

FCC PART 15.247

TEST REPORT

For

Summer Infant, Inc.

1275 Park East Drive, Woonsocket, RI 02895, U.S.A

FCC ID: PZK-936R

Report Type:		Product Type:
Original Report		Baby Monitor (Monitor Unit)
Test Engineer:	Simon Wang	Simon Wang
Report Number:	RSZ141015003-	-00
Report Date:	2014-11-06	
Poviowod Ry:	Jimmy Xiao	Jimmy Xiao
Reviewed By:		
Prepared By:	6/F, the 3rd Phas	3320018 3320008

Note: This test report is prepared for the customer shown above and for the equipment described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp.

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE Related Submittal(s)/Grant(s)	
TEST METHODOLOGY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	6
DESCRIPTION OF TEST CONFIGURATION	6
EUT Exercise Software	
Equipment Modifications External I/O Cable	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
FCC §15.247 (i) & §2.1093 – RF EXPOSURE	8
APPLICABLE STANDARD	
FCC §15.203 – ANTENNA REQUIREMENT	9
APPLICABLE STANDARD	9
ANTENNA CONNECTOR CONSTRUCTION	9
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	
APPLICABLE STANDARD	
MEASUREMENT UNCERTAINTY	
EUT SETUP	
EMI Test Receiver Setup Test Procedure	
TEST FROEDORE LIST AND DETAILS	
TEST RESULTS SUMMARY	
TEST DATA	
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS	
APPLICABLE STANDARD	
Measurement Uncertainty EUT Setup	
EUT SEIUP EMI Test Receiver & Spectrum Analyzer Setup	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
Test Results Summary Test Data	
FCC §15.247(a) (1)-CHANNEL SEPARATION	
TEST PROCEDURE	
TEST FROELOOR III TEST AND DETAILS	
TEST DATA	
FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH	24
APPLICABLE STANDARD	

FCC Part 15.247

Page 2 of 36

Report No.: RSZ141015003-00

Test Procedure	24
TEST EQUIPMENT LIST AND DETAILS	24
TEST DATA	24
FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL	27
Applicable Standard	27
Test Procedure	27
TEST EQUIPMENT LIST AND DETAILS	27
TEST DATA	27
FCC §15.247(a) (1) (iii) -TIME OF OCCUPANCY (DWELL TIME)	29
APPLICABLE STANDARD	
Test Procedure	
Test Equipment List and Details	
TEST DATA	
FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT	32
APPLICABLE STANDARD	
Test Procedure	
Test Equipment List and Details	
TEST DATA	
FCC §15.247(d) - BAND EDGES	35
Applicable Standard	
Test Procedure	
Test Equipment List and Details	
TEST DATA	

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *Summer Infant, Inc.*'s product, model number: 29360 (FCC ID: PZK-936R) (the "EUT") in this report was a monitor unit of *Baby Monitor*, which was measured approximately: 15.5 cm (L) x 8.6 cm (W) x 2.1 cm (H), rated with input voltage: DC 3.7V rechargeable Li-ion battery or DC 7.5V from adapter.

Adapter Information: Model: ADN050750500 Input: AC 120V, 250mA, 60Hz Output: DC 7.5V, 500mA

* All measurement and test data in this report was gathered from production sample serial number: 1410113 (Assigned by BACL, Shenzhen). The EUT supplied by the applicant was received on 2014-10-15.

Objective

This report is prepared on behalf of *Summer Infant, Inc.* in accordance with Part 2-Subpart J, Part 15-Subparts A, B and C of the Federal Communication Commissions rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

The camera unit of a system with FCC ID: PZK-936T.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-2009, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement uncertainty with radiated emission is 5.91 dB for 30MHz-1GHz and 4.92 dB for above 1GHz, 1.95dB for conducted measurement.

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China.

Test site at Bay Area Compliance Laboratories Corp. (Shenzhen) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on December 06, 2010. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2009.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

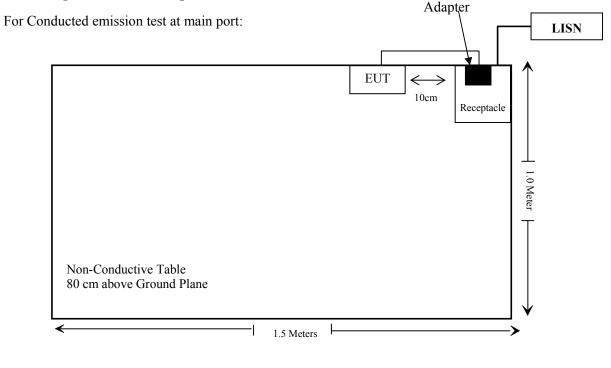
SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode which was selected by manufacturer.

