

Product : wireless management system

Trade mark : BLAZER international

Model/Type reference : CWL623

Serial Number : N/A

Report Number : EED32J00285301

FCC ID : PZTCWL623

Date of Issue : Jun. 27, 2018

Test Standards : 47 CFR Part 15Subpart C

Test result : PASS

Prepared for:

Tiger Accessory Group LLC 6700 Wildlife Way, Long Grove, Illinois 60047, United States

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Report Sea

Tested by:

10M-Chen

Tom chen (Test Project)

Reviewed by:

Kevin yang (Reviewer)

Date: Jun. 27, 2018

Max liang (Project Engineer)

Max liang

wax liang (Project Engineer)

Sheek Luo (Lab supervisor)

Check No.:2448734114

Page 2 of 46

2 Version

Version No.	Date	(6	Description	·/
00	Jun. 27, 2018		Original	
	/*>	A*5	793	/35
		(d)		

3 Test Summary

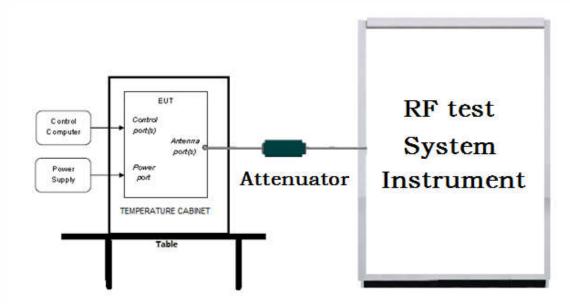
rest Summary	310 (310)		1
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013 KDB 558074 D01v04	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013 KDB 558074 D01v04	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013 KDB 558074 D01v04	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013 KDB 558074 D01v04	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013 KDB 558074 D01v04	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Test according to ANSI C63.4-2014 & ANSI C63.10-2013. The tested sample(s) and the sample information are provided by the client.

Page 4 of 46

4 Content

1 COVER PAGE				
2 VERSION	•••••			••••••
3 TEST SUMMARY	•••••			
4 CONTENT				
5 TEST REQUIREM	ENT			
5.1.1 For Condi 5.1.2 For Radia 5.1.3 For Condi 5.2 TEST ENVIRON	ucted test setup ted Emissions test ucted Emissions te MENT	setupst setup		
6 GENERAL INFOR	MATION			
6.2 GENERAL DESC 6.3 PRODUCT SPEC 6.4 DESCRIPTION C 6.5 TEST LOCATION 6.6 TEST FACILITY. 6.7 DEVIATION FRO 6.8 ABNORMALITIES 6.9 OTHER INFORM	CRIPTION OF EUT CIFICATION SUBJECTION SUBJECTION SUPPORT UNITS M. STANDARDS S FROM STANDARD (ATION REQUESTED I	CONDITIONS		
7 EQUIPMENT LIST				10
8 RADIO TECHNICA	L REQUIREMENT	S SPECIFICATION		1
Appendix B): C Appendix C): B Appendix D): R Appendix E): P Appendix F): A Appendix G): A Appendix H): R	onducted Peak Our and-edge for RF Co F Conducted Spuri ower Spectral Dens ntenna Requiremer C Power Line Cond estricted bands arc	widthtput Poweronducted Emissionssitytuducted Emissionducted Emissionbund fundamental frequencenssions	cy (Radiated)	
PHOTOGRAPHS OF	EUT CONSTRUC	CTIONAL DETAILS	723	



Report No. :EED32J00285301 Page 5 of 46

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

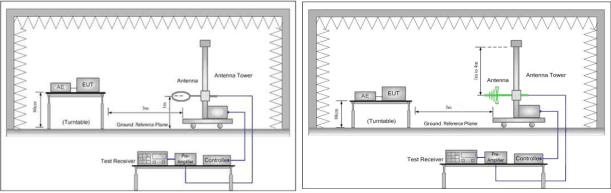
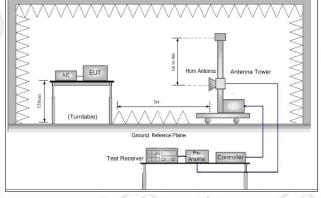
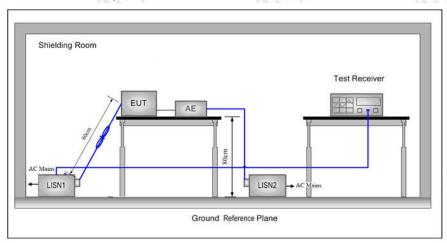


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz




Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup **Conducted Emissions setup**

5.2 Test Environment

Operating Environment:			(6)
Temperature:	24.6 °C		
Humidity:	41 % RH	196-1	
Atmospheric Pressure:	1010mbar		

5.3 Test Condition

Test channel:

	Test Mode	Tx/Rx		RF Channel	
١	rest wode	TA/FX	Low(L)	High(H)	
l	05014	0.400.0411 0.400.0411	Channel 1	Channel 20	Channel 40
	GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz
	Transmitting mode:	The EUT transmitted the continu	uous signal at the	specific channe	el(s).

Report No. :EED32J00285301 Page 7 of 46

6 General Information

6.1 Client Information

Applicant:	Tiger Accessory Group LLC
Address of Applicant:	6700 Wildlife Way, Long Grove, Illinois 60047, United States
Manufacturer:	TOKING AUTO INDUSTRIAL INT' L CO., LTD.
Address of Manufacturer:	A-202, ZHONGTIAN MCC, TONGPU ROAD ACROSS XIDOUMEN ROAD, HANGZHOU 310012 CHINA
Factory:	ZHEJIANG LEIYA ELECTRONICS CO., LTD.
Address of Factory:	NO. 519, ROAD 15, BINHAI INDUSTRIAL PARK, WENZHOU, ZHEJIANG 325025, CHINA.

6.2 General Description of EUT

Product Name:	wireless management system			
Model No.(EUT):	CWL623			
Trade mark:	BLAZER international			707
EUT Supports Radios application:	BT4.0	(31)		64
Power Supply:	DC 12V			
Sample Received Date:	Dec. 14, 2017			
Sample tested Date:	Dec. 14, 2017 to Jun. 27, 2018		(3)	

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz		
Bluetooth Version:	4.0		_0~
Modulation Technique:	DSSS		
Modulation Type:	GFSK		6
Number of Channel:	40		
Test Power Grade:	N/A		
Test Software of EUT:	BK RF Test_V1.3(manufacturer declare)	(18)	
Antenna Type and Gain:	PCB and 2dBi	(0,)	
Test Voltage:	DC 12V		
Software version:	V1.2(manufacturer declare)		
Hardware version:	LY-APP40A-B.PCB(manufacturer declare)		(3)

Operation F	Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz		
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz		
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz		
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz		
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz		
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz		

Page 8 of 46

7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd.has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories...

