

EMC Engineering Test Report Ingenium Project Number: JCEAQ1132

EMC Testing of: Primex Wireless, Model 72XR Command Point Amplifier

> Prepared for: **Primex Wireless, Incorporated** Attention: Mr.: Michael Jonely 65 Wells Street Lake Geneva, WI 53147 United States of America

Test Date(s): August 12TH through August 31ST, 2009

In accordance with: U.S. Code of Federal Regulation, Title 47, part 2 and Part 90

All results of this report relate only to the items that were tested. This Test Report may not be reproduced, except in full, without written approval of Ingenium Testing, LLC. This page was intentionally left blank

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 2 of 97

TABLE OF CONTENTS

INT	ODUCTION	8
1.1	SCOPE	8
1.2	PRODUCT DESCRIPTION	9
	 1.2.1 General Product Description	12 13 14
1.3	APPLICABLE NORMATIVE DOCUMENTS	
1.4	DEFINED PERFORMANCE CRITERION	16
1.5	APPLICABLE TEST MATRIX AND TEST RESULTS	17
1.6	NOTES AND EXCEPTIONS TO REPORT	18
1.7	DECLARATION OF CONFORMITY	19
1.8	SIGNATORIES	20
1.9	TEST FACILITY AND ACCREDITATIONS	22
	1.9.1Ingenium Testing, LLC Accreditation1.9.2Location of Test Facility	
TEST	DETAILS	23
2.1	ELECTROMAGNETIC EMISSION TESTS	23
	 2.1.1 Conducted RF Performance Parameters – Conducted RF Power Output Measurements	31 40 46 54 59
3.1	ELECTROMAGNETIC SUSCEPTIBILITY TESTS	85
4.1	POWER QUALITY TESTS	86
APP	NDIX A	88
Α	CONDUCTED RF PERFORMANCE PARAMETERS – MPE CALCULATIONS.	88
APP	NDIX B	
В	ANTENNA SPECIFICATIONS	
APP	NDIX C	-
С	CO-AXIAL PROTECTOR (LIGHTNING SURGE ARRESTOR)	92
APP	NDIX D	
D	CABLE SPECIFICATIONS	93
APP	NDIX E	94
E	INGENIUM TESTING, LLC APPLICABLE ACCREDITATIONS.	94
Prec	ared For: Primex Wireless, Incorporated	

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 3 of 97

TABLE OF FIGURES

	FIGURE 1: BLOCK DIAGRAM OF THE EQUIPMENT AND INTERCONNECTIONS.	9
	FIGURE 2: FRONT VIEW OF THE 72XR POWER AMPLIFIER (EXPOSED TO END-USER)	
	FIGURE 3: REAR VIEW OF THE 72XR POWER AMPLIFIER (NOT EXPOSED TO END-USER)	10
	FIGURE 4: THE 72XR POWER AMPLIFIER PORT CONNECTIONS, SHOWING 'RF IN' AND 'RF OUT' TYPE N(F) CONNECTIONS, THE DB-9	
	MONITORING PORT, AND DC POWER SOURCE HARDWIRED CONNECTIONS (NOT EXPOSED TO THE END-USER)	10
	FIGURE 5: THE COMMAND POINT 72XR SYSTEM, AS PRESENTED TO THE END-USER (INCLUDES THE POWER AMPLIFIER) FRONT VIEW	
	FIGURE 6: THE COMMAND POINT 72XR SYSTEM, AS PRESENTED TO THE END-USER (INCLUDES THE POWER AMPLIFIER) REAR VIEW.	
	FIGURE 7: THE EUT SETUP DURING RF OUTPUT POWER MEASUREMENTS.	
	FIGURE 8: RF OUTPUT POWER, 72.02 MHz, 5W	
	FIGURE 9: RF OUTPUT POWER AND EMISSION MASK, 72.02 MHz, 5W	
	FIGURE 10: RF OUTPUT POWER, 75.98 MHz, 5W	28
	FIGURE 11: RF OUTPUT POWER AND EMISSION MASK, 75.98 MHz, 5W	
	FIGURE 12: RF OUTPUT POWER, 72.02 MHz, 50W	29
	FIGURE 13: RF OUTPUT POWER AND EMISSION MASK, 72.02 MHz, 50W	
	FIGURE 14: RF OUTPUT POWER, 75.98 MHz, 50W	
	FIGURE 15: RF OUTPUT POWER AND EMISSION MASK, 75.98 MHz, 50W	
	FIGURE 16: THE EUT SETUP DURING OCCUPIED BANDWIDTH TESTS.	
	FIGURE 17: EXCITER OCCUPIED BANDWIDTH, 72.02 MHz	
	FIGURE 18: AMPLIFIER OCCUPIED BANDWIDTH, 72.02 MHz (5W)	
	FIGURE 19: AMPLIFIER OCCUPIED BANDWIDTH, 72.02 MHz (50W)	35
	FIGURE 20: EXCITER OCCUPIED BANDWIDTH, 75.98 MHz	
	FIGURE 21: AMPLIFIER OCCUPIED BANDWIDTH, 75.98 MHz (5W)	36
	FIGURE 22: AMPLIFIER OCCUPIED BANDWIDTH, 75.98 MHz (50W)	36
	FIGURE 23: AMPLIFIER (5W) OCCUPIED BANDWIDTH, (-6 DBC)	37
	FIGURE 24: AMPLIFIER (5W) OCCUPIED BANDWIDTH, (-20 DBC)	37
	FIGURE 25: AMPLIFIER (5W) OCCUPIED BANDWIDTH, (-26 DBC)	37
	FIGURE 26: AMPLIFIER (50W) OCCUPIED BANDWIDTH, (-6 DBC)	38
	FIGURE 27: AMPLIFIER (50W) OCCUPIED BANDWIDTH, (-20 DBC)	38
	FIGURE 28: AMPLIFIER (50W) OCCUPIED BANDWIDTH, (-26 DBC)	38
	Figure 29: Amplifier (50W) Pass-band Gain and Bandwidth.	39
	FIGURE 30: AMPLIFIER (50W) PASS-BAND GAIN FLATNESS	39
	FIGURE 31: THE EUT SETUP DURING BAND-EDGE MEASUREMENTS.	42
	FIGURE 32: BAND-EDGE INVESTIGATIONS, 72.02 MHz, 5W.	44
	FIGURE 33: BAND-EDGE INVESTIGATIONS, 75.98 MHz, 5 W	44
	FIGURE 34: BAND-EDGE INVESTIGATIONS, 72.02 MHz, 50W.	45
	FIGURE 35: BAND-EDGE INVESTIGATIONS, 75.98 MHz, 50 W	45
	FIGURE 36: THE EUT SETUP DURING SPURIOUS RF EMISSIONS MEASUREMENTS	48
	FIGURE 37: SPURIOUS RF EMISSIONS, 72.02 MHz, 5W, INVESTIGATION RANGE 30 MHz- TO 72 MHz.	
	FIGURE 38: SPURIOUS RF EMISSIONS, 72.02 MHz, 5W, INVESTIGATION RANGE 71 MHz- TO 100 MHz.	50
	FIGURE 39: SPURIOUS RF EMISSIONS, 72.02 MHz, 5W, INVESTIGATION RANGE 100 MHz- TO 1000 MHz.	50
	FIGURE 40: SPURIOUS RF EMISSIONS, 75.98 MHz, 5W, INVESTIGATION RANGE 30 MHz- TO 72 MHz.	51
	FIGURE 41: SPURIOUS RF EMISSIONS, 75.98 MHz, 5W, INVESTIGATION RANGE 72 MHz- TO 100 MHz.	51
	FIGURE 42: SPURIOUS RF EMISSIONS, 75.98 MHz, 5W, INVESTIGATION RANGE 100 MHz- TO 1000 MHz.	51
	FIGURE 43: SPURIOUS RF EMISSIONS, 72.02 MHz, 50W, INVESTIGATION RANGE 30 MHz- TO 72 MHz.	52
	FIGURE 44: SPURIOUS RF EMISSIONS, 72.02 MHz, 50W, INVESTIGATION RANGE 72 MHz- TO 100 MHz.	
	FIGURE 45: SPURIOUS RF EMISSIONS, 72.02 MHz, 50W, INVESTIGATION RANGE 100 MHz- TO 1000 MHz.	52
	FIGURE 46: SPURIOUS RF EMISSIONS, 75.98 MHz, 50W, INVESTIGATION RANGE 30 MHz- TO 75.8 MHz.	53
	FIGURE 47: SPURIOUS RF EMISSIONS, 75.98 MHz, 50W, INVESTIGATION RANGE 72 MHz- TO 100 MHz.	
	FIGURE 48: SPURIOUS RF EMISSIONS, 75.98 MHz, 50W, INVESTIGATION RANGE 100 MHz- TO 1000 MHz.	53
	FIGURE 49: THE EUT SETUP DURING CARRIER STABILITY MEASUREMENTS.	56
Γ	Prenared For: Drimov Wireleas Incorporated	_

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 4 of 97

FIGURE 50: THE EUT SETUP DURING RADIATED EMISSIONS TESTS, WITH EXCITER AS RF SOURCE: VIEW AS SEEN FROM THE SENSE ANTENNA....62 FIGURE 51: THE EUT SETUP DURING RADIATED EMISSIONS TESTS, WITH TERMINATED RF SOURCE: VIEW AS SEEN FROM THE SENSE ANTENNA. 62 FIGURE 52: THE EUT SETUP DURING RADIATED EMISSIONS TESTS, WITH EXCITER AS RF SOURCE: CLOSE UP VIEW OF THE FRONT OF THE EUT. 63 FIGURE 53: THE EUT SETUP DURING RADIATED EMISSIONS TESTS, WITH EXCITER AS RF SOURCE: REAR OF THE EUT SHOWING PLACEMENT OF FIGURE 54: THE EUT SETUP DURING RADIATED EMISSIONS TESTS. WITH TERMINATED RF SOURCE: CLOSE UP VIEW OF THE FRONT OF THE EUT. FIGURE 55: THE EUT SETUP DURING RADIATED EMISSIONS TESTS, WITH TERMINATED RF SOURCE: REAR OF THE EUT SHOWING PLACEMENT OF FIGURE 58: ANTENNA VERTICALLY POLARIZED, 30-1000 MHz, AT 10 M, 72.02 MHz, 5 WATT MODE.72 FIGURE 59: ANTENNA HORIZONTALLY POLARIZED, 30-1000 MHz, AT 10 M, 72.02 MHz, 5 WATT MODE......72 FIGURE 66: THE EUT SETUP DURING CONDUCTED RF EMISSIONS TESTS ONTO AC MAINS......77 FIGURE 67: RF EMISSIONS CONDUCTED ONTO AC MAINS, 72.02 MHz, (5 W), L1......81 FIGURE 68: RF EMISSIONS CONDUCTED ONTO AC MAINS, 72.02 MHz, (5 W), L2......81 FIGURE 69: RF EMISSIONS CONDUCTED ONTO AC MAINS, 75.98 MHz, (5 W), L1......82 FIGURE 70: RF EMISSIONS CONDUCTED ONTO AC MAINS, 75.98 MHz, (5 W), L2......82

TABLE OF REVISION HISTORY

Revision and Revision Date:	V0_0 ; 2009-09-25
Authorizing Agent:	Abtin Spantman
Total number of pages	87/Electronic
Reason for change:	Original Document Creation

Revision and Revision Date:	V0 1;2009-11-02
Authorizing Agent:	Abtin Spantman
Total number of pages	89/Electronic
Reason for change:	Re-sequenced the report data sections to expedite review process. Brought all RF conducted measurements ahead, and RF Output power as the first data section.
Affected Section or Area:	Section 2.1.1 through section 2.1.7 re-sequenced.
Reason for change:	Added test procedure reference ANSI/TIA 603 C (2004) to the test procedure descriptions.
Affected Section or Area:	Entire report
Reason for change:	Added term 'External Radio Frequency Power Amplifier (ERFPA)' to text for clarification of the class of product being tested.
Affected Section or Area:	Product Description
Reason for change:	References to RSS-119 have been changed to RSS-131, as the more appropriate standard.
Affected Section or Area:	Declaration of Conformity section
Reason for change:	Added Dipole antenna set to the equipment list
Affected Section or Area:	List of Equipment, Radiated Emissions
Reason for change:	Added verbiage that information the section for 'Carrier Frequency and Power Stability' was provided to the client as a service for future qualifications.
	Carrier Frequency and Power Stability
Affected Section or Area:	
Reason for change:	Added verbiage on testing at minimum and maximum RF input power, and the selection of 1Watt as nominal RF input power by virtue or the source that will be used in the actual installations (the Exciter is the source).
Affected Section or Area:	RF emissions and power stability section

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 6 of 97

Revision and Revision Date:	V1_0 ; 2009-11-05
Authorizing Agent:	Abtin Spantman
Total number of pages	94/Electronic
Reason for change:	Added MPE calculations to support Canadian requirements and filings. Re- sequenced Appendix section.
Affected Section or Area:	Added Appendices A, B, C, D, E

Revision and Revision Date:	V1_1 ; 2009-11-09
Authorizing Agent:	Abtin Spantman
Total number of pages	97/Electronic
Reason for change:	Clarifications added to the MPE calculations, as presented in Appendix A. Both 5 Watt and 50 Watt MPE calculations are now presented, at minimum separation distance from the antenna by 2.07 meters, and 2.83 meters respectively.
Affected Section or Area:	Appendix A
Reason for change:	Added Pass-band Gain and Bandwidth information to satisfy RSS-131, section 4.2. Added new Figures 29 and 30, then re-sequenced all Figures.
Affected Section or Area:	Section 2.1.2 Added Figures 29 and 30

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 7 of 97

Introduction

1.1 Scope

Between August 12TH and August 31ST, 2009, a series of Electro-Magnetic Compatibility (EMC) tests were performed on one sample of the Primex Wireless' model '72XR' Command Point Amplifier, serial number "B13H", here forth referred to as the "*Equipment Under Test*" or "*EUT*".

The radio frequency (RF) emission tests were performed are in accordance with the United States Code of Federal Regulations (CFR), Part 90, for Private Land Mobile Radio Services, using the emission standards test procedures outlined in ANSI/TIA-603-C (2004) and ANSI C63.4 (2003), with test instruments adhering to CISPR 16-2 guidelines. The tests were performed, with the EUT in pre-defined operating modes and performance criterion as defined in advance by Primex Wireless, Incorporated, here forth referred to as the "*Primex Test Plan*".

The tests were performed to allow verification, in part, of the product's EMI compliance in accordance with the EMC standards in the United States of America. The tests were performed by Abtin Spantman, EMC Engineer at Ingenium Testing.

