

RADIO TEST REPORT

Test Report No. 15243440H-A-R1

Customer	Denso Wave Incorporated
Description of EUT	RF Tag Handy Terminal
Model Number of EUT	BHT-1408QUMWB
FCC ID	PZWBHT1408QUM
Test Regulation	FCC Part 15 Subpart C
Test Result	Complied
Issue Date	October 31, 2024
Remarks	Bluetooth (BR / EDR) parts

Representative Test Engineer	Approved By
Kone	Ryata yamanaka
Nachi Konegawa Engineer	Ryota Yamanaka Engineer ACCREDITED
	CERTIFICATE 5107.02
The testing in which "Non-accreditation" is displayed	is outside the accreditation scopes in UL Japan, Inc.
There is no testing item of "Non-accreditation".	

Report Cover Page - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 23.0

Test Report No. 15243440H-A-R1 Page 2 of 48

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested. (Laboratory was not involved in sampling.)
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements.
 It does not cover administrative issues such as Manual or non-Radio test related Requirements.
 (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided by the customer for this report is identified in SECTION 1.
- The laboratory is not responsible for information provided by the customer which can impact the validity of the results.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No.: 15243440H-A

This report is a revised version of 15243440H-A. 15243440H-A is replaced with this report.

Revision	Test Report No.	Date	Page Revised Contents
- (Original)	15243440H-A	July 3, 2024	-
1	15243440H-A-R1	October 31, 2024	Correction of the Frequency of Operation for
			WLAN in Radio Specification of clause 2.2;
			From 2412 MHz to 2472 MHz
			To 2412 MHz to 2462 MHz
1	15243440H-A-R1	October 31, 2024	Correction of the note *1) in Section 3.2.
1	15243440H-A-R1	October 31, 2024	Correction of erroneous description in Figure 1:
			Test Setup (1 GHz to 10 GHz).
1	15243440H-A-R1	October 31, 2024	Addition of "*1)" to the Remarks for 2486.0 MHz
			in Radiated Spurious Emission test data (DH5
			2480 MHz, DH5 2480 MHz)
1	15243440H-A-R1	October 31, 2024	Correction from "6 GHz to 10 GHz" to "6 GHz to
			26.5 GHz" in Radiated Spurious Emission.
1	15243440H-A-R1	October 31, 2024	Addition of the information such as date for
			Below 1 GHz in Radiated Spurious Emission
			(Plot data).

Test Report No. 15243440H-A-R1 Page 3 of 48

Reference: Abbreviations (Including words undescribed in this report)

A2LA	The American Association for Laboratory Accreditation	ICES	Interference-Causing Equipment Standard
AC	Alternating Current	IEC	International Electrotechnical Commission
AFH	Adaptive Frequency Hopping	IEEE	Institute of Electrical and Electronics Engineers
AM	Amplitude Modulation	IF	Intermediate Frequency
Amp, AMP	Amplifier	ILAC	International Laboratory Accreditation Conference
ANSI	American National Standards Institute	ISED	Innovation, Science and Economic Development Canada
Ant, ANT	Antenna	ISO	International Organization for Standardization
AP	Access Point	JAB	Japan Accreditation Board
ASK	Amplitude Shift Keying	LAN	Local Area Network
Atten., ATT	Attenuator	LIMS	Laboratory Information Management System
AV	Average	MCS	Modulation and Coding Scheme
BPSK	Binary Phase-Shift Keying	MRA	Mutual Recognition Arrangement
BR	Bluetooth Basic Rate	N/A	Not Applicable
BT	Bluetooth	NIST	National Institute of Standards and Technology
BT LE	Bluetooth Low Energy	NS	No signal detect.
BW	BandWidth	NSA	Normalized Site Attenuation
Cal Int	Calibration Interval	NVLAP	National Voluntary Laboratory Accreditation Program
CCK	Complementary Code Keying	OBW	Occupied Band Width
Ch., CH	Channel	OFDM	Orthogonal Frequency Division Multiplexing
CISPR	Comite International Special des Perturbations Radioelectriques	P/M	Power meter
CW	Continuous Wave	PCB	Printed Circuit Board
DBPSK	Differential BPSK	PER	Packet Error Rate
DC	Direct Current	PHY	Physical Layer
D-factor	Distance factor	PK	Peak
DFS	Dynamic Frequency Selection	PN	Pseudo random Noise
DQPSK	Differential QPSK	PRBS	Pseudo-Random Bit Sequence
DSSS	Direct Sequence Spread Spectrum	PSD	Power Spectral Density
EDR	Enhanced Data Rate	QAM	Quadrature Amplitude Modulation
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	QP	Quasi-Peak
EMC	ElectroMagnetic Compatibility	QPSK	Quadri-Phase Shift Keying
EMI	ElectroMagnetic Interference	RBW	Resolution Band Width
EN	European Norm	RDS	Radio Data System
ERP, e.r.p.	Effective Radiated Power	RE	Radio Equipment
EU	European Union	RF	Radio Frequency
EUT	Equipment Under Test	RMS	Root Mean Square
Fac.	Factor	RSS	Radio Standards Specifications
FCC	Federal Communications Commission	Rx	Receiving
FHSS	Frequency Hopping Spread Spectrum	SA, S/A	Spectrum Analyzer
FM	Frequency Modulation	SG	Signal Generator
Freq.	Frequency	SVSWR	Site-Voltage Standing Wave Ratio
FSK	Frequency Shift Keying	TR	Test Receiver
GFSK	Gaussian Frequency-Shift Keying	Tx	Transmitting
GNSS	Global Navigation Satellite System	VBW	Video BandWidth
GPS	Global Positioning System	Vert.	Vertical

CONTENTS		PAGE
SECTION 1: Customer Informat	ion	5
	Test (EUT)	
	Procedures & Results	
	during testing	
SECTION 5: Radiated Spurious	Emission	12
	Conducted Tests	
APPENDIX 1: Test data		15
20dB Bandwidth, 99%Occupi	ied Bandwidth and Carrier Frequency Separation	15
Number of Hopping Frequence	cy	19
	•	
	er	
Radiated Spurious Emission.		26
Conducted Spurious Emissio	n	37
Conducted Emission Band E	dge compliance	43
APPENDIX 2: Test Instruments		45
APPENDIX 3: Photographs of to	est setup	46
Radiated Spurious Emission.	•	46
Antenna Terminal Conducted	l Tests	48

Test Report No. 15243440H-A-R1 Page 5 of 48

SECTION 1: Customer Information

Company Name	Denso Wave Incorporated
Address	1 Yoshiike, Kusagi, Agui-cho, Chita-gun, Aichi 470-2297 Japan
Telephone Number	+81-569-49-5284
Contact Person	Shoji Ogiso

The information provided by the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer Information
- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date
- SECTION 4: Operation of EUT during testing

SECTION 2: Equipment Under Test (EUT)

2.1 Identification of EUT

Description	RF Tag Handy Terminal
Model Number	BHT-1408QUMWB
Serial Number	Refer to SECTION 4.2
Condition	Engineering prototype
	(Not for Sale: This sample is equivalent to mass-produced items.)
Modification	No Modification by the test lab
Receipt Date	April 9 and 17, 2024
Test Date	April 10 to 26, 2024

2.2 Product Description

General Specification

Rating	DC 3.7 V
Operating temperature	-20 deg. C to 50 deg. C

Test Report No. 15243440H-A-R1 Page 6 of 48

Radio Specification

This report contains data provided by the customer which can impact the validity of results. UL Japan, Inc. is only responsible for the validity of results after the integration of the data provided by the customer. The data provided by the customer is marked "a)" in the table below.

UHF

Equipment Type	Transceiver
Frequency of Operation	915.25 MHz to 927.50 MHz
Type of Modulation	PR-ASK
Antenna Gain	2.0 dBi

WLAN (IEEE802.11b/11g/11n-20)

	······································	
Equipment Type	Transceiver	
Frequency of Operation	2412 MHz to 2462 MHz	
Type of Modulation	DSSS, OFDM	
Antenna Gain	0.75 dBi	

Bluetooth (BR / EDR / Low Energy)

Equipment Type	Transceiver
Frequency of Operation	2402 MHz to 2480 MHz
Type of Modulation	BR / EDR: GFSK, π/4 DQPSK, 8 DPSK
	Low Energy: GFSK
Antenna Gain ^{a)}	0.75 dBi

^{*} WLAN and Bluetooth do not transmit simultaneously.

Test Report No. 15243440H-A-R1 Page 7 of 48

SECTION 3: Test Specification, Procedures & Results

3.1 Test Specification

Test Specification	FCC Part 15 Subpart C
	The latest version on the first day of the testing period
Title	FCC 47 CFR Part 15 Radio Frequency Device Subpart C Intentional Radiators
	Section 15.207 Conducted limits
	Section 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz,
	and 5725-5850 MHz

^{*} Also the EUT complies with FCC Part 15 Subpart B.

