

RADIO TEST REPORT

Test Report No. 15511934H-A-R1

Customer	Denso Wave Incorporated
Description of EUT	RF Tag Handy Terminal
Model Number of EUT	BHT-1408QUMWB
FCC ID	PZWBHT1408QUM
Test Regulation	FCC Part 15 Subpart C
Test Result	Complied
Issue Date	October 31, 2024
Remarks	UHF part

Representative Test Engineer	Approved By
(.coshida	Ryata yamaneka
Tetsuro Yoshida Engineer	Ryota Yamanaka Engineer ACCREDITED
	CERTIFICATE 5107.02
The testing in which "Non-accreditation" is displayed in	s outside the accreditation scopes in UL Japan, Inc.
There is no testing item of "Non-accreditation".	

Report Cover Page - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 23.0

Test Report No. 15511934H-A-R1 Page 2 of 37

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested. (Laboratory was not involved in sampling.)
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements.
 It does not cover administrative issues such as Manual or non-Radio test related Requirements.
 (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided by the customer for this report is identified in SECTION 1.
- The laboratory is not responsible for information provided by the customer which can impact the validity of the results.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No.: 15511934H-A

This report is a revised version of 15511934H-A. 15511934H-A is replaced with this report.

Revision	Test Report No.	Date	Page Revised Contents
- (Original)	15511934H-A	October 15, 2024	-
1	15511934H-A-R1	October 31, 2024	Correction of the note *1) in Section 3.2.
1	15511934H-A-R1	October 31, 2024	Addition of the 902 MHz data in 20 dBc Data Sheet for Radiated Spurious Emission (915.25 MHz).
1	15511934H-A-R1	October 31, 2024	Addition of the 928 MHz data in 20 dBc Data Sheet for Radiated Spurious Emission (927.50 MHz).
1	15511934H-A-R1	October 31, 2024	Deletion of the LIMS ID: 141503 from APPENDIX 2: Test Instruments

Test Report No. 15511934H-A-R1 Page 3 of 37

Reference: Abbreviations (Including words undescribed in this report)

A2LA	The American Association for Laboratory Accreditation	ICES	Interference-Causing Equipment Standard
AC	Alternating Current	IEC	International Electrotechnical Commission
AFH	Adaptive Frequency Hopping	IEEE	Institute of Electrical and Electronics Engineers
AM	Amplitude Modulation	IF	Intermediate Frequency
Amp, AMP	Amplifier	ILAC	International Laboratory Accreditation Conference
ANSI	American National Standards Institute	ISED	Innovation, Science and Economic Development Canada
Ant, ANT	Antenna	ISO	International Organization for Standardization
AP	Access Point	JAB	Japan Accreditation Board
ASK	Amplitude Shift Keying	LAN	Local Area Network
Atten., ATT	Attenuator	LIMS	Laboratory Information Management System
AV	Average	MCS	Modulation and Coding Scheme
BPSK	Binary Phase-Shift Keying	MRA	Mutual Recognition Arrangement
BR	Bluetooth Basic Rate	N/A	Not Applicable
BT	Bluetooth	NIST	National Institute of Standards and Technology
BT LE	Bluetooth Low Energy	NS	No signal detect.
BW	BandWidth	NSA	Normalized Site Attenuation
Cal Int	Calibration Interval	NVLAP	National Voluntary Laboratory Accreditation Program
CCK	Complementary Code Keying	OBW	Occupied Band Width
Ch., CH	Channel	OFDM	Orthogonal Frequency Division Multiplexing
CISPR	Comite International Special des Perturbations Radioelectriques	P/M	Power meter
CW	Continuous Wave	PCB	Printed Circuit Board
DBPSK	Differential BPSK	PER	Packet Error Rate
DC	Direct Current	PHY	Physical Layer
D-factor	Distance factor	PK	Peak
DFS	Dynamic Frequency Selection	PN	Pseudo random Noise
DQPSK	Differential QPSK	PRBS	Pseudo-Random Bit Sequence
DSSS	Direct Sequence Spread Spectrum	PSD	Power Spectral Density
EDR	Enhanced Data Rate	QAM	Quadrature Amplitude Modulation
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	QP	Quasi-Peak
EMC	ElectroMagnetic Compatibility	QPSK	Quadri-Phase Shift Keying
EMI	ElectroMagnetic Interference	RBW	Resolution Band Width
EN	European Norm	RDS	Radio Data System
ERP, e.r.p.	Effective Radiated Power	RE	Radio Equipment
EU	European Union	RF	Radio Frequency
EUT	Equipment Under Test	RMS	Root Mean Square
Fac.	Factor	RSS	Radio Standards Specifications
FCC	Federal Communications Commission	Rx	Receiving
FHSS	Frequency Hopping Spread Spectrum	SA, S/A	Spectrum Analyzer
FM	Frequency Modulation	SG	Signal Generator
Freq.	Frequency	SVSWR	Site-Voltage Standing Wave Ratio
FSK	Frequency Shift Keying	TR	Test Receiver
GFSK	Gaussian Frequency-Shift Keying	Tx	Transmitting
GNSS	Global Navigation Satellite System	VBW	Video BandWidth
GPS	Global Positioning System	Vert.	Vertical
Hori.	Horizontal	WLAN	Wireless LAN
	1		

CONTENTS	PAGE
SECTION 1: Customer Information	5
SECTION 2: Equipment Under Test (EUT)	
SECTION 3: Test Specification, Procedures & Results	
SECTION 4: Operation of EUT during testing	
SECTION 5: Radiated Spurious Emission	
SECTION 6: Antenna Terminal Conducted Tests	
APPENDIX 1: Test data	15
20dB Bandwidth, 99%Occupied Bandwidth and Carr	rier Frequency Separation15
Number of Hopping Frequency	18
Dwell time	
Maximum Peak Output Power	
Radiated Spurious Emission	
Conducted Spurious Emission	
Conducted Emission Band Edge compliance	32
APPENDIX 2: Test Instruments	
APPENDIX 3: Photographs of test setup	
Radiated Spurious Emission	
Worst Case Position	
Antenna Terminal Conducted Tests	37

Test Report No. 15511934H-A-R1 Page 5 of 37

SECTION 1: Customer Information

Company Name	Denso Wave Incorporated
Address	1 Yoshiike, Kusagi, Agui-cho, Chita-gun, Aichi 470-2297 Japan
Telephone Number	+81-569-49-5284
Contact Person	Shoji Ogiso

The information provided by the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer Information
- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date
- SECTION 4: Operation of EUT during testing

SECTION 2: Equipment Under Test (EUT)

2.1 Identification of EUT

Description	RF Tag Handy Terminal
Model Number	BHT-1408QUMWB
Serial Number	Refer to SECTION 4.2
Condition	Engineering prototype
	(Not for Sale: This sample is equivalent to mass-produced items.)
Modification	No Modification by the test lab
Receipt Date	April 10, 17 and August 26, 2024 *1)
	October 2, 2024 *2)
Test Date	April 18 to August 28, 2024 *1)
	October 3, 2024 *2)

^{*1)} for other than Maximum Peak Output Power: min.power

2.2 Product Description

General Specification

Rating	DC 3.7 V
Operating temperature	-20 deg. C to 50 deg. C

^{*2)} for Maximum Peak Output Power: min.power

Test Report No. 15511934H-A-R1 Page 6 of 37

Radio Specification

This report contains data provided by the customer which can impact the validity of results. UL Japan, Inc. is only responsible for the validity of results after the integration of the data provided by the customer. The data provided by the customer is marked "a)" in the table below.