EUT Exercise Software

No exercise software was used.


Equipment Modifications

No modification was made to the EUT tested.

External I/O Cable

Cable Description	Length (m)	From/Port	То
Un-shielding Undetachable DC Power Cable	2.5	EUT	Adapter

Block Diagram of Test Setup

FCC Part 15.247

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i), §1.1307 (b) (1)& §2.1093	RF Exposure	Compliance
§15.203	Antenna Requirement	Compliance
§15.207 (a)	AC Line Conducted Emissions	Compliance
§15.205, §15.209, §15.247(d)	Radiated Emissions	Compliance
§15.247 (a)(1)	20 dB Emission Bandwidth	Compliance
§15.247(a)(1)	Channel Separation	Compliance
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliance
§15.247(a)(1)(iii)	Quantity of hopping channel	Compliance
§15.247(b)(1)	Peak Output Power Measurement	Compliance
§15.247(d)	Band Edges	Compliance

FCC §15.247 (i) & §2.1093 – RF EXPOSURE

Applicable Standard

According to \$15.247(i) and \$1.1310, systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB447498 D01 General RF Exposure Guidance v05r02:

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] • [$\sqrt{f(GHz)}$] ≤ 3.0 for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison
- 3 and 7.5 are referred to as the numeric thresholds in the step 2 below

The test exclusions are applicable only when the minimum test separation distance is ≤ 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm according to 5) in section 4.1 is applied to determine SAR test exclusion.

Measurement Result

The maximum conducted output power=12.94 dBm=19.68 mW at 2468MHz The time-averaged maximum conducted output power*dutycycle=19.68 mW *4.41%=0.87 mW

[(max. power of channel, mW)/(min. test separation distance, mm)] • [$\sqrt{f(GHz)}$] = 0.87*($\sqrt{2.468}$)/5= 0.27 <3.0

So the stand-alone SAR evaluation is not necessary.

FCC §15.203 – ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Antenna Connector Construction

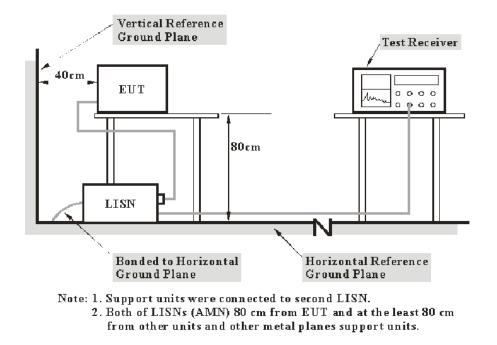
The EUT has one integrated antenna arrangement, which was permanently attached and the antenna gain is 0 dBi, fulfill the requirement of this section. Please refer to the internal photos.

Result: Compliance.

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207


Measurement Uncertainty

Input quantities to be considered for conducted disturbance measurements maybe receiver reading, attenuation of the connection between AMN/ISN and receiver, AMN/ISN voltage division factor, AMN/ISN VDF frequency interpolation and receiver related input quantities, etc.

Based on CISPR 16-4-2:2011, the expended combined standard uncertainty of conducted disturbance test at Bay Area Compliance Laboratories Corp. (Shenzhen) is shown as below. And the uncertainty will not be taken into consideration for the test data recorded in the report

Port	Measurement uncertainty		
AC Mains	3.26 dB (k=2, 95% level of confidence)		
CAT 3	3.70 dB (k=2, 95% level of confidence)		
CAT 5	3.86 dB (k=2, 95% level of confidence)		
CAT 6	4.64 dB (k=2, 95% level of confidence)		

EUT Setup

The setup of EUT is according with per ANSI C63.4-2009 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

The adapter was connected to a 120 VAC/60 Hz power source.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W	
150 kHz – 30 MHz	9 kHz	

