

FCC Test Report

EQUIPMENT	: Bar Code Handy Terminal
BRAND NAME	: DENSO
MODEL NAME	: BHT-710BWB-CE
FCC ID	: PZWBHT710BWB
STANDARD	: FCC Part 15 Subpart E
CLASSIFICATION	: Unlicensed National Information Infrastructure (UNII)
APPLICANT	: DENSO WAVE INCORPORATED

1-1 Showa-cho, Kariya-shi, Aichi, Japan 448-8661

The product sample received on Jan. 21, 2009 and completely tested on Mar. 26, 2009. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.4-2003 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

en Wu

Reviewed by: No / Manager

SPORTON INTERNATIONAL INC.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

TABLE OF CONTENTS

RE	VISIO	N HISTORY	3
รบ	MMAR	RY OF TEST RESULT	4
1	GENE	ERAL DESCRIPTION	5
2	1.1 1.2 1.3 1.4 1.5 1.6	Applicant Manufacturer Feature of Equipment Under Testing Site Applied Standards Ancillary Equipment List CONFIGURATION OF EQUIPMENT UNDER TEST	5 5 7 7 7
2		Carrier Frequency Channel	
	2.1 2.2 2.3 2.4 2.5	Pre-Scanned RF Power Test Mode Connection Diagram of Test System RF Utility	8 9 10
3	TEST	RESULT	11
4	3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10	26dB & 99% Bandwidth Measurement Maximum Conducted Output Power Measurement Power Spectral Density Measurement Band Edges Measurement AC Conducted Emission Measurement Radiated Emission Measurement Peak Excursion Ratio Measurement Automatically Discontinue Transmission Frequency Stability Measurement Antenna Requirements	15 19 25 25 45 48 49 53
-			
5		ERTAINTY OF EVALUATION	
6	CERT	TIFICATION OF TAF ACCREDITATION	57
AP	PEND	IX A. PHOTOGRAPHS OF EUT	
AP	PEND	IX B. SETUP PHOTOGRAPHS	

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR912101C	Rev. 01	Initial issue of report	Feb. 20, 2009
FR912101C	Rev. 02	Update applicant address	Feb. 23, 2009
FR912101C	Rev. 03	Update test data of frequency stability	Mar. 27, 2009

Report Section	FCC Rule	IC Rule	Description	Limit	Result	Remark
3.1	15.403(i)	A9.2	26dB & 99% Bandwidth	-	Pass	-
3.2	15.407(a)	A9.2	Maximum Conducted Output Power	\leq 17, 24, 30 dBm (depend on band)	Pass	-
3.3	15.407(a)	A9.2	Power Spectral Density	\leq 4, 11, 17 dBm (depend on band)	Pass	-
3.4	15.407(b)	A9.3	Frequency Band Edges	≤ -17, -27 dBm (depend on band)&15.209(a)	Pass	-
3.5	15.407(b)	A9.3	Spurious Emission	< 20 dBc	Pass	-
3.6	15.207	Gen 7.2.2	AC Conducted Emission	15.207(a)	Pass	Under limit 18.0 dB at 0.286 MHz
3.7	15.407(b)	A9.3	Transmitter Radiated Emission	≤ -17, -27 dBm (depend on band)&15.209(a)	Pass	Under limit 9.78 dB at 5150.00 MHz
3.8	15.407(b)	A9.3	Peak Excursion Ratio	\leq 13dB	Pass	-
3.9	15.407(c)	A9.5	Automatically Discontinue Transmission	Discontinue Transmission	Pass	-
3.10	15.407(g)	A9.5	Frequency Stability	Within Operation Band	Pass	-
3.11	15.203 & 15.407(a)	A9.2	Antenna Requirement	N/A	Pass	-

SUMMARY OF TEST RESULT

1 General Description

1.1 Applicant

DENSO WAVE INCORPORATED

1-1 Showa-cho, Kariya-shi, Aichi, Japan 448-8661

1.2 Manufacturer

Universal Scientific Industrial CO., LTD.

No. 141, Lane 351, Taiping Road, Sec. 1, Tsao Tuen, Nan-Tou, Taiwan

1.3 Feature of Equipment Under

Product Feature & Specification					
Equipment	Bar Code Handy Terminal				
Brand Name	DENSO				
Model Name	BHT-710BWB-CE				
Tx/Rx Frequency Range	5150 MHz ~ 5250 MHz				
Maximum Output Power to Antenna	802.11a : 16.41 dBm				
Antenna Type	PIFA Antenna with gain 5.26 dBi				
Type of Antenna Connector	I-PEX				
HW Version	V3.4				
SW Version	1.16a				
Type of Modulation	OFDM (BPSK / QPSK / 16QAM / 64QAM)				
EUT Stage	Production Unit				

Remark: This device only supports ch36 to ch44 for 802.11a mode.

Accesso	ries	List:
A000330	1100	LIGU.

Accessories Specification					
	Brand Name	DENSO			
Battery 1	Model Name	BT-700LL			
Dallery 1	Power Rating	3.6Vdc, 3800mAh			
	Туре	Li-ion			
	Brand Name	DENSO			
Bottony 2	Model Name	BT-700L			
Battery 2	Power Rating	3.7Vdc, 2200mAh			
	Туре	Li-ion			

Remark:

- 1. The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.
- 2. This test report recorded only product characteristics and test results of U-NII.
- 3. For accessories equipped with this EUT, please refer to the appendix of the external photo.
- 4. For other wireless features of this EUT, test report will be issued separately.

1.4 Testing Site

Test Site	SPORTON INTERNATIONAL INC.				
	No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C TEL: +886-3-3273456 / FAX: +886-3-3284978				
Test Site Location					
Test Site No.	Sporton Site No. FCC/IC Registration No.				
lest Site No.	CO05-HY	03CH06-HY	TW1022/4086B-1		

1.5 Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart E
- FCC Public Notice DA 02-2138, (Measurement Guidelines of UNII)
- ANSI C63.4-2003
- IC RSS-210 Issued 7

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B (DoC), recorded in a separate test report.

1.6 Ancillary Equipment List

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	WLAN AP	D-Link	DWL-7100AP	N/A	N/A	Unshielded, 1.8 m

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Channel Spacing 20MHz						
Channel Freq. Channel Freq. Channel Freq. (MHz) Channel (MHz)						
36	5180 40 5200 44 5220					

Note: This device only supports ch36 to ch44 for 802.11a mode.

2.2 Pre-Scanned RF Power

Preliminary RF power output tests were performed in different data rate and recorded the in the following table:

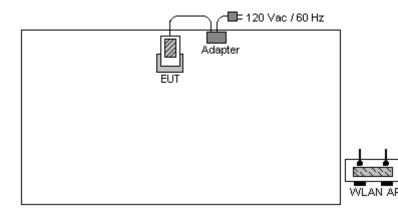
5GHz 802.11a RF Power (dBm)									
	Eroquonov				Data	Rate			
Channel	Frequency (MHz)	6	9	12	18	24	36	48	54
	(141112)	Mbps							
CH 36	5180 MHz	15.22	15.04	15.10	15.00	15.05	13.91	11.39	10.44
CH 40	5200 MHz	15.18	14.98	15.06	14.95	14.98	13.87	11.36	10.40
CH 44	5220 MHz	14.97	14.80	14.79	14.82	14.61	13.46	10.82	10.08

Remark:

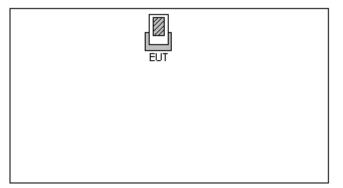
- 1. The pre-scanned RF power table was measured by power meter.
- 2. The 802.11a data rate was set in 6Mbps on 5150MHz to 5250MHz due to the highest RF output power.
- 3. The EUT is programmed to transmit signal continuously for all testing.