3.2 Procedures and Results

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
Conducted	FCC: ANSI C63.10-2013	FCC: Section 15.207	-	N/A	*1)
Emission	Standard test methods				
	ISED: RSS-Gen 8.8	ISED: RSS-Gen 8.8			
Carrier	FCC: KDB 558074 D01 15.247	FCC: Section15.247(a)(1)	See data.	Complied	Conducted
Frequency	Meas Guidance v05r02			·	
Separation	ISED: -	ISED: RSS-247 5.1 (b)	7		
20dB	FCC: KDB 558074 D01 15.247	FCC: Section15.247(a)(1)		Complied	Conducted
Bandwidth	Meas Guidance v05r02			·	
	ISED: -	ISED: RSS-247 5.1 (a)			
Number of	FCC: KDB 558074 D01 15.247	FCC:		Complied	Conducted
Hopping	Meas Guidance v05r02	Section15.247(a)(1)(iii)			
Frequency	ISED: -	ISED: RSS-247 5.1 (d)			
Dwell time	FCC: KDB 558074 D01 15.247	FCC:		Complied	Conducted
	Meas Guidance v05r02	Section15.247(a)(1)(iii)		·	
	ISED: -	ISED: RSS-247 5.1 (d)			
Maximum	FCC: KDB 558074 D01 15.247	FCC: Section15.247(b)(1)		Complied	Conducted
Peak	Meas Guidance v05r02			·	
Output Power	ISED: RSS-Gen 6.12	ISED: RSS-247 5.4 (b)			
Spurious	FCC: KDB 558074 D01 15.247	FCC: Section15.247(d)	8.1 dB	Complied	Conducted/
Emission &	Meas Guidance v05r02	<u> </u>	4882.0 MHz,	·	Radiated
Band Edge	ISED: RSS-Gen 6.13	ISED: RSS-247 5.5	Horizontal, AV		(above 30 MHz)
Compliance		RSS-Gen 8.9			*2)
		RSS-Gen 8.10			

Note: UL Japan, Inc.'s EMI Work Procedures: Work Instructions-ULID-003591 and Work Instructions-ULID-003593. * In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

FCC Part 15.31 (e)

The EUT is a battery-operated device and test was performed with the full-charged battery. Therefore, this EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

3.3 Addition to Standard

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
99% Occupied	ISED: RSS-Gen 6.7	ISED: -	N/A	-	Conducted
Bandwidth					

Other than above, no addition, exclusion nor deviation has been made from the standard.

^{*1)} The test is not applicable since the battery is charged using a dedicated charger and is not charged via AC power from the main unit.

^{*2)} Radiated test was selected over 30 MHz based on section 15.247(d).

Test Report No. 15243440H-A-R1 Page 8 of 48

3.4 Uncertainty

Measurement uncertainty is not taken into account when stating conformity with a specified requirement. Note: When margins obtained from test results are less than the measurement uncertainty, the test results may exceed the limit.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

Conducted emission

Item	Frequency range		Calculated Uncertainty (+/-)
AMN (LISN)	0.15 MHz to 30 MHz	dB	3.3

Radiated emission

Measurement distance	Frequency range		Unit	Calculated Uncertainty (+/-)
3 m	9 kHz to 30 MHz	9 kHz to 30 MHz		3.3
10 m			dB	3.1
3 m	30 MHz to 200 MHz	30 MHz to 200 MHz Horizontal		4.7
		Vertical	dB	4.7
	200 MHz to 1000 MHz	Horizontal	dB	4.8
		Vertical	dB	6.0
10 m	30 MHz to 200 MHz	Horizontal	dB	5.2
		Vertical	dB	5.1
	200 MHz to 1000 MHz	Horizontal	dB	5.2
		Vertical	dB	5.2
3 m	1 GHz to 6 GHz		dB	5.0
	6 GHz to 18 GHz	dB	5.2	
1 m	10 GHz to 18 GHz	dB	5.3	
	18 GHz to 26.5 GHz		dB	5.2
	26.5 GHz to 40 GHz			
0.5 m	26.5 GHz to 40 GHz		dB	4.8

Antenna Terminal Conducted

Item	Unit	Calculated
		Uncertainty (+/-)
Antenna terminated conducted emission / Power density / Burst power	dB	3.47
Adjacent channel power (ACP)	dB	2.28
Bandwidth (OBW)	%	0.96
Time readout (time span upto 100 msec)	%	0.11
Time readout (time span upto 1000 msec)	%	0.11
Time readout (time span upto 60 sec)	%	0.02
Power measurement (Power meter < 8 GHz)	dB	1.46
Power measurement (Call box < 6 GHz)	dB	1.69
Frequency readout (Frequency counter)	ppm	0.67
Frequency readout (Spectrum analyzer frequency readout function)	ppm	2.13
Temperature (constant temperature bath)	deg. C	0.69
Humidity (constant temperature bath)	%RH	2.98
Modulation characteristics	%	6.93
Frequency for mobile	ppm	0.08
Contention-based protocol	dB	2.26

Test Report No. 15243440H-A-R1 Page 9 of 48

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 Japan

Telephone: +81-596-24-8999

A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919

ISED Lab Company Number: 2973C / CAB identifier: JP0002

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measurement distance
No.1 semi-anechoic	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power	10 m
chamber			source room	
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.10 shielded room	3.8 x 2.8 x 2.8	3.8 x 2.8	-	-
No.11 measurement room	4.0 x 3.4 x 2.5	N/A	-	-
No.12 measurement room	2.6 x 3.4 x 2.5	N/A	-	-
Large Chamber	16.9 x 22.1 x 10.17	16.9 x 22.1	-	10 m
Small Chamber	5.3 x 6.69 x 3.59	5.3 x 6.69	-	-

^{*} Size of vertical conducting plane (for Conducted Emission test): 2.0 x 2.0 m for No.1, No.2, No.3, No.4, and No.5 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test Data, Test Instruments, and Test Set Up

Refer to APPENDIX.

Test Report No. 15243440H-A-R1 Page 10 of 48

SECTION 4: Operation of EUT during testing

4.1 Operating Mode(s)

Mode	Remarks*
Bluetooth (BT)	BR / EDR, Payload: PRBS9
*EUT has the power s	settings by the software as follows;
Power Setting:	DH5: 3.10 dBm / 3DH5: 2.70 dBm
Software:	QRCT Version: 3.0.156.0
	(Date: 2015.10.19, Storage location: Driven by connected PC)
*This setting of software Any conditions under	are is the worst case. the normal use do not exceed the condition of setting.
	cannot change the settings of the output power of the product.

Details of Operating Mode(s)

Test Item	Mode	Hopping	Tested Frequency
Conducted Emission, Radiated Spurious Emission (Below 1 GHz)	Tx DH5 *1)	Off	2480 MHz
Radiated Spurious Emission (Above 1 GHz), Conducted Spurious Emission	Tx DH5 Tx 3DH5	Off	2402 MHz 2441 MHz 2480 MHz
20dB Bandwidth, Carrier Frequency Separation	Tx DH5 Tx 3DH5	On	2402 MHz 2441 MHz 2480 MHz
Number of Hopping Frequency	Tx DH5 Tx 3DH5	On	-
Dwell time	Tx DH1, DH3, DH5 Tx 3DH1, 3DH3, 3DH5	On	-
Maximum Peak Output Power	Tx DH5 Tx 2DH5 Tx 3DH5	Off	2402 MHz 2441 MHz 2480 MHz
Band Edge Compliance (Conducted)	Tx DH5 Tx 3DH5	On Off	2402 MHz 2480 MHz
99% Occupied Bandwidth	Tx DH5 Tx 3DH5	On Off	2402 MHz - 2441 MHz 2480 MHz

^{*}As a result of preliminary test, the formal test was performed with the above modes, which had the maximum payload length (except Dwell time test)

^{*2}DH mode (2Mb/s EDR: pi/4DQPSK) was excluded for other tests than power measurement by using 3DH mode (3 Mb/s EDR: 8DPSK) as a representative.

^{*}It is considered that the non-tested packet type (e.g. inquiry) can be omitted as it is complied with above all the test items based on Bluetooth Core specification.

^{*1)} Conducted emissions and Spurious emissions for frequencies below 1 GHz were limited to the channel that had the highest power during the antenna terminal test, as preliminary testing indicated that changing the operating frequency had no significant impact on the emissions in those frequency bands.

Test Report No. 15243440H-A-R1 Page 11 of 48

4.2 Configuration and Peripherals

* Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Description of EUT

No.	Item	Model number	Serial Number	Manufacturer	Remarks
Α	RF Tag Handy	BHT-1408QUMWB	4969005020300824 *1)	Denso Wave	EUT
	Terminal		4969005020300820 *2)	Incorporated	

^{*1)} Used for Radiated Emission test

^{*2)} Used for Antenna Terminal Conducted test

Test Report No. 15243440H-A-R1 Page 12 of 48

SECTION 5: Radiated Spurious Emission

Test Procedure

[For below 1 GHz]

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane. Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The height of the measuring antenna varied between 1 m and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

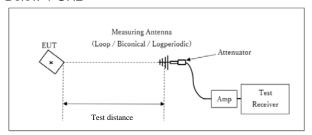
The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Test Antennas are used as below;

Frequency	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Biconical	Logperiodic	Horn

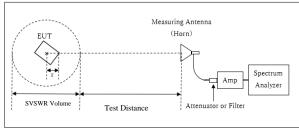
In any 100 kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.


20 dBc was applied to the frequency over the limit of FCC 15.209 / Table 4 of RSS-Gen 8.9 (ISED) and outside the restricted band of FCC15.205 / Table 6 of RSS-Gen 8.10 (ISED).

