

FCC PART 15.247

MEASUREMENT AND TEST REPORT

For

Summer Infant, Inc.

582 Great Road, North Smithfield, Rhode Island 02896, United States

FCC ID: PZK-248T

Report Type: Product Type:

Original Report 2.4 GHz Transmitter (Audio Monitor)

Test Engineer: Kvass Yang

Report Number: RSZ10111802

Report Date: 2010-12-17

Merry Zhao

Reviewed By: EMC Engineer

Prepared By:

Bay Area Compliance Laboratories Corp. (Shenzhen)

6/F, the 3rd Phase of WanLi Industrial Building,

merry, when

ShiHua Road, FuTian Free Trade Zone

Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by NVLAP*, NIST, or any agency of the Federal Government. * This report contains data that are not covered by the NVLAP accreditation and are marked with an asterisk "★" (Rev.2)

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
Objective	
RELATED SUBMITTAL(S)/GRANT(S)	
Test Methodology	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	6
DESCRIPTION OF TEST CONFIGURATION	6
EQUIPMENT MODIFICATIONS	
EUT Exercise Software	
LOCAL SUPPORT EQUIPMENT LIST AND DETAILS	
EXTERNAL I/O CABLE	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
FCC §15.247 (i), §1.1307(b)(1) & §2.1091 - MAXIMUM PERMISSIBLE EXPOSURE (MPE)	
APPLICABLE STANDARD	
TEST DATA	
FCC §15.203 - ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
APPLICABLE STANDARD ANTENNA CONNECTOR CONSTRUCTION	10
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	
APPLICABLE STANDARD	
MEASUREMENT UNCERTAINTYEUT SETUP	
EMI TEST RECEIVER SETUP.	
TEST EQUIPMENT LIST AND DETAILS.	
TEST PROCEDURE	
TEST RESULTS SUMMARY	
TEST DATA	
FCC §15.205, §15.209 & §15.247(d) - RADIATED EMISSIONS	15
APPLICABLE STANDARD	
Measurement Uncertainty	
EUT Setup	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	
TEST RESULTS SUMMARY	
TEST DATA	
FCC §15.247(a) (1) - CHANNEL SEPARATION TEST	21
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	21
TEST PROCEDURE	21

Test Data	21
FCC §15.247(a) (1) - 20 dB BANDWIDTH TESTING	24
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	
Test Data	
FCC §15.247(a) (1) (iii) - QUANTITY OF HOPPING CHANNEL TEST	27
APPLICABLE STANDARD	27
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	
Test Data	
FCC §15.247(a) (1) (iii) -TIME OF OCCUPANCY (DWELL TIME)	29
APPLICABLE STANDARD	29
TEST EQUIPMENT LIST AND DETAILS	29
TEST PROCEDURE	
Test Data	29
FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT	32
APPLICABLE STANDARD	32
TEST EQUIPMENT LIST AND DETAILS	32
TEST PROCEDURE	32
TEST DATA	32
FCC §15.247(d) - BAND EDGES TESTING	35
APPLICABLE STANDARD	35
TEST EQUIPMENT LIST AND DETAILS.	
TEST PROCEDURE	35
Test Data	36

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The Summer Infant, Inc.'s product, model number: 248T (FCC ID: PZK-248T) or the "EUT" as referred to in this report is a Transmitter of Audio Monitor, which measures approximately: 8.0 cm (L) x 7.3 cm (W) x 3.0 cm (H), rated input voltage: DC 5V adapter.

Adapter Information: Model: AD050500300

Input: AC 120V 250mA 60 Hz Output: DC 5V 300mA

Output: DC 5V 300mA

*All measurement and test data in this report was gathered from production sample serial number: 1011097 (Assigned by BACL, Shenzhen). The EUT was received on 2010-11-18.

Objective

This Type approval report is prepared on behalf of *Summer Infant, Inc.* in accordance with Part 2, Subpart J, Part 15, Subparts A, B and C of the Federal Communication Commissions rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

No related submittal(s).

Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-2009, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located in the 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China.

Test site at Bay Area Compliance Laboratories Corp. (Shenzhen) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on December 06, 2010. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2009.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, Bay Area Compliance Laboratories Corp. (Shenzhen) is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (Lab Code 200707-0).

