

FCC Test Report (WLAN) (Spot Check)

Report No.: RF210105C01A-1

FCC ID: PZWBHTM70QW

Original FCC ID: PZWBHTM70QWG

Test Model: BHT-M70-QW

Received Date: 2021/1/5

Test Date: 2021/3/6 ~ 2021/8/20

Issued Date: 2021/09/30

Applicant: DENSO WAVE INCORPORATED

Address: 1 Yoshiike Kusagi Agui-cho, Chita-gun Aichi 470-2297, Japan

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Hsin Chu Laboratory

Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Test Location: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwan

FCC Registration / **Designation Number:**

723255 / TW2022

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification

Table of Contents

R	Release Control Record3				
1	(Certificate of Conformity	. 4		
2	;	Summary of Test Results	. 5		
	2.1 2.2	Measurement Uncertainty			
3	(General Information	. 6		
	3.1 3.2 3.2.1 3.3 3.4 3.4.1 3.5	Duty Cycle of Test Signal Description of Support Units Configuration of System under Test General Description of Applied Standard and References	. 9 11 13 14 15 17		
4	•	Test Types and Results			
	4.1.3 4.1.4 4.1.5 4.1.6 4.1.7 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.3.1 4.3.2 4.3.3	Test Instruments Test Procedure Deviation from Test Standard Test Setup	18 19 21 22 23 24 30 30 31 31 31 32 34 34 35		
	4.3.5 4.3.6	Test Procedure	35 35		
5		Pictures of Test Arrangements	45		
Α	Annex A - Radiated Out of Band Emission (OOBE) Measurement (For U-NII-3 band)46				
	Appendix – Information of the Testing Laboratories47				

Release Control Record

Issue No.	Description	Date Issued
RF210105C01A-1	Original release.	2021/09/30

Report No.: RF210105C01A-1 Page No. 3 / 47 Reference No.: 201230C01 Page No. 3 / 47

1 Certificate of Conformity

Product: 2D Code Handy Terminal

Brand: DENSO

Test Model: BHT-M70-QW

Sample Status: Engineering sample

Applicant: DENSO WAVE INCORPORATED

Test Date: 2021/3/6 ~ 2021/8/20

Standard: 47 CFR FCC Part 15, Subpart E (Section 15.407)

ANSI C63.10: 2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by :	, Date:	2021/09/30	
-			

Claire Kuan / Specialist

Clark Lin / Technical Manager

2 Summary of Test Results

47 CFR FCC Part 15, Subpart E (Section 15.407)						
FCC Clause	Test Item		Remarks			
15.407(b)(6)	15.407(b)(6) AC Power Conducted Emissions		Meet the requirement of limit. Minimum passing margin is -14.27dB at 0.64609 MHz.			
15.407(b) (1/2/3/4(i/ii)/6) Radiated Emissions		Pass	Meet the requirement of limit. Minimum passing margin is -7.2 dB at 10600.00 MHz			
15.407(a)(1/2/ 3)	Max Average Transmit Power	Pass	Meet the requirement of limit.			
	Occupied Bandwidth Measurement		Refer to Note 1 below			
15.407(a)(1/2/ 3)	Peak Power Spectral Density	NA	Refer to Note 1 below			
15.407(e)	6dB bandwidth	NA	Refer to Note 1 below			
15.407(g)	Frequency Stability	NA	Refer to Note 1 below			
15.203	Antenna Requirement	Pass	Antenna connector is Spring not a standard connector.			

Note:

- 1. AC Power Conducted Emission & Radiated Emissions & Max Average Transmit Power were performed for this addendum. The others testing data refer to original test report.
- 2. For U-NII-3 band compliance with rule part 15.407(b)(4)(i), the OOBE test plots were recorded in Annex A.
- 3. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	1.9 dB
Padiated Emissions up to 1 CHz	9kHz ~ 30MHz	3.1 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	5.4 dB
Radiated Emissions above 1 GHz	1GHz ~ 18GHz	5.0 dB
Radiated Effissions above 1 GHZ	18GHz ~ 40GHz	5.3 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	2D Code Handy Terminal
Brand	DENSO
Test Model	BHT-M70-QW
Status of EUT	Engineering sample
De colonia Della	3.6 Vdc from battery;
Power Supply Rating	5 Vdc from power adapter
Modulation Type	64QAM, 16QAM, QPSK, BPSK for OFDM 256QAM for OFDM in 11ac mode
Modulation Technology	OFDM
	802.11a: up to 54 Mbps
Transfer Rate	802.11n: up to 300 Mbps
	802.11ac: up to 866.7 Mbps
Operating Frequency	5.18~5.32GHz, 5.50~5.72GHz, 5.745 ~ 5.825GHz 802.11a, 802.11n (HT20), 802.11ac (VHT20): 25
Number of Channel	802.11n (HT40), 802.11ac (VHT40): 12
Number of Chamiler	802.11ac (VHT80): 6
	5.18 ~ 5.24 GHz: 146.451 mW
Output Power	5.26 ~ 5.32GHz: 146.031 mW 5.5 ~ 5.72GHz: 145.177 mW
•	5.745 ~ 5.825 GHz: 186.696 mW
Antenna Type	Refer to Note
Antenna Connector	Refer to Note
	Battery x 1
	Adapter x 1 (Option)
	Adapter x 1 (for Cradle)
	QC3.0 charge single Cradle x 1
Accessory Device	(Option_Brand: DENSO, Model: CU-M70UQ)
	USB Cradle with spare battery charge x 1
	(Option_Brand: DENSO, Model: CU-M70U)
	LAN Cradle with Spare battery charge x 1
	(Option_Brand: DENSO, Model: CU-M70L)
Data Cable Cumplied	USB Cable x 1
Data Cable Supplied	(Shielded, 1.45m, Option _Brand: NIEN-YI, Model: NYS3892-0)

Note:

1. Exhibit prepared for Spot Check Verification report, the format, test items and amount of spot—check test data are decided by applicant's engineering judgment, for more details please refer to the declaration letter exhibit. (Original FCC ID: PZWBHTM70QWG, Report No.: RF210105C01-1)

2. The EUT has below radios as following table:

Radio 1	Radio 2	Radio 3
WLAN 2.4GHz	WLAN 5GHz	Bluetooth

3. WLAN and Bluetooth technology cannot transmit at same time.

4. The EUT must be supplied with a power adapter & battery and following below table:

Item	Brand	Model No.	Spec.
Battery DENSO		BT3	DC Output: 3.6Vdc, 3050mAh, 10.98Wh
Adapter (Option)	CHANNEL WELL	2ACP0183C	AC Input: 100-240Vac~, 0.5A, 50/60Hz DC Output: 5.0Vdc / 3.0A 15.0W, 9.0Vdc / 2.0A 18.0W, 12.0Vdc / 1.5A 18.0W
		For Cradle	use
Item	Brand	Model No.	Spec.
Adapter (Option)	Adapter (Option) Sunny SYS1548-5012-T3		AC Input: 100-240Vac~1.5A MAX 50-60Hz AC Cable: Unshielded, 1.71m DC Output: +12.0Vdc / 4.16A DC Cable: Unshielded, 1.16m with one core