2.3 Test Mode

The EUT has been associated with peripherals pursuant to ANSI C63.4-2003 and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction (150 kHz to 30 MHz), radiation (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). Pre-scanned tests were conducted to determine the final configuration from all possible combinations. The following tables are showing the test modes as the worst cases and recorded in this report.


Test Cases					
Test Item	802.11a (Modulation : OFDM)				
	Mode 1: CH36_5180 MHz				
Conducted TCs	Mode 2: CH40_5200 MHz				
	Mode 3: CH44_5220 MHz				
	■ Mode 1: CH36_5180 MHz				
Radiated TCs	Mode 2: CH40_5200 MHz				
	Mode 3: CH44_5220 MHz				
AC Conducted Emission	AC Conducted Emission Mode 1 : WLAN (5G) Link + Cradle + Adapter				

Note: This device only supports ch36 to ch44 for 802.11a mode.



2.4 Connection Diagram of Test System

<Conducted Emission>

<Radiated Emission>

2.5 RF Utility

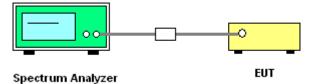
Programmed RF Utility "FCCTest18dBm.exe" is installed in EUT to provide channel selection, power level, data rate and the application type. RF Utility can send transmitting signal for all testing. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

3 Test Result

3.1 26dB & 99% Bandwidth Measurement

3.1.1 Limit of 26dB & 99% Bandwidth

There is no restriction limits for bandwidth. The maximum conducted output power can be limited by measured emission bandwidth (B). For the band 5.15~5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW (17dBm) or 4 dBm + 10log B.

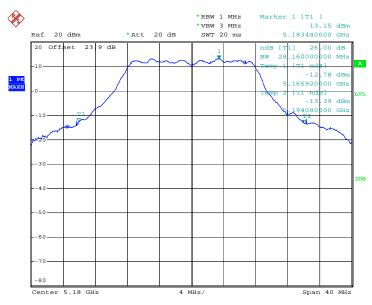

3.1.2 Measuring Instruments

See list of measuring instruments of this test report.

3.1.3 Test Procedures

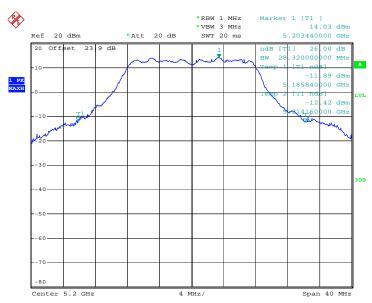
- 1. The testing follows FCC Public Notice DA 02-2138 (Measurement Guidelines of UNII).
- 2. The RF output of EUT was connected to the spectrum analyzer by a low loss cable.
- 3. Read RBW and repeat measurement as needed until the RBW/BW ratio is approximately 1%.
- Use a RBW = approximately 1% of the emission bandwidth; Set the VBW > RBW; Use a peak detector.
- 5. Measure the maximum width of the emission that is 26 dB relative to the peak of the emission and 99% occupied bandwidth.

3.1.4 Test Setup



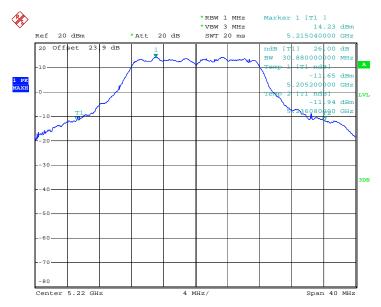
3.1.5 Test Result of 26dB Bandwidth

Test Mod	Test Mode : Mode 1~3		Temperature :			
Test Engineer: Ken Hsu		Relative Humidity :				
Channel	nel Frequency (MHz)			26dB Bandwidth (MHz)		Pass/Fail
36	51	5180		28.16		Pass
40	52	200		28.32	Pass	
44	52	20		30.88		Pass



3.1.6 Test Result of 26dB Bandwidth Plots

Mode 1 : 26 dB Bandwidth Plot on 802.11a Channel 36


Date: 12.FEB.2009 19:41:06

Mode 2 : 26 dB Bandwidth Plot on 802.11a Channel 40

Date: 12.FEB.2009 19:42:38

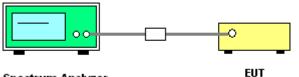
Mode 3 : 26 dB Bandwidth Plot on 802.11a Channel 44

Date: 12.FEB.2009 19:41:42

3.2 Maximum Conducted Output Power Measurement

3.2.1 Limit of Maximum Conducted Output Power

For the band 5.15~5.25 GHz, the maximum conducted output power shall not exceed the lesser of 50 mW (17dBm) or 4 dBm + 10log B, where B is the 26 dB emissions bandwidth in MHz. If transmitting antenna directional gain is greater than 6 dBi, the peak output power and power density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.


3.2.2 Measuring Instruments

See list of measuring instruments of this test report.

3.2.3 Test Procedures

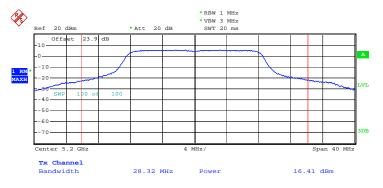
- 1. The testing follows FCC Public Notice DA 02-2138 (Measurement Guidelines of UNII).
- 2. The RF output of EUT was connected to the spectrum analyzer by a low loss cable.
- 3. Measure the power and record it.

3.2.4 Test Setup

Spectrum Analyzer

3.2.5 Test Result of Maximum Conducted Output Power

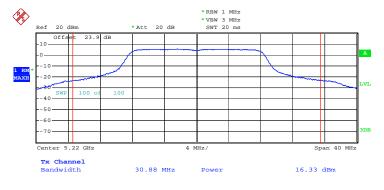
Test Mode :	Mode 1~3		Temperature :		21~23		
Test Engineer :	Ken Hsu		Relative Hu	imidity :	49~52%		
Channel	Frequency (MHz)	Measured Power Output (dBm)			a. Limits dBm)	Pass/Fail	
36	5180	15	5.50		17	Pass	
40	5200	16	6.41		17	Pass	
44	5220	16	6.33		17	Pass	



3.2.6 Test Result of Power Output Plots

Mode 1 : Output Power Plot on 802.11a Channel 36

Date: 12.FEB.2009 19:41:16


Mode 2 : Output Power Plot on 802.11a Channel 40

Date: 12.FEB.2009 19:42:51

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : PZWBHT710BWB

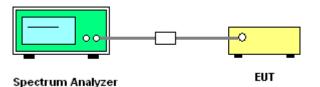
Mode 3 : Output Power Plot on 802.11a Channel 44

Date: 12.FEB.2009 19:41:50

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

For the band 5.15–5.25 GHz, the peak power spectral density shall not exceed 4 dBm in any 1MHz band. If transmitting antenna directional gain is greater than 6 dBi, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

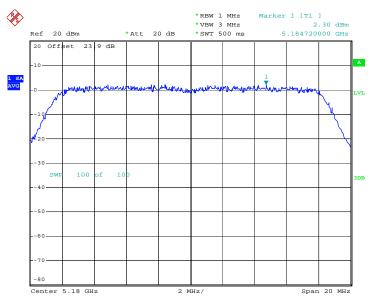

3.3.2 Measuring Instruments

See list of measuring instruments of this test report.

3.3.3 Test Procedures

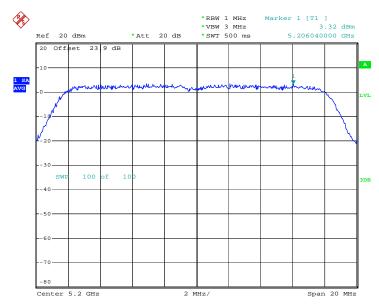
The transmitter output is connected to the spectrum analyzer. According to the method 3 of DA-02-2138, the resolution bandwidth is set to 1 MHz, video bandwidth is 3MHz, trace average 100 traces in power averaging mode, and sample detection is used, and the analyzer is set for video averaging.