Test Procedure

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	101120	2014-11-03	2015-11-03
Rohde & Schwarz	LISN	ENV216	3560.6650.12-101613-Yb	2014-06-09	2015-06-09
Rohde & Schwarz	Transient limitator	ESH3Z2	DE25985	2014-05-14	2015-05-14
Rohde & Schwarz	CE Test software	EMC 32	V8.53		

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15.207, the worst margin reading as bellow:

2.0 dB at 0.391790 MHz in the Neutral conducted mode

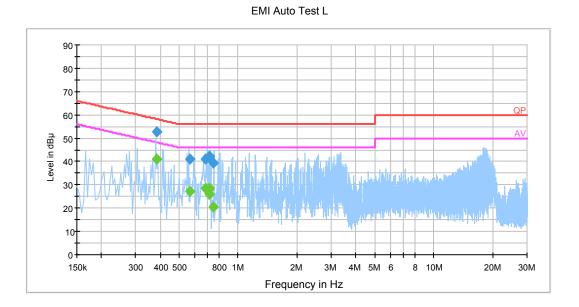
Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level compliance with the limit if

 $L_{\rm m} + U_{(Lm)} \leq L_{\rm lim} + U_{\rm cispr}$

in BACL., $U_{(Lm)}$ is less than U_{cispr} , if L_m is less than L_{lim} , it implies that the EUT complies with the limit.

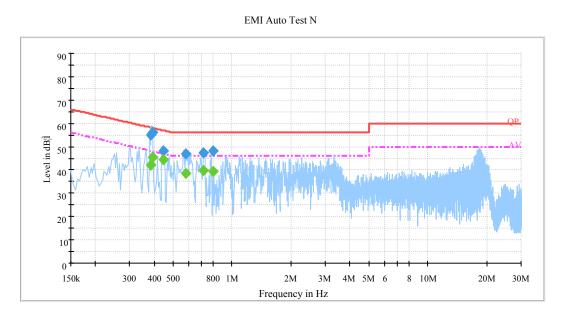
Test Data

Environmental Conditions


Temperature:	26 °C
Relative Humidity:	52 %
ATM Pressure:	101.0 kPa

The testing was performed by Simon Wang on 2014-10-23.

Report No.: RSZ141015003-00


Test Mode: Transmitting & Charging

AC 120 V, 60 Hz, Line:

Frequency (MHz)	Corrected Amplitude (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/QP/Ave.)
0.383670	52.8	19.5	58.2	5.4	QP
0.383670	41.0	19.5	48.2	7.2	Ave.
0.566370	40.9	19.6	56.0	15.1	QP
0.566370	27.3	19.6	46.0	18.7	Ave.
0.683590	40.8	19.6	56.0	15.2	QP
0.683590	28.3	19.6	46.0	17.7	Ave.
0.711230	41.5	19.6	56.0	14.5	QP
0.711230	26.0	19.6	46.0	20.0	Ave.
0.715350	42.3	19.6	56.0	13.7	QP
0.715350	28.5	19.6	46.0	17.5	Ave.
0.750690	39.2	19.5	56.0	16.8	QP
0.750690	20.7	19.5	46.0	25.3	Ave.

AC 120V, 60 Hz, Neutral:

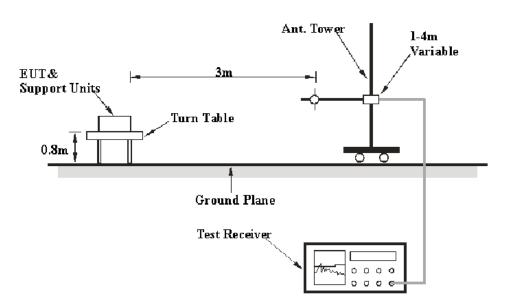
Frequency (MHz)	Corrected Amplitude (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/QP/Ave.)
0.384150	55.1	19.5	58.2	3.1	QP
0.384150	41.7	19.5	48.2	6.5	Ave.
0.391790	56.0	19.6	58.0	2.0	QP
0.391790	45.6	19.6	48.0	2.4	Ave.
0.443430	48.3	19.6	57.0	8.7	QP
0.443430	44.5	19.6	47.0	2.5	Ave.
0.578550	46.8	19.6	56.0	9.2	QP
0.578550	38.5	19.6	46.0	7.5	Ave.
0.715170	47.1	19.6	56.0	8.9	QP
0.715170	39.8	19.6	46.0	6.2	Ave.
0.797790	48.3	19.6	56.0	7.7	QP
0.797790	39.4	19.6	46.0	6.6	Ave.