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Designation No.:CN1164

Centre Testing International Group Co., Ltd EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The American association for Centre Testing International Group Co., Ltd. EMC laboratory accreditation Designation No.: CN1164

IC-Registration No.: 7408A-2

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A-2.

IC-Registration No.: 7408B-1

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd.has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B-1.

Report No. :EED32J00285301 Page 9 of 46

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard Conditions

None.

6.9 Other Information Requested by the Customer

None.

6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nower conducted	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB (1GHz-18GHz)
3	Dedicted Courieus emission test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

7 Equipment List

		RF test	system		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-14-2017 03-13-2018	03-13-2018 03-12-2019
Communication test set test set	Agilent	N4010A	MY51400230	03-14-2017 03-13-2018	03-13-2018 03-12-2019
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-14-2017 03-13-2018	03-13-2018 03-12-2019
Signal Generator	Keysight	N5182B	MY53051549	03-14-2017 03-13-2018	03-13-2018 03-12-2019
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-11-2017 01-10-2018	01-10-2018 01-09-2019
band rejection filter	Sinoscite	FL5CX01CA09C L12-0395-001		01-11-2017 01-10-2018	01-10-2018 01-09-2019
band rejection filter	Sinoscite	FL5CX01CA08C L12-0393-001		01-11-2017 01-10-2018	01-10-2018 01-09-2019
band rejection filter	Sinoscite	FL5CX02CA04C L12-0396-002		01-11-2017 01-10-2018	01-10-2018 01-09-2019
band rejection filter	Sinoscite	FL5CX02CA03C L12-0394-001	(ei)	01-11-2017 01-10-2018	01-10-2018 01-09-2019
DC Power	Keysight	E3642A	MY54436035	03-14-2017 03-13-2018	03-13-2018 03-12-2019
PC-1	Lenovo	R4960d		04-01-2017 03-31-2018	03-31-2018 03-30-2019
BT&WI-FI Automatic control	R&S	OSP120	101374	03-14-2017 03-13-2018	03-13-2018 03-12-2019
RF control unit	JS Tonscend	JS0806-2	158060006	03-14-2017 03-13-2018	03-13-2018 03-12-2019
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		03-14-2017 03-13-2018	03-13-2018 03-12-2019

Page 11 of 46

	Conducted disturbance Test											
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)							
Receiver	R&S	ESCI	100009	06-14-2017 06-13-2018	06-13-2018 06-12-2019							
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-08-2017 05-07-2018	05-07-2018 05-06-2019							
Communication test set	Agilent	E5515C	GB47050534	03-14-2017 03-13-2018	03-13-2018 03-12-2019							
Communication test set	R&S	CMW500	152394	03-14-2017 03-13-2018	03-13-2018 03-12-2019							
LISN	R&S	ENV216	100098	06-13-2017 06-12-2018	06-12-2018 06-11-2019							
LISN	schwarzbeck	NNLK8121	8121-529	06-13-2017 06-12-2018	06-12-2018 06-11-2019							
Voltage Probe	R&S	ESH2-Z3		06-13-2017	06-11-2020							
Current Probe	nt Probe R&S		100106	06-13-2017 06-12-2018	06-12-2018 06-11-2019							
ISN	TESEQ GmbH	ISN T800	30297	02-23-2017 02-22-2018	02-22-2018 02-21-2019							

Page 12 of 46

	3M S	Semi/full-anech	oic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		06-04-2016	06-03-2019
TRILOG Broadband Antenna	SCHWARZBEC K	VULB9163	9163-484	06-09-2017 06-08-2018	06-08-2018 06-07-2019
Microwave Preamplifier	Agilent	8449B	3008A02425	02-16-2017 02-15-2018	02-15-2018 02-14-2019
Horn Antenna	ETS-LINDGREN	3117	00057407	02-16-2017 02-15-2018	02-15-2018 02-14-2019
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019
Horn Antenna	A.H.SYSTEMS	SAS-574 374		06-30-2015 06-28-2018	06-28-2018 06-27-2019
Spectrum Analyzer	R&S	FSP40	100416	06-13-2017 06-12-2018	06-12-2018 06-11-2019
Receiver	R&S	ESCI	100435	06-14-2017 06-13-2018	06-13-2018 06-12-2019
LISN	schwarzbeck	NNBM8125	81251547	06-13-2017 06-12-2018	06-12-2018 06-11-2019
LISN	schwarzbeck	NNBM8125	81251548	06-13-2017 06-12-2018	06-12-2018 06-11-2019
Signal Generator	Agilent	E4438C	MY45095744	03-14-2017 03-13-2018	03-13-2018 03-12-2019
Signal Generator	Keysight	E8257D	MY53401106	03-14-2017 03-13-2018	03-13-2018 03-12-2019
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-08-2017 05-07-2018	05-07-2018 05-06-2019
Communication test set	Agilent	E5515C	GB47050534	03-14-2017 03-13-2018	03-13-2018 03-12-2019
Cable line	Fulai(7M)	SF106	5219/6A	01-10-2018	01-09-2019
Cable line	Fulai(6M)	SF106	5220/6A	01-10-2018	01-09-2019
Cable line	Fulai(3M)	SF106	5216/6A	01-10-2018	01-09-2019
Cable line	Fulai(3M)	SF106	5217/6A	01-10-2018	01-09-2019
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395-001		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393-001	(3)	01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396-002	67	01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394-001		01-10-2018	01-09-2019

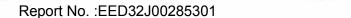
8 Radio Technical Requirements Specification

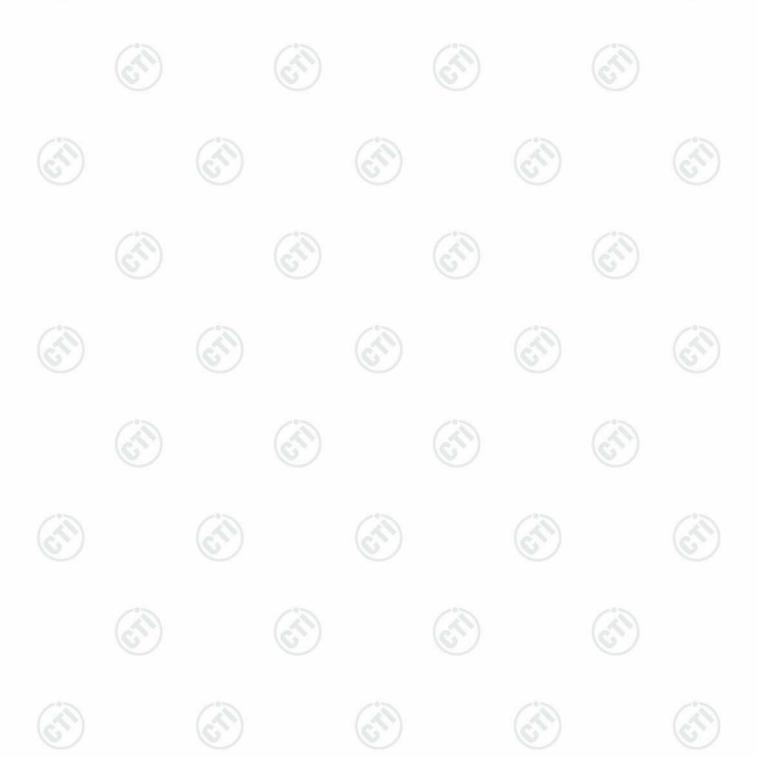
Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C (2015)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

