 | 9) Identify all other U.S. wireless operating modes (3G, Wi-Fi, WiMax, Bluetooth etc), device/exposure configurations (head and body, antenna and handset flip-cover or slide positions, antenna diversity conditions etc.) and frequency bands used for these modes Other wireless modes: | Band | Technology | Class | Setpoint
Nominal
Power
dBm | Tolerance
dBm | Lower
Tolerance
dBm | Upper
Tolerance
dBm | |----------------------------------|------------------|-------|-------------------------------------|------------------|---------------------------|---------------------------| | Band 5 – 850 MHz | UMTS | 3 | 22 | +1.0/-1.5 | 20.5 | 23.0 | | Band 4 – 1750 MHz | UMTS | 3 | 21 | +1.0/-1.5 | 19.5 | 22.0 | | Band 2 – 1900 MHz | UMTS | 3 | 20 | +1.0/-1.5 | 18.5 | 21.0 | | WLAN – 2.4 GHz | 802.11b | N/A | 16 | ±1.5 | 14.5 | 17.5 | | WLAN – 2.4 GHz | 802.11g/n(Ch. 6) | N/A | 16 | ±1.5 | 14.5 | 17.5 | | WLAN – 5 GHz Band I, II, III, IV | 802.11a | N/A | 14.5 | ±1.5 | 13.0 | 16.0 | 10) Include the maximum average conducted output power measured for the other wireless modes and frequency bands. The maximum average conducted output power measured for the testing is listed on pages 26-30 of this report. The table in item 9 shows the factory set point with the allowable tolerance. 11) When power reduction is applied to certain wireless modes to satisfy SAR compliance for simultaneous transmission conditions, other equipment certification or operating requirements, include the maximum average conducted output power measured in each power reduction mode applicable to the simultaneous voice/data transmission configurations for such wireless configurations and frequency bands; and also include details of the power reduction implementation and measurement setup Power reduction is not required to satisfy SAR compliance. 12) Include descriptions of the test equipment, test software, built-in test firmware etc. required to support testing the device when power reduction is applied to one or more transmitters/antennas for simultaneous voice/data transmission Power reduction is not required to satisfy SAR compliance. 13) When appropriate, include a SAR test plan proposal with respect to the above Power reduction is not required to satisfy SAR compliance. 14) If applicable, include preliminary SAR test data and/or supporting information in laboratory testing inquiries to address specific issues and concerns or for requesting further test reduction considerations appropriate for the device; for example, simultaneous transmission configurations. Not applicable. # 10. FCC 3G Measurement Procedures Power measurements were performed using a base station simulator under average power. ### 10.1 Procedures Used to Establish RF Signal for SAR The device was placed into a simulated call using a base station simulator in a screen room. Such test signals offer a consistent means for testing SAR and recommended for evaluating SAR. The SAR measurement software calculates a reference point at the start and end of the test to check for power drifts. If conducted power deviations of more than 5% occurred, the tests were repeated. # 10.2 SAR Measurement Conditions for WCDMA/HSDPA/HSUPA Configure the call box 8960 to support all WCDMA tests in respect to the 3GPP 34.121 (listed in Table below). Measure the power at Ch4132, 4182 and 4233 for US cell; Ch9262, 9400 and 9538 for US PCS band. For Rel99 - Set a Test Mode 1 loop back with a 12.2kbps Reference Measurement Channel (RMC). - Set and send continuously Up power control commands to the device - Measure the power at the device antenna connector using the power meter with average detector. For HSDPA Rel 6 - Establish a Test Mode 1 look back with both 1 12.2kbps RMC channel and a H-Set1 Fixed Reference Channel (FRC). With the 8960 this is accomplished by setting the signal Channel Coding to "Fixed Reference Channel" and configuring for HSET-1 QKSP. - Set beta values and HSDPA settings for HSDPA Subtest1 according to Table below. - Send continuously Up power control commands to the device - Measure the power at the device antenna connector using the power meter with modulated average detector. - Repeat the measurement for the HSDPA Subtest2, 3 and 4 as given in Table below. For HSUPA Rel 6 - Use UL RMC 12.2kbps and FRC H-Set1 QPSK, Test Mode 1 loop back. With the 8960 this is accomplished by setting the signal Channel Coding to "E-DCH Test Channel" and configuring the equipment category to Cat5_10ms. - Set the Absolute Grant for HSUPA Subtest1 according to Table below. - Set the device power to be at least 5dB lower than the Maximum output power - Send power control bits to give one TPC_cmd = +1 command to the device. If device doesn't send any E-DPCH data with decreased E-TFCI within 500ms, then repeat this process until the decreased E-TFCI is reported. - Confirm that the E-TFCI transmitted by the device is equal to the target E-TFCI in Table below. If the E-TFCI transmitted by the device is not equal to the target E-TFCI, then send power control bits to give one TPC_cmd = -1 command to the UE. If UE sends any E-DPCH data with decreased E-TFCI within 500 ms, send new power control bits to give one TPC_cmd = -1 command to the UE. Then confirm that the E-TFCI transmitted by the UE is equal to the target E-TFCI in Table below. - Measure the power using the power meter with modulated average detector. - Repeat the measurement for the HSUPA Subtest2, 3, 4 and 5 as given in Table below. | 3GPP
Release | Mode | Cellul | ar Band | [dBm] | Sub-Test
(See Table | MPR | |-----------------|-------|--------|---------|-------|------------------------|-----| | Version | | 4132 | 4183 | 4233 | Below) | | | 99 | WCDMA | 22.89 | 22.91 | 22.87 | - | - | | 6 | | 22.86 | 22.87 | 22.79 | 1 | 0 | | 6 | HSDPA | 22.82 | 22.89 | 22.85 | 2 | 0 | | 6 | ПЭДРА | 22.39 | 22.42 | 22.37 | 3 | 0.5 | | 6 | | 22.94 | 22.49 | 22.40 | 4 | 0.5 | | 6 | | 22.80 | 22.90 | 22.83 | 1 | 0 | | 6 | | 20.95 | 20.99 | 20.96 | 2 | 2 | | 6 | HSUPA | 21.97 | 22.08 | 21.99 | 3 | 1 | | 6 | | 21.06 | 21.01 | 21.04 | 4 | 2 | | 6 | | 22.82 | 22.84 | 22.87 | 5 | 0 | | 3GPP
Release Mode | | PCS | Band [d | Bm] | Sub-Test
(See Table | MPR | |----------------------|-------|-------|---------|-------|------------------------|-----| | Version | | 9262 | 9400 | 9538 | Below) | | | 99 | WCDMA | 20.83 | 20.86 | 20.81 | - | - | | 6 | | 20.79 | 20.82 | 20.76 | 1 | 0 | | 6 | HSDPA | 20.81 | 20.75 | 20.79 | 2 | 0 | | 6 | ПЗДРА | 20.36 | 20.34 | 20.36 | 3 | 0.5 | | 6 | | 20.41 | 20.31 | 20.39 | 4 | 0.5 | | 6 | | 20.84 | 20.82 | 20.75 | 1 | 0 | | 6 | | 18.97 | 19.01 | 18.89 | 2 | 2 | | 6 | HSUPA | 19.94 | 20.05 | 19.94 | 3 | 1 | | 6 | | 18.99 | 18.95 | 19.03 | 4 | 2 | | 6 | | 20.82 | 20.80 | 20.71 | 5 | 0 | | 3GPP
Release Mode | | AWS | Band [d | IBm] | Sub-Test
(See Table | MPR | |----------------------|-------|-------|---------|-------|------------------------|-----| | Version | | 1312 | 1413 | 1513 | ` Below) | | | 99 | WCDMA | 21.88 | 21.95 | 21.90 | - | - | | 6 | | 21.82 | 21.86 | 21.74 | 1 | 0 | | 6 | HSDPA | 21.74 | 21.72 | 21.76 | 2 | 0 | | 6 | ПЭДРА | 21.45 | 21.39 | 21.38 | 3 | 0.5 | | 6 | | 21.43 | 21.34 | 21.35 | 4 | 0.5 | | 6 | | 21.80 | 21.80 | 21.77 | 1 | 0 | | 6 | | 19.98 | 20.06 | 19.84 | 2 | 2 | | 6 | HSUPA | 20.92 | 21.01 | 20.98 | 3 | 1 | | 6 | | 19.97 | 19.92 | 20.05 | 4 | 2 | | 6 | | 21.85 | 21.87 | 21.68 | 5 | 0 | ### **Sub-Test Setup for Release 6 HSDPA** | Sub-Test | eta_{c} | β_d | B _c / β _d | eta_{hs} | |--|----------------------|-----------|---------------------------------|------------| | 1 | 2/15 | 15/15 | 2/15 | 4/15 | | 2 | 12/15 | 15/15 | 15/15 | 24/15 | | 3 | 15/15 | 8/15 | 15/8 | 30/15 | | 4 | 15/15 | 4/15 | 15/4 | 30/15 | | $\Delta_{ m ack}$, $\Delta_{ m nack}$ a | and $\Delta_{cqi} =$ | 8 | | | # Sub-Test Setup for Release 6 HSUPA | Sub-Test | βc | β_d | B _c / β _d | eta_{hs} | B_{ec} | B_{ed} | MPR | AG Index | E-TFCI | |---------------------------------------|--|-----------|---------------------------------|------------|----------|----------|-----|----------|--------| | 1 | 11/15 | 15/15 | 11/15 | 22/15 | 209/225 | 1039/225 | 0.0 | 20 | 75 | | 2 | 6/15 | 15/15 | 6/15 | 12/15 | 12/15 | 94/75 | 2.0 | 12 | 67 | | 3 | 15/15 | 9/15 | 15/9 | 30/15 | 30/15 | 47/15 | 1.0 | 15 | 92 | | 4 | 2/15 | 15/15 | 2/15 | 4/15 | 2/15 | 56/15 | 2.0 | 17 | 71 | | 5 | 15/15 | 15/15 | 15/15 | 30/15 | 24/15 | 134/15 | 0.0 | 21 | 81 | | $\Delta_{ m ack},\Delta_{ m nack}$ at | $\Delta_{ m ack},\Delta_{ m nack}$ and $\Delta_{ m cqi}=8$ | | | | | | | | | | Sand Mode (MHz) Rate Affenda (dBm) | D I | 0.0 | Bandwidth | Glassia I | Frequency | Data | | Power |
---|---------------|----------|-----------|-----------|-----------|----------|--------------------|----------------| | 802.11b 20 11 2462 1 1 Mbps | Band | Mode | (MHz) | Channel | | Rate | Antenna | (dBm) | | ### Section 11 2462 1 Mbps 17.50 16.45 16.45 17.50 16.45 17.50 17. | | | İ | | | | | | | 1 | | | | | | | Chain A | | | 1 | | 802.11b | 20 | | | 1 Mbps | | | | 11 | | | | | | · | Chain B | | | 2450 MHz 802.11g 802.11g 20 11 2432 12.466 12.437 11 2412 6 2437 11 2412 6 3437 | | | | | | | Cildiii B | | | 802.11g 20 11 2462 6 Mbps 1.12.46 14.45 1.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 | | | | | | | | | | 2450 MHz 1 | | | | | | | Chain A | | | 2450 MHz 1 | | 802.11g | 20 | | | 6 Mbps | | | | 2450 MHz 1 | | | | | | | Chain B | | | 1 2417 133 133 134 | | | | | | | Chain b | | | 802.11n 20 111 2462 HT4 12461 1239 | 2450 MHz | | | | | | | | | 802.110 | | | | 6 | 2437 | | Chain A | | | 1 2437 | | 802.11n | 20 | | | HT4 | | | | 11 2462 13.46 12.46 13.41 12.46 13.41 12.46 13.42 13.42 12.48 13.42 12.48 13.41 12.48 13.41 12.46 13.41 12.46 13.41 12.46 13.41 12.46 13.41 12.46 13.41 12.46 13.41 12.46 13.41 12.46 13.41 12.46 13.41 12.46 13.41 12.46 13.41 12.46 13.41 12.46 13.41 12.46 13.41 12.46 13.41 12.46 13.42 13.41 13.42 13.41 13.41 13.41 13.41 13.41 13.41 13.41 13.41 13.41 13.41 13.41 13.41 13.41 13.41 13.41 13.46
13.46 | | | | | | | Chair D | | | Second | | | | | | | Chain B | | | Second S | | | | | | | | | | S02.11n 40 9 2452 HT4 12,48 13,41 6 2437 Chain B 17,46 11,47 6 2437 Chain B 17,46 11,47 11 | | | | | | | Chain A | | | \$ 3 | | 902 11n | 40 | | | шти | | | | 9 2452 | | 002.1111 | 40 | | | П14 | | | | Second | | | | | | | Chain B | | | A0 5200 Chain A 15.47 15.50 | | | | | | | | | | 802.11a 20 48 5220 6 Mbps 115.50 13.96 13.96 13.96 13.96 13.96 15.50 44 5220 Chain B 15.52 16.00 15.55.525 GHz 802.11a 20 48 5240 15.99 15.45 1 | | | | | | | Chain A | | | 802.11a 20 48 5240 6 Mbps 13.96 13.96 140 5200 Chain B 15.92 16.000 15.92 16.000 15.99 13.89 13. | | | 20 | | | | | | | S.15-5.25 GHz Society of the property th | | 902 112 | | | | C Mbms | Chain B | | | 5.15-5.25 GHz A44 5.5240 15.99 15.99 15.99 15.44 15.42 15.45 | | 8U2.11d | 20 | 36 | 5180 | o iviups | | | | 5.15-5.25 GHz | | | | | | | | | | S.15-5.25 GHz 802.11n 20 44
5220 48 5240 40 5200 40 40 5200 40 5200 40 5200 40 5200 40 5200 40 5200 40 5200 40 5200 40 5200 40 5200 40 5200 40 5200 40 5200 60 5230 60 802.11n 40 46 5230 802.11n 40 46 5230 802.11a 80 802.11a 80 80 80 80 80 80 80 80 80 8 | | | | | | | | | | S.15-5.25 GHz S02.11n 20 | | | | | | | | | | S.15-5.25 GHz S02.11n 20 | | | | | | | | | | Section Sect | F 1F F 2F CU- | | 20 | | | HT4 | Chain A | | | 13-98 13-98 13-98 13-98 13-98 13-98 13-98 13-98 13-98 13-98 13-98 13-98 13-98 13-98 13-98 13-98 13-99 13-98 13-98 13-99 13-98 13-99 13-98 13-98 13-99 13-98 13-99 13-98 13-99 13-98 13-98 13-98 13-99 13-98 13-98 13-99 13-98 13-98 13-98 13-98 13-99 13-98 13-9 | 5.15-5.25 GHZ | 802 11n | | 48 | 5240 | | | | | Mathematics | | 002.1111 | 20 | | | 111.4 | | | | 802.11n 40 48 5240 HT4 Chain A 11.96 802.11n 40 46 5230 HT4 Chain B 13.46 46 5230 HT4 Chain B 13.46 802.11ac 80 42 5210 VHT6 Chain B 13.50 802.11ac 80 42 5210 VHT6 Chain B 13.50 \$ 52 5260 | | | | | | | Chain B | | | 802.11n 40 46 5230 HT4 Chain A 11.96 15.92 15.90 HT4 Chain B 13.46 15.90 15.90 HT4 Chain B 13.46 15.90 HT4 Chain B 13.50 15.90 HT4 Chain B 13.50 Chain B 13.50 15.90 HT4 Framework Box 10.50 HT5 Frame | | | | | | | | | | 802.11n 40 46 5230 HT4 Chain A 15.92 38 5190 HT4 Chain B 13.46 15.90 802.11ac 80 42 5210 VHT6 Chain A 13.50 Chain B 13.50 Chain B 13.50 Chain B 13.50 Chain B 15.38 15.90 Chain A 15.50 Chain A 15.50 Chain A 15.50 Chain A 15.50 Chain B 15.50 Chain B 15.50 Chain B 15.50 Chain B 15.94 15.94 15.94 15.25 5260 56 5280 60 5300 60 5300 64 5320 Chain B 16.00 64 5320 Chain B 15.42 Chain B 15.42 Chain A 15.44 Chain B 15.44 Chain B 15.42 Chain B 15.44 Chain B 15.44 Chain B 15.49 15.49 Chain B 15.49 Chain B 15.49 15.40 Chain B 15.49 Chain B 15.49 15.40 Chain B 15.49 Chain B 15.49 Chain B 15.49 15.40 Chain B 15.40 15.40 15.40 Chain B 15 | | | | | | 1174 | Cl : A | | | 13.46 15.30 15.90 15.90 16.0 | | 902 11n | 40 | | | H14 | Chain A | | | 802.11ac 80 42 5210 VHT6 Chain A 13.50 (Chain B 13.50) 52 5260 (Chain B 13.50) 56 5280 (Chain A 15.50) 60 5300 (Chain B 15.50) 15.50 (Chain B 15.50) 15.50 (Chain B 15.50) 15.50 (Chain B 15.90) 13.46 (Chain B 16.00) 60 5300 (Chain A 15.42) 525 5260 (Chain A 15.44) 526 5280 (Chain A 15.44) 527 5260 (Chain B 15.42) 528 5260 (Chain B 15.42) 529 5260 (Chain B 15.42) 520 5260 (Chain B 15.44) 520 520 (Chain B 15.44) 521 5260 (Chain B 15.96) 522 5260 (Chain B 15.96) 523 5270 (Chain B 15.96) 53300 (Chain B 15.96) 54 5270 (Chain B 15.90) 54 5270 (Chain B 15.94) 520 5310 (Chain B 15.94) 533 5270 (Chain B 15.94) | | 002.1111 | 40 | | | HT4 | Chain B | | | Section Sect | | | | 46 | 5230 | 111-4 | | | | Solution | | 802.11ac | 80 | 42 | 5210 | VHT6 | | | | Second | | | | 52 | 5260 | | CIIdIN B | | | 802.11a 20 60 5300 6 Mbps 13.46 15.50 13.46 52 5260 60 5300 64 5320 64 5320 64 5320 64 5320 64 5320 656 5280 60 5300 60 50 50 50 50 50 50 50 50 50 50 50 50 50 | | | | | | | Chair A | | | 802.11a 20 64 5320 6 Mbps 13.46 15.94 15.94 16.00 60 5300 64 5320 64 54 54 54 54 54 54 54 54 54 54 54 54 54 | | | | | | | Chain A | | | 52 5260
56 5280
60 5300
64 5320
552 5260
56 5280
60 5300
64 5320
This part of the proof | | 802 11a | 20 | 64 | 5320 | 6 Mhns | | 13.46 | | 5.25-5.35 GHz 802.11n 20 60 5300 13.41 52 5260 56 5280 60 5300 64 5320 HT4 Chain B 16.00 13.41 15.42 15.42 15.44 15.49 13.40 13.40 52 56 5280 Chain B 15.91 15.91 15.96 15.96 15.96 15.96 15.96 15.96 15.96 15.96 15.96 15.96 15.96 15.96 15.96 15.90 15.90 15.90 15.90 15.94 15.94 13.46 | | 502.110 | 20 | | | O NIDPS | 1 | | | 5.25-5.35 GHz 802.11n 20 64 5320 552 5260 56 5280 60 5300 64 5320 HT4 Chain B 15.49 15.49 15.49 15.91 15.91 15.96 64 5320 15.91 15.96 64 5320 HT4 Chain B 15.90 802.11n 40 62 5310 HT4 Chain B 15.94 13.46 13.46 | | | | | | | Chain B | | | 5.25-5.35 GHz 802.11n 20 52 56 5280 60 5300 64 5320 52 526 56 5280 64 5320 13.40 15.91 15.91 15.91 15.96 64 5320 13.43 15.96 64 5320 13.43 15.96 64 5320 13.43 15.96 15.96 15.96 15.96 15.96 15.96 15.96 15.96 15.96 15.96 15.96 15.90 13.43 15.90 13.46 15.90 13.46 | | | | | | | 1 | | | Solution | | | | | | | | | | 5.25-5.35 GHz 802.11n 20 60 5300 64 5320 13.40 15.91 56 5280 60 5300 15.91 15.88 60 5300 15.96
15.96 13.43 15.96 64 5320 13.43 54 5270 HT4 Chain B 15.90 13.46 802.11n 40 62 5310 HT4 Chain B 15.90 13.46 13.46 | | | | | | | Chair A | | | 802.11n 20 64 5320 HT4 13.40 15.91 15.91 15.91 15.96 15.88 15.96 1 | 5 25-5 35 GHz | | | | | | Chain A | | | 802.11a | J.23 J.33 UHZ | 802 11n | 20 | | 5320 | HT4 | | 13.40 | | 802.11n 40 62 5310 HT4 Chain B 15.94 62 5310 HT4 Chain B 13.39 | | 332.1111 | 20 | | | | 1 | | | 802.11n 40 64 5320 13.43
54 5270 HT4 Chain A 15.90
62 5310 HT4 Chain B 15.94
62 5310 HT4 Chain B 15.94
62 5310 OCT OF STAN | | | | | | | Chain B | | | 802.11n 40 54 5270 HT4 Chain A 15.90 13.46 54 5270 HT4 Chain B 15.94 15.94 62 5310 HT4 Chain B 15.94 13.39 802.11ac 80 58 5290 VHT6 Chain A 13.46 | | | | | | | 1 | | | 802.11n 40 62 5310 HT4 Chain B 13.46 54 5270 HT4 Chain B 15.94 13.39 802.11ac 802 58 5290 VHT6 Chain A 13.46 | | | | | | | GI | | | 54 5270 HT4 Chain B 15.94
62 5310 HT4 Chain B 13.39 | | 902 11n | 40 | | | HT4 | Chain A | | | 62 5310 13.39
803 113c 80 58 5390 VHT6 Chain A 13.46 | | 802.11n | 40 | 54 | 5270 | HT4 | Chain B | 15.94 | | | | | | 62 | 5310 | 1117 | | | | | | 802.11ac | 80 | 58 | 5290 | VHT6 | Chain A
Chain B | 13.46
13.43 | | Band | Mode | Bandwidth
(MHz) | Channel | Frequency
(MHz) | Data
Rate | Antenna | Power
(dBm) | |----------|----------|--------------------|------------|--------------------|--------------|-----------------|----------------| | | | | 100 | 5500 | | | 13.46 | | | | | 104
108 | 5520
5540 | | | 15.39
15.46 | | | | | 112 | 5560 | | | 15.41 | | | | | 116 | 5580 | | | 15.50 | | | | | 120 | 5600 | | Chain A | 15.44 | | | | | 124 | 5620 | | | 15.50 | | | | | 128 | 5640 | | | 15.41 | | | | | 132
136 | 5660
5680 | | | 15.41
15.43 | | | | | 140 | 5700 | | | 12.90 | | | 802.11a | 20 | 100 | 5500 | 6 Mbps | | 13.94 | | | | | 104 | 5520 | | | 15.92 | | | | | 108 | 5540 | | | 15.90 | | | | | 112 | 5560 | | | 15.95 | | | | | 116
120 | 5580
5600 | | Chain B | 16.00
15.89 | | | | | 124 | 5620 | | Chamb | 16.00 | | | | | 128 | 5640 | | | 15.92 | | | | | 132 | 5660 | | | 15.92 | | | | | 136 | 5680 | | | 15.91 | | | | | 140 | 5700 | | | 12.94 | | | | | 100
104 | 5500
5520 | | | 13.37
15.42 | | | | | 108 | 5540 | | | 15.38 | | | | | 112 | 5560 | | Chain A | 15.46 | | | | | 116 | 5580 | | | 15.48 | | | | | 120 | 5600 | | | 15.44 | | | | | 124 | 5620 | | | 15.47 | | | | | 128
132 | 5640
5660 | | | 15.40
15.39 | | | | | 136 | 5680 | <u> </u> | | 15.46 | | 5600 MHz | 002.44 | 20 | 140 | 5700 | LITA | | 12.87 | | | 802.11n | 20 | 100 | 5500 | HT4 | | 13.42 | | | | | 104 | 5520 | | | 15.96 | | | | | 108 | 5540 | | | 15.92 | | | | | 112
116 | 5560
5580 | | | 15.90
15.93 | | | | | 120 | 5600 | | Chain B | 15.97 | | | | | 124 | 5620 | | | 15.89 | | | | | 128 | 5640 | | | 15.87 | | | | | 132 | 5660 | | | 15.94 | | | | | 136 | 5680 | | | 15.82 | | | <u> </u> | + | 140
102 | 5700
5510 | | | 12.91
13.42 | | | 1 | | 110 | 5550 | | | 15.96 | | | 1 | | 118 | 5580 | | Chain A | 15.89 | | | | | 126 | 5610 | | | 15.92 | | | 802.11n | 40 | 134 | 5670 | HT4 | | 15.87 | | | | | 102 | 5510 | * * | | 13.91 | | | 1 | | 110
118 | 5550
5580 | | Chain B | 15.92
15.90 | | | | | 126 | 5610 | | Chair | 15.85 | | | | | 134 | 5670 | | | 15.96 | | | | 20 | 144 | 5720 | | Chain A | 15.43 | | | | 20 | 144 | 3720 | VHT0 | Chain B | 14.96 | | | | 40 | 142 | 5710 | | Chain A | 15.94 | | | | | | | | Chain B | 15.96 | | | 802.11ac | | 106
122 | 5530
5610 | | Chain A Chain B | 13.46
14.93 | | | | | 138 | 5690 | | | 14.91 | | | | 80 | 106 | 5530 | VHT6 | | 13.46 | | | | | 122 | 5610 | | | 13.45 | | | | | 138 | 5690 | | | 11.42 | | Band | Mode | Bandwidth
(MHz) | Channel | Frequency
(MHz) | Data
Rate | Antenna | Power