3.3.4 Test Setup



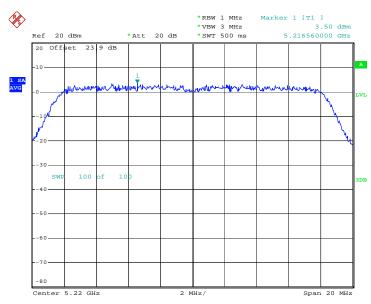
3.3.5 Test Result of Power Spectral Density

Test Mode :	Mode 1~3		Temperature :		21~23		
Test Engineer :	Ken Hsu		Relative Hu	midity :	49~52%		
Channel	Frequency (MHz)	Measured PSD (dBm)		Max. Limits (dBm)		Pass/Fail	
36	5180	2	.30		4	Pass	
40	5200	3	.32		4	Pass	
44	5220	3	.50		4	Pass	



3.3.6 Test Result of Power Spectral Density Plots

Mode 1 : PSD Plot on 802.11a Channel 36


Date: 12.FEB.2009 20:19:58

Mode 2 : PSD Plot on 802.11a Channel 40

Date: 19.FEB.2009 14:16:29

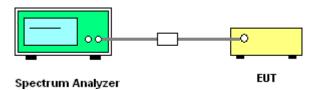
Mode 3 : PSD Plot on 802.11a Channel 44

Date: 12.FEB.2009 20:18:18

3.4 Band Edges Measurement

3.4.1 Limit of Band Edges

For transmitters operating in the 5.15–5.25 GHz band: all emissions outside of the 5.15–5.35 GHz band shall not exceed an EIRP of –27 dBm/MHz.


3.4.2 Measuring Instruments

See list of measuring instruments of this test report.

3.4.3 Test Procedures

- Set both RBW and VBW of spectrum analyzer to 1MHz with convenient frequency span including 1MHz bandwidth from band edge.
- 2. The band edges was measured and recorded.

3.4.4 Test Setup

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : PZWBHT710BWB

3.4.5 Test Result of Radiated Band Edges

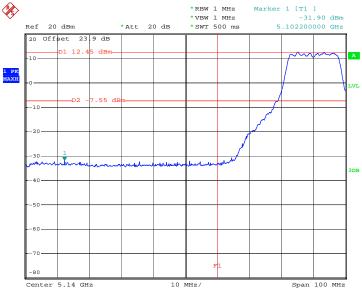
Test Mode :	Mode 1	Temperature :	21~23°C
Test Channel :	36	Relative Humidity :	49~52%
Test Engineer :	Kay Wu		

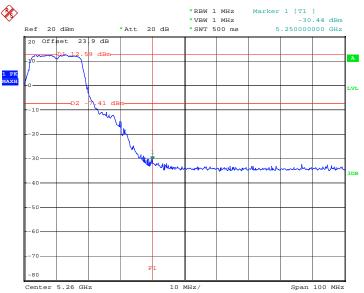
	ANTENNA POLARITY : HORIZONTAL										
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark	
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos		
(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV)	(dB)	(dB)	(dB)	(cm)	(deg)		
5150	56.21	-11.99	68.2	51.8	34.53	5.98	36.1	100	331	Peak	

	ANTENNA POLARITY : VERTICAL										
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark	
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos		
(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV)	(dB)	(dB)	(dB)	(cm)	(deg)		
5150	58.81	-9.39	68.2	54.4	34.53	5.98	36.1	100	293	Peak	

Test Mode :	Mode 3	Temperature :	21~23°C
Test Channel :	44	Relative Humidity :	49~52%
Test Engineer :	Kay Wu		

	ANTENNA POLARITY : HORIZONTAL										
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark	
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos		
(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV)	(dB)	(dB)	(dB)	(cm)	(deg)		
5250	61.12	-7.08	68.2	56.63	34.55	6.04	36.1	101	321	Peak	


	ANTENNA POLARITY : VERTICAL										
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark	
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos		
(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV)	(dB)	(dB)	(dB)	(cm)	(deg)		
5250	62.26	-5.94	68.2	57.77	34.55	6.04	36.1	100	292	Peak	


3.4.6 Test Result of Conducted Band Edges

Test Mode :	Mode 1 and Mode 3	Temperature :	21~23
Test Engineer :	Ken Hsu	Relative Humidity :	49~52%

Mode 1 : Low Band Edge Plot on Channel 36

Date: 12.FEB.2009 19:47:44

Mode 3 : High Band Edge Plot on Channel 44

Date: 13.FEB.2009 08:17:57

3.5 AC Conducted Emission Measurement

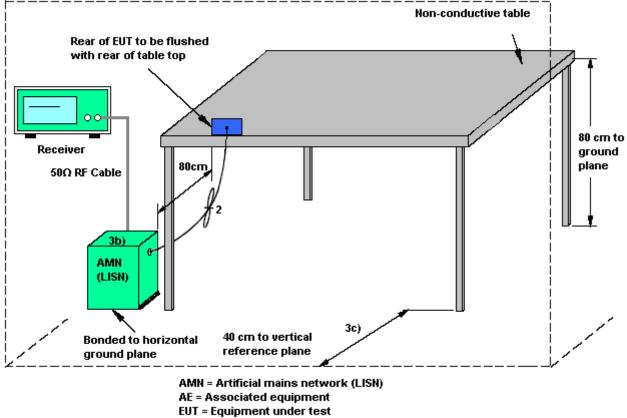
3.5.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted limit (dBuV)				
	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

*Decreases with the logarithm of the frequency.

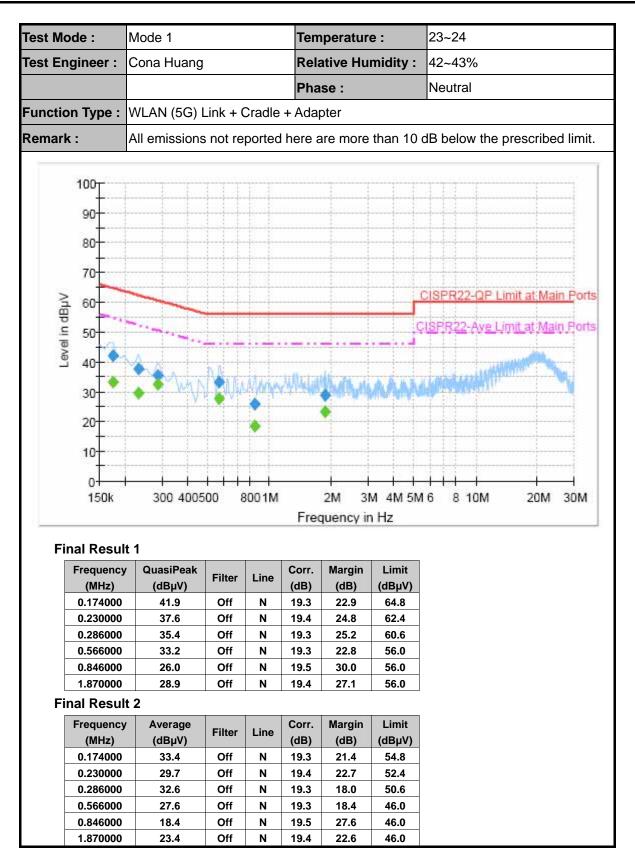
3.5.2 Measuring Instruments


See list of measuring instruments of this test report.

3.5.3 Test Procedures

- 1. Please follow the guidelines in ANSI C63.4-2003.
- The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 4. All the support units are connecting to the other LISN.
- 5. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 6. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 7. Both sides of AC line were checked for maximum conducted interference.
- 8. The frequency range from 150 kHz to 30 MHz was searched.
- 9. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.