5. The antennas provided to the EUT, please refer to the following table:

Antenna No.	RF Chain No	Brand	Model	Antenna gain (dBi)	Frequency Range (MHz)	Antenna Type	Connector Type
			1415-01R8C00	3.26	2400-2500 (WiFi)	PIFA	Spring
	Chain0 HONGBO			3.21	2400-2500 (BT)		
1		in0 HONGBO		3.63	5150-5250		
(WiFi & BT)				3.65	5250-5350		
				3.45	5470-5725		
				3.52	5725-5850		
	Chain1 HONGBO			0.68	2400-2500		
0			2.63	5150-5250			
2 (WiFi)		HONGBO	HONGBO 1415-01R8C00	2.6	5250-5350	PIFA	Spring
(**11 1)				2.93	5470-5725		
				2.4	5725-5850		

6. In the original report, the EUT was pre-tested for conducted emission test under following test modes:

or in the engine report, the zer made pro tested for considered enhanced tested in the initial section and			
Pre-test Mode	Description		
Mode A	Adapter Mode		
Mode B	Laptop Mode		
Mode C	Cradle with Type C port		
Mode D	Cradle with RJ45 port		
Mode E	QC3.0 charge single Cradle		

From the above modes, the worst conducted emission test was found in **Mode A**. Therefore only the test data of the modes were recorded in this report.

7. In the original report, the EUT was pre-tested for radiated emission test under following test modes:

Pre-test Mode	Description
Mode A	Battery Mode
Mode B	Adapter Mode
Mode C	Cradle with Type C port
Mode D	Cradle with RJ45 port
Mode E	QC3.0 charge single Cradle

The worst radiated emissions were found in **Mode D** for below 1GHz and found in **Mode B** for above 1GHz. Therefore only the test data of the modes were recorded in this report.

8. The EUT incorporates a MIMO function:

MODULATION MODE	TX & RX CONFIGURATION			
802.11a	2TX	2RX		
802.11n (HT20)	2TX	2RX		
802.11n (HT40)	2TX	2RX		
802.11ac (VHT20)	2TX	2RX		
802.11ac (VHT40)	2TX	2RX		
802.11ac (VHT80) 2TX 2RX				
Note: The EUT doesn't support beamforming function.				

- 9. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.
- 10. The above Antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

3.2 Description of Test Modes

FOR 5180 ~ 5320MHz

8 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20):

Channel	Frequency	Channel	Frequency
36	5180 MHz	52	5260 MHz
40	5200 MHz	56	5280 MHz
44	5220 MHz	60	5300 MHz
48	5240 MHz	64	5320 MHz

4 channels are provided for 802.11n (HT40), 802.11ac (VHT40):

Channel	annel Frequency Channel		Frequency
38	5190 MHz	54	5270 MHz
46	5230 MHz	62	5310 MHz

2 channel is provided for 802.11ac (VHT80):

Channel	Frequency	Channel	Frequency
42 5210 MHz		58	5290 MHz

FOR 5500 ~ 5720MHz

12 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20):

Channel	Frequency	Channel	Frequency
100	5500 MHz	124	5620 MHz
104	5520 MHz	128	5640 MHz
108	5540 MHz	132	5660 MHz
112	5560 MHz	136	5680 MHz
116	5580 MHz	140	5700 MHz
120	5600 MHz	144	5720 MHz

6 channels are provided for 802.11n (HT40), 802.11ac (VHT40):

Channel	Frequency	Channel	Frequency
102	5510 MHz	126	5630 MHz
110	5550 MHz	134	5670 MHz
118	5590 MHz	142	5710 MHz

3 channels are provided for 802.11ac (VHT80):

Channel	Frequency Channel		Frequency
106	5530 MHz	138	5690 MHz
122	5610 MHz		

Report No.: RF210105C01A-1 Page No. 9 / 47 Report Format Version:6.1.2

Reference No.: 201230C01

FOR 5745 ~ 5825MHz:

5 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20):

Channel	Frequency	Channel	Frequency
149	5745 MHz	161	5805 MHz
153	5765 MHz	165	5825 MHz
157	5785 MHz		

2 channels are provided for 802.11n (HT40), 802.11ac (VHT40):

Channel	Frequency	Channel	Frequency	
151	5755 MHz	159	5795 MHz	

1 channel is provided for 802.11ac (VHT80):

Channel	Frequency
155	5775 MHz

eport No.: RF210105C01A-1 Page No. 10 / 47 Report Format Version:6.1.2

Report No.: RF210105C01A-1 Reference No.: 201230C01

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configure		Applic	able To		Description
Mode	RE≥1G	RE<1G	PLC	APCM	Description
-	V	√	V	√	-

Where

RE≥1G: Radiated Emission above 1GHz

RE<1G: Radiated Emission below 1GHz

PLC: Power Line Conducted Emission

APCM: Antenna Port Conducted Measurement

Note: In the original test report, the EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on X-place.

Radiated Emission Test (Above 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

Mode	FREQ. Band (MHz)	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)
802.11a	5180-5240	36 to 48	40	OFDM	BPSK	6
802.11a	5260-5320	52 to 64	60	OFDM	BPSK	6
802.11ac (VHT20)	5500-5720	100 to 144	116	OFDM	BPSK	6.5
802.11ac (VHT40)	5745-5825	151 to 159	151	OFDM	BPSK	13.5

Radiated Emission Test (Below 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

Mode	FREQ. Band (MHz)	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)
802.11ac (VHT40)	5180-5320 5500-5720	38 to 62 102 to 142	151	OFDM	BPSK	13.5
,	5745-5825	151 to 159				

Power Line Conducted Emission Test:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

Mode	FREQ. Band (MHz)	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)
	5180-5320	38 to 62				
802.11ac (VHT40)	5500-5720	102 to 142	151	OFDM	BPSK	13.5
	5745-5825	151 to 159				

Report No.: RF210105C01A-1 Reference No.: 201230C01 Page No. 11 / 47

Antenna Port Conducted Measurement:

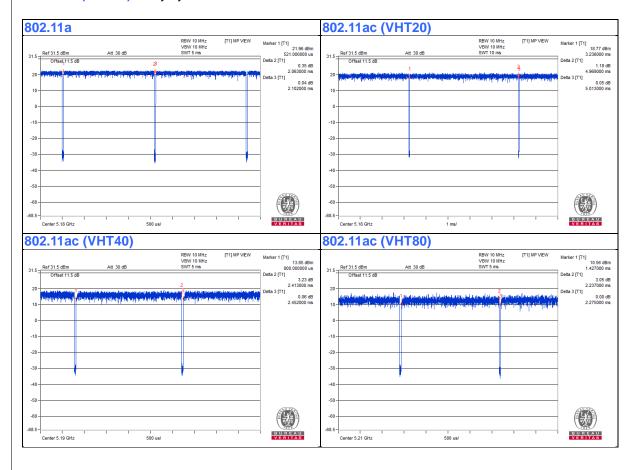
- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