(dBm) | |-------------|----------|--------------------|---------|--------------------|---------------|---------|----------------| | | | | 149 | 5745 | | | 15.42 | | | | | 153 | 5765 | | | 15.48 | | | | | 157 | 5785 | | Chain A | 15.50 | | | | 161 5805 | | 15.44 | | | | | | 802.11a | 20 | 165 | 5825 | 6 Mbps | | 15.50 | | | 002.110 | 20 | 149 | 5745 | 0 1410 p3 | | 15.96 | | | | | 153 | 5765 | | Chain B | 15.91 | | | | | 157 | 5785 | | | 16.00 | | | | | 161 | 5805 | | | 15.95 | | | | | 165 | 5825 | | | 16.00 | | | | | 149 | 5745 | <u>-</u>
1 | | 15.44 | | | | | 153 | 5765 | | _, | 15.46 | | 5800 MHz | | | 157 | 5785 | | Chain A | 15.49 | | 3000 141112 | | | 161 | 5805 | | | 15.42 | | | 802.11n | 20 | 165 | 5825 | HT8 | | 15.38 | | | | | 149 | 5745 | | | 15.96 | | | | | 153 | 5765 | | _, | 15.91 | | | | | 157 | 5785 | | Chain B | 15.90 | | | | | 161 | 5805 | | | 15.93 | | | | | 165 | 5825 | | | 15.97 | | | | | 151 | 5755 | | Chain A | 15.92 | | | 802.11n | 40 | 159 | 5795 | HT8 | | 15.88 | | | | - | 151 | 5755 | | Chain B | 15.86 | | | | | 159 | 5795 | | | 15.90 | | | 802.11ac | 80 | 155 | 5775 | VHT6 | Chain A | 14.98 | | | | | | | | Chain B | 13.95 | Figure 10.1 Test Reduction Table - WCDMA | i igai c | , 10.1 1C3t | ricaaotion | Table - WCDIVIA | 1 | |-----------------|-------------|------------|------------------|----------------------| | Band/ | Technology | Test | Required Channel | Tested/ | | Frequency (MHz) | | Position | | Reduced | | | | | 9262 | Tested | | | | Тор | 9400 | Tested | | | | | 9538 | Tested | | Band 2 | | | 9262 | Reduced ¹ | | 1850-1910 MHz | | Back | 9400 | Tested | | 1000-1910 10172 | | | 9538 | Reduced ¹ | | | | | 9262 | Reduced ¹ | | | | Side | 9400 | Tested | | | | | 9538 | Reduced ¹ | | | WCDMA | | 4132 | Reduced ¹ | | | | Тор | 4183 | Tested | | | | | 4233 | Reduced ¹ | | Band 5 | | Back | 4132 | Tested | | 824-849 MHz | | | 4183 | Tested | | 024-049 WITZ | | | 4233 | Tested | | | | | 4132 | Reduced ¹ | | | | Side | 4183 | Tested | | | | | 4233 | Reduced ¹ | | | | | 1312 | Reduced ¹ | | | | Тор | 1413 | Tested | | | | | 1513 | Reduced ¹ | | Band 4 | | | 1312 | Reduced ¹ | | 1710-1755 MHz | | Back | 1413 | Tested | | 1/10-1/55 IVIHZ | | | 1513 | Reduced ¹ | | | | | 1312 | Reduced ¹ | | | | Side | 1413 | Tested | | | | | 1513 | Reduced ¹ | Reduced¹ – When the mid channel is 3 dB (0.8 W/kg) below the limit, the remaining channels are not required per KDB 447498 D01 v06 section 4.3.3 page 14. # 11.4 SAR Measurement Conditions for LTE Bands # 11.4.1 LTE Functionality The follow table identifies all the channel bandwidths in each frequency band supported by this device. | LTE Band Class | Bandwidth (MHz) | Frequency or Freq. Band (MHz) | |----------------|-----------------------|-------------------------------| | 4 | 1.4, 3, 5, 10, 15, 20 | 1710-1755 | | 5 | 1.4, 3, 5, 10 | 824-849 | | 26 | 1.4, 3, 5, 10, 15 | 814-849 | | 13 | 5, 10 | 777-787 | | 12 | 1.4, 3, 5, 10 | 704-716 | | 2 & 25 | 1.4, 3, 5, 10, 15, 20 | 1850-1915 | | 30 | 5, 10 | 2305-2315 | | 7 | 5, 10, 15, 20 | 2500-2570 | | 41 | 5, 10, 15, 20 | 2496-2690 | ### 11.4.2 Test Conditions All SAR measurements for LTE were performed using the Anritsu MT8820C. A closed loop power control setting allowed the UE to transmit at the maximum output power during the SAR measurements. The Figure 11.1 table indicates all the test reduction utilized for this report. MPR was enabled for this device. A-MPR was disabled for all SAR test measurements. | Band | Modulation | Bandwidth | RB Size | RB Offset | Channel | Frequency | Power | |------|--------------|-----------|----------|-----------|----------|-----------|---------| | Dana | - Modulation | Danaman | 112 0120 | no onser | Citamici | rrequency | . 0110. | | | | | | | 19957 | 1710.7 | 20.2 | | | | | 6 | 0 | 20175 | 1732.5 | 20.1 | | | | | 0 | | 20393 | 1754.3 | 20.2 | | | | | | | 19957 | 1710.7 | 21.0 | | | | | 3 | 1 | 20175 | 1732.5 | 21.0 | | | | | | | 20393 | 1754.3 | 21.0 | | | | 1.4 MHz | | | 19957 | 1710.7 | 21.0 | | | | | 1 | 0 | 20175 | 1732.5 | 20.9 | | | | | 1 | | 20393 | 1754.3 | 20.9 | | | | | | | 19957 | 1710.7 | 21.0 | | | | | 1 | 5 | 20175 | 1732.5 | 21.0 | | | | | | 5 | 20393 | 1754.3 | 20.9 | | |
 | | | 19965 | 1711.5 | 20.3 | | | | | 15 | 0 | 20175 | 1711.5 | 20.3 | | | | | 13 | | 20175 | 1752.5 | 20.4 | | | | | | 3 | 19965 | 1733.5 | 20.2 | | | | | 8 | | 20175 | 1711.5 | 20.1 | | | | 3 MHz | ٥ | | 20173 | 1752.5 | 20.1 | | 4 | QPSK | | 1 | 0 | 19965 | 1733.5 | 20.2 | | | | | | | 20175 | 1711.5 | 21.0 | | | | | | | 20173 | 1752.5 | 20.9 | | | | | 1 | 14 | 19965 | 1733.5 | 20.9 | | | | | | | 20175 | 1711.5 | 21.0 | | | | | | | 20173 | 1752.5 | 21.0 | | | | 5 MHz | 25 | 0 | 19975 | 1733.5 | 1 | | | | | | | 20175 | 1712.5 | 20.3 | | | | | | | 20175 | 1752.5 | 20.3 | | | | | 12 | 6 | | | 20.2 | | | | | | | 19975 | 1712.5 | 20.1 | | | | | | | 20175 | 1732.5 | 20.3 | | | | | | | 20375 | 1752.5 | 20.2 | | | | | 1 | 0 | 19975 | 1712.5 | 21.0 | | | | | | | 20175 | 1732.5 | 21.0 | | | | | 1 | 24 | 20375 | 1752.5 | 21.0 | | | | | | | 19975 | 1712.5 | 21.0 | | | | | | | 20175 | 1732.5 | 21.0 | | | | | | | 20375 | 1752.5 | 20.9 | | Band | Modulation | Bandwidth | RB Size | RB Offset | Channel | Frequency | Power | |------|------------|-----------|---------|-----------|---------|-----------|-------| | | | | | | | | | | | | | | | 20000 | 1715 | 20.1 | | | | | 50 | 0 | 20175 | 1732.5 | 20.2 | | | | | | | 20350 | 1750 | 20.3 | | | | | | | 20000 | 1715 | 20.2 | | | | | 25 | 12 | 20175 | 1732.5 | 20.3 | | | | | | | 20350 | 1750 | 20.4 | | | | 10 MHz | | | 20000 | 1715 | 21.0 | | | | | 1 | 0 | 20175 | 1732.5 | 21.0 | | | | | | | 20350 | 1750 | 21.0 | | | | | | | 20000 | 1715 | 21.0 | | | | | 1 | 24 | 20175 | 1732.5 | 21.0 | | | | | | | 20350 | 1750 | 21.0 | | | | | | | 20025 | 1717.5 | 20.1 | | | | | 75 | 0 | 20175 | 1732.5 | 20.2 | | | | 15 MHz | | | 20325 | 1747.5 | 20.2 | | | | | | 19 | 20025 | 1717.5 | 20.2 | | | | | 36 | | 20175 | 1732.5 | 20.2 | | 4 | 4 QPSK | | | | 20325 | 1747.5 | 20.2 | | 4 | | | 1 | 0 | 20025 | 1717.5 | 21.0 | | | | | | | 20175 | 1732.5 | 21.0 | | | | | | | 20325 | 1747.5 | 21.0 | | | | | 1 | 74 | 20025 | 1717.5 | 21.0 | | | | | | | 20175 | 1732.5 | 21.0 | | | | | | | 20325 | 1747.5 | 21.0 | | | | 20 MHz | 100 | 0 | 20050 | 1720 | 20.2 | | | | | | | 20175 | 1732.5 | 20.2 | | | | | | | 20300 | 1745 | 20.3 | | | | | 50 | 25 | 20050 | 1720 | 20.1 | | | | | | | 20175 | 1732.5 | 20.1 | | | | | | | 20300 | 1745 | 20.3 | | | | | 1 | 0 | 20050 | 1720 | 21.0 | | | | | | | 20175 | 1732.5 | 21.0 | | | | | | | 20300 | 1745 | 21.0 | | | | | 1 | 99 | 20050 | 1720 | 21.0 | | | | | | | 20175 | 1732.5 | 21.0 | | | | | | | 20300 | 1745 | 21.0 | | Band | Modulation | Bandwidth | RB Size | RB Offset | Channel | Frequency | Power | |------|------------|-----------|---------|-----------|---------|-----------|-------| | | | | • | • | • | | | | | | | | | 19957 | 1710.7 | 19.0 | | | | | 6 | 0 | 20175 | 1732.5 | 19.0 | | | | | | | 20393 | 1754.3 | 19.2 | | | | | 3 | 1 | 19957 | 1710.7 | 20.1 | | | | | | | 20175 | 1732.5 | 20.1 | | | | | | | 20393 | 1754.3 | 20.2 | | | | 1.4 MHz | | | 19957 | 1710.7 | 20.0 | | | | | 1 | 0 | 20175 | 1732.5 | 20.0 | | | | | | | 20393 | 1754.3 | 20.1 | | | | | | | 19957 | 1710.7 | 20.1 | | | | | 1 | 5 | 20175 | 1732.5 | 20.0 | | | | | | | 20393 | 1754.3 | 20.1 | | | | | | | 19965 | 1711.5 | 19.2 | | | | | 15 | 0 | 20175 | 1732.5 | 19.3 | | | | | | | 20385 | 1753.5 | 19.4 | | | | | | 3 | 19965 | 1711.5 | 19.1 | | | | 3 MHz | 8 | | 20175 | 1732.5 | 19.3 | | 4 | 16000 | | | | 20385 | 1753.5 | 19.2 | | 4 | 16QAM | | | 0 | 19965 | 1711.5 | 20.1 | | | | | 1 | | 20175 | 1732.5 | 20.0 | | | | | | | 20385 | 1753.5 | 20.1 | | | | | 1 | 14 | 19965 | 1711.5 | 20.3 | | | | | | | 20175 | 1732.5 | 20.2 | | | | | | | 20385 | 1753.5 | 20.4 | | | | 5 MHz | 25 | 0 | 19975 | 1712.5 | 19.3 | | | | | | | 20175 | 1732.5 | 19.2 | | | | | | | 20375 | 1752.5 | 19.1 | | | | | 12 | 6 | 19975 | 1712.5 | 19.3 | | | | | | | 20175 | 1732.5 | 19.2 | | | | | | | 20375 | 1752.5 | 19.4 | | | | | 1 | 0 | 19975 | 1712.5 | 20.0 | | | | | | | 20175 | 1732.5 | 20.0 | | | | | | | 20375 | 1752.5 | 20.1 | | | | | 1 | 24 | 19975 | 1712.5 | 20.0 | | | | | | | 20175 | 1732.5 | 20.0 | | | | | | | 20375 | 1752.5 | 20.1 | | Band | Modulation | Bandwidth | RB Size | RB Offset | Channel | Frequency | Power | |------|------------|-----------|---------|-----------|---------|-----------|-------| | | | | • | • | • | | • | | | | | | | 20000 | 1715 | 19.2 | | | | | 50 | 0 | 20175 | 1732.5 | 19.1 | | | | | | | 20350 | 1750 | 19.3 | | | | | | | 20000 | 1715 | 19.3 | | | | | 25 | 12 | 20175 | 1732.5 | 19.2 | | | | | | | 20350 | 1750 | 19.4 | | | | 10 MHz | | | 20000 | 1715 | 20.3 | | | | | 1 | 0 | 20175 | 1732.5 | 20.2 | | | | | | | 20350 | 1750 | 20.2 | | | | | | | 20000 | 1715 | 20.3 | | | | | 1 | 24 | 20175 | 1732.5 | 20.1 | | | | | | | 20350 | 1750 | 20.2 | | | | | | | 20025 | 1717.5 | 19.1 | | | | | 75 | 0 | 20175 | 1732.5 | 19.0 | | | | | | | 20325 | 1747.5 | 19.1 | | | | 15 MHz | | 19 | 20025 | 1717.5 | 19.3 | | | | | 36 | | 20175 | 1732.5 | 19.3 | | 4 | 160414 | | | | 20325 | 1747.5 | 19.2 | | 4 | 16QAM | | | 0 | 20025 | 1717.5 | 20.2 | | | | | 1 | | 20175 | 1732.5 | 20.3 | | | | | | | 20325 | 1747.5 | 20.3 | | | | | 1 | 74 | 20025 | 1717.5 | 20.1 | | | | | | | 20175 | 1732.5 | 20.0 | | | | | | | 20325 | 1747.5 | 20.2 | | | | 20 MHz | 100 | 0 | 20050 | 1720 | 19.2 | | | | | | | 20175 | 1732.5 | 19.1 | | | | | | | 20300 | 1745 | 19.3 | | | | | 50 | 25 | 20050 | 1720 | 19.1 | | | | | | | 20175 | 1732.5 | 19.0 | | | | | | | 20300 | 1745 | 19.2 | | | | | 1 | 0 | 20050 | 1720 | 20.3 | | | | | | | 20175 | 1732.5 | 20.4 | | | | | | | 20300 | 1745 | 20.2 | | | | | 1 | 99 | 20050 | 1720 | 20.1 | | | | | | | 20175 | 1732.5 | 20.2 | | | | | | | 20300 | 1745 | 20.2 | | Band | Modulation | Bandwidth | RB Size | RB Offset | Channel | Frequency | Power | |------|------------|-------------|---------|-----------|---------|-----------|-------| | | | | | | | | | | | | | | 0 | 20407 | 824.7 | 23.0 | | | | | 6 | | 20525 | 836.5 | 23.0 | | | | | | | 20643 | 848.3 | 23.1 | | | | | | | 20407 | 824.7 | 24.0 | | | | | 3 | 1 | 20525 | 836.5 | 23.9 | | | | 4 4 5 4 1 - | | | 20643 | 848.3 | 24.0 | | | | 1.4 MHz | | | 20407 | 824.7 | 23.9 | | | | | 1 | 0 | 20525 | 836.5 | 24.0 | | | | | | | 20643 | 848.3 | 24.0 | | | | | | | 20407 | 824.7 | 24.0 | | | | | 1 | 5 | 20525 | 836.5 | 23.9 | | | | | | | 20643 | 848.3 | 24.0 | | | | | | | 20415 | 825.5 | 23.0 | | | | 3 MHz | 15 | 0 | 20525 | 836.5 | 22.9 | | | | | | | 20635 | 847.5 | 23.1 | | | | | 8 | | 20415 | 825.5 | 23.0 | | | | | | 3 | 20525 | 836.5 | 23.1 | | 5 | QPSK | | | | 20635 | 847.5 | 23.1 | |) | QF3K | | 1 | 1 0 | 20415 | 825.5 | 23.9 | | | | | | | 20525 | 836.5 | 24.0 | | | | | | | 20635 | 847.5 | 24.0 | | | | | | | 20415 | 825.5 | 24.0 | | | | | 1 | 14 | 20525 | 836.5 | 24.0 | | | | | | | 20635 | 847.5 | 24.0 | | | | | | | 20425 | 826.5 | 23.1 | | | | | 25 | 0 | 20525 | 836.5 | 22.9 | | | | | | | 20625 | 846.5 | 23.1 | | | | | | | 20425 | 826.5 | 23.0 | | | | | 12 | 6 | 20525 | 836.5 | 23.1 | | | | E MILIT | | | 20625 | 846.5 | 23.1 | | | | 5 MHz | | | 20425 | 826.5 | 23.8 | | | | | 1 | 0 | 20525 | 836.5 | 24.0 | | | | | | | 20625 | 846.5 | 24.0 | | | | | | | 20425 | 826.5 | 24.0 | | | | | 1 | 24 | 20525 | 836.5 | 24.0 | | | | | | | 20625 | 846.5 | 24.0 | | Band | Modulation | Bandwidth | RB Size | RB Offset | Channel | Frequency | Power | |------|------------|-----------|---------|-----------|---------|-----------|-------| | | | | | | | | | | | | | | | 20450 | 829 | 22.9 | | | | | 50 | 0 | 20525 | 836.5 | 22.8 | | | | | | | 20600 | 844 | 22.8 | | | | | | | 20450 | 829 | 23.0 | | | ODSK | | 25 | 12 | 20525 | 836.5 | 22.9 | | | OPCI | 40.8411 | | | 20600 | 844 | 23.0 | | | QPSK | 10 MHz | | | 20450 | 829 | 24.0 | | | | | 1 | 0 | 20525 | 836.5 | 24.0 | | | | | | | 20600 | 844 | 23.9 | | | | | | | 20450 | 829 | 23.9 | | | | | 1 | 24 | 20525 | 836.5 | 24.0 | | | | | | | 20600 | 844 | 24.0 | | | | | | | 20407 | 824.7 | 22.1 | | | | | 6 | 0 | 20525 | 836.5 | 22.2 | | | | 1.4 MHz | | | 20643 | 848.3 | 22.2 | | | | | 3 | | 20407 | 824.7 | 22.9 | | | | | | 1 | 20525 | 836.5 | 23.0 | | | | | | | 20643 | 848.3 | 23.1 | | 5 | | | 1 | | 20407 | 824.7 | 23.1 | | | | | | 0 | 20525 | 836.5 | 23.2 | | | | | | | 20643 | 848.3 | 23.2 | | | | | 1 | 5 | 20407 | 824.7 | 23.2 | | | | | | | 20525 | 836.5 | 23.2 | | | 46044 | | | | 20643 | 848.3 | 23.4 | | | 16QAM | | | | 20415 | 825.5 | 22.0 | | | | | 15 | 0 | 20525 | 836.5 | 22.1 | | | | | | | 20635 | 847.5 | 22.1 | | | | | | | 20415 | 825.5 | 21.9 | | | | | 8 | 3 | 20525 | 836.5 | 22.1 | | | | | | | 20635 | 847.5 | 22.0 | | | | 3 MHz | | | 20415 | 825.5 | 23.0 | | | | | 1 | 0 | 20525 | 836.5 | 23.1 | | | | | | | 20635 | 847.5 | 23.1 | | | | | 1 | | 20415 | 825.5 | 23.4 | | | | | | 14 | 20525 | 836.5 | 23.3 | | | | | | | 20635 | 847.5 | 23.4 | | | | | | | | _ | | |------|------------|-----------|---------|-----------|---------|-----------|-------| | Band | Modulation | Bandwidth | RB Size | RB Offset | Channel | Frequency | Power | | | | | | | | | | | | | | | | 20425 | 826.5 | 21.9 | | | | | 25 | 0 | 20525 | 836.5 | 21.9 | | | | | | | 20625 | 846.5 | 21.9 | | | | | | | 20425 | 826.5 | 22.1 | | | | | 12 | 6 | 20525 | 836.5 | 22.1 | | | | 5 MHz | | | 20625 | 846.5 | 22.3 | | | | 3 101112 | | | 20425 | 826.5 | 23.0 | | | | | 1 | 0 | 20525 | 836.5 | 23.2 | | | | | | | 20625 | 846.5 | 23.2 | | | | | 1 | | 20425 | 826.5 | 23.3 | | | | | | 24 | 20525 | 836.5 | 23.3 | | _ | | | | | 20625 | 846.5 | 23.4 | | 5 | 16QAM | | 50 | | 20450 | 829 | 21.8 | | | | | | 0 | 20525 | 836.5 | 21.8 | | | | | | | 20600 | 844 | 21.9 | | | | | | | 20450 | 829 | 21.9 | | | | | 25 | 12 | 20525 | 836.5 | 21.9 | | | | 10 1411- | | | 20600 | 844 | 21.9 | | | | 10 MHz | | | 20450 | 829 | 23.1 | | | | | 1 | 0 | 20525 | 836.5 | 23.4 | | | | | | | 20600 | 844 | 23.2 | | | | | | | 20450 | 829 | 23.1 | | | | | 1 | 24 | 20525 | 836.5 | 23.3 | | | | | | | 20600 | 844 | 23.3 | | Band | Modulation | Bandwidth | RB Size | RB Offset | Channel | Frequency | Power | |------|------------|-----------|---------|-----------
---------|-----------|-------| | | | | | | | | | | | | | 25 | 0 | 23205 | 779.5 | 23.35 | | | | | 25 | 0 | 23255 | 784.5 | 23.35 | | | | | 12 | 6 | 23205 | 779.5 | 23.46 | | | | 5 MHz | 12 | 0 | 23255 | 784.5 | 23.47 | | | | J IVITIZ | 1 | 0 | 23205 | 779.5 | 23.45 | | | QPSK | | 1 | U | 23255 | 784.5 | 23.40 | | | QF3K | | 1 | 24 | 23205 | 779.5 | 23.49 | | | | | 1 | 24 | 23255 | 784.5 | 23.44 | | | | | 50 | 0 | 23230 | 782.0 | 23.26 | | | | 10 MHz | 25 | 13 | 23230 | 782.0 | 23.51 | | | | | 1 | 0 | 23230 | 782.0 | 23.48 | | 13 | | | 1 | 49 | 23230 | 782.0 | 23.48 | | 13 | | | 25 | 0 | 23205 | 779.5 | 22.33 | | | | | 23 | U | 23255 | 784.5 | 22.32 | | | | | 12 | 6 | 23205 | 779.5 | 22.58 | | | | 5 MHz | 12 | O | 23255 | 784.5 | 22.66 | | | | J IVITIZ | 1 | 0 | 23205 | 779.5 | 23.48 | | | 16QAM | | 1 | U | 23255 | 784.5 | 23.55 | | | IOQAIVI | | 1 | 24 | 23205 | 779.5 | 23.64 | | | | | 1 | 24 | 23255 | 784.5 | 23.57 | | | | | 50 | 0 | 23230 | 782.0 | 22.20 | | | | 10 MHz | 25 | 13 | 23230 | 782.0 | 22.48 | | | | TO IVITIZ | 1 | 0 | 23230 | 782.0 | 23.38 | | | | | 1 | 49 | 23230 | 782.0 | 23.30 | | Band | Modulation | Bandwidth | RB Size | RB Offset | Channel | Frequency | Power | |------|------------|-----------|---------|-----------|---------|-----------|-------| | | | | | | | | | | | | | | 0 | 26047 | 1850.7 | 19.2 | | | | | 6 | | 26365 | 1882.5 | 19.1 | | | | | | | 26683 | 1914.3 | 19.0 | | | | | | | 26047 | 1850.7 | 20.0 | | | | | 3 | 1 | 26365 | 1882.5 | 20.0 | | | | 4 4 5 4 1 | | | 26683 | 1914.3 | 19.8 | | | | 1.4 MHz | | | 26047 | 1850.7 | 20.0 | | | | | 1 | 0 | 26365 | 1882.5 | 20.0 | | | | | | | 26683 | 1914.3 | 19.9 | | | | | | | 26047 | 1850.7 | 20.0 | | | | | 1 | 5 | 26365 | 1882.5 | 20.0 | | | | | | | 26683 | 1914.3 | 19.8 | | | | | | | 26055 | 1851.5 | 19.1 | | | | | 15 | 0 | 26365 | 1882.5 | 19.1 | | | | 3 MHz | | | 26675 | 1913.5 | 18.9 | | | | | 8 | 3 | 26055 | 1851.5 | 19.4 | | | | | | | 26365 | 1882.5 | 19.3 | | 25 | QPSK | | | | 26675 | 1913.5 | 19.2 | | 25 | QPSK | | 1 | 1 0 | 26055 | 1851.5 | 20.0 | | | | | | | 26365 | 1882.5 | 20.0 | | | | | | | 26675 | 1913.5 | 19.9 | | | | | | | 26055 | 1851.5 | 20.0 | | | | | 1 | 14 | 26365 | 1882.5 | 20.0 | | | | | | | 26675 | 1913.5 | 19.9 | | | | | | | 26065 | 1852.5 | 19.1 | | | | | 25 | 0 | 26365 | 1882.5 | 19.0 | | | | | | | 26665 | 1912.5 | 18.9 | | | | | | | 26065 | 1852.5 | 19.2 | | | | | 12 | 6 | 26365 | 1882.5 | 19.0 | | | | 5 MHz | | | 26665 | 1907.5 | 19.1 | | | | J 1VII 12 | | | 26065 | 1852.5 | 20.0 | | | | | 1 | 0 | 26365 | 1882.5 | 20.0 | | | | | | | 26665 | 1907.5 | 20.0 | | | | | | | 26065 | 1852.5 | 20.0 | | | | | 1 | 24 | 26365 | 1882.5 | 20.0 | | | | | | | 26665 | 1907.5 | 19.8 | | Band | Modulation | Bandwidth | RB Size | RB Offset | Channel | Frequency | Power | |------|------------|-----------|---------|-----------|---------|-----------|-------| | | | | | | | | | | | | | | 0 | 26090 | 1855 | 19.2 | | | | | 50 | | 26365 | 1882.5 | 19.0 | | | | | | | 26640 | 1910 | 19.0 | | | | | | | 26090 | 1855 | 19.2 | | | | | 25 | 12 | 26365 | 1882.5 | 19.0 | | | | 40 8411- | | | 26640 | 1910 | 19.1 | | | | 10 MHz | | | 26090 | 1855 | 20.0 | | | | | 1 | 0 | 26365 | 1882.5 | 20.0 | | | | | | | 26640 | 1910 | 20.0 | | | | | | | 26090 | 1855 | 20.0 | | | | | 1 | 24 | 26365 | 1882.5 | 20.0 | | | | | | | 26640 | 1910 | 19.9 | | | | | | | 26115 | 1857.5 | 19.2 | | | | 15 MHz | 75 | 0 | 26365 | 1882.5 | 19.0 | | | | | | | 26615 | 1907.5 | 19.1 | | | | | | 19 | 26115 | 1857.5 | 19.2 | | | | | 36 | | 26365 | 1882.5 | 19.0 | | 25 | QPSK | | | | 26615 | 1907.5 | 19.0 | | 25 | QP3N | | | | 26115 | 1857.5 | 20.0 | | | | | 1 | 0 | 26365 | 1882.5 | 20.0 | | | | | | | 26615 | 1907.5 | 20.0 | | | | | | | 26115 | 1857.5 | 20.0 | | | | | 1 | 74 | 26365 | 1882.5 | 20.0 | | | | | | | 26615 | 1907.5 | 19.8 | | | | | | | 26140 | 1860 | 19.0 | | | | | 100 | 0 | 26365 | 1882.5 | 19.0 | | | | | | | 26590 | 1905 | 19.2 | | | | | | | 26140 | 1860 | 18.9 | | | | | 50 | 25 | 26365 | 1882.5 | 19.0 | | | | 20 MHz | | | 26590 | 1905 | 19.1 | | | | ZUIVITZ | | | 26140 | 1860 | 20.0 | | | | | 1 | 0 | 26365 | 1882.5 | 20.0 | | | | | | | 26590 | 1905 | 20.0 | | | | | | | 26140 | 1860 | 20.0 | | | | | 1 | 99 | 26365 | 1882.5 | 20.0 | | | | | | | 26590 | 1905 | 19.9 | | Band | Modulation | Bandwidth | RB Size | RB Offset | Channel | Frequency | Power | |------|------------|-----------|---------|-----------|---------|-----------|-------| | | | | | | | | | | | | | | 0 | 26047 | 1850.7 | 18.1 | | | | | 6 | | 26365 | 1882.5 | 17.9 | | | | | | | 26683 | 1914.3 | 18.0 | | | | | | | 26047 | 1850.7 | 19.0 | | | | | 3 | 1 | 26365 | 1882.5 | 18.9 | | | | | | | 26683 | 1914.3 | 19.0 | | | | 1.4 MHz | | | 26047 | 1850.7 | 19.2 | | | | | 1 | 0 | 26365 | 1882.5 | 19.3 | | | | | | | 26683 | 1914.3 | 19.1 | | | | | | | 26047 | 1850.7 | 19.0 | | | | | 1 | 5 | 26365 | 1882.5 | 18.9 | | | | | | | 26683 | 1914.3 | 19.0 | | | | | | | 26055 | 1851.5 | 18.2 | | | | | 15 | 0 | 26365 | 