_					
	Test Requirement	Test method	Test item	Verdict	Note
	Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
	Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
	Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
1	Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
	Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
	Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
	Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
	Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
	Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)





Page 14 of 46

Appendix A): 6dB Occupied Bandwidth

Test Result

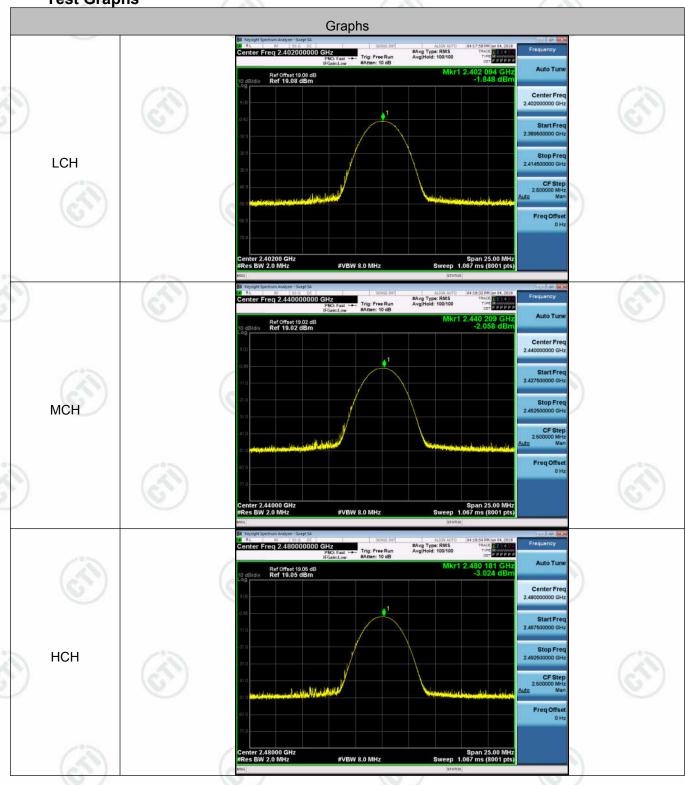
		1 Total 2			
Mode	Channel	99% OBW[MHz]	Verdict	Remark	
BLE	LCH	0.5065	0.91253	PASS	
BLE	MCH	0.5197	0.91231	PASS	Peak
BLE	нсн	0.5248	0.91281	PASS	detector

Page 15 of 46

Appendix B): Conducted Peak Output Power

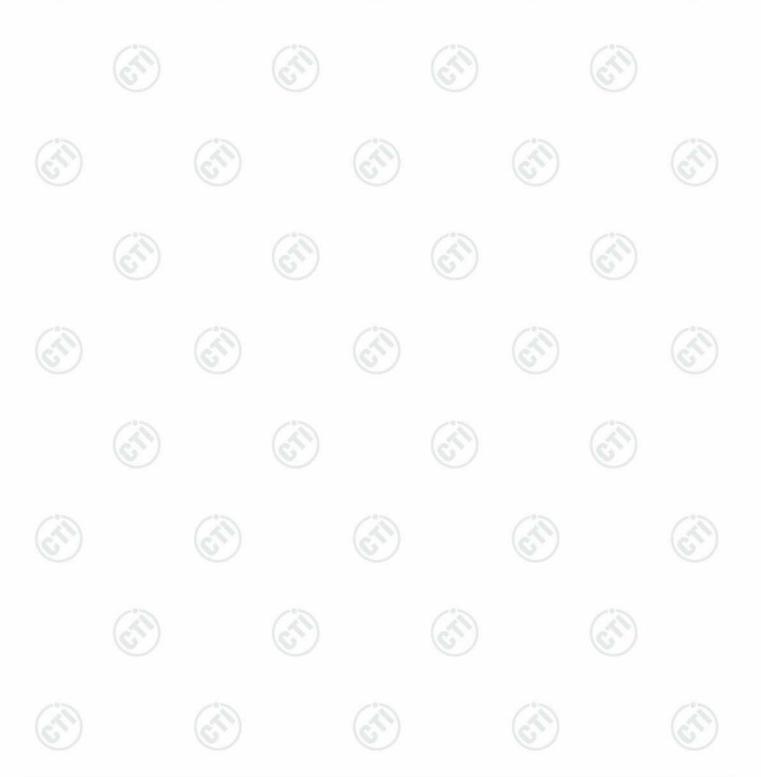
Test Result

		142 2	
Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-1.848	PASS
BLE	MCH	-2.058	PASS
BLE	нсн	-3.024	PASS



