

RF EXPOSURE TEST REPORT

Test Report No. 15511934H-C

Customer	Denso Wave Incorporated
Description of EUT	RF Tag Handy Terminal
Model Number of EUT	BHT-1408QUMWB
FCC ID	PZWBHT1408QUM
Test Regulation	FCC47CFR 2.1093
Test Result	Complied
Issue Date	October 25, 2024
Remarks	The highest reported SAR Standalone: 0.04 W/kg (body) / 2.11 W/kg (limbs) Simultaneous transmission: 3.04 W/kg (limbs)

 Representative test engineer
 Approved by

 Wdwign
 Jakaguki J

 Yuta Moriya
 Takaguki Shimada

 Engineer
 Implement

 Vuta Moriya
 Takaguki Shimada

 Leader
 Implement

 Implement
 Implement

Report Cover Page - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 23.0

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested. (Laboratory was not involved in sampling.)
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers RF Exposure technical requirements.
- It does not cover administrative issues such as Manual or non- RF Exposure test related Requirements. (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided by the customer for this report is identified in SECTION 1.
- The laboratory is not responsible for information provided by the customer which can impact the validity of the results.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No. 15511934H-C

Revision	Test report No.	Date	Page Revised Contents
- (Original)	15511934H-C	October 25, 2024	-

AAN	Asymmetric Artificial Network	GPS	Global Positioning System
AC	Alternating Current	Hori.	Horizontal
AM	Amplitude Modulation	ICES	Interference-Causing Equipment Standard
AMN	Artificial Mains Network	1/0	Input/Output
Amp, AMP	Amplifier	IEC	International Electrotechnical Commission
ANSI	American National Standards Institute	IEEE	Institute of Electrical and Electronics Engineers
Ant, ANT	Antenna	IF	Intermediate Frequency
AP	Access Point	ILAC	International Laboratory Accreditation Conference
ASK	Amplitude Shift Keying	ISED	Innovation, Science and Economic Development Canada
Atten., ATT	Attenuator	ISN	Impedance Stabilization Network
AV	Average	ISO	International Organization for Standardization
BPSK	Binary Phase-Shift Keying	JAB	Japan Accreditation Board
BR	Bluetooth Basic Rate	LAN	Local Area Network
BT	Bluetooth	LCL	Longitudinal Conversion Loss
BTLE	Bluetooth Low Energy	LIMS	Laboratory Information Management System
BW	BandWidth	LISN	Line Impedance Stabilization Network
C.F	Correction Factor	MRA	Mutual Recognition Arrangement
Cal Int			° °
Cal Int	Calibration Interval CISPR AV	N/A NIST	Not Applicable National Institute of Standards and Technology
CAV	Complementary Code Keying	NS	No signal detect.
	Coupling Decoupling Network	NSA	Normalized Site Attenuation
Ch., CH	Channel	OBW	Occupied BandWidth
CISPR	Comite International Special des Perturbations Radioelectriques	OFDM	Orthogonal Frequency Division Multiplexing
Corr.	Correction	PER	Packet Error Rate
CPE	Customer premise equipment	PK	Peak
CW	Continuous Wave	P _{LT}	long-term flicker severity
DBPSK	Differential BPSK	POHC(A)	Partial Odd Harmonic Current
DC	Direct Current	Pol., Pola.	Polarization
DET	Detector	PR-ASK	Phase Reversal ASK
D-factor	Distance factor	Pst	short-term flicker severity
Dmax	maximum absolute voltage change during an observation period	QAM	Quadrature Amplitude Modulation
DQPSK	Differential QPSK	QP	Quasi-Peak
DSSS	Direct Sequence Spread Spectrum	QPSK	Quadrature Phase Shift Keying
DUT	Device Under Test	r.m.s., RMS	Root Mean Square
EDR	Enhanced Data Rate	RBW	Resolution BandWidth
e.i.r.p., EIRP	Equivalent Isotropically Radiated Power	RE	Radio Equipment
EM clamp	Electromagnetic clamp	REV	Reverse
EMC	ElectroMagnetic Compatibility	RF	Radio Frequency
EMI	ElectroMagnetic Interference	RFID	Radio Frequency Identifier
EMS	ElectroMagnetic Susceptibility	RNSS	Radio Navigation Satellite Service
EN	European Norm	RSS	Radio Standards Specifications
e.r.p., ERP	Effective Radiated Power	Rx	Receiving
ETSI	European Telecommunications Standards Institute	SINAD	Ratio of (Signal + Noise + Distortion) to (Noise + Distortion)
EU	European Union	S/N	Signal to Noise ratio
EUT	Equipment Under Test	SA, S/A	Spectrum Analyzer
Fac.	Factor	SG	Signal Generator
FCC	Federal Communications Commission	SVSWR	Site-Voltage Standing Wave Ratio
FHSS	Frequency Hopping Spread Spectrum	THC(A)	Total Harmonic Current
FM	Frequency Modulation	THD(%)	Total Harmonic Distortion
			Test Receiver
Freq.	Frequency	TR, T/R	
FSK	Frequency Shift Keying	Tx	Transmitting
Fund	Fundamental	VBW	Video BandWidth
FWD	Forward	Vert.	Vertical
GFSK	Gaussian Frequency-Shift Keying	WLAN	Wireless LAN
GNSS	Global Navigation Satellite System	xDSL	Generic term for all types of DSL technology
			(DSL: Digital Subscriber Line)
			·

Contains		
Section 1	Customer information	5
Section 2	Equipment under test (EUT)	5
2.1	Identification of EUT	
2.2	Product description	5
2.3	Software information	6
2.4	Tune-up tolerance information	7
2.5	Antenna information	
Section 3	Definitions	
Section 4	Test standard information	
4.1	Test specification	
4.2	Published RF exposure KDB procedures and companion procedures	
4.3	Work Procedures	
4.4	Reference	
Section 5	Limits	
5.1	Exposure limit for SAR (FCC)	
Section 6	Location	
Section 7	Test result	
7.1	Verdict	
7.2	Stand-alone SAR result	
7.3	Simultaneous transmission SAR result	
Section 8	Uncertainty	
8.1		
	0.3 GHz - 6 GHz range	
Section 9	RF Exposure Conditions	
9.1	SAR-based Exemption - FCC section 1.1307	
Section 10		
10.1	Test position	
Section 11		
11.1	Dielectric Property for SAR	
Section 12		
12.1	Measurement configuration for SAR	
Section 13		
Section 14		
14.1	Common	
14.2	Channel Selection Requirement	
Section 15		
15.1	Channel Selection Requirement	
15.2	802.11b DSSS SAR Test Requirements	
15.3	2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements	
15.4	U-NII1 and U-NII-2A SAR Test Exclusion Requirements	
15.5	SAR Test Requirements for OFDM Configurations	
15.6	Repeated measurement	
Section 16		
16.1	Used instrument list	
16.2	Test system	
	A Dielectric Property result	
	B System performance check result	
	C System performance check Plot	
	D Power measurement result	
Appendix	E SAR measurement result	
Appendix	F Measurement plot	
Appendix	G Probe calibration record	
Appendix	H Dipole / Verification source calibration record	56
	I Photo of setup and EUT	

Section 1 **Customer information**

Company Name	Denso Wave Incorporated
Address	1 Yoshiike, Kusagi, Agui-cho, Chita-gun, Aichi 470-2297 Japan
Telephone Number	+81-569-49-5284
Contact Person	Shoji Ogiso

The information provided by the customer is as follows;

Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
 Operating/Test Mode(s) (Mode(s)) on all the relevant pages

- SECTION 1: Customer Information

- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date

- Appendix Antenna location

Equipment under test (EUT) Section 2

2.1 Identification of EUT

Description	RF Tag Handy Terminal
Model Number	BHT-1408QUMWB
Serial Number	4969005020300821 for Output Power measurement for WLAN
	4969005020300822 for Output Power measurement for UHF
	4969005020300825 for SAR measurement for WLAN
	4969005020300824 for SAR measurement for UHF
Condition	Engineering prototype
	(Not for Sale: This sample is equivalent to mass-produced items.)
UHFUModification	No Modification by the test lab
Receipt Date	April 9, 17, July 22 and October 6 2024 for WLAN
	April 10, 17 and August 26, 2024 for UHF
Test Date	April 18 and July 30 2024 for Output Power measurement
	September 5, and October 7 2024 for SAR measurement

2.2 Product description

General Specification

Rating	DC 3.7 V
Operating temperature	-20 deg. C to 50 deg. C
Option battery	N/A
Body-worn accessory	Portable case

Radio Specification

This report contains data provided by the customer which can impact the validity of results. UL Japan, Inc. is only responsible for the validity of results after the integration of the data provided by the customer. The data provided by the customer is marked "a)" in the table below.

UHF

Equipment Type	Transceiver
Frequency of Operation	915.25 MHz to 927.50 MHz
Type of Modulation	PR-ASK
Antenna Gain ^{a)}	2.0 dBi

WLAN (IEEE802.11b/11g/11n-20)	
Equipment Type	Transceiver
Frequency of Operation	2412 MHz to 2462 MHz
Type of Modulation	DSSS, OFDM
Antenna Gain ^{a)}	0.75 dBi

Bluetooth (BR / EDR / Low Energy)

Diadicoli (Diti Editi Edit Ellergy)	
Equipment Type	Transceiver
Frequency of Operation	2402 MHz to 2480 MHz
Type of Modulation	BR / EDR: GFSK, π/4 DQPSK, 8 DPSK
	Low Energy: GFSK
Antenna Gain ^{a)}	0.75 dBi

* WLAN and Bluetooth do not transmit simultaneously.

2.3 Software information

The power value of the EUT was set for testing as follows (setting value might be different from product specification value).

[WLAN/BT]	QCARCT Ver 3.0.156.0
Software:	(Date: 2015.10.19, Storage location: Driven by connected PC)
Power settings:	11b: 15.5 dBm
[UHF]	BHT-1408QUMWB System Program Version: TA02
Software:	(Date: 2024.04.12, Storage location: EUT memory)
Power settings:	UHF: 27 dBm

*This setting of software is the worst case.

Any conditions under the normal use do not exceed the condition of setting. In addition, end users cannot change the settings of the output power of the product.

2.4 Tune-up tolerance information

If not specified, listed values are maximum average power level. For WLAN Maximum tune-up tolerance limit is defined by a customer as duty 100 %.

2.4.1 WLAN / BT / UHF

Band	Mode	[dBm]	[mW]
	11b	17	50.12
2.4GHz	11g	12	15.85
	11n-20	12	15.85
	BR	3.5	2.24
Bluetooth	EDR	-0.2	0.95
	LE	3.5	2.24
UHF	RFID	25.5	354.81

2.5 Antenna information

Antenna location information is shown in appendix.

2.5.1 Antenna configuration

The EUT has an antenna transmitting WLAN / BT / UHF.

2.5.2 Antenna location

Position	WLAN / BT [mm]	UHF [mm]		
Front	16	28		
Rear	11	5		
Rear tilt	11	5		
Left	19	5		
Right	16	5		
Тор	6	25		
Bottom	173	107		

Section 3 Definitions

This may contain the definitions which are not used in this report.

This may contain the definitions which are	
Specific Absorption Rate (SAR)	The time derivative (rate) of the incremental energy (dW) absorbed by
	(dissipated in) an incremental mass (dm) contained in a volume
	element (dV) of a given density (ρ), as shown in the following equation:
	d(dW) = d(dW)
	$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$
Power density (PD) or Sav	The energy per unit time and unit area crossing a surface of area A
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	characterized by the normal unit vector n [^] and averaging time.
	1 ((
	$S_{av} = \frac{1}{AT} \iint (E \times H) \cdot \hat{n} dA dT$
Absorbed power density (APD)	The APD (absorbed power density) shall be derived from the measured
	SAR values using the formulas in the Compliance Assessment of the
	Epithelial.
	$ABD 1 am^{2} (14/m^{2}) = 10 (1cm/m^{2}) \times SAB = (14/1/cm)$
	APD $1cm^2(W/m^2) = 10(kg/m^2) \times SAR_{1g}(W/kg)$
	$APD 4cm^{2}(W/m^{2}) = 20(kg/m^{2}) \times SAR_{\$g}(W/kg)$
Reported SAR / PD (IPD or APD)	Measured SAR / PD (IPD or APD) is scaled to the maximum tune-up
	tolerance limit and the maximum duty by the following formulas.
	Reported SAR, $PD = Measured SAR$, or $PD \times scale factor for power$
	× scaled factor for duty(if needed)
	× Compensatefactor(if needed)
	Where:
	Corled frates for duty1
	Scaled factor for $duty = \frac{1}{Duty}$
	Compensate factor = $10^{\frac{measurement uncert.[dB]}{10}} - 1 + 0.7$
Maximum Tune-up tolerance limit, Tune	Maximum power including tolerance power specified by customer.
up limit or Tune-up limit	

Symbol	Quantity	Unit	Dimensions
E	Electric field	volt per meter	V/m
f	Frequency	hertz	Hz
Н	Magnetic field	ampere per meter	A/m
λ	Wavelength	meter	m
S	Local power density	watt per square meter	W / m ²
PD	Spatial-average power density	watt per square meter	W / m ² (mW / cm ²)
SAR	Specific Absorption Rate	watt per square meter	W / kg

Section 4 Test standard information

4.1 Test specification

⊠FCC47CFR 2.1093	RF Exposure Procedures and Equipment Authorization Policies for Portable Devices
□RSS-102 Issue 6	Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)
□RSS-102 Issue 5 Amendment 1	Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)

4.2 Published RF exposure KDB procedures and companion procedures

Name of documents	Title
□KDB 447498 D01(v06)	RF Exposure Procedures and Equipment Authorization Policies for Mobile and Portable Devices
KDB 447498 D04(v01)	Interim General RF Exposure Guidance
□KDB 447498 D02(v02r01)	SAR Measurement Procedures for USB Dongle Transmitters
□KDB 648474 D04(v01r04)	SAR Evaluation Considerations for Wireless Handsets
□KDB 941225 D01(v03r01)	3G SAR Measurement Procedures
□KDB 941225 D05(v02r05)	SAR Evaluation Considerations for LTE Devices
□KDB 941225 D06(v02r01)	SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities
□KDB 941225 D07(v01r02)	SAR Evaluation Procedures for UMPC Mini-Tablet Devices
□KDB 616217 D04(v01r02)	SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers
KDB 865664 D01(v01r04)	SAR Measurement Requirements for 100 MHz to 6 GHz
KDB 248227 D01(v02r02)	SAR Guidance for IEEE 802.11 (Wi-Fi) transmitters
SPR-APD Issue 1	Supplementary Procedure for Assessing Specific Absorption Rate (SAR) and Absorbed Power Density (APD) Compliance of Portable Devices in the 6 GHz Band (5925-7125 MHz)
□RSS-102.SAR.MEAS	Measurement Procedure for Assessing Specific Absorption Rate (SAR) Compliance in Accordance with RSS-102

4.3 Work Procedures

Name of documents	Title or details
⊠C/N: Work Instructions- ULID-003598	UL Japan, Inc.'s SAR Measurement Equipment Calibration and Inspection Work Procedure
⊠C/N: Work Instructions- ULID-003599	UL Japan, Inc.'s SAR Measurement Work Procedure
⊠IEEE Std 1528-2013	IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
□IEC/IEEE 62209-1528 Edition 1.0 2020-10	Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-worn wireless communication devices - Human models, instrumentation and procedures (Frequency range of 4 MHz to 10 GHz)
□C/N: Work Instructions- ULID-003619	UL Japan, Inc.'s Power Density Measurement Procedure
□IEC/IEEE 63195-1:2021	Assessment of power density of human exposure to radio frequency fields from wireless devices in close proximity to the head and body (frequency range of 6 GHz to 300 GHz) - Part 1: Measurement procedure
□IEC/IEEE 63195-2:2021	Assessment of power density of human exposure to radio frequency fields from wireless devices in close proximity to the head and body (frequency range of 6 GHz to 300 GHz) - Part 2: Computational procedure

4.4 Reference

Schmid & Partner Engineering AG, DASY Manual TCB workshop slide decks.

Section 5 Limits

General Population / Uncontrolled Environments limit is applied.

5.1 Exposure limit for SAR (FCC)

(A) Limits for Occupational/Controlled Exposure (W/kg)

Spatial Average	Spatial Peak	Spatial Peak
(averaged over the whole body)	(averaged over any 1g of tissue)	(hands/wrists/feet/ankles averaged over 10g)
0.4	8.0	20.0

(B) Limits for General population/Uncontrolled Exposure (W/kg)

Spatial Average	Spatial Peak	Spatial Peak
(averaged over the whole body	(averaged over any 1g of tissue)	(hands/wrists/feet/ankles averaged over 10g)
0.08	1.6	4.0

Occupational/Controlled Environments: are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. because of employment or occupation).

General Population/Uncontrolled Environments: are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Section 6 Location

UL Japan, Inc. Ise EMC Lab. Shielded room for SAR testing. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81-596-24-8999

A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919 ISED Lab Company Number: 2973C / CAB identifier: JP0002

Section 7 Test result

7.1 Verdict

Complied Higest result are next section.

7.2 Stand-alone SAR result

RF Exposure	Highest Reported exposure value							
		WWAN	2.4 GHz (WLAN)	5 GHz (WLAN)	Bluetooth	UHF (RFID)		
Standalone Tx	Body	N/A	N/A	N/A	N/A	N/A		
(1-g SAR)	Body-worn	N/A	0.042	N/A	N/A	N/A		
(W/kg)	Hotspot	N/A	N/A	N/A	N/A	N/A		
Standalone Tx	Limbs	N/A	0.934	N/A	N/A	2.106		
(10-g SAR)	Body-worn	N/A	N/A	N/A	N/A	N/A		
(W/kg)	Hotspot	N/A	N/A	N/A	N/A	N/A		

Details are shown in appendix.

7.3 Simultaneous transmission SAR result

Simultaneous Transmission Simultaneous transmissions occur only in Limbs.

Sum of SAR 0.934 W/kg (measured [2.4 GHz WLAN]) + 2.106 W/kg (measured [UHF]) = 3.04 W/kg Limbs: 3.04 W/kg_{10g}

Section 8 Uncertainty

Table of uncertainties are listed for ISO/IEC 17025.

8.1 0.3 GHz - 6 GHz range

	Ur	ncert.		Prob.	Div.	(ci)	(ci)	Std. Unc.	Std.Unc.	
Error Description	va	lue		Dist.		Ìg	10g	(1g)	(10g)	
Measurement System Errors										
Probe Calibration	±	13.10	%	N	2	1	1	±6.6%	±6.55%	
Probe Calibration Drift	±	1.7	%	R	√3	1	1	±1.0%	±1.0%	
Probe Linearity	±	4.7	%	R	√3	1	1	±2.7%	±2.7%	
Broadband Signal	±	2.6	%	R	√3	1	1	±1.5%	±1.5%	
Probe Isotropy	±	7.6	%	R	√3	1	1	±4.4%	±4.4%	
Other Probe *Electronic	±	1.2	%	N	1	1	1	±1.2%	±1.2%	
RF Ambient	±	1.8	%	N	1	1	1	±1.8%	±1.8%	
Probe Positioning	±	0.005	mm	N	1	0.29	0.29	±0.2%	±0.2%	
Data Processing	±	2.3	%	Ν	1	1	1	±2.3%	±2.3%	
Phantom and Device Errors										
Conductivity (meas.)DAK	±	10.0	%	N	1	0.78	0.71	±7.8%	±7.1%	
Conductivity (temp.) ^{BB}	±	10.0	%	R	√3	0.78	0.71	±4.5%	±4.1%	
Phantom Permittivity	±	14.0	%	R	√3	0.25	0.25	±2.0%	±2.0%	
Distance DUT - TSL	±	2.0	%	N	1	2	2	±4.0%	±4.0%	
Device Positioning (+/- 0.5mm)	±	1.0	%	N	1	1	1	±1.0%	±1.0%	
Device Holder	±	3.6	%	N	1	1	1	±3.6%	±3.6%	
DUT Modulation ^m	±	2.4	%	R	√3	1	1	±1.4%	±1.4%	
Time-average SAR	±	1.7	%	R	√3	1	1	±1.0%	±1.0%	
DUT drift	±	2.5	%	N	1	1	1	±2.5%	±2.5%	
Val Antenna Unc. ^{val}	±	0.0	%	N	1	1	1	±0.0%	±0.0%	
Unc. Input Power ^{val}	±	0.0	%	Ν	1	1	1	±0.0%	±0.0%	
Correction to the SAR results										
Deviation to Target	±	1.9	%	Ν	1	1	0.84	±1.9%	±1.6%	
SAR scaling ^p	±	0.0	%	R	√3	1	1	±0.0%	±0.0%	
Combined Std. Uncertainty						-		±14.5%	±14.0%	
Expanded STD Uncertainty (x=2)								±29.1%	±28.0%	

Section 9 RF Exposure Conditions

9.1 SAR-based Exemption - FCC section 1.1307

Exception condition as per section 1.1307 (b)(3)(i)(B) the available maximum time-averaged power or effective radiated power (ERP), whichever is greater, is less than or equal to the threshold P_{th} (mW) described in the following formula. This method shall only be used at separation distances (cm) from 0.5 cm to 40 cm and at frequencies from 0.3 GHz to 6 GHz (inclusive). P_{th} is given by:

$$P_{th}(mW) = \begin{cases} ERP_{20dm} (d/20 \ cm)^{x} & d \le 20 \ cm \\ ERP_{20cm} & 20 \ cm < d \le 40 \ cm \end{cases}$$

Where

$$x = -log_{10}\left(\frac{60}{ERP_{20dm}\sqrt{f}}\right)$$
 and f is in GHz;

And

$$ERP_{20cm}(mW) = \begin{cases} 2040 \ f & 0.3 \ GHz \le f < 1.5 \ GHz \\ 3060 & 1.5 \ GHz \le f \le 6 \ GHz \end{cases}$$

d = the separation distance in cm.

In the table below, when the minimum test separation distance is < 5 mm, a distance, 5 mm, is applied to determine SAR test exclusion¹.

As per section 1.1307 (b)(2)

Separation distance is the minimum distance in any direction from any part of a radiating structure and any part of the body of a nearby person.

Radiating structure is an unshielded RF current-carrying conductor that generates an RF reactive near electric or magnetic field and/or radiates an RF electromagnetic wave. It is the component of an RF source that transmits, generates, or reradiates an RF fields, such as an antenna, aperture, coil, or plate.

The 10-g extremity SAR test exemption was considered by applying a factor of 2.5 to the SAR-based exemption thresholds.

For Limbs

Antenna	RAT	Frequency	Output Power		Ant Gain	ERP		Separation Dista	inces / Pth / Jadge	9				
		[MHz]	dBm	mW	dBi	dBm	mW	Front	Rear	Left	Right	Тор	Bottom	Rear Tilt
								16 mm /	11 mm /	19 mm /	16 mm /	6 mm /	173 mm /	11 mm /
								62.52 mW/	30.64 mW /	86.71 mW /	62.52 mW/	9.67 mW /	5804.83 mW /	30.64 mW /
Main	WLAN 11b	2462	17.00	50.12	0.75	15.61	36.39	Excluded	Required	Excluded	Excluded	Required	Excluded	Required
								16 mm /	11 mm /	19 mm /	16 mm /	6 mm /	173 mm /	11 mm /
								62.52 mW/	30.64 mW /	86.71 mW /	62.52 mW/	9.67 mW/	5804.83 mW /	30.64 mW /
Main	WLAN 11g	2462	12.00	15.85	0.75	10.61	11.51	Excluded	Excluded	Excluded	Excluded	Required	Excluded	Excluded
								16 mm /	11 mm /	19 mm /	16 mm /	6 mm /	173 mm /	11 mm /
								62.52 mW/	30.64 mW /	86.71 mW /	62.52 mW/	9.67 mW/	5804.83 mW /	30.64 mW /
Main	WLAN 11n-20	2462	12.00	15.85	0.75	10.61	11.51	Excluded	Excluded	Excluded	Excluded	Required	Excluded	Excluded
								16 mm /	11 mm /	19 mm /	16 mm /	6 mm /	173 mm /	11 mm /
								62.27 mW/	30.50 mW /	86.38 mW /	62.27 mW/	9.61 mW/	5803.50 mW /	30.50 mW/
Main	Bluetooth	2480	3.50	2.24	0.75	2.11	1.63	Excluded	Excluded	Excluded	Excluded	Excluded	Excluded	Excluded
								28 mm /	5 mm /	5 mm /	5 mm /	25 mm /	107 mm /	5 mm /
	1							256.48 mW /	19.95 mW /	19.95 mW /	19.95 mW/	216.82 mW/	1871.47 mW/	19.95 mW /
Main	UHF	927.5	25.50	354.81	2.00	25.36	343.56	Required	Required	Required	Required	Required	Excluded	Required

¹ TCB workshop slide deck October 2021.