UHF

Equipment Type	Transceiver
Frequency of Operation	915.25 MHz to 927.50 MHz
Type of Modulation	PR-ASK
Antenna Gain a)	2.0 dBi

WLAN (IEEE802.11b/11g/11n-20)

	··· =• <i>j</i>
Equipment Type	Transceiver
Frequency of Operation	2412 MHz to 2462 MHz
Type of Modulation	DSSS, OFDM
Antenna Gain	0.75 dBi

Bluetooth (BR / EDR / Low Energy)

Equipment Type	Transceiver
Frequency of Operation	2402 MHz to 2480 MHz
Type of Modulation	BR / EDR: GFSK, π/4 DQPSK, 8 DPSK
	Low Energy: GFSK
Antenna Gain	0.75 dBi

^{*} WLAN and Bluetooth do not transmit simultaneously.

Test Report No. 15511934H-A-R1 Page 7 of 37

SECTION 3: Test Specification, Procedures & Results

3.1 Test Specification

Test Specification	FCC Part 15 Subpart C
	The latest version on the first day of the testing period
Title	FCC 47 CFR Part 15 Radio Frequency Device Subpart C Intentional Radiators
	Section 15.207 Conducted limits
	Section 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz,
	and 5725-5850 MHz

^{*} Also the EUT complies with FCC Part 15 Subpart B.

3.2 Procedures and Results

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
Conducted	FCC: ANSI C63.10-2013	FCC: Section 15.207	-	N/A	*1)
Emission	6. Standard test methods				,
	ISED: RSS-Gen 8.8	ISED: RSS-Gen 8.8			
Carrier	FCC: KDB 558074 D01 15.247	FCC: Section15.247(a)(1)	See data.	Complied	Conducted
Frequency	Meas Guidance v05r02			· ·	
Separation	ISED: -	ISED: RSS-247 5.1 (b)			
20dB	FCC: KDB 558074 D01 15.247	FCC: Section15.247(a)(1)		Complied	Conducted
Bandwidth	Meas Guidance v05r02			· ·	
	ISED: -	ISED: RSS-247 5.1 (a)	-		
Number of	FCC: KDB 558074 D01 15.247	FCC:		Complied	Conducted
Hopping	Meas Guidance v05r02	Section15.247(a)(1)(iii)		· ·	
Frequency	ISED: -	ISED: RSS-247 5.1 (d)			
Dwell time	FCC: KDB 558074 D01 15.247	FCC:		Complied	Conducted
	Meas Guidance v05r02	Section15.247(a)(1)(iii)		· ·	
	ISED: -	ISED: RSS-247 5.1 (d)			
Maximum	FCC: KDB 558074 D01 15.247	FCC: Section15.247(b)(1)		Complied	Conducted
Peak	Meas Guidance v05r02			· ·	
Output Power	ISED: RSS-Gen 6.12	ISED: RSS-247 5.4 (b)			
Spurious	FCC: KDB 558074 D01 15.247	FCC: Section15.247(d)	3.2 dB	Complied	Conducted/
Emission &	Meas Guidance v05r02	,	2745.8 MHz,	· ·	Radiated
Band Edge	ISED: RSS-Gen 6.13	ISED: RSS-247 5.5	Vertical, AV		(above 30 MHz)
Compliance		RSS-Gen 8.9			*2)
		RSS-Gen 8.10			

Note: UL Japan, Inc.'s EMI Work Procedures: Work Instructions-ULID-003591 and Work Instructions-ULID-003593.

* In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

FCC Part 15.31 (e)

The EUT is a battery-operated device and test was performed with the full-charged battery. Therefore, this EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

3.3 Addition to Standard

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
99% Occupied	ISED: RSS-Gen 6.7	ISED: -	N/A	-	Conducted
Bandwidth					

Other than above, no addition, exclusion nor deviation has been made from the standard.

^{*1)} The test is not applicable since the battery is charged using a dedicated charger and is not charged via AC power from the main unit.

^{*2)} Radiated test was selected over 30 MHz based on section 15.247(d).

Test Report No. 15511934H-A-R1 Page 8 of 37

3.4 Uncertainty

Measurement uncertainty is not taken into account when stating conformity with a specified requirement. Note: When margins obtained from test results are less than the measurement uncertainty, the test results may exceed the limit.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

Radiated emission

Measurement distance	Frequency range	Unit	Calculated Uncertainty (+/-)	
3 m	9 kHz to 30 MHz		dB	3.3
10 m			dB	3.1
3 m	30 MHz to 200 MHz	Horizontal	dB	4.7
		Vertical	dB	4.7
	200 MHz to 1000 MHz	200 MHz to 1000 MHz Horizontal		4.8
		Vertical	dB	6.0
10 m	30 MHz to 200 MHz	Horizontal	dB	5.2
		Vertical	dB	5.1
	200 MHz to 1000 MHz	Horizontal	dB	5.2
		Vertical	dB	5.2
3 m	1 GHz to 6 GHz		dB	5.1
	6 GHz to 18 GHz	dB	5.4	
1 m	10 GHz to 18 GHz	dB	5.4	
	18 GHz to 26.5 GHz	dB	5.3	
	26.5 GHz to 40 GHz	·	dB	4.8
0.5 m	26.5 GHz to 40 GHz	·	dB	5.0

Antenna Terminal Conducted

Item	Unit	Calculated
		Uncertainty (+/-)
Antenna terminated conducted emission / Power density / Burst power	dB	3.47
Adjacent channel power (ACP)	dB	2.28
Bandwidth (OBW)	%	0.96
Time readout (time span upto 100 msec)	%	0.11
Time readout (time span upto 1000 msec)	%	0.11
Time readout (time span upto 60 sec)	%	0.02
Power measurement (Power meter < 8 GHz)	dB	1.46
Power measurement (Call box < 6 GHz)	dB	1.69
Frequency readout (Frequency counter)	ppm	0.67
Frequency readout (Spectrum analyzer frequency readout function)	ppm	2.13
Temperature (constant temperature bath)	deg. C	0.69
Humidity (constant temperature bath)	%RH	2.98
Modulation characteristics	%	6.93
Frequency for mobile	ppm	0.08
Contention-based protocol	dB	2.26

Test Report No. 15511934H-A-R1 Page 9 of 37

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 Japan

Telephone: +81-596-24-8999

A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919

ISED Lab Company Number: 2973C / CAB identifier: JP0002

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measurement distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.10 shielded room	3.8 x 2.8 x 2.8	3.8 x 2.8	-	-
No.11 measurement room	4.0 x 3.4 x 2.5	N/A	-	-
No.12 measurement room	2.6 x 3.4 x 2.5	N/A	-	-
Large Chamber	16.9 x 22.1 x 10.17	16.9 x 22.1	-	10 m
Small Chamber	5.3 x 6.69 x 3.59	5.3 x 6.69	-	-

3.6 Test Data, Test Instruments, and Test Set Up

Refer to APPENDIX.