Note:

Corrected Amplitude = Reading + Correction Factor
Correction Factor =LISN VDF (Voltage Division Factor) + Cable Loss
Margin = Limit - Corrected Amplitude

FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard


FCC §15.247 (d); §15.209; §15.205;

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on CISPR 16-4-2:2011, the expended combined standard uncertainty of radiation emissions at Bay Area Compliance Laboratories Corp. (Shenzhen) is 5.91 dB for 30MHz-1GHz and 4.92 dB for above 1GHz. And the uncertainty will not be taken into consideration for the test data recorded in the report

EUT Setup

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.4-2009. The specification used was the FCC 15.209 and FCC 15.247 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The adapter was connected to a 120 VAC/60 Hz power source.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1MHz	3 MHz	/	РК
	1MHz	10 Hz	/	Ave.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz to 1GHz and peak and Average detection modes for frequencies above 1GHz.

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
HP	Amplifier	8447E	1937A01046	2014-05-06	2015-05-06
Rohde & Schwarz	EMI Test Receiver	ESCI	101120	2014-11-03	2015-11-03
Sunol Sciences	Broadband Antenna	JB1	A040904-2	2011-11-28	2014-11-27
Mini	Pre-amplifier	ZVA-183-S+	5969001149	2014-04-23	2015-04-23
Sunol Sciences	Horn Antenna	DRH-118	A052304	2013-11-30	2014-11-30
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2013-11-12	2014-11-12
DUCOMMUN	Pre-amplifier	ALN- 22093530-01	991373-01	2014-08-03	2015-08-03
the electro- Mechanics Co.	Horn Antenna	3116	9510-2270	2013-10-14	2016-10-13

Test Equipment List and Details

* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Results Summary

According to the recorded data in following table, the EUT complied with the <u>FCC Title 47, Part 15,</u> <u>Subpart C, section 15.205, 15.209 and 15.247</u>, the worst margin reading as bellow:

8.10 dB at 2484.00 MHz in the Horizontal polarization

Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level compliance with the limit if

$$L_{\rm m} + U_{(Lm)} \leq L_{\rm lim} + U_{\rm cispr}$$

in BACL., $U_{(Lm)}$ is less than + U_{cispr} , if L_m is less than L_{lim} , it implies that the EUT complies with the limit.

Test Data

Environmental Conditions

Temperature:	23 °C
Relative Humidity:	51 %
ATM Pressure:	101.0 kPa

The testing was performed by Simon Wang on 2014-11-04.

Report No.: RSZ141015003-00

30 MHz -25 GHz:

Test Mode: Transmitting

Frequency	Re	ceiver	Turn	Rx Ar	itenna	Corrected	Corrected	FCC 15.247/2	
(MHz)	Reading (dBµV)	Detector (PK/QP/Ave.)	Degree Height Polar	Factor (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)		
			Low Cl	hannel (2	2417MF	Hz)			
126.5	42.23	QP	29	1	V	-13.7	28.53	43.5	14.97
2417.00	101.27	PK	217	1.1	Н	6.13	107.40		
2417.00	99.32	PK	337	1.6	V	6.13	105.45	/	/
2390.00	58.60	РК	349	1.8	Н	5.48	64.08	74	9.92
2390.00	18.34	Ave.	349	1.8	Н	5.48	23.82	54	30.18
2484.00	56.18	РК	105	2.3	Н	7.21	63.39	74	10.61
2484.00	19.50	Ave.	105	2.3	Н	7.21	26.71	54	27.29
2887.32	42.30	РК	276	1.9	Н	8.56	50.86	74	23.14
2887.32	24.55	Ave.	276	1.9	Н	8.56	33.11	54	20.89
4834.00	43.16	РК	272	2.0	Н	12.4	55.56	74	18.44
7251.00	40.01	РК	99	1.6	Н	16.62	56.63	74	17.37
9668.00	37.31	РК	328	1.7	V	19.28	56.59	74	17.41
			Middle C	Channel	(2444 N	fHz)			
126.5	42.35	QP	29	1	V	-13.7	28.65	43.5	14.85
2444.00	100.01	РК	338	1.3	Н	6.13	106.14		
2444.00	99.65	РК	146	1.7	V	6.13	105.78	/	/
2390.00	58.01	РК	156	1.2	Н	5.48	63.49	74	10.51
2390.00	18.34	Ave.	156	1.2	Н	5.48	23.82	54	30.18
2484.00	57.29	РК	17	2.1	Н	7.21	64.50	74	9.50
2484.00	19.50	Ave.	17	2.1	Н	7.21	26.71	54	27.29
2921.52	41.59	РК	7	2.2	Н	9.14	50.73	74	23.27
2921.52	21.66	Ave.	7	2.2	Н	9.14	30.80	54	23.20
4888.00	45.22	РК	49	2.3	Η	12.4	57.62	74	16.38
7332.00	40.73	РК	346	1.1	Н	16.49	57.22	74	16.78
9776.00	38.22	PK	289	1.1	V	19.4	57.62	74	16.38