Section 10 RF Exposure Conditions

10.1 Test position

According to the previous considerations, following position is required.

Table Test position (WLAN)

Position	Test distance	For Body-worn	For Limbs
Front	0 mm	⊠ *1	⊠ *2
Rear	0 mm	⊠ *1	\boxtimes
Rear tilt	0 mm		\boxtimes
Left	0 mm		
Right	0 mm		⊠ *2
Тор	0 mm		\boxtimes
Bottom	0 mm		

*1) The EUT has a Body-worn Accessory so front and rear surface is facing to the body as normal use case.

*2) The test was performed the as conservative condition even though Front and Right position can be excluded by Section 9.

Table Test position (UHF)

Position	Test distance	For Limbs
Front	0 mm	\boxtimes
Rear	0 mm	\boxtimes
Rear tilt	0 mm	\boxtimes
Left	0 mm	\boxtimes
Right	0 mm	\boxtimes
Тор	0 mm	\boxtimes
Bottom	0 mm	

*Body-worn is excluded because the signal is not emitted unless the user triggers it.

Section 11 Dielectric Property

11.1 Dielectric Property for SAR

The dielectric parameters were checked prior to assessment using the DAK dielectric probe kit.

+/- 5 % tolerances are required for εr and σ and below table is the target value of the simulated tissue liquid.

For SAR measurement systems that have implemented the SAR error compensation algorithms documented in IEEE Std 1528-2013, to automatically compensate the measured SAR results for deviations between the measured and required tissue dielectric parameters, the tolerance for ϵ r and σ may be relaxed to ± 10%.

The dielectric parameters are linearly interpolated between the closest pair of target frequencies to determine the applicable dielectric parameters corresponding to the device test frequency.

Tissue dielectric parameters are typically re-measured every three to four days or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

Measured value is rounded off on the test plot data, so some differences might be observed. Results are listed in appendix.

Table standard parameters on the KDB 865664 D01

Target Frequency		Head	Body		
(MHz)	٤r	σ (S/m)	٤r	σ (S/m)	
150	52.3	0.76	61.9	0.80	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
835	41.5	0.90	55.2	0.97	
900	41.5	0.97	55.0	1.05	
915	41.5	0.98	55.0	1.06	
1450	40.5	1.20	54.0	1.30	
1610	40.3	1.29	53.8	1.40	
1800 – 2000	40.0	1.40	53.3	1.52	
2450	39.2	1.80	52.7	1.95	
3000	38.5	2.40	52.0	2.73	
5800	35.3	5.27	48.2	6.00	

Section 12 SAR Measurements

12.1 Measurement configuration for SAR

12.1.1 SAR evaluation procedure

The evaluation was performed with the following procedure:

Step 1: Measurement of the E-field at a fixed location above the ear point or central position of flat phantom was used as a reference value for assessing the power drop.

Step 2: The SAR distribution at the exposed side of head or body position was measured at a distance of each device from the inner surface of the shell. The area covered the entire dimension of the antenna of EUT and the horizontal grid spacing was 15 mm x 15 mm, 12 mm x 12 mm, 10 mm x 10 mm or 8.5 mm x 8.5 mm. Based on these data, the area of the maximum absorption was determined by spline interpolation.

Step 3: Around this point found in the Step 2 (area scan), a volume of 30 mm x 30 mm x 30 mm or more was assessed by measuring 7 x 7 x 7 points at least for below 3 GHz, a volume of 28 mm x 28 mm x 34 mm or more was assessed by measuring 8 x 8 x 8(ratio step method (*1)) points at least for 3 GHz to 5 GHz, a volume of 28 mm x 28 mm x 24 mm or more was assessed by measuring 8 x 8 x 8(ratio step method (*1)) points at least for 3 GHz to 5 GHz, a volume of 5 GHz to 6 GHz and a volume of 22 mm x 22 mm x 22 mm

And for any secondary peaks found in the Step2 which are within 2 dB of maximum peak and not with this Step3 (Zoom scan) is repeated. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure:

(1). The data at the surface were extrapolated, since the center of the dipoles is 1 mm(EX3DV4) away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation was based on a least square algorithm [4]. A polynomial of the fourth order was calculated through the points in z-axes.

This polynomial was then used to evaluate the points between the surface and the probe tip.

(2). The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one-dimensional splines with the "Not a knot"-condition (in x, y and z-directions). The volume was integrated with the trapezoidal-algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.

(3). All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

*1. Ratio step method parameters used;

The first measurement point: 1.4 mm from the phantom surface, the initial grid separation: 1.4 mm, subsequent graded grid ratio: 1.4

These parameters comply with the requirement of the KDB 865664 D01.

Step 4: Re-measurement of the E-field at the same location as in Step 1. Confirmation after SAR testing

It was checked that the power drift [W] is within +/-5 %. The verification of power drift during the SAR test is that DASY system calculates the power drift by measuring the e-filed at the same location at beginning and the end of the scan measurement for each test position.

DASY system calculation Power drift value[dB] =20log(Ea)/(Eb) Before SAR testing : Eb [V/m] After SAR testing : Ea [V/m]

Limit of power drift[W] = +/- 5 % X[dB] = $10\log[P] = 10\log(1.05/1) = 10\log(1.05) - 10\log(1) = 0.212 dB$

from E-filed relations with power. $p=E^{2}/\eta$ Therefore, The correlation of power and the E-filed X dB = 10log(P) = 10log(E)^{2} = 20log(E)

Therefore, The calculated power drift of DASY System must be the less than +/- 0.212 dB.

Table step size.

			≤ 3 GHz	> 3 GHz	
Maximum distance from closest measuren	nent point (geometric cent	5 mm ± 1 mm	½·õ·ln(2) mm ± 0.5 mm		
Maximum probe angle from probe axis to p	phantomsurface normal at	30° ± 1°	20° ± 1°		
Maximum area scan spatial resolution: Δx_A	_{Area} , Δy _{Area}		≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm 6 – 7 GHz: ≤ 8.57 mm	
			is smaller than the above, the	the test device, in the measurement plane orientation, measurement resolution must be 5 the corresponding x ce withat least one measurement point on the test	
Maximum zoom scan spatial resolution: Δx	Kzoom, Δyzoom		≤ 2 GHz: ≤ 8 mm 2 – 3 GHz: ≤ 5 mm*	3 – 4 GHz: ≤ 5 mm 4 – 6 GHz: ≤ 4 mm 6 – 7 GHz: ≤ 3.4 mm	
Maximum zoom scan spatial resolution, no phantom surface	prmal to uniform grid: $Δz_z$	_{soon} (n)	≤ 5 mm	3– 4 GHz: ≤ 4 mm 4– 5 GHz: ≤ 3 mm 5– 6 GHz: ≤ 2 mm 6– 7 GHz: ≤ 1.6 mm	
	graded grid	Δz _{zoom} (1): between 1 st two points closestto phanto surface	m≤4mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm 6 – 7 GHz: ≤ 1.7 mm	
		Δz _{zoom} (n>1): between subsequentpoints	≤ 1.5·Δz _{znom} (n-1) mm		
Minimum zoomscan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 7 GHz: ≥ 22 mm	
Note: δ is the penetration depth of a plane	-wave at normal incidence	to the tissue medium; see IEEE Std1528-2013 for deta	ils.		

Additional Requirements²

Unless the following criteria are met, zoom-scan measurement shall be successively repeated using smaller increments, at 2 mm or less from phantom surface

- maximum 1 g SAR < 0.1 W/kg, or
- both of the following are met:
 - shortest transverse distances d_x and d_y between SAR peak location and -3 dB points shall be larger than Δx_{Zoom} and Δy_{Zoom} , respectively.
 - at the SAR peak location, the ratio of SAR values from the first two z-axis points is \leq 30 %.

² ESR is equal to source-reconstruction, SR, explained on TCB workshop October 2022.

Section 13 SAR System check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, for FCC typically every three to four days, for ISED every 24 h when the liquid parameters are remeasured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ± 0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.

The depth of tissue-equivalent liquid in a phantom must be \geq 15.0 cm ± 0.5 cm for SAR measurements \leq 3 GHz and \geq 10.0 cm ± 0.5 cm for measurements > 3 GHz.

The DASY system with an E-Field Probe was used for the measurements.

The reference transmitter was mounted on the small tripod so that the transmitter feed point was positioned below the center marking of the flat phantom section and the transmitter was oriented parallel to the body axis (the long side of the phantom).

Table: The standard measuring distance

Frequency range	Distance between dipole or CLA
13 MHz	0 mm
0.3 GHz to 1 GHz	15 mm
1 GHz to 6 GHz	10 mm
6 GHz to 10 GHz	5 mm

The scan step was conducted based on the previous section specified.

Distance between probe sensors and phantom surface was set to 1.4 mm.

The transmitter input power (forward power) was listed in the table of SPC. The results are normalized to 1 W input power other than 1 W input power.

The results are normalized to 1 W input power other than 1 W input power.

The target(reference) SAR values can be obtained from the calibration certificate of system validation dipoles or CLA, refer to appendix. The target SAR values are quoted from "SAR for nominal Head TSL parameters" on calibration record. The scaled SAR value shall not deviate from the targets by more than ± 10 %. System check results are listed on appendix.

The 1W Scaled up value is rounded off on the test data, so some differences might be observed. However, differences don't affect the result. Results are listed in appendix.

Section 14 SAR requirement

14.1 Common

This procedure covers every condition, so some conditions are not applicable.

When reported SAR value is exceed 1.2 W/kg (if any), device holder perturbation verification is required; however, since distance between device holder and antenna of EUT is enough, it was not conducted. The sample calculations are shown in definition.

Next section describes the general RF exposure evaluation requirements and serves as an entry point. If the more specific RF exposure guidance existed, it takes proceed than this.

14.2 Channel Selection Requirement

This test reduction process provides for the use of test data for one specific channel, while referencing to those data for demonstrating compliance in other required channels for each test position of an exposure condition, within the operating mode of a frequency band. This is limited specifically to when the reported 1-g or 10-g SAR for the midband or highest output power channel meets any of the following conditions:

- 1. SAR \leq 0.8 W/kg for 1-g, or SAR \leq 2.0 W/kg for 10-g, when the transmission band span is \leq 100 MHz
- 2. SAR ≤ 0.6 W/kg for 1-g, or SAR ≤ 1.5 W/kg for 10-g, when the transmission band span is between 100 MHz and 200 MHz
- 3. SAR \leq 0.4 W/kg for 1-g, or SAR \leq 1.0 W/kg for 10-g, when the transmission band span is \geq 200 MHz

SAR measurement standards such as IEEE Std 1528-2013 requires the middle channel to be tested first. This generally applies to wireless devices that are designed to operate in technologies with tight tolerances for maximum output power variations across channels in the band. When the maximum output power variation across the required test channels is > $\frac{1}{2}$ dB, instead of the middle channel, the highest output power channel must be used.

Section 15 WLAN SAR requirement

This procedure covers every condition, so some conditions are not applicable.

15.1 Channel Selection Requirement

According to KDB 248227 D01, the initial test configuration for 2.4 GHz and 5 GHz OFDM transmission modes is determined by the 802.11 configuration with the highest maximum output power specified for production units, including tune-up tolerance, in each standalone and aggregated frequency band. SAR for the initial test configuration is measured using the highest maximum output power channel determined by the default power measurement procedures. When multiple configurations in a frequency band have the same specified maximum output power, the initial test configuration is determined according to the following steps applied sequentially.

- 1. The largest channel bandwidth configuration is selected among the multiple configurations with the same specified maximum output power.
- 2. If multiple configurations have the same specified maximum output power and largest channel bandwidth, the lowest order modulation among the largest channel bandwidth configurations is selected.
- 3. If multiple configurations have the same specified maximum output power, largest channel bandwidth and lowest order modulation, the lowest data rate configuration among these configurations is selected.
- 4. When multiple transmission modes (802.11a/g/n/ac) have the same specified maximum output power, largest channel bandwidth, lowest order modulation and lowest data rate, the lowest order 802.11 mode is selected, i.e., 802.11a is chosen over 802.11n then 802.11ac or 802.11g is chosen over 802.11n.

After an initial test configuration is determined, if multiple test channels have the same measured maximum output power, the channel chosen for SAR measurement is determined according to the following. These channel selection procedures apply to both the initial test configuration and subsequent test configuration(s), with respect to the default power measurement procedures or additional power measurements required for further SAR test reduction. The same procedures also apply to subsequent highest output power channel(s) selection.

- 1. The channel closest to mid-band frequency is selected for SAR measurement.
- 2. For channels with equal separation from mid-band frequency; for example, high and low channels or two midband channels, the higher frequency (number) channel is selected for SAR measurement.

15.2 802.11b DSSS SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- 1. When the reported SAR of the highest measured maximum output power channel (see 3.1) for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

15.3 2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements

When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied. SAR is not required for the following 2.4 GHz OFDM conditions.

- 1. When KDB Publication 447498 D04 SAR test exclusion applies to the OFDM configuration.
- 2. When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

15.4 U-NII1 and U-NII-2A SAR Test Exclusion Requirements

For devices that operate in only one of the U-NII-1 and U-NII-2A bands, the normally required SAR procedures for OFDM configurations are applied. For devices that operate in both U-NII bands using the same transmitter and antenna(s), SAR test reduction is determined according to the following, with respect to the highest reported SAR and maximum output power specified for production units. The procedures are applied independently to each exposure configuration; for example, head, body, hotspot mode etc.

- When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements. If the highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition); otherwise, each band is tested independently for SAR.
- 2. When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for the band with lower maximum output power in that test configuration; otherwise, each band is tested independently for SAR.
- 3. The two U-NII bands may be aggregated to support a 160 MHz channel on channel number. Without additional testing, the maximum output power for this is limited to the lower of the maximum output power certified for the two bands. When SAR measurement is required for at least one of the bands and the highest reported SAR adjusted by the ratio of specified maximum output power of aggregated to standalone band is > 1.2 W/kg, SAR is required for the 160 MHz channel. This procedure does not apply to an aggregated band with maximum output higher than the standalone band(s); the aggregated band must be tested independently for SAR. SAR is not required when the 160 MHz channel is operating at a reduced maximum power and also qualifies for SAR test exclusion.

15.5 SAR Test Requirements for OFDM Configurations

When SAR measurement is required for 802.11 a/g/n/ac OFDM configurations, each standalone and aggregated frequency band is considered separately for SAR test reduction. When the same transmitter and antenna(s) are used for U-NII-1 and U-NII-2A bands, additional SAR test reduction applies. When band gap channels between U-NII-2C band and 5.8 GHz U-NII-3 band are supported and the aggregated band option of previous one is used, the highest maximum output power transmission mode configuration and maximum output power channel across the bands must be used to determine SAR test reduction, according to the initial test configuration and subsequent test configuration requirements. In applying the initial test configuration and subsequent test configuration procedures, the 802.11 transmission configuration with the highest specified maximum output power and the channel within a test configuration with the highest measured maximum output power should be clearly distinguished to apply the procedures.

15.6 Repeated measurement

According to KDB 865664 D01.

1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.

2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.

3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \geq 1.45 W/kg (~ 10 % from the 1-g SAR limit).

4) Perform a third repeated measurement only if the original, first or second repeated measurement is \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

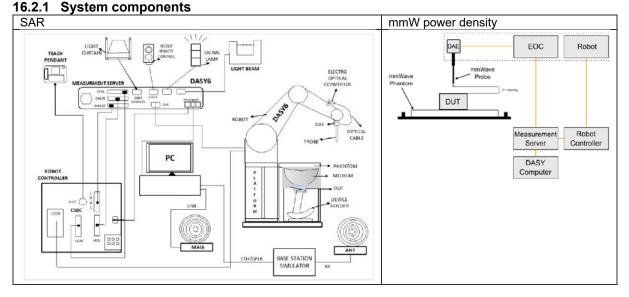
Data is shown in appendix of repeat measurement result

Section 16 Test instrument

16.1 Used instrument list

LIMS ID	Description	Manufacturer	Model	Serial	Last Cal Date	Interval
141156	Attenuator(10dB)	Weinschel Corp	2	BL1173	11/17/2023	12
141312	Attenuator	Weinschel Associates	WA56-10	56100304	-	-
141333	Attenuator(10dB)	Suhner	6810.19.A	-	12/11/2023	12
141375	Microwave Cable 1G-40GHz	Suhner	SUCOFLEX102	30817/2	05/27/2024	12
141395	Coaxial Cable	UL Japan	-	-	11/21/2023	12
141809	Power Meter	Anritsu Corporation	ML2495A	825002	05/22/2024	12
141830	Power sensor	Anritsu Corporation	MA2411B	MA2411B 738285		12
141902	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46187105	05/30/2024	12
244710	Thermo-Hygrometer	HIOKI E.E. CORPORATION	LR5001	231202104	01/25/2024	12
141171	Attenuator(20dB)_DC -1GHz_N	Weinschel Corp	MODEL 1	BG0143	12/06/2023	12
141311	Attenuator	Weinschel Associates	WA1-20-33	100131	04/03/2024	12
141557	DIGIITAL HITESTER	HIOKI E.E. CORPORATION	3805	070900530	01/31/2024	12
141810	Power Meter	Anritsu Corporation	ML2495A 824014		12/12/2023	12
141832	Power sensor	Anritsu Corporation	MA2411B	738174	12/12/2023	12
141901	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY48250080	01/26/2024	12
244712	Thermo-Hygrometer	HIOKI E.E. CORPORATION	LR5001	231202106	01/25/2024	12

LIMS ID	D Description Manufacturer		Model	Serial	Last Cal Date	Interva
141457	Dipole Antenna	Schmid & Partner Engineering AG	D2450V2	713	2022/09/12	36
141455	Dipole Antenna	Schmid & Partner Engineering AG	D900V2	155	2022/12/06	24
168521	cDASY6 Module SAR	Schmid & Partner Engineering AG	cDASY6 Module SAR	-	-	-
141483	Data Acquisition Electronics	Schmid & Partner Engineering AG	DAE4	1369	2024/05/15	12
141598	Dosimetric E-Field Probe	Schmid & Partner Engineering AG	EX3DV4	3917	2024/05/21	12
142058	2mm Oval Flat Phantom	Schmid&Partner Engineering AG	QDOVA001BB	1207	2024/05/31	12
142062	SAM Phantom	Schmid&Partner Engineering AG	QD000P40CD	1762	2024/05/31	
142489	Device holder	Schmid & Partner Engineering AG	Mounting device for transmitter	-	2023/11/17	12
244705	Thermo-Hygrometer	A&D	AD-5648A	1002	2024/01/25	12
142249	SAR robot	Schmid & Partner Engineering AG	TX60 Lspeag	F13/5PP1A1/A/ 01	2024/04/30	12
141182	Dielectric assessment software	Schmid & Partner Engineering AG	DAK	-	-	-
173900	Software for MA24106A	Anritsu Corporation	Anritsu PowerXpert	-	-	-
141471	Dielectric assessment kit	Schmid & Partner Engineering AG	DAKS-3.5	0008	2024/04/16	12
142313	Attenuator	Telegrartner	J01156A0011	42294119	-	-
176484	Head Simulating Liquid	Schmid & Partner Engineering AG	HBBL600-10000V6	SL AAH U16 BC	-	-
142865	Water, distilled	KISHIDA CHEMICAL Co.,Ltd.	020-85566	K70244M	-	-
141808	Dual Power Meter	Keysight Technologies Inc	E4419B	MY45102060	2024/08/20	12
221492	Power sensor	Keysight Technologies Inc	E9300H	MY62080002	2024/08/20	12
141574	Digital thermometer	LKM electronic	DTM3000	-	2024/08/24	12
249557	RF Power Source	Schmid & Partner Engineering AG	POWERSOURCE1	4357	2024/05/27	12
196430	Microwave Cable	Huber+Suhner	SF102D/11PC24/11PC 24/1000mm	537059/126EA	2024/02/26	12
251453	Analyzer, Network	Rohde & Schwarz	ZNL14	200030	2024/07/12	12


*Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

16.2 Test system

16.2.2 Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE4 or DAE3) consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter, and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

16.2.3 Probes (SAR)

Dosimetric Probes: These probes are specially designed and calibrated for use in liquids with high permittivities. They should not be used in air, since the spherical isotropy in air is poor (+/- 2 dB). The dosimetric probes are specially calibrated in various liquids at different frequencies.

16.2.4 Probes (mmWave)

Dimensions and spatial resolutions:

Overall length: 320 mm (tip: 20 mm) Tip diameter: encapsulation 8 mm (internal sensor <1 mm) Distance from probe tip to dipole centers: <2 mm Sensor displacement to probe's calibration point: <0.3 mm linearity error and isotropy: included by calibration data dynamic range: <50 – 10'000 V/m with PRE-10 (min <50 – 3000 V/m)

16.2.5 EOC

The electrooptical converter (EOC), which is mounted on the robot arm. An internal data link is used from the EOC to the robot back panel. From there, a 10-meter cable connects to the measurement server DAE input.

16.2.6 Robot

The DASY uses the high precision industrial robots TX60L from Stuaubli SA (France).

16.2.7 Simulated Tissues (Liquid)

series of tissue simulating liquids are available for various testing applications. The dielectric parameters of these liquids are matched to the target tissue parameters over a certain frequency range. A summary of available liquids is as follows:

Broad-Band Solutions	Product	Test Frequency (MHz)	Main Ingredients
(±10% Tolerance)	HBBL4-250V3	4 – 250	Water, Tween
	HBBL600-10000V6	600 – 10000	Water, Oil

16.2.8 Others

The SAR phantom, mmW phantom, the device holder and other accessories according to the targeted measurement.