1882.5 | 18.0 | | | | | | | 26675 | 1913.5 | 18.2 | | | | | 8 | | 26055 | 1851.5 | 18.2 | | | | | | 3 | 26365 | 1882.5 | 17.9 | | 25 | 160414 | 2 8411- | | | 26675 | 1913.5 | 18.1 | | 25 | 16QAM | 3 MHz | 1 | | 26055 | 1851.5 | 19.2 | | | | | | 0 | 26365 | 1882.5 | 19.3 | | | | | | | 26675 | 1913.5 | 19.1 | | | | | | | 26055 | 1851.5 | 19.0 | | | | | 1 | 14 | 26365 | 1882.5 | 19.2 | | | | | | | 26675 | 1913.5 | 19.1 | | | | | | | 26065 | 1852.5 | 18.3 | | | | | 25 | 0 | 26365 | 1882.5 | 18.2 | | | | | | | 26665 | 1912.5 | 18.2 | | | | | | | 26065 | 1852.5 | 18.0 | | | | | 12 | 6 | 26365 | 1882.5 | 18.0 | | | | 5 MHz | | | 26665 | 1907.5 | 18.2 | | | | J IVITZ | | | 26065 | 1852.5 | 19.1 | | | | | 1 | 0 | 26365 | 1882.5 | 19.0 | | | | | | | 26665 | 1907.5 | 19.0 | | | | | | | 26065 | 1852.5 | 18.9 | | | | | 1 | 24 | 26365 | 1882.5 | 19.1 | | | | | | | 26665 | 1907.5 | 19.0 | | Band | Modulation | Bandwidth | RB Size | RB Offset | Channel | Frequency | Power | | |------|------------|------------|---------|-----------|---------|-----------|--------|------| | | | | | | | | | | | | | | | 0 | 26090 | 1855 | 18.2 | | | | | | 50 | | 26365 | 1882.5 | 18.3 | | | | | | | | 26640 | 1910 | 18.1 | | | | | | | | 26090 | 1855 | 18.3 | | | | | | 25 | 12 | 26365 | 1882.5 | 18.2 | | | | | 40.8411 | | | 26640 | 1910 | 18.1 | | | | | 10 MHz | | | 26090 | 1855 | 19.1 | | | | | | 1 | 0 | 26365 | 1882.5 | 19.3 | | | | | | | | 26640 | 1910 | 19.2 | | | | | | | | 26090 | 1855 | 19.2 | | | | | | 1 | 24 | 26365 | 1882.5 | 19.0 | | | | | | | 21 | 26640 | 1910 | 19.0 | | | | | | | | 26115 | 1857.5 | 18.0 | | | | | | 75 | 0 | 26365 | 1882.5 | 18.1 | | | | | | | | 26615 | 1907.5 | 17.9 | | | | | | 36 | | 26115 | 1857.5 | 18.1 | | | | | | | 19 | 26365 | 1882.5 | 18.1 | | | 25 | 160414 | 1 F N 411- | | | 26615 | 1907.5 | 17.9 | | | 25 | 16QAM | 15 MHz | 1 | | | 26115 | 1857.5 | 19.2 | | | | | | 0 | 26365 | 1882.5 | 19.3 | | | | | | | | 26615 | 1907.5 | 19.3 | | | | | | | | 26115 | 1857.5 | 19.1 | | | | | | 1 | 74 | 26365 | 1882.5 | 19.2 | | | | | | | | 26615 | 1907.5 | 19.0 | | | | | | | | 26140 | 1860 | 18.1 | | | | | | 100 | 0 | 26365 | 1882.5 | 18.0 | | | | | | | | 26590 | 1905 | 17.9 | | | | | | | | 26140 | 1860 | 18.1 | | | | | | 50 | 25 | 26365 | 1882.5 | 18.2 | | | | | 20 1411- | | | 26590 | 1905 | 18.1 | | | | | 20 MHz | | | 26140 | 1860 | 19.3 | | | | | | 1 | 0 | 26365 | 1882.5 | 19.3 | | | | | | | | 26590 | 1905 | 19.2 | | | | | | | | 26140 | 1860 | 19.1 | | | | | | 1 | 99 | 26365 | 1882.5 | 19.2 | | | | | | | | 26590 | 1905 | 19.0 | | | Band | Modulation | Bandwidth | RB Size | RB Offset | Channel | Frequency | Power | |------|------------|-----------|---------|-----------|---------|-----------|-------| | | | | | | | | | | | | | | 0 | 26697 | 814.7 | 23.2 | | | | | 6 | | 26865 | 831.5 | 23.1 | | | | | | | 27033 | 848.3 | 23.2 | | | | | | | 26697 | 814.7 | 24.0 | | | | | 3 | 1 | 26865 | 831.5 | 24.0 | | | | 4 4 5 4 1 | | | 27033 | 848.3 | 24.0 | | | | 1.4 MHz | | | 26697 | 814.7 | 24.0 | | | | | 1 | 0 | 26865 | 831.5 | 23.9 | | | | | | | 27033 | 848.3 | 23.9 | | | | | | | 26697 | 814.7 | 24.0 | | | | | 1 | 5 | 26865 | 831.5 | 24.0 | | | | | | | 27033 | 848.3 | 23.9 | | | | | | | 26705 | 815.5 | 23.3 | | | | | 15 | 0 | 26865 | 831.5 | 23.4 | | | | 3 MHz | | | 27025 | 847.5 | 23.2 | | | | | 8 | | 26705 | 815.5 | 23.1 | | | | | | 3 | 26865 | 831.5 | 23.1 | | 26 | QPSK | | | | 27025 | 847.5 | 23.2 | | 20 | QP3K | | 1 | | 26705 | 815.5 | 24.0 | | | | | | 0 | 26865 | 831.5 | 24.0 | | | | | | | 27025 | 847.5 | 23.9 | | | | | | | 26705 | 815.5 | 24.0 | | | | | 1 | 14 | 26865 | 831.5 | 24.0 | | | | | | | 27025 | 847.5 | 24.0 | | | | | | | 26715 | 816.5 | 23.3 | | | | | 25 | 0 | 26865 | 831.5 | 23.3 | | | | | | | 27015 | 846.5 | 23.2 | | | | | | | 26715 | 816.5 | 23.1 | | | | | 12 | 6 | 26865 | 831.5 | 23.3 | | | | 5 MHz | | | 27015 | 846.5 | 23.2 | | | | J IVITZ | | | 26715 | 816.5 | 24.0 | | | | | 1 | 0 | 26865 | 831.5 | 24.0 | | | | | | | 27015 | 846.5 | 24.0 | | | | | | | 26715 | 816.5 | 24.0 | | | | | 1 | 24 | 26865 | 831.5 | 24.0 | | | | | | | 27015 | 846.5 | 23.9 | | Band | Modulation | Bandwidth | RB Size | RB Offset | Channel | Frequency | Power | |------|------------|---------------|---------|-----------|---------|-----------|-------| | | | | | | | | | | | | | | | 26740 | 819.0 | 23.1 | | | | | 50 | 0 | 26865 | 831.5 | 23.2 | | | | | | | 26990 | 844.0 | 23.3 | | | | | | | 26740 | 819.0 | 23.2 | | | | | 25 | 12 | 26865 | 831.5 | 23.3 | | | | 10 MHz | | | 26990 | 844.0 | 23.4 | | | | 10 MIUS | | | 26740 | 819.0 | 24.0 | | | | | 1 | 0 | 26865 | 831.5 | 24.0 | | | | | | | 26990 | 844.0 | 24.0 | | | | | 1 | | 26740 | 819.0 | 24.0 | | | | | | 24 | 26865 | 831.5 | 24.0 | | 26 | QPSK - | | | | 26990 | 844.0 | 24.0 | | 20 | QPSK | | 75 | 0 | 24765 | 821.5 | 23.1 | | | | | | | 26865 | 831.5 | 23.2 | | | | | | | 26995 | 841.5 | 23.2 | | | | | | | 24765 | 821.5 | 23.2 | | | | | 36 | 19 | 26865 | 831.5 | 23.2 | | | | 1 F N 4 L I = | | | 26995 | 841.5 |
23.2 | | | | 15 MHz | | | 24765 | 821.5 | 24.0 | | | | | 1 | 0 | 26865 | 831.5 | 24.0 | | | | | | | 26995 | 841.5 | 24.0 | | | | | | | 24765 | 821.5 | 24.0 | | | | | 1 | 74 | 26865 | 831.5 | 24.0 | | | | | | | 26995 | 841.5 | 24.0 | | Band | Modulation | Bandwidth | RB Size | RB Offset | Channel | Frequency | Power | |------|------------|-----------|---------|-----------|---------|--------------|-------| | | | | | | | - requestion | | | | | | | | 26697 | 814.7 | 22.0 | | | | | 6 | 0 | 26865 | 831.5 | 22.0 | | | | | | | 27033 | 848.3 | 22.2 | | | | | | | 26697 | 814.7 | 23.1 | | | | | 3 | 1 | 26865 | 831.5 | 23.1 | | | | | _ | | 27033 | 848.3 | 23.2 | | | | 1.4 MHz | | | 26697 | 814.7 | 23.0 | | | | | 1 | 0 | 26865 | 831.5 | 23.0 | | | | | | | 27033 | 848.3 | 23.1 | | | | | | | 26697 | 814.7 | 23.1 | | | | | 1 | 5 | 26865 | 831.5 | 23.0 | | | | | | | 27033 | 848.3 | 23.1 | | | | | | | 26705 | 815.5 | 22.2 | | | | | 15 | 0 | 26865 | 831.5 | 22.3 | | | | | | Ü | 27025 | 847.5 | 22.4 | | | | | 8 | | 26705 | 815.5 | 22.1 | | | | | | 3 | 26865 | 831.5 | 22.3 | | | 450.44 | | | | 27025 | 847.5 | 22.2 | | 26 | 16QAM | 3 MHz | 1 | | 26705 | 815.5 | 23.1 | | | | | | 0 | 26865 | 831.5 | 23.0 | | | | | | | 27025 | 847.5 | 23.1 | | | | | | | 26705 | 815.5 | 23.3 | | | | | 1 | 14 | 26865 | 831.5 | 23.2 | | | | | | | 27025 | 847.5 | 23.4 | | | | | | | 26715 | 816.5 | 22.3 | | | | | 25 | 0 | 26865 | 831.5 | 22.2 | | | | | | | 27015 | 846.5 | 22.1 | | | | | | | 26715 | 816.5 | 22.3 | | | | | 12 | 6 | 26865 | 831.5 | 22.2 | | | | 5 NALL- | | | 27015 | 846.5 | 22.4 | | | | 5 MHz | | | 26715 | 816.5 | 23.0 | | | | | 1 | 0 | 26865 | 831.5 | 23.0 | | | | | | | 27015 | 846.5 | 23.1 | | | | | | | 26715 | 816.5 | 23.0 | | | | | 1 | 24 | 26865 | 831.5 | 23.0 | | | | | | | 27015 | 846.5 | 23.1 | | Band | Modulation | Bandwidth | RB Size | RB Offset | Channel | Frequency | Power | |------|------------|-----------|---------|-----------|---------|-----------|-------| | | | | | | | 1 7 | | | | | | | | 26740 | 819.0 | 22.2 | | | | | 50 | 0 | 26865 | 831.5 | 22.1 | | | | | | | 26990 | 844.0 | 22.3 | | | | | | | 26740 | 819.0 | 22.3 | | | | | 25 | 12 | 26865 | 831.5 | 22.2 | | | | 10 1411- | | | 26990 | 844.0 | 22.4 | | | | 10 MHz | | | 26740 | 819.0 | 23.3 | | | | | 1 | 0 | 26865 | 831.5 | 23.2 | | | | | | | 26990 | 844.0 | 23.2 | | | | | 1 | | 26740 | 819.0 | 23.3 | | | 16QAM | | | 24 | 26865 | 831.5 | 23.1 | | 26 | | | | | 26990 | 844.0 | 23.2 | | 20 | IOQAIVI | | 75 | 0 | 24765 | 821.5 | 22.1 | | | | | | | 26865 | 831.5 | 22.0 | | | | | | | 26995 | 841.5 | 22.1 | | | | | | | 24765 | 821.5 | 22.3 | | | | | 36 | 19 | 26865 | 831.5 | 22.3 | | | | 1E NALI- | | | 26995 | 841.5 | 22.2 | | | | 15 MHz | | | 24765 | 821.5 | 23.2 | | | | | 1 | 0 | 26865 | 831.5 | 23.3 | | | | | | | 26995 | 841.5 | 23.3 | | | | | 1 | | 24765 | 821.5 | 23.1 | | | | | | 74 | 26865 | 831.5 | 23.0 | | | | | | | 26995 | 841.5 | 23.2 | | Band | Modulation | Bandwidth | RB Size | RB Offset | Channel | Frequency | Power | |------|------------|-----------|---------|-----------|---------|-----------|-------| | | | | | | | | | | | | | | 0 | 23017 | 699.7 | 22.0 | | | | | 6 | | 23095 | 707.5 | 22.0 | | | | | | | 23173 | 715.3 | 22.1 | | | | | | | 23017 | 699.7 | 23.0 | | | | | 3 | 1 | 23095 | 707.5 | 22.9 | | | | 1 4 5411- | | | 23173 | 715.3 | 23.0 | | | | 1.4 MHz | | | 23017 | 699.7 | 22.9 | | | | | 1 | 0 | 23095 | 707.5 | 23.0 | | | | | | | 23173 | 715.3 | 23.0 | | | | | | | 23017 | 699.7 | 23.0 | | | | | 1 | 5 | 23095 | 707.5 | 22.9 | | | | | | | 23173 | 715.3 | 23.0 | | | | | | | 23025 | 700.5 | 22.0 | | | | | 15 | 0 | 23095 | 707.5 | 21.9 | | | | 3 MHz | | | 23165 | 714.5 | 22.1 | | | | | 8 | | 23025 | 700.5 | 22.0 | | | | | | 3 | 23095 | 707.5 | 22.1 | | 12 | QPSK | | | | 23165 | 714.5 | 22.1 | | 12 | QF3K | | 1 | 0 | 23025 | 700.5 | 22.9 | | | | | | | 23095 | 707.5 | 23.0 | | | | | | | 23165 | 714.5 | 23.0 | | | | | | | 23025 | 700.5 | 23.0 | | | | | 1 | 14 | 23095 | 707.5 | 23.0 | | | | | | | 23165 | 714.5 | 23.0 | | | | | | | 23035 | 701.5 | 22.1 | | | | | 25 | 0 | 23095 | 707.5 | 21.9 | | | | | | | 23155 | 713.5 | 22.1 | | | | | | | 23035 | 701.5 | 22.0 | | | | | 12 | 6 | 23095 | 707.5 | 22.1 | | | | 5 MHz | | | 23155 | 713.5 | 22.1 | | | | J IVII IZ | | | 23035 | 701.5 | 22.8 | | | | | 1 | 0 | 23095 | 707.5 | 23.0 | | | | | | | 23155 | 713.5 | 23.0 | | | | | | | 23035 | 701.5 | 23.0 | | | | | 1 | 24 | 23095 | 707.5 | 23.0 | | | | | | | 23155 | 713.5 | 23.0 | | Band | Modulation | Bandwidth | RB Size | RB Offset | Channel | Frequency | Power | |------|------------|-----------|---------|-----------|---------|-----------|-------| | | | | | | | | | | | | | | | 23060 | 704.0 | 21.9 | | | | | 50 | 0 | 23095 | 707.5 | 21.8 | | | | | | | 23130 | 711.0 | 21.8 | | | | | | | 23060 | 704.0 | 22.0 | | | | | 25 | 12 | 23095 | 707.5 | 21.9 | | | ODCK | 40.8411 | | | 23130 | 711.0 | 22.0 | | | QPSK | 10 MHz | | | 23060 | 704.0 | 23.0 | | | | | 1 | 0 | 23095 | 707.5 | 23.0 | | | | | | | 23130 | 711.0 | 22.9 | | | | | | | 23060 | 704.0 | 22.9 | | | | | 1 | 24 | 23095 | 707.5 | 23.0 | | | | | | | 23130 | 711.0 | 23.0 | | | | | | | 23017 | 699.7 | 21.1 | | | | | 6 | 0 | 23095 | 707.5 | 21.2 | | | | 1.4 MHz | | | 23173 | 715.3 | 21.2 | | | | | 3 | | 23017 | 699.7 | 21.9 | | | | | | 1 | 23095 | 707.5 | 22.0 | | | | | | | 23173 | 715.3 | 22.1 | | 12 | | | 1 | | 23017 | 699.7 | 22.1 | | | | | | 0 | 23095 | 707.5 | 22.2 | | | | | | | 23173 | 715.3 | 22.2 | | | | | | 5 | 23017 | 699.7 | 22.2 | | | | | 1 | | 23095 | 707.5 | 22.2 | | | 460444 | | | | 23173 | 715.3 | 22.4 | | | 16QAM | | | | 23025 | 700.5 | 21.0 | | | | | 15 | 0 | 23095 | 707.5 | 21.1 | | | | | | | 23165 | 714.5 | 21.1 | | | | | | | 23025 | 700.5 | 20.9 | | | | | 8 | 3 | 23095 | 707.5 | 21.1 | | | | | | | 23165 | 714.5 | 21.0 | | | | 3 MHz | | | 23025 | 700.5 | 22.0 | | | | | 1 | 0 | 23095 | 707.5 | 22.1 | | | | | | | 23165 | 714.5 | 22.1 | | | | _ | 1 | | 23025 | 700.5 | 22.4 | | | | | | 14 | 23095 | 707.5 | 22.3 | | | | | | | 23165 | 714.5 | 22.4 | | | | | | | | _ | | |------|------------|-----------|---------|-----------|---------|-----------|-------| | Band | Modulation | Bandwidth | RB Size | RB Offset | Channel | Frequency | Power | | | | | | | | | | | | | | | | 23035 | 701.5 | 20.9 | | | | | 25 | 0 | 23095 | 707.5 | 20.9 | | | | | | | 23155 | 713.5 | 20.9 | | | | | | | 23035 | 701.5 | 21.1 | | | | | 12 | 6 | 23095 | 707.5 | 21.1 | | | | 5 MHz | | | 23155 | 713.5 | 21.3 | | | | 3 101112 | | | 23035 | 701.5 | 22.0 | | | | | 1 | 0 | 23095 | 707.5 | 22.2 | | | | | | | 23155 | 713.5 | 22.2 | | | 460414 | | 1 | 24 | 23035 | 701.5 | 22.3 | | | | | | | 23095 | 707.5 | 22.3 | | 4.0 | | | | | 23155 | 713.5 | 22.4 | | 12 | 16QAM | | 50 | 0 | 23060 | 704.0 | 20.8 | | | | | | | 23095 | 707.5 | 20.8 | | | | | | | 23130 | 711.0 | 20.9 | | | | | | | 23060 | 704.0 | 20.9 | | | | | 25 | 12 | 23095 | 707.5 | 20.9 | | | | 10 1411- | | | 23130 | 711.0 | 20.9 | | | | 10 MHz | | | 23060 | 704.0 | 22.1 | | | | | 1 | 0 | 23095 | 707.5 | 22.4 | | | | | | | 23130 | 711.0 | 22.2 | | | | | | | 23060 | 704.0 | 22.1 | | | | | 1 | 24 | 23095 | 707.5 | 22.3 | | | | | | | 23130 | 711.0 | 22.3 | | Band | Modulation | Bandwidth | RB Size | RB Offset | Channel | Frequency | Power | |-------|------------|-----------|---------|-----------|---------|------------|--------| | Daria | Modulation | Danawiath | ND SIZE | ND Offset | Chamici | rrequeries | 1 OWC1 | | | | | 1 | | | | | | | | | 25 | 0 | 27685 | 2307.5 | 20.4 | | | | | | _ | 27735 | 2312.5 | 20.4 | | | | | 12 | 6 | 27685 | 2307.5 | 20.5 | | | | 5 MHz | | ŭ | 27735 | 2312.5 | 20.5 | | | QPSK | 3 141112 | 1 | 0 | 27685 | 2307.5 | 20.5 | | | | | | · · | 27735 | 2312.5 | 20.4 | | | | | 1 | 24 | 27685 | 2307.5 | 20.5 | | | | | 1 | 24 | 27735 | 2312.5 | 20.4 | | | | 10 MHz | 50 | 0 | 27710 | 2310 | 20.3 | | | | | 25 | 13 | 27710 | 2310 | 20.5 | | | | | 1 | 0 | 27710 | 2310 | 20.5 | | 20 | | | 1 | 49 | 27710 | 2310 | 20.5 | | 30 | | | 25 | 0 | 27685 | 2307.5 | 19.3 | | | | | 25 | 0 | 27735 | 2312.5 | 19.3 | | | | | 42 | | 27685 | 2307.5 | 19.6 | | | | 5.8411 | 12 | 6 | 27735 | 2312.5 | 19.7 | | | | 5 MHz | 4 | | 27685 | 2307.5 | 19.5 | | | 460484 | | 1 | 0 | 27735 | 2312.5 | 19.6 | | | 16QAM | | 4 | 2.4 | 27685 | 2307.5 | 19.6 | | | | | 1 | 24 | 27735 | 2312.5 | 19.6 | | | | | 50 | 0 | 27710 | 2310 | 19.2 | | | | 40.8411 | 25 | 13 | 27710 | 2310 | 19.5 | | | | 10 MHz | 1 | 0 | 27710 | 2310 | 19.4 | | | | | 1 | 49 | 27710 | 2310 | 19.3 | | Band | Modulation | Bandwidth | RB Size | RB Offset | Channel | Frequency | Power | |------|------------|-----------|---------|-----------|---------|-----------|-------| | | | | | | | | | | | | | | | 20775 | 2502.5 | 19.3 | | | | | 25 | 0 | 21100 | 2535.0 | 19.3 | | | | | | | 21425 | 2567.5 | 19.2 | | | | | | | 20775 | 2502.5 | 19.1 | | | ODSIV | 5 MHz | 12 | 6 | 21100 | 2535.0 | 19.3 | | 7 | | | | | 21425 | 2567.5 | 19.2 | | / | QPSK | | | 0 | 20775 | 2502.5 | 20.0 | | | | | 1 | | 21100 | 2535.0 | 20.0 | | | | | | | 21425 | 2567.5 | 20.0 | | | | | | | 20775 | 2502.5 | 20.0 | | | | | 1 | 24 | 21100 | 2535.0 | 20.0 | | | | | | | 21425 | 2567.5 | 19.9 | | Band | Modulation | Bandwidth | RB Size | RB Offset | Channel | Frequency | Power | |------|------------|-----------|---------|-----------|---------|-----------|-------| | | | | | | | | | | | | | | | 20800 | 2505.0 | 19.1 | | | | | 50 | 0 | 21100 | 2535.0 | 19.2 | | | | | | | 21400 | 2565.0 | 19.3 | | | | | | | 20800 | 2505.0 | 19.2 | | | | | 25 | 12 | 21100 | 2535.0 | 19.3 | | | | 40.8411 | | | 21400 | 2565.0 | 19.4 | | | | 10 MHz | | | 20800 | 2505.0 | 20.0 | | | | | 1 | 0 | 21100 | 2535.0 | 20.0 | | | | | | | 21400 | 2565.0 | 20.0 | | | | | | | 20800 | 2505.0 | 20.0 | | | | | 1 | 24 | 21100 | 2535.0 | 20.0 | | | | | | | 21400 | 2565.0 | 20.0 | | | | | | | 20825 | 2507.5 | 19.1 | | | | | 75 | 0 | 21100 | 2535.0 | 19.2 | | | | 15 MHz | | | 21375 | 2562.5 | 19.2 | | | | | 36 | | 20825 | 2507.5 | 19.2 | | | | | | 19 | 21100 |
2535.0 | 19.2 | | _ | ODCK | | | | 21375 | 2562.5 | 19.2 | | 7 | QPSK | | 1 | 0 | 20825 | 2507.5 | 20.0 | | | | | | | 21100 | 2535.0 | 20.0 | | | | | | | 21375 | 2562.5 | 20.0 | | | | | | | 20825 | 2507.5 | 20.0 | | | | | 1 | 74 | 21100 | 2535.0 | 20.0 | | | | | | | 21375 | 2562.5 | 20.0 | | | | | | | 20850 | 2510.0 | 19.2 | | | | | 100 | 0 | 21100 | 2535.0 | 19.2 | | | | | | | 21350 | 2560.0 | 19.3 | | | | | | | 20850 | 2510.0 | 19.1 | | | | | 50 | 25 | 21100 | 2535.0 | 19.1 | | | | 20 MHz | | | 21350 | 2560.0 | 19.3 | | | | ZU IVIITZ | | | 20850 | 2510.0 | 20.0 | | | | | 1 | 0 | 21100 | 2535.0 | 20.0 | | | | | | | 21350 | 2560.0 | 20.0 | | | | | | | 20850 | 2510.0 | 20.0 | | | | | 1 | 99 | 21100 | 2535.0 | 20.0 | | | | | | | 21350 | 2560.0 | 20.0 | | Band | Modulation | Bandwidth | RB Size | RB Offset | Channel | Frequency | Power | |------|------------|-----------|---------|-----------|---------|-----------|-------| | | | | | | | | | | | | | | | 20775 | 2502.5 | 18.3 | | | | | 25 | 0 | 21100 | 2535.0 | 18.2 | | | | | | | 21425 | 2567.5 | 18.1 | | | | | | | 20775 | 2502.5 | 18.3 | | | 160000 | 5 MHz | 12 | 6 | 21100 | 2535.0 | 18.2 | | 7 | | | | | 21425 | 2567.5 | 18.4 | | / | 16QAM | | | 0 | 20775 | 2502.5 | 19.0 | | | | | | | 21100 | 2535.0 | 19.0 | | | | | | | 21425 | 2567.5 | 19.1 | | | | | | | 20775 | 2502.5 | 19.0 | | | | | 1 | 24 | 21100 | 2535.0 | 19.0 | | | | | | | 21425 | 2567.5 | 19.1 | | Band | Modulation | Bandwidth | RB Size | RB Offset | Channel | Frequency | Power | |------|------------|-----------|---------|-----------|---------|-----------|-------| | | | | • | | • | | | | | | | | | 20800 | 2505.0 | 18.2 | | | | | 50 | 0 | 21100 | 2535.0 | 18.1 | | | | | | | 21400 | 2565.0 | 18.3 | | | | | | | 20800 | 2505.0 | 18.3 | | | | | 25 | 12 | 21100 | 2535.0 | 18.2 | | | | | | | 21400 | 2565.0 | 18.4 | | | | 10 MHz | | | 20800 | 2505.0 | 19.3 | | | | | 1 | 0 | 21100 | 2535.0 | 19.2 | | | | | | | 21400 | 2565.0 | 19.2 | | | | | | | 20800 | 2505.0 | 19.3 | | | | | 1 | 24 | 21100 | 2535.0 | 19.1 | | | | | | | 21400 | 2565.0 | 19.2 | | | | | | | 20825 | 2507.5 | 18.1 | | | | | 75 | 0 | 21100 | 2535.0 | 18.0 | | | | 15 MHz | | | 21375 | 2562.5 | 18.1 | | | | | 36 | 19 | 20825 | 2507.5 | 18.3 | | | | | | | 21100 | 2535.0 | 18.3 | | 7 | 160004 | | | | 21375 | 2562.5 | 18.2 | | ' | 16QAM | | 1 | 0 | 20825 | 2507.5 | 19.2 | | | | | | | 21100 | 2535.0 | 19.3 | | | | | | | 21375 | 2562.5 | 19.3 | | | | | | | 20825 | 2507.5 | 19.1 | | | | | 1 | 74 | 21100 | 2535.0 | 19.0 | | | | | | | 21375 | 2562.5 | 19.2 | | | | | | | 20850 | 2510.0 | 18.2 | | | | | 100 | 0 | 21100 | 2535.0 | 18.1 | | | | | | | 21350 | 2560.0 | 18.3 | | | | | | | 20850 | 2510.0 | 18.1 | | | | | 50 | 25 | 21100 | 2535.0 | 18.0 | | | | 20 MHz | | | 21350 | 2560.0 | 18.2 | | | | ΖΟ ΙΝΙΠΖ | | | 20850 | 2510.0 | 19.3 | | | | | 1 | 0 | 21100 | 2535.0 | 19.4 | | | | | | | 21350 | 2560.0 | 19.2 | | | | | | | 20850 | 2510.0 | 19.1 | | | | | 1 | 99 | 21100 | 2535.0 | 19.2 | | | | | | | 21350 | 2560.0 | 19.2 | | Band | Modulation | Bandwidth | RB Size | RB Offset | Channel | Frequency | Power | |------|------------|-----------|---------|-----------|---------|-----------|-------| | | | | | | | | | | | | | | | 39675 | 2498.5 | 22.3 | | | | | 25 | 0 | 40620 | 2593.0 | 22.3 | | | | | | | 41565 | 2687.5 | 22.2 | | | | 5 MHz | | | 39675 | 2498.5 | 22.1 | | | QPSK | | 12 | 6 | 40620 | 2593.0 | 22.3 | | 41 | | | | | 41565 | 2687.5 | 22.2 | | 41 | QP3N | | | 0 | 39675 | 2498.5 | 23.0 | | | | | | | 40620 | 2593.0 | 23.0 | | | | | | | 41565 | 2687.5 | 23.0 | | | | | | | 39675 | 2498.5 | 23.0 | | | | | 1 | 24 | 40620 | 2593.0 | 23.0 | | | | | | | 41565 | 2687.5 | 22.9 | | Band | Modulation | Bandwidth | RB Size | RB Offset | Channel | Frequency | Power | |------|------------|-----------|---------|-----------|---------|-----------|-------| | | | | | | | | | | | | | | 0 | 39700 | 2501.0 | 22.1 | | | | | 50 | | 40620 | 2593.0 | 22.2 | | | | | | | 41540 | 2685.0 | 22.3 | | | | | | | 39700 | 2501.0 | 22.2 | | | | | 25 | 12 | 40620 | 2593.0 | 22.3 | | | | 40 8411- | | | 41540 | 2685.0 | 22.4 | | | | 10 MHz | | | 39700 | 2501.0 | 23.0 | | | | | 1 | 0 | 40620 | 2593.0 | 23.0 | | | | | | | 41540 | 2685.0 | 23.0 | | | | | | | 39700 | 2501.0 | 23.0 | | | | | 1 | 24 | 40620 | 2593.0 | 23.0 | | | | | | | 41540 | 2685.0 | 23.0 | | | | | | | 39725 | 2503.5 | 22.1 | | | | 15 MHz | 75 | 0 | 40620 | 2593.0 | 22.2 | | | | | | | 41515 | 2682.5 | 22.2 | | | | | 36 | 19 | 39725 | 2503.5 | 22.2 | | | | | | | 40620 | 2593.0 | 22.2 | | 41 | ODCK | | | | 41515 | 2682.5 | 22.2 | | 41 | QPSK | | 1 | . 