Mode	FREQ. Band (MHz)	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)
802.11a		36 to 64	36, 40, 48, 52, 60, 64	OFDM	BPSK	6
802.11ac (VHT20)	5400 5000	36 to 64	36, 40, 48, 52, 60, 64	OFDM	BPSK	6.5
802.11ac (VHT40)	5180-5320	38 to 62	38, 46, 54, 62	OFDM	BPSK	13.5
802.11ac (VHT80)		42, 58	42, 58	OFDM	BPSK	29.3
802.11a		100 to 144	100, 116, 140, 144	OFDM	BPSK	6
802.11ac (VHT20)	5500 5700	100 to 144	100, 116, 140, 144	OFDM	BPSK	6.5
802.11ac (VHT40)	5500-5720	102 to 142	102, 110, 134, 142	OFDM	BPSK	13.5
802.11ac (VHT80)		106 to 138	106, 122, 138	OFDM	BPSK	29.3
802.11a		149 to 165	149, 157, 165	OFDM	BPSK	6
802.11ac (VHT20)		149 to 165	149, 157, 165	OFDM	BPSK	6.5
802.11ac (VHT40)	5745-5825	151 to 159	151, 159	OFDM	BPSK	13.5
802.11ac (VHT80)		155	155	OFDM	BPSK	29.3

Test Condition:

Applicable To	Environmental Conditions	Input Power	Tested By
RE≥1G	25deg. C, 66%RH	120Vac, 60Hz	Tom Yang
RE<1G	25deg. C, 68%RH	120Vac, 60Hz	Tom Yang
PLC	25deg. C, 66%RH	120Vac, 60Hz	Tom Yang
APCM	25deg. C, 60%RH	120Vac, 60Hz	Kevin Ko

Report No.: RF210105C01A-1 Page No. 12 / 47 Report Format Version:6.1.2 Reference No.: 201230C01



3.3 Duty Cycle of Test Signal

Duty cycle of test signal is ≥ 98 %, duty factor is not required.

802.11a: Duty cycle = 2.063 ms /2.102 ms=0.981

802.11ac (VHT20): Duty cycle = 4.969 ms /5.013 ms=0.991 **802.11ac (VHT40):** Duty cycle = 2.413 ms /2.452 ms=0.984 **802.11ac (VHT80):** Duty cycle = 2.237 ms /2.275 ms=0.983

3.4 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

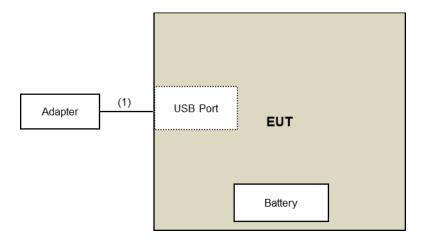
ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
A.	Laptop	DELL	E5430	HYV4VY1	FCC DoC	Provided by Lab
B.	Cradle	Denso	CU-M70U	NA	NA	Supplied by client

Note:

1. All power cords of the above support units are non-shielded (1.8m).

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	USB Cable	1	1.45	No	0	Supplied by client
2.	RJ-45 Cable	1	10	Yes	0	Provided by Lab
3.	DC Cable	1	1.16	Yes	1	Supplied by client
4.	AC Cable	1	1.71	Yes	0	Supplied by client

Note: The core(s) is(are) originally attached to the cable(s).


Report No.: RF210105C01A-1 Reference No.: 201230C01

Configuration of System under Test 3.4.1 For radiated emission (below 1GHz): (B) Cradle Battery **EUT** Adapter DC in Ethernet (4) (3) **Under Table** (2) **Remote Site** (A) Laptop

For conducted emission & radiated emission (above 1GHz):

3.5 General Description of Applied Standard and References

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and references:

Test Standard:

FCC Part 15, Subpart E (15.407) ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

References Test Guidance:

KDB 789033 D02 General UNII Test Procedure New Rules v02r01 KDB 662911 D01 Multiple Transmitter Output v02r01

All test items have been performed as a reference to the above KDB test guidance.

Report No.: RF210105C01A-1 Reference No.: 201230C01

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

Limits of unwanted emission out of the restricted bands

Elithic of anwanted em				
Applic	able To	Limit		
789033 D02 Genera	I UNII Test Procedure	Field Strength at 3m		
New Rules v02r01		PK:74 (dBµV/m)	AV:54 (dBμV/m)	
Frequency Band	Applicable To	EIRP Limit	Equivalent Field Strength at 3m	
5150~5250 MHz	15.407(b)(1)			
5250~5350 MHz	15.407(b)(2)	PK:-27 (dBm/MHz)	PK:68.2(dBµV/m)	
5470~5725 MHz	15.407(b)(3)			
5725~5850 MHz	15.407(b)(4)(i)	PK:-27 (dBm/MHz) *1 PK:10 (dBm/MHz) *2 PK:15.6 (dBm/MHz) *3 PK:27 (dBm/MHz) *4	PK: 68.2(dBµV/m) *1 PK:105.2 (dBµV/m) *2 PK: 110.8(dBµV/m) *3 PK:122.2 (dBµV/m) *4	

^{*1} beyond 75 MHz or more above of the band edge.

Note:

The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$E = \frac{1000000\sqrt{30P}}{3}$$
 µV/m, where P is the eirp (Watts).

Report No.: RF210105C01A-1 Reference No.: 201230C01 Page No. 18 / 47

^{*2} below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above.

^{*3} below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above.

^{*4} from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

4.1.2 Test Instruments

For Radiated Emission & OOBE Test:

MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
N9038A	MY50010156		2021/7/23
ADT_Radiated_V8.7.08	NA	NA	NA
MF-7802	MF780208406	NA	NA
EMC001340	980142	2020/5/25	2021/5/24
EM-6879	264	2021/3/5	2022/3/4
5D-FB	LOOPCAB-001	2021/1/7	2022/1/6
5D-FB	LOOPCAB-002	2021/1/7	2022/1/6
ZFL-1000VH2	QA0838008	2020/10/20	2021/10/19
VULB 9168	9168-361	2020/11/5	2021/11/4
8D	966-3-1	2020/3/17	2021/3/16
8D	966-3-2	2020/3/17	2021/3/16
8D	966-3-3	2020/3/17	2021/3/16
UNAT-5+	PAD-3m-3-01	2020/9/24	2021/9/23
BBHA9120-D	9120D-406	2020/11/22	2021/11/21
EMC12630SE	980384	2021/1/11	2022/1/10
EMC104-SM-SM-1500	180504	2020/4/29	2021/4/28
EMC104-SM-SM-2000	180601	2020/6/9	2021/6/8
EMC104-SM-SM-6000	210201	2020/6/9	2021/6/8
FBA-01	FBA_SIP01	NA	NA
N9030A	MY54490679	2020/7/13	2021/7/12
EMC184045SE	980387	2021/1/11	2022/1/10
BBHA 9170	BBHA9170519	2020/11/22	2021/11/21
EMC102-KM-KM-1200	160924	2021/1/11	2022/1/10
	200214	2020/3/11	2021/3/10
	N9038A ADT_Radiated_V8.7.08 MF-7802 EMC001340 EM-6879 5D-FB 5D-FB ZFL-1000VH2 VULB 9168 8D 8D UNAT-5+ BBHA9120-D EMC12630SE EMC104-SM-SM-1500 EMC104-SM-SM-6000 FBA-01 N9030A EMC184045SE BBHA 9170	N9038A MY50010156 ADT_Radiated_V8.7.08 NA MF-7802 MF780208406 EMC001340 980142 EM-6879 264 5D-FB LOOPCAB-001 5D-FB LOOPCAB-002 ZFL-1000VH2 QA0838008 VULB 9168 9168-361 8D 966-3-1 8D 966-3-2 8D 966-3-3 UNAT-5+ PAD-3m-3-01 BBHA9120-D 9120D-406 EMC12630SE 980384 EMC104-SM-SM-1500 180504 EMC104-SM-SM-2000 180601 EMC104-SM-SM-6000 210201 FBA-01 FBA_SIP01 N9030A MY54490679 EMC184045SE 980387 BBHA 9170 BBHA9170519	MODEL NO. SERIAL NO. DATE N9038A MY50010156 2020/7/24 ADT_Radiated_V8.7.08 NA NA MF-7802 MF780208406 NA EMC001340 980142 2020/5/25 EM-6879 264 2021/3/5 5D-FB LOOPCAB-001 2021/1/7 5D-FB LOOPCAB-002 2021/1/7 ZFL-1000VH2 QA0838008 2020/10/20 VULB 9168 9168-361 2020/3/17 8D 966-3-1 2020/3/17 8D 966-3-2 2020/3/17 8D 966-3-3 2020/3/17 UNAT-5+ PAD-3m-3-01 2020/9/24 BBHA9120-D 9120D-406 2020/11/22 EMC104-SM-SM-1500 180504 2020/4/29 EMC104-SM-SM-2000 180601 2020/6/9 EMC104-SM-SM-6000 210201 2020/6/9 FBA-01 FBA_SIP01 NA N9030A MY54490679 2020/7/13 EMC184045SE 980387 2021/11/11

Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in 966 Chamber No. 3.
- 3. Tested Date: 2021/3/6

For other test items:

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Spectrum Analyzer R&S	FSV40	100964	2021/3/8	2022/3/7
Power meter Anritsu	ML2495A	1529002	2021/6/21	2022/6/20
Power sensor Anritsu	MA2411B	1339443	2021/5/31	2022/5/30
10dB Attenuator Woken	MDCS18N-10	MDCS18N-10-01	2021/4/13	2022/4/12
Software	ADT_RF Test Software V6.6.5.4	NA	NA	NA

NOTE:

- The test was performed in Oven room 2.
 The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. Tested Date: 2021/8/20

4.1.3 Test Procedure

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Note:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz

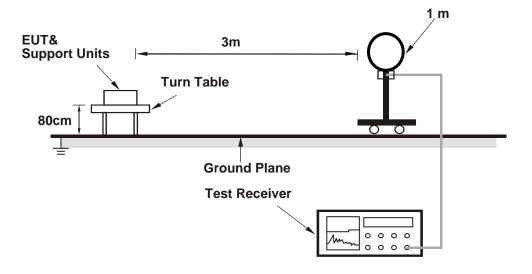
- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

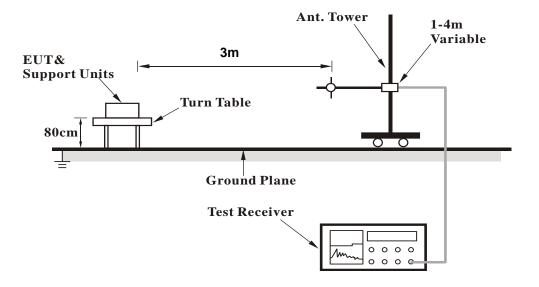
- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

Report No.: RF210105C01A-1 Page No. 21 / 47 Report Format Version:6.1.2

Reference No.: 201230C01

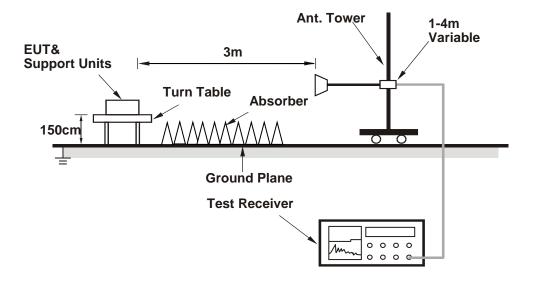


4.1.4 Deviation from Test Standard


No deviation.

4.1.5 Test Setup

For Radiated emission below 30MHz


For Radiated emission 30MHz to 1GHz

Report No.: RF210105C01A-1 Reference No.: 201230C01

For Radiated emission above 1GHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Condition

- a. Connected the EUT with the Laptop which is placed on the testing table.
- b. Controlling software (QRCT4 (v4.0-00067)) has been activated to set the EUT under transmission condition continuously.

4.1.7 Test Results

Above 1GHz Data

RF Mode	TX 802.11a	Channel	CH 40: 5200 MHz
Frequency Range	1GHz ~ 40GHz	Detector Function	Peak (PK) Average (AV)
Input Power	120Vac, 60Hz	Environmental Conditions	25 °C, 66% RH
Tested By	Tom Yang		

	Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	*5200.00	112.3 PK			1.00 H	267	107.5	4.8	
2	*5200.00	103.4 AV			1.00 H	267	98.6	4.8	
3	#10400.00	51.1 PK	68.2	-17.1	1.44 H	199	36.9	14.2	
4	15600.00	47.0 PK	74.0	-27.0	2.09 H	121	32.0	15.0	
5	15600.00	36.3 AV	54.0	-17.7	2.09 H	121	21.3	15.0	
		An	tenna Polari	ty & Test Di	stance : Vert	ical at 3 m			
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	*5200.00	114.0 PK			1.05 V	245	109.2	4.8	
2	*5200.00	103.7 AV			1.05 V	245	98.9	4.8	
3	#10400.00	58.9 PK	68.2	-9.3	1.17 V	154	44.7	14.2	
4	15600.00	46.8 PK	74.0	-27.2	1.94 V	120	31.8	15.0	
5	15600.00	35.7 AV	54.0	-18.3	1.94 V	120	20.7	15.0	

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.
- 6. " # ": The radiated frequency is out of the restricted band.