Test Report No. 15511934H-C Page 25 of 77

Appendix A Dielectric Property result

Room	Date	Tem	Humidity	Frequency	Frequency Permittivity Conductivity					Note	Tolerance	
					Measured	Target	Delta	Measured	Target	Delta		
		[deg. C]	[RH %]	[MHz]	٤'	٤'	[%]	σ [S/m]	σ [S/m]	[%]		
SAR2	2024/9/5	21	55	900	40.18	41.50	-3.18	0.96	0.97	-1.03	SPC	+/- 5 [%]
SAR2	2024/9/5	21	55	915.25	40.16	41.47	-3.16	0.97	0.98	-1.02		+/- 5 [%]
SAR2	2024/9/5	21	55	921.25	40.15	41.46	-3.16	0.97	0.98	-1.02		+/- 5 [%]
SAR2	2024/9/5	21	55	927.50	40.13	41.45	-3.18	0.97	0.98	-1.02		+/- 5 [%]
SAR2	2024/10/7	20	50	2450	37.72	39.20	-3.78	1.85	1.80	2.78	SPC	+/- 5 [%]
SAR2	2024/10/7	20	50	2412	37.79	39.27	-3.77	1.82	1.77	2.82		+/- 5 [%]
SAR2	2024/10/7	20	50	2437	37.74	39.22	-3.77	1.84	1.79	2.79		+/- 5 [%]
SAR2	2024/10/7	20	50	2462	37.70	39.18	-3.78	1.86	1.81	2.76		+/- 5 [%]

Appendix B System performance check result

				Feed	Meas val	Meas val	Norm val	Norm val	Target val	Target val		
	Freq	Temp	Humid	pow er	1gSAR	10gSAR	1gSAR	10gSAR	1gSAR	10gSAR	1g	10g
Date	[MHz]	[deg. C]	[% RH]	[mW]	[W/kg]	[W/kg]	[W/kg]	[W/kg]	[W/kg]	[W/kg]	dev	dev
2024/9/5	900	21.0	55.0	50.00	0.591	0.385	11.82	7.70	10.9	7.02	8.43%	9.67%
2024/10/7	2450	20.0	50.0	50.12	2.64	1.22	52.68	24.34	52.3	24.5	0.72%	-0.64%

Appendix C System performance check Plot

SAR2 Exposure Conditions						
Frequency [MHz]	Conversion Factor		TSL Permittivity		TSL Conductivity	[S/m]
900.000	8.74		40.2		0.962	
Hardware Setup						
Phantom	TSL, Measured I	Date		Probe, 0	Calibration Date	DAE, Calibration Date
Twin-SAM V5.0 (30deg probe) Charge:202	40905 800 to 1000,		4 - SN3917, 2024-	DAE4 Sn1369, 2024-
tilt) - 1762	2024-09-05			05-21		05-15
Scans Setup		-			-	
Scan		Area Scan			Zoom Scan	
Grid Extents [mm]		40.0 x 90.0			30.0 x 30.0 x 30.0	
Grid Steps [mm]		10.0 x 15.0			6.0 x 6.0 x 1.5	
Sensor Surface [mm]		3.0			1.4	
Graded Grid		N/A			Yes	
Grading Ratio		N/A			1.5	
MAIA		Y			Y	
Surface Detection		VMS + 6p			VMS + 6p	
Scan Method		Measured			Measured	
Measurement Results		-			-	
Scan		Area Scan			Zoom Scan	
Date		2024-09-05, ⁻	12:06		2024-09-05, 12:12	2
psSAR1g [W/Kg]		0.582			0.591	
psSAR10g [W/Kg]		0.381			0.385	
psSAR8g [W/Kg]		0.403			0.406	
Power Drift [dB]		-			-0.00	
Power Scaling		Disabled			Disabled	
TSL Correction		No correction			No correction	
M2/M1 [%]		-			86.3	
Dist 3dB Peak [mm]		-			17.8	
During the test temperature fly	· · • • · • • • · • · • · • • • • • • •					

Conversion Factor	TSL Permittiv	rity	TSL Conductiv	ity [S/m]
7.15	37.7		1.85	
TSL, Measured Date		Probe, Calibra	tion Date	DAE, Calibration Date
HBBL-600-10000 Charge:2450 10-07	1007, 2024-	EX3DV4 - SN3 21	3917, 2024-05-	DAE4 Sn1369, 2024-05- 15
	7.15 TSL, Measured Date HBBL-600-10000 Charge:2450	7.15 37.7 TSL, Measured Date HBBL-600-10000 Charge:2450 1007, 2024-	T.15 37.7 TSL, Measured Date Probe, Calibra HBBL-600-10000 Charge:2450 1007, 2024- EX3DV4 - SN3	7.15 37.7 1.85 TSL, Measured Date Probe, Calibration Date HBBL-600-10000 Charge:2450 1007, 2024- EX3DV4 - SN3917, 2024-05-

Scans Setup	-	-
Scan	Area Scan	Zoom Scan
Grid Extents [mm]	40.0 x 80.0	30.0 x 30.0 x 60.0
Grid Steps [mm]	10.0 x 10.0	5.0 x 5.0 x 1.5
Sensor Surface [mm]	3.0	1.4
Graded Grid	N/A	Yes
Grading Ratio	N/A	1.5
MAIA	Y	Y
Surface Detection	VMS + 6p	VMS + 6p
Scan Method	Measured	Measured
Measurement Results	-	-
Scan	Area Scan	Zoom Scan
Date	2024-10-07, 11:11	2024-10-07, 11:19
psSAR1g [W/Kg]	2.71	2.64
psSAR10g [W/Kg]	1.26	1.22
psSAR8g [W/Kg]	1.39	1.35
Power Drift [dB]	-	-0.01
Power Scaling	Disabled	Disabled
TSL Correction	No correction	No correction
M2/M1 [%]	-	80.2
Dist 3dB Peak [mm]	-	9.0

Appendix D Power measurement result

Date Tempera	ture / Humidity	8, 2024 g. C / 38 % I		WLAN July 30, 2024 20 deg. C / 50 % RH
11b			UHF	
Freq.	Result		Freq.	Result

Freq.	Result		Freq.	Re	sult
	(Burst pow	er average)		(Burst pow	er average)
[MHz]	[dBm]	[mW]	[MHz]	[dBm]	[mW]
2412	15.50	35.48	915.25	23.85	242.66
2437	15.52	35.65	921.25	23.80	239.88
2462	16.02	39.99	927.50	24.06	254.68

Duty

	WLAN 11b							UHF			
	on + Tx	Tx off) * 100 =		0.988 98.8 %			Di	uty 100%	6		
Agilent	· = 10 * lo	og (12.37 / 12.	22) = R T	0.05 dB	🔆 Agilent					RT	
Ref 10 dBm	At	ten 20 dB		▲ Mkr2 12.37 ms 0.58 dB	Ref 20 dBm Peak		Atten 30 d	В			
.og LØ JB/					Log 10 dB/						
atri atri atri atri atri atri atri atri	2R			ă	LgAv	+					_
1 \$2					S1 S2						
Center 2.437 000 G es BW 8 MHz Marker Trace 1R (1) 1a (1) 2R (1) 2a (1)	Type Time Time Time Time Time	•VBW 50 MHz X fixis 4.192 ms 12.22 ms 4.192 ms 12.37 ms	Sweep 2 Amplitude -59.80 dBm 3.06 dB -59.80 dBm 0.58 dB	Span 0 Hz 0.75 ms (8192 pts)	₩3 FC AA £(f): FTun						
20 (1)	a and G	A.U.V. 83	5.55 05		Center 921.2 Res BW 8 MHz			VBW 50 MHz	s	weep 100.5 m	Span 0 s (8192 pt

Appendix E SAR measurement result

For Body-worn Accessory

Dist.	Test	Mode	Ch #.	Freq. (MHz)	Duty Cycle	Pow er (dBm)		1-g SAF	Plot	
(mm)	Position	Mode	011#.		Daty Cycle	Tune-up Limit	Meas.	Meas.	Scaled	No.
			1	2412.0	98.80%	17.00	15.50			
	Front		6	2437.0	98.80%	17.00	15.52			
0		11b	11	2462.0	98.80%	17.00	16.02	0.013	0.016	
0		TID	1	2412.0	98.80%	17.00	15.50			
	Rear		6	2437.0	98.80%	17.00	15.52			
			11	2462.0	98.80%	17.00	16.02	0.033	0.042	WL2-1

For Limbs

Dist.	Test	Mode	Ch #.	Freq. (MHz)	Duty Cycle	Pow er	(dBm)	10-g SA	R (W/kg)	Plot
(mm)	Position	Wode	011#.		Daty Cycle	Tune-up Limit	Meas.	Meas.	Scaled	No.
			1	2412.0	98.80%	17.00	15.50			
	Front		6	2437.0	98.80%	17.00	15.52			
			11	2462.0	98.80%	17.00	16.02	0.014	0.018	
			1	2412.0	98.80%	17.00	15.50			
	Rear		6	2437.0	98.80%	17.00	15.52			
			11	2462.0	98.80%	17.00	16.02	0.035	0.044	
			1	2412.0	98.80%	17.00	15.50			
0	Rear tilt	11b	6	2437.0	98.80%	17.00	15.52			
			11	2462.0	98.80%	17.00	16.02	0.101	0.128	
			1	2412.0	98.80%	17.00	15.50			
	Right		6	2437.0	98.80%	17.00	15.52			
			11	2462.0	98.80%	17.00	16.02	0.062	0.079	
			1	2412.0	98.80%	17.00	15.50	0.653	0.934	WL2-2
	Тор		6	2437.0	98.80%	17.00	15.52	0.530	0.754	
			11	2462.0	98.80%	17.00	16.02	0.518	0.657	

OFDM was excluded from the following table according to KDB 248227 D01.

SAR is not required for the following 2.4 GHz OFDM conditions according to KDB 248227 D01.

1) When KDB 447498 D04 SAR test exclusion applies to the OFDM configuration.

2) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

For Body-worn Accessory

Γ	Maximun	n tune-up	Maximun	n tune-up	OFDM scaled	Position	DSSS	OFDM	Exclusion	Standalone
	toleran	ce limit	toleran	ce limit	factor		Reported	Estimated	limit [W/kg]	SAR request
	DS	SS	OF	DM			SAR value	SAR value		
							[W/kg]	[W/kg]		
	[dBm]	[mW]	[dBm]	[mW]						
Ē	17.00	50.12	12.00	15.85	0.316	Rear	0.042	0.013	< 1.2	No

For Limbs

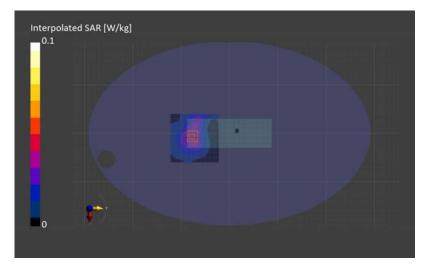
			-		_				
Maximu	m tune-up	Maximun	n tune-up	OFDM scaled	Position	DSSS	OFDM	Exclusion	Standalone
tolerar	nce limit	toleran	ce limit	factor		Reported	Estimated	limit [W/kg]	SAR request
DS	SSS	OF	DM			SAR value	SAR value		
						[W/kg]	[W/kg]		
[dBm]	[mW]	[dBm]	[mW]						
17.00	50.12	12.00	15.85	0.316	Тор	0.934	0.295	< 3.0	No

Note(s):

 OFDM scaled factor = Maximum tune-up tolerance limit of OFDM [mW] / Maximum tune-up tolerance limit of DSSS [mW]

2. Estimated SAR of OFDM= Reported SAR of DSSS[W/kg] · OFDM scaled factor

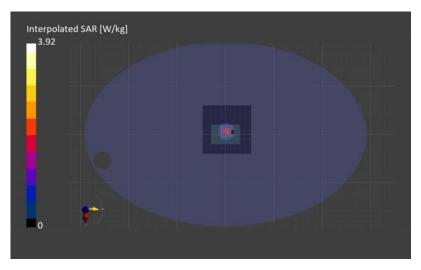
For Limbs										
Dist.	Test	Mode	Ch #.	Freq. (MHz)	Duty Cycle	Pow er	(dBm)	10-g SA	R (W/kg)	Plot
(mm)	Position	IVIOUE	ΟΠ <i>π</i> .		Tu	Tune-up Limit	Meas.	Meas.	Scaled	No.
			1	915.25	100.00%	25.50	23.85			
	Тор		25	921.25	100.00%	25.50	23.80			
			50	927.50	100.00%	25.50	24.06	0.109	0.152	
			1	915.25	100.00%	25.50	23.85			
	Front		25	921.25	100.00%	25.50	23.80			
			50	927.50	100.00%	25.50	24.06	0.063	0.088	
			1	915.25	100.00%	25.50	23.85	1.440	2.106	UHF
	Rear		25	921.25	100.00%	25.50	23.80	1.290	1.908	
0			50	927.50	100.00%	25.50	24.06	1.070	1.491	
0		UHF	1	915.25	100.00%	25.50	23.85			
	Rear Tilt		25	921.25	100.00%	25.50	23.80			
			50	927.50	100.00%	25.50	24.06	0.323	0.450	
			1	915.25	100.00%	25.50	23.85			
	Left		25	921.25	100.00%	25.50	23.80			
			50	927.50	100.00%	25.50	24.06	0.605	0.843	
			1	915.25	100.00%	25.50	23.85			
	Right		25	921.25	100.00%	25.50	23.80			
			50	927.50	100.00%	25.50	24.06	0.453	0.631	


Appendix F Measurement plot

Plot No.WL2-1

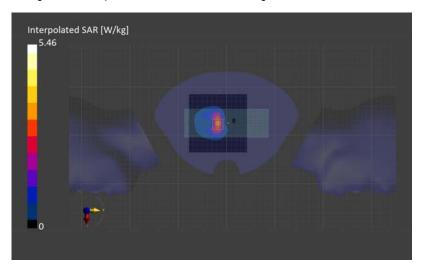
SAR2 Exposure Conditions

Position, Test Distance [mm]	Frequency [M	IHz] Conversion Fac	tor TSL Pe	ermittivity T	SL Conductivity [S/m]
Rear, 0.00	2462.000	7.15	37.7	1	.86
Hardware Setup					
Phantom	TSL, Measured Dat	te	Probe, Calib	ration Date	DAE, Calibration Date
ELI V5.0 (20deg probe tilt) - 1207	HBBL-600-10000 C 10-07	harge:2450 1007, 2024-	EX3DV4 - SI 21	N3917, 2024-0	5- DAE4 Sn1369, 2024-05- 15
Scans Setup		-		-	
Scan		Area Scan		Zoom Scan	
Grid Extents [mm]		100.0 x 100.0		30.0 x 30.0 x	(60.0
Grid Steps [mm]		10.0 x 10.0		5.0 x 5.0 x 1	.5


Grid Steps [mm]	10.0 X 10.0	5.U X 5.U X 1.5
Sensor Surface [mm]	3.0	1.4
Graded Grid	N/A	Yes
Grading Ratio	N/A	1.5
MAIA	Y	Y
Surface Detection	VMS + 6p	VMS + 6p
Scan Method	Measured	Measured
Measurement Results	-	-
Scan	Area Scan	Zoom Scan
Date	2024-10-07, 15:48	2024-10-07, 15:57
psSAR1g [W/Kg]	0.035	0.033
psSAR8g [W/Kg]	0.022	0.020
psSAR10g [W/Kg]	0.020	0.019
Power Drift [dB]	-0.04	-0.19
Power Scaling	Disabled	Disabled
TSL Correction	No correction	No correction
M2/M1 [%]	-	80.0
Dist 3dB Peak [mm]	-	23.5

Plot No.WL2-2

SAR2 Exposure Conditions


SARZ EXPOSURE COnultions					
Position, Test Distance [mm]	Frequency [M	Hz] Convers	ion Factor	TSL Permittivity	TSL Conductivity [S/m]
TOP, 0.00	2412.000	7.15		37.8	1.82
Hardware Setup					
Phantom	TSL, Measured Date	Э	Pr	obe, Calibration Date	DAE, Calibration Date
ELI V5.0 (20deg probe tilt) - 1207	HBBL-600-10000 C 10-07	harge:2450 1007	7, 2024- ΕΣ 21	,	4-05- DAE4 Sn1369, 2024-05- 15
Scans Setup		-			
Scan		Area Scan		Zoom Sca	an
Grid Extents [mm]		100.0 x 100.0		30.0 x 30	.0 x 60.0
Grid Steps [mm]		10.0 x 10.0		5.0 x 5.0	x 1.5
Sensor Surface [mm]		3.0		1.4	
Graded Grid		N/A		Yes	
Grading Ratio		N/A		1.5	
MAIA		N/A		N/A	
Surface Detection		VMS + 6p		VMS + 6p)
Scan Method		Measured		Measured	ł
Measurement Results		-		-	
Scan		Area Scan		Zoom Sca	an
Date		2024-10-07, 16:	35	2024-10-0	07, 16:44
psSAR1g [W/Kg]		1.71		1.50	
psSAR8g [W/Kg]		0.865		0.726	
psSAR10g [W/Kg]		0.775		0.653	
Power Drift [dB]		-0.01		-0.02	
Power Scaling		Disabled		Disabled	
TSL Correction		No correction		No correc	tion
M2/M1 [%]		-		70.9	
Dist 3dB Peak [mm]		-		7.3	
Dente offers to state to see the set					

Plot No.UHF

SAR2 Exposure Conditions

OAILE Exposure conditions								
Position, Test Distance [mm]	Frequency [MI	Hz] Conversion Factor		TSL Permittivity		TSL Conductivity [S/m]		
Rear, 0.00	915.250	8.74		40.2		0.968		
Hardware Setup		·						
Phantom	TSL, Measured Da	ate		Probe, C	Calibration [Date	DAE, Calibration Date	
Twin-SAM V5.0 (30deg probe	HBBL-600-10000 (Charge:2	20240905 800 to 1000,	EX3DV4	- SN3917,	2024-	DAE4 Sn1369, 2024-	
tilt) - 1762	2024-09-05	-		05-21			05-15	
Scans Setup		-			-			
Scan		Area Sc	an		Zoom Sca	n		
Grid Extents [mm]		100.0 x	100.0		30.0 x 30.0) x 30.	0	
Grid Steps [mm]		15.0 x 1	5.0		6.0 x 6.0 x	1.5		
Sensor Surface [mm]		3.0			1.4			
Graded Grid		N/A			Yes			
Grading Ratio		N/A			1.5			
MAIA		Y			Y			
Surface Detection		VMS + 6	Sp		VMS + 6p			
Scan Method		Measure	ed		Measured			
Measurement Results		-			-			
Scan		Area Sc	an		Zoom Sca	n		
Date		2024-09	-05, 21:05		2024-09-0	5, 21:1	1	
psSAR1g [W/Kg]		2.76			2.71			
psSAR8g [W/Kg]		1.68			1.55			
psSAR10g [W/Kg]		1.56			1.44			
Power Drift [dB]		0.01			0.06			
Power Scaling		Disabled	Ł		Disabled			
TSL Correction		No corre	ection		No correct	ion		
M2/M1 [%]		-			78.3			
Dist 3dB Peak [mm]		-			7.2			
Device all a fract fraction from the first								

Appendix G Probe calibration record

EX3DV4 - SN:3917

Callbration Laboratory of Schmid & Partner Engineering AG eughausstrasse 43, 8004 Zurich, Switzerland			S Schweizerischer Kalibrierdiens C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service			
credited by the Swiss Accre the Swiss Accreditation Se ultilateral Agreement for the	rvice is one of the signate		Accreditation No.: SCS 0108			
lent UL Japan He Ise, Japan	ead Office	Certificate No.	EX-3917_May24			
CALIBRATION C	ERTIFICATE					
Object	EX3DV4 - SN:3	917				
Calibration procedure(s)	QA CAL-25.v8	, QA CAL-12.v10, QA CAL-14.v edure for dosimetric E-field prot				
Calibration date	May 21, 2024					
Calibration Equipment used		·				
Primary Standards Power meter NRP2	ID SN: 104778	Cal Date (Certificate No.) 26-Mar-24 (No. 217-04036/04037)	Scheduled Calibration Mar-25			
Power sensor NRP-Z91	SN: 103244	26-Mar-24 (No. 217-04036)	Mar-25			
OCP DAK-3.5 (weighted)	SN: 1249	05-Oct-23 (OCP-DAK3.5-1249_Oct2				
DCP DAK-12	SN: 1016	05-Oct-23 (OCP-DAK12-1016_Oct2	1			
Reference 20 dB Attenuator	SN: CC2552 (20x)	26-Mar-24 (No. 217-04046)	Mar-25			
11.11.11.11	SN: 660					
Reference Probe EX3DV4	SN: 7349	23-Feb-24 (No. DAE4-660_Feb24) 03-Nov-23 (No. EX3-7349_Nov23)	Feb-25 Nov-24			
	ID	03-Nov-23 (No. EX3-7349_Nov23)	Nov-24			
Secondary Standards						
Secondary Standards Power meter E4419B Power sensor E4412A	ID	03-Nov-23 (No. EX3-7349_Nov23) Check Date (in house)	Nov-24 Scheduled Check			
Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A	ID SN: GB41293874 SN: MY41498087 SN: 000110210	03-Nov-23 (No. EX3-7349_Nov23) Check Date (in house) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22)	Nov-24 Scheduled Check In hause check: Jun-24 In hause check: Jun-24 In hause check: Jun-24			
Secondary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A RF generator HP 8648C	ID SN: GB41293874 SN: MY41498087	03-Nov-23 (No. EX3-7349_Nov23) Check Date (in house) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22)	Nov-24 Scheduled Check In house check: Jun-24 In house check: Jun-24			
Secondary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A RF generator HP 8648C	ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700	03-Nov-23 (No. EX3-7349_Nov23) Check Date (in house) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 04-Aug-99 (in house check Jun-22)	Nov-24 Scheduled Check In house check: Jun-24 In house check: Jun-24 In house check: Jun-24 In house check: Jun-24			
Secondary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A RF generator HP 8648C	ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700	03-Nov-23 (No. EX3-7349_Nov23) Check Date (in house) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 04-Aug-99 (in house check Jun-22)	Nov-24 Scheduled Check In house check: Jun-24 In house check: Jun-24 In house check: Jun-24 In house check: Jun-24 In house check: Oct-24 Signature			
Secondary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Power sensor E4412A F generator HP 8648C Network Analyzer E8358A	ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642L01700 SN: US41080477	03-Nov-23 (No. EX3-7349_Nov23) Check Date (in house) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 04-Aug-99 (in house check Jun-22) 31-Mar-14 (in house check Oct-22)	Nov-24 Scheduled Check In house check: Jun-24 In house check: Jun-24 In house check: Jun-24 In house check: Jun-24 In house check: Oct-24			
Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer E8358A Calibrated by	ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642L01700 SN: US41080477	03-Nov-23 (No. EX3-7349_Nov23) Check Date (in house) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 04-Aug-99 (in house check Jun-22) 31-Mar-14 (in house check Oct-22) Function	Nov-24 Scheduled Check In house check: Jun-24 In house check: Jun-24 In house check: Jun-24 In house check: Jun-24 In house check: Oct-24 Signature			
Reference Probe EX3DV4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer E8358A Calibrated by Approved by This calibration certificate sh	ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642L01700 SN: US41080477 Name Joanna Lleshaj Sven Kühn	03-Nov-23 (No. EX3-7349_Nov23) Check Date (in house) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 04-Aug-99 (in house check Jun-22) 31-Mar-14 (in house check Oct-22) Function Laboratory Technician	Nov-24 Scheduled Check In house check: Jun-24 In house check: Oct-24 Signature Applicity Solution Issued: May 21, 2024			
Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer E8358A Callbrated by Approved by	ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642L01700 SN: US41080477 Name Joanna Lleshaj Sven Kühn	03-Nov-23 (No. EX3-7349_Nov23) Check Date (in house) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 04-Aug-99 (in house check Jun-22) 31-Mar-14 (in house check Oct-22) Function Laboratory Technician Technical Manager	Nov-24 Scheduled Check In house check: Jun-24 In house check: Jun-24 In house check: Jun-24 In house check: Jun-24 In house check: Oct-24 Signature			

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage

C Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 0108

Glossary

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization ϑ	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices – Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization ∂ = 0 (f ≤ 900MHz in TEM-cell; f > 1800MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- · PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum
 calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ±50 MHz to ±100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis).
 No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX-3917_May24

Page 2 of 22

EX3DV4 - SN:3917

May 21, 2024

Parameters of Probe: EX3DV4 - SN:3917

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k = 2)
Norm $(\mu V/(V/m)^2)^A$	0.53	0.42	0.45	±10.1%
DCP (mV) B	102.6	104.5	104.8	±4.7%