3.5.4 Test Setup


ISN = Impedance stabilization network

3.5.5 Test Result of AC Conducted Emission

Test M	ode :	Mode 1			Ten	nperatur	e :	23~24		
Test Er	ngineer :	Cona Huang			Rela	ative Hu	midity :	42~43%		
					Pha	ise :		Line		
Functio	on Type :	WLAN (5G) I	_ink + (Cradle	+ Ada	pter				
Remar	k :	All emissions	s not re	ported	here a	are more	than 10	dB below the prescribed limit.		
_										
	100 						I I I I			
	90									
	80									
	70									
	≩ 60							CISPR22-QP Limit at Main Ports		
ovel in AB ₁ /V								CISPR22-Ave Limit at Main Ports		
ilov										
-	² 40		Λ.							
	30-	• • • • • • • • • • • • • • • • • • •	v MV	AMM	WMM.					
	20		٠	2	*					
	20									
	10									
	0		+ + +	+ +		-	11	++++		
	150k	300 4005	500	8001M			M 4M 5N	16 8 10M 20M 30M		
					Fre	quency i	n Hz			
Fi	nal Resu	lt 1								
	Frequenc		Filter	Line	Corr.	Margin	Limit			
	(MHz) 0.174000	(dBµV) 42.7	Off	L1	(dB) 19.3	(dB) 22.1	(dBµV) 64.8			
	0.238000	39.4	Off	L1	19.4	22.8	62.2			
	0.342000		Off	L1	19.3	26.0	59.2			
	0.574000 0.854000		Off Off	L1 L1	19.3 19.5	22.3 30.1	56.0 56.0			
	1.414000		Off	L1	19.5	31.3	56.0			
Fi	nal Resu		•			0.110	0010			
	Frequenc		- 114 - 14		Corr.	Margin	Limit			
	(MHz)	(dBµV)	Filter	Line	(dB)	(dB)	(dBµV)			
	0.174000		Off	L1	19.3	22.7	54.8			
	0.238000		Off	L1	19.4	21.6	52.2			
	0.342000		Off	L1	19.3	23.3	49.2			
	0.574000		Off	L1	19.3	23.4	46.0			
	0.854000		Off	L1	19.5	25.8	46.0			
	1.414000	22.0	Off	L1	19.4	24.0	46.0			

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : PZWBHT710BWB Page Number: 27 of 57Report Issued Date: Mar. 27, 2009Report Version: Rev. 03

3.6 Radiated Emission Measurement

3.6.1 Limit of Radiated Emission

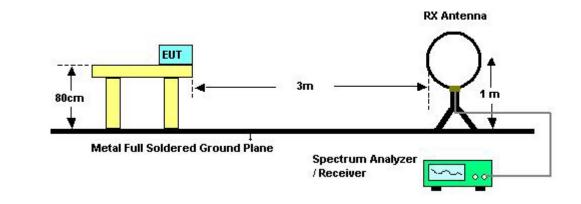
Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 - 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

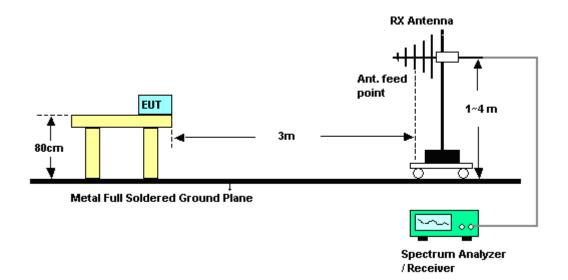
For transmitters operating in the 5.15–5.25 GHz band: all emissions outside of the 5.15–5.35 GHz band shall not exceed an EIRP of –27 dBm/MHz.

3.6.2 Measuring Instruments

See list of measuring instruments of this test report.


3.6.3 Test Procedures

- The testing follows the guidelines in FCC Public Notice DA 02-2138, (Measurement Guidelines of UNII)
- 2. The EUT was placed on a rotatable table top 0.8 meter above ground.
- 3. The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- 4. The table was rotated 360 degrees to determine the position of the highest radiation.
- 5. The antenna is a broadband antenna and its height is adjusted between one meter and four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
- 6. For each suspected emission, the EUT was arranged to its worst case and then adjust the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
- 7. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function and specified bandwidth with Maximum Hold Mode.
- 8. For testing below 1GHz, If the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the quasi-peak method and reported.
- 9. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.



3.6.4 Test Setup

For radiated emissions below 30MHz

For radiated emissions above 30MHz

3.6.5 Test Results of Radiated Emissions (9kHz ~ 30MHz)

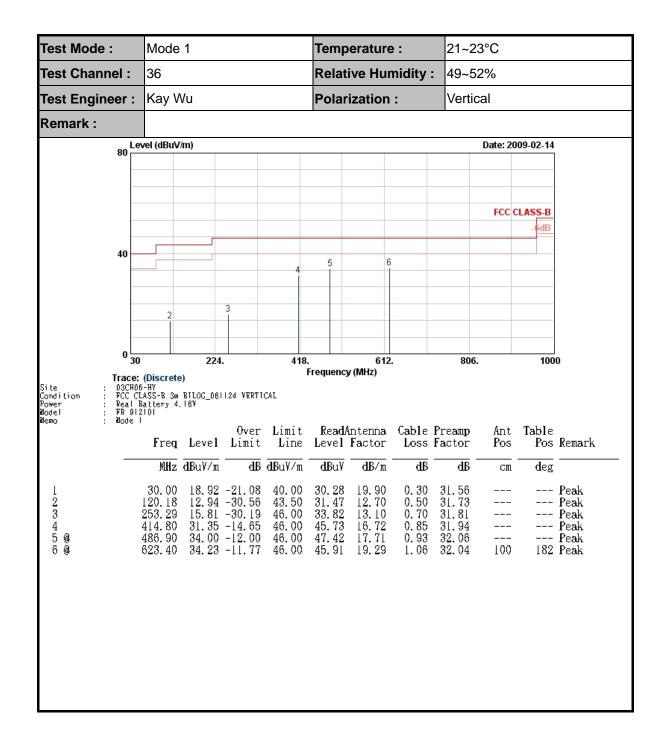
Temperature	24~26°C	Humidity	47~49%
Test Engineer	Elvis Chen		

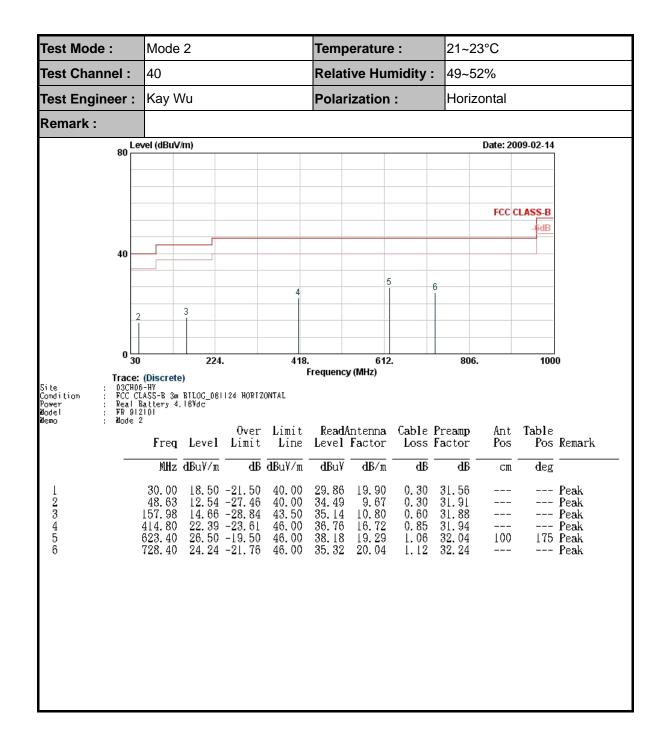
Freq.	Level	Over Limit	Limit Line	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:

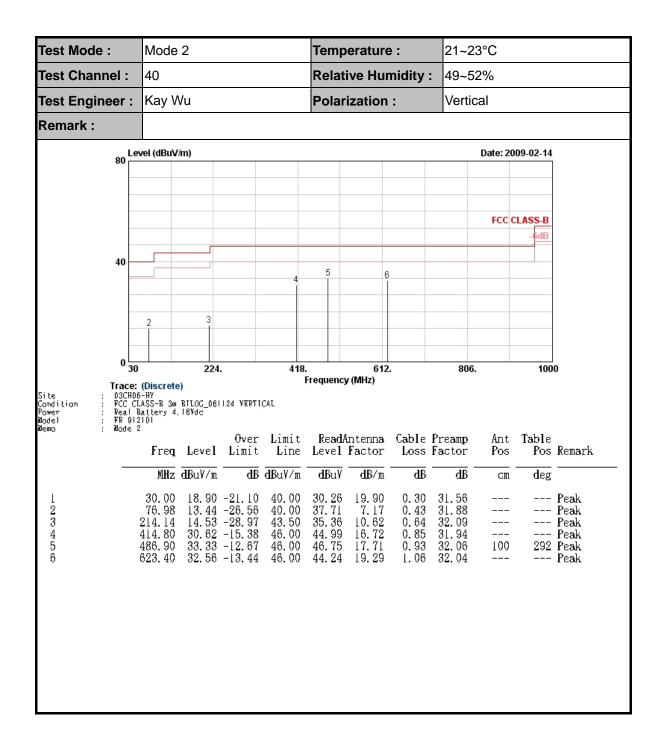
The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

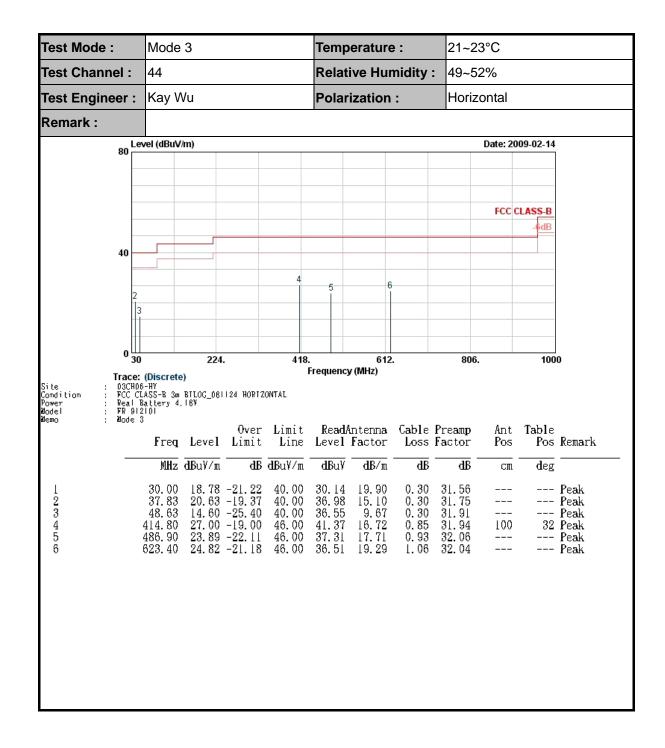
Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

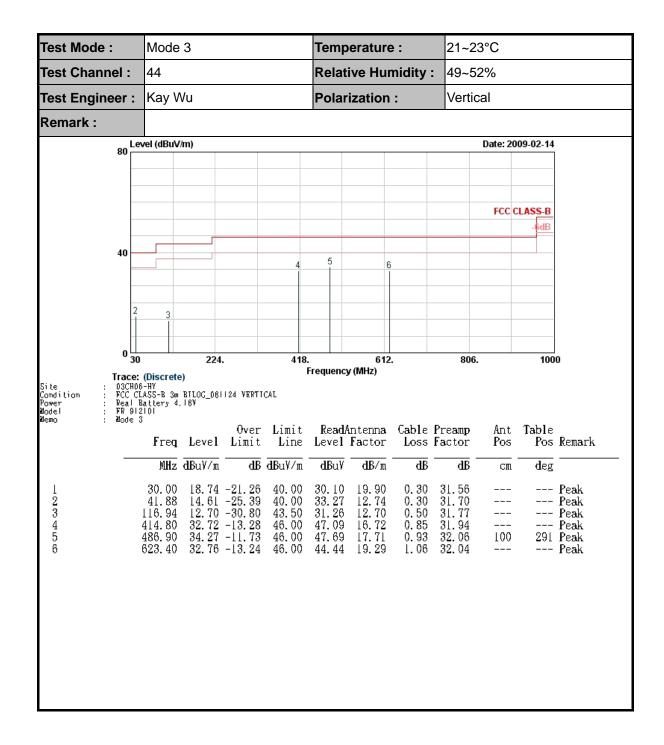

Limit line = specific limits (dBuV) + distance extrapolation factor.

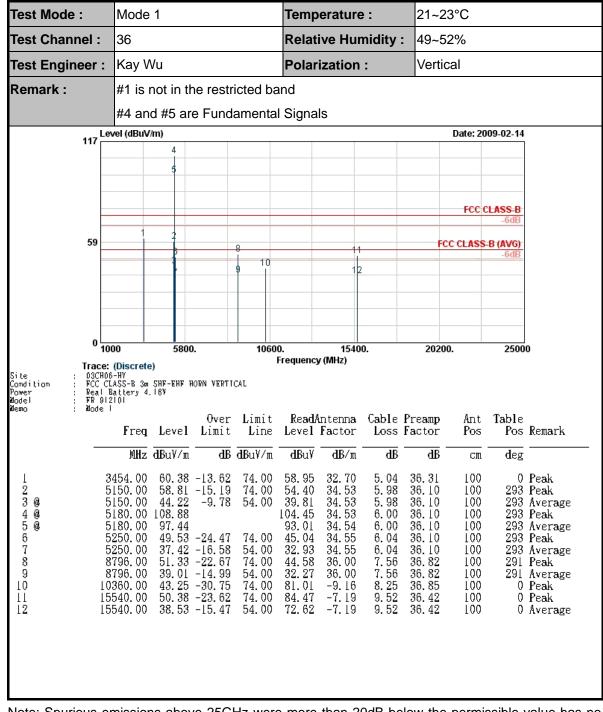

Test Mode : Mode 1 Temperature : 21~23°C Test Channel : 36 **Relative Humidity :** 49~52% Kay Wu **Polarization :** Horizontal Test Engineer : Remark : 80 Level (dBuV/m) Date: 2009-02-14 FCC CLASS-B dB 40 5 6 2 3 0 <u>_</u> 30 224. 418. 612. 806. 1000 Frequency (MHz) Trace: (Discrete) 03CH06-HY FCC CLASS-B 3m BILOG_08II24 HORIZONTAL Feal Battery 4.18V FF 912101 FF 912101 Site Condition Power Model emo Node | ReadAntenna Cable Preamp Over Limit Table Ant Freq Level Limit Line Level Factor Loss Factor Pos Pos Remark MHz dBuV/m dB dBu∛∕m dBu¥ dB∕π ₫₿ ₫₿ сm deg 0.30 0.30 0.60 --- Peak 19.90 9.67 30.00 19.03 -20.97 40.00 30.39 31.56 123456 ___ 19. 03 -20. 97 15. 14 -24. 86 14. 14 -29. 36 25. 70 -20. 30 24. 77 -21. 23 23. 39 -22. 61 31. 91 31. 73 31. 94 32. 10 32. 01 40.00 37.08 --- Peak 48.63 ____ ____ --- Peak 43.5034.17 11.10 152.58 46.00 46.00 46.00 414.80 40.0716.72 0.85 100 314 Peak 37.51 32.53 526.80 18.43 0.93 ------ Peak 876.80 21.56 1.30 ____ --- Peak