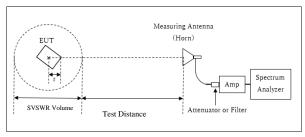
Frequency	Below 1 GHz	Above 1 GHz		20 dBc
Instrument used	Test Receiver	Spectrum Analyze	r	Spectrum Analyzer
Detector	QP	PK	AV	PK
IF Bandwidth	BW 120 kHz	RBW: 1 MHz	RBW: 1 MHz	RBW: 100 kHz
		VBW: 3 MHz	VBW: 3 MHz	VBW: 300 kHz
			Detector:	
			Power Averaging	
			(RMS)	
			Trace: 100 traces	
			Duty factor was added	
			the results.	

Test Report No. 15243440H-A-R1 Page 13 of 48

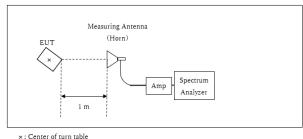
Figure 1: Test Setup


Below 1 GHz

Test Distance: 3 m


× : Center of turn table

1 GHz to 6 GHz


- r : Radius of an outer periphery of EUT
- ×: Center of turn table

6 GHz to 10 GHz

- r : Radius of an outer periphery of EUT
- ×: Center of turn table

10 GHz to 26.5 GHz

Distance Factor: 20 x log (3.9 m * / 3.0 m) = 2.28 dB * (Test Distance + SVSWR Volume /2) - r = 3.9 m

Test Distance: 3.0 m SVSWR Volume : 2.0 m

(SVSWR Volume has been calibrated based on

CISPR 16-1-4.) r = 0.1 m

Distance Factor: 20 x log (4.9 m * / 3.0 m) = 4.27 dB * (Test Distance + SVSWR Volume /2) - r = 4.9 m

Test Distance: 4.3 m SVSWR Volume : 1.4 m

(SVSWR Volume has been calibrated based on

CISPR 16-1-4.) r = 0.1 m

Distance Factor: $20 \times \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

*Test Distance: 1 m

The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

Test results are rounded off and limit are rounded down, so some differences might be observed.

Measurement Range : 30 MHz to 26.5 GHz

Test Data : APPENDIX
Test Result : Pass

Test Report No. 15243440H-A-R1 Page 14 of 48

SECTION 6: Antenna Terminal Conducted Tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep time	Detector	Trace	Instrument Used
20dB Bandwidth	3 MHz	30 kHz	100 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99% Occupied Bandwidth *1)	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer
Maximum Peak Output Power	-	-	-	Auto	Peak/ Average *2)	-	Power Meter (Sensor: 50MHz BW)
Carrier Frequency Separation	3 MHz	30 kHz	100 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
Number of Hopping Frequency	30 MHz	200 kHz	620 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
Dwell Time	Zero Span	100 kHz, 1 MHz	300 kHz, 3 MHz	As necessary capture the entire dwell time per hopping channel	Peak	Clear Write	Spectrum Analyzer
Conducted	9 kHz to 150 kHz	200 Hz	620 Hz	Auto	Peak	Max Hold	Spectrum Analyzer
Spurious	150 kHz to 30 MHz	10 kHz	30 kHz				
Emission *3) *4)	30 MHz to 25 GHz	100 kHz	300 kHz				
Conducted Spurious Emission Band Edge compliance	10 MHz	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer

^{*1)} Peak hold was applied as Worst-case measurement.

Test results are rounded off and limit are rounded down, so some differences might be observed. The equipment and cables were not used for factor 0 dB of the data sheets.

Test Data : APPENDIX
Test Result : Pass

^{*2)} Reference data

^{*3)} In the frequency range below 30MHz, RBW was narrowed to separate the noise contents.

Then, wide-band noise near the limit was checked separately, however the noise was not detected as shown in the chart.

(9 kHz -150 kHz: RBW = 200 Hz, 150 kHz - 30 MHz: RBW = 10 kHz)

^{&#}x27;4) The limits in CFR 47, Part 15, Subpart C, paragraph 15.209(a), are identical to those in RSS-Gen section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377 Ohmes. For example, the measurement at frequency 9 kHz resulted in a level of 45.5 dBuV/m, which is equivalent to 45.5 – 51.5 = -6.0 dBuA/m, which has the same margin, 3 dB, to the corresponding RSS-Gen Table 6 limit as it has to 15.209(a) limit.

Test Report No. 15243440H-A-R1 Page 15 of 48

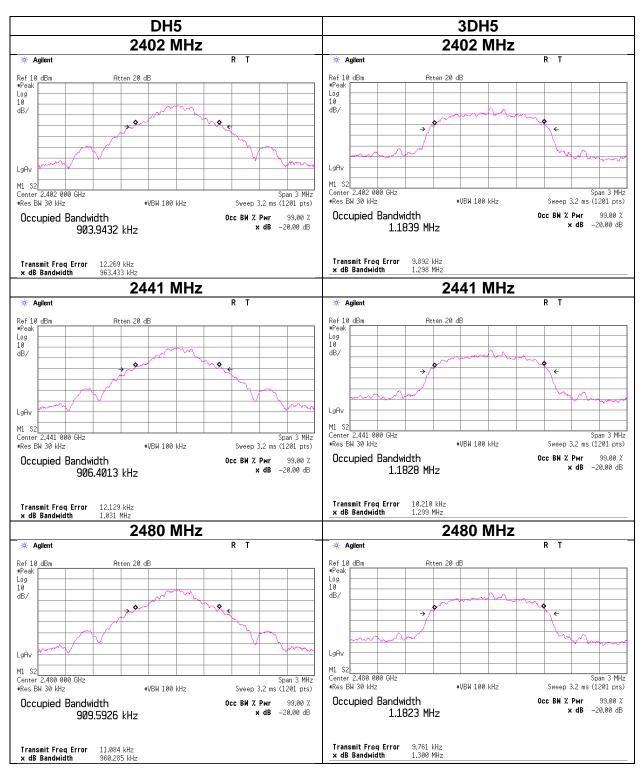
APPENDIX 1: Test data

20dB Bandwidth, 99%Occupied Bandwidth and Carrier Frequency Separation

Test place Ise EMC Lab. No.4 Preparation Room

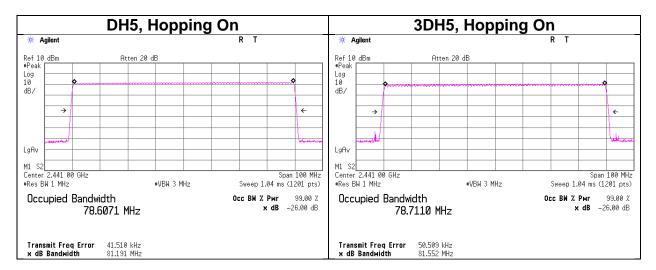
Date April 11, 2024
Temperature / Humidity 21 deg. C / 48 % RH
Engineer Nachi Konegawa

Mode Tx, Hopping Off, Tx, Hopping On

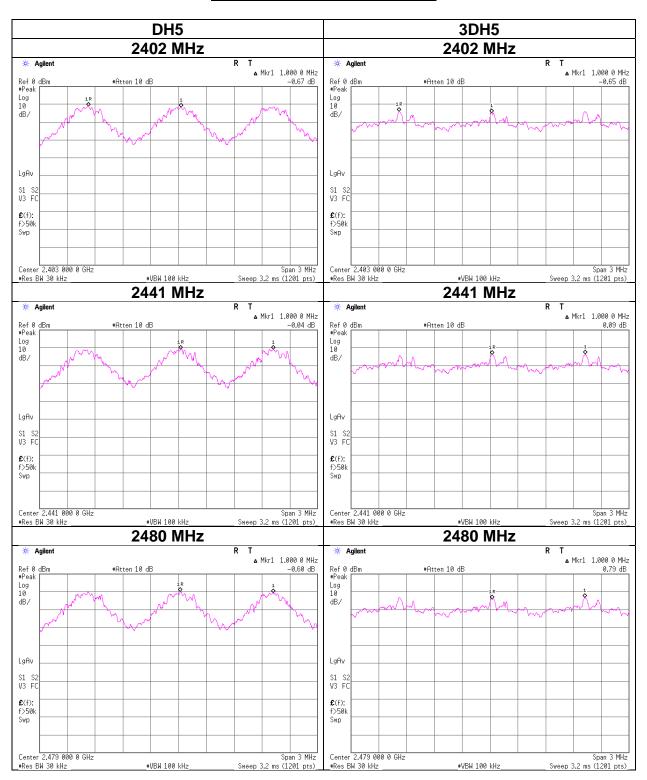

Mode	Freq.	20 dB Bandwidth	99 % Occupied	Carrier Frequency	Limit for Carrier
			Bandwidth	Separation	Frequency separation
	[MHz]	[MHz]	[kHz]	[MHz]	[MHz]
DH5	2402.0	0.963	903.943	1.000	>= 0.642
DH5	2441.0	1.031	906.401	1.000	>= 0.687
DH5	2480.0	0.960	909.593	1.000	>= 0.640
DH5	Hopping On	-	78607.100	-	-
3DH5	2402.0	1.298	1183.896	1.000	>= 0.865
3DH5	2441.0	1.299	1182.791	1.000	>= 0.866
3DH5	2480.0	1.300	1182.333	1.000	>= 0.867
3DH5	Hopping On	-	78711.000	-	-

Limit: Two-thirds of 20 dB Bandwidth or 25 kHz (whichever is greater).