Test Report No. 15511934H-A-R1 Page 10 of 37

SECTION 4: Operation of EUT during testing

4.1 Operating Mode(s)

Mode	Remarks*		
Transmitting mode (Tx)	-		
*EUT has the power settings	by the software as follows;		
Power Setting *1): 27 dBm	(all tests), 4 dBm (Maximum Peak Output Power test only)		
Software: BHT-14	08QUMWB System Program Version: TA02		
(Date: 2	024.04.12, Storage location: EUT memory)		
*This setting of software is the worst case.			
Any conditions under the norr	mal use do not exceed the condition of setting.		

^{*1)} All tests were performed with 27 dBm power setting as a representative which was the worst condition after having compared with other power settings.

Details of Operating Mode(s)

Test Item	Mode	Hopping	Tested
			Frequency
Radiated Spurious Emission (Below 1 GHz)	Tx *2)	Off	927.50 MHz
Radiated Spurious Emission (Above 1 GHz),	Tx	Off	915.25 MHz
Conducted Spurious Emission			921.25 MHz
			927.50 MHz
Carrier Frequency Separation	Tx	On	915.25 MHz
			921.25 MHz
			927.50 MHz
20dB Bandwidth	Tx	Off	915.25 MHz
			921.25 MHz
			927.50 MHz
Number of Hopping Frequency	Tx	On	-
Dwell time	Tx	On	915.25 MHz
			921.25 MHz
			927.50 MHz
Maximum Peak Output Power	Tx	Off	915.25 MHz
			921.25 MHz
			927.50 MHz
Band Edge Compliance	Tx	On	915.25 MHz
(Conducted)		Off	927.50 MHz
99% Occupied Bandwidth	Tx	On	915.25 MHz
		Off	921.25 MHz
			927.50 MHz

^{*2)} Radiated Spurious Emission for frequencies below 1 GHz were limited to the channel that had the highest power during the antenna terminal test, as preliminary testing indicated that changing the operating frequency had no significant impact on the emissions in those frequency bands.

^{*}This EUT has two modes which Tag is attached or not. The worst case was confirmed with and without Tag attached, as a result, the test without Tag attached was the worst case. Therefore the test without Tag attached was performed only.

Test Report No. 15511934H-A-R1 Page 11 of 37

4.2 **Configuration and Peripherals**

*Setup was taken into consideration and test data was taken under worse case conditions.

Description of EUT

No.	Item	Model number	Serial Number	Manufacturer	Remarks
Α	RF Tag Handy	BHT-1408QUMWB	4969005020300822 *1)	Denso Wave	EUT
	Terminal		4969005020300823 *2)	Incorporated	
			4969005020300824 *3)		

^{*1)} Used for Antenna Terminal Conducted tests (Hopping Off mode)
*2) Used for Antenna Terminal Conducted tests (Hopping On mode)

^{*3)} Used for Radiated Spurious Emission

Test Report No. 15511934H-A-R1 Page 12 of 37

SECTION 5: Radiated Spurious Emission

Test Procedure

[For below 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane. Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The height of the measuring antenna varied between 1 m and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

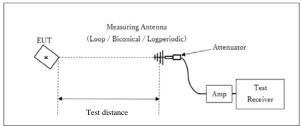
The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Test Antennas are used as below:

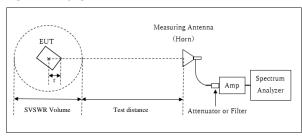
Frequency	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Biconical	Logperiodic	Horn

In any 100 kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.


20 dBc was applied to the frequency over the limit of FCC 15.209 / Table 4 of RSS-Gen 8.9 (ISED) and outside the restricted band of FCC15.205 / Table 6 of RSS-Gen 8.10 (ISED).

Frequency	Below 1 GHz	Above 1 GHz		20 dBc
Instrument used	Test Receiver	Spectrum Analyze	r	Spectrum Analyzer
Detector	QP	PK	AV	PK
IF Bandwidth	BW 120 kHz	RBW: 1 MHz	RBW: 1 MHz	RBW: 100 kHz
		VBW: 3 MHz	VBW: 3 MHz	VBW: 300 kHz
			Detector:	
			Power Averaging	
			(RMS)	
			Trace: 100 traces	
			Duty factor was added	
			to the results.	

Test Report No. 15511934H-A-R1 Page 13 of 37


Figure 1: Test Setup

Below 1 GHz

× : Center of turn table

1 GHz to 10 GHz

- r: Radius of an outer periphery of EUT
- ×: Center of turn table

Test Distance: 3 m

1 GHz to 6 GHz

Distance Factor: 20 x log (3.65 m / 3.0 m) = 1.71 dB
* Test Distance: (3 + SVSWR Volume /2) - r = 3.65 m

SVSWR Volume: 1.5 m

(SVSWR Volume has been calibrated based on CISPR 16-1-4.)

r = 0.1 m

6 GHz to 10 GHz

Distance Factor: 20 x log (3.65 m / 3.0 m) = 1.71 dB * Test Distance: (3.25 + SVSWR Volume /2) - r = 3.65 m

SVSWR Volume: 1.0 m

(SVSWR Volume has been calibrated based on CISPR

16-1-4.) r = 0.1 m

The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

Test results are rounded off and limit are rounded down, so some differences might be observed.

Measurement Range : 30 MHz to 10 GHz

Test Data : APPENDIX
Test Result : Pass

Test Report No. 15511934H-A-R1 Page 14 of 37

SECTION 6: Antenna Terminal Conducted Tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep time	Detector	Trace	Instrument Used
20dB Bandwidth	500 kHz	3 kHz	9.1 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99% Occupied Bandwidth *1)	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer
Maximum Peak Output Power	-	-	-	Auto	Peak	-	Power Meter (Sensor: 50MHz BW)
Carrier Frequency Separation	750 kHz	10 kHz	30 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
Number of Hopping Frequency	5 MHz	39 kHz	120 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
Dwell Time	Zero Span	100 kHz	300 kHz	As necessary capture the entire dwell time per hopping channel	Peak	Clear Write	Spectrum Analyzer
Conducted	9 kHz to 150 kHz	200 Hz	620 Hz	Auto	Peak	Max Hold	Spectrum Analyzer
Spurious	150 kHz to 30 MHz	10 kHz	30 kHz				
Emission *2) *3)	30 MHz to 10 GHz	100 kHz	300 kHz				
Conducted Spurious Emission Band Edge compliance	10 MHz	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer

^{*1)} Peak hold was applied as Worst-case measurement.

Test results are rounded off and limit are rounded down, so some differences might be observed. The equipment and cables were not used for factor 0 dB of the data sheets.

Test Data : APPENDIX Test Result : Pass

^{*2)} In the frequency range below 30MHz, RBW was narrowed to separate the noise contents.

Then, wide-band noise near the limit was checked separately, however the noise was not detected as shown in the chart. (9 kHz -150 kHz: RBW = 200 Hz, 150 kHz - 30 MHz: RBW = 10 kHz)

^{*3)} The limits in CFR 47, Part 15, Subpart C, paragraph 15.209(a), are identical to those in RSS-Gen section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377 Ohmes. For example, the measurement at frequency 9 kHz resulted in a level of 45.5 dBuV/m, which is equivalent to 45.5 – 51.5 = -6.0 dBuA/m, which has the same margin, 3 dB, to the corresponding RSS-Gen Table 6 limit as it has to 15.209(a) limit.