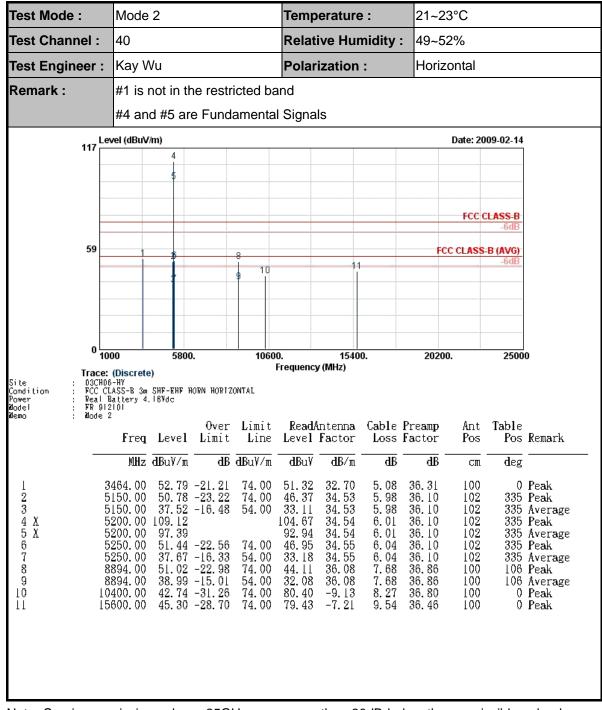
3.6.6 Test Result of Radiated Emission (30MHz ~ 1GHz)



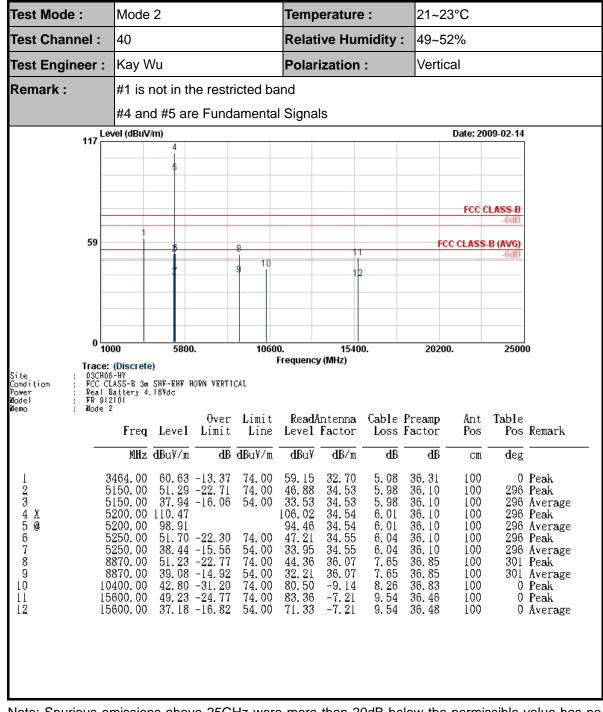


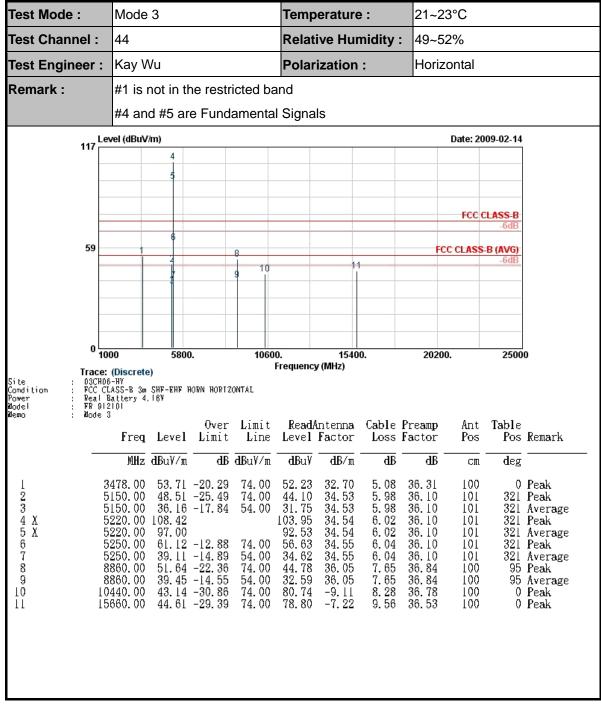


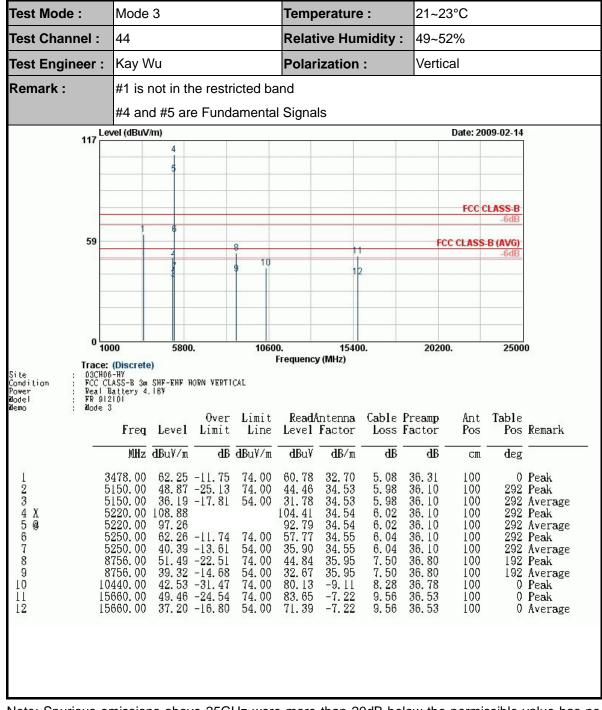



3.6.7 Test Result of Radiated Emission \geq 1GHz

Temperature : 21~23°C	Mode 1		est Mode :
Relative Humidity : 49~52%		36	est Channel :
Polarization : Horizontal		est Engineer :	
tricted band	he restricted b	#1 is not in t	emark :
damental Signals	re Fundamenta	#4 and #5 ar	
Date: 2009-02-14		vel (dBuV/m)	117 <mark>Le</mark>
		4	
FCC CLASS-B			
8 FCC CLASS-B (AVG)		1 2	59
9 -6dB	, i i i i i i i i i i i i i i i i i i i	j j	
10600. 15400. 20200. 25000		00 580	0
Frequency (MHz)	HORN HORTZONTAL	LASS-B 3m SHF-EHF 1 Battery 4.16V 2101	te : D3CHD ndition : FCC C
	Over Limit Limit Line	Freq Level	
B dBu¥/m dBu¥ dB/m dB dB cm deg	i <u>dB</u> dBu∛/m	MHz dBu¥/m	
9 74.00 51.80 34.53 5.98 36.10 100 331 Peak 5 54.00 37.04 34.53 5.98 36.10 100 331 Average 102.71 34.54 6.00 36.10 100 331 Peak	-17.79 74.00 -12.55 54.00	5150.00 56.21 5150.00 41.45 5180.00 107.14	2 5 3 5 4 @ 5
5 74.00 44.05 34.55 6.04 36.10 100 331 Peak 1 54.00 31.60 34.55 6.04 36.10 100 331 Average 5 74.00 44.97 36.13 7.71 36.87 100 182 Peak 6 54.00 32.54 36.13 7.71 36.87 100 182 Peak 9 54.00 32.54 36.13 7.71 36.87 100 182 Average 7 74.00 82.39 -9.16 8.25 36.85 100 0 Peak	-25.46 74.00 -17.91 54.00 -22.06 74.00 -14.49 54.00 -29.37 74.00	250.00 48.54 250.00 36.09 3932.00 51.94 3932.00 39.51 360.00 44.63	6 5 7 5 8 8 9 8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-25.46 74.00 -17.91 54.00 -22.06 74.00 -14.49 54.00 -29.37 74.00	5250.00 36.09 3932.00 51.94 3932.00 39.51 360.00 44.63	6 5 7 5 8 8 9 8



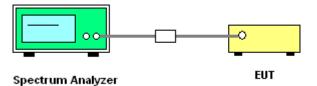




3.7 Peak Excursion Ratio Measurement

3.7.1 Limit of Peak Excursion Ratio

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the maximum conducted output power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

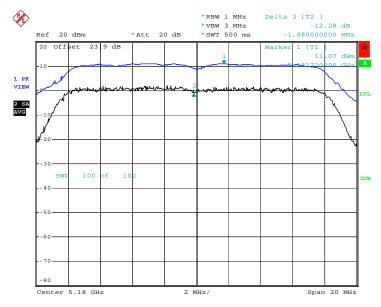

3.7.2 Measuring Instruments

See list of measuring instruments of this test report.