No limit applies to 20 dB Bandwidth.


Test Report No. 15243440H-A-R1 Page 16 of 48

20dB Bandwidth and 99% Occupied Bandwidth

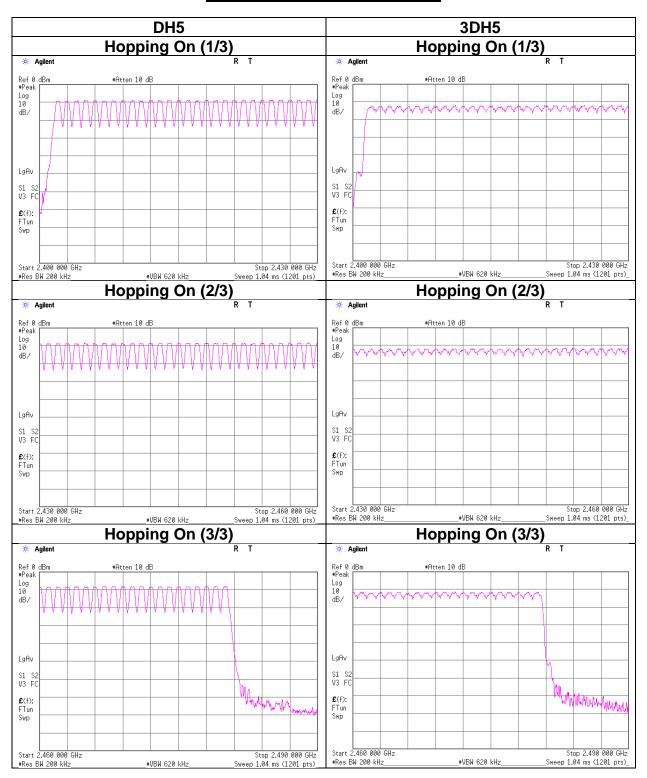


Test Report No. 15243440H-A-R1 Page 17 of 48

20dB Bandwidth and 99% Occupied Bandwidth

Carrier Frequency Separation

Test Report No. 15243440H-A-R1 Page 19 of 48


Number of Hopping Frequency

Test place Date Temperature / Humidity Engineer Mode Ise EMC Lab. No.4 Preparation Room April 11, 2024 21 deg. C / 48 % RH Nachi Konegawa Tx, Hopping On

Mode	Number of channel	Limit
	[channels]	[channels]
DH5	79	>= 15
3DH5	79	>= 15

Test was not performed at AFH mode whose number of hopping channel is 20 channels because this Bluetooth radio is in compliance of Bluetooth Specification.

Number of Hopping Frequency

Test Report No. 15243440H-A-R1 Page 21 of 48

Dwell time

Test place Ise EMC Lab. No.4 Preparation Room

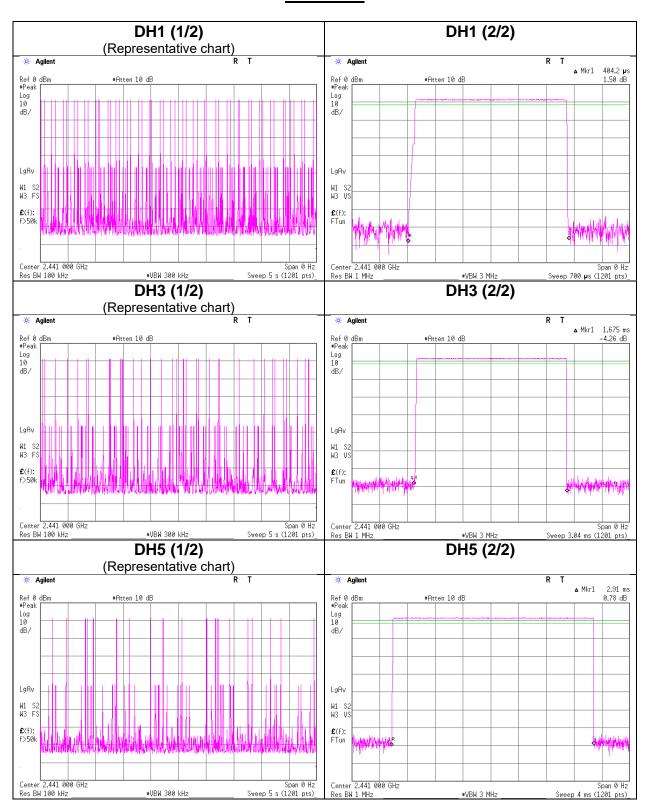
Date April 11, 2024
Temperature / Humidity 21 deg. C / 48 % RH
Engineer Nachi Konegawa
Mode Tx, Hopping On

Mode				nsmission pping x 0.4	4)		Length of transmission	Result	Limit
				0.4) secon		iod	[ms]	[ms]	[ms]
DH1	51.4 times /	5 s	Х	31.6 s	325 times	0.404	131	400	
DH3	29.8 times /	5 s	Х	31.6 s	189 times	1.675	316	400	
DH5	20.6 times /	5 s	Х	31.6 s	=	131 times	2.910	381	400
3DH1	49.4 times /	5 s	Х	31.6 s	=	313 times	0.412	129	400
3DH3	27.6 times /	5 s	Х	31.6 s	175 times	1.667	292	400	
3DH5	20.0 times /	5 s	Х	31.6 s	127 times	2.920	371	400	

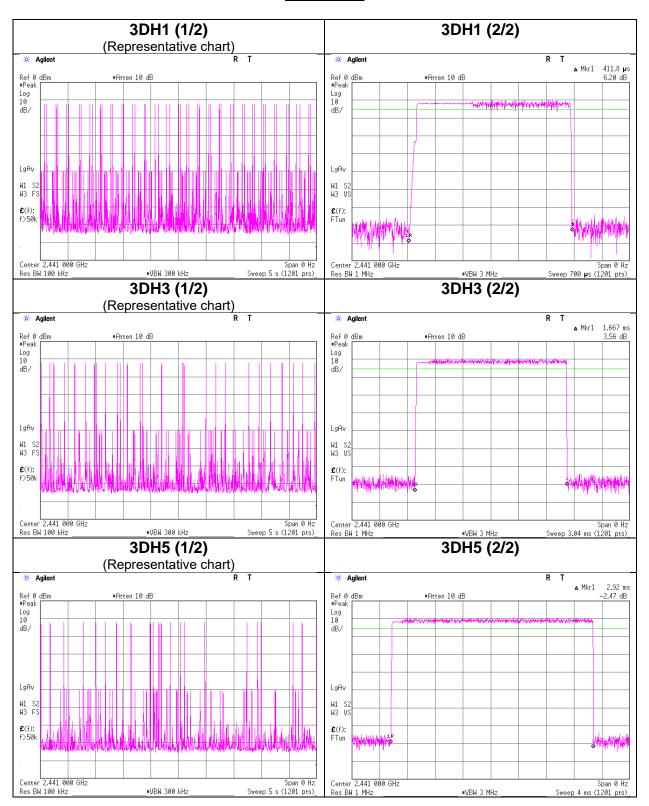
Sample Calculation

Result = Number of transmission x Length of transmission

*Average data of 5 tests.(except Inquiry)


7 Wordgo date	01 0 10010.(0000					
Mode		5	Sampling [times]			Average
	1	2	3	4	5	[times]
DH1	52	50	53	50	52	51.4
DH3	34	29	29	32	25	29.8
DH5	19	24	23	19	18	20.6
3DH1	50	50	49	50	48	49.4
3DH3	27	28	31	25	27	27.6
3DH5	22	19	22	18	19	20

Sample Calculation


Average = Summation (Sampling 1 to 5) / 5

This device complies with the Bluetooth protocol for FHSS operation, employing a pseudo random channel selection and hopping rate to ensure that the occupancy time in N x 0.4 s, where N is the number of channels being used in the hopping sequence ($20 \le N \le 79$), is always less than 0.4 s regardless of packet size. This is confirmed in the test report for N = 79.