Test Report No. 15511934H-A-R1 Page 15 of 37

APPENDIX 1: Test data

20dB Bandwidth, 99%Occupied Bandwidth and Carrier Frequency Separation

Test place Ise EMC Lab. No.

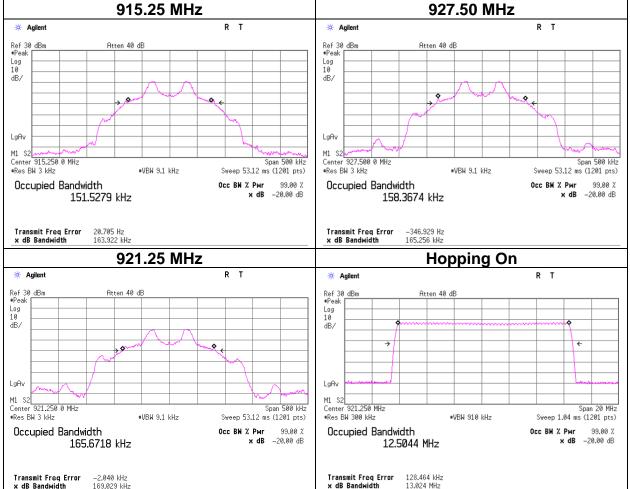
Measurement Room No.8 No.6

Date April 18, 2024 April 24, 2024
Temperature / Humidity 24 deg. C / 38 % RH 21 deg. C / 60 % RH
Engineer Junya Okuno Junya Okuno

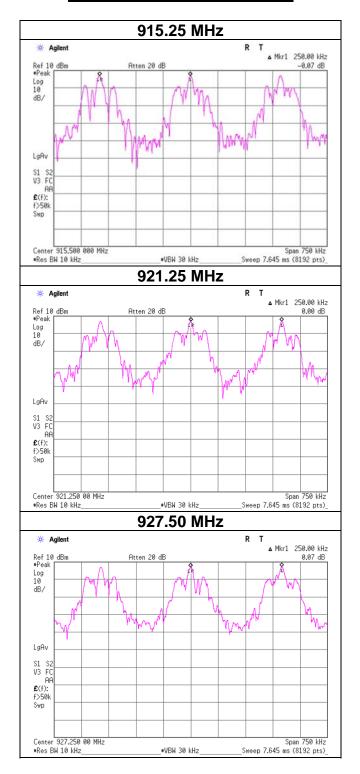
(Hopping Off) (Hopping On)

Mode Tx, Hopping Off, Tx, Hopping On

Freq.	20 dB Bandwidth	99 % Occupied	Carrier Frequency	Limit for Carrier
		Bandwidth	Separation	Frequency separation
[MHz]	[MHz]	[kHz]	[MHz]	[MHz]
915.25	0.164	151.528	0.250	>= 0.164
921.25	0.169	165.672	0.250	>= 0.169
927.50	0.165	158.367	0.250	>= 0.165
Hopping On	-	12504.4	-	-


Limit: 20dB Bandwidth or 25 kHz (whichever is greater).

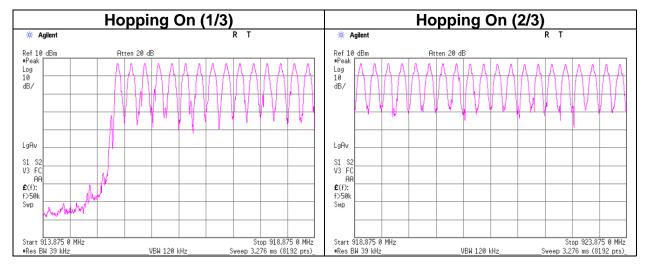
No limit applies to 20 dB Bandwidth.

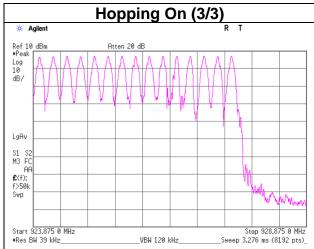

Test Report No. 15511934H-A-R1 Page 16 of 37

20dB Bandwidth and 99% Occupied Bandwidth

Hopping Off

Carrier Frequency Separation


Test Report No. 15511934H-A-R1 Page 18 of 37


Number of Hopping Frequency

Test place Ise EMC Lab. No.6 Measurement Room

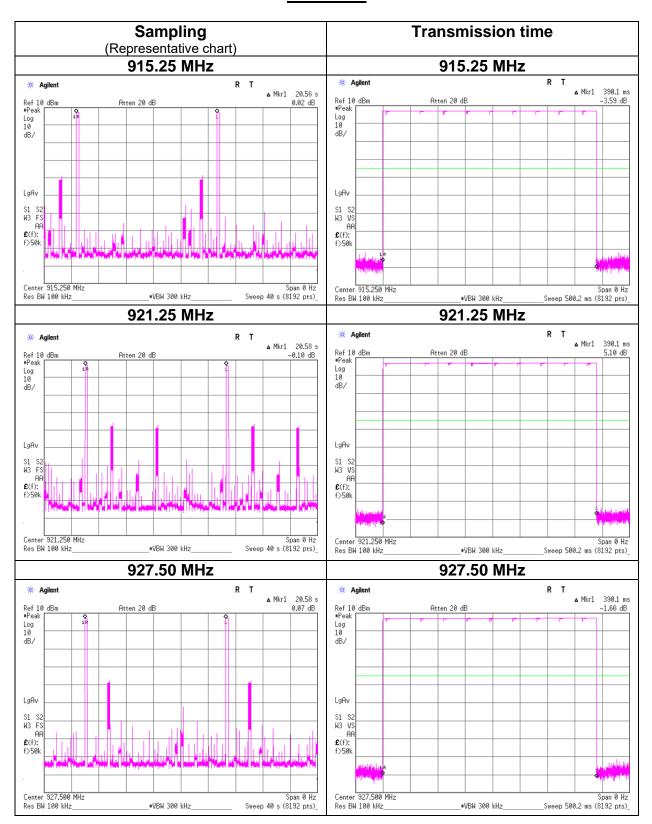
Date April 24, 2024
Temperature / Humidity 21 deg. C / 60 % RH
Engineer Junya Okuno
Mode Tx, Hopping On

Number of channel	Limit
[channels]	[channels]
50	>= 50

Test Report No. 15511934H-A-R1 Page 19 of 37

Dwell time

Test place Ise EMC Lab. No.6 Measurement Room


Date April 24, 2024
Temperature / Humidity 21 deg. C / 60 % RH
Engineer Junya Okuno
Mode Tx, Hopping On

Freq.	Number of transmission in 20 second period	Length of transmission	Result	Limit
[MHz]	·	[ms]	[ms]	[ms]
915.25	1	390.1	390.1	400
921.25	1	390.1	390.1	400
927.50	1	390.1	390.1	400