Calibration Results for Modulation Response

UID	Communication System Name		A	B	С	D	VR	Max	Max
			dB	ďB√µV		dB	fanV	dev.	Unc ^E k = 2
0	CW	x	0.00	0.00	1.00	0.00	120.6	±1.1%	±4.7%
		Y	0.00	0.00	1.00	1	134.8		
	5 F 4 4	Z	0.00	0.00	1.00	1	134.4		
10352 Pulse Waveform (20	Pulse Waveform (200Hz, 10%)	X	20.00	94.86	23.79	10.00	60.0	±2.5%	±9.6%
		Y	20.00	93.34	22.51	1	60.0		
		Z	20.00	92.57	22.42	1	60.0		
10353 Pulse Waveto	Pulse Waveform (200Hz, 20%)	X	20.00	95.33	22.86	6.99	80.0	±1.2%	±9.6%
		Y	20.00	94.64	22.15	1	80.0		Į
		Z	20.00	92.64	21.20	1	80.0		
10354	Pulse Waveform (200Hz, 40%)	X	20.00	97.94	22.67	3.98	95.0	±1.4%	±9.6%
		Y	20.00	99.07	23.03	1	95.0		
		Z	20.00	94.25	20.51	1	95.0		
10355	Pulse Waveform (200Hz, 60%)	X	20.00	102.35	23.40	2.22	120.0	±1.4%	±9.6%
		Y	20.00	106.26	25.16	1	120.0		
		Z	20.00	97.47	20.76	1	120.0		
10387	QPSK Waveform, 1 MHz	X	1.65	64.94	14.44	1.00	150.0	±1.8%	±9.6%
		¥.	1.73	66.41	15.21	1	150.0		
		z	1.67	65.17	14.53		150.0		
10388 QPSK Wavefo	QPSK Waveform, 10 MHz	X	2.14	66.90	15.09	0.00	150.0	±1.0%	±9.6%
		{Υ.	2.28	68.30	15.88		150.0		
		Z	2.19	67.25	15.18	1	150.0		
10396	64-QAM Waveform, 100 kHz	X	2.90	69.43	18.15	3.01	150.0	±0.7%	±9.6%
		Y	2.96	71.09	16.95		150.0		
		Z	3.09	70.61	18.49	1	150.0	1	
10399	64-QAM Waveform, 40 MHz	X	3.48	66.73	15.49	0.00	150.0	±0.8%	1:9.6%
		Y	3.41	66.72	15.54	1	150.0		
		Z	3.52	66.98	15.56	1	150.0		
10414	WLAN CCDF, 64-QAM, 40 MHz	X	4.90	65.50	15.38	0.00	150.0	±1.8%	±9.6%
		Y	4.75	65.32	15.29	1	150.0	1 -	
		Z	4,74	65.00	15.08	1	150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage tactor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not attect the E²-field uncertainty inside TS£ (see Pages 5 and 6). ⁹ Linearization parameter uncertainty for maximum specified field strength. ^E Uncertainty is determined using the max. deviation from thear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: EX-3917_May24

Page 3 of 22

Parameters of Probe: EX3DV4 - SN:3917

Sensor Model Parameters

	C1 fF	C2 fF	۷ ⁻¹	≣1 इत्ताs V ⁻²	T2 msV ⁻¹	T3 m s	T4 V ⁻²	T5 V ⁻¹	76
×	50.0	369.28	34.80	20.50	0.69	5.08	0.98	0.33	1.01
Įγ.	45.7	330.57	33.61	19.88	0.21	5.09	1.51	0.13	1.01
z	51.2	373.97	34.12	17.78	0.78	5.04	1.37	0.27	1.01

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle	67.4*
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	mm 9
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 ពារព
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 m.m.
Recommended Measurement Distance from Surface	1,4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

Certificate No: EX-3917 May24

Page 4 of 22

May 21, 2024

Parameters of Probe: EX3DV4 - SN:3917

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
13	55.0	0.75	16.96	16.96	16.96	0.00	1.25	±13.3%
300	45.3	0.87	11.60	11.60	11.60	0.09	1.00	±13.3%
750	41.9	0.69	9.27	9.78	9.35	0.39	1.27	±11.0%
835	41.5	0.90	8.74	9.62	9.03	0.39	1.27	±11.0%
1450	40.5	1.20	7.79	8.29	8.10	0.36	1.27	±11.0%
1640	40.2	1.31	7.72	8.06	8.05	0.32	1.27	±11.0%
1750	40.1	1.37	7.61	7.99	7.93	0.27	1.27	±11.0%
1900	40.0	1.40	7.48	7.93	7.81	0.28	1.27	±11.0%
2300	39.5	1.67	7.29	7.74	7.60	0.31	1.27	±11.0%
2450	39.2	1.80	7.15	7.59	7.46	0.30	1.27	±11.0%
2600	39.0	1.96	7.02	7.46	7.34	0.30	1.27	:±11.0%
3500	37.9	2.91	6.35	6.82	6.67	0.35	1.27	±13.1%
3700	37.7	3.12	6.23	6.68	6.54	0.37	1.27	±13.1%
3900	37.5	3.32	6.17	6.62	6.50	0.36	1.27	±13.1%
4600	36.7	4.04	5.91	6.36	6.36	0.36	1.29	±13.1%
5250	35.9	4.71	5.10	5.51	5.34	0.38	1.53	+13.1%
5600	35.5	5.07	4.46	4.81	4.70	0.37	1.77	±13.1%
5800	35.3	5.27	4.31	4.66	4.61	0.37	1.87	±13.1%
5850	35.2	5.32	4.20	4.59	4.63	0.35	1.83	±13.1%

C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), olso it is reatricited to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncortainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 15 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±100 MHz.
The probes are calibrated using Issue finalialing facility (TSU) theil deviate for *x* and *r* by less than ±5% from the target values (typically batter than ±3%) and are valid for TSL with deviations of up to ±10% if SAR correction is applied.
G Apha/Daph are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after companysion is always less than ±1% for frequencies below 3 GHz and balow ±2% for trequencies below a 3–6 GHz at any distance larger than half tho probe tip diameter from the boundary after than half the probe tip diameter from the boundary after than half the probe tip diameter from the boundary after than half the probe tip diameter from the boundary after than half the probe tip diameter from the boundary after than half the probe tip diameter from the boundary after than half the probe tip diameter from the boundary after than half the probe tip diameter from the boundary after than the boundary after than the boundary than the formation the boundary that the target that the formation the boundary that the formation the boundary that the probe tip diameter from the boundary that the formation the boundary the second formation the boundary that the formation the boundary that the formation the boundary the second formation the boundary the second formation the boundary the second formation the bound

boundary.

Certificate No: EX-3917_May24

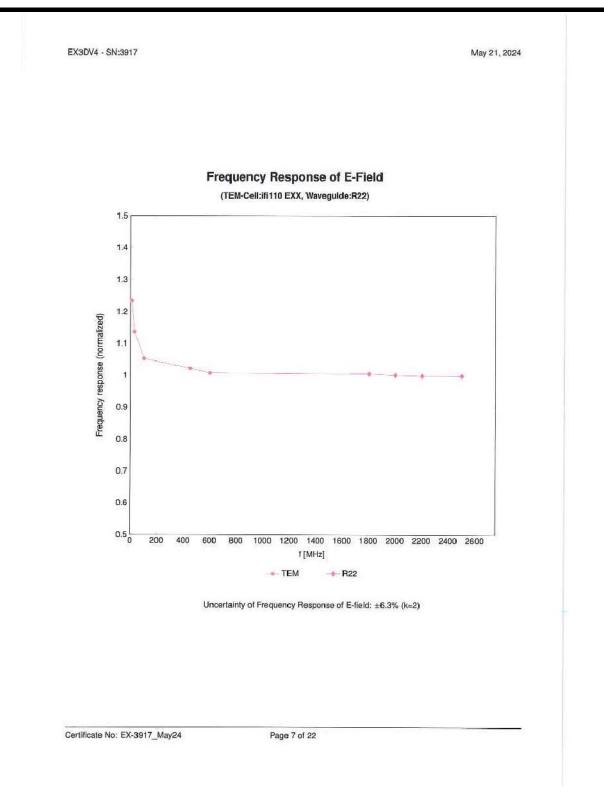
Page 5 of 22

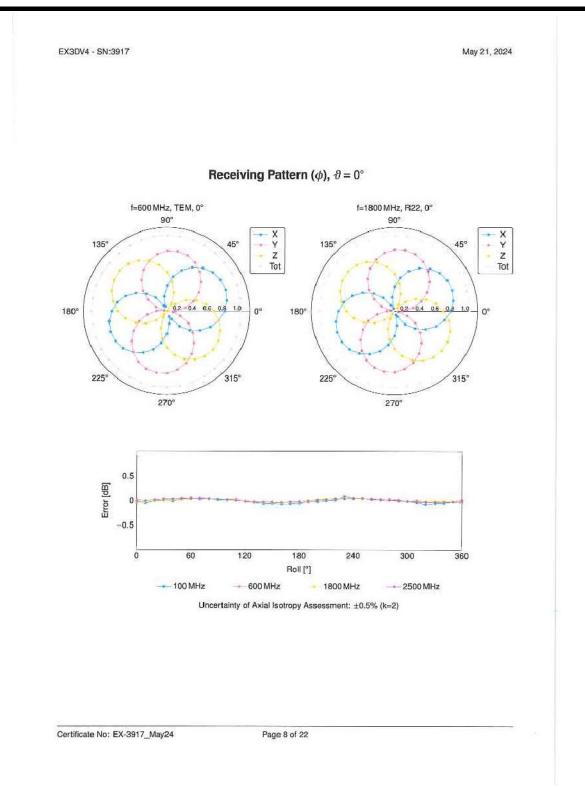
May 21, 2024

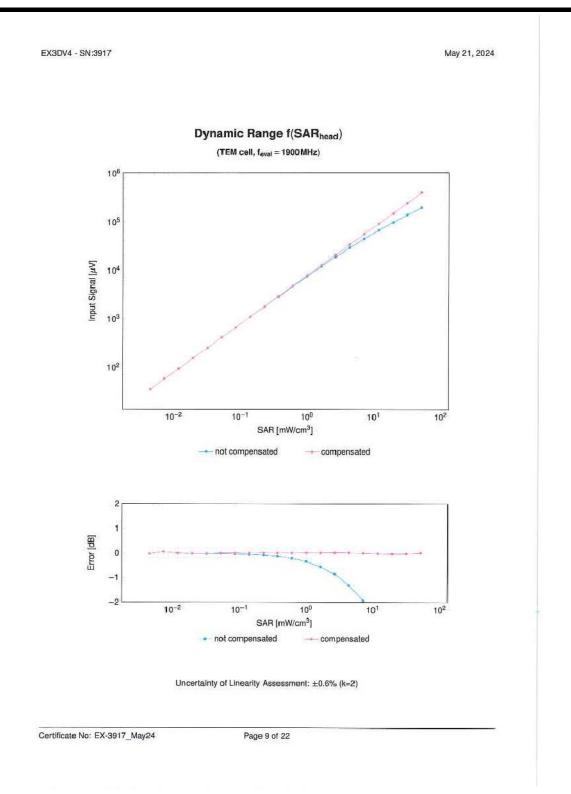
May 21, 2024

Parameters of Probe: EX3DV4 - SN:3917

Calibration Parameter Determined in Head Tissue Simulating Media


f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
6500	34.5	6.07	5.21	5.46	5.34	0.20	1.27	±18.6%


^C Frequency validity at 6.5 GHz is --600/+700 MHz, and ±700 MHz at or above 7 GHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F The probes are calibrated using itsue almulating liquids (TSL) that deviate for *z* and *o* by less than ±10% from the target values (typically better than ±6%) and are valid for TSL with deviations of up to ±10%. ^G Alpha/Depth are detarmined during calibration, SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less


^G Alpha/Depth are determined during calibration. SPEAG warkants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz; below ±2% for frequencies between 3–6 GHz; and below ±4% for frequencies between 6–10 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX-3917_May24

Page 6 of 22

May 21, 2024

Appendix: Modulation Calibration Parameters

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E k = 2
0		CW	CW	0.00	±4.7
10010	CAB	SAR Validation (Square, 100ms, 10ms)	Tost	10.00	±9.6
TOOFI	CAG	UMTS-FDD (WCDMA)	WGDMA	2.91	±9.6
10012	CAB	IEEE 802.13b WiFi 2.4 GHz (DSSS, 1 Mbps)	WE AN	1.87	±9.8
10013	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6Mbps)	WEAN	9.46	19.6
10021	DAC	GSM-FDD (TDMA, GMSK)	GSM	9.39	±9.6
10023	DAC	GPDS EDD (TENIA CMSK TN III)	GSM	9.57	±9.6
10024	DAC	GPRS-FDD (TOMA, GMSK, TN 0-1)	QSM	6.56	±9.6
10025	DAC	EDGE-FDD (TOMA, 8FSK, TN 0)	GSM	12.62	±9.6
10026	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	9.55	±9.6
10027	DAC	GPRS-FDD (TOMA, GMSK, TN 0-1-2)	GSM	4.80	<u>19.6</u>
10028	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	GSM	3.55	19.6
10029	DAC	EDGE-FDD (TOMA, BPSK, TN 0-1-2)	GSM	7.78	±9.6
10025	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Bluetapth	5.30	+9.6
10030	GAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	Bluetooth	1.87	19.6
10031	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Bluetooth	1.07	±9.6
			Bluetoolin	7.74	±9.6
10033	CAA	IEEE 602.15.1 Bluetooth (PV4-DQPSK, DH1)		4.53	
10034	CAA	IEEE 802.15.1 Bluetooth (PV4-DOPSK, DH9)	Bluetaoth		<u>1</u> 9.6
10035	CAA	IEEE 802.15.1 Bluetooth (Pt/4-DOPSK, DH5)	Bluetooth	3.83	±9.6
10036	CAA	IEEE 002.15.1 Bluetooth (8-DPSK, DH1)	Bluelooth	8.01	±9.6
10037	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	Bluetaoth	4.77	±9.6
10038	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Bluetooth	4.10	±9.6
\$0.039	CAB	CDMA2000 (1xRTT, RC1)	CDMA2000	4.57	±9.6
10042	ÇAB	IS-54 / IS-136 FOD {TDMA/FDM, PI/4-DQPSK, Heilrate}	AMPS	7.78	±9.6
10044	CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	AMPS	0.00	19.6
10048	CAA	DECT (TDD, TDMAVFDM, GFSK, Full Skit, 24)	DECT	13.60	±9.6
10049	CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	DECT	10.79	±9.6
10056	ÇAA	UMTS-TDD (TE-SCOMA, 1.28 Mops)	TD-SCOMA	11.01	:±9.6
10:058	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	GSM	6.52	Tô'8
10059	CAB	IEEE 802.1 tb WiFI 2.4 GHz (DSSS, 2 Mbps)	WEAN	2.12	±9.6
10060	CAÐ	IEEE 802.11b WiFI 2.4 GHz (DSSS, 5.5 Mbps)	WEAN	2.83	±9.6
10.061	CAB	IEEE 802.115 WiFi 2.4 GHz (DSSS, 11 Mbps)	WEAN	3.60	<u>1</u> 9.6
10062	CAE	IEEE 802.11 a/b WiFi 5 GHz (OFDM, 6 Mbpa)	WEAN	3.63	Tð'9
10063	CAE	JEEE 802.11 a/h WIFI 5 GHz (OFDM, 9 Mbps)	WLAN	8.63	±9.6
10064	CAE	IEEE 802.11 m/h WiFi 5 GHz (OFDM, 12 Mbps)	WEAN	9.09	:t9.6
10065	CAE	1EEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	WEAN	9.00	<u>⊦</u> 9.6
10066	CAE	IEEE 802.11a/h WiFi 5 OHz (OFDM, 24 Mbps)	WE AN	9.58	±9.6
10:067	CAE	IEEE 802.11a/h WIFI 5 GHz (OFDM, 36 Mbps)	WŁAN	10.12	±9.6
10068	CAE	IEEE 802.11 a/h WIFI 5 GHz (OFOM, 48 Mbps)	WEAN	10.24	+9.6
10069	CAE	IEEE 802.11 e/h WiFi 5 GHz (OFDM, 54 Mbps)	WEAN	10.56	Tð'8
10071	CAB	IEEE 802.11g WiFi 2.4 GHz (DSS5/OFDM, 9 Mbps)	WEAN	9.83	±9.6
10072	CAB	IEEE 802-11g WFi 2-4 QHz (DSSS/OFDM, 12 Mbps)	WEAN	9.62	±9.8
10073	CAB	IEEE 802.11g WiFI 2.4 GHz (DSSS/OFDM, 18 Mbps)	WEAN	9.94	±9.6
10074	CAB	IEEE 802.11g WiFI 2.4 GHz (DSSS/OFDM, 24 Mbps)	WEAN	10.30	19.6
10075	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mops)	WEAN	10.77	±9.6
10076	ÇAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	WE.AN	10.94	±9.6
10077	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54Mbps)	WLAN	11.00	+9.6
10081	CAB	CDMA2000 (fxRTT, RC3)	CDMA2000	3.97	19.6
10082	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate)	AMPS	4.77	±9.6
10080	DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	GSM	6.56	±9.6
10097	CAC	UMTS-FDD (HSDPA)	WCDMA	3.98	±9.6
10098	GAC	UMTS-FDD (HSUPA, Suttest 2)	WCDMA	3.98	19.6
10099	DAG	EDGE-FDD (TDMA, 8PSK, TN 0-4)	GSM	9.55	19.6
10100	GAF	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-FDO	5.67	±9.6
0101	CAF	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, GFSR)	TE-FDD	6.42	
10102	CAF		LTE FDD	6.60	±9.6 ±9.6
	CAP	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-TOD	9.29	
10103		LTE-TOD (SC-FDMA, 100% RB, 20 MHz, QPSK)			<u>19.6</u>
10104	GAH	LTE-TOD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-TOD	9.97	±9.6
10105	ÇAH	LTE-TOD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-TOD	10.01	±9.6
10108	CAH	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-FDD	5.80	±9.6
10109	CAH	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 18-QAM)	LTE-FOD	6.43	±9.6
		LTE-FDD (SC-FDMA, 100% RB, 5MHz, QPSK)	LTE-FDD	5.75	±9.6
10150	CAH CAH	LTE-F00 (SG-FDMA, 100% RB, 5MHz, 16-QAM)	LTE-FDD	6.44	±9.6

Certificale No: EX-3917 May24

Page 11 of 22

May 21, 2024

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E k =
10112	CAH	LTE-FDD (SC-FDMA, 100% BB, 10 MHz, 64-QAM)	LTE-FDD	6.59	19.6
10113	CAH	LTE-FDD (SC-FDMA, 100% RB, 5MHz, 64-QAM)	LTE-FDD	6.62	±9.6
10114	ÇAE	IEEE 802.11h (HT Greenfield, 13.5 Mbps, BPSK)	WLAN	8.10	±9.6
10115	CAE	IEEE 802.11n (HT Greenfield, 81 Mbps, 18-OAM)	WLAN	8.46	±9.6
10116	CAE	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	WLAN	8.15	±9.6
10117	CAE	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	WLAN	8.07	±9.6
10118	ÇAE	IEEE 802.11n (HT Mixed, 81 Mbps, 18-OAM)	WLAN	8.59	÷9.6
10119	CAE	IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM)	WLAN	8.13	<u>1</u> 9.6
10140	CAF	LTE-FDD (SC-FDMA, 100% RB, 15MHz, 16-QAM)	LTE-FOD	6.49	±9.6
10141	CAF	LTE-FDD (SC-FDMA. 100% RB, 15MHz, 64-QAM)	LTE-FDD	6.53	±9.6
10142	CAF	LTE-FDD (SG-FDMA, 100% RB, 3MHz, OPSK)	LTE-FDD	5.73	±9.6
10143	CAF	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-FDD	6.35	19.6
10144	CAF	LYE FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-FDD	6.65	±9.6
10145	CAG	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-FDD	5.76	<u>19.6</u>
10146	CAG	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.41	19.6
10147	CAG	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.72	±9.6
10149	CAF	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-FDD		±9.6
10150	CAF	LTE-FDD (\$C-FDMA, 50% PB, 20 MHz, 84 QAM) LTE-TDD (SC-FDMA, 50% PB, 20 MHz, QP\$K)	LTE-FDD LTE-TDD	6.60	±9.6 ±9.6
10151	ÇAH			9.28	
10152 10153	CAH	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM) LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-TOD	9.92	+9.6 19.6
10153	CAH	LTE-FDD (SC-FDMA, 50% HB, 20 MHZ, 64-043%)	LIE-TOD LIE-FDO	6.75	±9.6
10155	CAH	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 0 FSR)	L1E-F00	6.43	±9.0 ±9.6
10156	CAH	LTE-FDD (SC-FDMA, 50% RB, 5MHz, QPSK)	LTE-FDD	5.79	±9.6
10157	CAH	LTE-FDD (SC-FDMA, 50% AB, 5MHz, 16-QAM)	LTE-FDD	6.49	±9.6
10158	CAH	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LITE-FOD	6.62	±9.6
10159	CAH	LTE-FDD (SC-FDMA, 50% RB, 5MHz, 64-QAM)	LTE-FDD	6.56	±9.6
10160	CAF	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LITE-FDD	5.82	±9.6
10181	CAF	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-FDD	6.43	±9.6
10162	CAF	LTE-FDD (SC-FDMA, 50% AB, 15 MHz, 64-QAM)	LTE-FDD	6.56	±9.6
10166	CAG	LTE-FDD (SC-FDMA, 50% FB, 1.4 MHz, QPSK)	LTE-FDD	5.46	±9.6
10167	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.21	<u>1</u> 9.6
10168	CAG.	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.79	±9.6
10169	CAF	LTE-FOD (SC-FDMA, 1 RB, 20MHz, QPSK)	LTE-FDD	5.73	±9.6
10170	CAF	LTE-FOD (SC-FDMA, 1 RB, 20MHz, 16-QAM)	LTE-FDD	6.52	19.6
10171	AAF	LTE-FOD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-FDD	6.49	±9.6
10172	CAH	LTE-TOD (SC-FDMA, 1 HB, 20 MHz, QPSK)	LTE-TOD	9.21	±9.6
0173	CAH	LTE-TDD (SC-FDMA, 1 RB, 20MHz, 16-QAM)	LIE-TOD	9.48	+9.8
10174	CAH	LTE-TED (\$C-FDMA, 1 R8, 20MHz, 64-QAM)	LTE-TDD	10.25	Fð:9
10175	GAH	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-FDD	5.72	±9.6
10176	CAH	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10177	CAJ	LTE-FDD (SC-FDMA, 1 R8, 51/Hz, QPSK)	LTE-FDD	5.73	±9.8
10178	CAH	LTE-FDD (SC-FDMA, 1 FB, 51/Hz, 18-DAM)	LTE-FDD	6.52	Tô:9
10179	CAH	LTE-FDD (\$C-F0MA, 1 88, 10 MHz, 64-QAM)	ITE-FDD	6.50	±9.8
10180	CAH	LTE-FDD (SC-FDMA, 1 98, 5MHz, 64-QAM)	LTE-FDD	6.60	±9.6
10161	CAF	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTÉ-FDD	5.72	±9.6
10782	CÁF	LTE-FDD (SC-FDMA, 1 AB, 15 MHz, 16-QAM)	LTE-FDD	6.52	19.6
10189 10184	CAF	LTE-FDD (SC-F0MA, 1 88, 15 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10184	CAF	LTE-FDD (SC-FDMA, 1 RB, 3MHz, QPSK) I.TE-FDD (SC-FDMA, 1 RB, 3MHz, 16-QAM)	LTE-FDD LTE-FDD	5.73 6.51	±9.5 +9.6
10165	AAF	LTE-FDD (SC-FDMA, 1 HB, 3MHz, 64-0AM)	LTE-FDD	6.50	19.6
10180	CAG	LTE-FDD (SC-F0MA, 1 RB, 1.4 MHz, QPSK)	LTE-FDD	5.73	±9.6
10188	CAG	LTE-FDD (SC-F0MA, 1 88, 1.4 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10189	AAG	TE-FDD (SC-FDMA, 1 88, 1.4 MHz, 64-QAM)	LTE-FDD	6.50	±3.0 ±9.6
10193	CAE	IEEE 802.1 fn (HT Greenfield, 6.5 Mbps, BPSK)	WLAN	8.09	±9.6
10194	CAE	IEEE 902.11n (HT Graenfield, 39 Mbps, 16 OAM)	WLAN	8.12	±9.6
10195	CAE	IEEE 902.11n (HT Greenfield, 65 Mbps, 64 OAM)	WLAN	8.21	±9.6
10196	ÇAE	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	WLAN	8.10	±9.6
10197	CAE	IEEE 802.11n (HT Mixed, 39 Mbps, \$6-QAM)	WLAN	8.13	±9.6
10198	CAE	IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM)	WLAN	8.27	±9.6
10219	CAE	EEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	WLAN	8.03	±9.6
10220	CAE	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM)	WLAN	8.15	±9.6
10221	CAE	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM)	WLAN	8.27	±9.6
0222	CAE	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	WLAN	8.0G	±9.6
10223	CAE	IEEE 802.11n (HT Mixed, 90 Mbps, 16-OAM)	WLAN	B.48	±9.6
10224	CAE	IEEE 802.11π (HT Mixed, 150 Mbps, 64-QAM)	WLAN	8.08	±9.6