Dwell time

Dwell time

Test Report No. 15243440H-A-R1 Page 24 of 48

Maximum Peak Output Power

Test place Ise EMC Lab. No.8 Measurement Room

Date April 10, 2024
Temperature / Humidity 20 deg. C / 45 % RH
Engineer Nachi Konegawa
Mode Tx, Hopping Off

						Cond	ducted P	ower			e.i	.r.p. for l	RSS-247	,	
Mode	Freq.	Reading	Cable	Atten.	Re	sult	Lir	nit	Margin	Antenna	Re	sult	Lir	nit	Margin
			Loss	Loss						Gain					
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]
DH5	2402.0	-9.03	0.89	9.75	1.61	1.45	20.96	125	19.35	0.75	2.36	1.72	36.02	4000	33.66
DH5	2441.0	-8.42	0.89	9.76	2.23	1.67	20.96	125	18.73	0.75	2.98	1.99	36.02	4000	33.04
DH5	2480.0	-8.13	0.90	9.76	2.53	1.79	20.96	125	18.43	0.75	3.28	2.13	36.02	4000	32.74
2DH5	2402.0	-10.16	0.89	9.75	0.48	1.12	20.96	125	20.48	0.75	1.23	1.33	36.02	4000	34.79
2DH5	2441.0	-9.53	0.89	9.76	1.12	1.29	20.96	125	19.84	0.75	1.87	1.54	36.02	4000	34.15
2DH5	2480.0	-9.20	0.90	9.76	1.46	1.40	20.96	125	19.50	0.75	2.21	1.66	36.02	4000	33.81
3DH5	2402.0	-9.67	0.89	9.75	0.97	1.25	20.96	125	19.99	0.75	1.72	1.49	36.02	4000	34.30
3DH5	2441.0	-9.03	0.89	9.76	1.62	1.45	20.96	125	19.34	0.75	2.37	1.73	36.02	4000	33.65
3DH5	2480.0	-8.76	0.90	9.76	1.90	1.55	20.96	125	19.06	0.75	2.65	1.84	36.02	4000	33.37

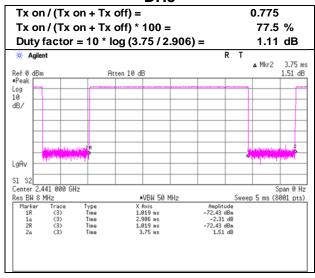
Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss e.i.r.p. Result = Conducted Power Result + Antenna Gain

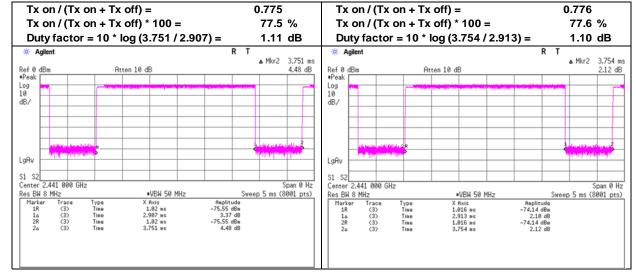
Test was not performed at AFH mode, because the decrease of number of channel (min: 20 ch) at AFH mode does not influence on the output power and bandwidth of the EUT.

As this device had AFH mode and frequency separation could not meet the requirement of over 20 dB BW without 2/3 relaxation, 125 mW power limit was applied to it.

Test Report No. 15243440H-A-R1 Page 25 of 48


Burst Rate Confirmation

Test place Ise EMC Lab. No.4 Preparation Room
Date April 11, 2024
Temperature / Humidity 21 deg. C / 48 % RH
Engineer Nachi Konegawa


Tx, Hopping Off

DH₅

Mode

2DH5 3DH5

Test Report No. 15243440H-A-R1 Page 26 of 48

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.4 No.4

Date April 24, 2024 April 26, 2024 21 deg. C / 60 % RH 21 deg. C / 45 % RH Temperature / Humidity

Engineer Yuichiro Yamazaki Ken Fujita

(1 GHz to 6 GHz) (6 GHz to 26.5 GHz)

Mode Tx, Hopping Off, DH5 2402 MHz

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP/PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2390.0	41.7	33.4	27.8	5.3	31.8	1.1	43.1	35.9	73.9	53.9	30.8	18.0	*1)
Hori.	4804.0	40.9	34.4	31.3	7.5	30.9	1.1	48.8	43.5	73.9	53.9	25.1	10.4	
Hori.	7206.0	41.8	34.0	35.6	8.0	33.4	-	52.0	44.2	73.9	53.9	21.9	9.7	Floor noise
Hori.	9608.0	41.4	33.2	35.7	8.6	34.0	-	51.6	43.4	73.9	53.9	22.3	10.5	Floor noise
Vert.	2390.0	42.0	33.5	27.8	5.3	31.8	1.1	43.4	36.0	73.9	53.9	30.6	17.9	*1)
Vert.	4804.0	42.4	34.5	31.3	7.5	30.9	1.1	50.3	43.6	73.9	53.9	23.6	10.3	
Vert.	7206.0	42.0	34.0	35.6	8.0	33.4	-	52.2	44.2	73.9	53.9	21.7	9.7	Floor noise
Vert.	9608.0	41.8	33.2	35.7	8.6	34.0	-	52.0	43.4	73.9	53.9	21.9	10.5	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)
Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

20dBc Data Sheet

Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2402.0	93.5	27.8	5.3	31.8	94.9	-	-	Carrier
Hori.	2400.0	37.8	27.8	5.3	31.8	39.1	74.9	35.8	
Vert.	2402.0	94.5	27.8	5.3	31.8	95.8	-	-	Carrier
Vert.	2400.0	39.0	27.8	5.3	31.8	40.4	75.8	35.5	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

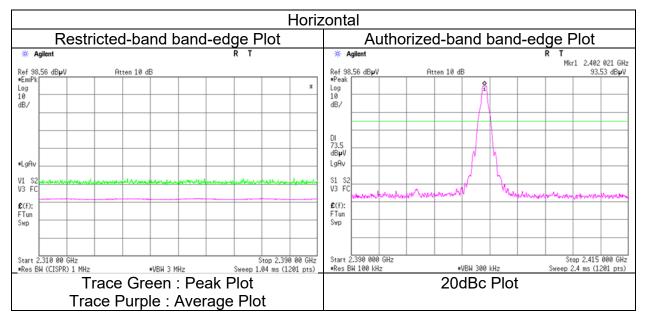
Distance factor: 1 GHz - 6 GHz 20log (3.9 m / 3.0 m) = 2.28 dB 6 GHz - 10 GHz 20log (4.9 m / 3.0 m) = 4.27 dB

10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*}QP detector was used up to 1GHz.
*1) Not Out of Band emission(Leakage Power)

^{*}These results have sufficient margin without taking account Duty cycle correction factor.


Test Report No. 15243440H-A-R1 Page 27 of 48


Radiated Spurious Emission (Reference Plot for band-edge)

Test place Ise EMC Lab. Semi Anechoic Chamber No.4

Date April 24, 2024
Temperature / Humidity 21 deg. C / 60 % RH
Engineer Yuichiro Yamazaki
(1 GHz to 6 GHz)

Mode Tx, Hopping Off, DH5 2402 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge and authorized band edge were shown in tabular data.

Test Report No. 15243440H-A-R1 Page 28 of 48

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.4 No.4

April 26, 2024 21 deg. C / 45 % RH Date April 24, 2024 Temperature / Humidity 21 deg. C / 60 % RH

Yuichiro Yamazaki Ken Fujita Engineer

(1 GHz to 6 GHz) (6 GHz to 26.5 GHz)

Mode Tx, Hopping Off, DH5 2441 MHz

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP/PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	4882.0	43.7	36.7	31.4	7.5	30.8	1.1	51.8	45.8	73.9	53.9	22.1	8.1	
Hori.	7323.0	41.7	34.0	35.6	8.0	33.5	-	51.8	44.2	73.9	53.9	22.1	9.7	Floor noise
Hori.	9764.0	41.4	33.5	36.0	8.6	34.1	-	52.0	44.1	73.9	53.9	21.9	9.8	Floor noise
Vert.	4882.0	42.6	35.1	31.4	7.5	30.8	1.1	50.6	44.2	73.9	53.9	23.3	9.7	
Vert.	7323.0	41.6	34.0	35.6	8.0	33.5	-	51.8	44.2	73.9	53.9	22.1	9.7	Floor noise
Vert.	9764.0	40.6	33.5	36.0	8.6	34.1	-	51.2	44.1	73.9	53.9	22.7	9.8	Floor noise

vert. | 9704.0 | 40.0 | 33.5 | 36.0 | 8.6 | 34.1 | - | 51.2 | 44.1 | 7

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

*QP detector was used up to 1GHz.

Test Report No. 15243440H-A-R1 Page 29 of 48

No.3

Radiated Spurious Emission

Test place

Ise EMC Lab.

Semi Anechoic Chamber

Date

Temperature / Humidity

Engineer

No.4

No.4

April 24, 2024 April 26, 2024 21 deg. C / 60 % RH 21 deg. C / 45 % RH

Yuichiro Yamazaki Ken Fujita (1 GHz to 6 GHz) (6 GHz to 26.5 GHz)

April 26, 2024 21 deg. C / 52 % RH Nachi Konegawa (Below 1 GHz)