The current scope of accreditations can be found at http://ts.nist.gov/Standards/scopes/2007070.htm

SYSTEM TEST CONFIGURATION

Description of Test Configuration

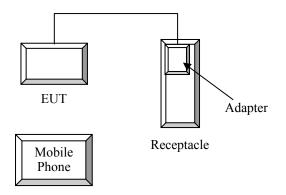
The system was configured for testing in typical use below 1 GHz and an engineering mode which was selected by manufacturer above 1 GHz.

Equipment Modifications

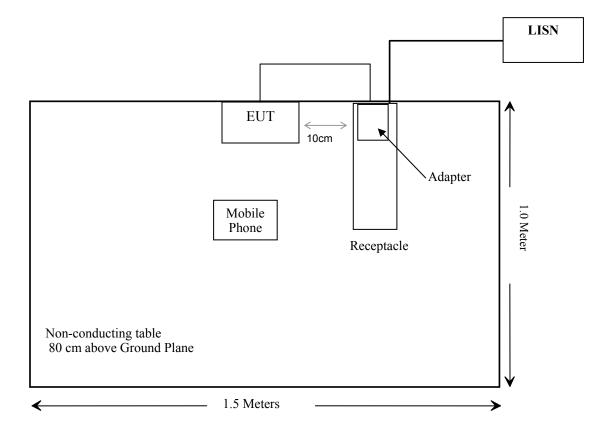
No modification was made to the unit tested.

EUT Exercise Software

N/A.


Local Support Equipment List and Details

Manufacturer	Description	Model	Serial Number	FCC ID
NOKIA	Mobile Phone	5310	N/A	DoC


External I/O Cable

Cable Description	Length (m)	From/Port	То
Unshielded Detachable DC Power Cable	1.9	EUT	Adapter

Configuration of Test Setup

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247(i), §1.1307(b)(1) & §2.1091	Maximum Permissible Exposure (MPE)	Compliance
§15.203	Antenna Requirement	Compliance
§15.207 (a)	AC Line Conducted Emissions	Compliance
§15.205, §15.209, §15.247(d)	Radiated Emissions	Compliance
§15.247 (a)(1)	20 dB Bandwidth	Compliance
§15.247(a)(1)	Channel Separation Test	Compliance
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliance
§15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliance
§15.247(b)(1)	Peak Output Power Measurement	Compliance
§15.247(d)	Band Edges	Compliance

FCC §15.247 (i), §1.1307(b)(1) & §2.1091 - MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

According to §1.1310 and §2.1091 RF exposure is calculated.

Limits for General Population/Uncontrolled Exposure

Limits for General Population/Uncontrolled Exposure					
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (minutes)	
0.3-1.34	614	1.63	*(100)	30	
1.34-30	824/f	2.19/f	$*(180/f^2)$	30	
30-300	27.5	0.073	0.2	30	
300-1500	/	/	f/1500	30	
1500-100,000	/	/	1.0	30	

f = frequency in MHz

Test Data

Predication of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

Where: S = power density (in appropriate units, e.g. mW/cm2)

P = power input to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Maximum peak output power at antenna input terminal: 8.86 (dBm) Maximum peak output power at antenna input terminal: 7.69 (mW)

Prediction distance: >20 (cm)
Predication frequency: 2473 (MHz)

Antenna Gain (typical): $\overline{0(dBi)}$

Antenna Gain (typical): 1 (numeric) ation frequency at 20 cm: 0.0015 (mW/cm

The worst case is power density at predication frequency at 20 cm: 0.0015 (mW/cm²) MPE limit for general population exposure at prediction frequency: 1 (mW/cm²)

Result: Pass

^{* =} Plane-wave equivalent power density

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

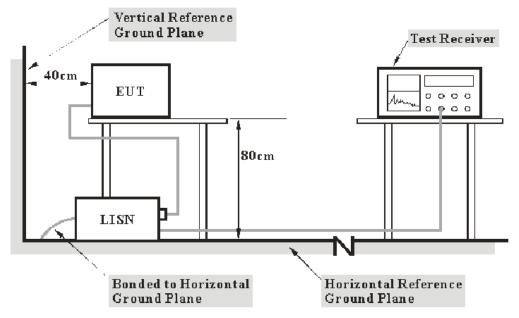
Antenna Connector Construction

The EUT has a monopole antenna connected to the RF board, which in accordance to section 15.203, the maximum gain is 0 dBi; please refer to the internal photos.