RF Mode	TX 802.11a	Channel	CH 60: 5300 MHz
Frequency Range	1GHz ~ 40GHz	Detector Function	Peak (PK)
Trequency Nange	10112 ~ 400112	Detector i unction	Average (AV)
Input Power	120Vac, 60Hz	Environmental Conditions	25 °C, 66% RH
Tested By	Tom Yang		

	Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	*5300.00	114.1 PK			1.15 H	244	109.3	4.8	
2	*5300.00	104.2 AV			1.15 H	244	99.4	4.8	
3	10600.00	51.1 PK	74.0	-22.9	1.50 H	197	36.9	14.2	
4	10600.00	39.7 AV	54.0	-14.3	1.50 H	197	25.5	14.2	
5	15900.00	46.7 PK	74.0	-27.3	2.14 H	106	32.2	14.5	
6	15900.00	35.8 AV	54.0	-18.2	2.14 H	106	21.3	14.5	
		An	tenna Polari	ty & Test Dis	stance : Vert	ical at 3 m			
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	*5300.00	113.8 PK			1.03 V	229	109.0	4.8	
2	*5300.00	103.8 AV			1.03 V	229	99.0	4.8	
3	10600.00	59.0 PK	74.0	-15.0	1.22 V	147	44.8	14.2	
4	10600.00	46.8 AV	54.0	-7.2	1.22 V	147	32.6	14.2	
5	15900.00	47.3 PK	74.0	-26.7	1.94 V	111	32.8	14.5	
6	15900.00	36.1 AV	54.0	-17.9	1.94 V	111	21.6	14.5	

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.

RF Mode	TX 802.11ac (VHT20)	Channel	CH 116: 5580 MHz
Frequency Range	1GHz ~ 40GHz	Detector Function	Peak (PK) Average (AV)
Input Power	120Vac, 60Hz	Environmental Conditions	25 °C, 66% RH
Tested By	Tom Yang		

	Antenna Polarity & Test Distance : Horizontal at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	*5580.00	113.7 PK			1.03 H	282	108.7	5.0		
2	*5580.00	103.8 AV			1.03 H	282	98.8	5.0		
3	11160.00	46.1 PK	74.0	-27.9	1.54 H	216	31.5	14.6		
4	11160.00	34.7 AV	54.0	-19.3	1.54 H	216	20.1	14.6		
5	#16740.00	45.7 PK	68.2	-22.5	2.21 H	107	28.4	17.3		
		An	tenna Polari	ty & Test Dis	stance : Vert	ical at 3 m				
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	*5580.00	113.1 PK			1.08 V	262	108.1	5.0		

1.08 V

1.38 V

1.38 V

1.91 V

262

156

156

85

98.6

38.7

25.8

27.1

5.0

14.6

14.6

17.3

Remarks:

4

5

*5580.00

11160.00

11160.00

#16740.00

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

74.0

54.0

68.2

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) - Pre-Amplifier Factor(dB)

-20.7

-13.6

-23.8

3. Margin value = Emission Level – Limit value

103.6 AV

53.3 PK

40.4 AV

44.4 PK

- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.
- 6. " # ": The radiated frequency is out of the restricted band.

RF Mode	TX 802.11ac (VHT40)	Channel	CH 151: 5755 MHz
Frequency Range	1GHz ~ 40GHz	Detector Function	Peak (PK) Average (AV)
Input Power	120Vac, 60Hz	Environmental Conditions	25 °C, 66% RH
Tested By	Tom Yang		

	Antenna Polarity & Test Distance : Horizontal at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	#5645.90	56.9 PK	68.2	-11.3	1.04 H	273	51.9	5.0		
2	*5755.00	111.4 PK			1.04 H	273	106.0	5.4		
3	*5755.00	101.5 AV			1.04 H	273	96.1	5.4		
4	#6010.25	52.7 PK	68.2	-15.5	1.04 H	273	46.9	5.8		
5	11510.00	46.8 PK	74.0	-27.2	1.52 H	213	31.7	15.1		
6	11510.00	34.9 AV	54.0	-19.1	1.52 H	213	19.8	15.1		
7	#17265.00	45.6 PK	68.2	-22.6	2.22 H	99	27.0	18.6		
		An	tenna Polari	ty & Test Dis	stance : Vert	ical at 3 m				

Raw Correction **Emission Antenna Table Frequency** Limit Margin No Level Height **Angle** Value **Factor** (MHz) (dBuV/m) (dB) (dBuV/m) (dB/m) (m) (Degree) (dBuV) 1 #5643.66 60.0 PK 68.2 -8.2 1.02 V 255 55.0 5.0 *5755.00 112.0 PK 1.02 V 2 255 106.6 5.4 101.9 AV 96.5 3 *5755.00 1.02 V 255 5.4 4 #6009.98 52.7 PK 68.2 -15.5 1.02 V 255 46.9 5.8 50.2 PK 5 74.0 1.28 V 35.1 11510.00 -23.8 166 15.1

1.28 V

1.91 V

166

88

23.3

26.7

15.1

18.6

Remarks:

11510.00

#17265.00

6

7

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

54.0

68.2

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

-15.6

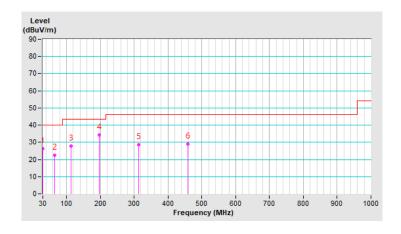
-22.9

3. Margin value = Emission Level - Limit value

38.4 AV

45.3 PK

- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.
- 6. " # ": The radiated frequency is out of the restricted band.

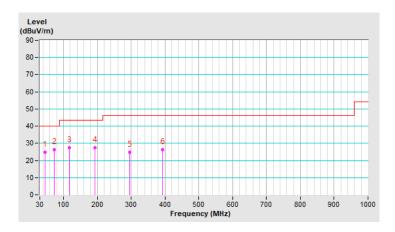

Below 1GHz Data

RF Mode	TX 802.11ac (VHT40)	Channel	CH 151: 5755 MHz
Frequency Range	9kHz ~ 1GHz	Detector Function	Quasi-Peak (QP)

	Antenna Polarity & Test Distance : Horizontal at 3 m										
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	30.17	26.4 QP	40.0	-13.6	1.00 H	279	35.7	-9.3			
2	64.10	22.6 QP	40.0	-17.4	1.00 H	18	31.9	-9.3			
3	113.27	27.7 QP	43.5	-15.8	2.00 H	78	38.0	-10.3			
4	196.48	34.3 QP	43.5	-9.2	1.50 H	283	44.9	-10.6			
5	313.63	28.7 QP	46.0	-17.3	1.50 H	360	34.6	-5.9			
6	459.54	29.1 QP	46.0	-16.9	2.00 H	120	31.0	-1.9			

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.