0 | 39725 | 2503.5 | 23.0 | | | | | | | 40620 | 2593.0 | 23.0 | | | | | | | 41515 | 2682.5 | 23.0 | | | | | | | 39725 | 2503.5 | 23.0 | | | | | 1 | 74 | 40620 | 2593.0 | 23.0 | | | | | | | 41515 | 2682.5 | 23.0 | | | | | | | 39750 | 2506.0 | 22.2 | | | | | 100 | 0 | 40620 | 2593.0 | 22.2 | | | | | | | 41490 | 2680.0 | 22.3 | | | | | | | 39750 | 2506.0 | 22.1 | | | | | 50 | 25 | 40620 | 2593.0 | 22.1 | | | | 20 1447 | | | 41490 | 2680.0 | 22.3 | | | | 20 MHz | | | 39750 | 2506.0 | 23.0 | | | | | 1 | 0 | 40620 | 2593.0 | 23.0 | | | | | | | 41490 | 2680.0 | 23.0 | | | | | | | 39750 | 2506.0 | 23.0 | | | | | 1 | 99 | 40620 | 2593.0 | 23.0 | | | | | | | 41490 | 2680.0 | 23.0 | | Band | Modulation | Bandwidth | RB Size | RB Offset | Channel | Frequency | Power | |------|------------|-----------|---------|-----------|---------|-----------|-------| | | | | | | | | | | | | | | | 39675 | 2498.5 | 21.3 | | | | | 25 | 0 | 40620 | 2593.0 | 21.2 | | | | | | | 41565 | 2687.5 | 21.1 | | | | 5 MHz | | | 39675 | 2498.5 | 21.3 | | | 160414 | | 12 | 6 | 40620 | 2593.0 | 21.2 | | 41 | | | | | 41565 | 2687.5 | 21.4 | | 41 | 16QAM | | | 0 | 39675 | 2498.5 | 22.0 | | | | | | | 40620 | 2593.0 | 22.0 | | | | | | | 41565 | 2687.5 | 22.1 | | | | | | | 39675 | 2498.5 | 22.0 | | | | | 1 | 24 | 40620 | 2593.0 | 22.0 | | | | | | | 41565 | 2687.5 | 22.1 | | Band | Modulation | Bandwidth | RB Size | RB Offset | Channel | Frequency | Power | |------|------------|-----------|---------|-----------|---------|-----------|-------| | | | | | | | | | | | | | | | 39700 | 2501.0 | 21.2 | | | | | 50 | 0 | 40620 | 2593.0 | 21.1 | | | | | | | 41540 | 2685.0 | 21.3 | | | | | | | 39700 | 2501.0 | 21.3 | | | | | 25 | 12 | 40620 | 2593.0 | 21.2 | | | | | | | 41540 | 2685.0 | 21.4 | | | | 10 MHz | | | 39700 | 2501.0 | 22.3 | | | | | 1 | 0 | 40620 | 2593.0 | 22.2 | | | | | | | 41540 | 2685.0 | 22.2 | | | | | | | 39700 | 2501.0 | 22.3 | | | | | 1 | 24 | 40620 | 2593.0 | 22.1 | | | | | | | 41540 | 2685.0 | 22.2 | | | | | | | 39725 | 2503.5 | 21.1 | | | | | 75 | 0 | 40620 | 2593.0 | 21.0 | | | | 15 MHz | | | 41515 | 2682.5 | 21.1 | | | | | 36 | | 39725 | 2503.5 | 21.3 | | | | | | 19 | 40620 | 2593.0 | 21.3 | | 41 | 160414 | | | | 41515 | 2682.5 | 21.2 | | 41 | 16QAM | | 1 | 0 | 39725 | 2503.5 | 22.2 | | | | | | | 40620 | 2593.0 | 22.3 | | | | | | | 41515 | 2682.5 | 22.3 | | | | | | | 39725 | 2503.5 | 22.1 | | | | | 1 | 74 | 40620 | 2593.0 | 22.0 | | | | | | | 41515 | 2682.5 | 22.2 | | | | | | | 39750 | 2506.0 | 21.2 | | | | | 100 | 0 | 40620 | 2593.0 | 21.1 | | | | | | | 41490 | 2680.0 | 21.3 | | | | | | | 39750 | 2506.0 | 21.1 | | | | | 50 | 25 | 40620 | 2593.0 | 21.0 | | | | 20 MHz | | | 41490 | 2680.0 | 21.2 | | | | ZU IVITIZ | | | 39750 | 2506.0 | 22.3 | | | | | 1 | 0 | 40620 | 2593.0 | 22.4 | | | | | | | 41490 | 2680.0 | 22.2 | | | | | | | 39750 | 2506.0 | 22.1 | | | | | 1 | 99 | 40620 | 2593.0 | 22.2 | | | | | | | 41490 | 2680.0 | 22.2 | ## **SAR Data Summary –LTE Band 13** # **MEASUREMENT RESULTS** | Gap | Plot | Position | Frequency | | BW/ RB
Modulation Size | RB
Offset | MPR
Target | End
Power | Measured
SAR | Reported
SAR | | |------|------|----------|-----------|-------|---------------------------|--------------|---------------|--------------|-----------------|-----------------|--------| | | | | MHz | Ch. | | Size | Oliset | rarget | (dBm) | (W/kg) | (W/kg) | | | 1 | Ton | 782 | 23230 | 10 MHz/QPSK | 1 | 24 | 0 | 23.48 | 1.15 | 1.30 | | | | Тор | 782 | 23230 | 10 MHz/QPSK | 25 | 12 | 1 | 23.51 | 0.973 | 1.09 | | | | Back | 782 | 23230 | 10 MHz/QPSK | 1 | 24 | 0 | 23.48 | 0.898 | 1.01 | | 0 mm | | Dack | 782 | 23230 | 10 MHz/QPSK | 25 | 12 | 1 | 23.51 | 0.720 | 0.81 | | | | Left | 782 | 23230 | 10 MHz/QPSK | 1 | 24 | 0 | 23.48 | 0.0603 | 0.07 | | | | Leit | 782 | 23230 | 10 MHz/QPSK | 25 | 12 | 1 | 23.51 | 0.0462 | 0.05 | | | | Repeat | 782 | 23230 | 10 MHz/QPSK | 1 | 24 | 0 | 23.48 | 1.12 | 1.26 | Body 1.6 W/kg (mW/g) averaged over 1 gram | 1. | SAR Measurement | | | | |----|-----------------------------|-----------------|---------------------------------|------------| | | Phantom Configuration | Left Head | ⊠Eli4 | Right Head | | | SAR Configuration | Head | \boxtimes Body | | | 2. | Test Signal Call Mode | Test Code | ⊠ Base Station Simulator | | | 3. | Test Configuration | ☐With Belt Clip | ☐Without Belt Clip | ⊠N/A | | 4. | Tissue Depth is at least 15 | 5.0 cm | | | ## **SAR Data Summary –LTE Band 12** #### **MEASUREMENT RESULTS** | Gap | Plot | Position | Frequency | | BW/
Modulation | RB
Size | RB
Offset | MPR
Target | End
Power | Measured
SAR | Reported
SAR | |---------|------|------------|-----------|-------|-------------------|------------|--------------|---------------|--------------|-----------------|-----------------| | | | | MHz | Ch. | Wodulation | Size | Oliset | rarget | (dBm) | (W/kg) | (W/kg) | | | | | 704.0 | 23060 | 10 MHz/QPSK | 1 | 24 | 0 | 22.9 | 0.964 | 1.24 | | | | Ton | 707.5 | 23095 | 10 MHz/QPSK | 1 | 24 | 0 | 23.0 | 0.976 | 1.23 | | | 2 | Тор | 711.0 | 23129 | 10 MHz/QPSK | 1 | 24 | 0 | 23.0 | 1.00 | 1.26 | | | | | 707.5 | 23095 | 10 MHz/QPSK | 25 | 12 | 1 | 22.0 | 0.781 | 0.98 | | 0 | | Back 70 71 | 704.0 | 23060 | 10 MHz/QPSK | 1 | 24 | 0 | 22.9 | 0.836 | 1.08 | | mm | | | 707.5 | 23095 | 10 MHz/QPSK | 1 | 24 | 0 | 23.0 | 0.872 | 1.10 | | 1111111 | | | 711.0 |
23129 | 10 MHz/QPSK | 1 | 24 | 0 | 23.0 | 0.884 | 1.11 | | | | | 707.5 | 23095 | 10 MHz/QPSK | 25 | 12 | 1 | 22.0 | 0.675 | 0.85 | | | | Left | 707.5 | 23095 | 10 MHz/QPSK | 1 | 24 | 0 | 23.0 | 0.0678 | 0.09 | | | | Leit | 707.5 | 23095 | 10 MHz/QPSK | 25 | 12 | 1 | 22.0 | 0.0688 | 0.09 | | | | Repeat | 707.5 | 23095 | 10 MHz/QPSK | 1 | 24 | 0 | 23.0 | 0.989 | 1.25 | Body 1.6 W/kg (mW/g) averaged over 1 gram | 1. | SAK Measurement | | | | |----|-----------------------------|-----------------|---------------------------------|------------| | | Phantom Configuration | Left Head | ⊠Eli4 | Right Head | | | SAR Configuration | ☐Head | ⊠Body | | | 2. | Test Signal Call Mode | ☐Test Code | ⊠ Base Station Simulator | | | 3. | Test Configuration | ☐With Belt Clip | ☐Without Belt Clip | ⊠N/A | | 4. | Tissue Depth is at least 15 | .0 cm | | | ## SAR Data Summary – 850 MHz Body – UMTS Band 5 # MEASUREMENT RESULTS | Gap | Plot | Frequency | | Modulation | Position | End
Power | RMC | Test Set Up | Measured
SAR | Reported
SAR | |-----|------|-----------|------|------------|----------|--------------|-----------|-------------|-----------------|-----------------| | | | MHz | Ch. | | | (dBm) | | | (W/kg) | (W/kg) | | | 3 | 826.4 | 4132 | | Тор | 22.89 | 12.2 kbps | Test Loop 1 | 1.02 | 1.32 | | | | 836.6 | 4183 | WCDMA | | 22.91 | 12.2 kbps | Test Loop 1 | 0.901 | 1.16 | | 0 | | 846.6 | 4233 | | | 22.87 | 12.2 kbps | Test Loop 1 | 0.875 | 1.14 | | mm | | 836.6 | 4183 | VVCDIVIA | Back | 22.91 | 12.2 kbps | Test Loop 1 | 0.726 | 0.93 | | | | 836.6 | 4183 | | Left | 22.91 | 12.2 kbps | Test Loop 1 | 0.0662 | 0.09 | | | | 836.6 | 4183 | | Repeat | 22.89 | 12.2 kbps | Test Loop 1 | 1.00 | 1.29 | Body 1.6 W/kg (mW/g) averaged over 1 gram | 1. | SAR Measurement | | | | |----|-----------------------|-----------------|----------------------|------------| | | Phantom Configuration | Left Head | ⊠Eli4 | Right Head | | | SAR Configuration | Head | \boxtimes Body | | | 2. | Test Signal Call Mode | Test Code | ⊠Base Station Simula | ator | | 3. | Test Configuration | ☐With Belt Clip | ☐Without Belt Clip | ⊠N/A | | | m: D 11 1 1 1 1 1 0 | - | - | | 4. Tissue Depth is at least 15.0 cm ## **SAR Data Summary –LTE Band 26** ## **MEASUREMENT RESULTS** | Gap | Plot | Position | Frequency | | BW/
Modulation | RB
Size | RB
Offset | MPR | End
Power | Measured
SAR | Reported
SAR | |---------|------|----------|-----------|-------|-------------------|------------|--------------|--------|--------------|-----------------|-----------------| | | | | MHz | Ch. | Wodulation | Size | Oliset | Target | (dBm) | (W/kg) | (W/kg) | | | 4 | | 821.5 | 26740 | 15 MHz/QPSK | 1 | 37 | 0 | 24.0 | 1.29 | 1.29 | | | | | 831.5 | 26865 | 15 MHz/QPSK | 1 | 37 | 0 | 24.0 | 1.25 | 1.25 | | | | Тор | 841.5 | 26990 | 15 MHz/QPSK | 1 | 37 | 0 | 24.0 | 1.24 | 1.24 | | | | | 821.5 | 26740 | 15 MHz/QPSK | 37 | 18 | 1 | 23.0 | 1.10 | 1.10 | | | | | 831.5 | 26865 | 15 MHz/QPSK | 37 | 18 | 1 | 23.0 | 0.984 | 0.98 | | 0 | | | 841.5 | 26990 | 15 MHz/QPSK | 37 | 18 | 1 | 23.0 | 0.970 | 0.97 | | mm | | | 821.5 | 26740 | 15 MHz/QPSK | 1 | 37 | 0 | 24.0 | 0.975 | 0.98 | | 1111111 | | Back | 831.5 | 26865 | 15 MHz/QPSK | 1 | 37 | 0 | 24.0 | 0.906 | 0.91 | | | | Dack | 841.5 | 26990 | 15 MHz/QPSK | 1 | 37 | 0 | 24.0 | 0.875 | 0.88 | | | | | 831.5 | 26865 | 15 MHz/QPSK | 37 | 18 | 1 | 23.0 | 0.716 | 0.72 | | - | | Left | 831.5 | 26865 | 15 MHz/QPSK | 1 | 37 | 0 | 24.0 | 0.101 | 0.10 | | | | Leit | 831.5 | 26865 | 15 MHz/QPSK | 37 | 18 | 1 | 23.0 | 0.0735 | 0.07 | | | | Repeat | 831.5 | 26865 | 15 MHz/QPSK | 1 | 37 | 0 | 24.0 | 1.27 | 1.27 | Body 1.6 W/kg (mW/g) averaged over 1 gram | 1. | SAR Measurement | | | | |----|-----------------------|----------------|-------------------------|------------| | | Phantom Configuration | ☐Left Head | ⊠Eli4 | Right Head | | | SAR Configuration | Head | \boxtimes Body | | | 2. | Test Signal Call Mode | ☐Test Code | ⊠Base Station Simulator | | | 3. | Test Configuration | With Belt Clip | Without Belt Clip | ⊠N/A | 4. Tissue Depth is at least 15.0 cm ## SAR Data Summary – 1750 MHz Body – UMTS Band 4 # MEASUREMENT RESULTS | Gap | Plot | Frequency | | Modulation | Position | End
Power | RMC | Test Set Up | Measured
SAR | Reported
SAR | |-----|------|-----------|------|------------|----------|--------------|-----------|-------------|-----------------|-----------------| | | | MHz | Ch. | | | (dBm) | | | (W/kg) | (W/kg) | | | | 1712.4 | 1312 | | | 22.88 | 12.2 kbps | Test Loop 1 | 0.521 | 0.67 | | 0 | 5 | 1732.6 | 1413 | | Top | 22.95 | 12.2 kbps | Test Loop 1 | 0.672 | 0.86 | | _ | | 1752.6 | 1513 | WCDMA | | 22.90 | 12.2 kbps | Test Loop 1 | 0.597 | 0.77 | | mm | | 1732.6 | 1413 | | Back | 22.95 | 12.2 kbps | Test Loop 1 | 0.623 | 0.79 | | | | 1732.6 | 1413 | | Left | 22.95 | 12.2 kbps | Test Loop 1 | 0.0593 | 0.08 | Body 1.6 W/kg (mW/g) averaged over 1 gram | 1. | SAR Measurement | | | | |----|-----------------------|-----------------|-------------------------|---| | | Phantom Configuration | Left Head | ⊠Eli4 | d | | | SAR Configuration | Head | ⊠Body | | | 2. | Test Signal Call Mode | Test Code | | | | 3. | Test Configuration | ☐With Belt Clip | ☐Without Belt Clip ☒N/A | | 4. Tissue Depth is at least 15.0 cm ## SAR Data Summary –LTE Band 4 # **MEASUREMENT RESULTS** | Gap | Plot | Position | Frequency | | BW/
- Modulation | RB
Size | RB
Offset | MPR
Target | End
Power | Measured
SAR | Reported
SAR | |-----|------|----------|-----------|-------|---------------------|------------|--------------|---------------|--------------|-----------------|-----------------| | | | | MHz | Ch. | Wodulation | Size | Oliset | Target | (dBm) | (W/kg) | (W/kg) | | | | Top | 1732.5 | 20175 | 20 MHz/QPSK | 1 | 49 | 0 | 22.0 | 0.503 | 0.80 | | | | Тор | 1732.5 | 20175 | 20 MHz/QPSK | 50 | 24 | 1 | 21.0 | 0.522 | 0.83 | | | | Back | 1732.5 | 20175 | 20 MHz/QPSK | 1 | 49 | 0 | 22.0 | 0.569 | 0.72 | | 0 | | | 1720.0 | 20050 | 20 MHz/QPSK | 50 | 24 | 1 | 21.0 | 0.523 | 0.83 | | mm | 6 | | 1732.5 | 20175 | 20 MHz/QPSK | 50 | 24 | 1 | 21.0 | 0.607 | 0.96 | | | | | 1745.0 | 20300 | 20 MHz/QPSK | 50 | 24 | 1 | 21.0 | 0.578 | 0.92 | | | | Left | 1732.5 | 20175 | 20 MHz/QPSK | 1 | 49 | 0 | 22.0 | 0.0493 | 0.08 | | | | Leit | 1732.5 | 20175 | 20 MHz/QPSK | 50 | 24 | 1 | 21.0 | 0.049 | 0.08 | Body 1.6 W/kg (mW/g) averaged over 1 gram | 1. | SAR Measurement | | | | |----|-----------------------------|-----------------|---------------------------------|------------| | | Phantom Configuration | Left Head | ⊠Eli4 | Right Head | | | SAR Configuration | ☐Head | ⊠Body | _ | | 2. | Test Signal Call Mode | ☐Test Code | ⊠ Base Station Simulator | | | 3. | Test Configuration | ☐With Belt Clip | ☐Without Belt Clip | ⊠N/A | | 4 | Tissue Depth is at least 15 | .0 cm | _ | | ## SAR Data Summary – 1900 MHz Body – UMTS Band 2 # MEASUREMENT RESULTS | Gap | Plot | Frequency | | Modulation | Position | End
Power | RMC | Test Set Up | Measured
SAR | Reported
SAR | |-----|------|-----------|------|------------|----------|--------------|-----------|-------------|-----------------|-----------------| | | | MHz | Ch. | | | (dBm) | | | (W/kg) | (W/kg) | | | | 1880.0 | 9400 | | Top | 22.86 | 12.2 kbps | Test Loop 1 | 0.544 | 0.71 | | | 7 | 1852.4 | 9262 | ı | Back | 22.83 | 12.2 kbps | Test Loop 1 | 0.960 | 1.26 | | 0 | | 1880.0 | 9400 | WCDMA | | 22.86 | 12.2 kbps | Test Loop 1 | 0.900 | 1.17 | | mm | | 1907.6 | 9538 | WCDIMA | | 22.81 | 12.2 kbps | Test Loop 1 | 0.923 | 1.21 | | | | 1880.0 | 9400 | | Left | 22.86 | 12.2 kbps | Test Loop 1 | 0.0548 | 0.07 | | | | 1880.0 | 9400 | | Repeat | 22.86 | 12.2 kbps | Test Loop 1 | 0.951 | 1.24 | Body 1.6 W/kg (mW/g) averaged over 1 gram | Ι. | SAR Measurement | | | | |----|-------------------------------|-----------------|--------------------|------------| | | Phantom Configuration | Left Head | ⊠Eli4 | Right Head | | | SAR Configuration | Head | \boxtimes Body | | | 2. | Test Signal Call Mode | Test Code | ⊠Base Station Sim | ulator | | 3. | Test Configuration | ☐With Belt Clip | ☐Without Belt Clip | N/A | | 4. | Tissue Depth is at least 15.0 | cm | | | ## **SAR Data Summary –LTE Band 25** # **MEASUREMENT RESULTS** | Gap | Plot | Position | Frequency | | BW/
Modulation | RB
Size | RB
Offset | MPR
Target | End
Power | Measured
SAR | Reported
SAR | |-----|------|----------|-----------|-------|-------------------|------------|--------------|---------------|--------------|-----------------|-----------------| | | | | MHz | Ch. | | Size | Oliset | rarget | (dBm) | (W/kg) | (W/kg) | | | | | 1860.0 | 26140 | 20 MHz/QPSK | 1 | 49 | 0 | 23.1 | 1.13 | 1.39 | | | 8 | | 1882.5 | 26365 | 20 MHz/QPSK | 1 | 49 | 0 | 23.2 | 1.17 | 1.41 | | | | Ton | 1905.0 | 26590 | 20 MHz/QPSK | 1 | 49 | 0 | 23.0 | 1.06 | 1.33 | | | | Тор | 1860.0 | 26140 | 20 MHz/QPSK | 50 | 24 | 1 | 22.0 | 0.896 | 1.13 | | 0 | | | 1882.5 | 26365 | 20 MHz/QPSK | 50 | 24 | 1 | 22.4 | 0.922 | 1.06 | | _ | | | 1905.0 | 26590 | 20 MHz/QPSK | 50 | 24 | 1 | 22.3 | 0.867 | 1.02 | | mm | | Back | 1882.5 | 26365 | 20 MHz/QPSK | 1 | 49 | 0 | 23.2 | 0.710 | 0.85 | | | | Dack | 1882.5 | 26365 | 20 MHz/QPSK | 50 | 24 | 1 | 22.4 | 0.705 | 0.81 | | | | Left | 1882.5 | 26365 | 20 MHz/QPSK | 1 | 49 | 0 | 23.2 | 0.0731 | 0.09 | | | | Leit | 1882.5 | 26365 | 20 MHz/QPSK | 50 | 24 | 1 | 22.4 | 0.0581 | 0.07 | | | | Repeat | 1882.5 | 26365 | 20 MHz/QPSK | 1 | 49 | 0 | 23.2 | 1.15 | 1.38 | Body 1.6 W/kg (mW/g) averaged over 1 gram | I. | SAR Measurement | | | | |----|-----------------------------|-----------------|---------------------------------|------------| | | Phantom Configuration | Left Head | ⊠Eli4 | Right Head | | | SAR Configuration | Head | ⊠Body | | | 2. | Test Signal Call Mode | ☐Test Code | ⊠ Base Station Simulator | | | 3. | Test Configuration | ☐With Belt Clip | ☐Without Belt Clip | ⊠N/A | | 4. | Tissue Depth is at least
15 | .0 cm | | | ## **SAR Data Summary –LTE Band 30** | IVIE | 45UI | KEMENI | KE5 | ULIS | | | | | | | | |------|------|----------|------|-------|-------------------|------------|--------------|--------|--------------|-----------------|-----------------| | Gap | Plot | Position | Freq | uency | BW/
Modulation | RB
Size | RB
Offset | MPR | End
Power | Measured
SAR | Reported
SAR | | _ | | | MHz | Ch. | | Size | Oliset | Target | (dBm) | (W/kg) | (W/kg) | | | | Top | 2310 | 27710 | 10 MHz/QPSK | 1 | 24 | 0 | 22.0 | 0.404 | 0.51 | | | | Тор | 2310 | 27710 | 10 MHz/QPSK | 25 | 12 | 1 | 21.0 | 0.406 | 0.51 | | 0 | 9 | Back | 2310 | 27710 | 10 MHz/QPSK | 1 | 24 | 0 | 22.0 | 1.02 | 1.28 | | _ | | Dack | 2310 | 27710 | 10 MHz/QPSK | 25 | 12 | 1 | 21.0 | 1.02 | 1.28 | | mm - | | Left | 2310 | 27710 | 10 MHz/QPSK | 1 | 24 | 0 | 22.0 | 0.00499 | 0.01 | | | | Leit | 2310 | 27710 | 10 MHz/QPSK | 25 | 12 | 1 | 21.0 | 0.00578 | 0.01 | | | | Repeat | 2310 | 27710 | 10 MHz/QPSK | 1 | 24 | 0 | 22.0 | 1.00 | 1.26 | Body 1.6 W/kg (mW/g) averaged over 1 gram | 1. | SAR Measurement | | | | |----|-----------------------------|-----------------|--------------------|------------| | | Phantom Configuration | Left Head | ⊠Eli4 | Right Head | | | SAR Configuration | Head | \boxtimes Body | | | 2. | Test Signal Call Mode | Test Code | | | | 3. | Test Configuration | ☐With Belt Clip | ☐Without Belt Clip | ⊠N/A | | 4. | Tissue Depth is at least 15 | .0 cm | | | ## **SAR Data Summary –LTE Band 7** # **MEASUREMENT RESULTS** | Gap | Plot | Position | Freq | uency | BW/
Modulation | RB
Size | RB
Offset | MPR
Target | End
Power | Measured
SAR | Reported
SAR | |-----|------|----------|------|-------|-------------------|------------|--------------|---------------|--------------|-----------------|-----------------| | | | | MHz | Ch. | Woddiation | Size | Oliset | rarget | (dBm) | (W/kg) | (W/kg) | | | | Ton | 2535 | 21100 | 20 MHz/QPSK | 1 | 49 | 0 | 20.0 | 0.275 | 0.55 | | | | Тор | 2535 | 21100 | 20 MHz/QPSK | 50 | 24 | 1 | 19.0 | 0.265 | 0.53 | | | | | 2535 | 21100 | 20 MHz/QPSK | 1 | 49 | 0 | 20.0 | 0.675 | 1.35 | | 0 | | Back | 2510 | 20850 | 20 MHz/QPSK | 50 | 24 | 1 | 19.0 | 0.702 | 1.40 | | mm | 10 | Back | 2535 | 21100 | 20 MHz/QPSK | 50 | 24 | 1 | 19.0 | 0.706 | 1.41 | | | | - | 2560 | 21350 | 20 MHz/QPSK | 50 | 24 | 1 | 19.0 | 0.678 | 1.35 | | | | Left | 2535 | 21100 | 20 MHz/QPSK | 1 | 49 | 0 | 20.0 | 0.0166 | 0.03 | | | | Leit | 2535 | 21100 | 20 MHz/QPSK | 50 | 24 | 1 | 19.0 | 0.0181 | 0.04 | Body 1.6 W/kg (mW/g) averaged over 1 gram | 1. | SAR Measurement | | | | |----|-----------------------------|-----------------|---------------------------------|------------| | | Phantom Configuration | Left Head | ⊠Eli4 | Right Head | | | SAR Configuration | Head | ⊠Body | | | 2. | Test Signal Call Mode | ☐Test Code | ⊠ Base Station Simulator | | | 3. | Test Configuration | ☐With Belt Clip | ☐Without Belt Clip | ⊠N/A | | 4. | Tissue Depth is at least 15 | .0 cm | | | #### **SAR Data Summary –LTE Band 41** | ME | ASUI | REMENT | RESU | LTS | | | | | | | | |-----|------|----------|--------|-------|-------------------|------------|--------------|---------------|--------------|-----------------|-----------------| | Gap | Plot | Position | Frequ | ency | BW/