Page 17 of 46

Test Graphs

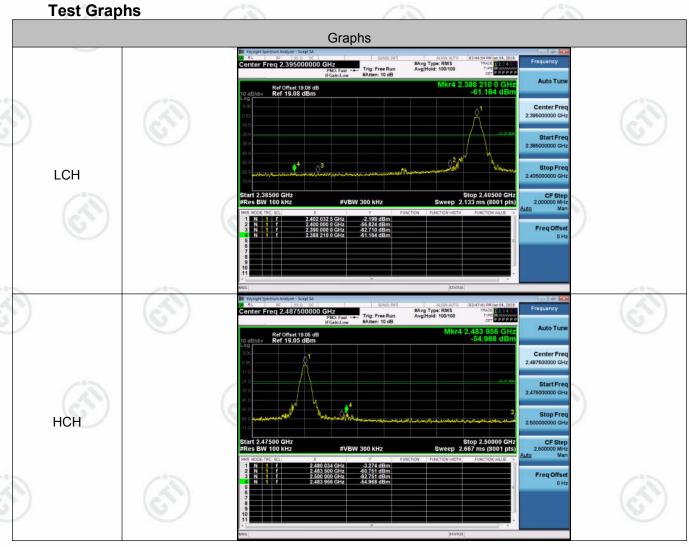


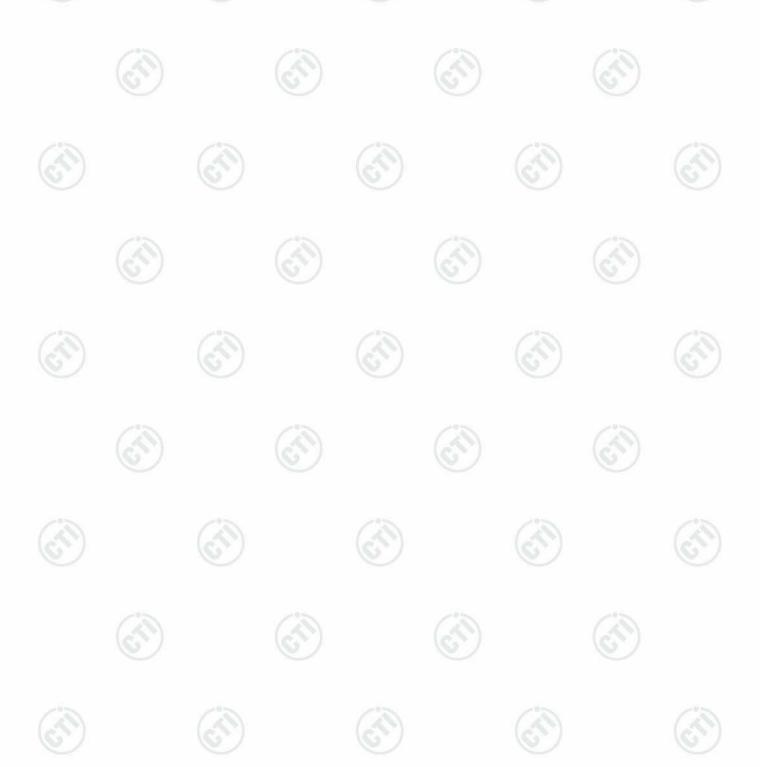
Report No. :EED32J00285301 Page 18 of 46

Appendix C): Band-edge for RF Conducted Emissions

Result Table

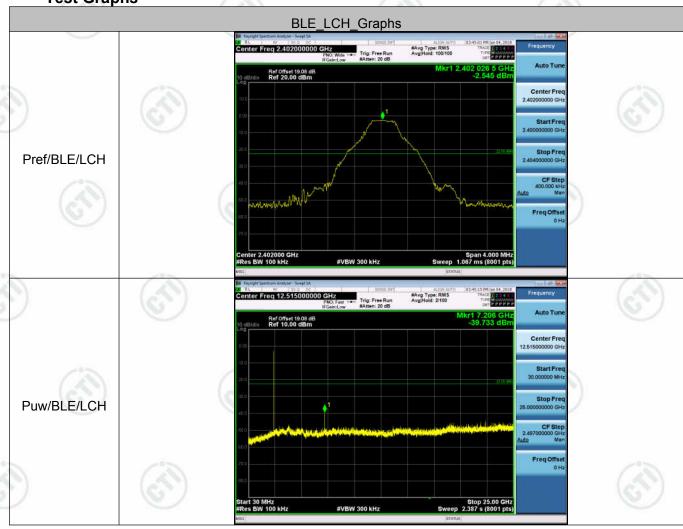
	Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
1	BLE	LCH	-2.199	-61.164	-22.2	PASS
,	BLE	HCH	-3.274	-54.968	-23.27	PASS

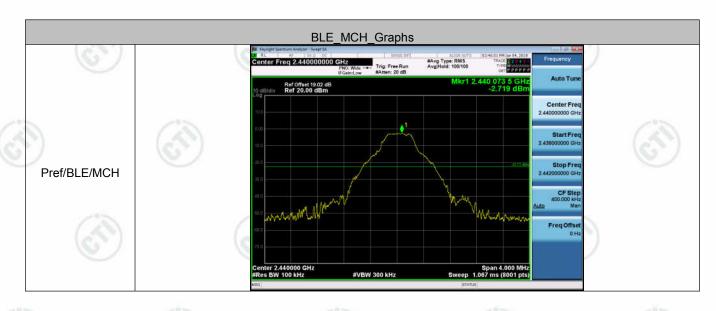




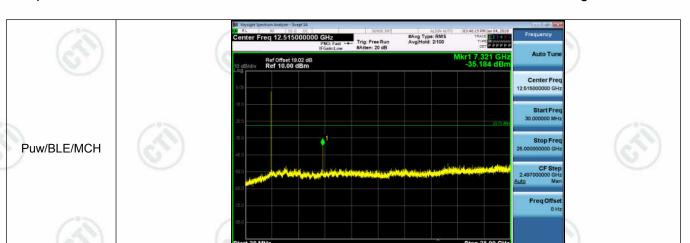
Appendix D): RF Conducted Spurious Emissions

Result Table


Mode	Channel	Puw[dBm]	Verdict	
BLE	LCH	-2.545	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	-2.719	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	НСН	-3.583	<limit< td=""><td>PASS</td></limit<>	PASS



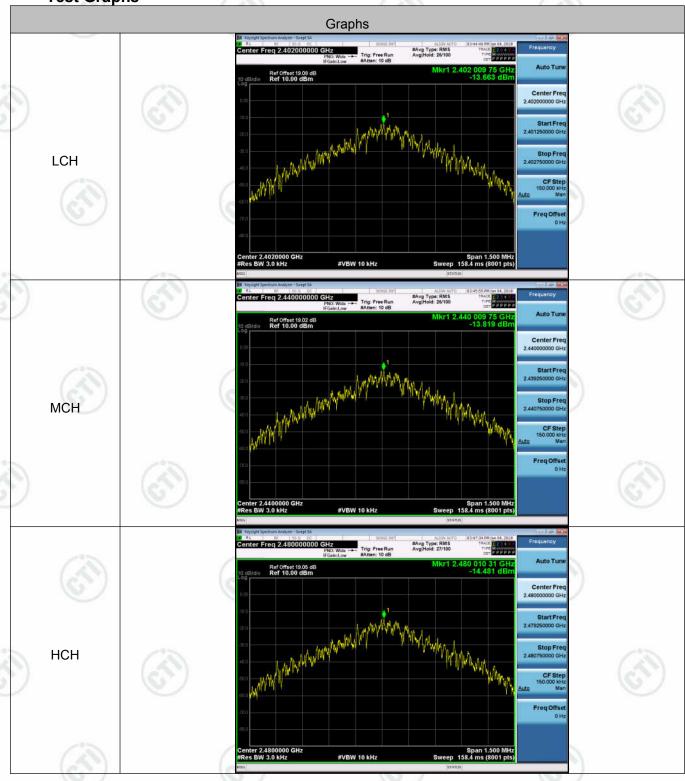
Page 21 of 46



Appendix E): Power Spectral Density

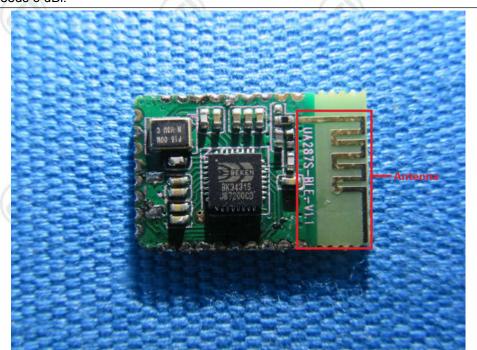
Result Table

Mode	Channel	PSD [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
BLE	LCH	-13.663	8	PASS
BLE	MCH	-13.819	8	PASS
BLE	НСН	-14.481	8	PASS