Sample Calculation

Result = Number of transmission x Length of transmission

Dwell time

Test Report No. 15511934H-A-R1 Page 21 of 37

Maximum Peak Output Power

Test place Ise EMC Lab. No.8 Measurement Room
Date April 18, 2024 October 3, 2024
Temperature / Humidity 24 deg. C / 38 % RH 21 deg. C / 60 % RH
Engineer Junya Okuno Nachi Konegawa
Mode Tx, Hopping Off

Power sett	ing: 27 dBm	l			Con	ducted Po	ower		e.i.r.p. for RSS-247					
Freq.	Reading	Cable	Atten.	Re	Result Limit			Margin	Antenna	Re	sult	Lir	nit	Margin
		Loss	Loss						Gain					
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]
915.25	5.75	0.46	19.89	26.10	407.38	30.00	1000	3.90	2.00	28.10	645.65	36.02	4000	7.92
921.25	5.68	0.46	19.89	26.03	400.87	30.00	1000	3.97	2.00	28.03	635.33	36.02	4000	7.99
927.50	5.83	0.46	19.89	26.18	414.95	30.00	1000	3.82	2.00	28.18	657.66	36.02	4000	7.84

Sample Calculation:

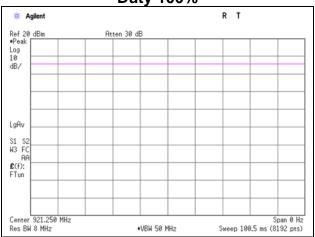
Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

e.i.r.p. Result = Conducted Power Result + Antenna Gain

Power sett	ing: 4 dBm				Con	ducted Po	ower		e.i.r.p. for RSS-247					
Freq.	Reading	Cable	Atten.	Res	sult	Lir	nit	Margin	Antenna	Re	sult	Lir	nit	Margin
		Loss	Loss						Gain					
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]
915.25	-6.39	0.20	9.80	3.61	2.30	30.00	1000	26.39	2.00	5.61	3.64	36.02	4000	30.41
921.25	-6.46	0.20	9.80	3.54	2.26	30.00	1000	26.46	2.00	5.54	3.58	36.02	4000	30.48
927.50	-6.68	0.20	9.80	3.32	2.15	30.00	1000	26.68	2.00	5.32	3.40	36.02	4000	30.70

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss


e.i.r.p. Result = Conducted Power Result + Antenna Gain

Test Report No. 15511934H-A-R1 Page 22 of 37

Burst Rate Confirmation

Test place Ise EMC Lab. No.8 Measurement Room
Date April 18, 2024
Temperature / Humidity 24 deg. C / 38 % RH
Engineer Junya Okuno
Mode Tx, Hopping Off

Duty 100%

Test Report No. 15511934H-A-R1 Page 23 of 37

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.2 No.2

Date August 27, 2024 August 28, 2024 22 deg. C / 66 % RH 20 deg. C / 67 % RH Temperature / Humidity Tetsuro Yoshida Tetsuro Yoshida Engineer (Above 1 GHz) (Below 1 GHz)

Mode Tx, Hopping Off, 915.25 MHz

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP/PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2745.8	55.3	51.5	28.3	5.1	36.1	-	52.5	48.7	73.9	53.9	21.4	5.2	
Hori.	3661.0	49.8	45.0	29.3	6.4	35.8	-	49.8	44.9	73.9	53.9	24.2	9.0	
Hori.	4576.3	49.4	42.2	31.0	6.4	35.6	-	51.1	43.9	73.9	53.9	22.8	10.0	
Hori.	5491.5	44.1	36.2	31.8	6.6	35.5	-	47.1	39.1	73.9	53.9	26.8	14.8	
Hori.	6406.8	42.8	34.9	35.4	6.8	35.5	-	49.5	41.6	73.9	53.9	24.4	12.3	Floor noise
Hori.	7322.0	43.0	35.2	35.6	7.0	35.7	-	50.1	42.2	73.9	53.9	23.9	11.7	Floor noise
Hori.	8237.3	43.0	35.5	35.3	7.4	35.8	-	49.9	42.4	73.9	53.9	24.0	11.5	Floor noise
Hori.	9152.5	43.4	35.3	35.5	7.7	36.0	-	50.6	42.6	73.9	53.9	23.3	11.3	Floor noise
Vert.	2745.8	57.2	53.5	28.3	5.1	36.1	-	54.4	50.7	73.9	53.9	19.5	3.2	
Vert.	3661.0	46.7	40.2	29.3	6.4	35.8	-	46.7	40.1	73.9	53.9	27.3	13.8	
Vert.	4576.3	47.0	39.8	31.0	6.4	35.6	-	48.8	41.6	73.9	53.9	25.1	12.4	
Vert.	5491.5	43.9	35.6	31.8	6.6	35.5	-	46.8	38.6	73.9	53.9	27.1	15.3	
Vert.	6406.8	44.9	36.2	35.4	6.8	35.5	-	51.6	43.0	73.9	53.9	22.3	11.0	
Vert.	7322.0	43.1	35.4	35.6	7.0	35.7	-	50.1	42.4	73.9	53.9	23.8	11.5	Floor noise
Vert.	8237.3	43.0	35.6	35.3	7.4	35.8	-	49.9	42.5	73.9	53.9	24.0	11.4	Floor noise
Vert.	9152.5	43.6	35.3	35.5	7.7	36.0	-	50.8	42.6	73.9	53.9	23.1	11.3	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)
Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

20dBc Data Sheet

ZUUDC Date	i Oneet								
Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	915.3	118.1	22.1	11.3	28.8	122.7	-	-	Carrier
Hori.	902.0	27.7	22.1	11.2	28.8	32.2	102.7	70.5	
Hori.	1830.5	60.5	25.4	4.7	36.2	54.4	102.7	48.3	
Vert.	915.3	117.5	22.1	11.3	28.8	122.1	-	-	Carrier
Vert.	902.0	27.8	22.1	11.2	28.8	32.3	102.1	69.8	
Vert.	1830.5	63.0	25.4	4.7	36.2	57.0	102.1	45.1	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

1 GHz - 6 GHz 20log (3.65 m / 3.0 m) = 1.71 dB Distance factor: 20log (3.65 m / 3.0 m) = 1.71 dB 6 GHz - 10 GHz

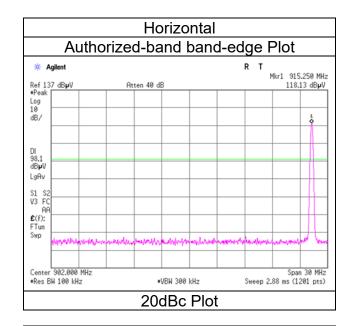
^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB). *QP detector was used up to 1GHz.

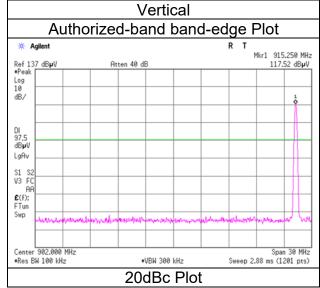
Test Report No. 15511934H-A-R1 Page 24 of 37

Radiated Spurious Emission (Reference Plot for band-edge)

Test place Semi Anechoic Chamber Date

Temperature / Humidity


Engineer


Mode

Ise EMC Lab. No.2 August 27, 2024

August 27, 2024 22 deg. C / 66 % RH Tetsuro Yoshida (Above 1 GHz)

Tx, Hopping Off, 915.25 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions

Final result of restricted band edge was shown in tabular data.

