

COMPLIANCE TESTING OF:

Synchronization Transmitter Model XR

PREPARED FOR:

Primex Attn.: Mr. Scott Wickus 965 Wells Street Lake Geneva, WI 53147

TEST REPORT NUMBER:

306343

DATE(S) OF TESTING:

July 10th and 11th, 2006

All results of this report relate only to the items that were tested. This report is not to be reproduced, except in full, without written approval of LS Research, LLC.

Table of Contents

Section	Description	Page
Index		
1	LS Research, LLC in Review	3
2	Signature Page	4
3	Product and General Information	5
4	Product Description	5-6
5	Test Requirements	7
6	Summary of Test Report	8
7	Introduction	8
8	Purpose	8
9	Radiated Emissions Test	9-15
10	Power Output 47 CFR 2.1046	16
11	Conducted Spurious Emissions: 47 CFR 2.1051	17
12	Bandwidth Measurements 47 CFR 2.1049	18-22
13	Frequency Stability (47 CFR 2.1055; 90.213a)	23
Appendix		
A	Test Equipment List	24-25
B	Uncertainty Statement	26

1. LS Research, LLC In Review

LS Research, LLC is located in Cedarburg, Wisconsin – United States.

We may be contacted by:

Mail: LS Research, LLC W66 N220 Commerce Court Cedarburg, Wisconsin 53012

 Phone:
 262-375-4400

 Fax:
 262-375-4248

 E-mail:
 eng@lsr.com

As an EMC Testing Laboratory, our Accreditation and Assessments are recognized through the following:

A2LA – American Association for Laboratory Accreditation Accreditation based on ISO/IEC 17025 : 1999 with Electrical (EMC) Scope of Accreditation A2LA Certificate Number: 1255.01

U. S. Conformity Assessment Body (CAB) Validation Validated by the European Commission as a U. S. Conformity Assessment Body operating under the U. S. /EU, Mutual Recognition Agreement (MRA) operating under the European Union EMC Directive 89/336/EEC, Article 10.2. Date of Validation: January 16, 2001

Federal Communications Commission (FCC) – USA Listing of 3 Meter Semi-Anechoic Chamber based on 47CFR 2.948 FCC Registration Number: 90756

Listing of 3 and 10 meter OATS based on 47CFR 2.948 FCC Registration Number: 90757

Industry Canada On-file, 3 Meter Semi-Anechoic Chamber based on 47CRF 2.948 File Number: IC 3088

On-file 3 and 10 Meter OATS based on RSS-210 File Number: IC 3088-A

2. Signature Page

Ienesa a. White

Prepared By:

August 24, 2006

Teresa A. White, Document Coordinator

Date

Henerth & hoster

Tested By:

Kenneth L. Boston, EMC Lab Manager

August 24, 2006 ger Date

Beneth & hoster

Approved By:

August 24, 2006

Kenneth L. Boston, EMC Lab ManagerDatePE#31926 Licensed Professional EngineerDateRegistered in the State of Wisconsin, United States

3. Product and General Information

Manufacturer:	Primex
Model No.:	XR
Serial No.:	(Unit 1) 000100000 and (Unit 5) 000110000
Description:	Data Transmitter
Frequency Range:	72.0 – 76.0 MHz

4. **Product Description**

The XR is a data transmitter, which sends telemetry to various co-located paging receivers, which are located in wall clocks, for the purpose of time synchronization. It is provided for by 47 CFR, Part 90.238 as a telemetry device.