Certificate No: EX-3917_May24

Page 12 of 22

May 21, 2024

UID	Rev CAC	Communication System Name	Group WCDMA	PAR (dB) 5.97	
0225		UMTS-FDD (HSPA+)		9.49	±9.6
0226	CAC	LTE-TDD (SC-FDMA, 1 RB, 1.4MHz, 16-QAM)	LTE-TOD		:±9.6
0227	CAC	LTE-TED (SC-FDMA, 1 RB, 1.4MHz, 64-OAM)	LTE-TOD	9.22	±9.6 ±9.6
0228	CAC	LTE-TED (SC-FDMA, 1 RB, 1.4 MHz, QPSK) LTE-TED (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LIFE-TOD LITE-TOD	9.48	±9.6 ±9.6
0229	CAE	LTE-TDD (SC-FDMA, 1 HB, 3 MHz, 64-QAM)	LTE-TOO	10.25	7.9.6 19.6
0230	CAE	LTE-TDD (SC-FOMA, 1 98, 3 MHz, QPSK)	LTE-TOD	9.19	±9.6
0232	CAH	LTE-TDD (SC-FOMA, 1 R8, 5 MHz, 16-QAM)	LTE-TOD	9.48	±9.8
0233	CAH	ETE-TDD (SC-FDMA, 1 RB, 5MHz, 64-QAM)	LTE-TDD	10.25	±9.6
0234	CAH	LTE-TDD (SC-FDMA, 1 RB, 5MHz, QPSK)	םמד-דבו :	9.21	9.6
0295	GAH	LTE-TDD (SG-FDMA, 1 RB, 10 MHz, 16-OAM)	LTE TOD	9.48	±9.6
0236	CAH	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
0237	CAH	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	I ATE-TOD	9.21	<u>19.6</u>
0238	GAG	LTE-TOD (SC-FDMA, 1 RB, 15 MHz, 16 QAM)	LTE/TDD	9.48	±9.6
0239	CAG	LTE-TOD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
0240	CAG	LTE-TOD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-TDD	9.21	<u>_9.6</u>
0241	CAC	LTE-TOD (SC-FDMA, 50% PB, 1.4 MHz, 16-QAM)	LTE-TDD	9.82	±9.6
0242	CAC	LFE-TOD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-TDD	9.66	±9.6
0243	GAC	LTE-TOD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-TDD	9.46	÷9.6
0244	CAE	LEE-TOD (SC-FDMA, 50% RB, 3MHz, 16-QAM)	LITE-TOD	10.06	±9.6
0245	CAE	LTE-TOD (SC-FDMA, 50% RB, 3MHz, 64-GAM)	LTE-TDD	10.06	±9.6
0246	CÂE	LTE-TOD (SC-FDMA, 50% RB, 3MHz, QPSK)	LTE-TDD	9.30	÷9.6
0247	CAH	LTE-TOD (SC-FDMA, 50% RB, 5MHz, 16-QAM)	ETE-TDD	9.91	<u></u> 9.6
0248	CAH	LTE-TOD (SC-FDMA, 50% RB, 5%Hz, 64-QAM)	LTE-TDD	10.09	±9.6
0249	CAH	LTE-TOD (SC-FDMA, 50% RB, 51/Hz, QPSK)	LTE-TOD	9.29	÷9.6
0250	CAH	LTE-T00 (SC-FDMA, 50% RB, 10 MHz, 16-DAM)	LTE-TDD	9.81	±9.6
0251	CAH	LTE-TOD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-TDD	10.17	±9.6
0252	CAH	LTE-TED (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-TDD	9.24	±9.6
0253	CAG	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-OAM)	LTE-TDD	9.90	<u>19.6</u>
0254	CAG	LTE-TOD (SC-FDMA, 50% RB, 15 MHz, 64-OAM)	LTE-TDD	10.14	±9.6
0255	CAG	LTE-TED (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-TDD	9.20	±9.6
0256	CAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.96	
0257	CAC	I.TE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-OAM)	LTE-TOD	10.08	<u>19.6</u>
0258	CAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-TOD	9.34	±9.6
0259	CAE	LTE-TDD (SC-FDMA, 100% RB, 3MHz, 16-QAM)	LTE-TOD	9.98	±9.6
0260	CAE	LTE-TDD (SC-FDMA, 100% 88, 3MHz, 64-QAM)	LTE-TOD	9.97	±9.6
0261	CAE	I.TE-TDD (SC-FOMA, 100% AB, 3MHz, QPSK)	LTE-TOD	9.24	19.6
0262	CAH	LTE-TDD (SC-FDMA, 100% PB, 5MHz, 16-QAM)	LTE-TOD	9.83	±9.6
0263	CAH	LTE-TDD (SC-FDMA, 100% RB, 5MHz, 64-QAM)	UTE-TOD	10.16	±9.6
0264	GAH	LTE-TDD (SC-FDMA, 100% RB, SMHz, QPSK)	LTE-TOD	9.23	±9.6
0265	CAH	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-TD0	9.92	19.6
0266	CAH	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-0AM)	LTE-TDD	10.07	±9.6
0267	CAH	LTE-TOD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-TOD	9.30	±9.6
0268	CAG	LTE-TOD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-TOD	10.06	19.6
0269	CAG	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-TDD	10.13	±9.6
0270	CAG	LTE-TOD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-TDD	9.58	±9.6
0274	CAC	UMTS-FDD (HSUPA, Sublest 5, 3GPP Re(8.10)	WCDMA	4.87	±9.6
0275	CAC	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	WCDMA	3.96	19.6
0277	CAA	PHS (QPSK)	PHS	31.81	±9.6
0278	ÇAA	PHS (QPSK, BW 684MHz, Rolloff 0.5)	PHS	\$1.81	±9.6
0279	CAA	PHS (QPSK, BW 884MHz, Solloff 0.38)	PHS	12.18	±9.6
0290	AAB	CDMA2000, RC1, SO55, Full Rate	CDMA2000	3.91	<u>1</u> 9.6
0291	AAB	CDMA2000, RC3, SO55, Full Rate	GDMA2000	3.46	
0292	AAB	CDMA2000, RC9, SO32, Full Rate	GDMA2000	3.39	±9.6
0293	AAB	CDMA2000, RC3, SO3, Full Pate	CDMA2000	3.50	±9.6
0295	AAB	CDMA2000, RC1, SO3, 1/8th Rale 25 fr.	CDMA2000	12.49	±9.6
0297	AAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-FDD	5.81	<u><</u> 9.6
0298	AAE	LTE-FDD (SC-FDMA, 50% RB, 3MHz, QPSK)	LTE-FDD	5.72	±9.6
0299	AAE	LTE-FDD (SC-FDMA, 50% RB, 3MHz, 16-QAM)	LTE-FDD	6.39	±9.6
0300	AAE	1.TE-FDD (SC-FDMA, 60% RB, 3 MHz, 64-QAM)	LTE-FDD	6.60	±9.6
0301	AAA	IEEE 802.166 WIMAX (29:18, 5ms, 10 MHz, QPSK, PUSC)	WAMAX	12.03	÷9.6
0.001 1	AAA	IEEE 802.16# WIMAX (29:18, 5ms, 10 MHz, QPSK, PUSC, 3 CTRI, symbols)	WiMAX	12.57	<u>÷9.6</u>
0302		IEEE 802.16e WIMAX (31:15, 5 ms, 10 MHz, 64QAM, PUSC)	WIMAX	12.52	±9.6
	AAA .				
0302	AAA AAA		WiMAX	11.86	±9.6
0302 0303		IEEE 602 166 WAMA (31:15, 10 ms, 10 MHz, 64 QAM, PUSC) IEEE 802 166 WAMA (31:15, 10 ms, 10 MHz, 64 QAM, PUSC)			±9.6 ±9.6

Certificate No: EX-3917_May24

Page 13 of 22

May 21, 2024

UID	Rey	Communication System Name	Group	PAR (dB)	Unc ^E k ≂
10307	AAA	IEEE 802.16e WiMAX (29:18, 10 ma, 10 MHz, QPSK, PUSC, 18 symbols)	WIMAX	14.49	9.6
10308	AAA	IEEE 802.16e WIMAX (29:18, 10 ms, 10 MHz, 16QAM, PUSC)	WIMAX	14.46	±9.6
10309	AAA	IEEE 802.166 WIMAX (29:18, 10 ms, 10 MHz, 16QAM, AMC 2x3, 18 symbols)	WIMAX	14.58	±9.6
10910	AAA	IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, QPSK, AMG 2x3, 18 symbols)	WIMAX	14.57	+9.6
103f1	AAE	LTE-FDD (SC-FDMA, 100% RB, 15MHz, QPSK)	LTE-FDD	6.06	<u>⊥</u> 9.6
10313	AAA	IDEN 1:3	(DEN	\$0.51	±9.6
10914	AAA	IDEN 1:6	IDEN	\$3.4B	:±9.6
10915	AAB	IEEE 802.115 WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	WLAN	1.71	±9.6
10318	AAB	IEEE 802.11g WIFI 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc duty cycle)	WI,AN	8.36	±9.6
0317	AAE	IEEE 802.11a WIFI 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	WLAN	8.36	±9.6
0352	AAA	Pulse Waveform (200Hz, 10%)	Generic	10.00	±9.6
10353	AAA	Pulse Waveform (200Hz, 20%)	Generic	6.99	±9.6
0354	AAA	Pulse Waveform (200Hz, 40%)	Generic	3.98	±9,6
0355	AAA	Pulse Waveform (200Hz, 50%)	Generic	2.22	±9.6
0356	AAA	Pulse Waveform (200Hz, 80%)	Generic	0.97	<u>1</u> 9.6
0387	AAA	QPSK Waveform, 1 MHz	Generic	5.10	±9.6
0388	AAA	QPSK Waveform, 10 MHz	Generic	5.22	±9.6
0396	AAA	64-QAM Waveform, 100 kHz	Generic	6.27	<u>10.8</u>
0399	AAA	64-QAM Wavelorm, 40 MHz	Generic	6.27	19.6
10400	AAF		WLAN	8.37	±9.6
0400	AAF	1EEE 802.11ac WiFi (20 MHz, 64-QAM, 99pc duty cycle) 1EEE 802.11ac WiFi (40 MHz, 64-QAM, 99pc duty cycle)	WLAN	8.60	±9.6
0402	AAF	EEE BO2.1136 WIFI (40 MIR2, 64-0/Min, 99)c duty cycle)	WLAN	8.53	
10 402	AAP		CDMA2000		19.6
		CDMA2000 (\$xEV-DO, Rey. 0)		3.76	±9.6
0404	AAB	COMA2000 (fxEV-DO, Rev. A)	CDMA2000	3.77	+9.6
0406	AAB	COMA2000, RC3, SO32, SCH0, Full Rate	CDMA2000	5.22	19.6
0410	AAH	LTE-TOD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,9,4,7,8,9, Subframe Conf=4)	LTE-TOD	7.82	±9.6
0414	AAA	WLAN CODF, 64-QAM, 40 MHz	Generic	8.54	±9.6
0415	AAA	IEEE 802.116 WiFi 2.4 GHz (DSSS, 1 Mops, 99pc duty cycle)	WLAN	1.54	<u>1</u> 9.6
0416	AAA	IEEE 802.11g WiFI 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc duty cycle)	WLAN	8.23	±9.6
0417	AAD	(EEE 802.11a/h WIFI 5 GHz (OFDM, 6 Mbps, 99pc duty cycle)	WLAN	8.23	±9.6
041B	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, 1.ong preambule)	WLAN	8.14	+9.6
10419	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Short preambule)	WLAN	8.19	<u>1</u> 9.6
10422	AAD	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	WLAN	8.\$2	±9.6
0423	AAD	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	WLAN	8.47	±9.8
0424	AAD	EEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	WLAN	8.40	<u>1</u> 9.6
0425	AAD	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	WLAN	8.41	<u>±</u> 9.6
0426	AAD	IEEE 802.11n (HT Greenfield, 90 Mbps, 18-QAM)	WLAN	8.45	±9.6
0427	AAD	IEEE 602.11n (HT Groonfield, 150 Maps, 64-QAM)	WLAN	8.41	±9.6
0430	AAE	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	LTE-FDD	8.28	÷9.6
0431	AAE	LTE-FOD (OFDMA, 10MHz, E-TM 3.1)	LTE-FDD	8.38	<u>+</u> 9.6
0492	AAD	LTE-FDD (OFBMA, 15MHz, E-TM 3.1)	LTE-FDD	8.34	±9.6
0493	AAD	ITE-FDD (OFDMA, 20MHz, E-TM 3.1)	LTE-FDD	8.34	±9.6
0494	AAB	W-CDMA (BS Test Model 1, 64 DPCH)	WCDMA	8.60	+9.6
0435	AAG	LTE-TED (SC-FEMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TOD	7.82	±9.6
0447	AAE	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-EDD	7.56	±9.6
0448	AAE	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)	LTE-FOO	7.53	+9.6
0449	AAD	LTE-FDD (OFDMA, 15MHz, E-TM 3.1, Cliping 44%)	LTE-FDD	7.51	19.6
0450	AAD	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE FOD	7.48	±9.6
0451	AAB	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	WCDMA	7.59	±9.6
0459	AAE	Valldation (Square, 10 ms, 1 ms)	Test	10.00	±9.0 +9.6
0456	AAD	EEE 802.11ac WIFi (160 MHz, 64 QAM, 99pc duty cycle)	WLAN	8.63	+9.6
0457	AAB	UMTS-FDD (DC-RSDPA)	WCDMA	6.62	19.6
0458	AAA	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	CDMA2000		
0458	AAA	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	CDMA2000	6.55	±9.6
0459	AAB	UMTS-FDD (WCDMA, AMR)	WCDMA2000		±9.6
0460	AAC			2.39	<u>†</u> :9.6
		LTE-FDD (SC-FDMA, 1 RB, 1.4MHz, OPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	19.6
0462	AAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe2,3,4,7,8,9)	LTE-TOD	8.30	±9.6
0463	AAC	LTE-TOD (\$C-FDMA, 1 RB, 1.4 MHz, 64-QAM, UI. Subframe=2,3,4,7,8,9)	LTE-TDD	8.56	±9.6
0464	AAD	LTE-TOD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.δ
0465	AAD	LTE-TOD (SC-FDMA, 1 RB, 3 MHz, 16 QAM, UL Subframe=2,3,4,7,8,9)	ITE-TOD	8.32	1:9.6
0466	AAD	LTE-TOD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE TOD	8.57	19.6
0467	AAG	LTE-TOD (SG-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe~2,3,4,7,8,9)	LTE-TOD	7.82	±9.6
0468 -	AAG	LTE-TOD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	±9.6
0469	AAG	UTE-T00 (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	ETE-TDD	8.56	±9.6
0470	AAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, OPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	<u>÷</u> 9.6
0471	AAG	LTE-TOD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL Subirame=2,3,4,7,6,9)	LTE-TDD	8.32	<u>-</u> 9.6

Certificate No: EX-3917_May24

Page 14 of 22

May 21, 2024

UID	Rev	Communication System Name	Group	PAR (d8)	$Unc^{E} k = 2$
10472	AAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TOD	8.57	<u>1</u> 9.6
10473	AAF	LTE-TDD (SC-FDMA, 1 PB, 15 MHz, QPSK, UL Subframe-2,3,4,7,8,9)	LITE-TOD	7.62	19.6
10474	AAF	1TE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-DAM, UL Subtrame=2,3,4,7,8,9)	LTE-TOD	8.32	±9.6
10475	AAF	LTE-TDD (SC-FOMA, 1 RB, 15 MHz, 64-QAM, UL Subirame=2,3,4,7,8,9)	I.TE-TDD	8.57	±9.6
10473	AAG	LTE-TED (SC FOMA, 1 RB, 20 MHz, 16-QAM, UE Subframe=2,3,4,7,8,9)	LTE-TOD	6.32	<u>+9.6</u>
10478	AAG	LTE-TDD (SC-FDMA, 1 PB, 20 MHz, 64-OAM, UL Subirame=2,3,4,7,8,9)	LTE-TOD	8.57	±9.6
10479	AAC	TTE-TOD (SC-FOMA, 50% 98, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	I.TE-TDD	7.74	±9.6
	AAC	LTE-TDD (SC-FOMA, 50% RB, 1.4 MHz, 16-QAM, UL Subirame=2,3,4,7,8,9)	LTE-TDD	8,18	+9.6
10480			LTE-TOD	8.45	±9.6
10481	AAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UI. Subframe-2,3,4,7,8,9)		7.71	
10482	AAD	LTE-TDD (SC-FOMA, 50% RB, 3MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.39	±9.6
10483	AAD	LTE-TDD (SC-FOMA, 50% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	ITE-TDD	8.47	±9.6
10484	AAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD		
10485	AAG	LTE-TDD (SC FUMA, 50% RB, 5 MHz, OPSK, UI. Subframe-2,9,4,7,8,9)	LTE-100	7.59	±9.6
10486	AAG	1.TE-TDD (SC-FDMA, 50% R8, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TOD	8.38	±9.8
10487	AAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TOD	8.60	±9.6
10488	AAG	LTE TOD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subirame=2,3,4,7,8,9)	LTE-TOD	7.70	±9.6
10489	AAG	LTE-TOD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UI. Subframe=2,9,4,7,8,9)	LTE-TOD	8.31	±9.8
10490	AAG	ITE-TOD (SC-FDMA, 50% RB, 10 MHz, 84-QAM, UL Subirame=2,3,4,7,8,9)	LTE-TOD	B.54	2.9.6
10491	AAF	1.TE-TDD (SC-FDMA, 50% R8, 15 MHz, QPSK, UL Subtrame=2,3,4,7,8,9)	LTE-TD0	7.74	19.6
10492	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TOD	8.43	±9.6
10493	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UI. Subframe-2,3,4,7,8,9)	LTE-TOD	8.55	±9.6
10494	AAG	LTE-TDD (SC-FDMA, 50% RS, 20 MHz, OPSK, UL Subframe=2,3,4,7,8,9)	I,TE-TDD	7.74	<u>+</u> 9.6
10495	AAG	TE-TDD (SC-FDMA, 50% FIB, 20 MHz, 16-QAM, UL Subirame=2,3,4,7,8,9)	LTE-TDD	8.37	±9.6
10496	AAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe-2,3,4,7,8,9)	LTE-TDD	8.54	±9.δ
10497	AAG	LTE-TDD (SC-FDMA, 100% RB, 1.4MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.67	±9.6
10498	AAC	ETE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Sub(rame=2,3,4,7,8,9)	LTE-TOD	8.40	±9.6
10499	AAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Subirame=2,3,4,7,8,9)	LTE TOD	8.68	±9.6
10500	AAD	LTE. TDD (SC-FDMA, 100% RB, 3 MHz, OPSK, UL Subframe-2,3,4,7,8,9)	LTE-TDD	7.67	±9.6
10501	AAD	TTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subirame=2,3,4,7,5,9)	LTE-TED	8.44	19.6
10502	AAD	LTE-TOD (SC-FDMA, 100% RB, 3 MHz, 84-QAM, UL Subirame=2,3,4,7,8,9)	LTE-TOD	8.52	±9.6
	AAG	TE-TOD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subirante=2,3,4,7,8,9)	LTE TOO	7.72	
10503	AAG	TTE-TOD (SC-FDMA, 100% RB, 5MHz, 16-QAM, UL Subfame-2,3,4,7,8,9)	LTE-TOD	8.31	±9.6
	AAG			8,54	
10505		LTE-TED (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,6,9)	LTE-TOD	7.74	±9.6
10506	AAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TOD		±9.6
10507	AAQ	1TE-TOD (SC-FOMA, 100% RB, 10 MHz, 16-QAM, UL Subirama=2,3,4,7,8,9)	LTE-TOD	8.36	+9.6
10508	AAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-GAM, UL Subtrame-2,3,4,7,8,9)	LTE-TOD	8.55	19.6
10509	AAF	LTE-TDD (SC F0MA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TOD	7.99	±9-6
10510	AAF	LTE-TDD (SC-F0MA, 100% RB, 15MHz, 16-OAM, UL Subtrame=2,3,4,7,8,9)	LTE TOD	8.49	±9.6
10511	AAF	LTE-TDD (SC-FOMA, 100% RB, 15 MHz, 64-QAM, UL Subinama=2.3,4,7,8,9)	LTE-TD0	8.51	+9.6
10512	AAG	I.TE-TDD (SC-F0MA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TOD	7.74	<u>1</u> 9.6
10513	AAG	LTE TDD (SC-FDMA, 100% RB, 20 MHz, 16-0AM, UL Subframe=2,3,4,7,8,9)	UTE-TOD	8.42	±9.6
10514	AAG	LTE-TOD (SC-FDMA, 100% RB, 201/Hz, 64-OAM, UL Subframe=2,3,4,7,8,9)	LTE-TOD	8.45	±9.6
10515	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2Mbps, 99pc duly cycle)	WEAN	1.58	+.9.B
10516	AAA	EEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)	WLAN	1.57	19.6
10517	AAA	IEEE 802.11b WiFI 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle)	WLAN	1.58	±9.6
10518	AAD	IEEE 802.11 a/h WIFI 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	WLAN	8.23	±9.6
10519	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	WLAN	8.39	+9.6
10520	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	WLAN	8.12	19.6
10521	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle)	WLAN	7.97	±9.6
10522	AAD	IEEE 802.11 a/h WIFI 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)	WLAN	8.45	±9.6
10523	AAD	IEEE 802.11a/h WIFI 5 GHz (OFDM, 48 Mbps, 99pc duty cycla)	WLAN	8.08	+9.6
10524	AAD	IEEE 802.11a/h WiFi 5 GHz (OFOM, 54 Mbps, 99pc duty cycle)	WLAN	8.27	19.6
10525	AAD	IEEE 802.11ac WiFi (20MHz, MCS0, 99pc duty cycle)	WLAN	8.96	±9.6
10526	AAD	IEEE 802.11ac Wifr (20MHz, MCS), 99pc duty cycle)	WLAN	8.42	±9.6
10520	AAD	IEEE 802.11ac Wifk (20MHz, MCS2, 99pc duty cycle)	WLAN	8.2t	±0.0 ±9.6
10527	AAD		WIAN	8 36	
	AAD	IEEE 802.11ac WiF2 (20MHz, MCS3, 99pc duty cycle)	WLAN	10.00	<u>.t9.6</u>
10529	AAD	IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle) IEEE 802.11ac WiFi (20MHz, MCS6, 99pc duty cycle)		B.36	19.6
10531			WLAN	8.43	±9.6
10532	AAD	EEE 802.11 ac WiFi (20MHz, MCS7, 99pc duty cycle)	WLAN	8.29	±9.8
10593	AAD	EEE 802.11ac WiFi (20MHz, MCS8, 99pc duty cycle)	WLAN	8.38	+9.6
10594	AAD	IEEE 802.11ac WiFi (40MHz, MCSO, 99pc duty cycla)	WLAN	8.45	19.6
10595	AAD	IEEE 802.11ac WiFi (40 MHz, MCS1, 99pc duty cycle)	WLAN	8.45	±9.6
10536	AAD	EEE 802.11 ac WiFi (40 MHz, MCS2, 99pc duty cycle)	WEAN	8.32	±9.8
10537	AAD	EEE 802.11 ac WFI (40 MHz, MCS3, 99pc duty cycle)	WLAN	8.44	±9.6
10598	AAD	EEE 802.11 ac WiFi (40 MHz, MCS4, 99pc duly cycle)	WEAN	8.54	<u>19.6</u>
10540	AAD	EEE 802.11ac WiFi (40MHz, MCS6, 99pc duly cycle)	WEAN	8.39	19.6