Mode Tx, Hopping Off, DH5 2480 MHz

Polarity	Frequency	Reading (QP / PK)	Reading (AV)	Ant. Factor	Loss	Gain	Duty Factor	Result (QP / PK)	Result (AV)	Limit (QP / PK)	Limit (AV)	Margin (QP / PK)	Margin (AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	(AV) [dB]	
Hori.	32.3	20.8	-	17.7	6.9	32.1	-	13.3	-	40.0	-	26.7	-	Floor noise
Hori.	160.6	19.7	-	15.5	8.5	32.0	-	11.7	-	43.5	-	31.9	-	Floor noise
Hori.	186.1	19.5	-	16.3	8.7	32.0	-	12.5	-	43.5	-	31.0	-	Floor noise
Hori.	414.3	19.6	-	16.1	10.4	32.1	-	14.0	-	46.0	-	32.0	-	Floor noise
Hori.	543.9	19.4	-	17.8	11.2	32.2	-	16.2	-	46.0	-	29.8	-	Floor noise
Hori.	709.4	19.3	-	20.0	12.0	32.2	-	19.1	-	46.0	-	26.9	-	Floor noise
Hori.	2483.5	44.5	33.7	27.7	5.4	31.7	1.1	45.9	36.2	73.9	53.9	28.1	17.7	*1)
Hori.	2486.0	44.1	34.1	27.7	5.4	31.7	1.1	45.5	36.5	73.9	53.9	28.4	17.4	*1)
Hori.	4960.0	43.5	34.8	31.6	7.5	30.8	1.1	51.8	44.2	73.9	53.9	22.1	9.7	
Hori.	7440.0	40.9	34.5	35.5	8.0	33.5	-	51.0	44.5	73.9	53.9	22.9	9.4	Floor noise
Hori.	9920.0	41.3	33.6	36.2	8.7	34.1	-	52.1	44.4	73.9	53.9	21.9	9.5	Floor noise
Vert.	32.3	20.8	-	17.7	6.9	32.1	-	13.3	-	40.0	-	26.7	-	Floor noise
Vert.	160.6	19.7	-	15.5	8.5	32.0	-	11.7	-	43.5	-	31.9	-	Floor noise
Vert.	186.1	19.5	-	16.3	8.7	32.0	-	12.5	-	43.5	-	31.0	-	Floor noise
Vert.	414.3	19.6	-	16.1	10.4	32.1	-	14.0	-	46.0	-	32.0	-	Floor noise
Vert.	543.9	19.4	-	17.8	11.2	32.2	-	16.2	-	46.0	-	29.8	-	Floor noise
Vert.	709.4	19.3	-	20.0	12.0	32.2	-	19.1	-	46.0	-	26.9	-	Floor noise
Vert.	2483.5	45.4	34.2	27.7	5.4	31.7	1.1	46.8	36.7	73.9	53.9	27.1	17.2	*1)
Vert.	2486.0	45.8	34.5	27.7	5.4	31.7	1.1	47.2	36.9	73.9	53.9	26.8	17.0	*1)
Vert.	4960.0	42.3	34.3	31.6	7.5	30.8	1.1	50.6	43.7	73.9	53.9	23.3	10.2	
Vert.	7440.0	41.6	34.5	35.5	8.0	33.5	-	51.7	44.5	73.9	53.9	22.2	9.4	Floor noise
Vert.	9920.0	40.5	33.6	36.2	8.7	34.1	-	51.3	44.4	73.9	53.9	22.6	9.5	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

20log (3.9 m / 3.0 m) = 2.28 dB Distance factor: 1 GHz - 6 GHz

20log (4.9 m / 3.0 m) = 4.27 dB 6 GHz - 10 GHz 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

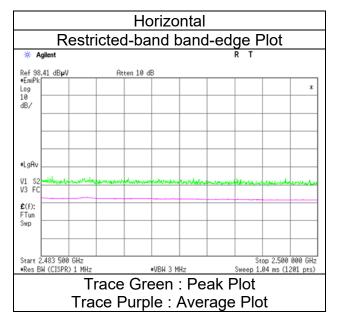
Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

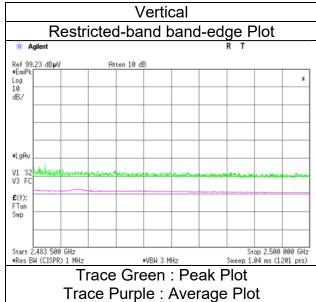
^{*}QP detector was used up to 1GHz.
*1) Not Out of Band emission(Leakage Power)

Test Report No. 15243440H-A-R1 Page 30 of 48

Radiated Spurious Emission (Reference Plot for band-edge)

Test place Semi Anechoic Chamber Date


Temperature / Humidity


Engineer

Mode

Ise EMC Lab. No.4 April 24, 2024 21 deg. C / 60 % RH Yuichiro Yamazaki (1 GHz to 6 GHz)

Tx, Hopping Off, DH5 2480 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge was shown in tabular data.

Test Report No. 15243440H-A-R1 Page 31 of 48

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.4 No.4

Date April 24, 2024 April 26, 2024 21 deg. C / 45 % RH 21 deg. C / 60 % RH Temperature / Humidity

Yuichiro Yamazaki Ken Fujita Engineer

(6 GHz to 26.5 GHz) (1 GHz to 6 GHz)

Mode Tx, Hopping Off, 3DH5 2402 MHz

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP / PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2390.0	43.8	33.6	27.8	5.3	31.8	1.1	45.2	36.1	73.9	53.9	28.7	17.9	*1)
Hori.	4804.0	41.5	33.2	31.3	7.5	30.9	1.1	49.5	42.3	73.9	53.9	24.4	11.6	
Hori.	7206.0	42.7	34.6	35.6	8.0	33.4	-	52.9	44.8	73.9	53.9	21.0	9.2	Floor noise
Hori.	9608.0	41.2	33.8	35.7	8.6	34.0	-	51.4	44.1	73.9	53.9	22.5	9.8	Floor noise
Vert.	2390.0	44.5	33.6	27.8	5.3	31.8	1.1	45.9	36.1	73.9	53.9	28.1	17.8	*1)
Vert.	4804.0	41.8	33.1	31.3	7.5	30.9	1.1	49.7	42.2	73.9	53.9	24.2	11.7	
Vert.	7206.0	41.6	34.6	35.6	8.0	33.4	-	51.8	44.8	73.9	53.9	22.1	9.2	Floor noise
Vert.	9608.0	40.9	33.8	35.7	8.6	34.0	-	51.2	44.1	73.9	53.9	22.7	9.8	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor *Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

20dBc Data Sheet

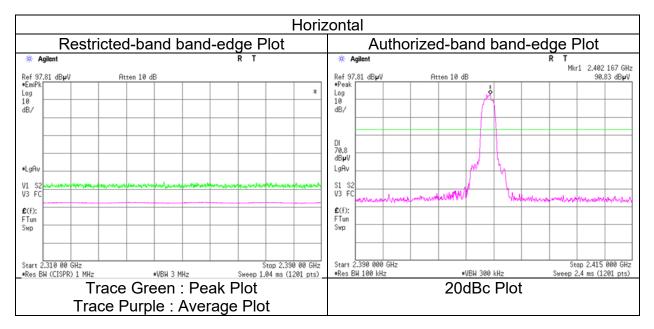
Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2402.0	90.8	27.8	5.3	31.8	92.2	-	-	Carrier
Hori.	2400.0	41.5	27.8	5.3	31.8	42.8	72.2	29.4	
Vert.	2402.0	90.7	27.8	5.3	31.8	92.1	-	-	Carrier
Vert.	2400.0	41.2	27.8	5.3	31.8	42.5	72.1	29.6	

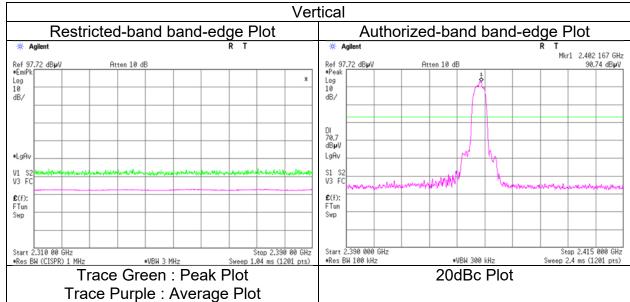
Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

20log (3.9 m / 3.0 m) = 2.28 dB 20log (4.9 m / 3.0 m) = 4.27 dB Distance factor: 1 GHz - 6 GHz

6 GHz - 10 GHz 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

^{*}QP detector was used up to 1GHz.
*1) Not Out of Band emission(Leakage Power)


Test Report No. 15243440H-A-R1 Page 32 of 48


Radiated Spurious Emission (Reference Plot for band-edge)

Test place Ise EMC Lab. Semi Anechoic Chamber No.4

Date April 24, 2024
Temperature / Humidity 21 deg. C / 60 % RH
Engineer Yuichiro Yamazaki
(1 GHz to 6 GHz)

Mode Tx, Hopping Off, 3DH5 2402 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

Final result of restricted band edge and authorized band edge were shown in tabular data.

Test Report No. 15243440H-A-R1 Page 33 of 48

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.4 No.4

April 26, 2024 Date April 24, 2024 21 deg. C / 45 % RH Temperature / Humidity 21 deg. C / 60 % RH

Yuichiro Yamazaki Ken Fujita Engineer

(6 GHz to 26.5 GHz) (1 GHz to 6 GHz)

Mode Tx, Hopping Off, 3DH5 2441 MHz

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP/PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	4882.0	42.0	33.3	31.4	7.5	30.8	1.1	50.0	42.5	73.9	53.9	23.9	11.4	
Hori.	7323.0	41.0	34.2	35.6	8.0	33.5	-	51.2	44.4	73.9	53.9	22.7	9.5	Floor noise
Hori.	9764.0	41.2	33.7	36.0	8.6	34.1	-	51.8	44.3	73.9	53.9	22.1	9.6	Floor noise
Vert.	4882.0	42.2	33.2	31.4	7.5	30.8	1.1	50.3	42.4	73.9	53.9	23.6	11.5	
Vert.	7323.0	41.3	34.2	35.6	8.0	33.5	-	51.5	44.4	73.9	53.9	22.4	9.5	Floor noise
Vert.	9764.0	40.3	33.7	36.0	8.6	34.1	-	50.9	44.3	73.9	53.9	23.0	9.6	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)
Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

Distance factor:

1 GHz - 6 GHz 20log (3.9 m / 3.0 m) = 2.28 dB 6 GHz - 10 GHz 20log (4.9 m / 3.0 m) = 4.27 dB 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*}QP detector was used up to 1GHz.