Two models were tested; the first sample was fully configured with all peripheral cables and modules and includes: The I/O connection possibilities are shown in the following table:

Connector	Description	Connector type
GPS IN	Input from GPS receiver	7 pin mini-DIN
NETWORK LAN	Network connection, connects to Lantronix	RJ45
	serial port internally. This is a population	
	option with the next connector.	
WIRELESS	Wireless bulkhead antenna mount. This a	SMA
NETWORK	population option with the previous connector.	
ANTENNA		
SCHEDULER	Com 1/Auxiliary Port/Scheduler Programming	RS232 DB9 Fem.
GPS OUT	Serial port with 1PPS to drive NTP input for	RS232 DB9 Male
	the server	
SERVER	USB 2.0	USB Type B device
CONNECT		connector
BASEBAND /	Serial JTAG in for programming the micro;	9 pin Mini-DIN socket
MONITOR	input line for monitoring a high power amp RF	
	power; input line for monitoring VSWR on a	
	high power RF amp (neither used in this	
	model); non-inverted baseband output – a	
	digital output of the pre-modulated baseband	
	for external systems	
TX RF	Main RF Output, found on top of the enclosure	NMO antenna mount
	for this model	
Power	Connector from wall supply. DC output is 9V	Two prong AC, DC is
	at 2.7A	2.5 mm pin size
EXTERNAL	Not populated for this model, when populated,	N-Type Bulk-head
ANTENNA	the TX RF NMO antenna mount on top is	
	depopulated	

The second sample is configured as a basic unit with no extra cables, using the installed whip antenna.

This is a synchronized time and data transmitter that transmits time and data packets using FM encoding in the 72 - 76 MHz frequency range. The transmitter can be locally connected (through a USB interface) or network connected (through a CAT5 cable or WLAN connection) to a server, can be connected via USB or serial cable to a PC for programming, or operate standalone. The system diagram is shown below.

5. Test Requirements

The following FCC requirements are met: 47 CFR, 2.1053, 90.257(b)(2), 90.210.

6. Summary of Test Report

DECLARATION OF CONFORMITY

The Equipment Under Test (EUT) was found to **MEET** the requirements as described within the specification of Title 47 CFR FCC, Part 90, Subpart J, and Part 2.1053 Radiated Spurious Emissions for a low-power non-broadcast transmitter.

7. Introduction

On July 10th and 11th, 2006 a series of Radiated Emission tests were performed on the EUT. These tests were performed using the procedures outlined in ANSI C63.4-2001 for unintentional radiators, and in accordance with the limits set forth in FCC Part 90 for a non-voice and other specialized operation transmitters. These tests were performed by Kenneth Boston, EMC Lab Manager of LS Research, LLC.

8. Purpose

All Radiated Emission tests upon the EUT were performed to measure the emissions in the frequency bands described in title 47 CFR, FCC Part 90, including 90.210 (general technical parts) to determine whether these emissions are below the limits expressed within the standards. These tests were performed in accordance with the procedure described in the American National Standard for methods of measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz TIA-603. Another document used as a reference for the EMI Receiver specification was the Comite International Special Des Perturbations Radioelelectriques (CISPR) Number 16-1, 1993.

9. Radiated Emissions Test

Test Setup

The test setup was assembled in accordance with TIA-603. The Quartex FM-72 was placed on an 80cm high non-conductive pedestal centered on a flush mounted 2-meter diameter turntable inside the 3 Meter Semi-Anechoic, FCC listed Chamber located at LS Research, LLC in Cedarburg, Wisconsin. The EUT was operated in normal mode, using AC power as provided by a wall transformer. The transmitter was set to operate continuously, on two channels (72.01 and 75.98 MHz), and a suitable artificial 50 ohm antenna load was connected to the internal antenna port for the duration of the radiated emissions tests. Signal levels that were seen to be close to the regulatory limits were verified using a substitution method, with a tuned Dipole. The applicable limits are provided at a 3 meter distance. The calculations to determine these limits are detailed in the following pages. Please refer to Appendix A for a list of the test equipment.

Test Procedure

Spurious radiation measurements were performed on the EUT in the 3 Meter Semi-Anechoic, FCC listed Chamber, located at LS Research, LLC in Cedarburg, Wisconsin. The frequency range from 30 MHz to 760 MHz was scanned, and levels were manually noted at the various fixed degree settings of azimuth on the turntable and antenna height. The EUT was placed on the non-conductive wooden table in the 3 Meter Semi-Anechoic Chamber, with the antenna mast placed such that the antenna was 3 meters from the test object. A Biconical Antenna was used to measure emissions from 30 MHz to 200 MHz, and a Log Periodic Antenna was used to measure emissions from 200 MHz to 760 MHz. The maximum radiated emissions were found by raising and lowering the antenna between 1 and 4 meters in height, using both horizontal and vertical antenna polarities.