Modulation | RB
Size | RB
Offset | MPR
Target | End
Power | Measured
SAR | Reported
SAR | | | | | MHz | Ch. | Wodulation | 5120 | Olisei | rarget | (dBm) | (W/kg) | (W/kg) | | | | Тор | 2593 | 40620 | 20 MHz/QPSK | 1 | 49 | 0 | 23.0 | 0.258 | 0.26 | | | | ТОР | 2593 | 40620 | 20 MHz/QPSK | 50 | 24 | 1 | 22.0 | 0.243 | 0.24 | | | | | 2506 | 39750 | 20 MHz/QPSK | 1 | 49 | 0 | 23.0 | 0.592 | 0.59 | | | | | 2549.5 | 40185 | 20 MHz/QPSK | 1 | 49 | 0 | 23.0 | 0.604 | 0.60 | | | 11 | | 2593 | 40620 | 20 MHz/QPSK | 1 | 49 | 0 | 23.0 | 0.695 | 0.70 | | | | | 2636.5 | 41055 | 20 MHz/QPSK | 1 | 49 | 0 | 23.0 | 0.632 | 0.63 | | 0 | | Back | 2680 | 41490 | 20 MHz/QPSK | 1 | 49 | 0 | 23.0 | 0.611 | 0.61 | | mm | | Dack | 2506 | 39750 | 20 MHz/QPSK | 50 | 24 | 1 | 22.0 | 0.568 | 0.57 | | | | | 2549.5 | 40185 | 20 MHz/QPSK | 50 | 24 | 1 | 22.0 | 0.592 | 0.59 | | | | | 2593 | 40620 | 20 MHz/QPSK | 50 | 24 | 1 | 22.0 | 0.642 | 0.64 | | | | 1 | 2636.5 | 41055 | 20 MHz/QPSK | 50 | 24 | 1 | 22.0 | 0.602 | 0.60 | | | | | 2680 | 41490 | 20 MHz/QPSK | 50 | 24 | 1 | 22.0 | 0.583 | 0.58 | | | | Loft | 2593 | 40620 | 20 MHz/QPSK | 1 | 49 | 0 | 23.0 | 0.0158 | 0.02 | | | | Left | 2593 | 40620 | 20 MHz/QPSK | 50 | 24 | 1 | 22.0 | 0.0173 | 0.02 | Body 1.6 W/kg (mW/g) averaged over 1 gram | 1. | SAR Measurement | | | | |----|-----------------------------|-----------------|---------------------------------|------------| | | Phantom Configuration | Left Head | ⊠Eli4 | Right Head | | | SAR Configuration | ☐Head | ⊠Body | | | 2. | Test Signal Call Mode | Test Code | ⊠ Base Station Simulator | | | 3. | Test Configuration | ■With Belt Clip | ☐Without Belt Clip | ⊠N/A | | 4. | Tissue Depth is at least 15 | .0 cm | | | Jay M. Moulton Vice President LTE TDD testing is performed using the SAR test guidance provided in FCC KDB 941225 D05 v02r04. TDD is tested at the highest duty factor using UL-DL configuration 0 with special subframe configuration 6 and applying the FDD LTE procedures in KDB 941225 D05 v02r04. SAR testing is performed using the extended cyclic prefix listed in 3GPP TS 36.211 Section 4. A duty cycle of 1:1.58 is the highest duty cycle achievable which was used for testing Band 41. #### **SAR Data Summary – Simultaneous Evaluation** | MEA | MEASUREMENT RESULTS - BT | | | | | | | | | | | | |------|--|------------|-------|------|------------|-------|------------------|------------|--|--|--|--| | Freq | uency | Modulation | Frequ | ency | Modulation | SAR₁ | SAR ₂ | SAR Total | | | | | | MHz | Ch. | modulation | MHz | Ch. | modulation | O/III | 67 4112 | Oran rotal | | | | | | 2535 | 21100 | LTE | 2440 | 39 | GFSK | 1.41 | 0.15 | 1.56 | | | | | | 5280 | 5280 56 OFDM 2440 39 GFSK 1.09 0.15 1.24 | | | | | | | | | | | | Body 1.6 W/kg (mW/g) averaged over 1 gram The highest measured SAR value was used to determine simultaneous evaluation. The BT SAR value was estimated based on KDB 447498 D01 v06 section 4.3.2 b) 1) page 14. The sum of the two transmitters is less than the limit for both combinations; therefore, the simultaneous transmission meets the requirements of KDB447498 D01 v06 section 4.3.2 page 11. | MEA | MEASUREMENT RESULTS – WWAN & WiFi and MIMO | | | | | | | | | | | |--|--|--|------|-----|------|-------------|-------------|-------|--|--|--| | Freq | Frequency Modulation Frequency Modulation SAR ₁ SAR ₂ - WiFi SAR | | | | | | | | | | | | MHz | Ch. | | MHz | Ch. | | 3 7, | 07.11.2 | Total | | | | | 2535 | | | 5825 | 157 | OFDM | 1.41 (WWAN) | 1.49 (Main) | 2.90 | | | | | 2535 | 2535 21100 LTE | | 5825 | 157 | OFDM | 1.41 (WWAN) | 1.49 (Aux) | 2.90 | | | | | 5280 56 OFDM 5620 124 OFDM 1.49 (Main) 1.49 (Aux) 2.98 | | | | | | | | | | | | Body 1.6 W/kg (mW/g) averaged over 1 gram The WWAN and WiFi (Main) antennas are a minimum of 107 mm apart. The WWAN and WiFi (Aux) antennas are a minimum of 263 mm apart. The WiFi (Main) and WiFi (Aux) antennas are a minimum of 147 mm apart. Using the highest reported SAR and estimated SAR for WiFi based on KDB 447498 D01 V06 section 4.3.2 b) 1) page 14 to calculate the simultaneous Tx using peak separation ratio, the highest ratio would be 0.04 which meets the requirements of KDB 447498 section 4.3.2 3) on page 13. The calculation is shown below. #### WiFi Estimated SAR Value (max power,mW / min distance, mm) * $\sqrt{f_{(GHz)}/x}$; where x = 7.5 $(39.8 \text{ mW} / 8.6 \text{ mm}) * \sqrt{5.825/7.5} = 1.49 \text{ W/kg}$ $(50.1 \text{ mW} / 8.6 \text{ mm}) * \sqrt{2.462/7.5} = 1.22 \text{ W/kg}$ Simultaneous Separation Ratio Calculation $(SAR_1 + SAR_2)^{1.5}/R_i \le 0.04$ rounded to two digits $(1.41 + 1.49)^{1.5}/107 = 0.04$; WWAN to WiFi (Main) $(1.41 + 1.49)^{1.5}/263 = 0.02$; WWAN to WiFi (Aux) $(1.49 + 1.49)^{1.5}/147 = 0.04$; WiFi (Main) to WiFi (Aux) ## 12. Test Equipment List **Table 12.1 Equipment Specifications** | Туре | Calibration Due Date | Calibration Done Date | Serial Number | |--|-----------------------------|-----------------------|-----------------| | Staubli Robot TX60L | N/A | N/A | F07/55M6A1/A/01 | | Measurement Controller CS8c | N/A | N/A | 1012 | | ELI4 Flat Phantom | N/A | N/A | 2037 | | Device Holder | N/A | N/A | N/A | | Data Acquisition Electronics 4 | 02/09/2017 | 02/09/2016 | 1217 | | SPEAG E-Field Probe ES3DV3 | 02/16/2017 | 02/16/2016 | 3311 | | SPEAG E-Field Probe EX3DV4 | 04/27/2017 | 04/27/2016 | 3662 | | SPEAG E-Field Probe EX3DV4 | 01/27/2017 | 01/27/2016 | 3833 | | Speag Validation Dipole D750V2 | 08/10/2017 | 08/10/2015 | 1053 | | Speag Validation Dipole D835V2 | 08/10/2017 | 08/10/2015 | 4d131 | | Speag Validation Dipole D1750V2 | 08/13/2017 | 08/13/2015 | 1061 | | Speag Validation Dipole D1900V2 | 08/13/2017 | 08/13/2015 | 5d147 | | Speag Validation Dipole D2300V2 | 09/17/2017 | 09/17/2015 | 1060 | | Speag Validation Dipole D2550V2 | 08/10/2017 | 08/10/2015 | 1003 | | Speag Validation Dipole D2450V2 | 08/10/2017 | 08/10/2015 | 881 | | Speag Validation Dipole D5GHzV2 | 08/11/2017 | 08/11/2015 | 1119 | | Agilent N1911A Power Meter | 05/20/2017 | 05/20/2015 | GB45100254 | | Agilent N1922A Power Sensor | 06/25/2017 | 06/25/2015 | MY45240464 | | Advantest R3261A Spectrum Analyzer | 03/26/2017 | 03/26/2015 | 31720068 | | Agilent (HP) 8350B Signal Generator | 03/26/2017 | 03/26/2015 | 2749A10226 | | Agilent (HP) 83525A RF Plug-In | 03/26/2017 | 03/26/2015 | 2647A01172 | | Agilent (HP) 8753C Vector Network Analyzer | 03/26/2017 |
03/26/2015 | 3135A01724 | | Agilent (HP) 85047A S-Parameter Test Set | 03/26/2017 | 03/26/2015 | 2904A00595 | | Agilent (HP) 8960 Base Station Sim. | 03/31/2017 | 03/31/2015 | MY48360364 | | Anritsu MT8820C | 07/28/2017 | 07/28/2015 | 6201176199 | | Agilent 778D Dual Directional Coupler | N/A | N/A | MY48220184 | | MiniCircuits BW-N20W5+ Fixed 20 dB | N/A | N/A | N/A | | Attenuator | | | | | MiniCircuits SPL-10.7+ Low Pass Filter | N/A | N/A | R8979513746 | | Aprel Dielectric Probe Assembly | N/A | N/A | 0011 | | Body Equivalent Matter (750 MHz) | N/A | N/A | N/A | | Body Equivalent Matter (835/900 MHz) | N/A | N/A | N/A | | Body Equivalent Matter (1750 MHz) | N/A | N/A | N/A | | Body Equivalent Matter (1900 MHz) | N/A | N/A | N/A | | Body Equivalent Matter (2300 MHz) | N/A | N/A | N/A | | Body Equivalent Matter (2450 MHz) | N/A | N/A | N/A | | Body Equivalent Matter (2600 MHz) | N/A | N/A | N/A | | Body Equivalent Matter (5 GHz) | N/A | N/A | N/A | ### 13. Conclusion The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC/IC. These measurements are taken to simulate the RF effects exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters subject to the test. The test results and statements relate only to the item(s) tested. Please note that the absorption and distribution of electromagnetic energy in the body is a very complex phenomena that depends on the mass, shape, and size of the body; the orientation of the body with respect to the field vectors; and, the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. ### 14. References - [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radio Frequency Radiation, August 1996 - [2] ANSI/IEEE C95.1 1992, American National Standard Safety Levels with respect to Human Exposure to Radio Frequency Electromagnetic Fields, 300kHz to 100GHz, New York: IEEE, 1992. - [3] ANSI/IEEE C95.3 2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, 2002. - [4] International Electrotechnical Commission, IEC 62209-2 (Edition 1.0), Human Exposure to radio frequency fields from hand-held and body mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), March 2010. - [5] IEEE Standard 1528 2013, IEEE Recommended Practice for Determining the Peak-Spatial Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques, June 2013. - [6] Industry Canada, RSS 102 Issue 5, Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands), March 2015. - [7] Health Canada, Safety Code 6, Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3kHz to 300 GHz, 2009. ### **Appendix A – System Validation Plots and Data** ``` Test Result for UIM Dielectric Parameter Mon 15/Aug/2016 Freq Frequency (GHz) FCC_eH Limits for Head Epsilon FCC_sH Limits for Head Sigma FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM Freq FCC_eB FCC_sB Test_e Test_s 0.7000 55.73 0.96 55.72 0.97 0.7040 55.714 0.96 55.708 0.974* 0.7075 55.69 0.96 55.698 0.978* 0.7100 55.69 0.96 55.69 0.98 0.7110 55.686 0.96 55.687 0.98* 0.7200 55.65 0.96 55.66 0.98 0.7300 55.61 0.96 55.63 0.98 0.7400 55.57 0.96 55.63 0.98 0.7400 55.57 0.96 55.60 0.99 0.7500 55.53 0.96 55.57 0.99 0.7600 55.45 0.96 55.54 0.99 0.7700 55.45 0.96 55.54 0.99 0.7700 55.45 0.96 55.50 1.00 0.7820 55.40 0.97 55.46 1.00 0.7820 55.38 0.97 55.45 1.00 *0.7900 55.38 0.97 55.42 1.00 *0.8000 55.34 0.97 55.38 1.01 * value interpolated* Freq FCC_eB FCC_sB Test_e Test_s * value interpolated **************** Test Result for UIM Dielectric Parameter Mon 22/Aug/2016 Freq Frequency (GHz) FCC_eH Limits for Head Epsilon FCC_sH Limits for Head Sigma FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM ************ Freq FCC_eB FCC_sB Test_e Test_s 0.8050 55.32 0.97 56.05 0.96 0.8150 55.28 0.97 56.00 0.98 0.8190 55.264 0.97 55.98 0.98* 0.8250 55.24 0.97 55.95 0.98 0.8264 55.234 0.97 55.944 0.981* 0.8315 55.214 0.97 55.924 0.987* 0.8350 55.20 0.97 55.91 0.99 0.8366 55.195 0.972 55.902 0.99* 0.8440 55.173 0.979 55.865 0.99* 0.8450 55.165 0.982 55.86 0.99 0.8466 55.165 0.982 55.857 0.992* 0.8550 55.14 0.99 55.84 1.00 0.8650 55.13 1.01 55.80 1.01 0.8750 55.08 1.02 55.78 1.03 0.8850 55.05 1.03 55.73 1.03 Freq FCC_eB FCC_sB Test_e Test_s 0.8850 55.05 1.03 55.73 1.03 0.8950 55.02 1.04 55.70 1.04 * value interpolated ``` ``` ************* Test Result for UIM Dielectric Parameter Mon 22/Aug/2016 Freq Frequency (GHz) FCC_eH Limits for Head Epsilon FCC_sH Limits for Head Sigma FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM *********** Freq FCC_eB FCC_sB Test_e Test_s 53.53 1.47 53.55 1.48 1.7100 1.7124 53.525 1.47 53.543 1.482* 1.7200 53.51 1.47 53.52 1.49 1.7300 53.48 1.48 53.38 1.50 1.7325 53.475 1.48 53.375 1.503* 1.7326 53.475 1.48 53.375 1.503* 1.7400 53.46 1.48 53.36 1.51 1.7450 53.445 1.485 53.34 1.515* 1.7500 53.43 1.49 53.32 1.52 1.7526 53.425 1.49 53.315 1.523* 1.7600 53.41 1.49 53.30 1.53 1.7700 53.38 1.50 53.27 1.55 1.7800 53.35 1.51 53.23 1.55 1.7200 53.51 1.47 53.52 1.49 * value interpolated ***************** Test Result for UIM Dielectric Parameter Wed 17/Aug/2016 Freq Frequency (GHz) FCC_eH Limits for Head Epsilon FCC_sH Limits for Head Sigma FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM *********** * value interpolated ``` ``` Test Result for UIM Dielectric Parameter Fri 19/Aug/2016 Freq Frequency (GHz) FCC_eH Limits for Head Epsilon FCC_sH Limits for Head Sigma FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM ***** FCC_eB FCC_sB Test_e Test_s 52.91 1.80 52.65 1.83 Freq 52.90 1.81 52.63 1.84 2.3000 52.89 1.82 52.61 1.85 2.3100 2.3200 52.87 1.83 52.59 1.86 2.3300 52.86 1.84 52.58 1.87 2.3400 52.85 1.84 52.56 1.88 2.3500 52.83 1.85 52.54 1.89 ***************** Test Result for UIM Dielectric Parameter Fri 19/Aug/2016 Freq Frequency (GHz) FCC_eH Limits for Head Epsilon FCC_sH Limits for Head Sigma FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM ************ ``` ************* ^{*} value interpolated Test Result for UIM Dielectric Parameter Mon 21/Nov/2016 Freq Frequency (GHz) FCC_eH Limits for Head Epsilon FCC_sH Limits for Head Sigma FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM ********** ************* ^{*} value interpolated ``` Test Result for UIM Dielectric Parameter Tue 29/Nov/2016 Freq Frequency (GHz) FCC_eH Limits for Head Epsilon FCC_sH Limits for Head Sigma FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM ********** Freq FCC_eB FCC_sB Test_e Test_s 1.7100 53.54 1.46 52.81 1.53 1.7124 53.533 1.462 52.803 1.532* 1.7124 53.533 1.462 52.803 1.532* 1.7200 53.51 1.47 52.78 1.54 1.7300 53.48 1.48 52.74 1.55 1.7325 53.475 1.48 52.73 1.55* 1.7326 53.475 1.48 52.73 1.55* 1.7400 53.46 1.48 52.70 1.55 1.7450 53.445 1.485 52.69 1.555* 1.7500 53.43 1.49 52.68 1.56 1.7526 53.425 1.49 52.675 1.56* 1.7600 53.41 1.49 52.66 1.56 1.7700 53.38 1.50 52.65 1.57 1.7800 53.35 1.51 52.61 1.58 1.7900 53.33 1.51 52.58 1.59 * value interpolated Test Result for UIM Dielectric Parameter Tue 29/Nov/2016 Freq Frequency (GHz) FCC_eH Limits for Head Epsilon FCC_sH Limits for Head Sigma FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM ********** ``` *********** ^{*} value interpolated ## **RF Exposure Lab** ### Plot 1 DUT: Dipole 750 MHz D750V3; Type: D750V3; Serial: D750V3 - SN:1053 Communication System: CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: MSL750; Medium parameters used: f = 750 MHz; σ = 0.99 S/m; ϵ_r = 55.57; ρ = 1000 kg/m³ Phantom section: Flat Section Test Date: Date: 8/15/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(9.43, 9.43, 9.43); Calibrated: 4/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1217; Calibrated: 2/9/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 2037 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) #### **Procedure Notes:** **750 MHz/Verification/Area Scan (5x11x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.08 W/kg 750 MHz/Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 31.227 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 1.30 W/kg SAR(1 g) = 0.865 W/kg; SAR(10 g) = 0.569 W/kgMaximum value of SAR (measured) = 1.10 W/kg ## RF Exposure Lab ### Plot 2 DUT: Dipole 835 MHz D835V2; Type: D835V2; Serial: D835V2 - SN:4d131 Communication System: CW; Frequency: 835 MHz; Duty
Cycle: 1:1 Medium: MSL835; Medium parameters used: f = 835 MHz; σ = 0.99 S/m; ϵ_r = 55.91; ρ = 1000 kg/m³ Phantom section: Flat Section Test Date: Date: 8/22/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: ES3DV3 - SN3311; ConvF(6.33, 6.33, 6.33); Calibrated: 2/16/2016: Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1217; Calibrated: 2/9/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 2037 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) #### **Procedure Notes:** **835 MHz Body/Verification/Area Scan (81x161x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.29 W/kg 835 MHz Body/Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 52.612 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 1.47 W/kg **SAR(1 g) = 0.953 W/kg; SAR(10 g) = 0.632 W/kg** Maximum value of SAR (measured) = 1.29 W/kg # RF Exposure Lab ### Plot 3 DUT: Dipole 1750 MHz D1750V2; Type: D1750V2; Serial: D1750V2 - SN:1061 Communication System: CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: MSL1750; Medium parameters used: f = 1750 MHz; $\sigma = 1.52 \text{ S/m}$; $\epsilon_r = 53.32$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Test Date: Date: 8/22/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3833; ConvF(7.32, 7.32, 7.32); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1217; Calibrated: 2/9/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 2037 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) #### **Procedure Notes:** **1750 MHz/Verification/Area Scan (5x7x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 5.33 W/kg 1750 MHz/Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 31.227 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 6.89 W/kg **SAR(1 g) = 3.85 W/kg; SAR(10 g) = 2.03 W/kg** Maximum value of SAR (measured) = 5.49 W/kg ## **RF Exposure Lab** ### Plot 4 DUT: Dipole 1900 MHz D1900V2; Type: D1900V2; Serial: D1900V2 - SN:5d147 Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: MSL1900; Medium parameters used: f = 1900 MHz; $\sigma = 1.47 \text{ S/m}$; $\epsilon_r = 52.07$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Test Date: Date: 8/17/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(7.49, 7.49, 7.49); Calibrated: 4/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1217; Calibrated: 2/9/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 2037 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) #### **Procedure Notes:** **1900 MHz Body/Verification/Area Scan (61x81x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 5.63 W/kg 1900 MHz Body/Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 52.612 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 6.68 W/kg **SAR(1 g) = 3.98 W/kg; SAR(10 g) = 1.92 W/kg** Maximum value of SAR (measured) = 5.63 W/kg ## **RF Exposure Lab** ### Plot 5 DUT: Dipole 2300 MHz D2300V2; Type: D2300V2; Serial: D2300V2 - SN:1060 Communication System: CW; Frequency: 2300 MHz; Duty Cycle: 1:1 Medium: MSL2300; Medium parameters used: f = 2300 MHz; $\sigma = 1.84 \text{ S/m}$; $\epsilon_r = 52.63$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Test Date: Date: 8/19/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: ES3DV3 - SN3311; ConvF(4.69, 4.69, 4.69); Calibrated: 2/16/2016: Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1217; Calibrated: 2/9/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 2037 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) #### **Procedure Notes:** **Body Verification/2300 MHz/Area Scan (61x101x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 8.95 W/kg Body Verification/2300 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 53.597 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 11.18 W/kg P_{in}= 100 mW SAR(1 g) = 4.82 W/kg; SAR(10 g) = 2.2 W/kg Maximum value of SAR (measured) = 8.71 W/kg ## **RF Exposure Lab** ### Plot 6 DUT: Dipole 2550 MHz D2550V2; Type: D2550V2; Serial: D2550V2 - SN:1003 Communication System: CW; Frequency: 2550 MHz; Duty Cycle: 1:1 Medium: MSL2600; Medium parameters used: f = 2550 MHz; $\sigma = 2.12 \text{ S/m}$; $\epsilon_r = 52.47$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Test Date: Date: 8/19/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: ES3DV3 - SN3311; ConvF(4.17, 