Test Report No. 15511934H-A-R1 Page 25 of 37

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.2 No.2

Date August 27, 2024 August 28, 2024
Temperature / Humidity 22 deg. C / 66 % RH 20 deg. C / 67 % RH
Engineer Tetsuro Yoshida (Above 1 GHz) (Below 1 GHz)

Mode Tx, Hopping Off, 921.25 MHz

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
[Hori/Vert]	[MHz]	(QP / PK) [dBuV]	(AV) [dBuV]	Factor [dB/m]	[dB]	[dB]	Factor [dB]	(QP / PK) [dBuV/m]	(AV) [dBuV/m]	(QP / PK) [dBuV/m]	(AV) [dBuV/m]	(QP / PK) [dB]	(AV) [dB]	
Hori.	2763.8	54.6	50.0	28.4	5.1	36.1	-	51.9	47.3	73.9	53.9	22.0	6.6	
Hori.	3685.0	49.4	44.3	29.4	6.4	35.8	-	49.4	44.2	73.9	53.9	24.5	9.7	
Hori.	4606.3	49.0	41.8	31.1	6.4	35.6	-	50.9	43.6	73.9	53.9	23.0	10.3	
Hori.	5527.5	45.9	38.1	31.8	6.6	35.5	-	48.8	41.0	73.9	53.9	25.1	12.9	
Hori.	6448.8	43.0	34.9	35.5	6.8	35.5	-	49.8	41.7	73.9	53.9	24.1	12.2	Floor noise
Hori.	7370.0	42.7	35.2	35.6	7.0	35.7	-	49.7	42.1	73.9	53.9	24.2	11.8	Floor noise
Hori.	8291.3	43.1	35.6	35.4	7.4	35.8	-	50.2	42.6	73.9	53.9	23.8	11.3	Floor noise
Hori.	9212.5	44.0	35.1	35.5	7.7	36.0	-	51.2	42.4	73.9	53.9	22.7	11.5	Floor noise
Vert.	2763.8	52.5	48.3	28.4	5.1	36.1	-	49.8	45.6	73.9	53.9	24.1	8.3	
Vert.	3685.0	47.2	40.8	29.4	6.4	35.8	-	47.2	40.8	73.9	53.9	26.7	13.1	
Vert.	4606.3	47.2	40.8	31.1	6.4	35.6	-	49.1	42.6	73.9	53.9	24.8	11.3	
Vert.	5527.5	46.3	36.8	31.8	6.6	35.5	-	49.2	39.7	73.9	53.9	24.7	14.2	
Vert.	6448.8	45.4	36.7	35.5	6.8	35.5	-	52.2	43.5	73.9	53.9	21.8	10.4	
Vert.	7370.0	43.1	35.3	35.6	7.0	35.7	-	50.1	42.3	73.9	53.9	23.8	11.7	Floor noise
Vert.	8291.3	43.0	35.6	35.4	7.4	35.8	-	50.1	42.7	73.9	53.9	23.8	11.2	Floor noise
Vert.	9212.5	44.2	35.3	35.5	7.7	36.0	-	51.4	42.6	73.9	53.9	22.5	11.3	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

20dBc Data Sheet

Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	921.3	118.1	22.1	11.3	28.8	122.7	-	-	Carrier
Hori.	1842.5	63.3	25.5	4.7	36.2	57.3	102.7	45.4	
Vert.	921.3	116.2	22.1	11.3	28.8	120.8	-	-	Carrier
Vert.	1842.5	66.2	25.5	4.7	36.2	60.2	100.8	40.6	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

Distance factor: 1 GHz - 6 GHz 20log (3.65 m/3.0 m) = 1.71 dB 6 GHz - 10 GHz 20log (3.65 m/3.0 m) = 1.71 dB

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*}QP detector was used up to 1GHz.

Test Report No. 15511934H-A-R1 Page 26 of 37

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.2 No.2

Date August 27, 2024 August 28, 2024 22 deg. C / 66 % RH 20 deg. C / 67 % RH Temperature / Humidity Engineer Tetsuro Yoshida Tetsuro Yoshida (Above 1 GHz) (Below 1 GHz)

Mode Tx, Hopping Off, 927.50 MHz

Polarity	Frequency	Reading (QP / PK)	Reading (AV)	Ant. Factor	Loss	Gain	Duty Factor	Result (QP / PK)	Result (AV)	Limit (QP/PK)	Limit (AV)	Margin (QP / PK)	Margin (AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	397.5	27.8	-	15.8	9.4	28.5	-	24.5	-	46.0	-	21.5	-	
Hori.	484.1	23.4	-	17.4	9.7	29.0	-	21.5	-	46.0	-	24.5	-	
Hori.	574.4	32.1	-	18.5	10.1	29.3	-	31.4	-	46.0	-	14.6	-	
Hori.	662.9	33.2	-	19.5	10.4	29.3	-	33.8	-	46.0	-	12.2	-	
Hori.	744.8	32.4	-	20.2	10.7	29.2	-	34.1	-	46.0	-	11.9	-	
Hori.	960.0	22.7	-	22.1	11.5	28.7	-	27.6	-	46.0	-	18.4	-	
Hori.	2782.5	52.9	47.3	28.4	5.1	36.1	-	50.3	44.6	73.9	53.9	23.7	9.3	
Hori.	3710.0	50.2	45.2	29.4	6.4	35.8	-	50.2	45.2	73.9	53.9	23.7	8.7	
Hori.	4637.5	49.2	41.7	31.2	6.4	35.6	-	51.2	43.7	73.9	53.9	22.7	10.2	
Hori.	5565.0	46.4	38.0	31.8	6.6	35.5	-	49.3	40.9	73.9	53.9	24.6	13.0	
Hori.	6492.5	43.1	35.0	35.5	6.8	35.5	-	49.9	41.8	73.9	53.9	24.0	12.1	Floor noise
Hori.	7420.0	42.8	35.3	35.5	7.1	35.7	-	49.8	42.2	73.9	53.9	24.1	11.7	Floor noise
Hori.	8347.5	42.9	35.4	35.5	7.4	35.8	-	50.1	42.5	73.9	53.9	23.8	11.4	Floor noise
Hori.	9275.0	43.9	35.0	35.4	7.8	36.0	-	51.1	42.3	73.9	53.9	22.8	11.7	Floor noise
Vert.	397.5	27.2	-	15.8	9.4	28.5	-	23.9	-	46.0	-	22.1	-	
Vert.	484.1	22.6	-	17.4	9.7	29.0	-	20.7	-	46.0	-	25.3	-	
Vert.	574.4	33.6	-	18.5	10.1	29.3	-	32.9	-	46.0	-	13.1	-	
Vert.	662.9	31.0	-	19.5	10.4	29.3	-	31.6	-	46.0	-	14.4	-	
Vert.	744.8	29.1	-	20.2	10.7	29.2	-	30.8	-	46.0	-	15.2	-	
Vert.	960.0	22.1	-	22.1	11.5	28.7	-	27.0	-	46.0	-	19.0	-	
Vert.	2782.5	53.5	49.0	28.4	5.1	36.1	-	50.8	46.4	73.9	53.9	23.1	7.5	
Vert.	3710.0	47.7	41.7	29.4	6.4	35.8	-	47.7	41.7	73.9	53.9	26.2	12.2	
Vert.	4637.5	47.5	40.6	31.2	6.4	35.6	-	49.5	42.5	73.9	53.9	24.5	11.4	
Vert.	5565.0	45.6	37.0	31.8	6.6	35.5	-	48.6	40.0	73.9	53.9	25.3	13.9	
Vert.	6492.5	45.1	36.2	35.5	6.8	35.5	-	51.9	43.0	73.9	53.9	22.0	11.0	
Vert.	7420.0	43.2	35.5	35.5	7.1	35.7	-	50.2	42.5	73.9	53.9	23.7	11.4	Floor noise
Vert.	8347.5	43.0	35.5	35.5	7.4	35.8	-	50.1	42.7	73.9	53.9	23.8	11.2	Floor noise
Vert.	9275.0	44.2	35.2	35.4	7.8	36.0	-	51.5	42.4	73.9	53.9	22.5	11.5	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