Test Equipment Utilized

A list of the test equipment and antennas utilized for the Radiated Emissions test can be found in Appendix A. Included in this list are calibration information and equipment descriptions. All equipment is calibrated and used according to the operations manual supplied by the manufacturer. All calibrations of the antennas used were performed at an N.I.S.T. traceable site. In addition, the Connecting Cables were measured for losses using a calibrated Signal Generator and a HP 8546A EMI Receiver. The resulting correction factors and the cable loss factors from these calibrations were entered into the HP 8546A EMI Receiver database. As a result, the data taken from the HP 8546A EMI Receiver accounts for the antenna correction factor as well as cable loss or other corrections, and can therefore be entered into the database as a corrected meter reading. The HP 8546A EMI Receiver was operated with a bandwidth of 120 kHz for measurements below 1 GHz. Both the Peak and Quasi-Peak Detector functions were utilized.

Test Results

The EUT was found to MEET the Radiated Emissions requirements of Title 47 CFR, FCC Part 90.257(b)(2) for an unintentional radiator (Canada RSS-210). The frequencies with significant signals were recorded and plotted as shown in the Data Charts and Graphs.

Calculation of Radiated Emissions Limits

FIELD STRENGTH OF SPURIOUS/HARMONIC FREQUENCIES

In accordance with Section 90.210 (2.1053) All out of band spurious emissions must be below the mean power of the carrier by at least:

43 + 10 log(carrier power)

which for a 1.0 watt rating on the test sample is:

43 + 10 log(1)) 43 = 43 dBc

-43 dBc from 30 dBm = -13. dBm

FIELD STRENGTH OF PART 90 LIMIT: AT R = 3 METERS DSTANCE

FROM THE STANDARD REFERENCE FORMULA FOR POWER TRANSMITTED VERSUS ELECTRIC FIELD:

Pt = (R**) x | E | ** / 30

Then to convert to dB:

$$Pt = 20\log |E| + 20\log(R) - 10\log(30)$$

Insert additional terms to convert watts to milli-watts (in dB) and volts to micro-volts (in dBµV):

 $Pt = 20\log |E_{\mu\nu}| - 20\log(1,000,000) + 10\log(1000) + 20\log(3) - 10\log(30)$

 $Pt = 20 \log |E_{\mu}v| - 120 + 30 + 9.54 - 14.77$

 $Pt = 20log |E\mu v| - 95.23$

OR; $20\log |E_{\mu\nu}| = Pt (in dBm) + 95.23$

|E| (in dBµV) = -13 dBm + 95.23 = <u>82.23 dBµV/m</u>, at 3 meters

Summary of Results and Conclusions

Based on the procedures outlined in this report, and the test results included in Appendices A and B, it can be determined that the EUT does MEET the emission requirements of Title 47 CFR, FCC Part 90.

The enclosed test results pertain to the samples of the test item listed, and only for the tests performed per the data sheets. Any subsequent modification or changes to the test items could invalidate the data contained herein, and could therefore invalidate the findings of this report.

Measurement of Electromagnetic Radiated Emissions at a 3 Meter F.C.C. Listed Site Erequency Bange inspected: 30 MHz - 760 MHz