Result: Compliance.

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard


FCC§15.207

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, and LISN.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of any conducted emissions measurement at Bay Area Compliance Laboratory Corp. (Shenzhen) is ± 2.4 dB.

EUT Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMIN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.4-2009 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

The adapter was connected to a 120 VAC/60 Hz power source.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCS30	830245/006	2010-03-03	2011-03-02
Rohde & Schwarz	L.I.S.N.	ESH2-Z5	892107/021	2010-03-09	2011-03-08

^{*} **Statement of Traceability:** Bay Area Compliance Laboratory Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

During the conducted emission test, the adapter was connected to the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

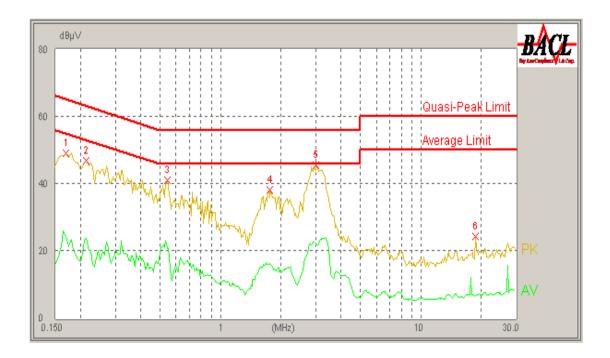
All data was recorded in the Quasi-peak and average detection mode.

Test Results Summary

According to the recorded data in following table, the EUT complied with the <u>FCC Part 15.207</u>, with the worst margin reading of:

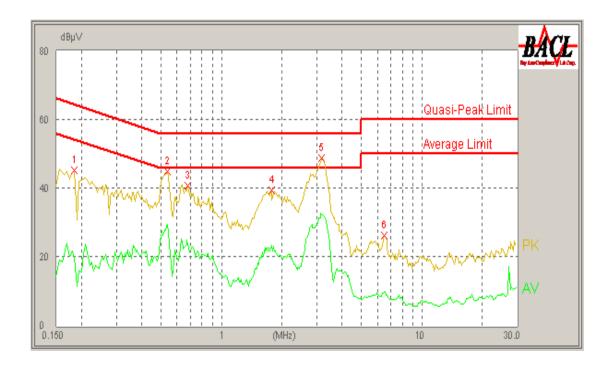
11.77 dB at 3.160 MHz in the Neutral conductor mode

Test Data


Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	56 %
ATM Pressure:	100.0 kPa

The testing was performed by Kvass Yang on 2010-12-06.


Test Mode: Transmitting

120 V, 60 Hz, Line

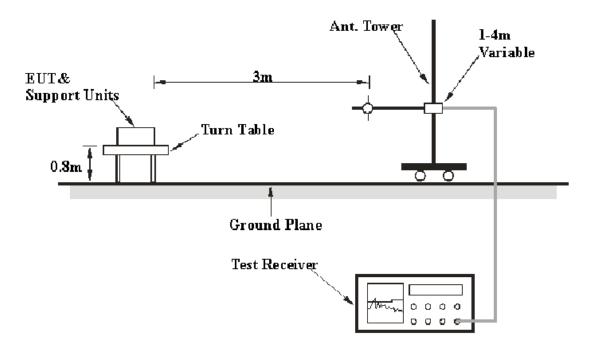
Conducted Emissions			FCC Part 15.207		
Frequency (MHz)	Correct (dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)	Detector (PK/Ave./QP)
3.005	10.20	36.70	56.00	19.30	QP
0.545	10.20	34.85	56.00	21.15	QP
0.170	10.10	42.57	65.43	22.86	QP
3.005	10.20	22.26	46.00	23.74	Ave
0.545	10.20	20.86	46.00	25.14	Ave
0.215	10.10	38.07	64.14	26.07	QP
1.760	10.10	27.97	56.00	28.03	QP
1.745	10.10	16.10	46.00	29.90	Ave
0.215	10.10	23.87	54.14	30.27	Ave
0.170	10.10	24.43	55.43	31.00	Ave
18.685	10.10	6.93	50.00	43.07	Ave
18.770	10.10	11.70	60.00	48.30	QP