Report No.: RSZ141015003-00

Frequency Receive		ceiver	Turn	Rx Ar	itenna	Corrected		FCC Part 15.247/205/209	
(MHz)	Reading (dBµV)	Detector (PK/QP/Ave.)	table Degree Height (m)	Height (m)	Polar (H/V)	Factor (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
			High Cł	nannel (2	2468 M	Hz)		_	
126.5	42.16	QP	29	1	V	-13.7	28.46	43.5	15.04
2468.00	99.93	PK	54	1.5	Н	7.21	107.14		
2468.00	96.78	PK	306	1.3	V	7.21	103.99	/	/
2387.27	57.82	PK	274	1.7	Н	5.48	63.30	74	10.70
2387.27	18.34	Ave.	274	1.7	Н	5.48	23.82	54	30.18
2484.00	58.69	PK	321	1.4	Н	7.21	65.90	74	8.10
2484.00	19.50	Ave.	321	1.4	Н	7.21	26.71	54	27.29
2740.15	41.26	РК	359	1.4	Н	7.93	49.19	74	24.81
2740.15	21.22	Ave.	359	1.4	Н	7.93	29.15	54	24.85
4936.00	46.13	РК	264	1.7	Н	12.46	58.59	74	15.41
7404.00	41.20	РК	19	1.1	Н	15.91	57.11	74	16.89
9872.00	37.15	PK	187	2.0	V	19.39	56.54	74	17.46

Note:

Corrected Factor=Antenna factor (RX) +cable loss – amplifier factor
Corrected Amplitude = Corrected Factor + Receiver Reading
Margin = Limit- Corrected Amplitude

Report No.: RSZ141015003-00

	Field Strength of Radiated Emission Average							
	Peak Corrected	D 1	Duty	Corrected	FCC 15.247			
Freq. (MHz)	Amplitude. @3m (dBµV/m)	Polar (H/V)		Amplitude. (dBµV/m)	Limit (dBµV/m)	Margin	Comment	
		Ι	Low Channel ((2417.00 MHz)				
2417.00	107.40	Н	-27.11	80.29	/	/	Fundamental	
2417.00	105.45	V	-27.11	78.34	/	/	Fundamental	
4834.00	55.56	Н	-27.11	28.45	54	25.55	Harmonic	
7251.00	56.63	Н	-27.11	29.52	54	24.48	Harmonic	
9668.00	56.59	V	-27.11	29.48	54	24.52	Harmonic	
		М	iddle Channel	(2444.00 MHz)				
2444.00	106.14	Н	-27.11	79.03	/	/	Fundamental	
2444.00	105.78	V	-27.11	78.67	/	/	Fundamental	
4888.00	57.62	Н	-27.11	30.51	54	23.49	Harmonic	
7332.00	57.22	Н	-27.11	30.11	54	23.89	Harmonic	
9776.00	57.62	Н	-27.11	30.51	54	23.49	Harmonic	
		I	High Channel	(2468.00 MHz)		_		
2468.00	107.14	Н	-27.11	80.03	/	/	Fundamental	
2468.00	103.99	V	-27.11	76.88	/	/	Fundamental	
4936.00	58.59	Н	-27.11	31.48	54	22.52	Harmonic	
7404.00	57.11	V	-27.11	30.00	54	24.00	Harmonic	
9872.00	56.54	V	-27.11	29.43	54	24.57	Harmonic	

Note:

Corrected Amplitude = Corrected Factor + Reading Corrected Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor Margin = Limit- Corr. Amplitude Ton=0.21ms*210=44.1ms Tp=1s Duty Cycle = Ton/Tp*100%, Duty cycle factor = 20lg (Duty Cycle) = -27.11 Ave. = PK+20* lg (Duty Cycle)

FCC §15.247(a) (1)-CHANNEL SEPARATION

Applicable Standard

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW.