Manufacturer:	Prir	Primex								
Date(s) of Test:	Jul	July 10 th and 11 th , 2006								
Test Engineer(s):		Tom	n Smith		Abti	n Spal	ntman	X	K	en Boston
Model #:	XR									
Serial #:	(Ur	nit 1)	000100000 an	d (L	Jnit 5	0001 (10000			
Voltage:	115	5 VÁ	C, 60 hz							
Operation Mode:	Normal									
Distance:	Х	3	Meters				10 Meters			
ELIT Powor:	Х	S	Single PhaseVAC				3 PhaseVAC			AC
LOT FOWER.		В	Battery				Other:			
EUT Placement:	Х	8	0cm non-conduc	tive	table		10cm Spacers			
EUT Test Location:		(3 F	3 Meter Semi-Anechoic FCC Listed Chamber			3/10m OATS				
Configuration:	0.	0.8 m height								
Measurements:			Pre-Compliance			Prelir	Preliminary		Х	Final
Detectors Used:		Х	Peak		Х	Quasi-Peak			Average	

<u>Environmental Conditions in the Lab</u>: **Temperature: 20 – 25°C Atmospheric Pressure: 86 kPa – 106 kPa Relative Humidity: 30 – 60 %** Test Equipment Used:

EMI Measurement Instrument: HP8546A/Agilent E4407B Biconical Antenna: EMCO #93110 Log Periodic Antenna: EMCO #93146 Horn Antenna: EMCO #3115

Frequency (MHz)	Antenna Polarity	Height (meters)	Azimuth (0° - 360°)	EMI Meter Reading (dBμV/m)	(dBµV/m)	Margin (dB)
30.1	V	1.0	180	38.1	82.2	44.1
192.0	Н	1.0	180	27.9	82.2	54.3
250.0	Н	1.3	240	39.3	82.2	42.9
288.0	Н	1.0	310	35.4	82.2	46.8
832.0	V	1.25	155.0	45.3	82.2	36.9
848.0	V	1.25	155.0	46.1	82.2	36.1

The following table depicts the level of significant emissions found:

<u>Notes</u>: Emissions seen with antenna port terminated with a 50 ohm terminating load. All other signals seen were even further below the Part 90 limit of -13 dBm (82.2 dBuV/m at 3 meters equivalent field strength) except the fundamental, which is measured directly at the antenna port, and reported elsewhere in the report.

All Radiated Spurious Emissions seen were found to be greater than 20 dB below the

limits of 82 dB/uV/m, or below the noise floor of the instrumentation. Since the highest peak emissions seen were in the neighborhood of 45 dBuV/m or less, which is almost 40 dB below the radiated equivalent field strength of the -13 dBm limit level, no substitution method measurements were performed.

Photos Taken During Radiated Emissions Testing

Test Setup for Radiated Emissions Testing in the 3 Meter Chamber

View of the EUT during the <u>Radiated Emissions</u> Testing. Antenna in place, but port internally terminated with a 50 Ohm load.

Signature Scan of Radiated Emissions, Unit 1

Vertical Polarity, 30 MHz – 300 MHz (75.98 MHz Carrier)

Signature Scan of Radiated Emission, Unit 1 Horizontal Polarity, 30 MHz – 300 MHz (72.00 MHz Carrier)

Signature Scan of Radiated Emissions, Unit 1

AVC BW 300 kHz

LS Research, LLC Test Report Number: 306343 Prepared For: Primex

RL.

START 300.0 MHz

1F BW 120 kHz

MARKER 1 DN DFF

Nore

1 of 2

S10P 1.8088 GHz

SWP 656 msec

10. <u>Power Output</u> 47 CFR 2.1046

For the FCC Part 2.1046 measurement, the output of the sample unit 5 was connected via a short jumper cable, with a reverse-gender connector, through a 10 dB Attenuator to the input of the HP 8591A Spectrum Analyzer. The unit was configured to run in a normal continuous transmit mode, while being supplied with a random, internal full-frequency digital audio signal as a modulation source. The HP receiver was set to a 100 kHz Bandwidth, and the transmit signal was then stored, with the peak signal level stored. This power level was collected for two channels and can be seen in the chart presented below.