RF Mode	TX 802.11ac (VHT40)	Channel	CH 151: 5755 MHz
Frequency Range	9kHz ~ 1GHz	Detector Function	Quasi-Peak (QP)

	Antenna Polarity & Test Distance : Vertical at 3 m										
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	44.84	24.6 QP	40.0	-15.4	1.00 V	211	32.8	-8.2			
2	72.92	26.2 QP	40.0	-13.8	1.00 V	289	37.4	-11.2			
3	117.49	27.3 QP	43.5	-16.2	1.00 V	218	37.2	-9.9			
4	192.69	27.3 QP	43.5	-16.2	1.00 V	145	37.7	-10.4			
5	295.56	24.9 QP	46.0	-21.1	1.50 V	218	31.7	-6.8			
6	393.68	26.2 QP	46.0	-19.8	1.50 V	80	30.1	-3.9			

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Eroguepov (MHz)	Conducted Limit (dBuV)			
Frequency (MHz)	Quasi-peak	Average		
0.15 - 0.5	66 - 56	56 - 46		
0.50 - 5.0	56	46		
5.0 - 30.0	60	50		

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

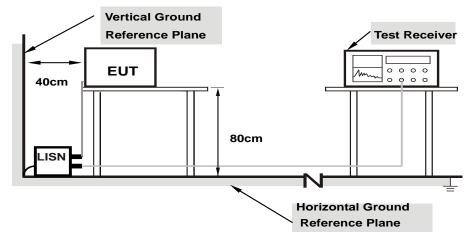
4.2.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver R&S	ESCS 30	847124/029	2020/10/20	2021/10/19
LISN R&S	ESH3-Z5	848773/004	2020/10/27	2021/10/26
LISN R & S	ESH3-Z5	835239/001	2020/3/19	2021/3/18
50 ohms Terminator	50	3	2020/10/26	2021/10/25
RF Coaxial Cable JYEBO	5D-FB	COCCAB-001	2020/9/26	2021/9/25
Fixed attenuator STI	STI02-2200-10	005	2020/8/29	2021/8/28
Software BVADT	BVADT_Cond_ V7.3.7.4	NA	NA	NA

Note:

- 1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in Conduction 1.
- 3. Tested Date: 2021/3/6

4.2.3 Test Procedure


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.

Note: All modes of operation were investigated and the worst-case emissions are reported.

4.2.4 Deviation from Test Standard

No deviation.

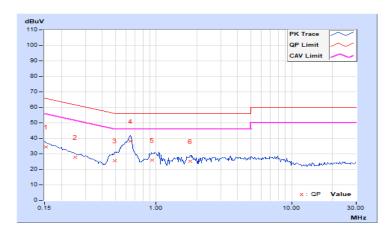
4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Condition

Same as 4.1.6.


4.2.7 Test Results

RF Mode	TX 802.11ac (VHT40)	Channel	CH 151: 5755 MHz
Frequency Range	150kHz ~ 30MHz	Resolution	Quasi-Peak (QP) / Average (AV), 9kHz

	Phase Of Power : Line (L)										
No	Frequency	Correction Factor		Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.15391	9.96	24.62	12.46	34.58	22.42	65.79	55.79	-31.21	-33.37	
2	0.25156	10.00	17.60	8.71	27.60	18.71	61.71	51.71	-34.11	-33.00	
3	0.49766	10.03	15.70	10.05	25.73	20.08	56.04	46.04	-30.31	-25.96	
4	0.64609	10.04	28.11	21.69	38.15	31.73	56.00	46.00	-17.85	-14.27	
5	0.93516	10.06	15.74	8.75	25.80	18.81	56.00	46.00	-30.20	-27.19	
6	1.78516	10.12	15.16	9.39	25.28	19.51	56.00	46.00	-30.72	-26.49	

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

RF Mode	TX 802.11ac (VHT40)	Channel	CH 151: 5755 MHz
Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz

	Phase Of Power : Neutral (N)										
No	Frequency	Correction Factor		Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.15000	9.94	26.52	11.95	36.46	21.89	66.00	56.00	-29.54	-34.11	
2	0.20469	9.98	22.61	8.15	32.59	18.13	63.42	53.42	-30.83	-35.29	
3	0.25938	9.99	17.88	4.34	27.87	14.33	61.45	51.45	-33.58	-37.12	
4	0.64219	10.03	21.46	13.83	31.49	23.86	56.00	46.00	-24.51	-22.14	
5	0.98203	10.07	10.11	1.79	20.18	11.86	56.00	46.00	-35.82	-34.14	
6	3.32813	10.21	7.39	-0.90	17.60	9.31	56.00	46.00	-38.40	-36.69	

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

4.3 Transmit Power Measurement

4.3.1 Limits of Transmit Power Measurement

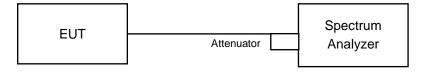
Operation Band		EUT Category	Limit		
U-NII-1		Outdoor Access Point	1 Watt (30 dBm) (Max. e.i.r.p ≤ 125mW(21 dBm) at any elevation angle above 30 degrees as measured from the horizon)		
O-IVII-1		Fixed point-to-point Access Point	1 Watt (30 dBm)		
	Indoor Access Point		1 Watt (30 dBm)		
	√ Client device		250mW (24 dBm)		
U-NII-2A			250mW (24 dBm) or 11 dBm+10 log B*		
U-NII-2C	√		250mW (24 dBm) or 11 dBm+10 log B*		
U-NII-3		V	1 Watt (30 dBm)		

^{*}B is the 26 dB emission bandwidth in megahertz

Per KDB 662911 Method of conducted output power measurement on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$;

Array Gain = 0 dB (i.e., no array gain) for channel widths ≥ 40 MHz for any N_{ANT};


Array Gain = $5 \log(N_{ANT}/N_{SS})$ dB or 3 dB, whichever is less for 20-MHz channel widths with $N_{ANT} \ge 5$.

For power measurements on all other devices: Array Gain = $10 \log(N_{ANT}/N_{SS})$ dB.

4.3.2 Test Setup

FOR POWER OUTPUT MEASUREMENT

For channel straddling 5725MHz:

For other channels:

FOR 26dB OCCUPIED BANDWIDTH

Report No.: RF210105C01A-1 Page No. 34 / 47 Report Format Version:6.1.2

Reference No.: 201230C01

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

FOR POWER OUTPUT MEASUREMENT

For channel straddling 5725MHz:

Follow FCC KDB 789033 UNII test procedure:

Method SA-1

- 1. Set span to encompass the entire emission bandwidth (EBW) of the signal.
- 2. Set RBW =1MHz.
- 3. Set the VBW \geq 3 x RBW.
- 4. Number of points in sweep ≥ 2 Span / RBW.
- 5. Sweep time = auto.
- 6. Set trigger to free run (duty cycle ≥ 98 percent)
- 7. Detector = RMS.
- 8. Trace average at least 100 traces in power averaging mode
- 9. Compute power by integrating the spectrum across the 26 dB EBW of the signal.

For other channels:

Method PM is used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

FOR 26dB OCCUPIED BANDWIDTH

- 1. Set RBW = approximately 1% of the emission bandwidth.
- 2. Set the VBW > RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

4.3.5 Deviation from Test Standard

No deviation.