120 V, 60 Hz, Neutral:

Conducted Emissions			FCC Part 15.207		
Frequency (MHz)	Correct (dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)	Detector (PK/Ave./QP)
3.160	10.20	44.23	56.00	11.77	QP
3.160	10.20	32.56	46.00	13.44	Ave
0.535	10.20	42.34	56.00	13.66	QP
0.535	10.20	29.59	46.00	16.41	Ave
0.680	10.20	35.61	56.00	20.39	QP
1.780	10.10	34.15	56.00	21.85	QP
0.680	10.20	23.95	46.00	22.05	Ave
1.780	10.10	23.39	46.00	22.61	Ave
0.185	10.10	33.86	65.00	31.14	QP
0.185	10.10	19.98	55.00	35.02	Ave
6.485	10.10	10.18	50.00	39.82	Ave
6.460	10.10	19.86	60.00	40.14	QP

FCC §15.205, §15.209 & §15.247(d) - RADIATED EMISSIONS

Applicable Standard


FCC §15.205; §15.209; §15.247(d)

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at Bay Area Compliance Laboratories Corp. (Shenzhen) is +4.0 dB.

EUT Setup

The radiated emission tests were performed in the 3 meters chamber B test site, using the setup accordance with the ANSI C63.4-2009. The specification used was the FCC 15.209 and FCC 15.247 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

The adapter was connected to a 120 VAC/60 Hz power source.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	Detector
30MHz – 1000 MHz	100 kHz	300 kHz	QP
1000 MHz – 25 GHz	1 MHz	3 MHz	PK
1000 MHz – 25 GHz	1 MHz	10 Hz	Ave

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
HP	Amplifier	HP8447D	2944A09795	2010-08-02	2011-08-02
Rohde & Schwarz	EMI Test Receiver	ESCI	100035	2010-11-24	2011-11-23
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2010-07-05	2011-07-04
HP	Amplifier	2VA-213+	Т-Е27Н	2010-03-08	2011-03-08
Sunol Sciences	Horn Antenna	DRH-118	A052604	2010-05-05	2011-05-04
Rohde & Schwarz	Spectrum Analyzer	FSEM30	849720/019	2010-07-08	2011-07-07

^{*} **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

For the radiated emissions test, the adapter was connected to the AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1GHz and peak and Average detection modes for frequencies above 1GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss- Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the maximum limit. The equation for margin calculation is as follows:

Margin = Limit - Corrected Amplitude

Test Results Summary

According to the recorded data in following table, the EUT complied with the <u>FCC Title 47, Part 15, Subpart C, section 15.205, 15.209 and 15.247,</u> with the worst margin reading of:

Transmitting mode (Below 1GHz):

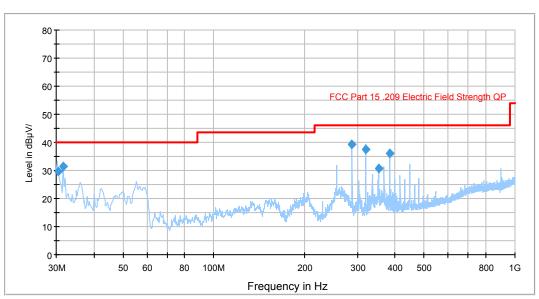
6.6 dB at 288.013500 MHz in the Horizontal polarization

Transmitting mode (Above 1 GHz):

0.41 dB at **4946 MHz** in the **vertical** polarization (High Channel)

Test Data

Environmental Conditions


Temperature:	25 ° C
Relative Humidity:	56 %
ATM Pressure:	100.0 kPa

^{*} The testing was performed by Kvass Yang on 2010-12-15.

Test mode: Transmitting

Below 1 GHz

Auto Test(FCC 15.209)

Frequency (MHz)	Corrected Amplitude (dBµV/m)	Antenna Height (cm)	Antenna Polarity (H/V)	Turntable Position (degree)	Correction Factor (dB)	Limit (dBµV/m)	Margin (dB)
288.013500	39.4	138.0	Н	242.0	-9.2	46.0	6.6
320.014500	37.6	120.0	Н	26.0	-8.4	46.0	8.4
384.010500	36.2	101.0	Н	285.0	-8.5	46.0	9.8
30.545366	29.7	101.0	V	299.0	-14.1	40.0	10.3
31.697500	31.6	136.0	Н	190.0	-14.1	46.0	14.4
351.923250	30.9	101.0	V	297.0	-8.5	46.0	15.1