Test Report No. 15243440H-A-R1 Page 34 of 48

Radiated Spurious Emission

Test place Ise EMC Lab.

Semi Anechoic Chamber No.4 No.4

April 26, 2024 21 deg. C / 45 % RH Date April 24, 2024 Temperature / Humidity 21 deg. C / 60 % RH

Yuichiro Yamazaki Ken Fujita Engineer

(1 GHz to 6 GHz) (6 GHz to 26.5 GHz)

Mode Tx, Hopping Off, 3DH5 2480 MHz

Polarity	Frequency	Reading	Reading	Ant.	Loss	Gain	Duty	Result	Result	Limit	Limit	Margin	Margin	Remark
		(QP/PK)	(AV)	Factor			Factor	(QP/PK)	(AV)	(QP/PK)	(AV)	(QP/PK)	(AV)	
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2483.5	45.1	33.9	27.7	5.4	31.7	1.1	46.5	36.4	73.9	53.9	27.4	17.5	*1)
Hori.	2486.0	43.8	33.8	27.7	5.4	31.7	1.1	45.2	36.3	73.9	53.9	28.7	17.6	*1)
Hori.	4960.0	41.7	33.1	31.6	7.5	30.8	1.1	50.0	42.5	73.9	53.9	23.9	11.4	
Hori.	7440.0	41.2	34.2	35.5	8.0	33.5	-	51.3	44.3	73.9	53.9	22.6	9.6	Floor noise
Hori.	9920.0	41.4	33.9	36.2	8.7	34.1	-	52.2	44.7	73.9	53.9	21.8	9.2	Floor noise
Vert.	2483.5	45.8	34.5	27.7	5.4	31.7	1.1	47.2	36.9	73.9	53.9	26.7	17.0	*1)
Vert.	2486.0	44.0	34.2	27.7	5.4	31.7	1.1	45.3	36.6	73.9	53.9	28.6	17.3	*1)
Vert.	4960.0	41.0	32.7	31.6	7.5	30.8	1.1	49.3	42.1	73.9	53.9	24.6	11.8	
Vert.	7440.0	41.6	34.2	35.5	8.0	33.5	-	51.6	44.3	73.9	53.9	22.3	9.6	Floor noise
Vert.	9920.0	40.3	33.9	36.2	8.7	34.1	-	51.1	44.7	73.9	53.9	22.8	9.2	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)
Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

Distance factor: 1 GHz - 6 GHz 20log (3.9 m / 3.0 m) = 2.28 dB

20log (4.9 m / 3.0 m) = 4.27 dB 6 GHz - 10 GHz 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

[&]quot;Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

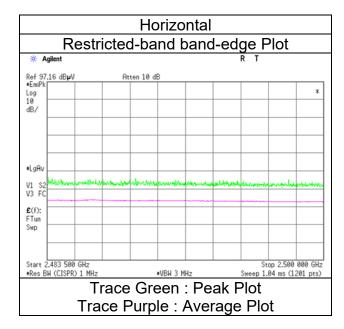
*QP detector was used up to 1GHz.

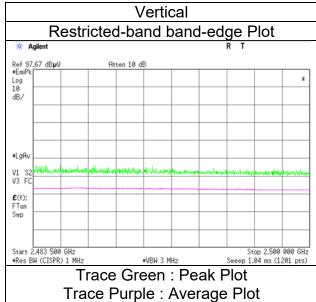
^{*1)} Not Out of Band emission(Leakage Power)

Test Report No. 15243440H-A-R1 Page 35 of 48

Radiated Spurious Emission (Reference Plot for band-edge)

Test place Semi Anechoic Chamber Date


Temperature / Humidity


Engineer

Mode

Ise EMC Lab. No.4 April 24, 2024 21 deg. C / 60 % RH Yuichiro Yamazaki

(1 GHz to 6 GHz) Tx, Hopping Off, 3DH5 2480 MHz

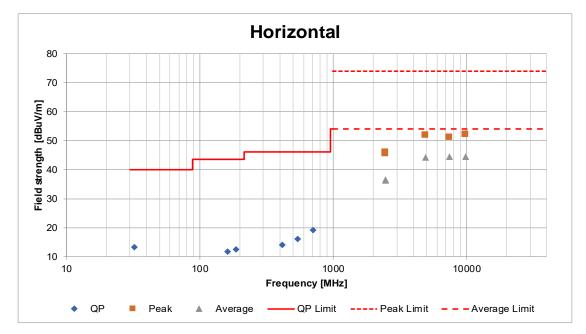
^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions.

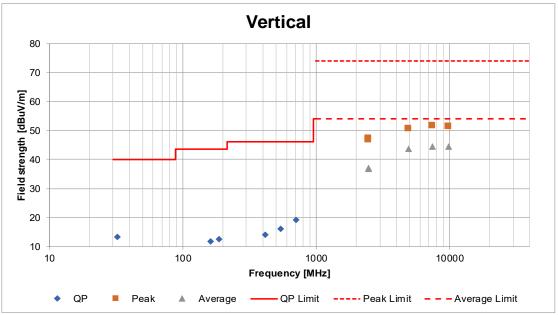
Final result of restricted band edge was shown in tabular data.

Test Report No. 15243440H-A-R1 Page 36 of 48

Radiated Spurious Emission (Plot data, Worst case mode for Maximum Peak Output Power)

Test place Semi Anechoic Chamber Date Temperature / Humidity

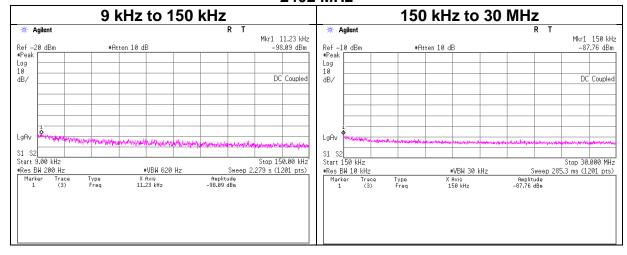

Engineer

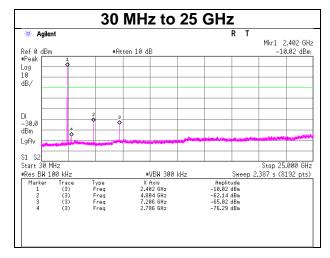

Mode

Ise EMC Lab. No.4 April 24, 2024 21 deg. C / 60 % RH Yuichiro Yamazaki (1 GHz to 6 GHz)

No.4 April 26, 2024 21 deg. C / 45 % RH Ken Fujita (6 GHz to 26.5 GHz) Tx, Hopping Off, DH5 2480 MHz

No.3 April 26, 2024 21 deg. C / 52 % RH Nachi Konegawa (Below 1 GHz)

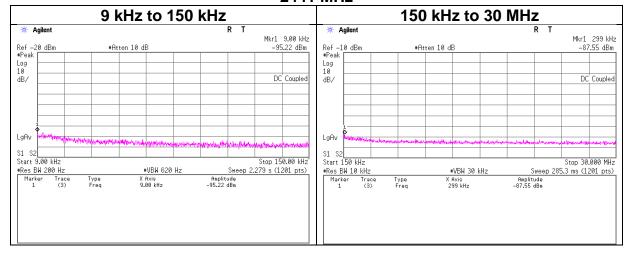

^{*}These plots data contain sufficient number to show the trend of characteristic features for EUT.

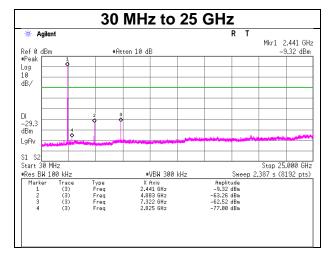

Test Report No. 15243440H-A-R1 Page 37 of 48

Conducted Spurious Emission

Test place Ise EMC Lab. No.4 Preparation Room

Date April 11, 2024
Temperature / Humidity 21 deg. C / 48 % RH
Engineer Nachi Konegawa
Mode Tx, Hopping Off, DH5

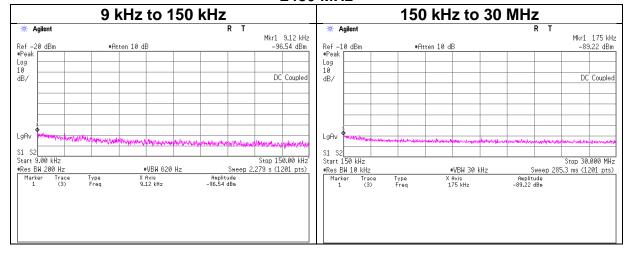


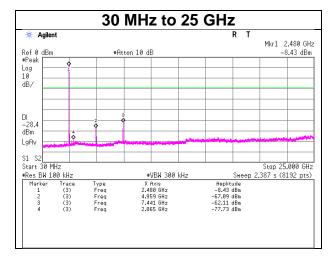

Test Report No. 15243440H-A-R1 Page 38 of 48

Conducted Spurious Emission

Test place Ise EMC Lab. No.4 Preparation Room

Date April 11, 2024
Temperature / Humidity 21 deg. C / 48 % RH
Engineer Nachi Konegawa
Mode Tx, Hopping Off, DH5