3.7.3 Test Procedures

- 1. The transmitter output is connected to the spectrum analyzer.
- 2. The resolution bandwidth is set to and maintained at 1 MHz. The video bandwidth is set to 3 MHz.
- 3. Trace A is set peak detector and to Max Hold, then to View. Then the detector is readjusted to sample detector, max hold to run for 60 seconds, and the signal under this measurement condition is captured in Trace B in Accordance with the method 3 of DA-02-2138.
- 4. The difference between the traces is investigated. The marker is placed at the frequency, which shows the largest difference. The amplitude delta between the traces at this frequency is the peak excursion.

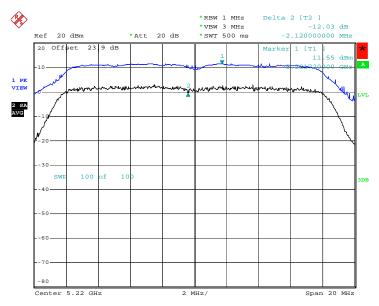
3.7.4 Test Setup



3.7.5 Test Result of Peak Excursion Ratio

Test Mode :	Mode 1~3	Temperature :	21~23
Test Engineer :	Ken Hsu	Relative Humidity :	49~52%

Mode 1 : Peak Excursion Ratio Plot on 802.11a Channel 36


Date: 13.FEB.2009 08:43:48

Mode 2 : Peak Excursion Ratio Plot on 802.11a Channel 40

Date: 19.FEB.2009 14:13:21

Mode 3 : Peak Excursion Ratio Plot on 802.11a Channel 44

Date: 13.FEB.2009 08:41:17

3.8 Automatically Discontinue Transmission

3.8.1 Limit of Automatically Discontinue Transmission

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signaling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization to describe how this requirement is met.

3.8.2 Measuring Instruments

See list of measuring instruments of this test report.

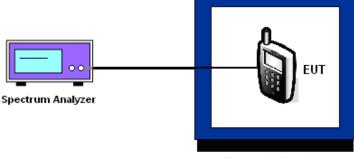
3.8.3 Test Result of Automatically Discontinue Transmission

During no any information transmission, the EUT can automatically discontinue transmission and become standby mode for power saving. The EUT can detect the controlling signal of ACK message transmitting from remote device and verify whether it shall resend or discontinue transmission.

3.9 Frequency Stability Measurement

3.9.1 Limit of Frequency Stability

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.


3.9.2 Measuring Instruments

See list of measuring instruments of this test report.

3.9.3 Test Procedures

- To ensure emission at the band edge is maintained within the authorized band, those values shall be measured by radiation emissions at upper and lower frequency points, and finally compensated by frequency deviation as procedures below.
- 2. The EUT was operated at the maximum output power, and connected to the spectrum analyzer, which is set to maximum hold function and peak detector. The peak value of the power envelope was measured and noted. The upper and lower frequency points were respectively measured relatively 10dB lower than the measured peak value.
- 3. The temperature was decreased to -30°C and raise in 10°C step up to 50°C.
- 4. The power supply voltage to the EUT was varied from BEP to 115% of the nominal value measured at the input to the EUT.
- The frequency deviation was calculated by adding the upper frequency point and the lower frequency point divided by two. Those detailed values of frequency deviation are provided in table below.

3.9.4 Test Setup

Thermal Chamber

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : PZWBHT710BWB

3.9.5 Test Result of Frequency Stability

Test Mode	e :	Mod	e 1~3	Tem	perature :	10~50°C			
Test Engineer: Ken Hsu					tive Humidity :	19~52%			
Channel	Freque (MH		Test Temperature (°C)	Test Voltage (Volt)	Low Frequency (MHz)	High Frequency (MHz)	Frequency Stability (ppm)		
				n/a	n/a	n/a	n/a		
			-30	n/a	n/a	n/a	n/a		
				n/a	n/a	n/a	n/a		
				n/a	n/a	n/a	n/a		
			-20	n/a	n/a	n/a	n/a		
				n/a	n/a	n/a	n/a		
				4.2	5171.68	5188.32	0.00		
			-10	3.7	5171.68	5188.32	0.00		
						3.4	5171.68	5188.32	0.00
				4.2	5171.67	5188.32	-1.93		
			0	3.7	5171.67	5188.32	-1.93		
				3.4	5171.67	5188.32	-1.93		
					4.2	5171.67	5188.32	-1.93	
36	518	5180	0 10	3.7	5171.67	5188.32	-1.93		
					3.4	5171.67	5188.32	-1.93	
					4.2	5171.68	5188.32	0.00	
			20	3.7	5171.68	5188.32	0.00		
				3.4	5171.68	5188.32	0.00		
				4.2	5171.68	5188.33	0.97		
		30	3.7	5171.68	5188.33	0.97			
				3.4	5171.68	5188.33	0.97		
				4.2	5171.68	5188.33	0.97		
				40	3.7	5171.68	5188.33	0.97	
				3.4	5171.68	5188.33	0.97		
				4.2	5171.68	5188.32	0.00		
			50	3.7	5171.68	5188.32	0.00		
				3.4	5171.68	5188.32	0.00		

Note: The operational condition of EUT is -10 to 50°C which was declared by manufacture.

Channel	Frequency (MHz)	Test Temperature (°C)	Test Voltage (Volt)	Low Frequency (MHz)	High Frequency (MHz)	Frequency Stability (ppm)	
			n/a	n/a	n/a	n/a	
		-30	n/a	n/a	n/a	n/a	
			n/a	n/a	n/a	n/a	
			n/a	n/a	n/a	n/a	
		-20	n/a	n/a	n/a	n/a	
			n/a	n/a	n/a	n/a	
			4.2	5191.68	5208.32	0.00	
		-10	3.7	5191.68	5208.32	0.00	
			3.4	5191.68	5208.32	0.00	
			4.2	5191.67	5208.32	-0.96	
		0	3.7	5191.67	5208.32	-0.96	
			3.4	5191.67	5208.32	-0.96	
			4.2	5191.68	5208.31	-0.96	
40	5200	10	3.7	5191.68	5208.31	-0.96	
			3.4	5191.68	5208.31	-0.96	
			4.2	5191.68	5208.32	0.00	
			20	3.7	5191.68	5208.32	0.00
			3.4	5191.68	5208.32	0.00	
			4.2	5191.67	5208.31	-1.92	
		30	3.7	5191.67	5208.31	-1.92	
			3.4	5191.67	5208.31	-1.92	
			4.2	5191.67	5208.31	-1.92	
		40	3.7	5191.67	5208.31	-1.92	
			3.4	5191.67	5208.31	-1.92	
			4.2	5191.68	5208.32	0.00	
		50	4.2	5191.68	5208.32	0.00	
			3.4	5191.68	5208.32	0.00	

Note: The operational condition of EUT is -10 to 50°C which was declared by manufacture.