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 8 of 97

1.2Product Description1.2.1General Product Description

The Primex model '72XR' Power Amplifier is a variable output power RF power amplifier with an operating frequency range of 72 to 76 MHz. The power amplifier is capable of delivering from 5 Watts to 50 Watts of RF power based on configuration settings *as adjusted at the manufacturer, prior to shipment* of the power amplifier product.

The 72XR Power Amplifier is typically installed and used in the CommandPoint 72XR System. The CommandPoint 72XR System automatically synchronizes clocks through a wireless radio signal. The GPS satellites transmit time information to the GPS receiver that sets the Transmitter's internal clock to the precise GPS time. The Transmitter rebroadcasts that time via a radio signal to system clocks and components within the range of the system. As a result, all clocks, bells, and timers in the wireless system are precisely synchronized to each other and to the U.S. Government's official NIST time standard, Coordinated Universal Time (UTC). All components of the CommandPoint 72XR Systems include an externally mounted antenna and the RF power amplifier allowing for greater coverage distance.

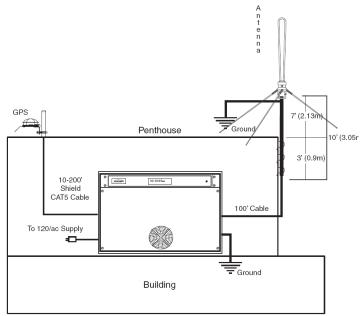


Figure 1: Block diagram of the Equipment and interconnections.

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	eport #: JCEAQ1132 Primex 72XR v1_1	

Figure 2: Front view of the 72XR power amplifier (exposed to end-user)

Figure 3: Rear view of the 72XR power amplifier (not exposed to end-user)

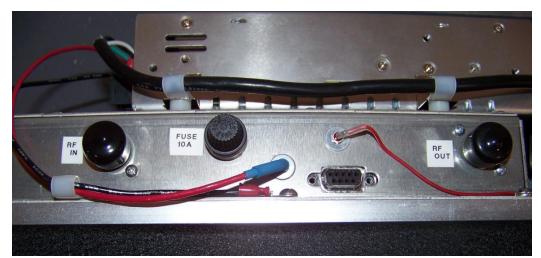


Figure 4: The 72XR power amplifier port connections, showing 'RF IN' and 'RF OUT' type N(F) connections, the DB-9 monitoring port, and DC power source hardwired connections (not exposed to the end-user)

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 10 of 97

Figure 5: The Command Point 72XR System, as presented to the end-user (includes the power amplifier) Front view.

Figure 6: The Command Point 72XR System, as presented to the end-user (includes the power amplifier) Rear view.

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 11 of 97

1.2.2 Detailed Product Description

The '72RX' power amplifier can accept an RF drive level of 0.5 to 1.5 Watts, at the 'RF IN' connector, with a nominal level of 1 watt. The '72RX' power amplifier falls within the classification of 'External Radio Frequency Power Amplifier (ERFPA)', and should be tested as such. The output power at the 'RF OUT' connector is adjustable from 5 to 50 watts with factory adjustment; the level is not user adjustable. **The output power is held to the preset power level by means of an automatic gain control circuit.** The amplifier employs an SWR protection circuit, and reduces the output power to approximately 2 watts if the SWR exceeds 4:1. The output power is returned to the set level once the SWR is reduced. The unit contains no oscillators or microprocessors; all amplifier supervisory and control signals are processed by analog computer op amp circuits.

The amplifier is mounted in a rack enclosure with a Polyphasor lightning arrestor and an FCC approved Primex exciter; the FCC ID# PZ3-XR which is used to provide the drive signal for the amplifier.

The exciter/amplifier combination is used with 100 feet of LMR400 coaxial cable, and the Kathrein-Scala GPB-75N unity gain (0 dBd) ground plane antenna.

A typical system would have the following functionality:

GPS antenna/Transmitter Extension Cable

A specially designed low-resistance data cable is available upon request to extend the distance between the GPS receiver and the Transmitter. The GPS receiver continuously sends the precise time through the cable to the Transmitter.

GPS Receiver

The Global Positioning System (GPS) Receiver has a sensitive antenna that receives the precise time (UTC) from the GPS satellite transmission. The GPS receiver must have an unobstructed "view of the sky" to maximize the GPS receiver's ability to receive signal 24-hours per day.

Transmitter (Referred to as the Exciter, and is not an integral part of the EUT)

The Transmitter receives the time from the GPS Receiver and synchronizes to the precise GPS time. The Transmitter continuously broadcasts its GPS synchronized time to the system clocks, bells, and tones. The Transmitter operates on channels with 20kHz bandwidths between the frequencies of 72-76 MHz and is preset to one of the channels licensed by the FCC/IC to minimize interference on these frequencies and channels.

High Power Amplifier (EUT)

The 72XR system increase the output power of the base Transmitter by utilizing a high power amplifier. The amplifier is housed in an industrial style enclosure for safety reasons. **Lightning Arrestor**

The lightning arrestor is housed inside the enclosure and helps protect the transmitter and amplifier from lightning damage during severe weather. However, we cannot guarantee that all damage will be prevented even with the lighting arrestor installed.

Ground Plane Omni-directional Antenna

This antenna is a heavy duty, light weight ground plane antenna designed to be mounted outdoors.

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 12 of 97

Table 1: EUT's table of Interfaces to/from the EUT

	Description		
AC N	AC Mains power cord – 14~10 AWG Unbalanced Zip. (Note 1)		
RF I	N: RF Input – N(F) coaxial connector		
RF C	RF OUT: RF Output $- N(F)$ coaxial connector		
Base	Baseband Monitor Port: RS-232 shielded cable, DB-9 connector		

Notes:

1) The unit has an AC-to-DC power supply that provides power to the amplifier. This DC power supply is hard-wired and considered an integral part of the amplifier construction. The cord for the AC Mains power is considered the only power interface to the amplifier.

1.2.3 Modes of operation

The only mode of operation specified for this device is 'On' (versus Off) states. All testing should be performed with the unit powered on.

While the power amplifier unit is on, it will provide power gain to the RF signal presented, up to the pre-set level (5 to 50 Watts), and will maintain that output power level even if the input RF signal level fluctuates within the tolerable range (0.5 to 1.5 Watts).

Testing should be performed with the Exciter, as provided by the manufacturer, or with a signal source with 1.0 Watts nominal power. If an external signal generator is utilized, it should be operated with settings to match the modulation characteristics of the Exciter.

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 13 of 97

1.2.4 Equipment Under Test (EUT) Information

The following information has been supplied by the applicant.

Table 2: Equipment Under Test (EUT) Product Information

Product Name:	72XR Power Amplifier	
Model Number:	72XRnn	(where 'nn' signifies output power in Watts)
Serial Number:	B13H	

Table 3: Support Equipment Product Information

Product Name:	Exciter
Model Number:	XR
Serial Number:	0000000389 (part of assembly number: Q13200-2)
Product Name:	Triplite IBAR12, Isobar Premium Surge Protector
Model Number:	IB6421
Serial Number:	973AS1

1.2.5 EUT's Technical Specifications (Additional information)

Table 4: Equipment Under Test (EUT) Technical Specifications

	70 (70
Frequency Range (in MHz)	72 to 76
RF Power (W)	Adjustable 5 W to 50 W
Apparent Gain of Antenna	N/A (No antenna tested)
System/RF channel Impedance	50 Ohms
Field Strength (and at what distance)	N/A
Occupied Bandwidth (99% BW)	N/A (source dependant)
Type of Modulation	N/A (source dependant)
Output Linearity across frequency	± 1 dB Gain Flatness
Emission Designator	N/A (source dependant)
Transmitter Spurious (worst case)	46.3 dBµV/m at 10m, 144.04 MHz
Frequency Tolerance %, Hz, ppm	N/A (source dependant)
Microprocessor Model # (if applicable)	N/A
EUT will be operated under FCC Rule	Part 90
Part(s)	
Modular Filing	🗌 Yes 🛛 No
Cabinet Size	20.8"w x 17.6"h x 21.4"d
Cabinet Weight	75 Pounds
Power Requirements	115 VAC, 60 Hz, 5 to 50 A
Environmental Operating conditions	System: (0 to 50 °C)
	0 – 95 % RH, Non-condensing
Communication Ports	Baseband Monitor: RS-232

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 14 of 97

1.3 Applicable Normative Documents

Table 5: Regulatory documents

Publication	Year	Title
47 CFR, Parts 0-90 (FCC)	Release Date	United States of America Code of Federal Regulations
47 CFR, Faits 0-90 (FCC)	2008-07-10	Title 47 - Telecommunications
		American National Standard for Methods of Measurement of
ANSI C63.4	2003	Radio-Noise Emissions from Low-Voltage Electrical and
		Electronic Equipment in the Range of 9 kHz to 40 GHz.
		Telecommunications Industry Association
EIA/TIA 603-C	(2004-08)	Land Mobile FM or PM-
	(2004-00)	Communication Equipment-
		Measurement and Performance Standards
		Industry Canada
	Issue 7	Spectrum Management and Telecommunications
RSS-119	(2007-04)	Radio Standard Specification.
	(2007-04)	Land Mobile and Fixed Radio Transmitters and Receivers
		Operating in the Frequency Range 27.41-960 MHz.
		International Electrotechnical Commission (IEC) standard.
CISPR 16-1-1	Edition 2.1 (2006-11)	Specification for radio disturbance and immunity measuring
		apparatus and methods.
		Part 1-1: Measuring Apparatus.
		International Electrotechnical Commission (IEC) standard.
CISPR 16-1-2	Edition 1.2	Specification for radio disturbance and immunity measuring
	(2006-08)	apparatus and methods.
		Part 1-2: Ancillary equipment – conducted disturbances
		International Electrotechnical Commission
	Second Edition	Specification for radio disturbance and immunity measuring
CISPR 16-1-3	(2004-06)	apparatus and methods.
		Part 1-3: Radio disturbance and immunity measuring apparatus -
		Ancillary equipment – Disturbance power.
		International Electrotechnical Commission (IEC) standard.
CISPR 16-2-1	Edition 1.1	Specification for radio disturbance and immunity measuring
	(2005-09)	apparatus and methods.
		Part 2-1: Conducted disturbance measurement.
		International Electrotechnical Commission (IEC) standard.
CISPR 16-2-2	Edition 1.2 (2005-09)	Specification for radio disturbance and immunity measuring
		apparatus and methods.
		Part 2-2: Measurement of disturbance power.
		International Electrotechnical Commission (IEC) standard.
CISPR 16-2-3	Second Edition	Specification for radio disturbance and immunity measuring
CISPK 10-2-3	(2006-07)	apparatus and methods.
		Part 2-3: Methods of Measurement of disturbance and immunity – Radiated disturbance measurements
		Kaulateu uistufbance measurements

Table 6: Non-Regulatory controlled documents from Primex Wireless or Ingenium Testing.

Document	Owner	Title
Command Point 72XR5 and 72XR30 User Guide	Primex Wireless	Command Point 72XR5 and 72XR30 User Guide
JCEAQ1132 quote	Ingenium Testing	Quotation and statement of work for the 72XR Power Amplifier

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 15 of 97

1.4 Defined Performance Criterion

Manufacturer and Device-Specific Operational Definitions and Performance Criterion:

The following are general performance definitions, as described in 47 CFR 90.213 (a) and 47 CFR 2.1055 (d)(1):

- In normal operational mode, the power amplifier unit shall operate per manufacturer specifications.
- Frequency excursions due to susceptibility testing should be less than \pm 5 ppm from the nominal center frequency.
- Output power excursions due to susceptibility testing should be less than $\pm 1 \text{ dB}$ from nominal output power.

Susceptibility test results are to be evaluated for the performance of the amplifier and not of the RF source. Care should be taken to ensure the source and the amplifier are exercised appropriately.

Performance Criterion A:

During testing, normal performance within the specification limits (is the only acceptable performance level).

The following functions must operate per manufacturers specifications as listed below, for acceptance criterion A:

- Center Frequency of Source: Range:72-76 MHz
 - Nominal at 72.0 MHz; Acceptable Excursion during test: ± 360 Hz from nominal.
 - Nominal at 76.0 MHz; Acceptable Excursion during test: ± 380 Hz from nominal.
- Output Power: Range:5 50 Watt
 - Nominal at 5 Watt (+37 dBm); Acceptable Excursion during test: ± 1 dBm from nominal.
 - Nominal at 50 Watt (+47 dBm); Acceptable Excursion during test: ± 1 dBm from nominal.

Performance Criterion B:

Not defined for this product or this series of tests.

Performance Criterion C:

Not defined for this product or this series of tests.

1.5 Applicable Test Matrix and Test Results

The following matrix defines the scope of testing as covered by this report, and agreed to between Primex Wireless (Client) and Ingenium Testing, LLC.

This series of testing is performed to verify that the electromagnetic performance of the 72XR Pwer Amplifier adheres to the expected performance stated in the aforementioned standards. These tests verified that the performance characteristics meet the specific limits dictated by 47CFR 90. The following matrix describes the test regiment.

Port Definition	Description/ Detail	Test Standard	Performance Criteria	Pass / Fail
D ada a	5 Watt Mode	Radiated RF Emissions 47 CFR 90.210	30 MHz-1.0 GHz Measured RF Emissio should be Below specifi Limits	Pace
Enclosure	50 Watt Mode	Radiated RF Emissions 47 CFR 90.210	30 MHz-1.0 GHz Measured RF Emissio should be Below specifi Limits	Pacc
	5 Watt Mode	AC Mains Conducted RF Emissions 47 CFR 15.107 Class B	150kHz-30 MHz Measured RF Emissio should be Below specifi Limits	
AC Power	50 Watt Mode	AC Mains Conducted RF Emissions 47 CFR 15.107 Class B	150kHz-30 MHz Measured RF Emissio should be Below specifi Limits	led Pass
	5 Watt Mode	Frequency Stability 47CFR 2.1055(d)(1) 47CFR 90.213(a)	Freq. Excursion < 5 ppn 85% of V _{NOM} 115% of V _{NOM} Criterion B	Pass
	50 Watt Mode	Frequency Stability 47CFR 2.1055(d)(1) 47CFR 90.213(a)	Freq. Excursion < 5 ppn 85% of V _{NOM} 115% of V _{NOM} Criterion B	n Pass
	5 Watt Mode	Occupied Bandwidth 47 CFR 2.202(a) 47 CFR 90.209(b)(5)	OCCBW < 20 kHz	n edPass
	50 Watt Mode	Occupied Bandwidth 47 CFR 2.202(a) 47 CFR 90.209(b)(5)	OCCBW < 20 kHz	Pass
	5 Watt Mode	RF Power Output 47 CFR 90.205(c)	Pout < 300 W As licensed	Pass
RF Port	50 Watt Mode	RF Power Output 47 CFR 90.205(c)	Pout < 300 W As licensed	Pass
	5 Watt Mode	Band-Edge 47 CFR 90.210	Spurious Pout < -13dBm < 71.7dBuV/m@10m	Pass
	50 Watt Mode	Band-Edge 47 CFR 90.210	Spurious Pout < -13dBm < 71.7dBuV/m@10m	Pass
	5 Watt Mode	Conducted Spurious Output Power	Conducted Spurious Pou < -13dBm	t Pass
	rimex Wireless, Incorporate			
Test Report #: J0	CEAQ1132 Primex 72XR v1	l_1		Page 17 of 97

Table 7: Test Matrix and Test Results

50 Watt Mode Conducted Spurious Output Power 47 CFR 90.210 Conducted Spurious Pout < -13dBm		47 CFR 90.210		
	50 Watt Mode	Output Power	1	Pass

Notes:

1.6 Notes and Exceptions to Report

Item 1) No exceptions to report.