4.3.6 EUT Operating Condition

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

 Report No.: RF210105C01A-1
 Page No. 35 / 47
 Report Format Version:6.1.2

Reference No.: 201230C01

4.3.7 Test Results **POWER OUTPUT**

802.11a

Chan	Chan.	Average P	ower (dBm)	Total	Total	Limit (dD-s)	Dogs / Fail
Chan.	Freq. (MHz)	Chain 0	Chain 1	Power (mW)	Power (dBm)	Limit (dBm)	Pass / Fall
36	5180	18.85	18.23	143.263	21.56	24	Pass
40	5200	18.88	18.40	146.451	21.66	24	Pass
48	5240	17.73	17.19	111.653	20.48	24	Pass
52	5260	18.69	18.27	141.103	21.50	24	Pass
60	5300	18.82	18.44	146.031	21.64	24	Pass
64	5320	18.32	17.81	128.315	21.08	24	Pass
100	5500	18.17	18.05	129.441	21.12	24	Pass
116	5580	18.72	18.25	141.308	21.50	24	Pass
140	5700	18.12	17.93	126.95	21.04	24	Pass
*144 (U-NII-2C Band)	5720	18.52	18.26	138.11	21.40	24	Pass
*144 (U-NII-3 Band)	5720	12.30	11.74	31.91	15.04	30	Pass
149	5745	19.02	19.03	159.783	22.04	30	Pass
157	5785	19.17	18.63	155.55	21.92	30	Pass
165	5825	18.55	18.65	144.897	21.61	30	Pass

Note: * Test was performed in accordance with Measurement follow FCC KDB 789033 UNII test procedure Method SA-1 and use spectrum analyzer test.

Note: For U-NII-2A, U-NII-2C Band output power limitation is determined based on 26dBc bandwidth

	Power Limit = 11dBm + 10logB < U-NII-2A, U-NII-2C >							
Channel Number	Freq.(MHz) Min. B(MHz)		Determined Conducted Limit (dBm)					
52	5260	24.47	24.88 > 24					
60	5300	24.51	24.89 > 24					
64	5320	23.67	24.74 > 24					
100	5500	25.35	25.03 > 24					
116	5580	28.55	25.55 > 24					
140	5700	27.1	25.32 > 24					
144 (U-NII-2C Band)	5720	21.6	24.34 > 24					

Report No.: RF210105C01A-1 Reference No.: 201230C01 Page No. 36 / 47

Report Format Version:6.1.2

802.11ac (VHT20)

Chan	Chan.	Average P	ower (dBm)	Total	Total	Limit (dDm)	Doos / Fail
Chan.	Freq. (MHz)	Chain 0	Chain 1	Power (mW)	Power (dBm)	Limit (dBm)	1 433 / 1 411
36	5180	18.38	17.92	130.809	21.17	24	Pass
40	5200	18.54	18.51	142.407	21.54	24	Pass
48	5240	17.48	17.23	108.82	20.37	24	Pass
52	5260	18.44	18.39	138.847	21.43	24	Pass
60	5300	18.66	18.58	145.562	21.63	24	Pass
64	5320	18.19	18.23	132.445	21.22	24	Pass
100	5500	18.38	17.88	130.241	21.15	24	Pass
116	5580	18.94	18.25	145.177	21.62	24	Pass
140	5700	18.72	17.85	135.427	21.32	24	Pass
*144 (U-NII-2C Band)	5720	18.70	17.41	129.212	21.11	23.98	Pass
*144 (U-NII-3 Band)	5720	12.79	11.50	33.136	15.20	30	Pass
149	5745	18.68	18.87	150.881	21.79	30	Pass
157	5785	18.84	18.59	148.837	21.73	30	Pass
165	5825	18.70	18.75	149.12	21.74	30	Pass

Note: * Test was performed in accordance with Measurement follow FCC KDB 789033 UNII test procedure Method SA-1 and use spectrum analyzer test.

Note: For U-NII-2A, U-NII-2C Band output power limitation is determined based on 26dBc bandwidth

	Power Limit = 11dBm + 10logB < U-NII-2A, U-NII-2C >							
Channel Number	Freq.(MHz)	Min. B(MHz)	Determined Conducted Limit (dBm)					
52	5260	25.21	25.01 > 24					
60	5300	25.94	25.13 > 24					
64	5320	25.5	25.06 > 24					
100	5500	25.9	25.13 > 24					
116	5580	28.8	25.59 > 24					
140	5700	29.4	25.68 > 24					
144 (U-NII-2C Band)	5720	19.88	23.98 < 24					

802.11ac (VHT40)

Chan	Chan.	Average Power (dBm) Total		_	Total	Limit (dDm)	Doos / Foil
Chan.	Freq. (MHz)	Chain 0	Chain 1	Power (mW)	Power (dBm)	Limit (dBm)	1 433 / 1 411
38	5190	16.42	16.08	84.404	19.26	24	Pass
46	5230	17.41	17.08	106.131	20.26	24	Pass
54	5270	18.70	17.99	137.082	21.37	24	Pass
62	5310	15.35	14.88	65.038	18.13	24	Pass
102	5510	15.85	15.83	76.742	18.85	24	Pass
110	5550	18.51	18.24	137.638	21.39	24	Pass
134	5670	15.66	15.99	76.532	18.84	24	Pass
*142 (U-NII-2C Band)	5710	18.65	17.78	133.262	21.25	24	Pass
*142 (U-NII-3 Band)	5710	7.98	8.31	13.057	11.16	30	Pass
151	5755	20.00	19.38	186.696	22.71	30	Pass
159	5795	19.98	19.35	185.64	22.69	30	Pass

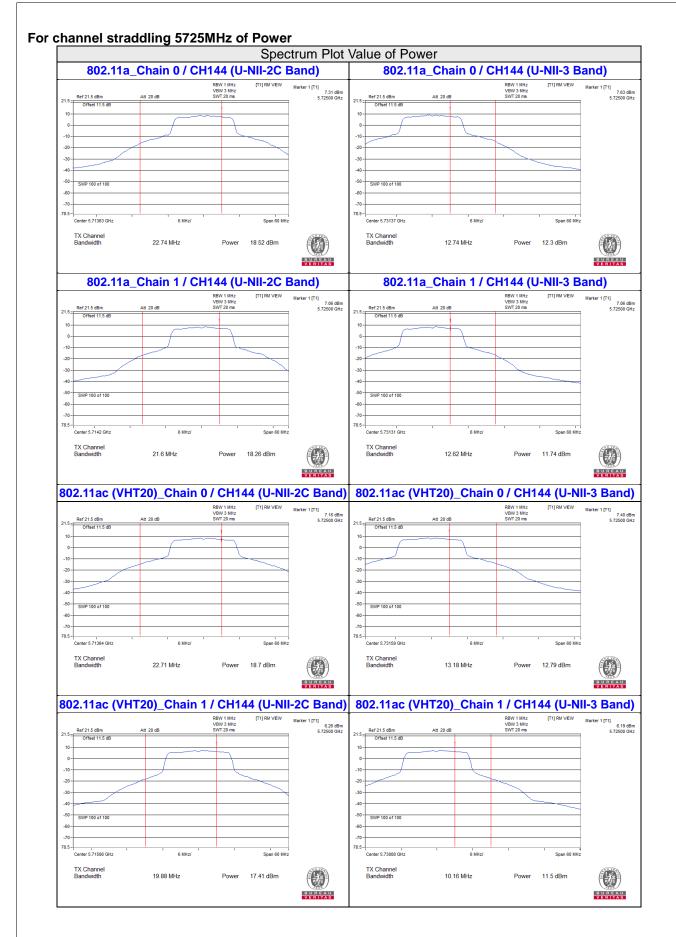
Note: * Test was performed in accordance with Measurement follow FCC KDB 789033 UNII test procedure Method SA-1 and use spectrum analyzer test.