4.17, 4.17); Calibrated: 2/16/2016; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1217; Calibrated: 2/9/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 2037 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) #### **Procedure Notes:** **2550 MHz Body/Verification/Area Scan (61x81x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 9.18 W/kg 2550 MHz Body/Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.541 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 11.5 W/kg **SAR(1 g) = 5.41 W/kg; SAR(10 g) = 2.42 W/kg** Maximum value of SAR (measured) = 8.98 W/kg ## **RF Exposure Lab** ### Plot 7 DUT: Dipole 2550 MHz D2450V2; Type: D2550V2; Serial: D2550V2 - SN: 1003 Communication System: CW; Frequency: 2550 MHz; Duty Cycle: 1:1 Medium: MSL2450; Medium parameters used: f = 2550 MHz; $\sigma = 2.08 \text{ S/m}$; $\epsilon_r = 52.36$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Test Date: Date: 11/21/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: ES3DV3 - SN3311; ConvF(4.17, 4.17, 4.17); Calibrated: 2/16/2016; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1217; Calibrated: 2/9/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 2037 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) #### **Procedure Notes:** **Body Verification/2450 MHz/Area Scan (61x101x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 8.95 W/kg Body Verification/2450 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 53.597 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 11.18 W/kg P_{in}= 100 mW SAR(1 g) = 5.22 W/kg; SAR(10 g) = 2.4 W/kg Maximum value of SAR (measured) = 8.71 W/kg # RF Exposure Lab ### Plot 8 DUT: Dipole 1750 MHz D1750V2; Type: D1750V2; Serial: D1750V2 - SN:1061 Communication System: CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: MSL1750; Medium parameters used: f = 1750 MHz, σ = 1.56 S/m; ε_r = 52.68; ρ = 1000 kg/m³ Phantom section: Flat Section Test Date: Date: 11/29/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3833; ConvF(7.32, 7.32, 7.32); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1217; Calibrated: 2/9/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 2037 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) #### **Procedure Notes:** **1750 MHz/Verification/Area Scan (5x7x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 5.26 W/kg 1750 MHz/Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 33.426 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 6.87 W/kg SAR(1 g) = 3.82 W/kg; SAR(10 g) = 2.01 W/kg Maximum value of SAR (measured) = 5.48 W/kg ## RF Exposure Lab ### Plot 9 DUT: Dipole 2550 MHz D2550V2; Type: D2550V2; Serial: D2550V2 - SN:1003 Communication System: CW; Frequency: 2550 MHz; Duty Cycle: 1:1 Medium: MSL2600; Medium parameters used: f = 2550 MHz; $\sigma = 2.1 \text{ S/m}$; $\epsilon_r = 52.3$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Test Date: Date: 11/29/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: ES3DV3 - SN3311; ConvF(4.17, 4.17, 4.17); Calibrated: 2/16/2016; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1217; Calibrated: 2/9/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 2037 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) #### **Procedure Notes:** **2550 MHz Body/Verification/Area Scan (61x81x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 9.15 W/kg 2550 MHz Body/Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.687 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 11.3 W/kg **SAR(1 g)** = **5.35 W/kg; SAR(10 g)** = **2.56 W/kg** Maximum value of SAR (measured) = 9.05 W/kg 9.180 7.348 5.517 3.685 1.853 0.022 ## Appendix B – SAR Test Data Plots ## **RF Exposure Lab** ### Plot 1 DUT: iX125R1; Type: Ruggedize Tablet; Serial: 65JKG00024 Communication System: LTE (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 782 MHz; Duty Cycle: 1:1 Medium: MSL750; Medium parameters used (interpolated): f = 782 MHz; σ = 1 S/m; ϵ_r = 55.452; ρ = 1000 kg/m³ Phantom section: Flat Section Test Date: Date: 8/16/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(9.43, 9.43, 9.43); Calibrated: 4/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1217; Calibrated: 2/9/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 2037 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) #### **Procedure Notes:** 750 MHz B13 LTE/Top Mid 1 RB 24 Offset/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.32 W/kg 750 MHz B13 LTE/Top Mid 1 RB 24 Offset/Zoom Scan (5x5x7)/Cube 0: Measurement grid:
dx=8mm, dy=8mm, dz=5mm Reference Value = 30.93 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 2.25 W/kg SAR(1 g) = 1.15 W/kg; SAR(10 g) = 0.634 W/kg Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.58 W/kg ## **RF Exposure Lab** ### Plot 2 DUT: iX125R1; Type: Ruggedize Tablet; Serial: 65JKG00024 Communication System: LTE (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 711 MHz; Duty Cycle: 1:1 Medium: MSL750; Medium parameters used (interpolated): f = 711 MHz; $\sigma = 0.98$ S/m; $\epsilon_r = 55.687$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Test Date: Date: 8/16/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(9.43, 9.43, 9.43); Calibrated: 4/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1217; Calibrated: 2/9/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 2037 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) #### **Procedure Notes:** 750 MHz B12 LTE/Top High 1RB 24 Offset/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.40 W/kg 750 MHz B12 LTE/Top High 1RB 24 Offset/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 18.05 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 1.83 W/kg SAR(1 g) = 1 W/kg; SAR(10 g) = 0.557 W/kg Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.41 W/kg ## **RF Exposure Lab** ### Plot 3 DUT: iX125R1; Type: Ruggedize Tablet; Serial: 65JKG00024 Communication System: UMTS (WCDMA); Frequency: 826.4 MHz; Duty Cycle: 1:1 Medium: MSL835; Medium parameters used (interpolated): f = 826.4 MHz; $\sigma = 0.981 \text{ S/m}$; $\epsilon_r = 55.944$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Test Date: Date: 8/22/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: ES3DV3 - SN3311; ConvF(6.33, 6.33, 6.33); Calibrated: 2/16/2016; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1217; Calibrated: 2/9/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 2037 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) #### **Procedure Notes:** 835 MHz WCDMA/Ant 1 Low/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.33 W/kg 835 MHz WCDMA/Ant 1 Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 16.89 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 2.26 W/kg SAR(1 g) = 1.02 W/kg; SAR(10 g) = 0.538 W/kg Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.54 W/kg ## **RF Exposure Lab** ### Plot 4 DUT: iX125R1; Type: Ruggedize Tablet; Serial: 65JKG00024 Communication System: LTE (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 819 MHz; Duty Cycle: 1:1 Medium: MSL835; Medium parameters used (interpolated): f = 819 MHz; σ = 0.98 S/m; ϵ_r = 55.98; ρ = 1000 kg/m³ Phantom section: Flat Section Test Date: Date: 8/22/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: ES3DV3 - SN3311; ConvF(6.33, 6.33, 6.33); Calibrated: 2/16/2016; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1217; Calibrated: 2/9/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 2037 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) #### **Procedure Notes:** 835 MHz B26 LTE/Top Low 1RB 24 Offset/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.89 W/kg 835 MHz B26 LTE/Top Low 1RB 24 Offset/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 21.48 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.00 W/kg SAR(1 g) = 1.29 W/kg; SAR(10 g) = 0.703 W/kg Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 2.13 W/kg ## **RF Exposure Lab** ### Plot 5 DUT: iX125R1; Type: Ruggedize Tablet; Serial: 65JKG00024 Communication System: UMTS (WCDMA); Frequency: 1732.6 MHz; Duty Cycle: 1:1 Medium: MSL1750; Medium parameters used (interpolated): f = 1732.6 MHz; $\sigma = 1.503 \text{ S/m}$; $\epsilon_r = 53.375$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Test Date: Date: 8/22/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3833; ConvF(7.32, 7.32, 7.32); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1217; Calibrated: 2/9/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 2037 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) #### **Procedure Notes:** 1750 MHz WCDMA/Ant 1 Mid/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.595 W/kg 1750 MHz WCDMA/Ant 1 Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 19.20 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 1.19 W/kg SAR(1 g) = 0.672 W/kg; SAR(10 g) = 0.357 W/kg Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.944 W/kg ## RF Exposure Lab ### Plot 6 DUT: iX125R1; Type: Ruggedize Tablet; Serial: 65JKG00024 Communication System: LTE (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 1732.5 MHz; Duty Cycle: 1:1 Medium: MSL1750; Medium parameters used (interpolated): f = 1732.5 MHz; $\sigma = 1.503$ S/m; $\varepsilon_r = 53.375$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Test Date: Date: 8/23/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3833; ConvF(7.32, 7.32, 7.32); Calibrated: 1/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1217; Calibrated: 2/9/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 2037 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) #### **Procedure Notes:** 1750 MHz B4 LTE/Back Mid 50 RB 12 Offset/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.848 W/kg 1750 MHz B4 LTE/Back Mid 50 RB 12 Offset/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 21.32 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 1.07 W/kg SAR(1 g) = 0.607 W/kg; SAR(10 g) = 0.328 W/kg Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.828 W/kg ## **RF Exposure Lab** ### Plot 7 DUT: iX125R1; Type: Ruggedize Tablet; Serial: 65JKG00024 Communication System: UMTS (WCDMA); Frequency: 1852.4 MHz; Duty Cycle: 1:1 Medium: MSL1900; Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.44 \text{ S/m}$; $\epsilon_r = 52.03$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Test Date: Date: 8/18/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(7.49, 7.49, 7.49); Calibrated: 4/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1217; Calibrated: 2/9/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 2037 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) #### **Procedure Notes:** 1900 MHz WCDMA/Ant 2 Low/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.33 W/kg 1900 MHz WCDMA/Ant 2 Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 26.40 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 1.64 W/kg SAR(1 g) = 0.960 W/kg; SAR(10 g) = 0.523 W/kg Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.24 W/kg ## **RF Exposure Lab** ### Plot 8 DUT: iX125R1; Type: Ruggedize Tablet; Serial: 65JKG00024 Communication System: LTE (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 1882.5 MHz; Duty Cycle: 1:1 Medium: MSL1900; Medium parameters used (interpolated): f = 1882.5 MHz; $\sigma = 1.453$ S/m; $\epsilon_r = 52.118$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Test Date: Date: 8/17/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(7.49, 7.49, 7.49); Calibrated: 4/27/2016; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1217; Calibrated: 2/9/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 2037 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) #### **Procedure Notes:** 1900 MHz B25 LTE/Top Mid 1RB 24 Offset/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.01 W/kg 1900 MHz B25 LTE/Top Mid 1RB 24 Offset/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.84 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 2.07 W/kg SAR(1 g) = 1.17 W/kg; SAR(10 g) = 0.625 W/kg Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 1.68 W/kg ## RF Exposure Lab ### Plot 9 DUT: iX125R1; Type: Ruggedize Tablet; Serial: 65JKG00024 Communication System: LTE (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 2310 MHz; Duty Cycle: 1:1 Medium: MSL2300; Medium parameters used: f = 2310 MHz; σ = 1.85 S/m; ϵ_r = 52.61; ρ = 1000 kg/m³ Phantom section: Flat Section Test Date: Date: 8/19/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: ES3DV3 - SN3311; ConvF(4.69, 4.69, 4.69); Calibrated: 2/16/2016; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1217; Calibrated: 2/9/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 2037 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) #### **Procedure Notes:** 2300 MHz B30 LTE/Back Mid 1 RB 24 Offset/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) =
0.929 W/kg 2300 MHz B30 LTE/Back Mid 1 RB 24 Offset/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 18.41 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 2.21 W/kg SAR(1 g) = 1.02 W/kg; SAR(10 g) = 0.492 W/kgMaximum value of SAR (measured) = 1.40 W/kg # **RF Exposure Lab** ## Plot 10 DUT: iX125R1; Type: Ruggedize Tablet; Serial: 65JKG00024 Communication System: LTE (SC-FDMA, 50% RB, 20 MHz, QPSK); Frequency: 2535 MHz; Duty Cycle: 1:1 Medium: MSL2550; Medium parameters used (interpolated): f = 2535 MHz; σ = 2.10 S/m; ϵ_r = 52.495; ρ = 1000 kg/m³ Phantom section: Flat Section Test Date: Date: 8/19/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: ES3DV3 - SN3311; ConvF(4.17, 4.17, 4.17); Calibrated: 2/16/2016; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1217; Calibrated: 2/9/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 2037 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) ### **Procedure Notes:** 2600 MHz B7 LTE/Back Mid 50 RB 24 Offset/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.890 W/kg 2600 MHz B7 LTE/Back Mid 50 RB 24 Offset/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.58 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 1.62 W/kg SAR(1 g) = 0.706 W/kg; SAR(10 g) = 0.324 W/kg Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.827 W/kg # **RF Exposure Lab** ## Plot 11 DUT: iX125R1; Type: Ruggedize Tablet; Serial: 65JKG00024 Communication System: LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 2593 MHz; Duty Cycle: 1:1.58 Medium: MSL2550; Medium parameters used (interpolated): f = 2593 MHz; $\sigma = 2.196$ S/m; $\epsilon_r = 52.387$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Test Date: Date: 8/20/2016; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: ES3DV3 - SN3311; ConvF(4.17, 4.17, 4.17); Calibrated: 2/16/2016; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1217; Calibrated: 2/9/2016 Phantom: ELI v5.0; Type: QDOVA001BB; Serial: 2037 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) #### **Procedure Notes:** 2600 MHz B7 LTE/Back Mid 1RB 49 Offset/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.875 W/kg 2600 MHz B7 LTE/Back Mid 1RB 49 Offset/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.59 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 1.58 W/kg SAR(1 g) = 0.695 W/kg; SAR(10 g) = 0.318 W/kg Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.834 W/kg ## **Appendix C – SAR Test Setup Photos** **Test Configuration Top 0 mm Gap** **Test Configuration Back 0 mm Gap** Test Configuration Left Side 0 mm Gap **Front of Device** **Back of Device** ## **Appendix D – Probe Calibration Data Sheets** ## Calibration Laboratory of Schmid & Partner Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **RF Exposure Lab** Certificate No: ES3-3311_Feb16 ## **CALIBRATION CERTIFICATE** Object ES3DV3 - SN:3311 Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: February 16, 2016 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|-----------------------------------|------------------------| | Power meter E4419B | GB41293874 | 01-Apr-15 (No. 217-02128) | Mar-16 | | Power sensor E4412A | MY41498087 | 01-Apr-15 (No. 217-02128) | Mar-16 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 01-Apr-15 (No. 217-02129) | Mar-16 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 01-Apr-15 (No. 217-02132) | Mar-16 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 01-Apr-15 (No. 217-02133) | Mar-16 | | Reference Probe ES3DV2 | SN: 3013 | 31-Dec-15 (No. ES3-3013_Dec15) | Dec-16 | | DAE4 | SN: 660 | 23-Dec-15 (No. DAE4-660_Dec15) | Dec-16 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-13) | In house check: Apr-16 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-15) | In house check: Oct-16 | Na Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Approved by: Katja Pokovic **Technical Manager** Issued: February 18, 2016 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### **Methods Applied and Interpretation of Parameters:** Certificate No: ES3-3311 Feb16 - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). ES3DV3 - SN:3311 February 16, 2016 # Probe ES3DV3 SN:3311 Manufactured: July 5, 2011 Calibrated: February 16, 2016 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) ### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------