Test Procedure

- 1. Set the EUT in operating mode, RBW was set at 100 kHz,VBW≥ 3RBW maxhold the channel.
- 2. Set the adjacent channel of the EUT maxhold another trace
- 3. Measure the channel separation.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	837405/023	2014-08-22	2015-08-22

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

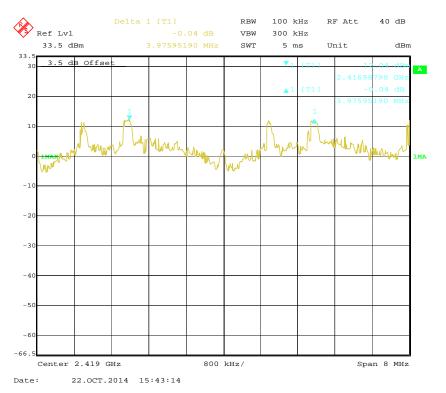
Test Data

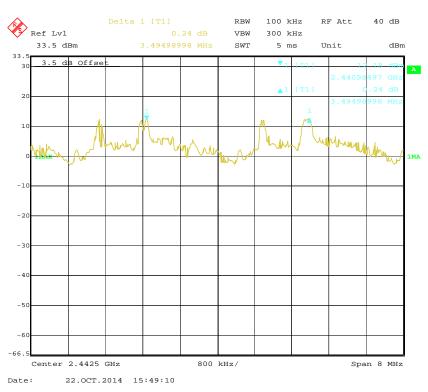
Environmental Conditions

Temperature:	25 °C
Relative Humidity:	49 %
ATM Pressure:	101.0 kPa

The testing was performed by Simon Wang on 2014-10-22.

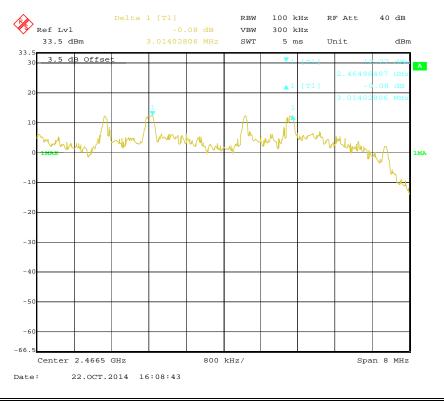
Test Result: Compliance.


Please refer to following tables and plots


Test Mode: Transmitting

Channel	Channel Frequency (MHz)	Channel Separation (MHz)	≥ Limit (MHz)	
Low	2417	3.976	2.987	
Adjacent	2421	5.970	2.901	
Middle	2441	2 405	2 004	
Adjacent	2444	3.495	3.004	
High	2468	2 014	2.000	
Adjacent	2465	3.014	3.066	

Note: limit =2/3 of 20 dB bandwidth


Low Channel

Middle Channel

High Channel

FCC Part 15.247

Page 23 of 36

FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH

Applicable Standard

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125mW.

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 3. Repeat above procedures until all frequencies measured were complete.

Test Equipment List and Details

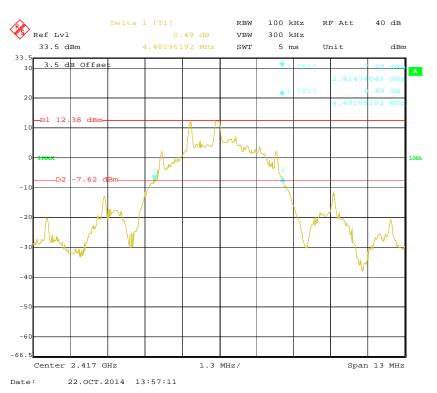
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	837405/023	2014-08-22	2015-08-22