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 18 of 97

1.7 Declaration of Conformity

DECLARATION OF CONFORMITY

The Primex Wireless' model '72XR' Power Amplifier was found to **MEET** the requirements as described within the specifications of the FCC, Title 47 CFR, Part 90 for performance of an amplifier product in the 72-76 MHz band, Title 47 CFR, Part 15.107 for conducted emissions onto AC Mains, as well as the Industry Canada requirements specified within RSS-131 for an amplifier product. The conformity statement is limited in scope to the testing that was commissioned and administered and covered in this report.

If some emissions are seen to be within 3 dB of their respective limits:

As these levels are within the tolerances of the test equipment and site employed, there is a possibility that this unit, or a similar unit selected out of production may not meet the required limit specification if tested by another agency.

Ingenium Testing, LLC certifies that the data contained herein was taken under conditions that meet or exceed the requirements of the test specifications. The results in this Test Report apply only to the item(s) tested on the above-specified dates. Any modifications made to the EUT subsequent to the indicated test date(s) will invalidate the data herein, and void this certification.

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 19 of 97

1.8 Signatories

The test matrix presented in section 1.4 of this report was generated, in agreement, by the cognizant parties representing the client as the manufacturer of the equipment, and by the cognizant parties at Ingenium Testing. The performance of the tests and reporting of the results are accurate to the best of our collective knowledge as presented within the body of this report.

The testing of this product was approved by the cognizant parties representing the manufacturer:

Mr. Michael Jonely Electrical Engineer, Primex Wireless

Date

Manufacturer Name:	Primex Wireless
Address:	Primex Wireless 965 Wells Street Lake Geneva, WI 53174 T: +1 800-537-0464 F: +1 262-248-0061 www.PrimexWireless.com
Contact Person: Technical, and Administrative	Mr. Mike Jonely Electrical Engineer Primex Wireless 965 Wells Street Lake Geneva, WI 53174 T: +1 262-249-2362 <u>mjonely@quartexusa.com</u>

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 20 of 97

Michael M. Miller Laboratory Manager, Ingenium Testing, LLC

The testing was performed by:

Abtin Spantman **RF/EMC Engineer, Ingenium Testing, LLC** Date

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 21 of 97

Date

1.9 Test Facility and Accreditations

1.9.1 Ingenium Testing, LLC Accreditation

Ingenium Testing, LLC is accredited by A2LA (American Association for Laboratory Accreditation) to conform to ISO/IEC 17025, 2005 "General Requirements for the Competence of Calibration and Testing Laboratories".

Ingenium Testing, LLC's scope of accreditation includes all test methods listed herein, unless otherwise noted. A copy of the accreditation may be accessed on our web site: www.lngeniumTesting.com. Accreditation status can be verified at A2LA's web site: www.a2la2.net.

1.9.2 Location of Test Facility

All testing was performed at Ingenium Testing, LLC, 3761 South Central Avenue, Rockford, Illinois, 61102-4292, United States of America, utilizing the facilities listed below, unless otherwise noted.

List of Facilities Located at Ingenium Testing, LLC:

- 10-meter Semi-Anechoic Chamber, designated Chamber number 6.
- RF Shielded room, designated Chamber 11.

Test Details

2.1 Electromagnetic Emission Tests

2.1.1 Conducted RF Performance Parameters – Conducted RF Power Output Measurements

2.1.1.1 Test Criterion

The test matrix in section 1.5 was used as a guide for test points and conditions.

Port Definition	Description/ Detail	Test Standard	Performance Criteria	Pass / Fail
Enclosure	5 Watt Mode	RF Power Output 47 CFR 90.205(c)	Pout < 300 W As licensed	Pass
Enclosure	50 Watt Mode	RF Power Output 47 CFR 90.205(c)	Pout < 300 W As licensed	Pass

The following table presents the limits for fundamental RF emissions, conducted at the RF output port, as specified in the FCC Title 47 CFR, Part §2.1046, §90.205(c) and §90.210(c) for products qualifying as licensed transmitters.

The power of any emission within the authorized operating frequency ranges must be within the terms of the license as granted.

Frequency (MHz)	Emission Limit Antenna Conducted (dBm)
72.0 - 76.0	As Licensed (37.0 dBm = 5W) §90.210(c) – Mask c
72.0 - 76.0	As Licensed (47.0 dBm = 50W) §90.210(c) – Mask c

 Table 8: Field Strength Limit for radiated harmonic and spurious RF emissions under 47CFR 2.1053.

The emission mask in the FCC Title 47 CFR, Part §90.210(c) will be used to assess the compliance of the modulated signal, as presented by the Exciter as a source signal.

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 23 of 97

2.1.1.2 Test Equipment

All Ingenium Testing, LLC test and monitoring equipment/instrumentation is calibrated for Testing Laboratory requirements of ISO/IEC 17025:2005, and is N.I.S.T. traceable. The equipment is used according to the operation manuals as provided by the manufacturers. Calibration information was checked and recorded before each test in which the equipment was used.

Manufacturer	Model	Ingenium Asset #	Description	Last Cal date	Cal due date
Agilent	E4440A	1207	PSA Spec. Analyzer	18 Dec 2008	18 Dec 2009
Agilent	N9039A	1206	Pre-Selector	23 Dec 2008	23 Dec 2009
Agilent	N5182	1208	RF Generator	18 Dec 2008	18 Dec 2009
Werlatone	C6047	0344	Directional Coupler	22 Jun 2009	22 Jun 2010
Kalmus	505C	0069	Pre-amplifier	Verify on Use	Verify on Use
Agilent	33220A	1438	Waveform Generator	15 Dec 2008	15 Dec 2009

List of Equipment Used:	
-------------------------	--

Correction factors and cable loss factors were entered into the appropriate test equipment. As a result, the data taken accounts for the antenna correction factor as well as cable loss or other corrections, and can therefore be entered into the database as a corrected measurement result.

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 24 of 97

2.1.1.3 Test Setup

The EUT was tested as a "Table-Top" type product, as described in TIA-603-C. The EUT was placed on a non-conductive table, 80 cm above the reference ground plane, inside an RF shielded Chamber located at Ingenium Testing. The AC power supply of 120V, 60 Hz was provided to the EUT via appropriate broadband EMI Filters. The EUT (power amplifier) was connected to the Exciter source, as would be in normal use, using a short length of coaxial cable. The output of the EUT was connected to a directional coupler, and to a 50 ohm coaxial terminating load. The spectrum analyzer was connected to the directional coupler, at the forward power tap. An attenuator was installed in the RF path between the forward tap and the spectrum analyzer, to protect the test instruments. The EUT was exercised under standard operating conditions, as defined in section 1.2.3.1. of this report. The amplifier was exercised with the Exciter for this series of tests.

Figure 7: The EUT setup during RF Output Power Measurements.

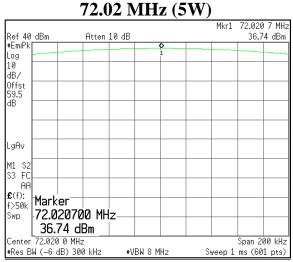
Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 25 of 97

2.1.1.4 Test Procedure

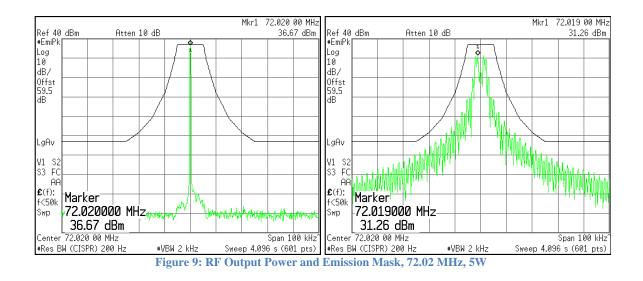
The amplifier RF output was connected through a directional coupler, to a 50 ohm coaxial load. The Forward Power tap on the directional coupler was then connected to a series attenuator and to the Spectrum Analyzer as the measuring instrument.

The RF Output Power of the fundamental frequency was investigated at the lowest and highest channels, using the source (Exciter), coupled through the amplifier. Measurements were made at the output of the amplifier (EUT). This test was repeated four times, on combinations of low and high channels, at low and high power.

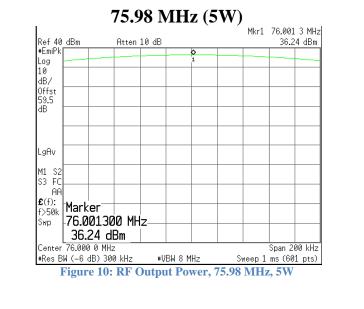
The loss factors from the directional coupler, cables and the attenuator were added as correction settings directly on the analyzer, thereby allowing direct measurements, without the need for any further corrections. The Output Power of the fundamental frequency was measured with the Spectrum Analyzer using a 'Peak Detector' function, with 300 kHz RBW and VBW of 8 MHz. The Amplifier (EUT) was configured to run in normal operating mode, and presented with a nominal 1 Watt CW RF signal source. The spectrum analyzer was used in peak-hold mode while measurements were made, as presented in the charts that follow. The test was then repeated with the Exciter providing a modulated RF source, using typical data as would be in normal operation. The emission limits, as set forth by FCC Title 47 CFR, Part §2.1046, §90.205(c) and §90.210(c) for products qualifying as licensed transmitters were applied.

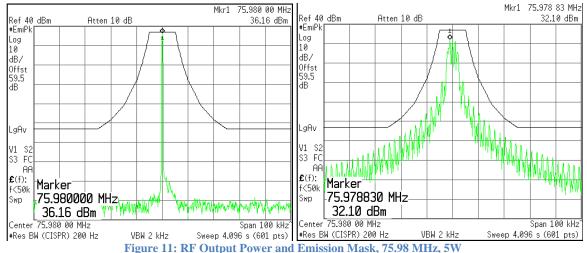

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 26 of 97

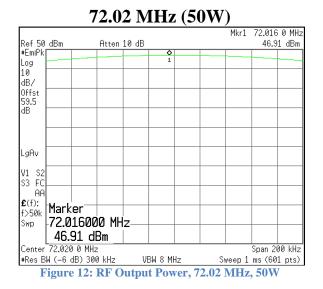
2.1.1.5 Test Results

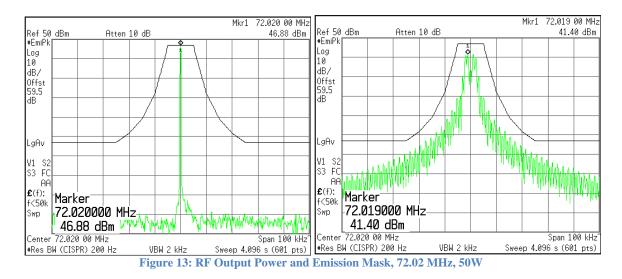

The EUT was found to **MEET** the requirements as set forth by FCC Title 47 CFR, Part §2.1046, §90.205(c) and §90.210(c) for products qualifying as licensed transmitters

	RF Output Power		
72.02 MHz, 5W	MHz, 5W 36.74 (dBm) 4.72 (
75.98 MHz, 5W	36.24 (dBm)	4.21 (Watt)	
72.02 MHz, 50W	46.91 (dBm)	49.09 (Watt)	
75.98 MHz, 50W	46.43 (dBm)	43.95 (Watt)	


 Table 9: RF Output Power results






Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 27 of 97

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 28 of 97

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 29 of 97

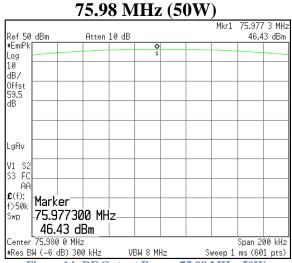
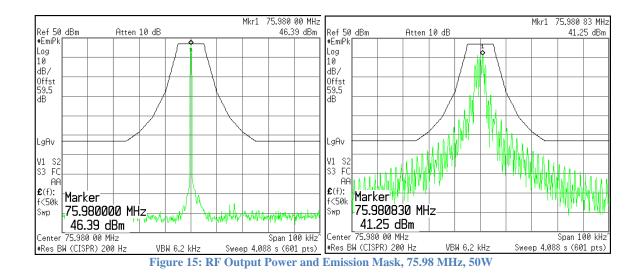



Figure 14: RF Output Power, 75.98 MHz, 50W

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 30 of 97

2.1.2 Conducted RF Performance Parameters – Occupied Bandwidth Measurements

2.1.2.1 Test Criterion

This product is an amplifier. As such, the product does not contain a direct carrier frequency or modulation source generator, and hence does not have a modulation or Occupied Bandwidth characteristic. The Occupied Bandwidth characteristics may be requested at some point for filing and licensing requirements. The rationale in the test methodology and process, as chosen for these series of tests, are explained in the following paragraphs.

The test matrix in section 1.5 was used as a guide for test points and conditions.

Port Definition	Description/ Detail	Test Standard	Performance Criteria	Pass / Fail
RF Port	5 Watt Mode	Occupied Bandwidth 47 CFR 2.202(a) 47 CFR 90.209(b)(5)	OCCBW < 20 kHz	Pass
KF FUIL	50 Watt Mode	Occupied Bandwidth 47 CFR 2.202(a) 47 CFR 90.209(b)(5)	OCCBW < 20 kHz	Pass

Rationale and the limits:

Limits are imposed on the maximum bandwidth of operation, for a licensed transmitter of this category, as specified in the FCC Title 47 CFR, Part §2.202(a), §2.1049, §90.209(b)(5) and §90.213(a).to be **less than 20 kHz**. This product is not a transmitter, but will be used in conjunction with a transmitter. The challenge, then, is to demonstrate compliance with the 20 kHz bandwidth limitation, using a typical transmitter (the Exciter). The measured Occupied Bandwidth would then be from the transmitter, plus any distortion that may be caused by the amplifier. There are no limits on distortion for the amplifiers in this category. The frequency distortion limit is indirectly adopted from §90.213(a), to be less than 5 ppm.