Certificate No: EX-3917_May24

Page 15 of 22

May 21, 2024

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E k = 2
10541	AAD	IEEE 802.11ac WIFI (40 MHz, MCS7, 99pc duty cycle)	WLAN	8.46	±9.6
10542	AAD	IEEE 802.11ac WiFI (40 MHz, MCS8, 99pc duty cycle)	WI.AN	8.65	÷9.6
10543	AAD	IEEE 802.11ac WiFi (40 MHz, MCS9, 99pc duty cycle)	WLAN	8.65	±9.6
10544	AAD	IEEE 802.11ac W/Fi (60 MHz, MCS0, 99pc duty cycle)	WIAN	8.47	±9.6
10545	AAD	IEEE 802.11ac WiFI (80 MHz, MCS1, 99pc duty cycle)	WLAN	8.55	+9.6
10546	AAD	IEEE 802.11ac WiFi (BOMHz, MCS2, 99pc duty cycle)	WEAN	8.35	19.6
10547	AAD	IEEE 802.11ac WFi (80 MHz, MC53, 99pc duty cycle)	WLAN	8.49	±9.6
10548	AAD	IEEE 802.11ac WiFi (80MHz, MCS4, 99pc duty cycle)	WEAN	8.37	±9.6
10550	AAD	IEEE 802.11ac WiFi (80MHz, MCS4, 99pc duty cycle)	WEAN	8.58	±9.6
10551	AAD	IEEE \$02.11ac WiF3 (80 MHz, MC30, 590 duty cycls)	WEAN	8.50	19.6
10552	AAD	IEEE 602.11ac WiF? (80 MHz, MCS3, 99pc duty cycle)	WEAN	8.42	±9.6
10552	AAD	IEEE 802.11ac WiF: (80 MHz, MCS9, 99pc duty cycle)	WEAN	8.45	±9.6
10554	AAE	IEEE 802.11ac WiF3 (160 MHz, MCS0, 99pc duty cycle)	WEAN	8.48	19.6
10.555	AAE	IEEE 802,11ac WiF3 (160 MHz, MCS3, 99pc duty cycle)	WLAN	8.47	±9.6
	AAE		WLAN	8.50	±5.6
10556		IEEE 802.11ac WiFi (160 MHz, MCS2, 99pc duty cycle)	WLAN	<u>.</u>	19.6
10557	AAE	IEEE 802.11ac Wife (160 MHz, MCS3, 99pc duty cycle)	WEAN	8.52	
10558	AAE	IEEE 802.31ac WiF3 (160 MHz, MCS4, 99oc duty cycle)		8.61	±9.6
10560	AAE	IEEE 302.11ac Wiff (160 MHz, MCS6, 99pc duty cycle)	WEAN	8.73	+9.6
10561	AAE	IEEE 802.11ac WiFr (160 MHz, MCS7, 99pc duty cycle)	WEAN	8.56	±9.6
10562	AAE	IEEE B02.11ac WIFI (180 MHz, MCS8, 99pc duty cycle)	WEAN	8.69	±9.6
10563	AAE	IEEE 802.11ac WIFI (160 MHz, MCS9, 99pc duty cycle)	WEAN	8.77	±9.6
10564	AAA	IEEE 602.11g WiFi 2.4 GHz (DSSS-OFOM, 9 Mbps, 90pc duty cycle)	WEAN	8.25	±9.6
10565	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc duty cycle)	WE.AN	8.45	Tð:0
10566	AAA	IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc duty cycle)	WLAN	8,13	±9.6
10567	AAA	EEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc duty cycle)	WLAN	8.00	±9.6
10568	AAA	EEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc duly cycle)	WLAN	8.37	Tð:9
10569	AAA	EEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc duty cycle)	WLAN	8.10	±9.6
10570	AAA	IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc duty cycle)	WLAN	8.30	:±9.6
10571	AAA	EEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	WLAN	1.09	<u>1</u> 9.6
10572	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)	WLAN	1.99	±9.6
10573	AAA	IEEE 802.11b WIFI 2.4 GHz (DSSS, 6.5 Mbps, 90pc duty cycle)	WLAN	1.98	±9.6
10574	AAA	IEEE 802.11b WIFI 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)	WLAN	1.98	±9.6
10575	AAA	IEEE 802.11g WIFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc duty cycle)	WLAN	8.59	Tð'9
10576	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc duty cycle)	WLAN	\$.60	±9.6
10577	AAA	EFE 802-11g WiFI 2:4 GHz (DSSS-OFDM, 12 Mbps, 90pc duty cycle)	WLAN	8.70	±9.6
10578	AAA	EEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc duty cycle)	WLAN	8.49	<u>:</u> ±9.6
10579	AAA	IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc duly cycle)	WLAN	8.96	±9.6
10586	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 96 Mbps, 90pc duty cycle)	WLAN	8.76	±9.6
10581	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc duty cycle)	WLAN	8.35	±9.6
10582	AAA	IE EE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty cycle)	WLAN	8.67	::9.6
10583	AAD	IEEE 802.11a/h WIFI 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	WLAN	8.59	±9.6
10594	AAD	IEEE 802.11a/h WIFI 5 GHz (OFDM, 9 Mbps, 90pc duly cycle)	WLAN	8.60	±9.6
10585	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)	WLAN	8.70	:±9.6
10586	AAD	IEEE 802.11a/h WiFI 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)	WLAN	8.49	19.6
10587	AAD	IEEE 802.11a/h WIFI 5 GHz (OFDM, 24 Mbps, 90pc duty cycle)	WLAN	8.36	±9.6
10588	AAD	IEEE 802.11a/h WIFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)	WLAN	8.76	±9.6
10589	AAD	IEEE 802.11a/h WiFi 5 GHz (OFOM, 48 Mbps, 90pp duty cycle)	WLAN	8.35	±9.6
10590	AAD	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	WLAN	8.67	<u>-9.6</u>
10591	AAD	IEEE 602.11n (HT Mixed, 20 MHz, MCS0, 90pc duty cycle)	WLAN	8.69	±9.6
10592	AAD	IEEE 802.11n (HT Mixed, 20 MHz, MCS1, 90pc duty cycle)	WIAN	8.79	±9.6
10593	AAD	IEEE B02.11n (HT Mixed, 20 MHz, MGS2, 90pc duty cycle)	WEAN	8.64	±5.6
10594	AAD	IEEE 802.11n (ITT Mixed, 20 MHz, MCS9, 90pc duty cycle)	WLAN	8.74	±9.6
10595	AAD	EEE 802.11n (HT Mixed, 20 MHz, MCS4, 90pc duty cycle)	WEAN	<u>1</u> 0.74 B.74	
10596	AAD	IEEE 802.1 in (HT Mixed, 20 MHz, MCS4, 50pc duty cycle)	WEAN	8.71	±9.6
10596	AAD	IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 80pc duty cycle)	WE AN	8.72	
10598	AAD	IEEE 802.11in (HT Mixed, 20 MHz, MCS3, 90pc duty cycle)	WEAN	÷	±9,6
10598	AAD	IEEE 802.11n (HT Mixed, 20 MHz, MCS7, stopc duty cycle)	WEAN	8.50 8.79	+9.6
10600	AAD	EEE 802.11n (HT Mixed, 40 MHz, MCS0, 90pc duty cycle)		i	<u>.</u> !9.6
10600	AAD		WEAN	8.88	±9.6
		IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc duty cycle)		6.82	±9.6
10602	AAD	IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc duty cycle)	WLAN	8.94	±9.6
10603	AAD	IEEE 802.11n (HT Mixed, 40 MHz, MCIS4, 90pc duty cycle)	WEAN	9.03	+9.6
10604	AAD	IEEE 802.11n (HT Mixed, 40 MHz, MCS5, 90pc duty cycle)	WLAN	8.76	<u>1</u> 9.6
10605	AAD	IEEE 802.11n (HT Mixed, 40 MHz, MCSB, 50pc duty cycle)	WEAN	8.97	±9.6
10606	AAD	EEE 802.11n (HT Mixed, 40 MHz, MCS7, 90pc duty cycle)	WEAN	6.62	±9.6
10607	AAD	IEEE 802.11ac WiFi (2D MHz, MCSD, 90pc duty cycle)	WEAN	8.64	±9.6
10608	AAD	IEEE 802.11ac WiFi (20 MHz, MCS1, 90pc duty cycle)	WEAN	8.77	±9.6

Certificate No: EX-3917_May24

Page 16 of 22

May 21, 2024

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^{E} k = 2$
10609	AAD	IEEE 802.11ac WiFI (20 MHz, MCS2, 90pc doly cycle)	WLAN	8.57	±9.6
10610	AAD	IEEE 802.11ac WiFI (20 MHz, MCSS, 90pc duty cycle)	WLAN	8.78	ð.8±
10611	AAD	IEEE 802.11ac WiFi (20MHz, MCS4, 90pc duty cycle)	WLAN	8.70	±9.6
10612	AAD	IEEE 802.11ac WiFi (20 MHz, MCS5, 90pc duty cycle)	WLAN	8.77	±9.6
10613	AAD	IEEE 802.11ac WIFI (20 MHz, MC56, 90pc duty cycle)	WLAN	8.94	:±9.6
10614	AAD	IEEE 802.11ac WIFI (20MHz, MCS7, 90pc duly cycle)	WLAN	8.59	Tð:e
10615	AND	IEEE 802.11ap WiFi (20MHz, MCS8, 90pc duty cycle)	WLAN	8.82	±9.6
10616	AAD	IEEE 602.11ac WiFi (40 MHz, MCS0, 90pc duly cycle)	WI.AN	6.82	±9.6
10617	AAD	IEEE 802.11ac WIFi (40 MHz, MCS1, 90pc duly cycle)	WLAN	6.81	Tð:e
10618	AAD	IEEE 602.11ac WIFI (40 MHz, MCS2, 90pc duty cycle)	WLAN	8.58	±9.6
10619	AAD	IEEE 602.11ac WiFi (40 MHz, MCS3, 90pc duty cycle)	WLAN	8.86	±9.8
10620	AAD	IEEE 602.11ac WiF: (40 MHz, MGS4, 90pc duly cycle)	WI.AN	B.87	±9.6
10621	AAD	IEEE 802.11ac WIF (40MHz, MCS5, 90pc duly cycle)	WLAN	8.77	±9.6
10622	AAD	IEEE 802.11ac WiFi (40 MHz, MCS6, 90pc duty cycle)	WLAN	B.68	±9.6
10623	AAD	IEEE 802,11ac WiFi (40MHz, MCS7, 90pc duty cycle)	WI.AN	8.82	±9.6
10-624	AAD	IEEE 802.t1ac WIFi (40 MHz, MC58, 90pc duly cycle)	WLAN	8.96	±9.6
10625	AAD	IEEE 802.11ac WIFI (40 MHz, MCS9, 90pc duty cycle)	WLAN	8.96	±9.6
10626	AAD	IEEE 802.11ac WiFi (80 MHz, MGS0, 90pc duty cycle)	WLAN	8.83	±9.6
10627	AAD	IEEE 802.11ac WiFi (80 MHz, MCS1, 90pc duty cycle)	WLAN	8.88	<u>i</u> 9.6
10628	AAD	IEEE 802.11ac WiFI (80 MHz, MC52, 90pc duty cycle)	WLAN	8.71	±9.6
10629	AAD	IEEE 802.11ac WIFI (80MHz, MC53, 90pc duty cycle)	WLAN	8.85	±9.6
10630	AAD	IEEE 802.11ac WiFi (80MHz, MCS4, 90pc duty cycle)	WI.AN	8.72	<u>-</u> 9.6
10631	AAD	IEEE 802.11ac WiFi (80 MHz, MCS5, 90pc duty cycle)	WLAN	8.81	<u>±9.6</u>
10632	AAD	IEEE 802.11ac WiFi (80MHz, MC56, 90pc duly cycle)	WLAN	8.74	±9.6
10633	AAD	IEEE 802.11ac WIFI (80MHz, MCS7, 90pc duty cycle)	WLAN	8.83	£9.6
10634	AAD	IEEE 802.11ac WIFi (80 MHz, MCS8, 90 pc duty cycle)	WLAN	8.80	<u>+</u> 9.6
10635	AAD	IEEE 802.11ac WiFs (80MHz, MCS9, 90pc duty cycle)	WLAN	B.S1	±9.6
10636	AAE	IEEE 802. f1ac WiFi (160 MHz, MCS0, 90pc duty cycle)	WLAN	8.83	±9.6
10637	AAE	IEEE B02.11ac WIF: (160 MHz, MCS1, 90pc duty cycle)	WI.AN	8.79	19.6
10638	AAE	IEEE 802.11ac WIFi (160 MHz, MCS2, 90pc duty cyclo)	WLAN	6.86	±9.6
10639	AAE	IEEE 802.11ac WiFi (160 MHz, MCS3, 90pc duty cycle)	WLAN	B.85	+9.6
10640	AAE	IEEE 802.11ac WiFt (160 MHz, MCS4, 90pc duty cycle)	WLAN	8.98	±9.6
10641	AAE	IEEE 802.11ae WIFI (160 MHz, MCS5, 90pc duty cycle)	WI.AN	9.06	±9.6 ±9.6
10642	AAE	IEEE 802.11ac WIFr (160 MHz, MCS6, 90pc duty cycle) IEEE 802.11ac WiFi (160 MHz, MCS7, 90pc duty cycle)	WLAN	9.06	±9.6
10643	AAE	IEEE 602.114c WiFi (160 MHz, MCS7, Supe daty cycle)	WLAN	9.05	±9.6
10644	AAF	IEEE B02.11ac WIFI (160 MHz, MCS9, 90pc doty cycle)	WIAN	9,11	±9.6
10646	AAH	LTE-TED (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7)	LTE-TDD	11.96	±9.6
10647	AAG	LTE-TDD (SC-FDMA, 1 RB, 20MHz, QPSK, UL Subframe=2,7)	LTE-TDD	11.96	±9.6
10648	AAA	CDMA2000 (1x Advanced)	COMA2000	3.45	19.6
10652	AAF	LTE-TDD (OFDMA, 5MHz, E-TM 9.1, Clipping 44%)	LTE-TOD	6.91	±9.6
10653	AAF	LTE-TED (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.42	±9.6
10654	AAE	LTE-TED (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	LTE TOD	6.96	÷9.6
10655	AAF	LTE-TED (OFEMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.21	±9.6
10658	AAB	Pulse Waveform (200Hz, 10%)	Test	10.00	±9.6
10659	AAB	Pulse Waveform (200Hz, 20%)	Test	6.99	+9.6
10660	AAB	Pulse Waveform (200Hz, 40%)	Test	3.98	<u>i</u> 9.6
10661	AAB	Pulse Waveform (200Hz, 60%)	Tesi	2.22	±9.6
10662	AAB	Pulse Waveform (200Hz, 80%)	Test	0.97	±9.6
10670	AAA	Bluetooth Low Energy	Bluetooth	2.19	±9.6
1067t	AAC	IEEE 802.11ax (20 MHz, MCS0, 90pc duty cycle)	WLAN	9.09	±9.6
10672	AAC	IEEE 802.11 sax (20 MHz, MCS1, 90pc duty cycle)	WEAN	8.57	<u>1</u> 9.6
10673	AAG	IEEE 802.11ax (20MHz, MCS2, 90pc duly cycle)	WLAN	B.76	Fð16
10674		IEEE 802.11 ax (20 MHz, MCS3, 90pc duty cycle)	WI, AN	6,74	±9.6
10675	AAC	IEEE 802.11 ax (20 MHz, MCS4, 90pc duty cycle)	WLAN	8.90	£9.6
10676	AAC	IEEE 802.11ax (20MHz, MCS5, 90pc duty cycle)	WLAN	B.77	<u></u> ±9.6
10677	AAC	IEEE 802.11ax (20 MHz, MCS6, 90pc duty cycle)	WEAN	8.79	<u>1</u> 9.6
10678	AAC	IEEE 802.11ex (20MHz, MCS7, 90pc duty cycle)	WEAN	8.78	±9.6
10679	AAC	IEEE 802.11ax (20 MHz, MCS8, 90pc duty cycle)	WEAN	6.89	±9.6
10580	AAC	IEEE 802.1 fax (20 MHz, MCS9, 90pc duty cycle)	WEAN	8.60	±9.6
10681	AAC	IEEE 802.11ax (20 MHz, MGS10, 90pc duty cyclo)	WEAN	8.62	<u>1</u> 9.6
10682	AAC	IEEE 802.11ax (20MHz, MCS11, 90pc duty cycle)	WEAN	8.89	19.6
10683	AAC	IEEE 802.11ax (20 MHz, MCS0, 99pc duity cycle)	WEAN	8.42	±9.6
10684	AAC	IEEE 802.11ax (20 MHz, MCS1, 99pc duty cycle)	WI.AN	8.26	±9.6
10685	AAC	IEEE 802.11ax (20 MHz, MCS2, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS3, 99pc duty cycle)	WLAN WLAN	8.33 8.28	±9.6 ±9.6

Certificate No: EX-3917_May24

Page 17 of 22

May 21, 2024

UID	Rev	Communication System Name	Group	PAR (dB)	Unc [£] k = 2
10687	AAC	EEE 802.11ax (20MHz, MCS4, 99pc duty cycle)	WLAN	8.45	19.6
10688	AAC	IEEE 802.1 1ax (20MHz, MCS6, 99pc duty cycle)	WLAN	6.29	<u>+</u> 9.6
10689	AAC	IEEE 802.11 ax (20 MHz, MCS6, 99pc duty cycle)	WLAN	8.55	±9.6
10690	AAC	(EEE 802.1 fax (20 MHz, MCS7, 99pc duly cycle)	WLAN	8.29	 +9.6
10691	AAC	IEEE 802.11ax (20 MHz, MCSB, 99pc duty cycle)	WLAN	8.25	<u>÷</u> 9.6
10692	AAC	IEEE 802.11 ax (20 MHz, MCS9, 99pc duty cycle)	WLAN	8.29	±9.6
10693	AAC	IEEE 802.11ax (20 MHz, MCS10, 99pc duty cycle)	WI,AN	8.25	±9.6
10694	AAC	IEEE 802.11 ax (20 MHz, MCS11, 99pc duty cycle)	WLAN	8.57	<u>÷9.6</u>
10695	AAC	IEEE \$02.11 ax (40 MHz, MCS0, 90pc duty cycle)	WLAN	8.78	±9.6
10696	AAC	IEEE 802.11ex (40 MHz, MCS1, 90pc duty cycle)	WLAN	8.91	±9.6
10697	AAC	IEEE 802.11ax (40 MHz, MCS2, 90pc duty cycle)	WI.AN	8.61	+9.6
10698	AAC	IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle)	WLAN	8.89	±9.6
10699	AAC	IEEE \$02.11 ax (40 MHz, MCS4, 90pc duty cycle)	WLAN	8.82	±9.6
10700	AAC	[EEE 802,11ax (40 MHz, MCS5, 90pc duty cycle)	WI.AN	8.73	÷9.6
10701	AAC	IEEE 802.11ax (40 MHz, MCS6, 90pc duly cycle)	WLAN	8.86	<u>≥</u> 9.6
10702	AAC	IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle)	WLAN	8.70	±9.6
10703	AAC	IEEE \$02.11 sx (40 MHz, MCSB, 90pc duty cycle)	WLAN	8.82	÷9.6
10704	AAC	IEEE 802.11ax (40 MHz, MCS9, 90pc duly cycle)	WLAN	8.56	<u>⊁</u> 9.6
10705	AAC	IEEE 802.1 fax (40 MHz, MCS10, 90pc duty cycle)	WLAN	8.69	±9.6
10706	AAC	IEEE 802.11ax (40 MHz, MCS11, 90pc duty cycle)	WLAN	8.66	÷9.6
10707	AAÇ	IEEE 802.11 Ex (40 MHz, MCS0, 99pc duty cycle)	WLAN	8.32	<u></u> .9.6
10708	AAC	IEEE 802.11ax (40 MHz, MGS1, 99pc duly cycle)	WLAN	8.55	±9.6
10709	AAC	IEEE 802.11ax (40 MHz, MCS2, 99pc duly cycle)	WLAN	8.33	±9.6
10710	AAC	IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle)	WLAN	8.29	<u>+</u> 9.6
10711	AAG	IEEE 802.11ax (40 MHz, MCS4, 99pc duty cycle)	WI. AN	6.39	<u>.4</u> 9.6
10712	AAC	IEEE 802.11ax (40 MHz, MCS5, 99pc duty cycle)	WLAN	8.67	±9.6
10713	AAC	IEEE 802.1 fax (40 MHz, MCS6, 99pc duly cycle)	WLAN	8.33	±9.6
10714	AAC	IEEE 902.1 fax (40 MHz, MCS7, 99pc duty cycle)	WLAN	8.26	<u>1</u> 9.6
10715	AAÇ	IEEE 802.11 Bx (40 MHz, MCSB, 99pc duly cycle)	WLAN	8.45	±9.6
10716	AAC	IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle)	WLAN	8.30	±9.6
10717	AAC	IEEE 802.1 fax (40 MHz, MCS10, 99pc duty cycle)	WLAN	8.48	±9.6
10718	AAC	IEEE 602.11 ax (40 MHz, MCS11, 99pc duty cycle)	WLAN	8.24	<u>₹</u> 9.6
10719	AAC	IEEE 802.11 Bx (80 MHz, MCS0, 90pc duty cycle)	WLAN	8.81	±9.6
10720	AAC	IEEE 802.11ex (80 MHz, MCS1, 90pc duty cycle)	WLAN	8.87	±9.6
10721	AAC	IEEE 602.11ax (80 MHz, MCS2, 90pc duty cycle)	WLAN	8.76	<u>÷</u> 9.6
10722	AAC	IEEE 802.11ax (80 MHz, MCS8, 90pc duty cycle)	WLAN	8.55	<u>£</u> 9.6
10723	AAC	IEEE 602.11ax (60 MHz, MCS4, 90pc duty cycla)	WLAN	8.70	±9.6
10724	AAÇ	IEEE \$02.11ex (80 MHz, MC\$5, 90pc duty cycle)	WLAN	8.90	÷9.6
10725	AAC	IEEE 802.11ax (80 MHz, MCS6, 90pc duty cycle)	WLAN	8.74	<u>≥</u> 9.6
10726	AAC	IEEE 802.11ax (80 MHz, MCS7, 90pc duty cycle)	WI.AN	8.72	±9.6
10727	AAC	IEEE B02.11ax (B0 MHz, MCSB, 90pc duly cycle)	WLAN	8.65	±9.6
10728	AAC	IEEE B02.11 ax (B0 MHz, MCS9, 90pc duty cycle)	WLAN	8.65	÷9.6
10729	AAC:	IEEE \$02.11ex (\$D MHz, MCS10, 90pc duty cycle)	WLAN	8.64	<u>×</u> 9.6
10730	AAC	IEEE 802.11 ax (60 MHz, MCS11, 90pc duty cycle)	WI.AN	8.67	±9.6
10731	AAC	IEEE B02.11ax (80 MHz, MCS0, 99pc duty cycle)	WLAN	8.42	≙ 5.6
10732	AAC	IEEE B02.11ax (80 MHz, MCS1, 99pc duty cycle)	WLAN	8.4G	.≙9.6
10739	AAC	IEEE 602.11ax (80 MHz, MCS2, 99pc duty cycle)	WLAN	8.40	<u>≗</u> 9.6
10734	AAC	IEEE 802.11ax (80 MHz, MCS3, 99pc duty cycle)	WLAN	8.25	±9.6
10735	AAC	IEEE 802.11ax (60 MHz, MCS4, 99pc duty cycle)	WLAN	8.33	±9.6
10736	AAC	IEEE B02.11ax (BDMHz, MCS5, 99pc duty cycle)	WLAN	8.27	<u>-</u> 9.6
10737	AAC	IEEE B02.11ax (80 MHz, MCS6, 99pc duty cycls)	WLAN	8.36	<u>.</u> 9.6
10738	AAC	IEEE 802.11ax (80 MHz, MCS7, 99pc duty cycle)	WLAN	8.42	±9.6
10739	AAC	IEEE 802.11ax (80 MHz, MCS8, 99pc duty cycle)	WLAN	8.29	±9.6
10740	AAC	IEEE 802.11ax (80 MHz, MCS9, 99pc duty cycle)	WLAN	8.49	.: 9.6
10741	AAC	IEEE BO2.11ax (B0 MHz, MCS10, 99pc duty cycle)	WLAN	8.40	÷9.6
10742	AAC	IEEE B02.11ax (B0 MHz, MCS11, 99pc duly cycle)	WLAN	8.43	<u>∠</u> 9.6
10749	AAC	IEEE 802.11ax (160MHz, MC\$0, 90pc duty cycle)	WLAN	8.94	±9.6
10744	AAC	IEEE 802.11ax (160 MHz, MCS1, 90pc duty cycle)	WLAN	9.16	±9.6
10745	AAC	IEEE 802.11ax (160 MHz, MCS2, 90pc duty cycle)	WLAN	8.93	±9.6
10746	AAC	IEEE 802.11ax (160 MHz, MCS3, 90pc duty cycle)	WLAN	9.11	<u>.</u> ±9.6
10747	AAC	IEEE 802.11ax (160 MHz, MCS4, 90pc duty cycle)	WLAN	9.84	±9.6
10748	AAC	IEEE 802.11ax (160 MHz, MC\$5, 90pc duty cycle)	WLAN	8.93	±9.6
10749	AAC	IEEE 802.11ax (160 MHz, MCS6, 90pc duty cycle)	WI.AN	8.90	±9.6
	AAC	IEEE 802.11ax (160 MHz, MCS7, 90pc duty cycle)	WLAN	8.79	±9.6
10750	7.70				
10750	AAG	IEEE 802.11ax (160 MHz, MCS8, 90pc duty cycle) IEEE 802.11ax (160 MHz, MCS9, 90pc duty cycle)	WLAN	8.82	<u>1</u> 9.6