-----------| | Norm $(\mu V/(V/m)^2)^A$ | 1.28 | 1.07 | 0.47 | ± 10.1 % | | DCP (mV) ^B | 103.8 | 103.5 | 101.2 | | ### **Modulation Calibration Parameters** | UID | Communication System Name | | Α | В | С | D | VR | Unc ^E | |-----|---------------------------|---|-----|-------|-----|------|-------|------------------| | | | | dB | dΒ√μV | | dB | mV | (k=2) | | 0 | CW | Х | 0.0 | 0.0 | 1.0 | 0.00 | 220.4 | ±3.0 % | | | | Υ | 0.0 | 0.0 | 1.0 | | 222.4 | | | | | Z | 0.0 | 0.0 | 1.0 | | 211.8 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. A The uncertainties of Norm X,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6). B Numerical linearization parameter: uncertainty not required. Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ES3DV3- SN:3311 February 16, 2016 ## DASY/EASY - Parameters of Probe: ES3DV3 - SN:3311 ### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 300 | 45.3 | 0.87 | 7.52 | 7.52 | 7.52 | 0.15 | 1.71 | ± 13.3 % | | 600 | 42.7 | 0.88 | 6.73 | 6.73 | 6.73 | 0.15 | 1.50 | ± 13.3 % | | 835 | 41.5 | 0.90 | 6.43 | 6.43 | 6.43 | 0.40 | 1.75 | ± 12.0 % | | 1640 | 40.3 | 1.29 | 5.49 | 5.49 | 5.49 | 0.47 | 1.54 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 4.92 | 4.92 | 4.92 | 0.79 | 1.24 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 4.64 | 4.64 | 4.64 | 0.80 | 1.30 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 4.44 | 4.44 | 4.44 | 0.80 | 1.35 | ± 12.0 % | $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. ### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 300 | 58.2 | 0.92 | 7.31 | 7.31 | 7.31 | 0.13 | 1.00 | ± 13.3 % | | 600 | 56.1 | 0.95 | 6.76 | 6.76 | 6.76 | 0.12 | 1.50 | ± 13.3 % | | 835 | 55.2 | 0.97 | 6.33 | 6.33 | 6.33 | 0.62 | 1.40 | ± 12.0 % | | 1640 | 53.8 | 1.40 | 5.33 | 5.33 | 5.33 | 0.51 | 1.53 | ± 12.0 % | | 2300 | 52.9 | 1.81 | 4.69 | 4.69 | 4.69 | 0.80 | 1.25 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 4.43 | 4.43 | 4.43 | 0.80 | 1.20 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 4.17 | 4.17 | 4.17 | 0.80 | 1.22 | ± 12.0 % | $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^C Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) ## Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) ## Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) ## **Conversion Factor Assessment** Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz ES3DV3- SN:3311 February 16, 2016 ## DASY/EASY - Parameters of Probe: ES3DV3 - SN:3311 ### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 61.9 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 10 mm | | Tip Diameter | 4 mm | | Probe Tip to Sensor X Calibration Point | 2 mm | | Probe Tip to Sensor Y Calibration Point | 2 mm | | Probe Tip to Sensor Z Calibration Point | 2 mm | | Recommended Measurement Distance from Surface | 3 mm | Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client R **RF Exposure Lab** Certificate No: EX3-3662 Apr16 ## CALIBRATION CERTIFICATE Object EX3DV4 - SN:3662 Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: April 27, 2016 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 06-Apr-16 (No. 217-02288/02289) | Apr-17 | | Power sensor NRP-Z91 | SN: 103244 | 06-Apr-16 (No. 217-02288) | Apr-17 | | Power sensor NRP-Z91 | SN: 103245 | 06-Apr-16 (No. 217-02289) | Apr-17 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 05-Apr-16 (No. 217-02293) | Apr-17 | | Reference Probe ES3DV2 | SN: 3013 | 31-Dec-15 (No. ES3-3013_Dec15) | Dec-16 | | DAE4 | SN: 660 | 23-Dec-15 (No. DAE4-660_Dec15) | Dec-16 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (No. 217-02285/02284) | In house check: Jun-16 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (No. 217-02285) | In house check: Jun-16 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (No. 217-02284) | In house check: Jun-16 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Apr-13) | In house check: Jun-16 | | Network Analyzer HP 8753E | SN: US37390585 | 18-Oct-01 (in house check Oct-15) | In house check: Oct-16 | Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: April 27, 2016 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EX3-3662_Apr16 Page 1 of 11 ### **Calibration Laboratory of** Schmid & Partner Engineering AG Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary: **TSL** tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D
modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization 8 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis information used in DASY system to align probe sensor X to the robot coordinate system Connector Angle ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ## Methods Applied and Interpretation of Parameters: - *NORMx,y,z*: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-3662 Apr16 Page 2 of 11 # Probe EX3DV4 SN:3662 Manufactured: October 20, 2008 Calibrated: April 27, 2016 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) ## **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)^A$ | 0.43 | 0.47 | 0.51 | ± 10.1 % | | DCP (mV) ^B | 100.4 | 100.5 | 97.5 | | ## **Modulation Calibration Parameters** | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Unc ^E
(k=2) | |----------|---------------------------|---|---------|------------|-----|---------|----------|---------------------------| | <u> </u> | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 210.8 | ±3.3 % | | | | Υ | 0.0 | 0.0 | 1.0 | | 193.7 | | | | | Z | 0.0 | 0.0 | 1.0 | | 192.9 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). Numerical linearization parameter: uncertainty not required. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the ## Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 150 | 52.3 | 0.76 | 11.30 | 11.30 | 11.30 | 0.00 | 1.00 | ± 13.3 % | | 220 | 49.0 | 0.81 | 10.90 | 10.90 | 10.90 | 0.00 | 1.00 | ± 13.3 % | | 450 | 43.5 | 0.87 | 11.07 | 11.07 | 11.07 | 0.17 | 1.20 | ± 13.3 % | | 750 | 41.9 | 0.89 | 9.43 | 9.43 | 9.43 | 0.35 | 0.80 | ± 12.0 % | | 835 | 41.5 | 0.90 | 9.05 | 9.05 | 9.05 | 0.41 | 0.80 | ± 12.0 % | | 900 | 41.5 | 0.97 | 8.97 | 8.97 | 8.97 | 0.30 | 1.00 | ± 12.0 % | | 1450 | 40.5 | 1.20 | 8.52 | 8.52 | 8.52 | 0.36 | 0.80 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 7.61 | 7.61 | 7.61 | 0.41 | 0.80 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.08 | 7.08 | 7.08 | 0.27 | 0.98 | ± 12.0 % | | 5200 | 36.0 | 4.66 | 5.03 | 5.03 | 5.03 | 0.40 | 1.80 | ± 13.1 % | | 5300 | 35.9 | 4.76 | 4.82 | 4.82 | 4.82 | 0.40 | 1.80 | ± 13.1 % | | 5500 | 35.6 | 4.96 | 4.76 | 4.76 | 4.76 | 0.45 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.53 | 4.53 | 4.53 | 0.50 | 1.80 | ± 13.1 % | | 5800 | 35.3 | 5.27 | 4.55 | 4.55 | 4.55 | 0.50 | 1.80 | ± 13.1 % | ^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of The active GAN values. At requestions discretely all the conversion of Conversio always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. ## Calibration Parameter Determined in Body Tissue Simulating Media | | T | | | | | | | | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | | 150 | 61.9 | 0.80 | 10.92 | 10.92 | 10.92 | 0.00 | 1.00 | ± 13.3 % | | 220 | 60.2 | 0.86 | 10.27 | 10.27 | 10.27 | 0.00 | 1.00 | ± 13.3 % | | 450 | 56.7 | 0.94 | 10.63 | 10.63 | 10.63 | 0.09 | 1.20 | ± 13.3 % | | 750 | 55.5 | 0.96 | 9.22 | 9.22 | 9.22 | 0.53 | 0.80 | ± 12.0 % | | 835 | 55.2 | 0.97 | 9.07 | 9.07 | 9.07 | 0.38 | 0.95 | ± 12.0 % | | 900 | 55.0 | 1.05 | 8.94 | 8.94 | 8.94 | 0.39 | 0.91 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 7.49 | 7.49 | 7.49 | 0.35 | 0.80 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 7.17 | 7.17 | 7.17 | 0.37 | 0.80 | ± 12.0 % | | 5200 | 49.0 | 5.30 | 4.36 | 4.36 | 4.36 | 0.50 | 1.90 | ± 13.1 % | | 5300 | 48.9 | 5.42 | 4.05 | 4.05 | 4.05 | 0.55 | 1.90 | ± 13.1 % | | 5500 | 48.6 | 5.65 | 3.75 | 3.75 | 3.75 | 0.60 | 1.90 | ± 13.1 % | | 5600 | 48.5 | 5.77 | 3.60 | 3.60 | 3.60 | 0.60 | 1.90 | ± 13.1 % | | 5800 | 48.2 | 6.00 | 3.85 | 3.85 | 3.85 | 0.60 | 1.90 | ± 13.1 % | ^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. the ConvF uncertainty for indicated target tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) ## Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) ## Dynamic Range
f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) ## **Conversion Factor Assessment** ## **Deviation from Isotropy in Liquid** Error (φ, θ), f = 900 MHz ### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | -31.4 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client RF Exposure Lab Certificate No: EX3-3833_Jan16 ## **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:3833 Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v4, QA CAL-23.v5, **QA CAL-25.v6** Calibration procedure for dosimetric E-field probes Calibration date: January 27, 2016 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards ID | | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|-----------------------------------|------------------------| | Power meter E4419B | GB41293874 | 01-Apr-15 (No. 217-02128) | Mar-16 | | Power sensor E4412A | MY41498087 | 01-Apr-15 (No. 217-02128) | Mar-16 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 01-Apr-15 (No. 217-02129) | Mar-16 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 01-Apr-15 (No. 217-02132) | Mar-16 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 01-Apr-15 (No. 217-02133) | Mar-16 | | Reference Probe ES3DV2 | SN: 3013 | 31-Dec-15 (No. ES3-3013_Dec15) | Dec-16 | | DAE4 | SN: 660 | 23-Dec-15 (No. DAE4-660_Dec15) | Dec-16 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-13) | In house check: Apr-16 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-15) | In house check: Oct-16 | Calibrated by: Name Function Signature Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: January 28, 2016 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EX3-3833_Jan16 Page 1 of 11 ## **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary: TSL t NORMx,y,z tissue simulating liquid sensitivity in free space ConvF DCP sensitivity in TSL / NORMx,y,z diode compression point CF A, B, C, D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - E) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### **Methods Applied and Interpretation of Parameters:** - NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-3833_Jan16 Page 2 of 11 January 27, 2016 EX3DV4 - SN:3833 # Probe EX3DV4 SN:3833 Calibrated: Manufactured: November 7, 2011 January 27, 2016 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) Certificate No: EX3-3833_Jan16 January 27, 2016 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3833 ### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | | |--------------------------|----------|----------|----------|-----------|--| | Norm $(\mu V/(V/m)^2)^A$ | 0.47 | 0.49 | 0.35 | ± 10.1 % | | | DCP (mV) ^B | 100.8 | 100.2 | 102.7 | | | ### **Modulation Calibration Parameters** | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Unc [⊦]
(k=2) | |-----|---------------------------|---|---------|------------|-----|---------|----------|---------------------------| | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 131.4 | ±2.5 % | | | | Y | 0.0 | 0.0 | 1.0 | | 134.5 | | | - | | Z | 0.0 | 0.0 | 1.0 | | 128.6 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ^B Numerical linearization parameter: uncertainty not required. ^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. EX3DV4- SN:3833 January 27, 2016 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3833 ## Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 150 | 52.3 | 0.76 | 11.38 | 11.38 | 11.38 | 0.00 | 1.00 | ± 13.3 % | | 220 | 49.0 | 0.81 | 10.71 | 10.71 | 10.71 | 0.00 | 1.00 | ± 13.3 % | | 300 | 45.3 | 0.87 | 10.68 | 10.68 | 10.68 | 0.08 | 1.15 | ± 13.3 % | | 450 | 43.5 | 0.87 | 9.47 | 9.47 | 9.47 | 0.15 | 1.15 | ± 13.3 % | | 600 | 42.7 | 0.88 | 9.41 | 9.41 | 9.41 | 0.09 | 1.15 | ± 13.3 % | | 750 | 41.9 | 0.89 | 9.23 | 9.23 | 9.23 | 0.37 | 1.00 | ± 12.0 % | | 900 | 41.5 | 0.97 | 8.72 | 8.72 | 8.72 | 0.29 | 1.17 | ± 12.0 % | | 1640 | 40.3 | 1.29 | 7.85 | 7.85 | 7.85 | 0.41 | 0.88 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 7.62 | 7.62 | 7.62 | 0.46 | 0.80 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 7.27 | 7.27 |
7.27 | 0.45 | 0.80 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 6.86 | 6.86 | 6.86 | 0.39 | 0.91 | ± 12.0 % | | 5200 | 36.0 | 4.66 | 4.64 | 4.64 | 4.64 | 0.35 | 1.80 | ± 13.1 % | | 5300 | 35.9 | 4.76 | 4.47 | 4.47 | 4.47 | 0.35 | 1.80 | ± 13.1 % | | 5500 | 35.6 | 4.96 | 4.23 | 4.23 | 4.23 | 0.40 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 3.94 | 3.94 | 3.94 | 0.45 | 1.80 | ± 13.1 % | | 5800 | 35.3 | 5.27 | 4.11 | 4.11 | 4.11 | 0.45 | 1.80 | ± 13.1 % | ^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Certificate No: EX3-3833_Jan16 validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. EX3DV4- SN:3833 January 27, 2016 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3833 ## Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 150 | 61.9 | 0.80 | 11.03 | 11.03 | 11.03 | 0.00 | 1.00 | ± 13.3 % | | 220 | 60.2 | 0.86 | 10.39 | 10.39 | 10.39 | 0.00 | 1.00 | ± 13.3 % | | 300 | 58.2 | 0.92 | 10.08 | 10.08 | 10.08 | 0.07 | 1.15 | ± 13.3 % | | 450 | 56.7 | 0.94 | 10.23 | 10.23 | 10.23 | 0.09 | 1.15 | ± 13.3 % | | 600 | 56.1 | 0.95 | 9.68 | 9.68 | 9.68 | 0.08 | 1.15 | ± 13.3 % | | 750 | 55.5 | 0.96 | 9.06 | 9.06 | 9.06 | 0.44 | 0.87 | ± 12.0 % | | 900 | 55.0 | 1.05 | 8.73 | 8.73 | 8.73 | 0.32 | 1.06 | ± 12.0 % | | 1640 | 53.8 | 1.40 | 7.77 | 7.77 | 7.77 | 0.38 | 0.82 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 7.32 | 7.32 | 7.32 | 0.42 | 0.84 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 7.13 | 7.13 | 7.13 | 0.38 | 0.80 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 6.87 | 6.87 | 6.87 | 0.40 | 0.85 | ± 12.0 % | | 5200 | 49.0 | 5.30 | 4.03 | 4.03 | 4.03 | 0.45 | 1.90 | ± 13.1 % | | 5300 | 48.9 | 5.42 | 3.85 | 3.85 | 3.85 | 0.45 | 1.90 | ± 13.1 % | | 5500 | 48.6 | 5.65 | 3.56 | 3.56 | 3.56 | 0.50 | 1.90 | ± 13.1 % | | 5600 | 48.5 | 5.77 | 3.25 | 3.25 | 3.25 | 0.60 | 1.90 | ± 13.1 % | | 5800 | 48.2 | 6.00 | 3.49 | 3.49 | 3.49 | 0.60 | 1.90 | ± 13.1 % | ^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Certificate No: EX3-3833_Jan16 Page 6 of 11 validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) Certificate No: EX3-3833_Jan16 # Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) Ą # **Conversion Factor Assessment** Deviation from Isotropy in Liquid Error (ϕ, θ) , f = 900 MHz # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3833 ### **Other Probe Parameters** | Triangular | |------------| | 14.7 | | enabled | | disabled | | 337 mm | | 10 mm | | 9 mm | | 2.5 mm | | 1 mm | | 1 mm | | 1 mm | | 1.4 mm | | | Report Number: SAR.20160809 # **Appendix E – Dipole Calibration Data Sheets** Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **RF Exposure Lab** Certificate No: D750V3-1053_Aug15 Accreditation No.: SCS 0108 # **CALIBRATION CERTIFICATE** Object D750V3 - SN: 1053 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: August 10, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 07-Oct-14 (No. 217-02020) | Oct-15 | | Power sensor HP 8481A | US37292783 | 07-Oct-14 (No. 217-02020) | Oct-15 | | Power sensor HP 8481A | MY41092317 | 07-Oct-14 (No. 217-02021) | Oct-15 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 01-Apr-15 (No. 217-02131) | Mar-16 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 01-Apr-15 (No. 217-02134) | Mar-16 | | Reference Probe ES3DV3 | SN: 3205 | 30-Dec-14 (No. ES3-3205_Dec14) | Dec-15 | | DAE4 | SN: 601 | 18-Aug-14 (No. DAE4-601_Aug14) | Aug-15 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-13) | In house check: Oct-16 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-14) | In house check: Oct-15 | Calibrated by: Name **Function** Laboratory Technician Approved by: Katja Pokovic Michael Weber Technical Manager Issued: August 12, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D750V3-1053_Aug15 Page 1 of 8 ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook ### **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole
positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D750V3-1053_Aug15 Page 2 of 8 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 750 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.1 ± 6 % | 0.91 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### **SAR** result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.04 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.03 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.33 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.25 W/kg ± 16.5 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.5 | 0.96 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 56.3 ± 6 % | 1.00 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.18 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 8.48 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.43 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 5.59 W/kg ± 16.5 % (k=2) | ### Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 54.4 Ω - 0.4 jΩ | |--------------------------------------|-----------------| | Return Loss | - 27.5 dB | ### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 49.5 Ω - 2.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 32.0 dB | ### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.035 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------------------| | Manufactured on | November 08, 2011 | #### **Extended Calibration** Usage of SAR dipoles calibrated less than 3 years ago but more than 1 year ago were confirmed in maintaining return loss (< -20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB Publication 865664 D01 v01r04. | D750V3 SN: 1053 - Head | | | | | | | |------------------------|---------------------|------|-----------------------|------|-----------------------------|------| | Date of
Measurement | Return Loss
(dB) | Δ% | Impedance
Real (Ω) | ΔΩ | Impedance
Imaginary (jΩ) | ΔΩ | | 8/10/205 | -27.5 | | 54.4 | | -0.4 | | | 8/9/2016 | -25.9 | -5.8 | 54.3 | -0.1 | -0.5 | -0.1 | | D750V3 SN: 1053 - Body | | | | | | | |------------------------|---------------------|------|-----------------------|-----|-----------------------------|------| | Date of
Measurement | Return Loss
(dB) | Δ% | Impedance
Real (Ω) | ΔΩ | Impedance
Imaginary (jΩ) | ΔΩ | | 8/10/2015 | -32.0 | | 49.5 | | -2.5 | | | 8/9/2016 | -31.5 | -1.6 | 51.0 | 1.5 | -2.9 | -0.4 | | | | | 1 1 | | | | Certificate IVU. D70UV3-1U03 AUU 10 Page 4 of 8 ### **DASY5 Validation Report for Head TSL** Date: 10.08.2015 Test Laboratory: SPEAG, Zurich, Switzerland **DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1053** Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.91 \text{ S/m}$; $\varepsilon_r = 42.1$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(6.44, 6.44, 6.44); Calibrated: 30.12.2014; • Sensor-Surface: 3mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 18.08.2014 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 • DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) ### Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 53.03 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 3.06 W/kg SAR(1 g) = 2.04 W/kg; SAR(10 g) = 1.33 W/kg Maximum value of SAR (measured) = 2.39 W/kg 0 dB = 2.39 W/kg = 3.78 dBW/kg # **Impedance Measurement Plot for Head TSL** ### **DASY5 Validation Report for Body TSL** Date: 10.08.2015 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1053 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 1$ S/m; $\epsilon_r = 56.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(6.21, 6.21, 6.21); Calibrated: 30.12.2014; • Sensor-Surface: 3mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 18.08.2014 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 • DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) # Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 52.22 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 3.19 W/kg SAR(1 g) = 2.18 W/kg; SAR(10 g) = 1.43 W/kg Maximum value of SAR (measured) = 2.55 W/kg 0 dB = 2.55 W/kg = 4.07 dBW/kg Certificate No: D750V3-1053_Aug15 # Impedance Measurement Plot for Body TSL Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 Client RF RF Exposure Lab Certificate No: D835V2-4d131_Aug15 # CALIBRATION CERTIFICATE Object D835V2 - SN: 4d131 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: August 10, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 07-Oct-14 (No. 217-02020) | Oct-15 | | Power sensor HP 8481A | US37292783 | 07-Oct-14 (No. 217-02020) | Oct-15 | | Power sensor HP 8481A | MY41092317 | 07-Oct-14 (No. 217-02021) | Oct-15 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 01-Apr-15 (No. 217-02131) | Mar-16 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 01-Apr-15 (No.