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

Test Data

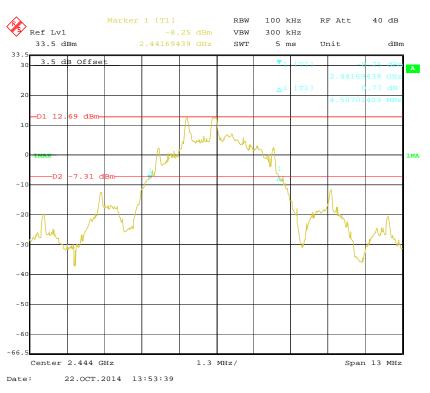
Environmental Conditions

Temperature:	23 °C
Relative Humidity:	49 %
ATM Pressure:	101.0 kPa

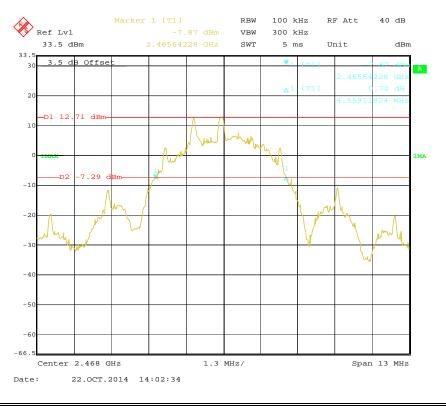

The testing was performed by Simon Wang on 2014-10-22.

Test Result: Compliance.

Please refer to following tables and plots


Test Mode: Transmitting

Channel	Frequency (MHz)	20 dB Emisson Bandwidth (MHz)
Low	2417	4.481
Middle	2444	4.507
High	2468	4.559


Low Channel

FCC Part 15.247

Middle Channel

High Channel

FCC Part 15.247

Page 26 of 36

FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL

Applicable Standard

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the max-hold function record the quantity of the channel.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	837405/023	2014-08-22	2015-08-22

* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	23 °C
Relative Humidity:	49 %
ATM Pressure:	101.0 kPa

The testing was performed by Simon Wang on 2014-10-22.

Test Result: Compliance.

Please refer to following tables and plots

Report No.: RSZ141015003-00

Test Mode: Transmitting

Frequency Range (MHz)	Number of Hopping Channel	Limit
2400 ~ 2483.50	16	≥ 15

Delta 1 [T1] RBW 100 kHz RF Att 40 dB Ref Lvl 0.23 dB VBW 300 kHz 33.5 dBm 51.20440882 MHz 21 ms Unit dBm SWT 33.5 3.5 dB Offset 30 А 20 10 Uh M LMA -10 -20 -30 h -40 -5 -60 -66. Start 2.4 GHz 8.35 MHz/ Stop 2.4835 GHz 22.OCT.2014 14:47:42 Date:

Number of Hopping Channels

FCC Part 15.247

FCC §15.247(a) (1) (iii) -TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

The EUT was worked in channel hopping; spectrum span was set as 0. Sweep was set as 0.4 X channel no. (s), the quantity of pulse was get from single sweep. In addition, the time of single pulses was tested.

Dwell Time= Pulse time (ms) * hope rate/ number of hopping channels * hopping No.*0.4 s

Test Equipment List and Details

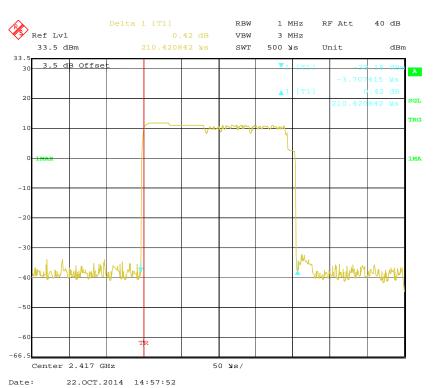
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	837405/023	2014-08-22	2015-08-22

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

Test Data

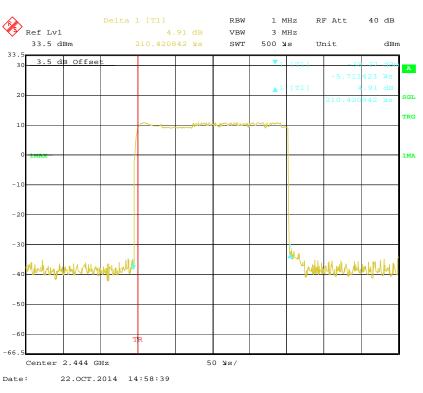
Environmental Conditions

Temperature:	23 °C
Relative Humidity:	49 %
ATM Pressure:	101.0 kPa

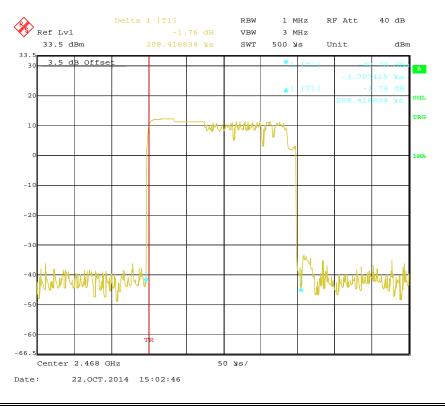

The testing was performed by Simon Wang on 2014-10-22.