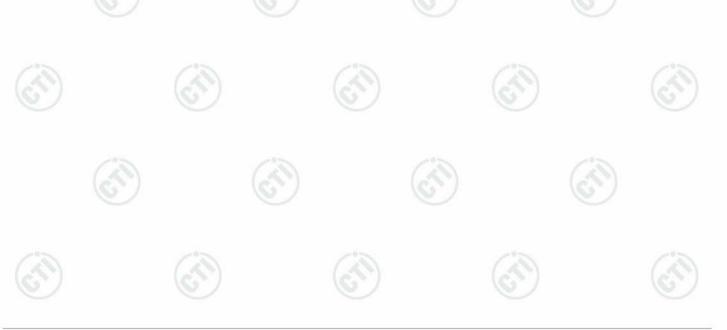


Page 24 of 46

Appendix F): Antenna Requirement


15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is PCB antenna and no consideration of replacement. The best case gain of the antenna is 2dBi.

Appendix G): AC Power Line Conducted Emission

Test Procedure:

Test frequency range :150KHz-30MHz

- 1)The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu H + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3)The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Limit:

Fraguency range (MUz)	Limit (dBμV)					
Frequency range (MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				

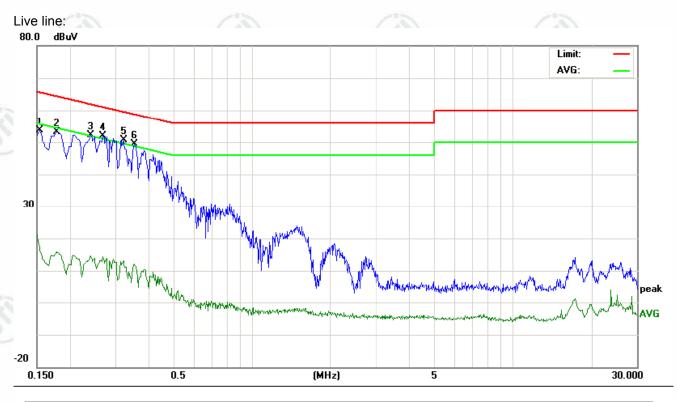
^{*} The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

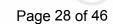
NOTE: The lower limit is applicable at the transition frequency

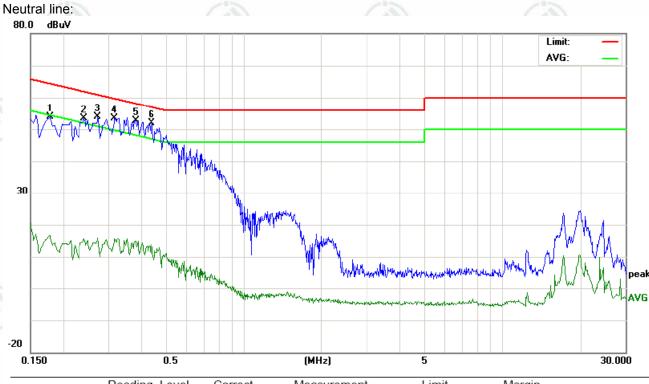
Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.






No.	Reading_Level Freq. (dBuV)		Correct Factor				Limit (dBuV)			Margin (dB)				
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1539	43.98	36.85	6.67	9.76	53.74	46.61	16.43	65.78	55.78	-19.17	-39.35	Р	
2	0.1780	43.46	36.41	6.02	9.73	53.19	46.14	15.75	64.57	54.57	-18.43	-38.82	Р	
3	0.2420	42.50	36.35	4.99	9.74	52.24	46.09	14.73	62.02	52.02	-15.93	-37.29	Р	
4	0.2700	42.17	35.69	4.52	9.76	51.93	45.45	14.28	61.12	51.12	-15.67	-36.84	Р	
5	0.3220	40.81	35.28	3.37	9.77	50.58	45.05	13.14	59.65	49.65	-14.60	-36.51	Р	
6	0.3540	39.63	34.19	2.37	9.76	49.39	43.95	12.13	58.87	48.87	-14.92	-36.74	Р	

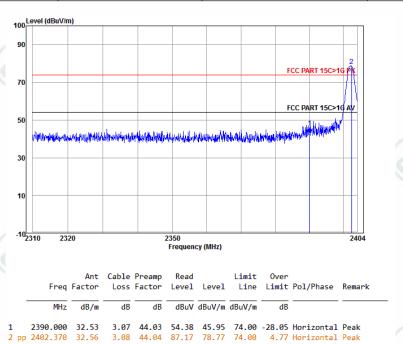
No.	Reading_Level No. Freq. (dBuV)		vel	Correct Factor	Measurement (dBuV)		Limit (dBu∀)		Margin (dB)					
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1780	44.26	37.24	6.96	9.73	53.99	46.97	16.69	64.57	54.57	-17.60	-37.88	Р	
2	0.2420	43.58	37.31	5.81	9.74	53.32	47.05	15.55	62.02	52.02	-14.97	-36.47	Р	
3	0.2740	44.13	38.06	6.11	9.76	53.89	47.82	15.87	60.99	50.99	-13.17	-35.12	Р	
4	0.3180	43.62	37.58	5.79	9.77	53.39	47.35	15.56	59.76	49.76	-12.41	-34.20	Р	
5	0.3820	42.92	34.13	2.50	9.76	52.68	43.89	12.26	58.23	48.23	-14.34	-35.97	Р	
6	0.4420	42.10	34.56	4.21	9.73	51.83	44.29	13.94	57.02	47.02	-12.73	-33.08	Р	

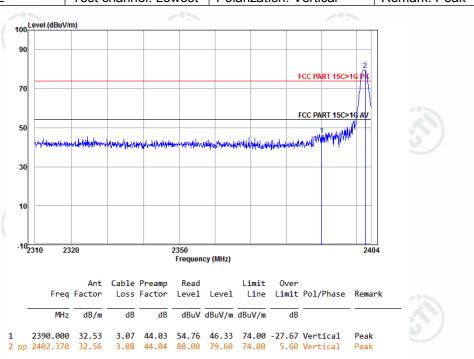
Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT.
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)