Above 1 GHz:

Freq.	S.A.	Detector	Direction	Te	st Ante	nna	Cable	Pre-	Cord.	FCC Part	t 15.247/209
(MHz)	Reading (dBµV)	PK/QP/Ave.	Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Loss (dB)	Amp. Gain (dB)	Amp. (dBμV/m)	Limit (dBµV/m)	Margin (dB)
	Low Channel (2411 MHz)										
7233	37.00	Ave	268	1.5	Н	37.0	5.22	26.60	52.62	54	1.38 *
7233	37.32	Ave	263	1.5	V	36.4	5.22	26.60	52.34	54	1.66 *
4822	39.01	Ave	270	1.5	Н	33.5	4.30	26.80	50.01	54	3.99 *
4822	39.45	Ave	180	1.5	V	32.8	4.30	26.80	49.75	54	4.25
7233	45.74	PK	250	1.5	V	36.4	5.22	26.60	60.76	74	13.24
7233	45.05	PK	268	1.5	Н	37.0	5.22	26.60	60.67	74	13.33
4822	47.55	PK	168	1.5	Н	33.5	4.30	26.80	58.55	74	15.45
4822	47.23	PK	49	1.5	Н	32.8	4.30	26.80	57.53	74	16.47
	Middle Channel (2441 MHz)										
7323	34.02	Ave	273	1.5	V	37.0	5.09	26.57	49.54	54	4.46
7323	33.89	Ave	270	1.5	Н	36.3	5.09	26.57	48.71	54	5.29
4822	36.46	Ave	261	1.5	Н	33.7	4.36	26.78	47.74	54	6.26
4822	36.78	Ave	90	1.5	V	33.0	4.36	26.78	47.36	54	6.64
7323	41.86	PK	273	1.5	V	37.0	5.09	26.57	57.38	74	16.62
7323	41.34	PK	49	1.5	Н	36.3	5.09	26.57	56.16	74	17.84
4822	44.12	PK	180	1.5	Н	33.7	4.36	26.78	55.4	74	18.6
4822	44.75	PK	180	1.5	V	33.0	4.36	26.78	55.33	74	18.67
				High	Chann	el (2473	MHz)				
4946	41.24	Ave	263	1.5	V	34.7	4.40	26.75	53.59	54	0.41 *
7419	37.56	Ave	180	1.5	V	37.0	5.20	26.55	53.21	54	0.79 *
7419	36.48	Ave	270	1.5	Н	36.3	5.20	26.55	51.43	54	2.57 *
4946	38.05	Ave	268	1.5	Н	34.6	4.40	26.75	50.30	54	3.70 *
7419	48.02	PK	250	1.5	V	37.0	5.20	26.55	63.67	74	10.33
4946	50.98	PK	268	1.5	V	34.7	4.40	26.75	63.33	74	10.67
4946	50.42	PK	168	1.5	Н	34.6	4.40	26.75	62.67	74	11.33
7419	47.64	PK	49	1.5	Н	36.3	5.20	26.55	62.59	74	11.41

Note: * within measurement uncertainly.

Spurious Emission in Restricted Band:

Freq.	S.A.	Detector	Direction		Antenn	a	Cable	Pre-	Cord.	FCC Part 1	5.247/209
(MHz)	* Reading		Height (m)	Polar (H/V)	Factor (dB/m)	Loss (dB)	Amp. Gain (dB)	Amp. (dBμV/m)	Limit (dBµV/m)	Margin (dB)	
			Out	of left si	de ban	d (2310-2	2390 M	Hz)			
2314.75	36.12	Ave	263	1.50	V	29.1	3.00	26.84	38.38	54	15.62
2314.75	35.24	Ave	268	1.30	Н	28.7	3.00	26.84	37.10	54	16.90
2314.75	42.04	PK	180	1.60	V	29.1	3.00	26.84	44.30	74	29.70
2314.75	41.35	PK	270	1.30	Н	28.7	3.00	26.84	43.21	74	30.79
			Out of	right si	de band	1 (2483.5	-2500 N	ИНz)			
2488.86	34.15	Ave	268	1.50	Н	28.7	3.00	26.84	36.01	54	17.99
2488.86	35.24	Ave	263	1.30	V	29.1	3.00	26.84	37.50	54	16.50
2488.86	40.17	PK	270	1.50	Н	28.7	3.00	26.84	42.03	74	31.97
2488.86	41.75	PK	180	1.30	V	29.1	3.00	26.84	44.01	74	29.99