Certificate No: EX-3917_May24

Page 18 of 22

May 21, 2024

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^E k = 2$
10753		IEEE 302.11ax (160MHz, MCS10, 90pc duty cycle)	WLAN	9.00	±9.6
10754		IEEE 902.11ax (160 MHz, MCS11, 90pc duty cycle)	WLAN	8.94	+9.6
10755		FEEE 802.11ax (160 MHz, MCS0, 89pc duty cycle)	WLAN	8.64	19.6
10756		IEEE 802.11ax (160 MHz, MCS1, 99pc duty cycle)	WLAN	8.77	±9.6
10757	AAC	IEEE 802.11ax (160 MHz, MCS2, 99pc duty cycle)	WEAN	8.77	±9.6
10758		IEEE 802.11ax (160 MHz, MCS3, 99pc duty cycle)	WEAN	8.69	±9.6
10759	AAC	IEEE 802.11ax (160 MHz, MCS4, 99pc duty cycle) IEEE 802.11ax (160 MHz, MCS5, 99pc duty cycle)	WLAN	8.58	±9.6
10761	AAC	EEE 802.11ax (160 MHz, MCS6, 99pc duty cycle)	WLAN	8.49	±9.6
10762	AAC	IEEE 802.11ax (160 MHz, MCS7, 99pc duty cycle)	WLAN WLAN	6.5B 8.49	±9.6
10763	AAC	IEEE 802.11ax (160 MHz, MCSB, 99pc duty cycle)	WLAN	8.49	
10764	AAC	IEEE 802.11ax (160 MHz, MCS9, 99pc duly cycle)	WLAN	8.54	±9.6 ±9.6
10765	AAC	IEEE 802.11ax (160 MHz, MCS10, 99pc duly cycle)	WEAN	8.54	±9.6
10766	AAC	EEE 802.11 8x (160 MHz, MC311, 99pc duty cycle)	WEAN	8.51	±9.6
10767	AAG	5G NR (CP-OFDM, 1 RB, 5 MHz, OPSK, 15 KHz)	5G NR FR1 TDD	7.99	±9.6
10768	AAE	50 NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15kHz)	5G NR FR1 TDD	8.01	19.6
10769	AAD	5G NR (CP OFDM, 1 R8, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.01	19.6
10770	AAE	5G NR (CP-OFDM, 1 R8, 20 MHz, QPSK, 15 kHz)	5G NR FRI TDD	8.02	±9.6
10771	AAD	5G NR (CP-OFDM, 1 98, 25 MHz, OPSK, 15 kHz)	5G NR FRI TDD	8.02	±9.6
10772	AAE,	50 NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	50 NR FRI TDD	8.23	19.6
10779	AAF	5G NR (CP-OFDM, 1 RB, 40 MHz, QP3K, 15 kHz)	5G NR FRI TOD	8.03	±9.6
10774	AAE	5G NR (GP-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 7DD	8.02	±9.6
10775	AAF	5G NR (CP-OFDM, 50% AB, 5MHz, QPSK, 15kHz)	5G NR FR1 TOD	8.31	±9.6
10776	AAE	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TOD	8.30	±9.6
10777	AAC	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TOD	8.30	±9.6
10776	AAE	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TOD	8.34	+9.6
10779	AAC	5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.42	<u>_</u> 9.6
10780	AAE	50 NR (CP-OFDM, 50% RB, 90MHz, QPSK, 15 kHz)	5G NR FR1 TD0	8.38	±9.8
10781	AAE	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.38	±9.6
10782	AAG	5G NFI (CP-OFDM, 50% RFI, 50 MHz, QPSK, 15 kHz) 5G NFI (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.43	±9.6
10784	AAE	5G NR (CP-OFDM, 100% RB, 10MHz, QPSK, 15kHz)	50 NR FRI TDD 50 NR FRI TDD	8.31	19.6
10785	AAD	5G NR (CP-OFDM, 100% RB, 15MHz, QPSK, 15kHz)	5G N8 FR1 TOD	8.29	±9.6
10786	AAE	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TOD	8.40 8.35	±9.6
10787	AAD	5G NR (CP-OFDM, 100% R8, 25 MHz, OPSK, 15kHz)	5G NR FR1 TDD	8.44	±9.6
10788	AAE	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15kHz)	5G NR FR1 100	8.39	±9.6
10789	AAF	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15kHz)	5G NR FR3 TDD	8.97	+9.6
10790	AAE	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, \$5 kHz)	5G NR FRETDD	8.39	19.6
10791	AAG	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	50 NR FR1 TDD	7.83	±9.6
10792	AAE	5G NR (CP-OFDM, 3 RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.92	±9.6
10793	GAA	5G NR (CP-OFDM. 1 RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.95	±9.6
10794	AAE	SG NR (CP-OFDM, 1 RB, 20MHz, QPSK, 30 kHz)	5G NR FR1 TOD	7.82	<u>:19.6</u>
10795	AAD	5G NR (CP-OF0M, 1 RB, 25MHz, QPSK, 30 kHz)	50 NR FR1 TDD	7.84	±9.6
10796	AAE	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TOD	7.82	±9.6
10797	AAF .	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.01	÷9.6
10798	AAE	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.89	<u>×</u> 9.6
10799	AAF	5G NR (CP-OFDM, 1 RB, 60 MHz, OPSK, 30kHz) 5G NR (CP-OFDM, 1 RB, 80 MHz, OPSK, 30kHz)	5G NR FR1 TDD	7.93	±9.6
10801	AAF	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz)	5G NR FRI TOD	7,89	±9.6
10802	AAF	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD 5G NR FR1 TDD	7.87	±9.6
10805	AAE	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 KHz)	50 NR FRI TDD	7.93	±9.6
10806	AAD	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30kHz)	5G NR FAI TOD	8.34	±9.6 ±9.6
10809	AAE	5G MR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FRI TOD	8.34	±9.6
10810	AAF	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TOD	8.34	±9.6
10812	AAF	5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TOD	8.35	19.6
10817	AAG	5G NR (CP-OFOM, 100% RB, 5 MHz, OPSK, 30 kHz)	5G NR FR1 TDD	8.35	±9.6
10818	AAE	5G N8 (CP-OFDM, 100% AB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.94	±9.6
10819	AAD	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.33	÷9.6
10820	AAS	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FRI TDD	8.30	÷9.6
10821	AAD	5G NR (CP-OFDM, 100% RB, 25MHz, QPSK, 30 kHz)	5G NR FRI TDD	8.41	1·9.6
10822	AAE	5G NR (CP-OFDM, 100% RB, 30MH2, OPSK, 30kHz)	50 NR FR1 TDD	8.41	±9.5
10823	AAF	5G NR (CP-OFDM, 100% RB, 40 MHz, OPSK, 30 kHz)	5G NR FR1 TDD	8.36	±9.6
10824	AAE	5G NR (CP-OFDM, 100% R8, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.39	±9.6
10825	AAF	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30%Hz)	5G NR FR1 TOD	8.41	<u>+</u> 9.6
10827	AAF	5G NR (GP-OFDM, 100% 98, 80 MHz, OPSK, 30 kHz)	50 NR FR1 TDD	8.42	±9.6
10828	AAE	5G N8 (CP-OFDM, 100% AB, 90 MHz, QPSK, 30 kHz)	50 NR FR1 100	8.43	±9.6

Certificate No: EX-3917_May24

Page 19 of 22

May 21, 2024

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E k ≂ :
10829	AAF	5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TOD	8.40	<u>1</u> 9.6
10830	AAE	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.63	±9.6
10831	AAD	5G NR (CP-OFDM, † RB, 15 MHz, QPSK, 60 kHz)	5G NR FR1 TOD	7.73	±9.6
10832	AAE	5G NR (CP-OFDM, 1 RB, 201/Hz, QPSK, 60 kHz)	5G NR FR1 TOD	7.74	+9.6
10833	AAD	50 NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	<u>.</u> 9.6
10834	AAE	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.75	±9.6
10835	AAF	5G NR (CP OFDM, 1 RB, 40 MHz, QPSK, 60 kHz)	56 NR FR1 TOD	7.70	÷9.6
10836	AAE	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz)	5G NR FR1 TOD	7.66	÷9.6
10837	AAF	5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz)	5G NR FR1 TOD	7.68	±9.6
10839	AAF	50 NR (CP-OFDM, 1 R8, 80 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.70	±9.6
10840	AAE	5G NR (CP-OFDM, 1 R8, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.67	±9.8
10841	AAF	5G NR (CP-OFDM, 1 R8, 100 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	7.71	÷9.6
10843	AAD	50 NR (CP-0F0M, 50% RB, 15MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.49	±9.6
10844	AAE	5G NR (CP-OFDM, 50% RB, 20MHz, QPSK, 60kHz)	5G NR FRI TOU	8.34	±9.6
10846	AAE	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.41	±9.6
10854	AAE	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz)	5G NR FRETDO	8.34	±9.6
10855	AAD	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60kHz)	5G NA FRT TOO	8.36	±9.8
10856	AAE	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.37	±9.8
10857	AAD	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz)	5G NR FRI TDD	8.35	Tð:9
10858	AAE	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60kHz)	5G NA FRI TDD	8.36	±9.6
10859	AAF	5Q NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 kHz)	5G NA FRI TOD	8.34	±9.8
10860	AAE	5G NR (CP-OFDM, 100% RB, 50 MHz, QP5K, 60kHz)	5G NR FR1 TDD	8.41	<u>1</u> 9.6
10861	AAF	5G NA (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz)	5G NR FRI TOD	8.40	Fð:8
10863	AAF	5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60kHz)	5G NR FR1 TDD	6.41	±9.6
10864	AAE	50 NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz)	5G NR FR1 TDD	8.37	±9.6
10865	AAF	5G NA (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz)	50 NR FRI TOD	8.41	±9.6
10866	AAF	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	±9.6
10868	AAF	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.89	±9.6
10689	AAE	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.75	19.6
10870	AAE	5G NR (DFT-s-OFDM, 100% RS, 100 MHz, QPSK, 120 kHz)	5G NR FR2 TOD	5.86	±9.6
10871	AAE	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 160AM, 120 kHz)	5g NR FR2 TOD	5.75	±9.6
10872	AAE	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 160AM, 120 kHz)	5G NR FR2 TDD	6.52	±9.6
10873	AAE	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FR2 TDD	6.61	19.6
10874	AAE	5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)	50 NR FR2 TOD	6.65	±9.6
10875	AAE	5G NA (CP-OFDM, 1 PB, 100 MHz, OPSK, 120 kHz)	5G NR FR2 TDD	7.78	±9.6
10876	AAE	5G NR (CP-OFDM, 100% RB, 100 MHz, OPSK, 120 kHz)	5G NA FA2 TOD	8.39	±9.8
10877	AAE	5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	7.95	±9.6
10878	AAE	5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)	5G NR FR2 TDD	8.41	±9.6
10879	AAE	5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz)	5G NR FA2 TOD	8.12	±9.6
10880	AAE	5G NR (CP-OFDM, 100% RB, 100 MHz, 640AM, 120 kHz)	5G NR FR2 TDD	8.38	±9.6
10881	AAE	5G NR (DFT-B-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.75	±9.6
10882	AAE	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)	5G NR FR2 TDD	5.96	±9.6
10883	AVE	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 160AM, 120 kHz)	5G NR FR2 TOD	6.57	±9.6
10884	AAE	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 160AM, 120 kHz)	5G NR FR2 TDD	6.59	Tð:e
10885	AAE	5G NR (DFT-6-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TOD	6.61	±9.6
10886	AAE	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TOD	8.65	±9.6
10887	AAE	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 xHz)	5G NR FR2 TOD	7.78	+9.6
\$088B \$0889	AAE	5G NR (CP-OFDM, 100% RB, 50 MHz, OPSK, 120 kHz)	5G NR FR2 TOD 5G NR FR2 TOD	8.35	19.6
10889	AAE	5G NR (CP-OFOM, 1 RB, 50 MHz, 16QAM, 120 kHz)		8.02	±9.6
10891	AAE	56 NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 50 NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz)	5G NR FR2 TOD 5G NR FR2 TOD	8.40 8.13	±9.6 ±9.6
	AAE	5G NR (CP-OF-DA, 1 NS, 50 MHZ, 54 QAM, 120 KHZ) 5G NR (CP-OF-DM, 100% RB, 50 MHZ, 84 QAM, 120 KHZ)			
10892	AAE		5G NR FR2 TOD	8.41	<u>1</u> 9.6
10898	AAE	5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TOD 5G NR FR1 TDD	5.66	19.6
10898	AAG	SG NR (DFI-S-OFDM, 1 RB, 15MHz, QPSK, 30KHz)	5G NR FRI TOD	5.67	±9.6 ±9.6
10898	AAC	5G NR (DFTs-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.67 5.6B	
10900	AAB	5G.NR (DFTs-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.6B	±9.6 ±9.6
10902	AAG	5G NR (DF1-5-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.68	19.6 ±9.6
10902	AAD	5G NR (DFI-s-OFDM, 1 RB, 30MHz, QPSK, 30KHz) 5G NR (DFI-s-OFDM, 1 RB, 40MHz, QPSK, 30KHz)	5G NR FRI TOD		
10904	AAC	50 NR (DFI-s-OFDM, FRB, 10MHZ, QPSK, 30KHZ) 50 NR (DFT-s-OFDM, FRB, 50MHZ, QPSK, 30kHZ)	5G NR FRI TOD	5.68 5.68	±9.6 ±9.6
10904	AAD	50 NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 KHz)	5G NR FR1 TOD	5.68	±9.6
10905	AAD	5G NR (DFTs-OFDM, 1 RB, 80MHz, QPSK, 30KHz) 5G NR (DFTs-OFDM, 1 RB, 80MHz, QPSK, 30kHz)	5G NR FR1 TOD	5.68	
10907	AAE	5G NR (DFTs-OFDM, 50% AB, 5MHz, QPSK, 30KHz)	56 NR FR1 TOD		<u>±9.6</u>
10908	AAE	5G NR (0F I-S-OFDM, 50% RB, 5 MHz, QPSK, 30kHz) 5G NR (0FT-S-0FDM, 50% RB, 10 MHz, QPSK, 30kHz)	5G NR FR1 TOD	5.78	±9.6
10909	AAB	5G NR (0F HS-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)	SG NR FR1 TOD	5.93	±9.6
10909	AAB			5.96	+9.6
	A 104 C	5G NR (DFT-s-OFDM, 50% RB, 20 MHz, OPSK, 30 kHz)	5G NR FR1 TOD	5.83	+9.6

Certificate No: EX-3917_May24

Page 20 of 22

May 21, 2024

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^{E} k = 2$
10911	AAB	5G NR (DFT-s-OFDM, 50% RB, 25MHz, QPSK, 30KHz)	5G NR FR1 TDD	5.93	±9.6
10912	AAG	5G NR (DFT-s-OFDM, 50% RB, 30MHz, QPSK, 30kHz)	5G NR FRI TDD	5.84	±9.6
10913	AAD	5G NR (DFT-s-DFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FRI TDD	5.84	19.6
10914	AAC	5G NR (DFT-s-OFDM, 50% RB, 50MHz, OPSK, 30kHz)	5G NR FRI TDD	5.85	±9.6
10915	AAD	5G NR (DFT-s-OFDM, 50% RB, 60MHz, QPSK, 30KHz)	5G NR FR1 TDD	5.83	±9.6
10916	AAD	5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.87	±9.6
10917	AAD	5G NR (DFT's OFDM, 50% RB, 100 MHz, QP5K, 30 kHz)	5G NR FR1 TDD	5,94	±9.6
10918	AAE	5G NR (DFT-s-OFDM, 100% BB, 5MHz, OPSK, 30kHz)	5G NR FR1 TDD	5.86	±9.6
10919	AAC	5G NR (DFT-3-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	5G NR FRI TDD	5.86	+9.6
10920	AAB	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.87	<u>1</u> 9.6
10921	AAG	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10922	AAB	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TOD	5.82	±9.6
10923	AAC	5G NR (DFT-8-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10924	AAD	5G NR (DFF:s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10925	AAC	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.95	±9.6
10926	AAD	5G NR (DFT-s-OFDM, 100% PB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	+9.5
10927	AAD	5G NR (DFT-8-OFDM, 100% RB, B0 MHz, OPSK, 30 KHz)	5G NR FRI TDD	5.94	<u>1</u> 9.6
10928	AAD	5G.NR (DFT-s-OFDM, 1 RB, 5MHz, QPSK, 15kHz)	5G NR FR1 FDD	5.62	±9.6
10929	AAD	5G NR (DFT-s-OFDM, 1 AB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	±9.6
10990	AAC	5G NR (DFT-a-OF0M, 1 RB, 15 MHz, OPSK, 15 kHz)	5G NR FR1 FDD	5.52	<u>+</u> 9.6
10981	AAC	5G NR (DFT-8-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	± 9.6
10932	AAC	5G.NR (DFT-s-OFDM, 1 R8, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
10933	AAC	5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
10994	AAC	5G NR (DFT-s-OFDM, 1 RB, 40 MHz, OPSK, 15 kHz)	5G NR FR1 FDD	5.51	Fð:9
10985	} AAD	5G NR (DFT-s-OFDM, 1 R8, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
10936	AAD	5G NR (DFF-s-OFDM, 50% RB, 5 MHz, QPSK, 15kHz)	5G NR FR1 FDD	5.90	±9.6
10937	AAD	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.77	<u>1</u> 9.6
10998	AAG	5G NR (DFT-s-OFDM, 50% RB, 15MHz, QPSK, 15kHz)	5G NR FR1 FDD	5.90	±9.6
10939	AAC	5G NR (DFT-8-OFDM, 50% RB, 20MHz, QPSK, 15kHz)	5G NR FR1 FDD	5.82	±9.6
10940	AAC	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.89	<u>:1</u> 9.6
10941	AAC	5G NR (DFT-s-OFDM, 50% RB, 30MHz, QPSK, 15kHz)	5G NR FRI FDD	5.83	±9.6
10942	AAG	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	±9.6
10943	AAD	5G NR (DFT-a-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)	5G NR FH1 FDD	5.95	±9.6
10944	AAD	5G NR (DFT-s-OFDM, 100% RB, 5MHz, QPSK, 15kHz)	5G NR FR1 FDD	5.81	<u>⊦</u> 9.6
10945	AAD	5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	5G NR FRI FDD	5.85	±9.6
10946	AAC	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.83	±9.6
10947	AAC	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	5G NR FRI FDD	5.87	+9.6
10948	AAC	5G NR (DFT-a-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.94	: <u>†</u> 9.6
10949	AAC	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.87	±9.6
10950	AAC	5G NR (DFTs-OFDM, 100% RB, 40 MHz, QFSK, 15kHz)	5G NR FR1 FDD	5,94	±9.6
10951	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FA1 FDD	5.92	±9.6
10952	AAA	5G NR DL (GP-OFOM, TM 3.1, 5MHz, 64-QAM, 15kHz)	5G NR FR1 FDD	8.25	±9.6
10953	AAA	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.15	±9.6
10954	AAA	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.23	±9.6
10955	AAA	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.42	±9.6
10956	AAA	5G NR DL (GP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)	5G NR FR1 F0D	8.14	<u>1</u> 9.6
10957	AAA	5G NR DL (CP-OFDM, TM 9.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.31	±9.6
10958	AAA	5G N8 DL (CP-OFDM, TM 9.1, 15 MHz, 64-QAM, 30 kHz)	5G NR FRI FDD	8.61	±9.6
10959	AAA	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.33	±9.8
10960	AAE	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.92	19.6
10961	AAC	5G NR DE (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.36	±9.6
10962	AAB	5G NR DL. (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	50 NR FR1 TDD	9.40	±9.6
10963	AAC	5G NR DE. (CP-OFDM, TM 3-1, 20 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.65	±9.6
10964	AAE	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-OAM, 30 kHz)	5G NR FR1 TDD	9.29	:::9.6
10965	AAC	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.37	19.6
10966	AAB	5G NR DE (CP-OFDM, TM 9.1, 15 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.55	±9.6
10967	AAC	5Q NR DE. (CP-OFDM, TM 9.1, 20 MHz, 64-QAM, 30 kHz)	5G NR FRI TDD	9.42	±9.6
10968	AAD	5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-DAM, 30 kHz)	5G NR FR1 TDD	9.49	±9.6
10972	AAC	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	11.59	:±9.6
10973	AAD	5G NR (DFT-s-OFEM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	9.06	Fð:e
10974	AAD	5Q NR (CP-OFDM, \$00% RB, 100 MHz, 256-QAM, 90 kHz)	5G NR FR1 TDD	10.28	±9.6
10978	AAA	ULLA BOR	ULEA	1.16	±9.6
10979	AAA	ULLA HDPH4	ULLA	8.58	+9.8
10980	AAA	ULLA HDR8	ULLA	10.32	19.6
10981	AAA	ULLA HDRp4	ULLA	3.19	±9.6
10982	AAA	ULLA HDRp8	ULLA	3.43	±9.6

Certificate No: EX-3917_May24

Page 21 of 22

May 21, 2024

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E k = 2
10983	AAC	5G NR OL (CP-OFOM, TM 3.1, 40 MHz, 64-QAM, 15 kHz)	5G NR FRT TOD	9.91	19.6
10984	AAB	50 NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.42	±9.6
10985	AAC	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 30 kHz)	5G NR FRI TOD	9.54	±9.6
10986	AAB	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.50	±9.6
10987	AAC	5G NR DL (CP-OFDM, TM 3.1, 60 MHz, 64-OAM, 30 kHz)	5G NR FR1 TDD	9.53	<u>1</u> 9.6
10986	AAB	5Q NR DL (CP-OFDM, TM 9.1, 70 MHz, 64-QAM, 30 kHz)	5G NA FA1 TDD	9.98	±9.6
10989	AAC	5G NR DL (CP-OFDM, TM 3.1, 80 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.33	±9.6
10990	AAB	5G NR DL (CP-OFDM, TM 3.1, 90 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.52	±9.6
11:003	AAA	5G NR DL (CP-OFDM, TM 9.1, 30 MHz, 64-0AM, 15 kHz)	5G NR FR1 TDD	10.24	±9.6
11004	AAA	50 NR DL (CP-OFDM, TM 9.1, 30 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	10.73	±9.6
11005	AAA	5G NR DL (CP-OFDM, TM 3.1, 25 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.70	±9.6
11006	AAA	5G NR DL (CP-OFDM, TM 3.1, 30 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.55	±9.6
11007	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-DAM, 15 kHz)	5G NR FR1 FDD	ô.46	±9.6
11008	AAA	5G NR DL (CP-OFDM, TM 9.1, 50 MHz, 64-QAM, 15 kHz)	SG NR FR1 FDD	8.51	±9.6
11009	AAA	5G NR DL (CP-OFDM, TM 8.1, 25 MHz, 64-QAM, 50 kHz)	\$6 NR FR1 FDD	8.76	±9.6
11010	AAA	5G NR DL (CP-OFDM, TM 3.1, 30 MHz, 64 QAM, 30 kHz)	5G N9 FR1 FDD	8.95	±9.6
11011	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-0AM, 30 kHz)	5G N9 FA1 FDD	6.96	±9.6
11012	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.68	2.9.6
11013	AAB	IEEE 802.11be (320 MHz, MCS1, 99pc duty cycle)	WE AN	8.47	Ŧð'ê
91014	AAB	IEEE 802.11be (320 MHz, MCS2, 99pc duty cycle)	WEAN	8.45	±9.6
11015	AAB	IEEE 802.11be (320 MHz, MCS3, 99pc duly cycle)	WEAN	8.44	±9.6
1018	AAB	IEEE 802.11be (320 MHz, MCS4, 99pc duty cycle)	WE.AN	8.44	19.6
11017	AAB	IEEE 802.11be (320 MHz, MCS5, 99pc duty cycle)	WEAN	8.41	±9.6
11018	AAB	IEEE 802.11 be (320 MHz. MCS6, 99pc duty cycle)	WLAN	8.40	±9.8
11019	AAB	IEEE 802.11be (320 MHz, MCS7, 99pc duly cycle)	WLAN	8.29	<u>1</u> 9.6
11020	AAB	IEEE 802.11te (920 MHz, MCS8, 99pc duty cycle)	WLAN	8.27	±9.6
11021	AAB	IEEE 602.11be (320 MHz, MCS9, 99pc duty cycle)	WLAN	8.46	±9.6
11022	AAB	IEEE 802.11be (320 MHz. MCS10, 99pc duty cycle)	WLAN	8.36	<u>1</u> :9.8
11023	AAB	IEEE 802.11be (320 MHz, MCS11, 99pc duty cycle)	WLAN	8.09	±9.6
11024	AAE	IEEE 802.11be (920 MHz, MCS12, 99pc duty cycle)	WLAN	8.42	±9.6
11025	AAB	IEEE 602.11be (320 MHz, MCS13, 99pc duty cycle)	WLAN	8.37	+9.6
11026	AAB	IEEE 802.11be (320 MHz, MCS0, 99pc duty cycle)	WLAN	8.39	<u>⊦</u> 9.6