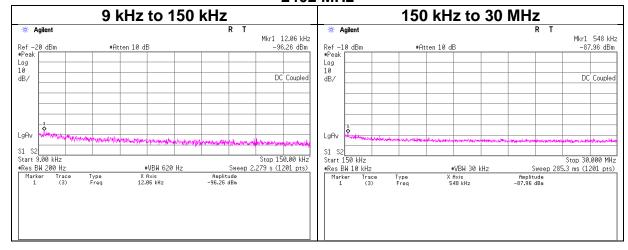


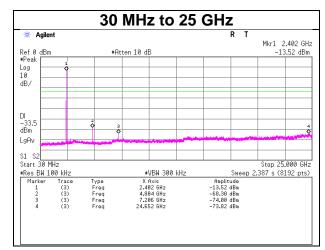

Test Report No. 15243440H-A-R1 Page 39 of 48

Conducted Spurious Emission

Test place Ise EMC Lab. No.4 Preparation Room

Date April 11, 2024
Temperature / Humidity 21 deg. C / 48 % RH
Engineer Nachi Konegawa
Mode Tx, Hopping Off, DH5

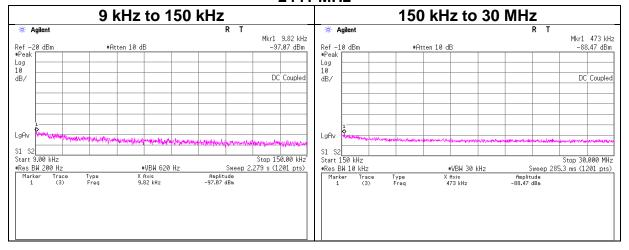


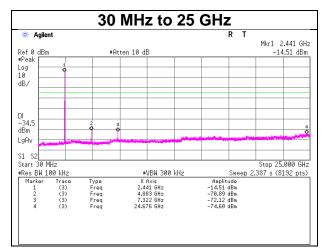

Test Report No. 15243440H-A-R1 Page 40 of 48

Conducted Spurious Emission

Test place Ise EMC Lab. No.4 Preparation Room

Date April 11, 2024
Temperature / Humidity 21 deg. C / 48 % RH
Engineer Nachi Konegawa
Mode Tx, Hopping Off, 3DH5



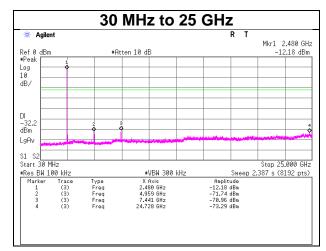

Test Report No. 15243440H-A-R1 Page 41 of 48

Conducted Spurious Emission

Test place Ise EMC Lab. No.4 Preparation Room

Date April 11, 2024
Temperature / Humidity 21 deg. C / 48 % RH
Engineer Nachi Konegawa
Mode Tx, Hopping Off, 3DH5



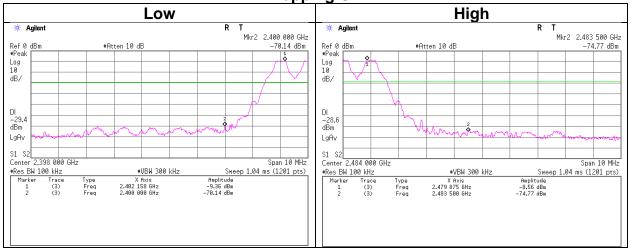

Test Report No. 15243440H-A-R1 Page 42 of 48

Conducted Spurious Emission

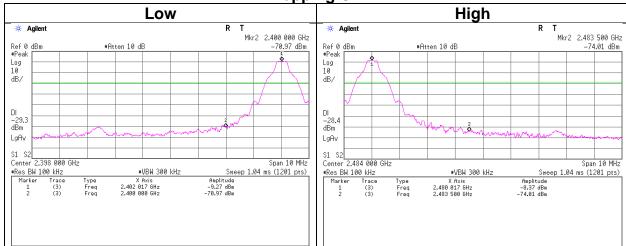
Test place Ise EMC Lab. No.4 Preparation Room

Date April 11, 2024
Temperature / Humidity 21 deg. C / 48 % RH
Engineer Nachi Konegawa
Mode Tx, Hopping Off, 3DH5

Test Report No. 15243440H-A-R1 Page 43 of 48


Conducted Emission Band Edge compliance

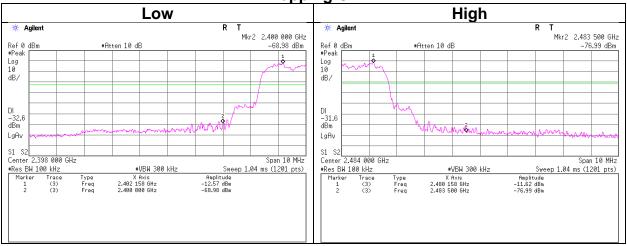
Test place Ise EMC Lab. No.4 Preparation Room


Date April 11, 2024 21 deg. C / 48 % RH Temperature / Humidity Engineer Nachi Konegawa

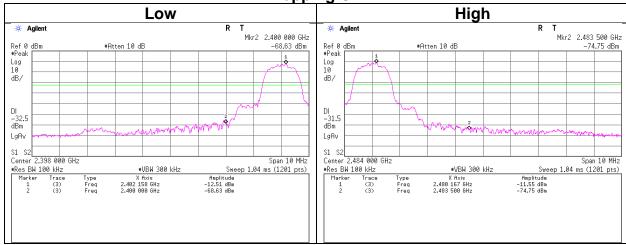
Mode Tx DH5

Hopping On

Hopping Off


Test Report No. 15243440H-A-R1 Page 44 of 48

Conducted Emission Band Edge compliance


Test place Ise EMC Lab. No.4 Preparation Room

Date April 11, 2024
Temperature / Humidity 21 deg. C / 48 % RH
Engineer Nachi Konegawa
Mode Tx 3DH5

Hopping On

Hopping Off

Test Report No. 15243440H-A-R1 Page 45 of 48

APPENDIX 2: Test Instruments

Test Equipment

	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
ΑT	141312	Attenuator	Weinschel Associates	WA56-10	56100304	05/18/2023	12
AT	141375	Microwave Cable 1G-40GHz	Suhner	SUCOFLEX102	30817/2	05/27/2024	12
ΑT	141809	Power Meter	Anritsu Corporation	ML2495A	825002	05/22/2024	12
ΑT	141830	Power sensor	Anritsu Corporation	MA2411B	738285	05/22/2024	12
ΑT	141902	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46187105	05/30/2024	12
ΑT	244710	Thermo-Hygrometer	HIOKI E.E. CORPORATION	LR5001	231202104	01/25/2024	12
ΑT	244711	Thermo-Hygrometer	HIOKI E.E. CORPORATION	LR5001	231202105	01/25/2024	12
RE	141266	Logperiodic Antenna (200-1000MHz)	Schwarzbeck Mess- Elektronik OHG	VUSLP9111B	9111B-191	08/10/2023	12
RE	141267	Logperiodic Antenna (200-1000MHz)	Schwarzbeck Mess- Elektronik OHG	VUSLP9111B	9111B-192	09/21/2023	12
RE	141296	High Pass Filter 3.5-18.0GHz	UL Japan	HPF SELECTOR	002	09/01/2023	12
RE	141323	Coaxial cable	UL Japan	-	-	09/10/2023	12
RE	141331	Attenuator(6dB)	TME	UFA-01	-	02/17/2024	12
RE	141397	Coaxial Cable	UL Japan	-	-	11/22/2023	12
RE	141424	Biconical Antenna	Schwarzbeck Mess- Elektronik OHG	VHA9103+BBA9106	1915	03/15/2024	12
RE	141425	Biconical Antenna	Schwarzbeck Mess- Elektronik OHG	VHA9103+BBA9106	VHA 91031302	08/10/2023	12
RE	141508	Horn Antenna 1-18GHz	Schwarzbeck Mess- Elektronik OHG	BBHA9120D	557	05/17/2024	12
RE	141532	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	051201197	01/31/2024	12
RE	141545	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	51201148	02/01/2024	12
RE	141581	MicroWave System Amplifier	Keysight Technologies Inc	83017A	00650	10/05/2023	12
RE	141900	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46185823	06/16/2023	12
RE	141951	EMI Test Receiver	Rohde & Schwarz	ESR26	101408	04/10/2023	12
RE	142008	AC3_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	12/11/2023	24
RE	142011	AC4_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	12/13/2023	24
RE	142017	AC4_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-10005	04/14/2023	12
RE	142183	Measure	KOMELON	KMC-36	-	10/20/2023	12
RE	142230	Measure, Tape, Steel	KOMELON	KMC-36	-	-	-
RE	142314	Attenuator	Pasternack Enterprises	PE7390-6	D/C 1504	06/23/2023	12
RE	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	244709	Thermo-Hygrometer	HIOKI E.E. CORPORATION	LR5001	231202103	01/25/2024	12
RE	244710	Thermo-Hygrometer	HIOKI E.E. CORPORATION	LR5001	231202104	01/25/2024	12
RE	246001	Microwave Cable	Huber+Suhner	SF103/11PC35/11PC35/ 1000mm / SF126E/5000mm	800673(1m) / 610204(5m)	03/06/2024	12

^{*}Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month. As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

AT: Antenna Terminal Conducted test

RE: Radiated Emission