CHANNEL	CENTER FREQ (MHz)	LIMIT (dBm)	MEASURED POWER (dBm)	MARGIN (dB)
01	72.1	30	29.46	0.54
94	75.9	30	28.8	1.2

View of Test Setup During the Conducted RF measurements

11. Conducted Spurious Emissions: 47 CFR 2.1051

FCC Part 2.1051 requires an antenna conducted measurement of conducted harmonic and spurious levels, as reference to the carrier frequency in a 30 kHz bandwidth. For this test, the transmitter was directly connected to the HP E4407B Spectrum Analyzer, through a very short Coaxial Cable and a 10 DB Attenuator. Plots were then taken, with any noticeable spurious or harmonic signals identified. No significant levels of any spurious products could be found within - -18 dBc of the fundamental of the transmitter. The highest spurious signal seen was at 144.2 MHz which was measured at -30.8 dBm in a 30 kHz bandwidth, which is about 17.8 dB below the -13.0 dBm limit.

UNII 5								
Transmit Channel Frequency	Test FREQ (MHz)	LIMIT (dBm)	MEASURED POWER (dBm)	MARGIN (dB)				
72.1	61.4	-13.0	-33.6	20.6				
72.1	144.2	-13.0	-30-8	17.8				
72.1	216.3	-13.0	-39.7	26.7				
75.98	65.3	-13.0	-34.9	21.9				
75.98	151.96	-13.0	-31.3	18.3				
75.98	227.95	-13.0	-40.2	27.2				

12. Bandwidth Measurements 47 CFR 2.1049

Direct measurement of the transmitted signal, via a cabled connection to the HP E4407B Analyzer, was then used to determine the signal bandwidth. For each of the representative channels, refer to the graphs found on the following pages.

Calculation of 90.210 (c) emission mask:

(1) On any frequency from the center of the authorized channel to 5.0 kHz removed from center frequency: Zero dB.

(2) On any frequency removed from the center of the authorized channel by a displacement frequency (f_d in kHz) of more than 5.0 kHz but no more than 10 kHz: At least 83 log (Fd/5) dB.

(3) On any frequency removed from the center of the authorized band by a displacement frequency (f_d in kHz) of more than 10 kHz but no more than 50 khz : At least 29 log (Fd**/11) dB or 50 dB, whichever is the lesser attenuation.

(4) On any frequency removed from the center of the authorized band by a displacement frequency (f_d in kHz) of more than 50 khz: at least 43 db,

The test condition is presented in Tabular form below. The definition of the spectrum mask as indicated on the spectrum analyzer is also presented, where the display line set to -20 dBm applies to $|f_m| > 12.5$ kHz.

90.210 (c)	Absolute Frequency Offset Range: f _d	Attenuation relative to Carrier power (P).
1	0 to 5 KHz	0 db
2	5 to 10 khz	0 to 24.9 db
3	10 to 50 khz	27.8 to 50 db
4	Greater than 50 khz	43 db (-13 dbm)

LS Research, LLC Test Report Number: 306343 Prepared For: Primex

Power Output; Unit 5 (highest output observed)