Test Result: Compliance.

Please refer to following tables and plots


Test Mode: Transmitting

Channel	Pulse Width (ms)	Dwell Time (S)	Limit (S)	Result
Low	0.210	0.018	0.4	Pass
Middle	0.210	0.018	0.4	Pass
High	0.208	0.018	0.4	Pass
Note: Dwell time=Pulse time (ms) \times (210/16) \times 16*0.4 S Hopping rate = 210 times per second				


Low Channel

FCC Part 15.247

Middle Channel

High Channel

FCC Part 15.247

Page 31 of 36

FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

According to §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

Test Procedure

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to an EMI Test Receiver.
- 3. Add a correction factor to the display.

Test Equipment List and Details

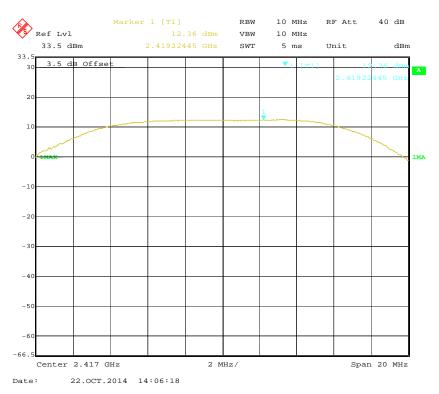
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	837405/023	2014-08-22	2015-08-22

* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	23 °C
Relative Humidity:	49 %
ATM Pressure:	101.0 kPa


The testing was performed by Simon Wang on 2014-10-22.

Test Result: Compliance.

Test Mode: Transmitting

Channel	Channel Frequency (MHz)	Peak Output Power (dBm)	Limit (dBm)
Low	2417	12.36	20.97
Middle	2444	12.83	20.97
High	2468	12.94	20.97

Low Channel

FCC Part 15.247

Middle Channel

High Channel

FCC Part 15.247

Page 34 of 36

FCC §15.247(d) - BAND EDGES

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 3. Repeat above procedures until all measured frequencies were complete.

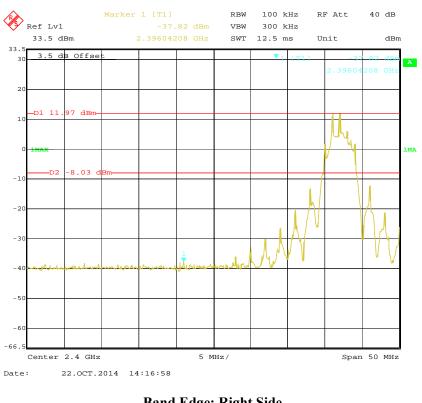
Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	837405/023	2014-08-22	2015-08-22

* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

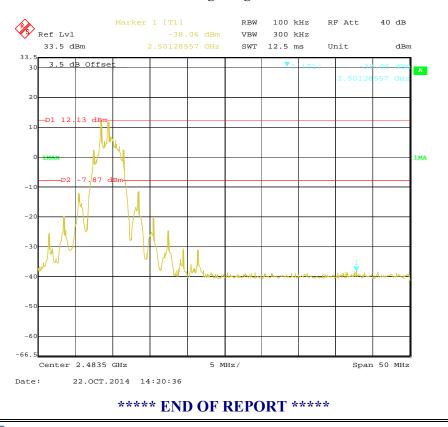
Test Data

Environmental Conditions


Temperature:	23 °C
Relative Humidity:	49 %
ATM Pressure:	101.0 kPa

The testing was performed by Simon Wang on 2014-10-22.

Test Result: Compliance.


Test Mode: Transmitting

Please refer to follow plots:

Band Edge: Left Side

Band Edge: Right Side

FCC Part 15.247

Page 36 of 36