Channel	Frequency (MHz)	Test Temperature (°C)	Test Voltage (Volt)	Low Frequency (MHz)	High Frequency (MHz)	Frequency Stability (ppm)				
			n/a	n/a	n/a	n/a				
		-30	n/a	n/a	n/a	n/a				
			n/a	n/a	n/a	n/a				
			n/a	n/a	n/a	n/a				
		-20	n/a	n/a	n/a	n/a				
			n/a	n/a	n/a	n/a				
			4.2	5211.68	5228.32	0.00				
		-10	3.7	5211.68	5228.32	0.00				
			3.4	5211.68	5228.32	0.00				
			4.2	5211.67	5228.33	0.00				
		0	3.7	5211.67	5228.33	0.00				
			3.4	5211.67	5228.33	0.00				
			4.2	5211.68	5228.33	0.96				
44	5220	10	3.7	5211.68	5228.33	0.96				
			3.4	5211.68	5228.33	0.96				
			4.2	5211.68	5228.32	0.00				
		20	3.7	5211.68	5228.32	0.00				
								3.4	5211.68	5228.32
			4.2	5211.67	5228.32	-0.96				
		30	3.7	5211.67	5228.32	-0.96				
			3.4	5211.67	5228.32	-0.96				
			4.2	5211.68	5228.32	0.00				
		40	3.7	5211.68	5228.32	0.00				
			3.4	5211.68	5228.32	0.00				
			4.2	5211.68	5228.32	0.00				
		50	3.7	5211.68	5228.32	0.00				
			3.4	5211.68	5228.32	0.00				

Note: The operational condition of EUT is -10 to 50°C which was declared by manufacture.

3.10 Antenna Requirements

3.10.1 Standard Applicable

According to FCC 47 CFR Section 15.407(a)(1)(2), if transmitting antenna directional gain is greater than 6 dBi, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.10.2 Antenna Connected Construction

The antennas type used in this product is PIFA Antenna with I-PEX connector and it is considered to meet antenna requirement of FCC.

3.10.3 Antenna Gain

The antenna gain is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipments

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Due Date	Remark
Spectrum Analyzer	R&S	FSP40	100055	9kHz~40GHz	Jun. 26, 2008	Jun. 25, 2009	Conducted (TH02-HY)
Power Meter	Agilent	E4416A	GB41292344	N/A	Feb. 21, 2008	Feb. 20, 2009	Conducted (TH02-HY)
Power Sensor	Agilent	E9327A	US40441548	N/A	Feb. 21, 2008	Feb. 20, 2009	Conducted (TH02-HY)
EMI Receiver	R&S	ESCS 30	100356	9kHz~2.75GHz	Aug. 01, 2008	Jul. 31, 2009	Conduction (CO05-HY)
Two-LISN	R&S	ENV216	11-100081	9kHz~30MHz	Nov. 26, 2008	Nov. 25, 2009	Conduction (CO05-HY)
Two-LISN	R&S	ENV216	11-100080	9kHz~30MHz	Nov. 26, 2008	Nov. 25, 2009	Conduction (CO05-HY)
AC Power Source	APC	APC-1000W	N/A	N/A	N/A	N/A	Conduction (CO05-HY)
Spectrum Analyzer	Agilent	E4408B	MY44211030	9kHz~26.5GHz	Oct. 24, 2008	Oct. 23, 2009	Radiation (03CH06-HY)
Spectrum Analyzer	R&S	FSP40	100057	9kHz~40GHz	Oct. 16, 2008	Oct. 15, 2009	Radiation (03CH06-HY)
EMI Test Receiver	R&S	ESVS10	834468/003	20MHz~1000M Hz	Apr. 24, 2008	Apr. 23, 2009	Radiation (03CH06-HY)
Bilog Antenna	SCHAFFNER	CBL6112B	2885	30MHz~2GHz	Nov. 12, 2008	Nov. 11, 2009	Radiation (03CH06-HY)
Double Ridge Horn Antenna	EMCO	3117	00066583	1G~18GHz	Aug. 18, 2008	Aug. 17, 2009	Radiation (03CH06-HY)
Double Ridge Horn Antenna	Training Research	AF-0801	95119	8G~18G	Oct. 28, 2008	Oct. 27, 2009	Radiation (03CH06-HY)
SHF-EHF Horn	SCHWARZBE CK	BBHA 9170	BBHA917025 1	15G - 40GHz	Oct. 16, 2008	Oct. 15, 2009	Radiation (03CH06-HY)
Pre Amplifier	Agilent	8449B	3008A01917	1G~26.5GHz	Nov. 11, 2008	Nov. 10, 2009	Radiation (03CH06-HY)
Pre Amplifier	Agilent	310N	186713	9kHz~1GHz	Apr. 21, 2008	Apr. 20, 2009	Radiation (03CH06-HY)
Loop Antenna	R&S	HFH2-Z2	860004/001	9 kHz~30 MHz	May 22, 2008	May 21, 2010	Radiation (03CH06-HY)

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)

	Uncerta	ainty of x_i	$u(x_i)$
Contribution	dB	Probability Distribution	$u(x_i)$
Receiver reading	0.10	Normal(k=2)	0.05
Cable loss	0.10	Normal(k=2)	0.05
AMN insertion loss	2.50	Rectangular	0.63
Receiver Spec	1.50	Rectangular	0.43
Site imperfection	1.39	Rectangular	0.80
Mismatch	+0.34/-0.35	U-shape	0.24
Combined standard uncertainty Uc(y)		1.13	
Measuring uncertainty for a level of confidence of 95% U=2Uc(y)	f 2.26		

Uncertainty of Radiated Emission Measurement (30MHz ~ 1000MHz)

	Uncerta	Uncertainty of x_i		
Contribution	dB	Probability	$u(x_i)$	
	üb	Distribution		
Receiver reading	0.41	Normal(k=2)	0.21	
Antenna factor calibration	0.83	Normal(k=2)	0.42	
Cable loss calibration	0.25	Normal(k=2)	0.13	
Pre Amplifier Gain calibration	0.27	Normal(k=2)	0.14	
RCV/SPA specification	2.50	Rectangular	0.72	
Antenna Factor Interpolation for Frequency	1.00	Rectangular	0.29	
Site imperfection	1.43	Rectangular	0.83	
Mismatch	+0.39/-0.41	U-shaped	0.28	
Combined standard uncertainty Uc(y)		1.27		
Measuring uncertainty for a level of confidence of 95% U=2Uc(y)		2.54		

	Uncerta	inty of x_i	<i>(</i>)		<i>(</i>)
Contribution	dB	Probability Distribution	$u(x_i)$	Ci	$Ci * u(x_i)$
Receiver reading	±0.10	Normal(k=1)	0.10	1	0.10
Antenna factor calibration	±1.70	Normal(k=2)	0.85	1	0.85
Cable loss calibration	±0.50	Normal(k=2)	0.25	1	0.25
Receiver Correction	±2.00	Rectangular	1.15	1	1.15
Antenna Factor Directional	±1.50	Rectangular	0.87	1	0.87
Site imperfection	±2.80	Triangular	1.14	1	1.14
Mismatch Receiver VSWR Γ1= 0.197 Antenna VSWR Γ2= 0.194 Uncertainty=20log(1-Γ1*Γ2)	+0.34/-0.35	U-shaped	0.244	1	0.244
Combined standard uncertainty Uc(y)			2.36		
Measuring uncertainty for a level of confidence of 95% U=2Uc(y)			4.72		

Uncertainty of Radiated Emission Measurement (1GHz ~ 40GHz)

6 Certification of TAF Accreditation

~	Certificate No. : 1.1190-081212 財團法人全國認證基金會 Taiwan Accreditation Foundation
Ce	ertificate of Accreditation
	This is to certify that
	Sporton International Inc.
	& Wireless Communications Laboratory
No.52, Hwa Ya 1st Ro	I., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.
is	s accredited in respect of laboratory
Accreditation Criteria	: ISO/IEC 17025:2005
Accreditation Number	: 1190
Originally Accredited	: December 15, 2003
Effective Period	: January 10, 2007 to January 09, 2010
Accredited Scope	: Testing Field, see described in the Appendix
Specific Accreditation Program	: Accreditation Program for Designated Testing Laboratory for Commodities Inspection Accreditation Program for Telecommunication Equipment Testing Laboratory Accreditation Program for BSMI Mutual Recognition Arrangment with Foreign Authorities
	Jay-San Chen Jay-San Chen
	President, Taiwan Accreditation Foundation Date : December 12, 2008
P1, total 18 pages	Date - December 12, 2008

The Appendix forms an integral part of this Certificate, which shall be invalid when use without the Appendix

Appendix A. Photographs of EUT

Please refer to Sporton report number EP912101 as below.