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: EX-3917_May24

Page 22 of 22

Appendix H Dipole / Verification source calibration record

D2450V2 - SN:713

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

S Schweizerischer Kalibrierdienst
 Service suisse d'étalonnage
 Servizio svizzero di taratura
 S Swiss Calibration Service

Accreditation No.: SCS 0108

CALIBRATION C	ERTIFICATE		ALL TAX DEP - WAS
Object	D2450V2 - SN:71	13	
Calibration procedure(s)	QA CAL-05.v11 Calibration Proce	dure for SAR Validation Sources	between 0.7-3 GHz
Calibration date:	September 12, 20	022	
	ed in the closed laborator	robability are given on the following pages an ry facility: environment temperature $(22 \pm 3)^{\circ}$	
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23
Power sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23
Power sensor NRP-Z91	SN: 103245	04-Apr-22 (No. 217-03525)	Apr-23
Reference 20 dB Attenuator	SN: BH9394 (20k)	04-Apr-22 (No. 217-03527)	Apr-23
Type-N mismatch combination	SN: 310982 / 06327	04-Apr-22 (No. 217-03528)	Apr-23
Reference Probe EX3DV4	SN: 7349	31-Dec-21 (No. EX3-7349_Dec21)	Dec-22
DAE4	SN: 601	31-Aug-22 (No. DAE4-601_Aug22)	Aug-23
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
	SN: GB39512475	30-Oct-14 (in house check Oct-20)	In house check: Oct-22
Power meter E4419B	SN: US37292783	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
		07-Oct-15 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-20)	
Power sensor HP 8481A Power sensor HP 8481A	SN: MY41093315 SN: 100972	15-Jun-15 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: 100972	1	In house check: Oct-22 In house check: Oct-22
Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	SN: 100972	15-Jun-15 (in house check Oct-20)	
Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	SN: 100972 SN: US41080477	15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: 100972 SN: US41080477 Name	15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) Function	In house check: Oct-22

Certificate No: D2450V2-713_Sep22

Page 1 of 8

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

s

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage С Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary: tissue simulating liquid TSL ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-713_Sep22

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8 ± 6 %	1.84 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition		
SAR measured	250 mW input power	13.3 W/kg	
SAR for nominal Head TSL parameters	normalized to 1W	52.3 W/kg ± 17.0 % (k=2)	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition		
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	6.19 W/kg	

Body TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.0 ± 6 %	2.03 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.6 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	6.15 W/kg

Certificate No: D2450V2-713_Sep22

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.0 Ω + 1.9 jΩ
Return Loss	- 29.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.7 Ω + 4.7 jΩ
Return Loss	- 26.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction) 1.160 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

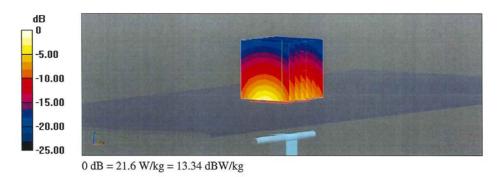
Page 4 of 8

Date: 12.09.2022

DASY5 Validation Report for Head TSL

Test Laboratory: SPEAG, Zurich, Switzerland

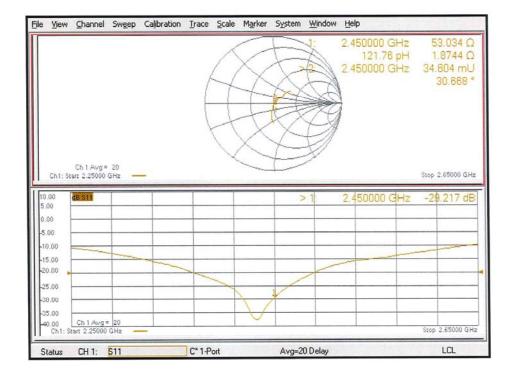
DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 713


Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 1.84 S/m; ϵ_r = 37.8; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.96, 7.96, 7.96) @ 2450 MHz; Calibrated: 31.12.2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 31.08.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 114.4 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 26.0 W/kg **SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.19 W/kg** Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 51.3% Maximum value of SAR (measured) = 21.6 W/kg

Certificate No: D2450V2-713_Sep22

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-713_Sep22

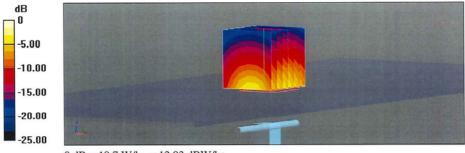
Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 12.09.2022

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 713

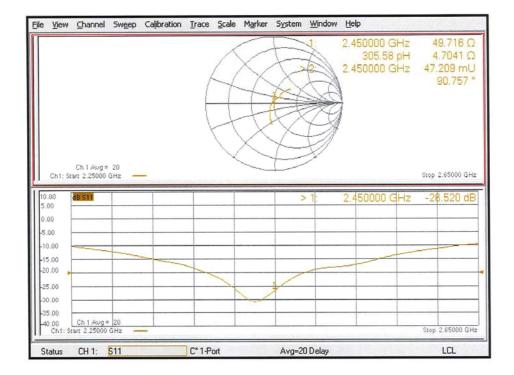

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 2.03 S/m; ϵ_r = 51; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.12, 8.12, 8.12) @ 2450 MHz; Calibrated: 31.12.2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 31.08.2022
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 108.3 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 24.2 W/kg SAR(1 g) = 13.0 W/kg; SAR(10 g) = 6.15 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 55.3% Maximum value of SAR (measured) = 19.7 W/kg



0 dB = 19.7 W/kg = 12.93 dBW/kg

Certificate No: D2450V2-713_Sep22

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-713_Sep22

Page 8 of 8

D2450V2 Calibration for Impedance and Return-loss

Equipment	Dipole Antenna	Model	D2450V2
Manufacture	Schmid & Partner Engineering AG	Serial	713
Tested by	Hisayoshi Sato (2023)	Tested by	Tomohisa Nakagawa (2024)

1. Test environment

Date	August 1, 2023	Date	September 6, 2024
Ambient Temperature	22.5 deg.C	Ambient Temperature	21 deg.C
Relative humidity	40 %RH	Relative humidity	58 %RH

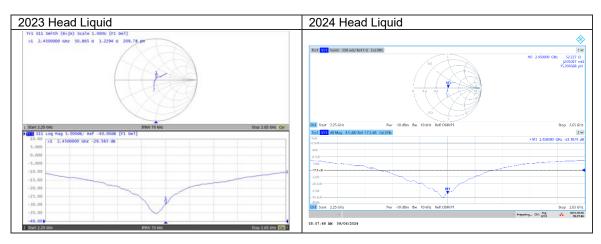
2. Equipment used

2023

LIMS ID	Description	Manufacturer	Model	Serial	Last Cal Date	Interval
88581	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	-	2023/07/18	12
142060	SAM Phantom	Schmid & Partner Engineering AG	QD000P40CB	1333	2023/05/10	12
142056	2mm Oval Flat Phantom	Schmid & Partner Engineering AG	QDOVA001BB	1045	2023/05/10	12
176484	Head Simulating Liquid	Schmid & Partner Engineering AG	HBBL600-10000V6	SLAAH U16 BC	-	-
150815	Network Analyzer	Keysight Technologies Inc	E5071C	MY46523746	2022/08/23	12
141991	2.4mm Calibration Kit	CUSTOM. Inc	85056A	MY44300225	2022/08/18	12

2024

2027						
LIMS ID	Description	Manufacturer	Model	Serial	Last Cal Date	Interval
251453	Analyzer, Network	Rohde & Schwarz	ZNL14	200030	2024/07/12	12
251454	RF Device, Passive, Calibration Kit	Rohde & Schwarz	ZN-Z135	101032	2024/06/21	12
176484	Head Simulating Liquid	Schmid & Partner Engineering AG	HBBL600-10000V6	SLAAH U16 BC	-	-
142056	2mm Oval Flat Phantom	Schmid & Partner Engineering AG	QDOVA001BB	1045	2024/05/31	12
141574	Digital thermometer	LKM electronic	DTM3000	-	2024/08/24	12
244705	Thermo-Hygrometer	A & D	AD-5648A	1002	2024/01/25	12


3. Test Result

		Head	Head	Deviation	Deviation		
Impeadance, Transformed to feed poin	cal day	(real part) [Ω]	(img part) [jΩ]	(real part) [Ω]	(img part) [jΩ]	Tolerance	Result
Calibration (SPEAG)	2022/9/12	53.03	1.87	-	-	-	-
Calibration(ULJ)	2023/8/1	50.87	3.23	-2.17	1.36	+/- 5 Ω +/- 5 jΩ	Complied
Calibration(ULJ)	2024/9/6	52.23	0.23	-0.81	-1.64	+/- 5 Ω +/- 5 jΩ	Complied

		Head	Deviation	Deviation	Tolerance	Tolerance	
Return loss	cal day	[dB]	[%]	[dB]	[%]	[+/- dB]	Result
Calibration (SPEAG)	2022/9/12	-29.22	-	-	-	-	-
Calibration(ULJ)	2023/8/1	-29.58	1.25	-0.37	+/- 20.00	5.84	Complied
Calibration(ULJ)	2024/9/6	-33.19	12.18	-3.97	+/- 20.00	5.92	Complied

Tolerance: According to the KDB 865664 D1

Measurement Plots

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich	/ Of , Switzerland		Schweizerischer Kalibrierdier Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
Accredited by the Swiss Accreditati The Swiss Accreditation Service Multilateral Agreement for the re-	is one of the signatorie	s to the EA	Accreditation No.: SCS 0108
Client UL Japan Head	Office (RCC)	Certificate	No: D900V2-155_Dec22
CALIBRATION C	ERTIFICATI		
Object	D900V2 - SN:15	5	
Calibration procedure(s)	QA CAL-05.v12 Calibration Proce	edure for SAR Validation Source	es between 0.7-3 GHz
The measurements and the uncert	tainties with confidence p	022 onal standards, which realize the physical u robability are given on the following pages of ry facility: environment temperature (22 ± 3)	and are part of the certificate.
This calibration certificate docume The measurements and the uncert All calibrations have been conduct Calibration Equipment used (M&T	nts the traceability to nati tainties with confidence p red in the closed laborato E critical for calibration)	onal standards, which realize the physical u robability are given on the following pages a	and are part of the certificate.
This calibration certificate docume The measurements and the uncert All calibrations have been conduct Calibration Equipment used (M&T Primary Standards	nts the traceability to nati tainties with confidence p red in the closed laborator E critical for calibration)	onal standards, which realize the physical u robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.)	and are part of the certificate. °C and humidity < 70%. Scheduled Calibration
This calibration certificate docume The measurements and the uncert All calibrations have been conduct Calibration Equipment used (M&T Primary Standards Power meter NRP	nts the traceability to nati tainties with confidence p red in the closed laborator E critical for calibration) ID # SN: 104778	onal standards, which realize the physical u robability are given on the following pages a ry facility: environment temperature (22 ± 3) <u>Cal Date (Certificate No.)</u> 04-Apr-22 (No. 217-03525/03524)	and are part of the certificate. °C and humidity < 70%. <u>Scheduled Calibration</u> Apr-23
This calibration certificate docume The measurements and the uncert All calibrations have been conduct Calibration Equipment used (M&T Primary Standards Power meter NRP Power sensor NRP-Z91	nts the traceability to nati tainties with confidence p led in the closed laborator E critical for calibration) ID # SN: 104778 SN: 103244	onal standards, which realize the physical u robability are given on the following pages a ry facility: environment temperature (22 ± 3) <u>Cal Date (Certificate No.)</u> 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524)	and are part of the certificate. °C and humidity < 70%. <u>Scheduled Calibration</u> Apr-23 Apr-23
This calibration certificate docume The measurements and the uncert All calibrations have been conduct Calibration Equipment used (M&T Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91	nts the traceability to nati tainties with confidence p red in the closed laborator E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245	onal standards, which realize the physical u robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525)	and are part of the certificate. °C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23
This calibration certificate docume The measurements and the uncert All calibrations have been conduct Calibration Equipment used (M&T Primary Standards Power meter NRP Power sensor NRP-Z91	nts the traceability to nati tainties with confidence p led in the closed laborator E critical for calibration) ID # SN: 104778 SN: 103244	onal standards, which realize the physical u robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525)	and are part of the certificate. °C and humidity < 70%. <u>Scheduled Calibration</u> Apr-23 Apr-23 Apr-23 Apr-23 Apr-23
This calibration certificate docume The measurements and the uncert All calibrations have been conduct Calibration Equipment used (M&T Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	nts the traceability to nati tainties with confidence p red in the closed laborator E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k)	onal standards, which realize the physical u robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525)	and are part of the certificate. °C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23
This calibration certificate docume The measurements and the uncert All calibrations have been conduct Calibration Equipment used (M&T Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination	ID # SN: 104778 SN: 104778 SN: 103244 SN: 103245 SN: 3H9394 (20k) SN: 310982 / 06327	onal standards, which realize the physical u robability are given on the following pages a ry facility: environment temperature (22 ± 3) Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03527)	and are part of the certificate. °C and humidity < 70%. <u>Scheduled Calibration</u> Apr-23 Apr-23 Apr-23 Apr-23 Apr-23
This calibration certificate docume The measurements and the uncert All calibrations have been conduct Calibration Equipment used (M&T Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	nts the traceability to nati tainties with confidence p eed in the closed laborator E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID #	onal standards, which realize the physical u robability are given on the following pages a ry facility: environment temperature (22 ± 3) O4-Apr-22 (No. 217-03525/03524) O4-Apr-22 (No. 217-03524) O4-Apr-22 (No. 217-03525) O4-Apr-22 (No. 217-03527) O4-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 31-Aug-22 (No. DAE4-601_Aug22) Check Date (in house)	and are part of the certificate. °C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 Aug-23 Scheduled Check
This calibration certificate docume The measurements and the uncert All calibrations have been conduct Calibration Equipment used (M&T Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B	nts the traceability to nati tainties with confidence p red in the closed laborator E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475	onal standards, which realize the physical u robability are given on the following pages a ry facility: environment temperature (22 ± 3) O4-Apr-22 (No. 217-03525/03524) O4-Apr-22 (No. 217-03524) O4-Apr-22 (No. 217-03525) O4-Apr-22 (No. 217-03527) O4-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 31-Aug-22 (No. DAE4-601_Aug22) Check Date (in house) 30-Oct-14 (in house check Oct-22)	and are part of the certificate. °C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 Aug-23 Scheduled Check In house check: Oct-24
This calibration certificate docume The measurements and the uncert All calibrations have been conduct Calibration Equipment used (M&T Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A	nts the traceability to nati tainties with confidence p red in the closed laborator E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 8H9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783	onal standards, which realize the physical u robability are given on the following pages a ry facility: environment temperature (22 ± 3) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 31-Aug-22 (No. DAE4-601_Aug22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22)	and are part of the certificate. °C and humidity < 70%. <u>Scheduled Calibration</u> Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 Aug-23 <u>Scheduled Check</u> In house check: Oct-24 In house check: Oct-24
This calibration certificate docume The measurements and the uncert All calibrations have been conduct Calibration Equipment used (M&T Primary Standards Power meter NRP Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A	nts the traceability to nati tainties with confidence p red in the closed laborator E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: WY41093315	onal standards, which realize the physical u robability are given on the following pages a ry facility: environment temperature (22 ± 3) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 31-Aug-22 (No. DAE4-601_Aug22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22)	and are part of the certificate. °C and humidity < 70%. <u>Scheduled Calibration</u> Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 Aug-23 <u>Scheduled Check</u> In house check: Oct-24 In house check: Oct-24 In house check: Oct-24
This calibration certificate docume The measurements and the uncert All calibrations have been conduct Calibration Equipment used (M&T Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A	nts the traceability to nati tainties with confidence p red in the closed laborator E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972	onal standards, which realize the physical u robability are given on the following pages a ry facility: environment temperature (22 ± 3) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 31-Aug-22 (No. DAE4-601_Aug22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22)	and are part of the certificate. °C and humidity < 70%. <u>Scheduled Calibration</u> Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 Aug-23 <u>Scheduled Check</u> In house check: Oct-24 In house check: Oct-24
This calibration certificate docume The measurements and the uncert All calibrations have been conduct Calibration Equipment used (M&T Primary Standards Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	nts the traceability to nati tainties with confidence p red in the closed laborator E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 103245 SN: 103245 SN: 103245 SN: 103245 SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: US37292783 SN: MY41093315 SN: 100972	onal standards, which realize the physical u robability are given on the following pages <i>i</i> ny facility: environment temperature (22 ± 3) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 31-Der-21 (No. EX3-7349_Dec21) 31-Aug-22 (No. DAE4-601_Aug22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 15-Jun-15 (in house check Oct-22)	and are part of the certificate. °C and humidity < 70%. <u>Scheduled Calibration</u> Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 Aug-23 <u>Scheduled Check</u> In house check: Oct-24 In house check: Oct-24 In house check: Oct-24 In house check: Oct-24 In house check: Oct-24
This calibration certificate docume The measurements and the uncert All calibrations have been conduct Calibration Equipment used (M&T Primary Standards Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	nts the traceability to nati tainties with confidence p red in the closed laborator E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103244 SN: 103244 SN: 103245 SN: 8H9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: WY41093315 SN: 100972 SN: US41080477	onal standards, which realize the physical u robability are given on the following pages a ry facility: environment temperature (22 ± 3) 04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03528) 31-Dec-21 (No. EX3-7349_Dec21) 31-Aug-22 (No. DAE4-601_Aug22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 15-Jun-15 (in house check Oct-22) 31-Mar-14 (in house check Oct-22)	and are part of the certificate. °C and humidity < 70%. Scheduled Calibration Apr-23 Apr-23 Apr-23 Apr-23 Dec-22 Aug-23 Scheduled Check In house check: Oct-24 In house check: Oct-24

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

- S Schweizerischer Kalibrierdienst Service suisse d'étalonnage
- C Service suisse d'étalonnage Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary:

TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D900V2-155_Dec22

Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	······································
Frequency	900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.97 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.1 ± 6 %	0.95 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.67 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	10.9 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.73 W/kg

SAR measured	250 mW input power	1.73 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	7.02 W/kg ± 16.5 % (k=2)

Certificate No: D900V2-155_Dec22

Page 3 of 6

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.6 Ω - 5.0 jΩ
Return Loss	- 25.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1 404 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

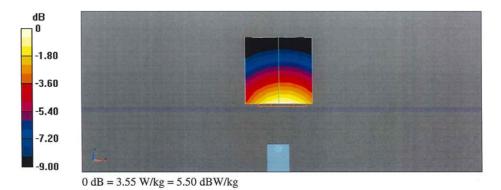
Page 4 of 6

Date: 06.12.2022

DASY5 Validation Report for Head TSL

Test Laboratory: SPEAG, Zurich, Switzerland

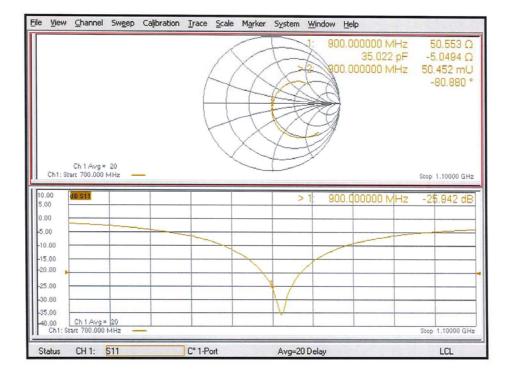
DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN:155


Communication System: UID 0 - CW; Frequency: 900 MHz Medium parameters used: f = 900 MHz; σ = 0.95 S/m; ε_r = 42.1; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(9.62, 9.62, 9.62) @ 900 MHz; Calibrated: 31.12.2021
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 31.08.2022
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 64.59 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 4.04 W/kg SAR(1 g) = 2.67 W/kg; SAR(10 g) = 1.73 W/kg Smallest distance from peaks to all points 3 dB below = 17 mm Ratio of SAR at M2 to SAR at M1 = 66.4%Maximum value of SAR (measured) = 3.55 W/kg

Certificate No: D900V2-155_Dec22

Page 5 of 6

Impedance Measurement Plot for Head TSL

Certificate No: D900V2-155_Dec22

Page 6 of 6

Calibration for Impedance and Return-loss

Equipment	Dipole Antenna	Model	D900V2
Manufacture	Schmid & Partner Engineering AG	Serial	155
Tested by	Hisayoshi Sato		

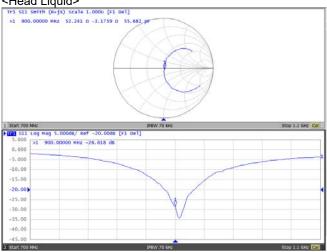
1. Test environment

Date	December 22, 2023		
Ambient Temperature	23.0 deg.C	Relative humidity	40 %RH

2. Equipment used

LIMS ID	Description	Manufacturer	Model	Serial	Last Cal Date	Interval
88581	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	-	2023/7/18	12
142056	2mm Oval Flat Phantom	Schmid & Partner Engineering AG	QDOVA001BB	1045	2023/5/10	12
176484	Head Simulating Liquid	Schmid & Partner Engineering AG	HBBL600-10000V6	SL AAH U16 BC	-	-
150815	Netw ork Analyzer	Keysight Technologies Inc	E5071C	MY46523746	2023/08/11	12
141991	2.4mm Calibration Kit	Keysight Technologies Inc	85056A	MY44300225	2023/8/29	12
142060	SAM Phantom	Schmid & Partner Engineering AG	QD000P40CB	1333	2023/5/10	12

3. Test Result


		Head	Head	Deviation	Deviation		
Impeadance, Transformed to feed poin	cal day	(real part) [Ω]	(img part) [jΩ]	(real part) [Ω]	(img part) [jΩ]	Tolerance	Result
Calibration (SPEAG)	2022/12/6	50.55	-5.05	-	-	-	-
Calibration(ULJ)	2023/12/22	52.24	-3.18	1.69	1.87	+/- 5 Ω +/- 5 jΩ	Complied

		Head	Deviation	Deviation	Tolerance	Tolerance	
Return loss	cal day	[dB]	[%]	[dB]	[%]	[+/- dB]	Result
Calibration (SPEAG)	2022/12/6	-25.94	-	-	-	-	-
Calibration(ULJ)	2023/12/22	-28.62	-10.32	-2.68	+/- 20.00	5.19	Complied

Tolerance: According to the KDB 865664 D1

Measurement Plots

<Head Liquid>