20dBc Data Sheet

Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	927.5	117.8	22.1	11.3	28.8	122.5	-	-	Carrier
Hori.	928.0	57.9	22.1	11.3	28.8	62.5	102.5	39.9	
Hori.	1855.0	64.9	25.5	4.7	36.2	59.0	102.5	43.5	
Vert.	927.5	115.2	22.1	11.3	28.8	119.9	-	-	Carrier
Vert.	928.0	57.2	22.1	11.3	28.8	61.8	99.9	38.1	
Vert.	1855.0	67.4	25.5	4.7	36.2	61.5	99.9	38.4	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

Distance factor: 1 GHz - 6 GHz 20log (3.65 m / 3.0 m) = 1.71 dB

20log (3.65 m / 3.0 m) = 1.71 dB 6 GHz - 10 GHz

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*}QP detector was used up to 1GHz.

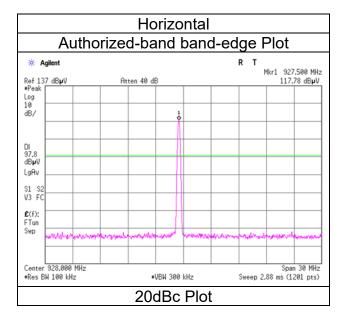
Test Report No. 15511934H-A-R1 Page 27 of 37

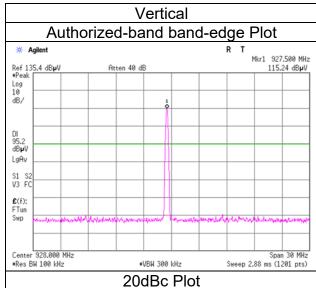
Radiated Spurious Emission (Reference Plot for band-edge)

Test place Semi Anechoic Chamber

Date

Temperature / Humidity


Engineer


Mode

lse EMC Lab. No.2

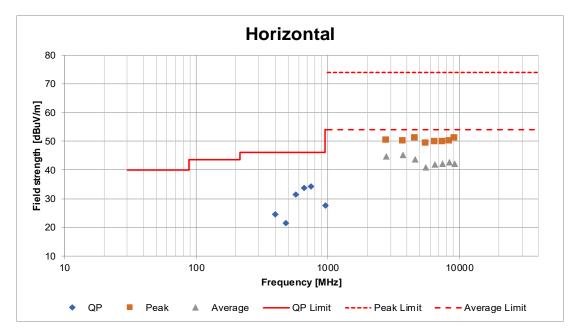
August 27, 2024 22 deg. C / 66 % RH Tetsuro Yoshida (Above 1 GHz)

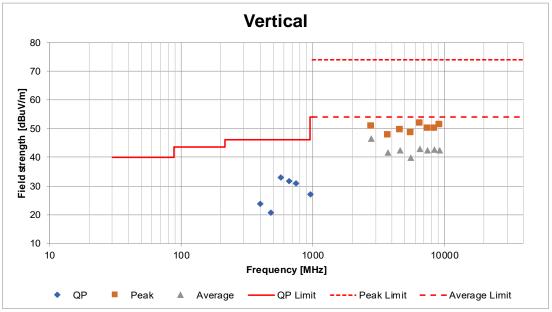
Tx, Hopping Off, 927.50 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions

Final result of restricted band edge was shown in tabular data.

Test Report No. 15511934H-A-R1 Page 28 of 37


Radiated Spurious Emission (Plot data, Worst case mode for Maximum Peak Output Power)

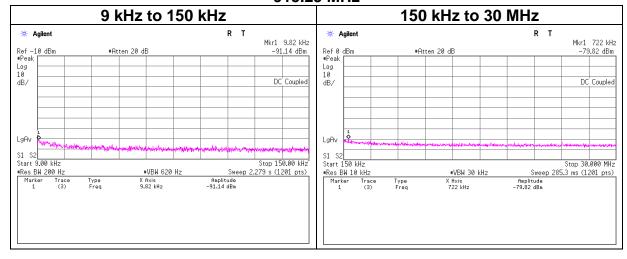

Test place Ise EMC Lab.

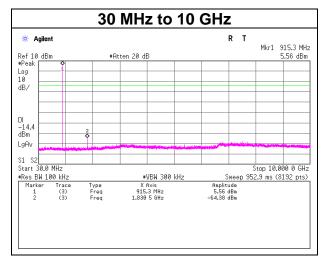
Semi Anechoic Chamber No.2 No.2

Date August 27, 2024 August 28, 2024
Temperature / Humidity 22 deg. C / 66 % RH 20 deg. C / 67 % RH
Engineer Tetsuro Yoshida (Above 1 GHz) (Below 1 GHz)

Mode Tx, Hopping Off, 927.50 MHz

^{*}These plots data contain sufficient number to show the trend of characteristic features for EUT.

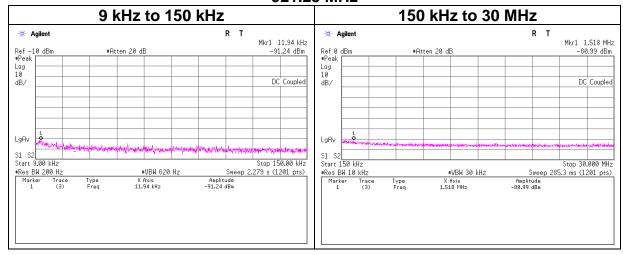

Test Report No. 15511934H-A-R1 Page 29 of 37

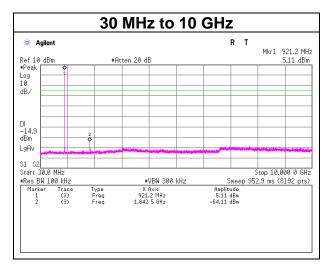

Conducted Spurious Emission

Test place Ise EMC Lab. No.8 Measurement Room

Date April 18, 2024
Temperature / Humidity 24 deg. C / 38 % RH
Engineer Junya Okuno
Mode Tx, Hopping Off