Mkr1 61.4 MHz Select Marker 10	🔆 Agilent 13:18:35 Jul 10, 2006							Marker				
Ref 30 dBm Atten 30 dB Ext PG -10 dB -35.8 dBm Peak									М	kr1 61	.4 MHz	
Peak Log 10 dB/ 1 2 3 4 DI -13.0 dBm Marker -35.8 dBm Delta Delta Delta Delta Pair (Tracking Ref) Ref Delta Pair (Tracking Ref) Ref V1 S2 S3 FC AA Start 1 MHz Stop 100 MHz Delta D	Ref 30	dBm		Atten	30 dB	Ext PG	i -10 d	IB		-35.	8 dBm	Select Marker
Log 10 Normal DI Marker Delta -13.0 Marker Delta dBm 0 0 v1 s2 53.8 dBm 0 S3 FC AA AA 0 Start 1 MHz VBW 30 kHz Sweep 141.7 ms (401 pts)	Peak											<u>1</u> 2 3 4
dB/ Marker Normal DI Marker Delta -13.0 61.400000 MHz Delta Pair -35.8 dBm Delta V1 S2 Start 1 MHz Start 1 MHz VBW 30 kHz Sweep 141.7 ms (401 pts)	109 10											
DI Marker Delta -13.0 61.400000 MHz Delta Pair -35.8 dBm 0 0 V1 S2 0 0 S3 FC 0 0 AA 0 0 Start 1 MHz VBW 30 kHz Sweep 141.7 ms (401 pts)	dB/											Normal
DI -13.0 dBm dBm 61.4000000 MHz -35.8 dBm V1 s2 S3 FC AA V1 s2 S3 FC AA Marker -35.8 dBm V1 s2 S3 FC AA More *Ref Span Pair Span Center Off Start 1 MHz *Res BW 30 kHz VBW 30 kHz Sweep 141.7 ms (401 pts) Delta Pair (Tracking Ref) Ref Delta Pair (Tracking Ref) Ref Delta Pair (Tracking Ref) Ref Delta Pair (Tracking Ref) Ref Delta Pair (Tracking Ref) Ref Delta Delta Pair (Tracking Ref) Ref Delta Delta Pair (Tracking Ref) Ref Delta Span Center 1 of 2												i i or indi
DI -13.0 dBm 61.400000 MHz -35.8 dBm V1 S2 S3 FC AA Marker -35.8 dBm V1 S2 S3 FC AA Marker -35.8 dBm Marker -35.8 dBm -35.8 dBm Marker -35.8 dBm -35.8 dBm -35												
−13.0 61.400000 MHz Delta Pair (Tracking Ref) Ref ∨1 S2 S3 FC AA ◆ Span Pair Span Start 1 MHz #Res BW 30 kHz VBW 30 kHz Sweep 141.7 ms (401 pts)	DI	Mar	ker									Delta
dBm OI.400000 MHZ Delta Pair (Tracking Ref) Ref V1 S2 1 Span Pair Span S3 FC 1 Span Pair Span AA 1 Span Pair Span Start 1 MHz VBW 30 kHz Sweep 141.7 ms (401 pts)	-13.0	C1	1000	аа м								
-35.8 dBm (Tracking Ref) V1 S2 * S3 FC * AA * Max * Max * Start 1 MHz VBW 30 kHz Sweep 141.7 ms (401 pts)	dBm		4000	יי שש	п∠							Delta Pair
V1 S2 S3 FC AA AA Start 1 MHz *Res BW 30 kHz VBW 30 kHz Sweep 141.7 ms (401 pts)		-3	5.8 (dBm								(Tracking Ref) Ref Delta
S3 FC AA AA AA Span Value Span Center Span Center Span Center Span Center Off Start 1 MHz #Res BW 30 kHz VBW 30 kHz Sweep 141.7 ms (401 pts) Span 2 Center Span 2 Center S	V1 S2											
AA AA Span <u>Center</u> Span <u>Center</u> Off Off Start 1 MHz #Res BW 30 kHz VBW 30 kHz Sweep 141.7 ms (401 pts) Start 1 of 2	S3 FC								Ц			Span Pair
Start 1 MHz Stop 100 MHz More #Res BW 30 kHz VBW 30 kHz Sweep 141.7 ms (401 pts) 1 of 2	AA	ntruen	white	the second states of the	when	white-haven	Marina di M Marina di Marina di Ma	Inno	nt hought	mmu	mann	Span <u>Center</u>
Start 1 MHz Stop 100 MHz More #Res BW 30 kHz VBW 30 kHz Sweep 141.7 ms (401 pts) 1 of 2												
Start 1 MHzStop 100 MHzMore#Res BW 30 kHzVBW 30 kHzSweep 141.7 ms (401 pts)												UTT
Start 1 MHzStop 100 MHzMore#Res BW 30 kHzVBW 30 kHzSweep 141.7 ms (401 pts)												
Start I MH2 Stop I00 MH2 1 of 2 #Res BW 30 kHz VBW 30 kHz Sweep 141.7 ms (401 pts) 1 of 2	C									C 4 (More
*Res DM S0 KHZ SWeep 141.7 MS (401 pts)	Start J #Doo B	L MHZ NU DA L	U		UE	มวดเ	U-3	Succe	1/17	Stop It	MHZ שיש (הלמי 1	1 of 2
	#Res D	אשכואית	ΠŹ		VC	אשכואית	пZ	Sweep	141./	ms (40	r pts)	