FCC §15.247(a) (1) - CHANNEL SEPARATION TEST

Applicable Standard

Frequency hopping systems shall have hoping channel carrier frequencies separated by a minimum of 25 kHz or the 20dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	100035	2010-11-24	2011-11-23

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

- 1. Set the EUT in transmitting mode, spectrum Bandwidth was set at 100 kHz, maxhold the channel.
- 2. Set the adjacent channel of the EUT maxhold another truce
- 3. Measure the channel separation.

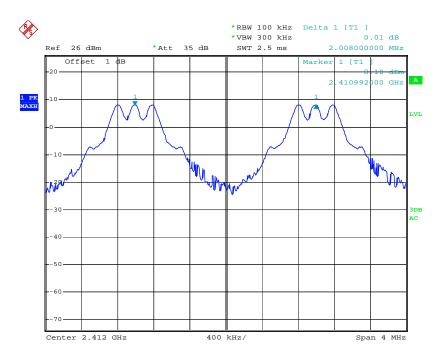
Test Data

Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	56 %
ATM Pressure:	100.0 kPa

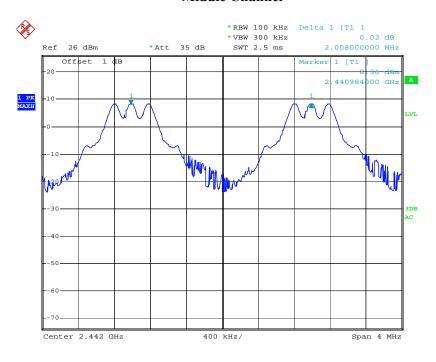
^{*} The testing was performed by Kvass Yang on 2010-12-07.

Test Result: Compliant.

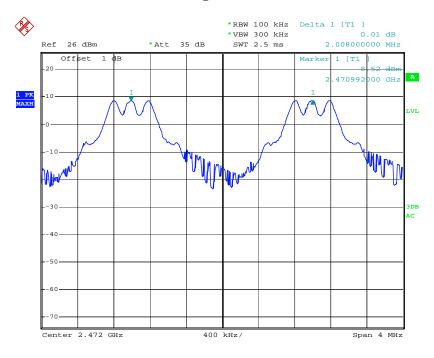

Please refer to following tables and plots

Test Mode: Transmitting

Channel	Channel Frequency (MHz)	Channel Separation (MHz)	Limit (MHz)	Result
Low Channel	2411	2.008	0.704	Pass
Adjacent Channel	2413	2.008	0.704	1 488
Mid Channel	2439	2.008	0.701	Pass
Adjacent Channel	2441	2.008		rass
High Channel	2473	2 000	0.504	D
Adjacent Channel	2471	2.008	0.701	Pass


Please refer to the following plots.

Low Channel



-- ---

Middle Channel

High Channel

FCC §15.247(a) (1) - 20 dB BANDWIDTH TESTING

Applicable Standard

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125mW.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	100035	2010-11-24	2011-11-23

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

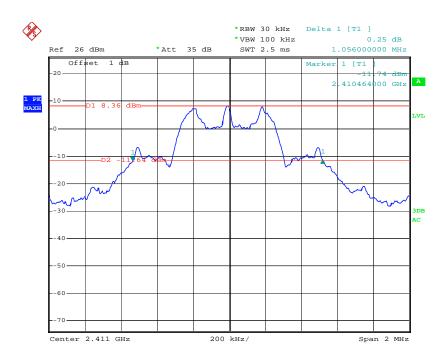
Test Data

Environmental Conditions

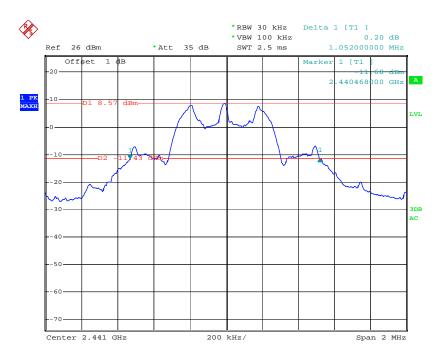
Temperature:	25 ° C
Relative Humidity:	56 %
ATM Pressure:	100.0 kPa

^{*} The testing was performed by Kvass Yang on 2010-12-07.