	Above 1GHz Below 1GHz test procedu a. The EUT was placed o at a 3 meter semi-aned determine the position b. The EUT was set 3 me was mounted on the to c. The antenna height is o determine the maximur polarizations of the ante d. For each suspected en the antenna was tuned was turned from 0 degre e. The test-receiver syste Bandwidth with Maximum f. Place a marker at the effrequency to show combands. Save the spectr for lowest and highest of Above 1GHz test procedu g. Different between above	on the top of a rochoic camber. The of the highest raters away from the proof of a variable-howaried from one on value of the fire enna are set to enission, the EUT to heights from the top of the rees to 360 degrow was set to Perum Hold Mode. The proof of the restrict o	ne table wand adiation. The interference interference in the inter	ence-receinna tower. ur meters and Both horneasurement ged to its way 4 meters at the maxim Function and dosest to the emissions	above the grain above the grain and vent. worst case a and the rotate and specified and specified are transmit in the restricts in the restricts.	ground to a, which ound to vertical and ther able
	Above 1GHz Below 1GHz test procedu a. The EUT was placed o at a 3 meter semi-aned determine the position b. The EUT was set 3 me was mounted on the to c. The antenna height is of determine the maximur polarizations of the ante d. For each suspected en the antenna was tuned was turned from 0 degre e. The test-receiver syste Bandwidth with Maximum f. Place a marker at the effrequency to show combands. Save the spectr for lowest and highest of	Peak Peak Tre as below: In the top of a rochoic camber. The of the highest racters away from the pof a variable-howaried from one movalue of the file enna are set to include the point of the point of the point of the point of the restrict of the restrict of the restrict of the point of the poi	1MHz 1MHz tating table the table was adiation. The interference of the table was arranged as a readily and the table was arranged to the table was a readily at the table was arranged to the table wa	3MHz 10Hz 10Hz 10Hz 10Hz 10Hz 10Hz 10Hz 10	Peak Average The above the above the gradient and vent. Worst case and the rotate and the rotate and Specified the transmit is in the restrict.	ground to a, which ound to vertical and ther able
	Below 1GHz test procedu a. The EUT was placed of at a 3 meter semi-aned determine the position b. The EUT was set 3 me was mounted on the totoon. The antenna height is was determine the maximum polarizations of the antended. For each suspected enterest the antenna was turned was turned from 0 degree. The test-receiver syste Bandwidth with Maximum f. Place a marker at the effrequency to show combands. Save the spectre for lowest and highest of the Above 1GHz test procedure.	Peak Ire as below: In the top of a rochoic camber. The of the highest raters away from the proof of a variable-howaried from one movement are set to enission, the EUT to heights from the rees to 360 degrees to 360 degrees to 360 degreem was set to Peaum Hold Mode. In the proof of the restrict of the restrict of the restrict of the restrict of the pliance. Also more more analyzer plochannel	tating table ne table was adiation. the interference of the interf	e 0.8 meter is rotated 3 ence-receirna tower. ur meters in Both horneasurement ged to its value at the maxim Function at the semissions	Average rs above the 360 degrees ving antenna above the gr rizontal and vent. worst case all and the rotate num reading. nd Specified the transmit is in the restri	to a, which ound to vertical and ther able cted
	Below 1GHz test procedu a. The EUT was placed of at a 3 meter semi-aned determine the position b. The EUT was set 3 me was mounted on the totoon. The antenna height is was determine the maximum polarizations of the antended. For each suspected enterest the antenna was turned was turned from 0 degree. The test-receiver syste Bandwidth with Maximum f. Place a marker at the effrequency to show combands. Save the spectre for lowest and highest of the Above 1GHz test procedure.	re as below: In the top of a rochoic camber. The of the highest raters away from the pof a variable-hovaried from one movement value of the fine enna are set to mission, the EUT to heights from the rees to 360 degrees to 360 degrees to 360 degreem was set to Peum Hold Mode, and of the restrict of the restrict of the restrict of the policy of the restrict of the re	tating table ne table was adiation. the interference in the interf	e 0.8 meter is rotated 3 ence-receinna tower. ur meters and Both horneasurement ged to its was a the maximum function and losest to the emissions	rs above the 360 degrees diving antennal above the grain above the grain and vent. Worst case along the rotate and the rotate and specified the transmit is in the restrict and	to a, which ound to vertical and ther able cted
	a. The EUT was placed of at a 3 meter semi-aned determine the position. b. The EUT was set 3 me was mounted on the toto. The antenna height is was determine the maximum polarizations of the antended. For each suspected en the antenna was turned was turned from 0 degree. The test-receiver syste Bandwidth with Maximum f. Place a marker at the effrequency to show combands. Save the spectre for lowest and highest of Above 1GHz test procedure.	on the top of a rochoic camber. The of the highest raters away from the proof of a variable-howaried from one on value of the fire enna are set to enission, the EUT to heights from the top of the rees to 360 degrow was set to Perum Hold Mode. The proof of the restrict o	ne table wand adiation. The interference interference in the inter	ence-receinna tower. ur meters and Both horneasurement ged to its way 4 meters at the maxim Function and dosest to the emissions	above the grain above the grain and vent. worst case a and the rotate and specified and specified are transmit in the restricts in the restricts.	to a, which ound to vertical and ther able cted
		ıre as below:				
	to fully Anechoic Cham 18GHz the distance is h. Test the EUT in the lo i. The radiation measurer Transmitting mode, and j. Repeat above procedu	ber change forn 1 meter and tabl twest channel , t ments are perford d found the X ax	n table 0.8 e is 1.5 met the Highest rmed in X, tis positioni	meter to 1 ter). channel Y, Z axis p ng which it	.5 meter(Ab cositioning fo t is worse ca	ove r
Limit:	Frequency	Limit (dBµV/	\	1	mark	
(6)	30MHz-88MHz	40.0	/ 		eak Value	
	88MHz-216MHz	43.5		· ·	eak Value	
	216MHz-960MHz	46.0		-	eak Value	
	960MHz-1GHz	54.0			eak Value	
		54.0	16%		je Value	
	Above 1GHz)	Peak		

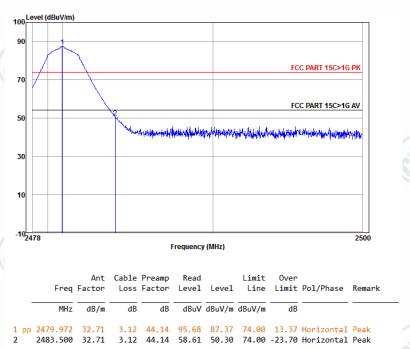


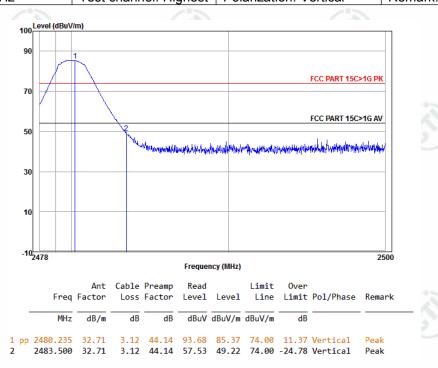

Page 30 of 46

Test plot as follows:

Worse case mode:	GFSK		(67)
Frequency:2402MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

Worse case mode:	GFSK			
Frequency: 2402MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak	





Page 31 of 46

Worse case mode:	GFSK		
Frequency: 2480MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix I): Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
)	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
	Abovo 1CHz	Peak	1MHz	3MHz	Peak
(0,	Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

	- 11	n	١ı	t:
ш	-11	п	ш	ι.