Conducted antenna port emissions, 0-100 MHz; Unit 5 (75.1 MHz Carrier)

Conducted antenna port emissions, 100-760 MHz; Unit 5 (72.1 MHz Carrier)

Conducted antenna port emissions, 0-100 MHz; Unit 5 (75.98 MHz Carrier)

Conducted antenna port emissions, 100-750 MHz; Unit 5 (75.98 MHz Carrier)

13. Frequency Stability (47 CFR 2.1055; 90.213a)

Mobile stations below 2W output power must have an absolute frequency stability of $\underline{5 \text{ ppm}}$ when operating with a 12.5 kHz bandwidth.

Test in accordance to conditions called out in Part 2.995 (a) (1): Frequency stability must be measured from <u>-30 to 50 degrees centigrade for (b) steps of 10 degrees</u> Allowing for thermal equilibrium, the measurement was performed after the desired temperature was maintained for 30 minutes.

Temperature	Frequency	Frequency Delta	Frequency Delta
(degree C)	(Mhz)	(Mhz)	(PPM)
-30	72.09995	.00002	0.2
-20	72.10003	.0001	1.3
-10	72.09998	.00005	0.65
0	72.10000	.0001	0.1
10	72.09995	.00002	0.2
20	72.09998	.00005	0.65
30	72.09995	.00002	0.2
40	72.09993	0	0.0
50	72.09993	0	0.0
Start 23°	72.09993	0	0.0

<u>APPENDIX A -</u>	Test Equipment List
---------------------	---------------------