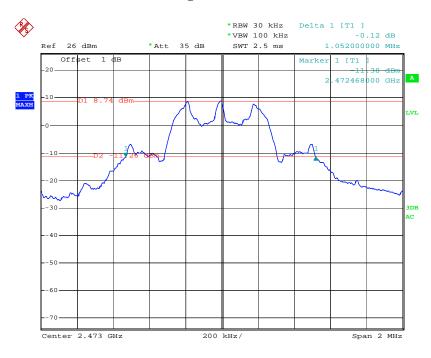
Test Result: Compliant.


Please refer to following tables and plots

Test Mode: Transmitting


Channel	Frequency (MHz)	20 dB Bandwidth (MHz)
Low	2411	1.056
Middle	2441	1.052
High	2473	1.052

Please refer to the following plots.


Low Channel

Middle Channel

High Channel

FCC §15.247(a) (1) (iii) - QUANTITY OF HOPPING CHANNEL TEST

Applicable Standard

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	100035	2010-11-24	2011-11-23

^{*} **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

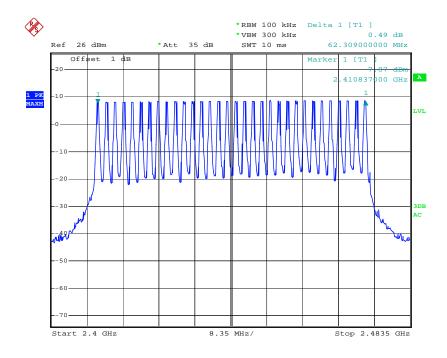
- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the Max-Hold function record the Quantity of the channel.

Test Data

Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	56 %
ATM Pressure:	100.0 kPa

The testing was performed by Kvass Yang on 2010-12-07.


Test Result: Compliant.

Please refer to following tables and plots

Test Mode: Transmitting

Frequency Range (MHz)	Number of Hopping Channel (CH)	Limit (CH)
2400-2483.5	32	≥ 15

Number of Hopping Channels

FCC §15.247(a) (1) (iii) -TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	100035	2010-11-24	2011-11-23

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

The EUT was worked in channel hopping; Spectrum SPAN was set as 0. Sweep was set as 0.4 X channel no. (s), the quantity of pulse was get from single sweep. In addition, the time of single pulses was tested.

Dwell time = Pulse time*(1000/18/2/32)*32*0.4 S

Test Data

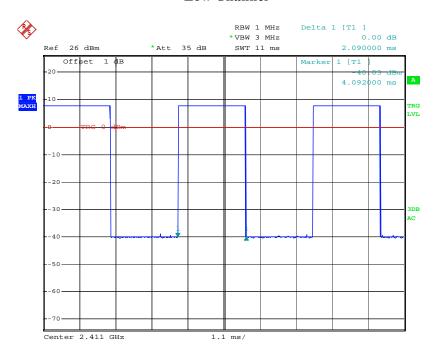
Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	56 %
ATM Pressure:	100.0 kPa

^{*} The testing was performed by Kvass Yang on 2010-12-08.

Test Result: Compliant.

Please refer to following tables and plots

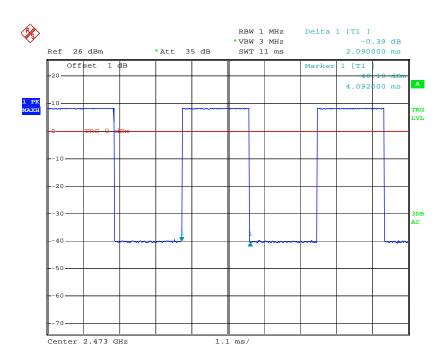

Test Mode: Transmitting

Channel	Pulse Width (ms)	Dwell Time (Sec)	Limit (Sec)	Result
Low	2.090	0.0232	0.4	Pass
Middle	2.090	0.0232	0.4	Pass
High	2.090	0.0232	0.4	Pass

Dwell time = Pulse time*(1000/18/2/32)*32*0.4 S


Please refer to the following plots.