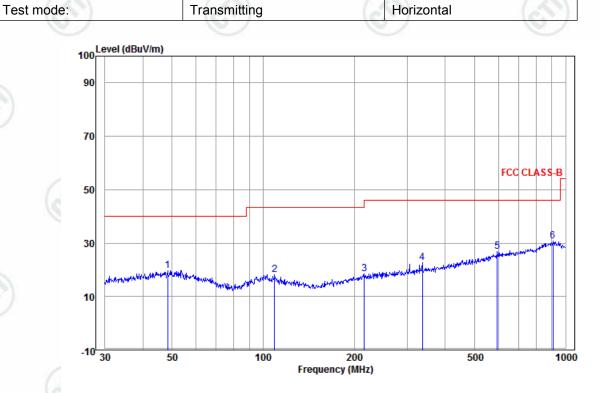
Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	20 - 5	30
1.705MHz-30MHz	30	-	(4.5)	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

30MHz~1GHz (QP)		
Test mode:	Transmitting	Vertical

	Freq		Cable Loss					Pol/Phase	Remark
_	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	47.994	14.45	0.10	8.57	23.12	40.00	-16.88	Vertical	QP
2	100.581	12.45	0.59	5.07	18.11	43.50	-25.39	Vertical	QP
3	223.733	12.05	1.22	6.53	19.80	46.00	-26.20	Vertical	QP
4	383.932	14.95	1.32	5.79	22.06	46.00	-23.94	Vertical	QP
5	578.670	18.33	1.71	6.48	26.52	46.00	-19.48	Vertical	QP
6 рр	958.794	21.96	2.20	7.58	31.74	46.00	-14.26	Vertical	QP



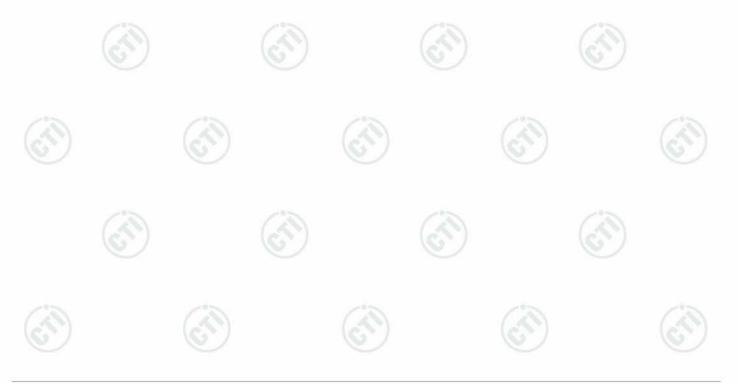
		Ant	Cable	Read		Limit	0ver		
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
-	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	48.332	14.48	0.10	4.99	19.57	40.00	-20.43	Horizontal	QP
2	109.029	11.71	0.59	5.97	18.27	43.50	-25.23	Horizontal	QP
3	216.024	11.88	1.18	5.47	18.53	46.00	-27.47	Horizontal	QP
4	336.035	14.14	1.25	7.25	22.64	46.00	-23.36	Horizontal	QP
5	595.133	18.62	1.80	6.51	26.93	46.00	-19.07	Horizontal	QP
6 рр	909.667	22.08	2.46	6.11	30.65	46.00	-15.35	Horizontal	QP

Transmitter Emission above 1GHz

Worse case	mode:	GFSK	(N)	Test char	nnel:	Lowest	Remark: P	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1228.984	30.29	1.91	44.34	47.50	35.36	74.00	-38.64	Pass	Н
1706.700	31.24	2.54	43.77	46.37	36.38	74.00	-37.62	Pass	ЭН
4804.000	34.69	5.98	44.60	47.35	43.42	74.00	-30.58	Pass	Н
6047.776	35.93	7.43	44.51	51.53	50.38	74.00	-23.62	Pass	Н
7206.000	36.42	6.97	44.77	47.91	46.53	74.00	-27.47	Pass	Н
9608.000	37.88	6.98	45.58	45.41	44.69	74.00	-29.31	Pass	Н
1283.335	30.42	1.99	44.27	48.66	36.80	74.00	-37.20	Pass	V
2097.507	31.92	2.90	43.64	47.29	38.47	74.00	-35.53	Pass	V
4804.000	34.69	5.98	44.60	47.01	43.08	74.00	-30.92	Pass	V
5971.290	35.88	7.41	44.50	46.66	45.45	74.00	-28.55	Pass	V
7206.000	36.42	6.97	44.77	51.29	49.91	74.00	-24.09	Pass	V
9608.000	37.88	6.98	45.58	45.91	45.19	74.00	-28.81	Pass	V

Worse case	mode:	GFSK	200	Test char	nnel:	Middle	Remark: P	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1270.334	30.39	1.97	44.29	47.56	35.63	74.00	-38.37	Pass	/° #
1791.273	31.38	2.63	43.69	46.14	36.46	74.00	-37.54	Pass	(AH)
4880.000	34.85	6.13	44.60	46.72	43.10	74.00	-30.90	Pass	H
6017.064	35.91	7.44	44.50	47.55	46.40	74.00	-27.60	Pass	Н
7320.000	36.43	6.85	44.87	45.85	44.26	74.00	-29.74	Pass	Н
9760.000	38.05	7.12	45.55	45.90	45.52	74.00	-28.48	Pass	Н
1167.982	30.15	1.81	44.43	46.93	34.46	74.00	-39.54	Pass	V
1557.252	30.98	2.36	43.93	47.65	37.06	74.00	-36.94	Pass	V
4880.000	34.85	6.13	44.60	46.52	42.90	74.00	-31.10	Pass	V
6001.768	35.90	7.44	44.50	48.02	46.86	74.00	-27.14	Pass	V
7320.000	36.43	6.85	44.87	45.39	43.80	74.00	-30.20	Pass	V
9760.000	38.05	7.12	45.55	45.98	45.60	74.00	-28.40	Pass	V

Worse case mode:				787					
		GFSK	100	Test channel:		Highest	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1270.334	30.39	1.97	44.29	46.91	34.98	74.00	-39.02	Pass	~ H
1549.344	30.96	2.35	43.94	46.34	35.71	74.00	-38.29	Pass	(H)
4960.000	35.02	6.29	44.60	46.37	43.08	74.00	-30.92	Pass	H
6187.929	36.00	7.39	44.52	46.94	45.81	74.00	-28.19	Pass	Н
7440.000	36.45	6.73	44.97	45.23	43.44	74.00	-30.56	Pass	Н
9920.000	38.22	7.26	45.52	45.20	45.16	74.00	-28.84	Pass	Н
1270.334	30.39	1.97	44.29	47.03	35.10	74.00	-38.90	Pass	V
1818.842	31.43	2.66	43.66	46.98	37.41	74.00	-36.59	Pass	V
4960.000	35.02	6.29	44.60	46.12	42.83	74.00	-31.17	Pass	V
6001.768	35.90	7.44	44.50	47.05	45.89	74.00	-28.11	Pass	V
7440.000	36.45	6.73	44.97	45.31	43.52	74.00	-30.48	Pass	V
9920.000	38.22	7.26	45.52	45.42	45.38	74.00	-28.62	Pass	V