Asset #	Manufacturer	Model #	Serial #	Description	Date	Due
AA960007	ЕМСО	3115	9311-4138	Horn Antenna	1/25/06	1/25/07
AA960008	EMCO	3816/2NM	9701-1057	Line Impedance Stabilization	9/27/05	9/27/06
AA960014	Fischer	FCC-801-M3-25	148	Coupler/De-coupler Network	9/27/05	9/27/06
AA960015	Fischer	F-120-9B	27	Bulk Current Injection Probe	9/27/05	9/27/06
AA960016	Haefely Trench	093 506-1	083 874-03	EFT Capacitive Clamp	Note 1	Note 1
AA960020	Solar	9230-1	n/a	Radiating Loop for RS101	Note 1	Note 1
AA960021	Solar	7334-1	965308	Mag. Field Loop Sensor	9/28/05	9/28/06
AA960023	Werlatone	C3910	5167	Directional Coupler 40 dB	Note 1	Note 1
AA960024	Pasternack	100 Watt	PE 7021-6	DC-1.5 GHz Attenuator	Note 1	Note 1
AA960031	HP	119474A	3107A01708	Transient Limiter	Note 1	Note 1
AA960050	Chase	CBL6140A	1106	Bilog Antenna	Note 1	Note 1
AA960054	Giga-Tronics	80301A	1830164	Power Sensor	9/28/05	9/28/06
AA960061	Solar	9229-1	2708	Loop Sensor for RS101	9/28/05	9/28/06
AA960067	Fischer	FCC-LISN-50-100-4-01	9901	100 A (4 line) LISN	9/27/05	9/27/06
AA960071	Fischer	FCC-801-M4-63A	9902	Coupler/De-coupler Network	9/27/05	9/27/06
AA960074	Fischer	F2031-32mm	361	EM Injection Clamp	3/21/05	3/21/07
AA960076	Fischer	F201-32mm	347	Absorbing Clamp	3/07/05	3/07/07
AA960077	EMCO	93110B	9702-2918	Biconical Antenna	9/27/05	9/27/06
AA960078	EMCO	93146	9701-4855	Log-Periodic Antenna	9/27/05	9/27/06
AA960080	Fischer	FCC-801-M3-63A	9906	Coupler/De-coupler Network	5/30/06	5/30/07
AA960081	EMCO	3115	6907	Double Ridge Horn Antenna	12/07/05	12/07/06
AA960082	Wandel & Golt.	EMC-20	E-0016	EM Radiation Meter & Probe	6/02/06	6/02/07
CC00122C	HP	331A	914-03669	Distortion Analyzer	Note 1	Note 1
CC00181C	HP	33120A	US36013549	Arb. Wave Form Generator	9/28/05	9/28/06
CC00221C	Agilent	E4407B	US39160256	Spectrum Analyzer	12/29/05	12/29/06
CC00284C	Agilent	E4421B	MY41000402	Signal Generator	5/20/05	5/20/06
EE960003	Amplifier Res.	100W 1000M1A	19821	100 Watt Amp	Note 1	Note 1
EE960005	Giga-Tronics	8542C	1831450	Dual Channel Power Meter	9/28/05	9/28/06
EE960006	Haefely Trench	PESD 1600	H604079	ESD Gun	9/27/05	9/27/06
EE960007	Haefely Trench	Pline 1610	083732-19	Line Fluctuation Generator	9/28/05	9/28/06
EE960008	Haefely Trench	DEC1A	083 793-09	De-Coupling Network	Note 1	Note 1
EE960009	Haefely Trench	IP6.2	083 811-07	Coupling Network	Note 1	Note 1
EE960010	Haefely Trench	P-Surge-4.1	083061-08	Power Surge Generator	9/15/04	9/15/06
EE960013	HP	8546A	3617A00320	Receiver RF Section	9/29/05	9/29/06
EE960014	HP	85460A	3448A00296	Receiver Pre-Selector	9/29/05	9/29/06
EE960015	HP	6843A	3531A-00145	AC Power Source/Analyzer	Note 1	Note 1
EE960016	Marconi	2024	112120/044	Signal Generator	1/10/06	1/10/08
EE960042	Haefely Trench	MAG 100.1	O8013610	Magnetic Susceptibility Loop	Note 1	Note 1
EE960052	Amplifier Res.	5S1G4	25582	5 Watt Amp	Note 1	Note 1
FF960055	Amplifier Res	75A250	21952	75 Watt Amp	Note 1	Note 1

Note 1 - Equipment calibrated within a traceable system.

Asset #	Manufacturer	Model #	Serial #	Description	Date	Due
EE960067	HP	8648A	3636A02735	Signal Generator	12/19/05	12/19/06
EE960070	Cal Instruments	1251RP	n/a	Power Supply	Note 1	Note 1
EE960071	EM Test	UCS 500-M4; CNI503	0804-35	EFT/Burst, Surge Generator	09/28/05	09/28/06
EE960072	EM Test	DPA 500	064-04	Harmonic & Flicker	11/10/04	11/10/06
EE960073	Agilent	E4446A	US45300564	Spectrum Analyzer	2/01/06	2/01/07
N/A	Narda	3203B-10	3202B10	Directional Coupler 10 dB	Note 1	Note 1

APPENDIX A - Test Equipment List (continued)

Note 1 - Equipment calibrated within a traceable system.

Appendix B - Uncertainty Statement

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level, using a coverage factor of k=2.

Table of Expanded Uncertainty Values, (K=2) for Specified Measurements

Measurement Type	Particular Configuration	Uncertainty Values
Radiated Emissions	3 – Meter chamber, Biconical Antenna	4.24 dB
Radiated Emissions	3-Meter Chamber, Log Periodic Antenna	4.8 dB
Radiated Emissions	10-Meter OATS, Biconical Antenna	4.18 dB
Radiated Emissions	10-Meter OATS, Log Periodic Antenna	3.92 dB
Conducted Emissions	Shielded Room/EMCO LISN	1.60 dB
Radiated Immunity	3 Volts/Meter in 3-Meter Chamber	1.128 Volts/Meter
Conducted Immunity	3 Volts level	1.0 V