Although this product is <u>not a transmitter</u>, the product was tested for occupied bandwidth, in the form of any added distortion that may be superimposed onto the signal between the RF input and output ports of the EUT. This test was accomplished by examining the Occupied Bandwidth of input signal, as presented by the Exciter as in normal use, and comparing it to the Occupied Bandwidth of the amplified output signal. The decision criteria would be a change is the occupied bandwidth, of more than 5 ppm, in the form of frequency distortion. The goal of the test was to demonstrate the amount of added distortion, and then to demonstrate that a typical transmitter would meet the 20 kHz Occupied Bandwidth limitation imposed for this category of transmitters.

Frequency (MHz)	§90.213(a) Limit Added Frequency Distortion (Hz)	§90.209(b)(5) Limit Total Occupied Bandwidth (kHz)
72.02	Less than 360 Hz	Less than 20 kHz
75.98	Less than 380 Hz	Less than 20 kHz

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 31 of 97

2.1.2.2 Test Equipment

All Ingenium Testing, LLC test and monitoring equipment/instrumentation is calibrated for Testing Laboratory requirements of ISO/IEC 17025:2005, and is N.I.S.T. traceable. The equipment is used according to the operation manuals as provided by the manufacturers. Calibration information was checked and recorded before each test in which the equipment was used.

Manufacturer	Model	Ingenium Asset Number	Description	Last Cal data	Cal due date
Agilent	E4440A	1207	PSA Spec. Analyzer	18 Dec 2008	18 Dec 2009
Agilent	N9039A	1206	Pre-Selector	23 Dec 2008	23 Dec 2009
Agilent	N5182	1208	RF Generator	18 Dec 2008	18 Dec 2009
Werlatone	C6047	0344	Directional Coupler	22 Jun 2009	22 Jun 2010

List of Equipment	Used:
-------------------	-------

The data presented accounts for the antenna correction factor as well as cable loss or other corrections, and can therefore be entered into the database as a corrected measurement result.

2.1.2.3 Test Setup

The EUT was tested as a "Table-Top" type product, as described in TIA-603-C. The EUT was placed on a non-conductive table, 80 cm above the reference ground plane, inside an RF shielded Chamber located at Ingenium Testing. The AC power supply of 120V, 60 Hz was provided to the EUT via appropriate broadband EMI Filters. The EUT (power amplifier) was connected to the Exciter source, as would be in normal use, using a short length of coaxial cable. The output of the EUT was connected to the directional coupler, and to a 50 ohm coaxial terminating load. The spectrum analyzer was connected to the directional coupler, at the forward power tap. An attenuator was installed in the RF path between the forward tap and the spectrum analyzer, to protect the test instruments. The EUT was exercised under standard operating conditions, as defined in section 1.2.3.1. of this report. The amplifier was exercised with the Exciter for this series of tests.

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 32 of 97

Figure 16: The EUT setup during Occupied Bandwidth tests.

2.1.2.4 Test Procedure

The amplifier RF output was connected through a directional coupler, to a 50 ohm coaxial load. The Forward Power tap on the directional coupler was then connected to a series attenuator and to the Spectrum Analyzer as the measuring instrument.

The Occupied Bandwidth of the source (Exciter) was measured directly, and then measured again through the amplifier setup, as described above. The measured Occupied Bandwidth was compared between the Exciter output and the Amplifier (EUT) output. The expected variance was less than 5 ppm or approximately 360 Hz to 380 Hz, depending on the frequency channel under test. This test was repeated four times, on combinations of low and high channels, at low and high power.

The loss factors from the directional coupler, cables and the attenuator were added as correction settings directly on the analyzer, there by allowing direct measurements, without the need for any further corrections. The bandwidth of the fundamental frequency was measured with the Spectrum Analyzer using 200 Hz RBW and VBW of 2 kHz. The Amplifier (EUT) and the Exciter were configured to run in normal operating mode, and the Exciter was supplied with typical data as a modulation source. The spectrum analyzer was used in peak-hold mode while measurements were made, as presented in the charts that follow.

2.1.2.5 Test Results

The EUT was found to **MEET** the requirements of maximum Occupied Bandwidth of 20 kHz, as specified in the FCC Title 47 CFR, Part §2.1049 and §90.209(b)(5) suitable for use with a transmitter of this category. Supporting evidence of significant measured RF emissions, are tabulated and presented below.

Port Definition	Description/ Detail	Test Standard	Performance Criteria	Pass / Fail
RF Port	5 Watt Mode	Occupied Bandwidth 47 CFR 2.202(a) 47 CFR 90.209(b)(5)	OCCBW < 20 kHz	Pass
	50 Watt Mode	Occupied Bandwidth 47 CFR 2.202(a) 47 CFR 90.209(b)(5)	OCCBW < 20 kHz	Pass

CLIMATE TEST CONDITIONS

ŀ

Temperature:	73 °F (22.8 °C)
Humidity:	48 % RH

Test	72.02 MHz -20 dB _c Occ.BW.	75.98 MHz -20 dB _c Occ.BW.
Exciter Output (1W)	6.7720 kHz	5.0673 kHz
Amplifier Output (5W)	6.6911 kHz	5.2693 kHz
Amplifier Output (50W)	6.7797 kHz	5.2114 kHz
Max. Excursion	88.6 Hz	202 Hz
5ppm Excursion test	< 360 Hz = Pass	< 380 Hz = Pass
Occ. BW < 20 kHz test	< 20 kHz = Pass	< 20 kHz = Pass

Additional data for documentation and filing purposes only:

Test	72.02 MHz -6 dB _c Occ.BW.	75.98 MHz -6 dB _c Occ.BW.
Amplifier Output (5W)	4.60 kHz	4.37 kHz
Amplifier Output (50W)	4.67 kHz	4.40 kHz
Occ. BW < 20 kHz test	< 20 kHz = Pass	< 20 kHz = Pass

Test	72.02 MHz -20 dB _c Occ.BW.	75.98 MHz -20 dB _c Occ.BW.
Amplifier Output (5W)	6.83 kHz	5.07 kHz
Amplifier Output (50W)	6.80 kHz	5.17 kHz
Occ. BW < 20 kHz test	< 20 kHz = Pass	< 20 kHz = Pass

Test	72.02 MHz -26 dB _c Occ.BW.	75.98 MHz -26 dB _c Occ.BW.	
Amplifier Output (5W)	10.84 kHz	8.74 kHz	
Amplifier Output (50W)	10.73 kHz	8.73 kHz	
Occ. BW < 20 kHz test	< 20 kHz = Pass	< 20 kHz = Pass	

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 34 of 97

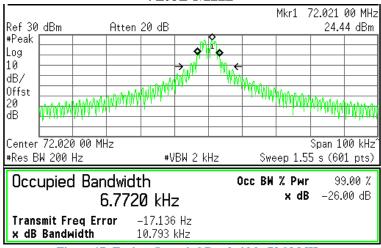


Figure 17: Exciter Occupied Bandwidth, 72.02 MHz

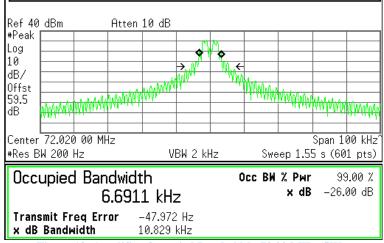


Figure 18: Amplifier Occupied Bandwidth, 72.02 MHz (5W)

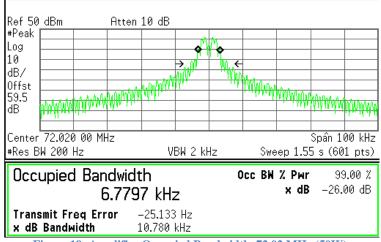
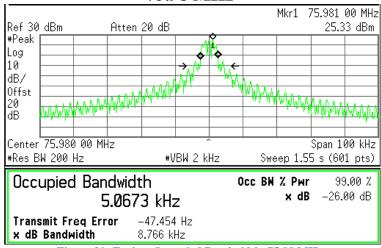



Figure 19: Amplifier Occupied Bandwidth, 72.02 MHz (50W)

Prepared For:	Primex Wireless, Incorporated		
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 35 of 97	

72.02 MHz

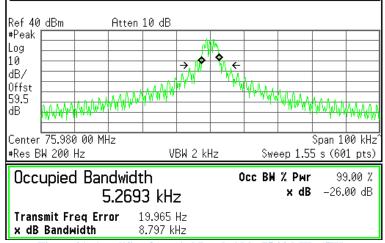
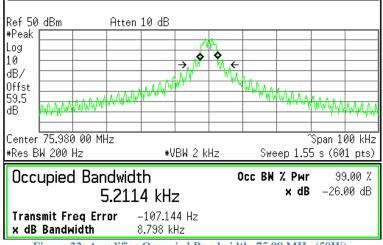
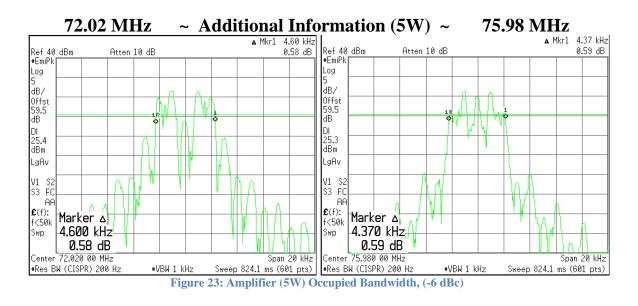
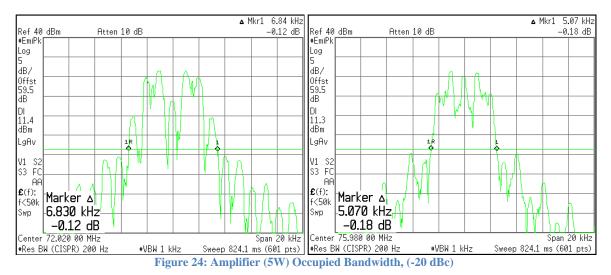
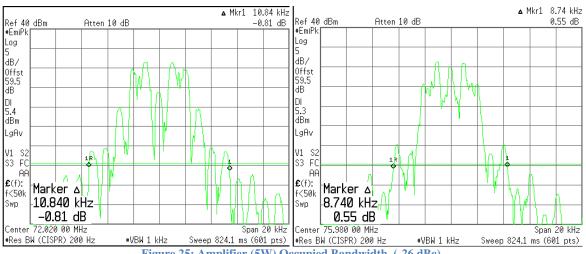


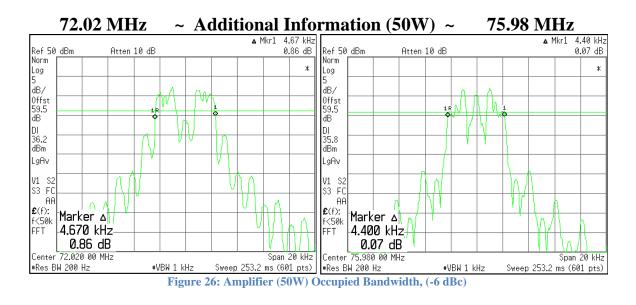
Figure 21: Amplifier Occupied Bandwidth, 75.98 MHz (5W)


Figure 22: Amplifier Occupied Bandwidth, 75.98 MHz (50W)

Prepared For:	Primex Wireless, Incorporated		
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 36 of 97	

75.98 MHz



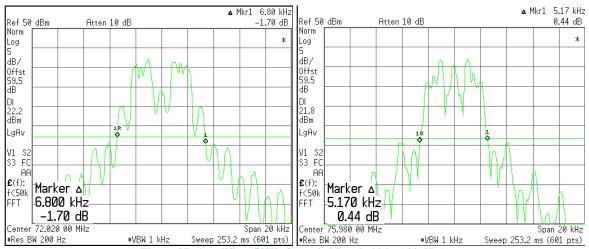


Fig	ure 25: A	mplifier	(5W)	Occupied	Bandwidth,	(-26 dBc)	

Prepared For:	Primex Wireless, Incorporated	
Test Report #	JCEAQ1132 Primex 72XR v1_1	Page 37 of 97

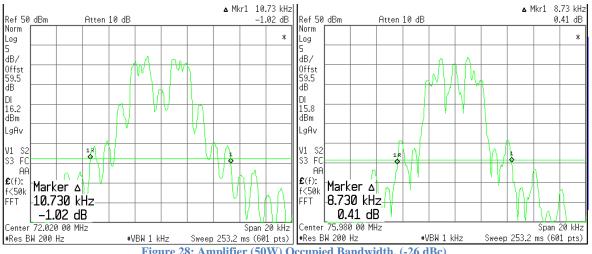
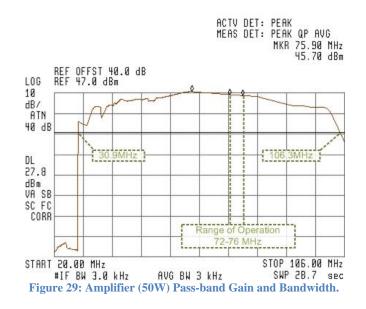
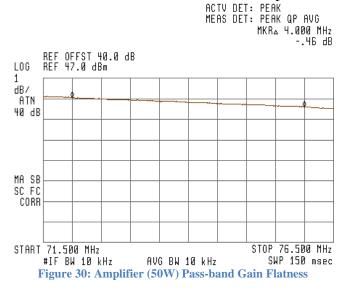



Figure 28: Amplifier (50W) Occupied Bandwidth, (-26 dBc)


Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 38 of 97

Additional Information (50W)

The following information is provided as support evidence for future conformity assessments. The -20dBc bandwidth of the amplifier was determined based on the amplifier maximum output. The operation of the amplifier, however, is limited to only a very small portion of that range, as depicted in the following figure.

The gain flatness of the amplifier was measured to be approximately ± 0.25 dB, compared to the manufacturer specification of ± 1 dB, across the band of intended operation.

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 39 of 97

2.1.3 Conducted RF Performance Parameters – Band-Edge Measurements

2.1.3.1 Test Criterion

Although this device is an amplifier, it will serve during the operation of a transmitter, and is tested with a typical transmitter (Exciter) as a signal source. The characteristics measured, are then from a combination of the amplifier (EUT) and the source (Exciter).

The device shall have no emissions at the band-edges, outside of the 72-76 MHz band, above the limits set forth by FCC Title 47 CFR, Part §90.210(c) for products qualifying as licensed transmitters. Although this device is an amplifier, it will serve during the operation of a transmitter, and is tested with a typical transmitter (Exciter) as a signal source.