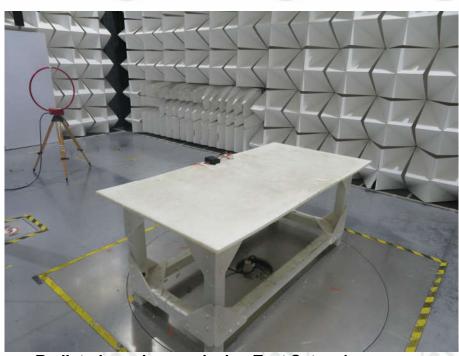

Note:

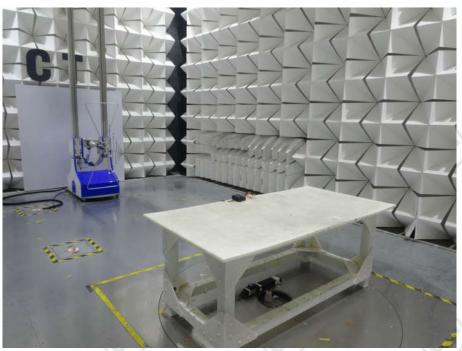
1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.





PHOTOGRAPHS OF TEST SETUP

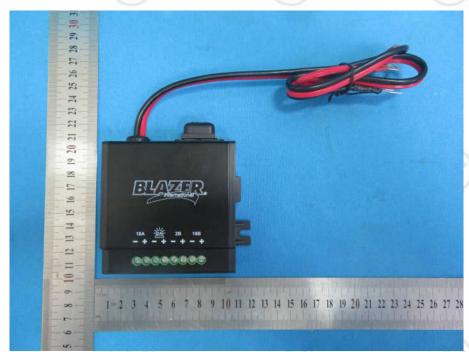
Test model No.: CWL623

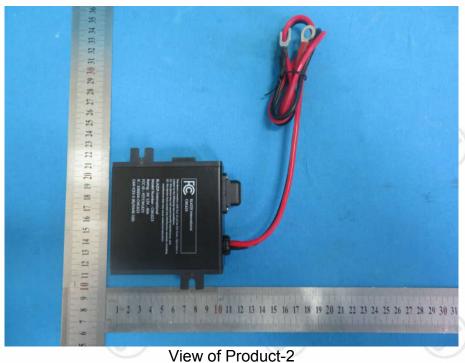
Radiated spurious emission Test Setup-1(9K-30MHz)

Radiated spurious emission Test Setup-2(30MHz-1GHz)

Radiated spurious emission Test Setup-3(Above 1GHz)

Conducted Emissions Test Setup





PHOTOGRAPHS OF EUT Constructional Details

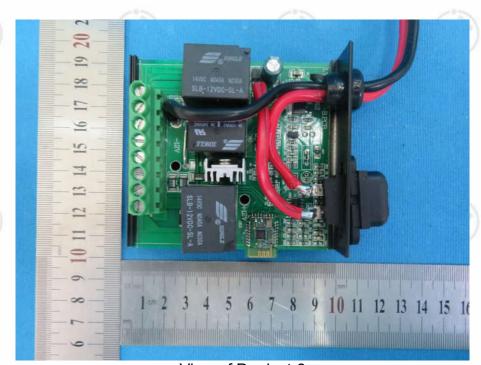
Test model No.: CWL623

View of Product-1

View of Product-3

View of Product-4

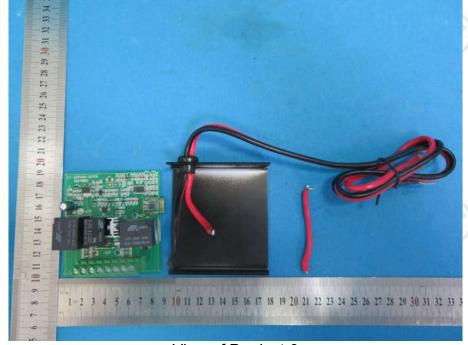
View of Product-5

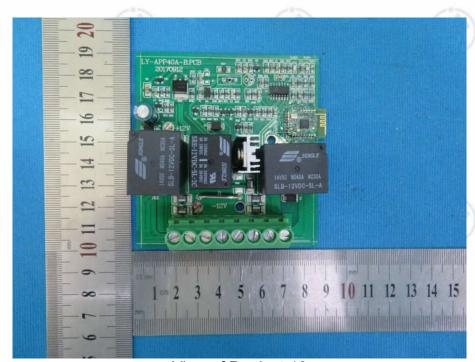


Report No.: EED32J00285301

View of Product-7

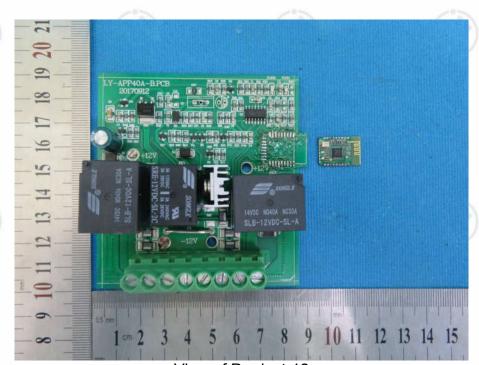
View of Product-8





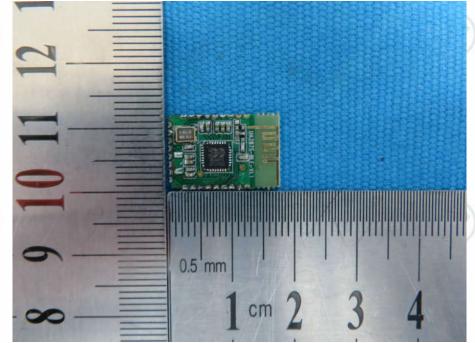
View of Product-9

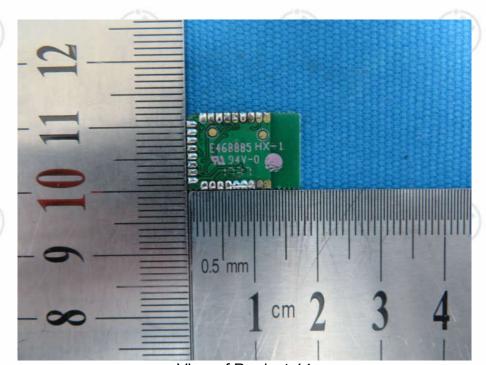
View of Product-10



View of Product-11

View of Product-12





View of Product-13

View of Product-14

View of Product-15

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