Note: For U-NII-2A, U-NII-2C Band output power limitation is determined based on 26dBc bandwidth

Power Limit = 11dBm + 10logB < U-NII-2A, U-NII-2C >						
Channel Number	Freq.(MHz)	Min. B(MHz)	Determined Conducted Limit (dBm)			
54	5270	42.94	27.32 > 24			
62	5310	42.38	27.27 > 24			
102	5510	42.19	27.25 > 24			
110	5550	52.33	28.18 > 24			
134	5670	42.24	27.25 > 24			
142 (U-NII-2C Band)	5710	41.44	27.17 > 24			

Report Format Version:6.1.2

802.11ac (VHT80)


Chan.	Chan.	/ Worago i ower		Total Power	Total Power	Limit (dBm)	Pace / Fail
Crian.	Freq. (MHz)	Chain 0	Chain 1	(mW)	(dBm)	Limit (ubin)	Pass/Fall
42	5210	16.02	15.62	76.47	18.83	24	Pass
58	5290	14.68	13.98	54.38	17.35	24	Pass
106	5530	15.89	15.69	75.883	18.80	24	Pass
122	5610	15.99	15.44	74.714	18.73	24	Pass
*138 (U-NII-2C Band)	5690	18.34	17.74	127.663	21.06	24	Pass
*138 (U-NII-3 Band)	5690	4.72	4.62	5.862	7.68	30	Pass
155	5775	19.12	18.98	160.726	22.06	30	Pass

Note: * Test was performed in accordance with Measurement follow FCC KDB 789033 UNII test procedure Method SA-1 and use spectrum analyzer test.

Note: For U-NII-2A, U-NII-2C Band output power limitation is determined based on 26dBc bandwidth

Power Limit = 11dBm + 10logB < U-NII-2A, U-NII-2C >							
Channel Number Freq.(MHz) Min. B(MHz) Determined Conducted L (dBm)							
58	5290	84.42	30.26 > 24				
106	5530	84.66	30.27 > 24				
122	5610	84.15	30.25 > 24				
138 (U-NII-2C Band)	5690	84.08	30.24 > 24				

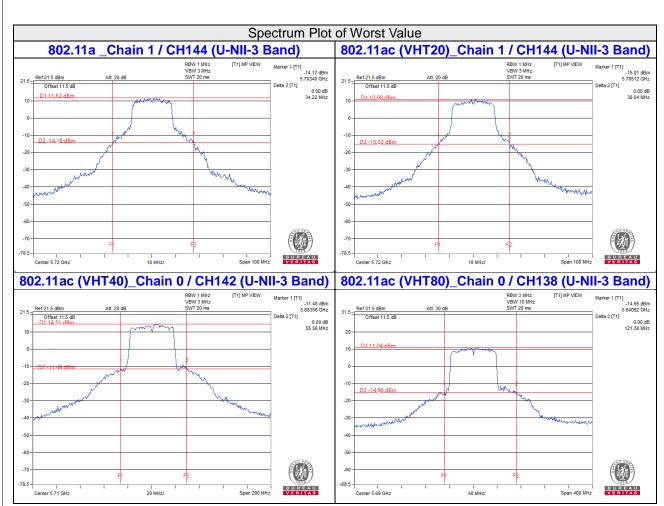
26dB OCCUPIED BANDWIDTH

802.11a

Channel	Frequency (MHz)	26dB Bandwidth (MHz)	
		Chain0	Chain1
36	5180	24.17	23.76
40	5200	23.71	22.9
48	5240	25.48	23.53
52	5260	41.51	24.47
60	5300	43.93	24.51
64	5320	41.62	23.67
100	5500	28.55	25.35
116	5580	36.21	28.55
140	5700	27.1	31.63
144 (U-NII-2C Band)	5720	22.74	21.6
144 (U-NII-3 Band)	5720	12.74	12.62
149	5745	25.59	24.29
157	5785	25.82	24.97
165	5825	26.15	25.35

802.11ac (VHT20)

Channel	Frequency (MHz)	26dB Bandwidth (MHz)	
		Chain0	Chain1
36	5180	24.93	24.59
40	5200	25.2	24.73
48	5240	26.5	25.26
52	5260	46.88	25.21
60	5300	46.02	25.94
64	5320	43.8	25.5
100	5500	28.93	25.9
116	5580	36.41	28.8
140	5700	29.4	29.54
144 (U-NII-2C Band)	5720	22.71	19.88
144 (U-NII-3 Band)	5720	13.18	10.16
149	5745	26.06	25.77
157	5785	26.55	26.28
165	5825	26.65	26.12


802.11ac (VHT40)

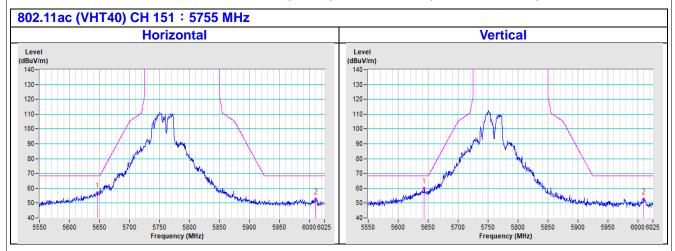
Channel	Frequency (MHz)	26dB Bandwidth (MHz)	
		Chain0	Chain1
38	5190	42.74	42.46
46	5230	46.06	42.6
54	5270	93.84	42.94
62	5310	42.42	42.38
102	5510	42.19	42.39
110	5550	91.04	52.33
134	5670	42.24	42.37
142 (U-NII-2C Band)	5710	41.44	51.36
142 (U-NII-3 Band)	5710	14.12	25.55
151	5755	42.69	42.62
159	5795	42.46	42.36

802.11ac (VHT80)

Channel	Frequency (MHz)	26dB Bandwidth (MHz)	
		Chain0	Chain1
42	5210	85.01	84.04
58	5290	84.47	84.42
106	5530	84.83	84.66
122	5610	85.03	84.15
138 (U-NII-2C Band)	5690	84.08	92.84
138 (U-NII-3 Band)	5690	37.3	42.96
155	5775	84.73	85.78

Note:

For CH144 (U-NII-3) = Delta 2 - (5725MHz - Marker 1) For CH142 (U-NII-3) = Delta 2 - (5725MHz - Marker 1) For CH138 (U-NII-3) = Delta 2 - (5725MHz - Marker 1)



5 Pictures of Test Arra	ingements
Please refer to the attach	ed file (Test Setup Photo).

Report No.: RF210105C01A-1 Reference No.: 201230C01

Annex A - Radiated Out of Band Emission (OOBE) Measurement (For U-NII-3 band)

Appendix - Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

Hsin Chu EMC/RF/Telecom Lab

Tel: 886-3-6668565

Fax: 886-3-6668323

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Tel: 886-2-26052180 Fax: 886-2-26051924

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---

Report No.: RF210105C01A-1 Page No. 47 / 47 Report Format Version:6.1.2 Reference No.: 201230C01