The following ports show	uld be tested for comr	liance according to	the test matrix.
The following ports show	ulu de lesieu foi comp	mance according to	the test matrix.

Port Definition	Description/ Detail	Test Standard	Performance Criteria	Pass / Fail
	5 Watt Mode	Band-Edge 47 CFR 90.210	Spurious Pout <-13dBm < 71.7dBuV/m@10m	Pass
RF Port	50 Watt Mode	Band-Edge 47 CFR 90.210	Spurious Pout <-13dBm < 71.7dBuV/m@10m	Pass

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P), in Watts, by a factor, in dB, of at least $\{ 43 + 10 \text{ Log }(P) \}$.

For a 5 Watt (37dBm) transmitter, the spurious emission limit would be calculated as follows: 37 (dBm) - (43 + 10 Log (5W)) = -13 (dBm)

For a 50 Watt (47dBm) transmitter, the spurious emission limit would be calculated as follows: 47 (dBm) - (43 + 10 Log (50W)) = -13 (dBm)

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 40 of 97

2.1.3.2 Test Equipment

All Ingenium Testing, LLC test and monitoring equipment/instrumentation is calibrated for Testing Laboratory requirements of ISO/IEC 17025:2005, and is N.I.S.T. traceable. The equipment is used according to the operation manuals as provided by the manufacturers. Calibration information was checked and recorded before each test in which the equipment was used.

Manufacturer	Model	Ingenium Asset #	Description	Last Cal date	Cal due date
Agilent	E4440A	1207	PSA Spec. Analyzer	18 Dec 2008	18 Dec 2009
Agilent	N9039A	1206	Pre-Selector	23 Dec 2008	23 Dec 2009
Agilent	N5182	1208	RF Generator	18 Dec 2008	18 Dec 2009
Werlatone	C6047	0344	Directional Coupler	22 Jun 2009	22 Jun 2010
Agilent	E4404B	RP-0077	ESA Spec. Analyzer	29 Jun 2009	29 Jun 2010

List of Equipment U	Used:
---------------------	-------

The data presented accounts for the antenna correction factor as well as cable loss or other corrections, and can therefore be entered into the database as a corrected measurement result.

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 41 of 97

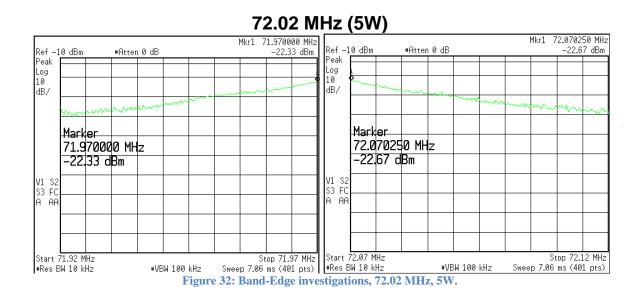
2.1.3.3 Test Setup

The EUT was tested as a "Table-Top" type product, as described in TIA-603-C. The EUT was placed on a non-conductive table, 80 cm above the reference ground plane, inside an RF shielded Chamber located at Ingenium Testing. The AC power supply of 120V, 60 Hz was provided to the EUT via appropriate broadband EMI Filters. The EUT (power amplifier) was connected to the Exciter source, as would be in normal use, using a short length of coaxial cable. The output of the EUT was connected to a directional coupler, and to a 50 ohm coaxial terminating load. The spectrum analyzer was connected to the directional coupler, at the forward power tap. The EUT was exercised under standard operating conditions, as defined in section 1.2.3.1. of this report. The amplifier was exercised with the Exciter for this series of tests.

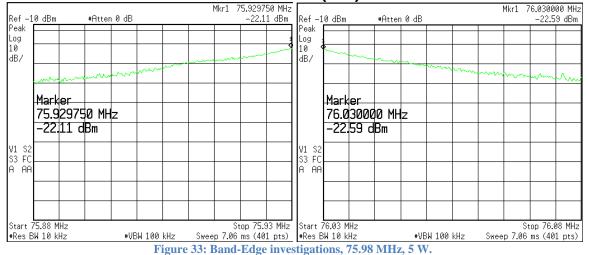
Figure 31: The EUT setup during Band-Edge Measurements.

2.1.3.4 Test Procedure

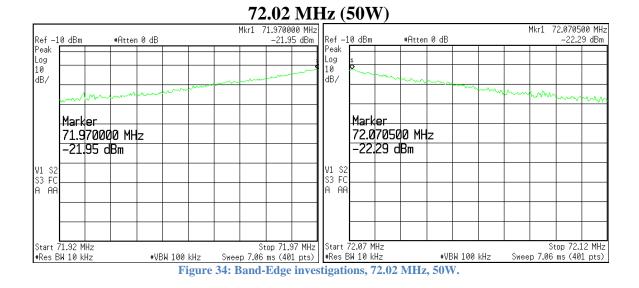
The amplifier RF output was connected through a directional coupler, to a 50 ohm coaxial load. The Forward Power tap on the directional coupler was then connected to the Spectrum Analyzer as the measuring instrument.


The spurious emissions at the Band-Edges were investigated at the lowest and highest channels, using the source (Exciter) coupled through the amplifier, and measured at the output of the amplifier (EUT). This test was repeated four times, on combinations of low and high channels, at low and high power.

The loss factors from the directional coupler, cables and the attenuator were added as correction settings directly on the analyzer, thereby allowing direct measurements, without the need for any further corrections. The Amplifier (EUT) and the Exciter were configured to run in normal operating mode, and the Exciter was supplied with typical data as a modulation source. The spectrum analyzer was used in peak-hold mode while measurements were made, as presented in the charts that follow. The emission limits, as set forth by FCC Title 47 CFR, Part §90.210(c) were applied.


Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 43 of 97

2.1.3.5 Test Results


As the supporting evidence demonstrates, the emissions at the band-edges are well behaved, using the same source type that would typically be used with this amplifier (EUT).

75.98 MHz (5W)

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 44 of 97

Mkr1 75.929625 MHz -21.84 dBm Mkr1 76.030000 MHz Ref —10 dBm #Atten 0 dB #Atten 0 dB Ref —10 dBm -22.26 dBm Peak Peak Log Log 10 10 dB/ dB/ Marker Marker 76.030000 MHz 75.929625 MHz -21.84 dBm -22,26 dBm V1 S2 S3 FC A AA V1 S2 S3 FC A AA Stop 75.93 MHz Start 76.03 MHz Sweep 7.06 ms (401 pts) •Res BW 10 kHz Start 75.88 MHz #Res BW 10 kHz Stop 76.08 MHz Sweep 7.06 ms (401 pts) #VBW 100 kHz *VBW 100 kHz

75.98 MHz (50W)

Figure 35: Band-Edge investigations, 75.98 MHz, 50 W.

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 45 of 97

2.1.4 Conducted RF Performance Parameters – Spurious RF Emission Measurements

2.1.4.1 Test Criterion

Although this device is an amplifier, it will serve during the operation of a transmitter, and is tested with a typical transmitter (Exciter) as a signal source. The characteristics measured, are then from a combination of the amplifier (EUT) and the source (Exciter).

The device shall have no emissions at the band-edges, outside of the 72-76 MHz band, above the limits set forth by FCC Title 47 CFR, Part §90.210(c) for products qualifying as licensed transmitters. Although this device is an amplifier, it will serve during the operation of a transmitter, and is tested with a typical transmitter (Exciter) as a signal source.

The following ports should be tested for compliance according to the test matrix:

Port Definition	Description/ Detail	Test Standard	Performance Criteria	Pass / Fail
RF Port	5 Watt Mode	Conducted Spurious Output Power 47 CFR 90.210	Conducted Spurious Pout <-13dBm	Pass
	50 Watt Mode	Conducted Spurious Output Power 47 CFR 90.210	Conducted Spurious Pout <-13dBm	Pass

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P), in Watts, by a factor, in dB, of at least $\{43 + 10 \text{ Log }(P)\}$.

For a 5 Watt (37dBm) transmitter, the spurious emission limit would be calculated as follows: 37 (dBm) - (43 + 10 Log (5W)) = -13 (dBm)

For a 50 Watt (47dBm) transmitter, the spurious emission limit would be calculated as follows: 47 (dBm) - (43 + 10 Log (50W)) = -13 (dBm)

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 46 of 97

2.1.4.2 Test Equipment

All Ingenium Testing, LLC test and monitoring equipment/instrumentation is calibrated for Testing Laboratory requirements of ISO/IEC 17025:2005, and is N.I.S.T. traceable. The equipment is used according to the operation manuals as provided by the manufacturers. Calibration information was checked and recorded before each test in which the equipment was used.

Manufacturer	Model	Ingenium Asset #	Description	Last Cal date	Cal due date
Agilent	E4440A	1207	PSA Spec. Analyzer	18 Dec 2008	18 Dec 2009
Agilent	N9039A	1206	Pre-Selector	23 Dec 2008	23 Dec 2009
Agilent	N5182	1208	RF Generator	18 Dec 2008	18 Dec 2009
Werlatone	C6047	0344	Directional Coupler	22 Jun 2009	22 Jun 2010
Werlatone	C3908	0342	Directional Coupler	23 Jun 2009	23 Jun 2010

List of Equipment Used:

The data presented accounts for the antenna correction factor as well as cable loss or other corrections, and can therefore be entered into the database as a corrected measurement result.

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 47 of 97

2.1.4.3 Test Setup

The EUT was tested as a "Table-Top" type product, as described in TIA-603-C. The EUT was placed on a non-conductive table, 80 cm above the reference ground plane, inside an RF shielded Chamber located at Ingenium Testing. The AC power supply of 120V, 60 Hz was provided to the EUT via appropriate broadband EMI Filters. The EUT (power amplifier) was connected to the Exciter source, as would be in normal use, using a short length of coaxial cable. The output of the EUT was connected to a directional coupler, and to a 50 ohm coaxial terminating load. The spectrum analyzer was connected to the directional coupler, at the forward power tap. The EUT was exercised under standard operating conditions, as defined in section 1.2.3.1. of this report. The amplifier was exercised with the Exciter for this series of tests.

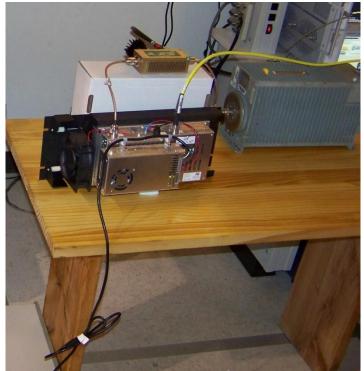


Figure 36: The EUT setup during Spurious RF Emissions Measurements.

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 48 of 97

2.1.4.4 Test Procedure

The amplifier RF output was connected through a directional coupler, to a 50 ohm coaxial load. The Forward Power tap on the directional coupler was then connected to a series attenuator and to the Spectrum Analyzer as the measuring instrument.

The spurious emissions at the Band-Edges were investigated at the lowest and highest channels, using the source (Exciter) coupled through the amplifier, and measured at the output of the amplifier (EUT). This test was repeated four times, on combinations of low and high channels, at low and high power.

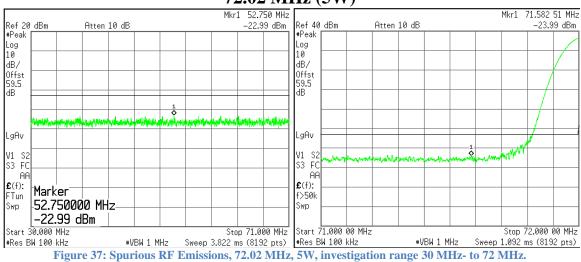
The loss factors from the directional coupler, cables and the attenuator were added as correction settings directly on the analyzer, thereby allowing direct measurements, without the need for any further corrections. For this test, the bandwidth of the fundamental frequency was measured with the Spectrum Analyzer using 100 kHz RBW and VBW of 1 MHz. The Amplifier (EUT) and the Exciter were configured to run in normal operating mode, and the Exciter was supplied with typical data as a modulation source. The spectrum analyzer was used in peak-hold mode while measurements were made, as presented in the charts that follow. The emission limits, as set forth by FCC Title 47 CFR, Part §90.210(c) were applied.

2.1.4.5 Test Results

As the supporting evidence demonstrates, the spurious RF emissions are well behaved, using the same source type that would typically be used with this amplifier (EUT). No significant spurious or harmonic emissions could be noted greater than -30 dBm for this product.

CLIMATE TEST CONDITIONS	
Temperature:	73 °F (22.8 °C)
Humidity:	48 % RH

Hu	midity:		48 % RH		
_					
		72.02 MHz, 5W	75.98 MHz, 5W	72.02 MHz, 50W	75.98 MHz, 50W
	Fundamental	+ 36.7 (dBm)	+ 36.1 (dBm)	+ 46.9 (dBm)	+ 46.4 (dBm)
	2 nd Harmonic	- 45.8 (dBm)	- 45.3 (dBm)	- 33.9 (dBm)	- 40.4 (dBm)
	3 rd Harmonic	- 46.4 (dBm)	- 45.2 (dBm)	- 43.1 (dBm)	- 43.6 (dBm)
	4 th Harmonic	Note (1)	Note (1)	- 38.3 (dBm)	- 42.4 (dBm)
	5 th Harmonic	Note (1)	Note (1)	Note (1)	Note (1)


Note (1) Note (1) Note (1) Note (1)

6 th Harmonic	Note (1)	Note (1)	Note (1)	
7 th Harmonic	Note (1)	Note (1)	Note (1)	
8 th Harmonic	Note (1)	Note (1)	Note (1)	
9 th Harmonic	Note (1)	Note (1)	Note (1)	
10 th Harmonic	Note (1)	Note (1)	Note (1)	

Notes:

(1) Measurement at system noise floor.

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 49 of 97

72.02 MHz (5W)

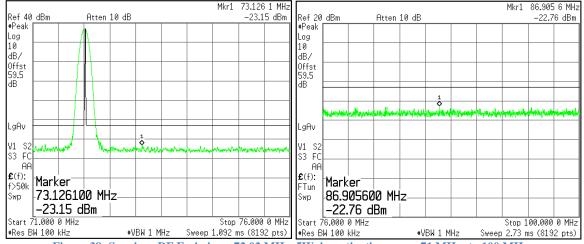


Figure 38: Spurious RF Emissions, 72.02 MHz, 5W, investigation range 71 MHz- to 100 MHz.