217-02134) | Mar-16 | | Reference Probe ES3DV3 | SN: 3205 | 30-Dec-14 (No. ES3-3205_Dec14) | Dec-15 | | DAE4 | SN: 601 | 18-Aug-14 (No. DAE4-601_Aug14) | Aug-15 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-13) | In house check: Oct-16 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-14) | In house check: Oct-15 | Calibrated by: Name Function Laboratory Technician Approved by: Katja Pokovic Michael Weber Technical Manager Issued: August 12, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D835V2-4d131_Aug15 Page 1 of 8 # **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D835V2-4d131_Aug15 Page 2 of 8 # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | • | | Frequency | 835 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.9 ± 6 % | 0.93 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.36 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.23 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.53 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.01 W/kg ± 16.5 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 56.1 ± 6 % | 1.02 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # **SAR result with Body TSL** | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.40 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 9.28 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.57 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 6.11 W/kg ± 16.5 % (k=2) | Certificate No: D835V2-4d131_Aug15 ### Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 52.3 Ω - 1.6 jΩ | |--------------------------------------|-----------------| | Return Loss | - 31.2 dB | ### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 47.7 Ω - 3.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 26.8 dB | ### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.394 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|---------------| | Manufactured on | July 22, 2011 | ### **Extended Calibration** Usage of SAR dipoles calibrated less than 3 years ago but more than 1 year ago were confirmed in maintaining return loss (< -20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB Publication 865664 D01 v01r04. | D835V2 SN: 4d131 - Head | | | | | | | |-------------------------|---------------------|------|-----------------------|------|-----------------------------|------| | Date of Measurement | Return Loss
(dB) | Δ% | Impedance
Real (Ω) | ΔΩ | Impedance
Imaginary (jΩ) | ΔΩ | | 8/10/2015 | -31.2 | | 52.3 | | -1.6 | | | 8/9/2016 | -29.2 | -6.4 | 51.3 | -1.0 | -1.8 | -0.2 | | D835V2 SN: 4d131 - Body | | | | | | | |-------------------------|---------------------|-----|-----------------------|-----|-----------------------------|-----| | Date of
Measurement | Return Loss
(dB) | Δ% | Impedance
Real (Ω) | ΔΩ | Impedance
Imaginary (jΩ) | ΔΩ | | 8/10/2015 | -26.8 | | 47.7 | | -3.8 | | | 8/9/2016 | -28.5 | 6.3 | 51.2 | 3.5 | -3.8 | 0.0 | | | | | | | | | Certificate No: D835V2-4d131 Aug15 Page 4 of 8 # **DASY5 Validation Report for Head TSL** Date: 10.08.2015 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d131 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.93$ S/m; $\epsilon_r = 41.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(6.2, 6.2, 6.2); Calibrated: 30.12.2014; • Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 18.08.2014 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 • DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) # Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.25 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.53 W/kg SAR(1 g) = 2.36 W/kg; SAR(10 g) = 1.53 W/kg Maximum value of SAR (measured) = 2.77 W/kg 0 dB = 2.77 W/kg = 4.42 dBW/kg # **Impedance Measurement Plot for Head TSL** # **DASY5 Validation Report for Body TSL** Date: 10.08.2015 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d131 Communication System: UID 0 - CW;
Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 1.02$ S/m; $\epsilon_r = 56.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(6.17, 6.17, 6.17); Calibrated: 30.12.2014; • Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 18.08.2014 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) # Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.25 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.51 W/kg SAR(1 g) = 2.4 W/kg; SAR(10 g) = 1.57 W/kg Maximum value of SAR (measured) = 2.80 W/kg 0 dB = 2.80 W/kg = 4.47 dBW/kg # Impedance Measurement Plot for Body TSL # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client RF Exposure Lab Certificate No: D1750V2-1061_Aug15 # **CALIBRATION CERTIFICATE** Object D1750V2 - SN:1061 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: August 13, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 07-Oct-14 (No. 217-02020) | Oct-15 | | Power sensor HP 8481A | US37292783 | 07-Oct-14 (No. 217-02020) | Oct-15 | | Power sensor HP 8481A | MY41092317 | 07-Oct-14 (No. 217-02021) | Oct-15 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 01-Apr-15 (No. 217-02131) | Mar-16 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 01-Apr-15 (No. 217-02134) | Mar-16 | | Reference Probe ES3DV3 | SN: 3205 | 30-Dec-14 (No. ES3-3205_Dec14) | Dec-15 | | DAE4 | SN: 601 | 18-Aug-14 (No. DAE4-601_Aug14) | Aug-15 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-13) | In house check: Oct-16 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-14) | In house check: Oct-15 | Name Function Signature Calibrated by: Jeton Kastrati Katja Pokovic Laboratory Technician Approved by: Technical Manager Issued: August 13, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D1750V2-1061_Aug15 Page 1 of 8 # **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### **Methods Applied and Interpretation of Parameters:** - *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1750V2-1061 Aug15 Page 2 of 8 # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1750 MHz ± 1 MHz | *** | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.8 ± 6 % | 1.36 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # **SAR** result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.18 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 36.8 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.90 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 19.6 W/kg ± 16.5 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.4 | 1.49 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.1 ± 6 % | 1.48 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # **SAR result with Body TSL** | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.43 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 37.7 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.09 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.3 W/kg ± 16.5 % (k=2) | ### Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 50.5 Ω + 1.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 37.8 dB | ### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 47.3 Ω + 0.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 30.7 dB | ### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1 000 | |----------------------------------|----------| | Liectrical Delay (one direction) | 1.220 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms,
because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|---------------| | Manufactured on | June 15, 2010 | #### **Extended Calibration** Usage of SAR dipoles calibrated less than 3 years ago but more than 1 year ago were confirmed in maintaining return loss (< -20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB Publication 865664 D01 v01r04. | D1750V2 SN: 1061 - Head | | | | | | | |--|-------|--|------|--|-----|--| | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | 8/13/2015 | -37.8 | | 50.5 | | 1.2 | | | 8/12/2016 -39.4 4.2 49.2 -1.3 0.7 -0.5 | | | | | | | | D1750V2 SN: 1061 - Body | | | | | | | |---|-------|------|------|------|-----|------| | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | 8/13/2015 | -30.7 | | 47.3 | | 0.8 | | | 8/12/2016 | -29.4 | -4.2 | 46.1 | -1.2 | 0.6 | -0.2 | | | | | | | | | ### **DASY5 Validation Report for Head TSL** Date: 13.08.2015 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1061 Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.36 \text{ S/m}$; $\varepsilon_r = 39.8$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(5.2, 5.2, 5.2); Calibrated: 30.12.2014; • Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 18.08.2014 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 • DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.55 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 16.4 W/kg SAR(1 g) = 9.18 W/kg; SAR(10 g) = 4.9 W/kg Maximum value of SAR (measured) = 11.6 W/kg 0 dB = 11.6 W/kg = 10.64 dBW/kg # Impedance Measurement Plot for Head TSL # **DASY5 Validation Report for Body TSL** Date: 13.08.2015 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1061 Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.48 \text{ S/m}$; $\varepsilon_r = 52.1$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### **DASY52 Configuration:** • Probe: ES3DV3 - SN3205; ConvF(4.88, 4.88, 4.88); Calibrated: 30.12.2014; • Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 18.08.2014 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 • DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) # Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93.33 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 16.1 W/kg SAR(1 g) = 9.43 W/kg; SAR(10 g) = 5.09 W/kg Maximum value of SAR (measured) = 11.8 W/kg 0 dB = 11.8 W/kg = 10.72 dBW/kg # Impedance Measurement Plot for Body TSL ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client RF Exposure Lab Certificate No: D1900V2-5d147 Aug15 # **CALIBRATION CERTIFICATE** Object D1900V2 - SN:5d147 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: August 13, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID # | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 07-Oct-14 (No. 217-02020) | Oct-15 | | Power sensor HP 8481A | US37292783 | 07-Oct-14 (No. 217-02020) | Oct-15 | | Power sensor HP 8481A | MY41092317 | 07-Oct-14 (No. 217-02021) | Oct-15 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 01-Apr-15 (No. 217-02131) | Mar-16 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 01-Apr-15 (No. 217-02134) | Mar-16 | | Reference Probe ES3DV3 | SN: 3205 | 30-Dec-14 (No. ES3-3205_Dec14) | Dec-15 | | DAE4 | SN: 601 | 18-Aug-14 (No. DAE4-601_Aug14) | Aug-15 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-13) | In house check: Oct-16 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-14) | In house check: Oct-15 | | | | | | Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Approved by: Katja Pokovic **Technical Manager** Issued: August 13, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D1900V2-5d147_Aug15 # **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook ### **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1900V2-5d147_Aug15 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 1900 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.9 ± 6 % | 1.39 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### **SAR** result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 10.4 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 41.5 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR
measured | 250 mW input power | 5.47 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 21.8 W/kg ± 16.5 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.5 ± 6 % | 1.51 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # **SAR result with Body TSL** | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 10.1 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 40.4 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.37 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.5 W/kg ± 16.5 % (k=2) | ### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | $53.1 \Omega + 6.2 j\Omega$ | |--------------------------------------|-----------------------------| | Return Loss | - 23.5 dB | ### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 48.9 Ω + 6.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.5 dB | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.193 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|----------------| | Manufactured on | March 11, 2011 | #### **Extended Calibration** Usage of SAR dipoles calibrated less than 3 years ago but more than 1 year ago were confirmed in maintaining return loss (< -20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB Publication 865664 D01 v01r04. | D1900V2 SN: 5d147 - Head | | | | | | | |--------------------------|---------------------|-----|-----------------------|-----|-----------------------------|------| | Date of
Measurement | Return Loss
(dB) | Δ% | Impedance
Real (Ω) | ΔΩ | Impedance
Imaginary (jΩ) | ΔΩ | | 8/13/2015 | -23.5 | | 53.1 | | 6.2 | | | 8/12/2016 | -24.9 | 6.0 | 53.9 | 0.8 | 5.4 | -0.8 | | D1900V2 SN: 5d147 - Body | | | | | | | |--------------------------|---------------------|------|-----------------------|------|-----------------------------|-----| | Date of Measurement | Return Loss
(dB) | Δ% | Impedance
Real (Ω) | ΔΩ | Impedance
Imaginary (jΩ) | ΔΩ | | 8/13/2015 | -23.5 | | 48.9 | | 6.5 | | | 8/12/2016 | -22.8 | -3.0 | 46.3 | -2.6 | 6.9 | 0.4 | artificate No: D1900V2-5d147 Aug15 Ps Pane 4 of 8 ### **DASY5 Validation Report for Head TSL** Date: 13.08.2015 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d147 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.39 \text{ S/m}$; $\varepsilon_r = 38.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(5, 5, 5); Calibrated: 30.12.2014; • Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 18.08.2014 • Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 • DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) ### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 100.3 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 19.0 W/kg SAR(1 g) = 10.4 W/kg; SAR(10 g) = 5.47 W/kg Maximum value of SAR (measured) = 13.2 W/kg 0 dB = 13.2 W/kg = 11.21 dBW/kg # Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 13.08.2015 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d147 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.51 \text{ S/m}$; $\varepsilon_r = 52.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(4.65, 4.65, 4.65); Calibrated: 30.12.2014; • Sensor-Surface: 3mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 18.08.2014 • Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.00 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 17.2 W/kg SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.37 W/kg Maximum value of SAR (measured) = 12.8 W/kg 0 dB = 12.8 W/kg = 11.07 dBW/kg Certificate No: D1900V2-5d147_Aug15 # Impedance Measurement Plot for Body TSL ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client RF Exposure Lab Accreditation No.: SCS 0108 Certificate No: **D2300V2-1060_Sep15** ## **CALIBRATION CERTIFICATE** Object D2300V2 - SN: 1060 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: September 17, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 07-Oct-14 (No. 217-02020) | Oct-15 | | Power sensor HP 8481A | US37292783 | 07-Oct-14 (No. 217-02020) | Oct-15 | | Power sensor HP 8481A | MY41092317 | 07-Oct-14 (No. 217-02021) | Oct-15 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 01-Apr-15 (No. 217-02131) | Mar-16 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 01-Apr-15 (No. 217-02134) | Mar-16 | | Reference Probe EX3DV4 | SN: 7349 | 30-Dec-14 (No. EX3-7349_Dec14) | Dec-15 | | DAE4 | SN: 601 | 17-Aug-15 (No. DAE4-601_Aug15) | Aug-16 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | RF generator R&S SMT-06 | 100972 | 15-Jun-15 (in house check Jun-15) | In house check: Jun-18 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-14) | In house check: Oct-15 | Calibrated by: Name Israe Elnaoug Function Laboratory Technician Approved by: Katja Pokovic **Technical Manager** Issued: September 17, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D2300V2-1060_Sep15 Page 1 of 8 ## **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Accreditation No.: SCS 0108 S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook #### **Methods Applied and
Interpretation of Parameters:** - *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2300V2-1060 Sep15 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 2300 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.5 | 1.67 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.7 ± 6 % | 1.69 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## **SAR** result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 12.1 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 48.2 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.79 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.1 W/kg ± 16.5 % (k=2) | ### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.9 | 1.81 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.6 ± 6 % | 1.84 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## **SAR result with Body TSL** | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 12.1 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 48.1 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.83 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 23.3 W/kg ± 16.5 % (k=2) | ## Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 48.4 Ω - 3.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 27.5 dB | #### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 44.3 Ω - 3.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.3 dB | ## **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.170 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-----------------| | Manufactured on | August 20, 2015 | Certificate No: D2300V2-1060_Sep15 ### **DASY5 Validation Report for Head TSL** Date: 08.09.2015 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN: 1060 Communication System: UID 0 - CW; Frequency: 2300 MHz Medium parameters used: f = 2300 MHz; $\sigma = 1.69 \text{ S/m}$; $\varepsilon_r = 39.7$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(7.94, 7.94, 7.94); Calibrated: 30.12.2014; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 17.08.2015 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 • DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) ### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 112.1 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 23.9 W/kg SAR(1 g) = 12.1 W/kg; SAR(10 g) = 5.79 W/kg Maximum value of SAR (measured) = 19.7 W/kg 0 dB = 19.7 W/kg = 12.94 dBW/kg # **Impedance Measurement Plot for Head TSL** ## **DASY5 Validation Report for Body TSL** Date: 17.09.2015 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN: 1060 Communication System: UID 0 - CW; Frequency: 2300 MHz Medium parameters used: f = 2300 MHz; $\sigma = 1.84$ S/m; $\varepsilon_r = 53.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### **DASY52 Configuration:** • Probe: EX3DV4 - SN7349; ConvF(7.66, 7.66, 7.66); Calibrated: 30.12.2014; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 17.08.2015 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 • DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) # Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 106.2 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 23.5 W/kg SAR(1 g) = 12.1 W/kg; SAR(10 g) = 5.83 W/kg Maximum value of SAR (measured) = 19.3 W/kg 0 dB = 19.3 W/kg = 12.86 dBW/kg ## Impedance Measurement Plot for Body TSL Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **RF Exposure Lab** Certificate No: D2550V2-1003_Aug15 ## **CALIBRATION CERTIFICATE** Object D2550V2 - SN: 1003 Calibration procedure(s) **QA CAL-05.v9** Calibration procedure for dipole validation kits above 700 MHz Calibration date: August 10, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 07-Oct-14 (No. 217-02020) | Oct-15 | | Power sensor HP 8481A | US37292783 | 07-Oct-14 (No. 217-02020) | Oct-15 | | Power sensor HP 8481A | MY41092317 | 07-Oct-14 (No. 217-02021) | Oct-15 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 01-Apr-15 (No. 217-02131) | Mar-16 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 01-Apr-15 (No. 217-02134) | Mar-16 | | Reference Probe ES3DV3 | SN: 3205 | 30-Dec-14 (No. ES3-3205_Dec14) | Dec-15 | | DAE4 | SN: 601 | 18-Aug-14 (No. DAE4-601_Aug14) | Aug-15 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-13) | In house check: Oct-16 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-14) | In house check: Oct-15 | | | | | | Calibrated by: Name Function Laboratory Technician Signature
Approved by: Katja Pokovic Michael Weber Technical Manager Issued: August 12, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D2550V2-1003 Aug15 Page 1 of 8 ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signed. The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### **Additional Documentation:** e) DASY4/5 System Handbook ## **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2550V2-1003_Aug15 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 2550 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.1 | 1.91 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.8 ± 6 % | 1.97 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## **SAR** result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 14.1 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 56.4 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.43 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 25.8 W/kg ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.6 | 2.09 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 50.3 ± 6 % | 2.14 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## **SAR result with Body TSL** | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 14.0 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 54.8 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.38 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 25.2 W/kg ± 16.5 % (k=2) | ## Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 49.6 Ω - 1.3 jΩ | |--------------------------------------|-----------------| | Return Loss | - 37.2 dB | ### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 46.8 Ω - 1.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 29.0 dB | ## **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.155 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|----------------| | Manufactured on | April 01, 2010 | #### **Extended Calibration** Usage of SAR dipoles calibrated less than 3 years ago but more than 1 year ago were confirmed in maintaining return loss (< -20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB Publication 865664 D01 v01r04. | D2550V2 SN: 1003 - Head | | | | | | | |-------------------------|---------------------|------|---------------|------|-----------------------------|------| | Date of Measurement | Return Loss
(dB) | Δ% | Impedance (Ω) | ΔΩ | Impedance
Imaginary (jΩ) | ΔΩ | | 8/10/2015 | -37.2 | | 49.6 | | -1.3 | | | 8/9/2016 | -35.9 | -3.5 | 48.2 | -1.4 | -1.6 | -0.3 | | D2550V2 SN: 1003 - Body | | | | | | | |-------------------------|---------------------|-----|------------------|------|-----------------------------|------| | Date of
Measurement | Return Loss
(dB) | Δ% | Impedance
(Ω) | ΔΩ | Impedance
Imaginary (jΩ) | ΔΩ | | 8/10/2015 | -29.0 | | 46.8 | - | -1.2 | | | 8/9/2016 | -29.1 | 0.3 | 45.1 | -1.7 | -1.8 | -0.6 | Certificate No: D2550V2-1003 Aug15 Hade 4 of b ### **DASY5 Validation Report for Head TSL** Date: 10.08.2015 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2550 MHz; Type: D2550V2; Serial: D2550V2 - SN: 1003 Communication System: UID 0 - CW; Frequency: 2550 MHz Medium parameters used: f = 2550 MHz; $\sigma = 1.95$ S/m; $\varepsilon_r = 40.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: ES3DV3 - SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 30.12.2014; • Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 18.08.2014 • Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 • DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 102.1 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 28.8 W/kg SAR(1 g) = 14.1 W/kg; SAR(10 g) = 6.43 W/kg Maximum value of SAR (measured) = 18.7 W/kg 0 dB = 18.7 W/kg = 12.72 dBW/kg # Impedance Measurement Plot for Head TSL ## **DASY5 Validation Report for Body TSL** Date: 10.08.2015 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 2550 MHz; Type: D2550V2; Serial: D2550V2 - SN: 1003 Communication System: UID 0 - CW; Frequency: 2550 MHz Medium parameters used: f = 2550 MHz; $\sigma = 2.14$ S/m; $\epsilon_r = 50.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### **DASY52 Configuration:** Probe: ES3DV3 - SN3205; ConvF(4.2, 4.2, 4.2); Calibrated: 30.12.2014; Sensor-Surface: 3mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 18.08.2014 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 • DASY52
52.8.8(1222); SEMCAD X 14.6.10(7331) # Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.70 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 29.1 W/kg SAR(1 g) = 14 W/kg; SAR(10 g) = 6.38 W/kg Maximum value of SAR (measured) = 18.5 W/kg 0 dB = 18.5 W/kg = 12.67 dBW/kg # Impedance Measurement Plot for Body TSL Report Number: SAR.20160809 # **Appendix F – Phantom Calibration Data Sheets** Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com #### **Certificate of Conformity / First Article Inspection** | Item | Oval Flat Phantom ELI 4.0 | |--------------|---------------------------------| | Type No | QD OVA 001 B | | Series No | 1003 and higher | | Manufacturer | Untersee Composites | | | Knebelstrasse 8 | | | CH-8268 Mannenbach, Switzerland | #### **Tests** Complete tests were made on the prototype units QD OVA 001 AA 1001, QD OVA 001 AB 1002, pre-series units QD OVA 001 BA 1003-1005 as well as on the series units QD OVA 001 BB, 1006 ff. | Test | Requirement | Details | Units tested | |-------------|--|--------------------------------|--------------| | Material | Compliant with the standard | Bottom plate: | all | | thickness | requirements | 2.0mm +/- 0.2mm | | | Material | Dielectric parameters for required | < 6 GHz: Rel. permittivity = 4 | Material | | parameters | frequencies | +/-1, Loss tangent ≤ 0.05 | sample | | Material | The material has been tested to be | DGBE based simulating | Equivalent | | resistivity | compatible with the liquids defined in | liquids. | phantoms, | | | the standards if handled and cleaned | Observe Technical Note for | Material | | | according to the instructions. | material compatibility. | sample | | Shape | Thickness of bottom material, | Bottom elliptical 600 x 400 mm | Prototypes, | | | Internal dimensions, | Depth 190 mm, | Sample | | | Sagging | Shape is within tolerance for | testing | | | compatible with standards from | filling height up to 155 mm, | | | | minimum frequency | Eventual sagging is reduced or | | | | | eliminated by support via DUT | | #### **Standards** - [1] CENELEC EN 50361-2001, « Basic standard for the measurement of the Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz – 3 GHz) », July 2001 - [2] IEEE 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques, December 2003 - [3] IEC 62209 1, "Specific Absorption Rate (SAR) in the frequency range of 300 MHz to 3 GHz Measurement Procedure, Part 1: Hand-held mobile wireless communication devices", February 2005 - [4] IEC 62209 2, Draft, "Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices Human models, Instrumentation and Procedures Part 2: Procedure to determine the Specific Absorption Rate (SAR) in the head and body for 30 MHz to 6 GHz Handheld and Body-Mounted Devices used in close proximity to the Body.", February 2005 - [5] OET Bulletin 65, Supplement C, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields", Edition January 2001 Based on the tests above, we certify that this item is in compliance with the standards [1] to [5] if operated according to the specific requirements and considering the thickness. The dimensions are fully compliant with [4] from 30 MHz to 6 GHz. For the other standards, the minimum lower frequency limit is limited due to the dimensional requirements ([1]: 450 MHz, [2]: 300 MHz, [3]: 800 MHz, [5]: 375 MHz) and possibly further by the dimensions of the DUT. Date 28.4.2008 Signature / Stamp Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41,44 245 9779 info@speag.com; http://www.speag.com