Low Channel



Middle Channel

High Channel

FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

According to FCC §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	100035	2010-11-24	2011-11-23

^{*} **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

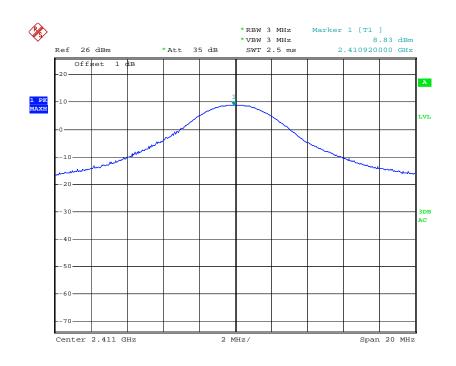
Test Procedure

- 1. Place the EUT on a bench and set in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to an EMI test receiver.
- 3. Add a correction factor to the display.

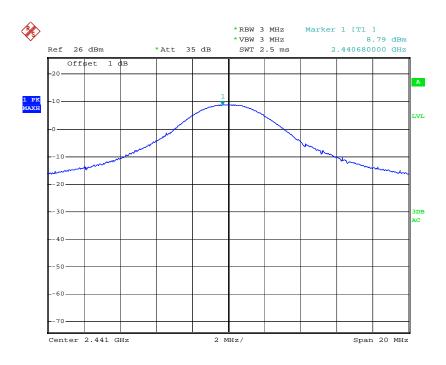
Test Data

Environmental Conditions

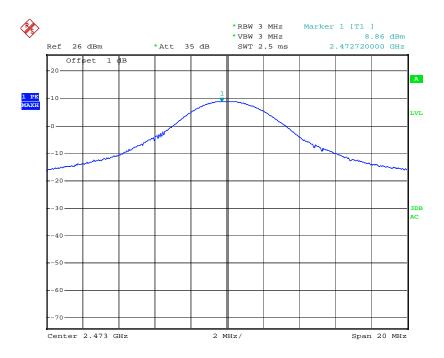
Temperature:	25 ° C
Relative Humidity:	56 %
ATM Pressure:	100.0 kPa


^{*} The testing was performed by Kvass Yang on 2010-12-08.

Test Result: Compliant.


Test Mode: Transmitting

Freq. (MHz)	Conducted Output Power (dBm)	Conducted Output Power (mW)	Part15.247 Limit (mW)
2411	8.83	7.64	125
2441	8.79	7.57	125
2473	8.86	7.69	125


Low Channel

Middle Channel

High Chanel

FCC §15.247(d) - BAND EDGES TESTING

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	100035	2010-11-24	2011-11-23

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

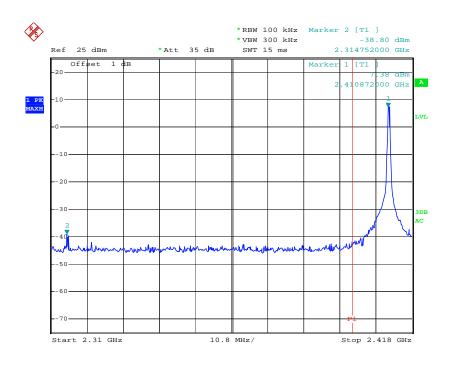
- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100kHz bandwidth from band edge, for Radiated emissions restricted band RBW=1MHz, VBW=3MHz.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

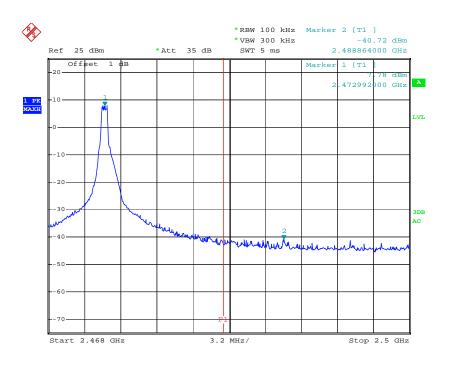
Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	56 %
ATM Pressure:	100.0 kPa

^{*}The testing was performed by Kvass Yang on 2010-12-08


Test Result: Compliant

Please refer to the following table and plots.


Test Mode: Transmitting

Frequency (MHz)	Delta Peak to Band Emission (dB)	Limit (dB)
2314.756	46.18	20
2488.864	48.50	20

Band Edge: Left Side

Band Edge: Right Side

-- -- --

***** END OF REPORT *****