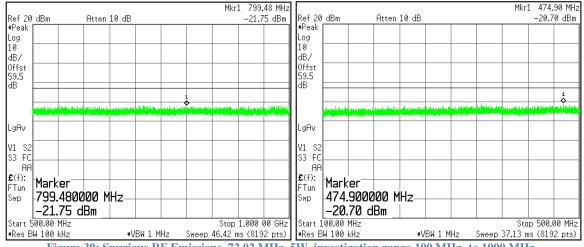
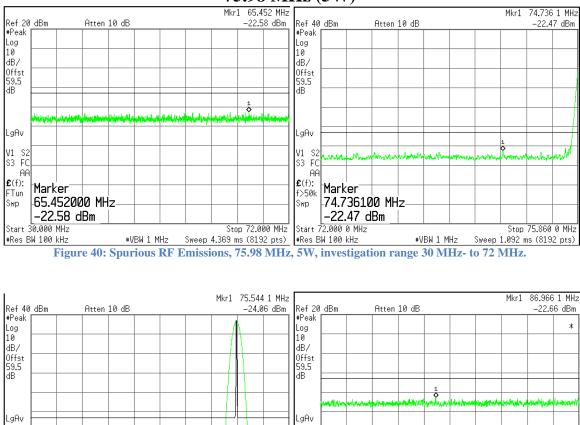



Figure 39: Spurious RF Emissions, 72.02 MHz, 5W, investigation range 100 MHz- to 1000 MHz.

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 50 of 97

V1 S2

S3 FC AA

£(f):

FTun

Swp

Stop 77.000 0 MHz Start 76.500 0 MHz Sweep 1.092 ms (8192 pts) #Res BW 100 kHz

Figure 41: Spurious RF Emissions, 75.98 MHz, 5W, investigation range 72 MHz- to 100 MHz.

Marker

86.966100 MHz

∗VBW 1 MHz

Stop 100.000 0 MHz Sweep 2.184 ms (8192 pts)

-22.66 dBm

Ŷ.

MAN

V1 S2

\$3 FC

£(f):

f>50k

Swp

-AA

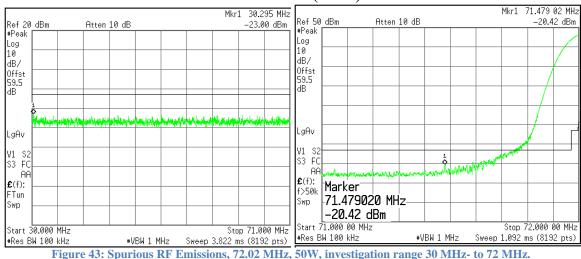
Stop

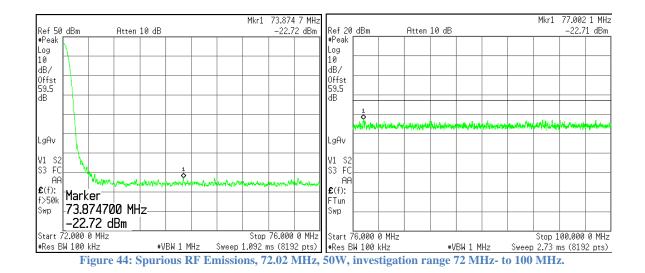
Start 72.000 0 MHz

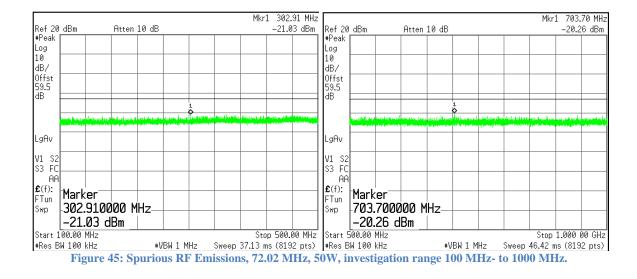
*Res BW 100 kHz

N

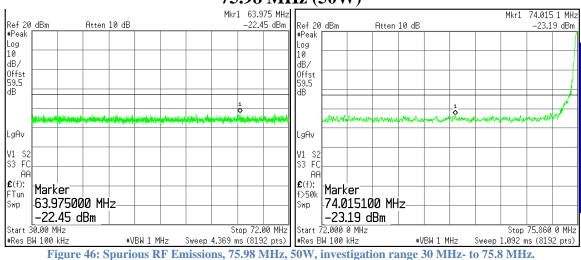
77.00000000 MHz


∗VBW 1 MHz


Mkr1 348.32 MHz Mkr1 835.55 MHz Ref 20 dBm Atten 10 dB -21.11 dBm Ref20 dBm ≢Peak [-21.07 dBm Atten 10 dB #Peak Log Log 10 10 dB/ Offst 59.5 dB dB/ Offst 59.5 dB 'LgAv LgAv V1 V1 S2 -S2 \$3 FC \$3 FC AA AA **£**(f): **£**(f): Marker Marker FTun FTun 348.320000 MHz 835.550000 MHz Swp Swp -21.11 dBm -21.07 dBm Stop 1.000 00 GHz Start 100.00 MHz Stop 500.00 MHz Start 500.00 MHz #Res BW 100 kHz #VBW 1 MHz Sweep 37.13 ms (8192 pts) #Res BW 100 kHz #VBW 1 MHz Sweep 46.42 ms (8192 pts)


Figure 42: Spurious RF Emissions, 75.98 MHz, 5W, investigation range 100 MHz- to 1000 MHz.

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 51 of 97



72.02 MHz (50W)

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 52 of 97

75.98 MHz (50W)

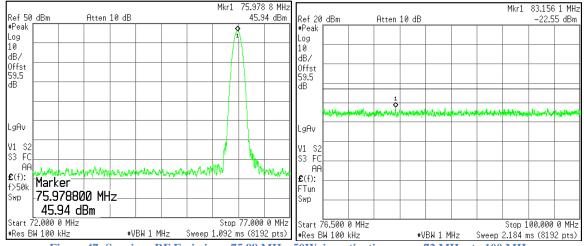
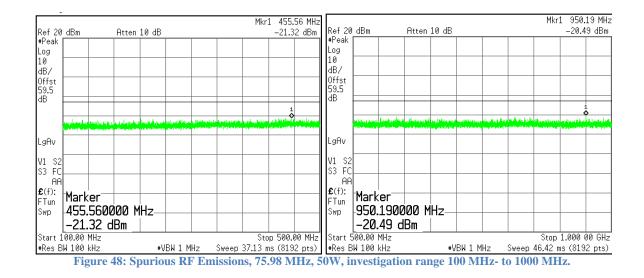



Figure 47: Spurious RF Emissions, 75.98 MHz, 50W, investigation range 72 MHz- to 100 MHz.

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 53 of 97

2.1.5 Conducted RF Performance Parameters – Carrier Frequency and RF Power Stability Measurements (Voltage Variation)

2.1.5.1 Test Criterion

The information provided in this section is a service to the client for use in future qualifications. Although this device is an amplifier, it will serve during the operation of a transmitter, and is tested with a typical transmitter (Exciter) as a signal source. The characteristics measured, are then from a combination of the amplifier (EUT) and the source (Exciter).

Port Definition	Description/ Detail	Test Standard	Performance Criteria	Pass / Fail
AC Power	5 Watt Mode	Frequency Stability 47CFR 2.1055(d)(1) 47CFR 90.213(a)	Freq. Excursion < 5 ppm 85% of V _{NOM} 115% of V _{NOM} Criterion B	Pass
AC FOWER	50 Watt Mode	Frequency Stability 47CFR 2.1055(d)(1) 47CFR 90.213(a)	Freq. Excursion < 5 ppm 85% of V _{NOM} 115% of V _{NOM} Criterion B	Pass

The following ports should be tested for compliance according to the test matrix:

The following are general performance definitions, as described in 47 CFR 90.213 (a) and 47 CFR 2.1055 (d)(1):

- Frequency excursions due to susceptibility testing should be less than ± 5 ppm from the nominal center frequency.
 - (Nominal at 72.0 MHz; Acceptable Excursion during test: ± 360 Hz from nominal)
 - (Nominal at 76.0 MHz; Acceptable Excursion during test: ± 380 Hz from nominal)
- Output power excursions due to susceptibility testing should be less than ± 1 dB from nominal output power.
 - Nominal at 5 Watt (+37 dBm); Acceptable Excursion during test: ± 1 dBm from nominal.
 - $\circ~$ Nominal at 50 Watt (+47 dBm); Acceptable Excursion during test: $\pm~1~$ dBm from nominal.

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 54 of 97

2.1.5.2 Test Equipment

All Ingenium Testing, LLC test and monitoring equipment/instrumentation is calibrated for Testing Laboratory requirements of ISO/IEC 17025:2005, and is N.I.S.T. traceable. The equipment is used according to the operation manuals as provided by the manufacturers. Calibration information was checked and recorded before each test in which the equipment was used.

Testing for immunity against Voltage variations and interruptions was carried out using the EM Test model 'UCS 500 M4' Power Fail Simulator along with the motorized variac.

Manufacturer	Model	Ingenium Asset #	Description	Last Cal date	Cal due date
EM Test	UCS 500 M4	1324	EFT/B Generator	26 May 2009	26 May 2010
EM Test	MV2616	1325	Motorized Variac	N/A	N/A
Agilent	E4440A	1207	PSA Spec. Analyzer	18 Dec 2008	18 Dec 2009
Agilent	N9039A	1206	Pre-Selector	23 Dec 2008	23 Dec 2009
Agilent	N5182	1208	RF Generator	18 Dec 2008	18 Dec 2009
ETS	3142C	1360	Hybrid Antenna	17 Mar 2008	17 Mar 2010
Werlatone	C6047	0344	Directional Coupler	22 Jun 2009	22 Jun 2010
Werlatone	C3908	0342	Directional Coupler	23 Jun 2009	23 Jun 2010
Kalmus	505C	0069	Pre-amplifier	Verify on Use	Verify on Use
Agilent	33220A	1438	Waveform Generator	15 Dec 2008	15 Dec 2009

List of Equipment Used:

Correction factors and cable loss factors were entered into the appropriate test equipment. As a result, the data taken accounts for the antenna correction factor as well as cable loss or other corrections, and can therefore be entered into the database as a corrected measurement result.

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 55 of 97

2.1.5.3 Test Setup

The EUT was tested as a "Table-Top" type product, as described in TIA-603-C. The EUT was placed on a non-conductive table, 80 cm above the reference ground plane, inside an RF shielded Chamber located at Ingenium Testing.

The variable AC power supply of $120V \pm 15\%$, 60 Hz was provided to the EUT by the EM Test source control and motorized variac. The EUT (power amplifier) was connected to the Agilent MXG RF generator as an RF signal source, using a short length of coaxial cable, and then to the Kalmus pre-amplifier to provide exactly 1 Watt of nominal RF input power. The output of the EUT was connected to a directional coupler, and to a 50 ohm coaxial terminating load. The spectrum analyzer was connected to the directional coupler, at the forward power tap. An attenuator was installed in the RF path between the forward tap and the spectrum analyzer, to protect the test instruments. The EUT was exercised under standard operating conditions, as defined in section 1.2.3.1. of this report. The amplifier was exercised with the Agilent RF source for this series of tests.

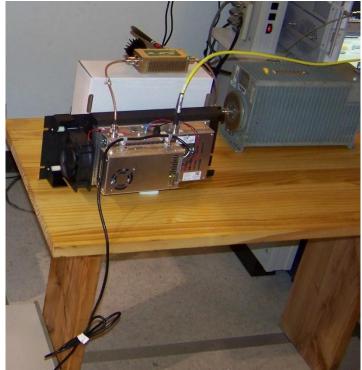


Figure 49: The EUT setup during Carrier stability measurements.

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 56 of 97

2.1.5.4 Test Procedure

The stability of the device was examined as a function of the input voltage available to the EUT.

During the initial investigation of the EUT, the system was tested with minimum RF input and maximum RF input power as allowed by the EUT specifications. There was no discernable change in the response or emission levels from the EUT. The test was then performed at nominal RF power input, as it will be the case in actual operation, with RF input levels tightly controlled by the Exciter.

During the final test, the amplifier RF output was connected through a directional coupler, to a 50 ohm coaxial load. The Forward Power tap on the directional coupler was then connected to a series attenuator and to the Spectrum Analyzer as the measuring instrument. The loss factors from the directional coupler, cables and the attenuator were added as correction settings directly on the analyzer, thereby allowing direct measurements, without the need for any further corrections.

The frequency stability was investigated at the lowest and highest channels, using the RF generator as the source, coupled through the amplifier, and measured at the output of the amplifier (EUT). This test was repeated four times, on combinations of low and high channels, at +15% and -15% of nominal AC voltage.

The frequency of operation was measured with the Spectrum Analyzer using 20 Hz RBW and VBW of 1 kHz. The Amplifier (EUT) was configured to run in normal operating mode, and the RF generator was supplying a CW RF signal. The spectrum analyzer was used in peak-hold mode while measurements were made, as presented in the charts that follow. The frequency excursion limits, as set forth by FCC Title 47 CFR, Part §90.213(a) were applied, for a transmitter of this category. The EUT is an amplifier, not a transmitter, so the frequency excursion was measured based on the reference frequency at the nominal source voltage.

The same technique of relative excursion was used to investigate RF power stability as a function of source voltage variations, with only a difference in the RBW/VBW setting on the spectrum analyzer. During the power variation tests, the analyzer was set to RBW= 300 kHz, and VBW= 8 MHz. Observation time was approximately 1 minute, after the system had settled in with the new voltage setting.

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 57 of 97

2.1.5.5 Test Results

The frequency excursions seemed closely tied to the RF source, as expected, rather than the amplifier (EUT). Maximum excursion observed was 48 Hz, compared to a limit of 360 Hz.

Frequency Excursions	AC Voltage Source	
	102 VAC 138 VAC	
72.02 MHz, 5W	48 (Hz)	14 (Hz)
75.98 MHz, 5W	11 (Hz)	37 (Hz)
72.02 MHz, 50W	-35 (Hz)	-11 (Hz)
75.98 MHz, 50W	24 (Hz)	29 (Hz)

Table 10: Frequency Stability results

No anomalies were noted, in the measured transmit power, varying less than 1 dB, during the voltage variation tests.

Output Power Excursions	AC Voltage	e Source
	102 VAC	138 VAC
72.02 MHz, 5W	0.5 (dB)	0.6 (dB)
75.98 MHz, 5W	0.5 (dB)	0.5 (dB)
72.02 MHz, 50W	0.5 (dB)	0.5 (dB)
75.98 MHz, 50W	0.5 (dB)	0.4 (dB)

Table 11: Power Stability results

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 58 of 97

2.1.6 Radiated RF Emissions Measurements

2.1.6.1 Test Criterion

The test matrix in section 1.5 was used as a guide for test points and conditions.

The following table presents the limits for radiated harmonic and spurious RF emissions, as specified in the FCC Title 47 CFR, Part §2.1053, and §90.210 for products qualifying as licensed transmitters.

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P), in Watts, by a factor, in dB, of at least $\{ 43 + 10 \text{ Log } (P) \}$.