915.25 MHz

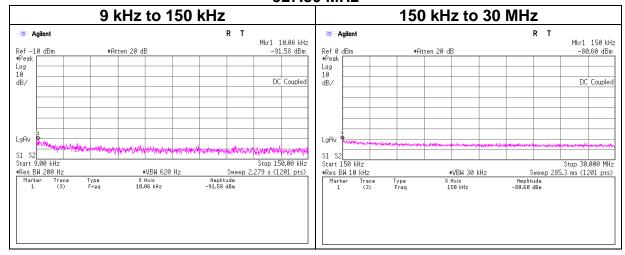

Test Report No. 15511934H-A-R1 Page 30 of 37

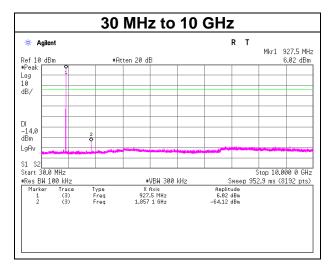

Conducted Spurious Emission

Test place Ise EMC Lab. No.8 Measurement Room

Date April 18, 2024
Temperature / Humidity 24 deg. C / 38 % RH
Engineer Junya Okuno
Mode Tx, Hopping Off

921.25 MHz


Test Report No. 15511934H-A-R1 Page 31 of 37


Conducted Spurious Emission

Test place Ise EMC Lab. No.8 Measurement Room

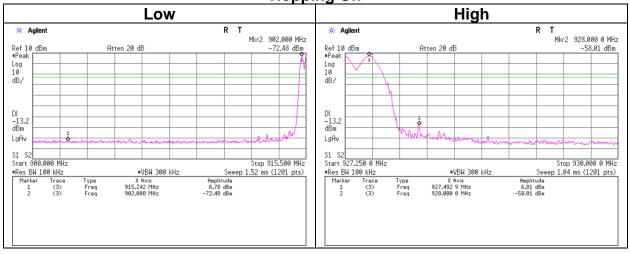
Date April 18, 2024
Temperature / Humidity 24 deg. C / 38 % RH
Engineer Junya Okuno
Mode Tx, Hopping Off

927.50 MHz

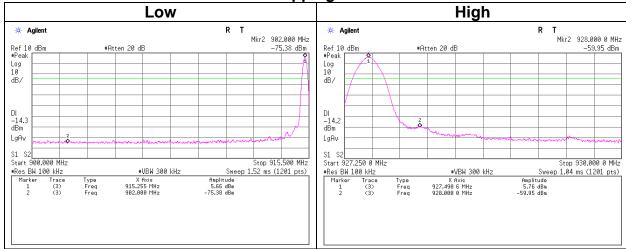
Test Report No. 15511934H-A-R1 Page 32 of 37

Conducted Emission Band Edge compliance

Test place Ise EMC Lab.


Measurement Room No.8 No.6

Date April 18, 2024 April 24, 2024 Temperature / Humidity Engineer April 24, 2024 21 deg. C / 60 % RH Junya Okuno Junya Okuno


(Hopping Off) (Hopping On)

Mode Tx, Hopping Off, Tx, Hopping On

Hopping On

Hopping Off

Test Report No. 15511934H-A-R1 Page 33 of 37

APPENDIX 2: Test Instruments

Test Equipment

<u>Test</u>	Equipn	nent					
Test Item	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal
AT	141171	Attenuator(20dB)_DC- 1GHz_N	Weinschel Corp	MODEL 1	BG0143	12/06/2023	12
AT	141227	Microwave Cable	Junkosha	MMX221- 00500DMSDMS	1502S305	03/04/2024	12
ΑT	141311	Attenuator	Weinschel Associates	WA1-20-33	100131	04/03/2024	12
ΑT	141557	DIGIITAL HITESTER	HIOKI E.E. CORPORATION	3805	070900530	01/31/2024	12
AT	141810	Power Meter	Anritsu Corporation	ML2495A	824014	12/12/2023	12
AT	141832	Power sensor	Anritsu Corporation	MA2411B	738174	12/12/2023	12
AT	141900	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46185823	06/16/2023 *1)	12
AT	141901	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY48250080	01/26/2024	12
AT	195231	Microwave Cable	Huber+Suhner	SF102D/11PC24/ 11PC24/1000mm	537062/126E	02/13/2024	12
ΑT	244711	Thermo-Hygrometer	HIOKI E.E. CORPORATION	LR5001	231202105	01/25/2024	12
AT	244712	Thermo-Hygrometer	HIOKI E.E. CORPORATION	LR5001	231202106	01/25/2024	12
AT	141805	Power Meter	Anritsu Corporation	ML2495A	6K00003338	08/22/2024	12
AT	141840	Power sensor	Anritsu Corporation	MA2411B	011737	08/22/2024	12
AT	141244	Attenuator(10dB)	Weinschel - API Technologies Corp	WA8-10-34	A198	02/17/2024	12
RE	141265	Logperiodic Antenna (200-1000MHz)	Schwarzbeck Mess- Elektronik OHG	VUSLP9111B	9111B-190	07/10/2024	12
RE	141279	Microwave Cable	Junkosha	MMX221- 00500DMSDMS	1502S303	03/04/2024	12
RE	141317	Coaxial Cable	UL Japan	-	-	09/12/2023	12
RE	141393	Microwave Cable	Junkosha	MWX221	1604S254(1 m) / 1608S088(5 m)	07/06/2024	12
RE	141402	High pass Filter 1.4-5.0GHz	Mini-Circuits	VHF-1320	10411	07/04/2024	12
RE	141404	High Pass Filter 3.5-24GHz	TOKIMEC	TF323DCA	601	05/23/2024	12
RE	141427	Biconical Antenna	Schwarzbeck Mess- Elektronik OHG	VHA9103B+BBA9106	08031	07/30/2024	12
RE	141512	Horn Antenna 1-18GHz	Schwarzbeck Mess- Elektronik OHG	BBHA9120D	254	10/17/2023	12
RE	141542	Digital Tester	Fluke Corporation	FLUKE 26-3	78030611	08/06/2024	12
RE	141576	Pre Amplifier	Keysight Technologies Inc	8449B	3008A01671	02/17/2024	12
RE	141594	Pre Amplifier	Keysight Technologies Inc	8447D	2944A10150	02/17/2024	12
RE	141901	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY48250080	01/26/2024	12
RE	141949	Test Receiver	Rohde & Schwarz	ESCI	100767	06/05/2024	12
RE	142004	AC2_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-06902	12/12/2023	24
RE	142006	AC2_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-06902	04/17/2023	24
RE	142228	Measure, Tape, Steel	KOMELON	KMC-36	-	-	-
RE	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	192072	Band Rejection Filter(902-928MHz)	Wakoh Communication Industrial Co., Ltd.	WFR-481	19122541	03/19/2024	12
RE	220646	Attenuator	Huber+Suhner	6806_N-50-1	-	03/12/2024	12
RE	238713	Double Ridge Horn Antenna	Schwarzbeck Mess- Elektronik OHG	BBHA 9120 C	688	08/10/2023 *1)	12
RE	244707	Thermo-Hygrometer	HIOKI E.E. CORPORATION	LR5001	231202102	01/25/2024	12

Test Report No. 15511934H-A-R1 Page 34 of 37

*Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

The expiration*1) This test equipment was used for the tests before the expiration date of the calibration.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

AT: Antenna Terminal Conducted test

RE: Radiated Emission