The following ports should be tested for compliance according to the test matrix:

Port Definition	Description/ Detail	Test Standard	Performance Criteria	Pass / Fail
	5 Watt Mode	Radiated RF Emissions 47 CFR 90.210	30 MHz-1.0 GHz Measured RF Emission should be Below specified Limits	Pass
Enclosure	50 Watt Mode	Radiated RF Emissions 47 CFR 90.210	30 MHz-1.0 GHz Measured RF Emission should be Below specified Limits	Pass

For a 5 Watt (37dBm) transmitter, at 10 meters separation distance, the spurious emission limit would be calculated as follows:

 $37 (dBm) - (43 + 10 \text{ Log } (5W)) + 84.7 (conversion to dB\mu V/m at 10m) = 71.7 (dB\mu V/m at 10m)$

For a 50 Watt (47dBm) transmitter, at 10 meters separation distance, the spurious emission limit would be calculated as follows:

 $47 (dBm) - (43 + 10 \text{ Log } (50W)) + 84.7 (conversion to dB\mu V/m at 10m) = 71.7 (dB\mu V/m at 10m)$

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 59 of 97

Frequency (MHz)	Emission Limit Antenna Conducted (dBm)	Emission Limit Radiated Field Strength (dBµV/m at 10m)
30.0 - 72	-13	71.7
72.0 - 76.0	As Licensed $(37.0 \text{ dBm} = 5\text{W})$	As Licensed (121.8)
72.0 - 76.0	As Licensed $(47.0 \text{ dBm} = 50 \text{W})$	As Licensed (131.8)
76.0 - 1000.0	-13	71.7

Table 12: Field Strength Limit for radiated harmonic and spurious RF emissions under 47CFR 2.1053.

Notes: In the calculations for margin below the limit, the limits are rounded to one digit past the decimal.

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 60 of 97

2.1.6.2 Test Equipment

All Ingenium Testing, LLC test and monitoring equipment/instrumentation is calibrated for Testing Laboratory requirements of ISO/IEC 17025:2005, and is N.I.S.T. traceable. The equipment is used according to the operation manuals as provided by the manufacturers. Calibration information was checked and recorded before each test in which the equipment was used.

Manufacturer	Model	Ingenium Asset Number	Description	Last Cal data	Cal due date
Agilent	E4440A	1207	PSA Spec. Analyzer	18 Dec 2008	18 Dec 2009
Agilent	N9039A	1206	Pre-Selector	23 Dec 2008	23 Dec 2009
Agilent	N5182	1208	RF Generator	18 Dec 2008	18 Dec 2009
HP	8447	RP-0054	Pre-Amplifier	13 Mar 2009	13 Sep 2009
ETS	3142C	1360	Hybrid Antenna	17 Mar 2008	17 Mar 2010
ETS	3121C	1355,1356,1357,1358	Dipole Antenna set	19 Nov 2007	19 Nov 2009

The data presented accounts for the antenna correction factor as well as cable loss or other corrections, and can therefore be entered into the database as a corrected measurement result.

2.1.6.3 Test Setup

The EUT was tested as a "Table-Top" type product, and staged in a semi-anechoic chamber as described in section (1.5.3.7) of TIA-603-C. The EUT was placed on a non-conductive table, 80 cm above the reference ground plane, centered on a flush-mounted 3 meter-diameter turntable in the 10 Meter FCC Listed Semi-Anechoic Chamber located at Ingenium Testing. The test setup also complies with the necessary procedures as described in the ANSI standard.

The EUT (power amplifier) was connected to the Exciter source, as would be in normal use, using a short length of coaxial cable. The output of the EUT was connected to a directional coupler, and to a 50 ohm coaxial terminating load. The EUT was exercised under standard operating conditions, and powered by 120VAC/60Hz. The spectrum analyzer was connected to the directional coupler, at the forward power tap.

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 61 of 97

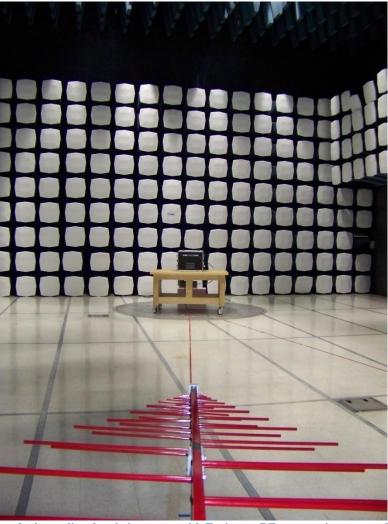


Figure 50: The EUT setup during radiated emissions tests, with Exciter as RF source: view as seen from the sense antenna.

Figure 51: The EUT setup during radiated emissions tests, with terminated RF source: view as seen from the sense antenna.

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 62 of 97

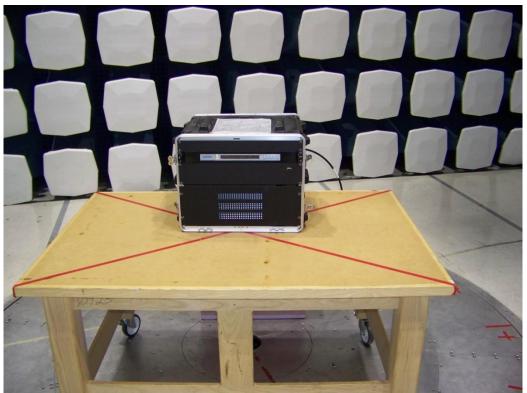


Figure 52: The EUT setup during radiated emissions tests, with Exciter as RF source: close up view of the front of the EUT.

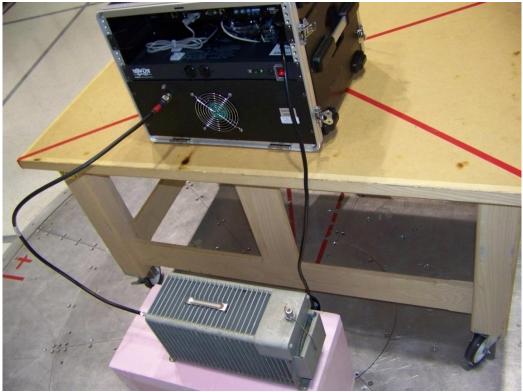


Figure 53: The EUT setup during radiated emissions tests, with Exciter as RF source: Rear of the EUT showing placement of terminating load.

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 63 of 97

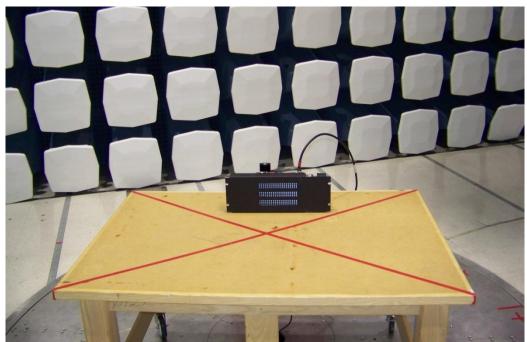


Figure 54: The EUT setup during radiated emissions tests, with terminated RF source: close up view of the front of the EUT.

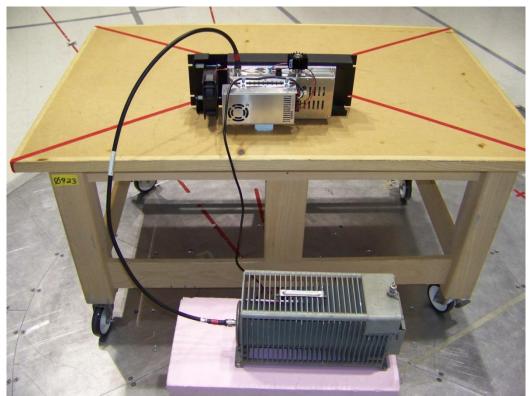


Figure 55: The EUT setup during radiated emissions tests, with terminated RF source: Rear of the EUT showing placement of terminating load.

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 64 of 97

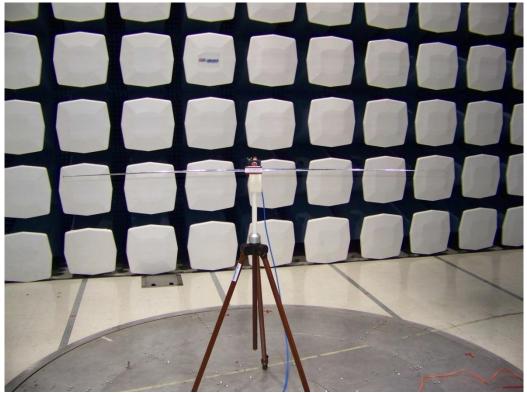


Figure 56: Antenna and source substitution method, with substitution antenna in horizontal polarization.

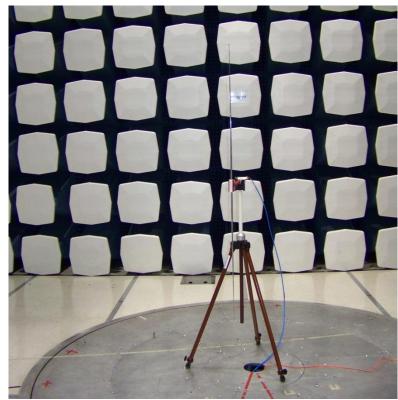


Figure 57: Antenna and source substitution method, with substitution antenna in vertical polarization.

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 65 of 97

2.1.6.4 Test Procedure

The EUT was measured for Radiated RF Emissions in the 10 Meter FCC Listed Semi-Anechoic Chamber located at Ingenium Testing. The frequency range from 30 MHz to 1000 MHz was investigated for RF emissions, and emission levels were noted along with the fixed degree settings of azimuth on the turntable and sense antenna height. The EUT was placed on a non-conductive pedestal (table), 80 cm above the reference ground plane, centered on a turn-table with a conductive rotating surface, flush and in contact with the conductive ground plane. The antenna mast was placed such that the antenna was separated by 10 meters from the test object. A Hybrid Biconni-Log antenna was used to measure emissions from 30 MHz to 1000 MHz. The maximum radiated emissions were found by raising and lowering the antenna between 1 and 4 meters in height, while utilizing the turn-table to rotate the product. The process was repeated using both horizontal and vertical antenna polarizations. The maximum emission levels were then recorded along with the attitude of the product.

During the initial investigation of the EUT, the system was tested with no RF input, and terminated on the input terminal with a 50 ohm terminating resistor, and then tested again with minimum RF input and maximum RF input power as allowed by the EUT specifications. There was no discernable change in the response or emission levels from the EUT.

During the final tests, measurements were made with 1Watt nominal RF power input, as it will be the case in actual operation, with RF input levels tightly controlled by the Exciter.

The measurements were made using a CISPR-16 compliant EMC receiver, through an automated test program. The receiver was operated with the IF resolution bandwidth (RBW) of 120 kHz for measurements between 30 MHz and 1 GHz (video bandwidth of 300 kHz). The applicable limits, as noted in 47 CFR 90.210 were applied.

The EUT was set-up and operated in the proper mode 'Standard continuous duty' as defined in TIA-603. The mode tested was in normal operation, with the Exciter as an RF signal source for the amplifier (EUT).

The highest radiated RF emissions measured in the ANSI 63.4 setup were then re-tested using the antenna and source substitution method per ANSI/TIA 603, using a Dipole set as the reference illuminating antenna.

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 66 of 97

2.1.6.5 Test Results

The EUT was found to **MEET** the requirements of radiated harmonic and spurious RF emissions, as specified in the FCC Title 47 CFR, Part §2.1053, and §90.210 for products qualifying as licensed transmitters . Supporting evidence of significant measured RF emissions, are tabulated and presented below.

CLIMATE TEST CONDITIONS

Temperature:	73 °F (22.8 °C)
Humidity:	48 % RH

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 67 of 97

5 Watt mode, 72.02 MHz

Table 13: The following table depicts the level of significant spurious radiated RF emissions measured on channel 17 (72 MHz), (5W)

Frequency (MHz)	Ant. / EUT Polarization	Height (cm)	Azimuth (0° - 360°)	Measured EFI (dBµV/m@10m)	90.210 Limit (dBµV/m@10m)	Margin (dB)	Substitution Method (dBm)	Substitution Margin (dB)
42.49	V	100	347	18.8	71.8	53.0		
72.02	V	100	262	57.0	121.8	64.8		
80.44	V	100	337	10.6	71.8	61.2		
144.04	V	100	28	46.3	71.8	25.5	-46.6	33.6
216.07	V	100	129	35.3	71.8	36.5	-59.1	46.1
288.09	V	100	11	27.7	71.8	44.1		
360.11	V	100	270	26.7	71.8	45.1		
432.13	V	100	354	27.9	71.8	43.9		
504.15	V	100	5	16.5	71.8	55.2		
576.18	V	100	223	17.2	71.8	54.6		
648.20	V	100	296	18.2	71.8	53.6		
720.22	V	100	235	20.1	71.8	51.7		
760.05	V	100	213	24.8	71.8	46.9		
776.05	V	100	149	22.1	71.8	49.7		
791.94	V	100	342	21.6	71.8	50.1		
871.96	V	100	248	32.0	71.8	39.7		
887.97	V	100	247	32.1	71.8	39.6		
68.07	Н	100	60	2.7	71.8	69.1		
72.02	Н	100	216	42.3	121.8	79.4		
90.87	Н	100	194	5.0	71.8	66.7		
144.04	Н	100	328	39.9	71.8	31.8	-51.9	38.9
216.07	Н	100	145	31.6	71.8	40.2		
288.09	Н	100	56	33.7	71.8	38.1		
360.11	Н	100	166	31.4	71.8	40.3		
432.13	Н	100	30	32.1	71.8	39.7		
504.15	Н	100	42	26.6	71.8	45.2		
576.18	Н	100	54	22.8	71.8	49.0		
648.20	Н	100	135	26.1	71.8	45.7		
720.22	Н	100	249	21.9	71.8	49.9		
760.05	Н	100	16	30.8	71.8	40.9		
776.05	Н	100	18	32.5	71.8	39.3		
792.18	Н	100	62	31.0	71.8	40.8		
936.22	Н	100	171	29.2	71.8	42.5		

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 68 of 97

5 Watt mode, 75.98 MHz

Frequency (MHz)	Ant. / EUT Polarization	Height (cm)	Azimuth (0° - 360°)	Measured EFI (dBµV/m@10m)	90.210 Limit (dBµV/m@10m)	Margin (dB)	Substitution Method (dBm)	Substitution Margin (dB)
30.40	V	100	117	11.4	71.8	60.4		
75.98	V	100	5	57.1	121.8	64.7		
151.96	V	100	15	33.9	71.8	37.9		
227.94	V	100	130	30.4	71.8	41.4		
303.92	V	100	95	42.2	71.8	29.6	-40.8	27.8
379.90	V	100	195	29.9	71.8	41.9		
455.88	V	100	289	21.7	71.8	50.1		
531.86	V	100	156	16.3	71.8	55.5		
607.84	V	100	7	17.4	71.8	54.4		
683.82	V	100	91	21.5	71.8	50.3		
759.80	V	100	327	22.8	71.8	49.0		
776.00	V	100	272	22.5	71.8	49.3		
888.00	V	100	322	31.8	71.8	40.0		
988.00	V	100	176	32.6	71.8	39.2		
75.98	Н	100	218	47.7	121.8	74.1		
151.96	Н	100	313	31.0	71.8	40.8		
227.94	Н	100	113	25.8	71.8	46.0		
303.92	Н	100	146	45.1	71.8	26.7	-49.2	36.2
379.90	Н	100	70	36.5	71.8	35.4	-49.9	36.9
455.88	Н	100	6	20.8	71.8	51.0		
531.86	Н	100	328	21.5	71.8	50.3		
607.84	Н	100	222	18.0	71.8	53.8		
683.82	Н	100	147	27.2	71.8	44.6		
759.80	Н	100	156	28.9	71.8	42.9		
888.00	Н	100	310	29.7	71.8	42.1		
988.00	Н	100	166	33.7	71.8	38.1		

Table 14: The following table depicts the level of significant spurious radiated RF emissions measured on channel 98 (76 MHz), (5W)

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 69 of 97

50 Watt mode, 72.02 MHz

Frequency (MHz)	Ant. / EUT Polarization	Height (cm)	Azimuth (0° - 360°)	Measured EFI (dBµV/m@10m)	90.210 Limit (dBµV/m@10m)	Margin (dB)	Substitution Method (dBm)	Substitution Margin (dB)
34.73	V	100	67	17.2	71.8	54.5		
42.85	V	100	180	19.1	71.8	52.7		
60.19	V	100	6	24.5	71.8	47.3		
72.02	V	100	90	67.4	131.8	64.4		
138.03	V	100	291	16.1	71.8	55.7		
144.04	V	100	51	45.6	71.8	26.2	-46.4	33.4
216.06	V	100	138	30.0	71.8	41.8		
288.08	V	100	336	38.9	71.8	32.8	-47.3	34.3
360.10	V	100	243	32.7	71.8	39.0		
432.12	V	100	235	32.0	71.8	39.8		
792.18	V	100	357	29.7	71.8	42.1		
936.22	V	100	230	31.8	71.8	40.0		
72.02	Н	100	65	52.9	131.8	78.9		
128.33	Н	100	80	4.3	71.8	67.5		
144.04	Н	100	186	39.2	71.8	32.6		
156.71	Н	100	354	5.9	71.8	65.9		
204.84	Н	100	286	6.1	71.8	65.7		
216.06	Н	100	164	36.6	71.8	35.2		
288.08	Н	100	218	41.8	71.8	30.0	-53.1	40.1
360.10	Н	100	187	37.5	71.8	34.2		
432.12	Н	100	215	34.7	71.8	37.0		
504.14	Н	100	307	28.4	71.8	43.4		
792.30	Н	100	315	39.7	71.8	32.0	-48.2	35.2
936.22	Н	100	54	29.1	71.8	42.7		

Table 15: The following table depicts the level of significant spurious radiated RF emissions measured on channel 17 (72 MHz), (50W)

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 70 of 97

50 Watt mode, 75.98 MHz

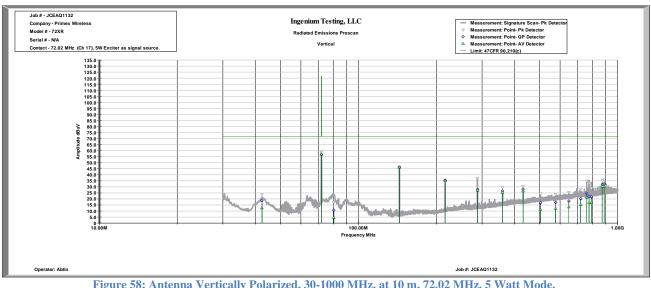
Frequency (MHz)	Ant. / EUT Polarization	Height (cm)	Azimuth (0° - 360°)	Measured EFI (dBµV/m@10m)	90.210 Limit (dBµV/m@10m)	Margin (dB)	Substitution Method (dBm)	Substitution Margin (dB)
32.43	V	100	53	17.3	71.8	54.5		
35.21	V	100	54	25.6	71.8	46.2		
43.34	V	100	216	13.8	71.8	58.0		
43.82	V	100	99	12.5	71.8	59.3		
75.95	V	100	259	65.1	131.8	66.7		
121.91	V	100	251	26.7	71.8	45.1		
151.98	V	100	65	42.6	71.8	29.2	-47.1	34.1
227.88	V	100	104	34.4	71.8	37.4		
303.90	V	100	343	35.0	71.8	36.8		
379.93	V	100	138	32.1	71.8	39.7		
759.80	V	100	84	21.7	71.8	50.1		
987.75	V	100	201	46.0	71.8	25.8	-43.2	30.2
35.34	Н	100	120	9.9	71.8	61.9		
75.95	Н	100	44	50.2	81.8	31.5		
118.63	Н	100	125	2.9	71.8	68.9		
150.04	Н	100	32	4.4	71.8	67.4		
151.98	Н	100	192	41.4	71.8	30.4	-52.3	39.3
227.88	Н	100	144	40.2	71.8	31.6		
303.90	Н	100	219	35.1	71.8	36.7		
379.93	Н	100	249	27.9	71.8	43.8		
759.80	Н	100	310	30.6	71.8	41.1		
987.75	Н	100	202	47.3	71.8	24.5	-44.1	31.1

Table 16: The following table depicts the level of significant spurious radiated RF emissions measured on channel 98 (76 MHz), (50W)

Notes:

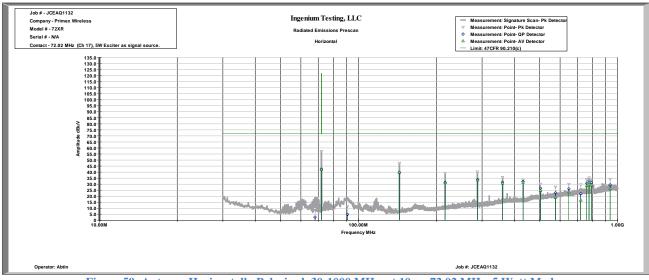
1) A Quasi-Peak Detector was used in measurements below 1 GHz. The peak detector was also used to ensure the peak emissions did not exceed 20 dB above the limits

Uncertainty Calculations – All Factors Combined Includes a comparison between CISPR 16-4-2 and Ingenium Testing							
Measurement		Ingenium Testing					
Radiated Disturbance	30 MHz – 300 MHz	7.4 dB	5.4 dB				
Radiated Disturbance	300 MHz – 1 GHz	6.5 dB	5.1 dB				


Notes:

Date of Estimation: November 02, 2007.

SCREEN CAPTURES – RADIATED RF EMISSIONS TESTING


These screen captures represent Peak Emissions. For radiated emission measurements, a Quasi-Peak detector function is utilized when measuring frequencies below 1 GHz, and an Average detector function is utilized when measuring frequencies above 1 GHz.

The signature scans shown here are from worst-case emissions, as measured with the sense antenna both in vertical and horizontal polarity.

5 Watt mode, 72.02 MHz

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 72 of 97

5 Watt mode, 75.98 MHz

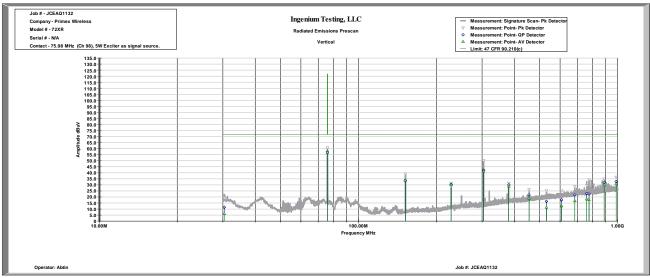


Figure 60: Antenna Vertically Polarized, 30-1000 MHz, at 10 m, 75.98 MHz, 5 Watt Mode.

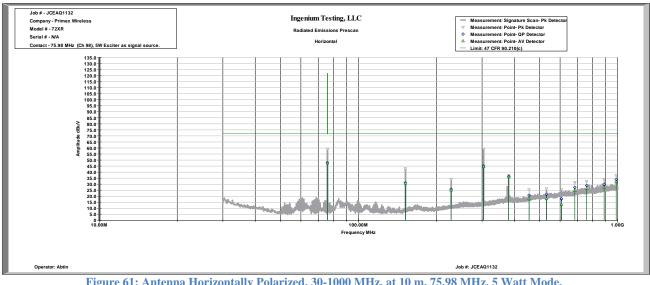
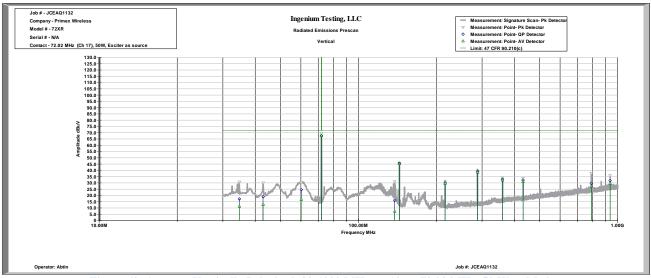
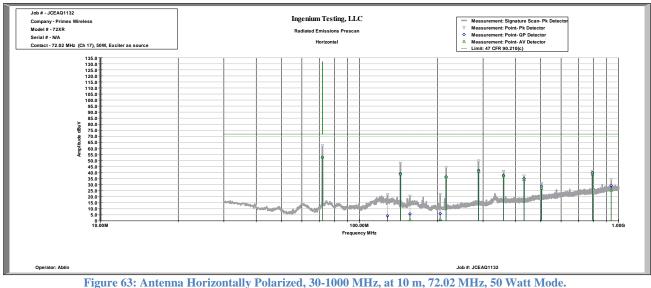




Figure 61: Antenna Horizontally Polarized, 30-1000 MHz, at 10 m, 75.98 MHz, 5 Watt Mode.

Prepared For:	Prepared For: Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 73 of 97

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 74 of 97

50 Watt mode, 75.98 MHz

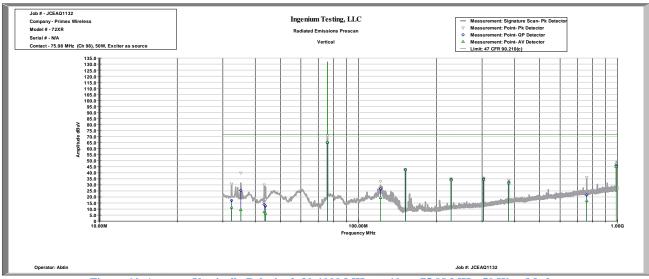


Figure 64: Antenna Vertically Polarized, 30-1000 MHz, at 10 m, 75.98 MHz, 50 Watt Mode.



Figure 65: Antenna Horizontally Polarized, 30-1000 MHz, at 10 m, 75.98 MHz, 50 Watt Mode.

Prepared	Prepared For: Primex Wireless, Incorporated	
Test Rep	port #: JCEAQ1132 Primex 72XR v1_1	Page 75 of 97

2.1.7 Conducted RF Emission onto AC Mains Measurements

2.1.7.1 Test Criterion

The information provided in this section is a service to the client for use in future qualifications. The test matrix in section 1.5 was used as a guide for test points and conditions.

Port Definition	Description/ Detail	Test Standard	Performance Criteria
AC Power	5 Watt Mode	AC Mains Conducted RF Emissions 47 CFR 15.107 Class B	150kHz-30 MHz Measured RF Emission should be Below specified Limits
AC Fower	50 Watt Mode	AC Mains Conducted RF Emissions 47 CFR 15.107 Class B	150kHz-30 MHz Measured RF Emission should be Below specified Limits

The following table presents the limits for unintentional RF emissions conducted onto AC Mains, as specified in the FCC Title 47 CFR, Part 15.107(b), for unintentional radiators and products qualifying as Class B Digital Devices.

Table 17: Limits for RF conducted onto AC Mains, per 47CFR 15.107(a) – for a Class B digital device.

Frequency (MHz)	Conducted RF Voltage Quasi-peak Limit (dBµV)	Conducted RF Voltage Average Limit (dBµV)
0.15 - 0.50	66.0 Decreasing linearly with logarithm of frequency to 56.0	56.0 Decreasing linearly with logarithm of frequency to 46.0
0.50 - 5.0	56.0	46.0
5.0 - 30.0	60.0	50.0

Notes: In the calculations for margin below the limit, the limits are rounded to one digit past the decimal.

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 76 of 97

2.1.7.2 Test Equipment

All equipment is calibrated according to governing standards, and is N.I.S.T. traceable. The equipment is used according to the operation manuals as provided by the manufacturers.

Manufacturer	Model	Ingenium Asset Number	Description	Last Cal data	Cal due date
Hewlett Packard	8546A	1133	EMI analyzer	26 Jan 2009	26 Jan 2010
ETS	3816/2	1363	Dual LISN	11 Mar 2009	11 Mar 2010
Agilent	11947A	1314	Transient Limiter	18 Dec 2008	18 Dec 2009

List of Equipment Used:

The data presented accounts for the LISN correction factors as well as cable loss or other corrections, and can therefore be entered into the database as a corrected measurement result.

2.1.7.3 Test Setup

The EUT was tested as a "Table-Top" type product, as described in ANSI C63.4. The EUT was placed on a non-conductive table, 80 cm above the reference ground plane, inside an RF shielded Chamber located at Ingenium Testing. The EUT's power cable was plugged into a 50 Ω (ohm), 50/250 μ H Line Impedance Stabilization Network (LISN). The AC power supply of 120V, 60 Hz was provided to the LISN via appropriate broadband EMI Filters. The LISN used has the ability to terminate the unused RF sampling port connection with a 50 Ω (ohm) load, when switched to either L1 (line) or L2 (neutral). A transient limiter was installed in the RF path to protect the detection equipment. The EUT was exercised under standard operating conditions, as defined in section 1.2.3.1. of this report. The amplifier was exercised with a calibrated external RF generator for this series of tests.

Figure 66: The EUT setup during Conducted RF Emissions tests onto AC Mains.

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 77 of 97

2.1.7.4 Test Procedure

The EUT was measured for RF Emissions conducted onto AC Mains lines, in a Shielded Chamber located at Ingenium Testing. Frequency range from 150 kHz to 30 MHz was investigated for RF emissions. Measurements were made via a LISN, equipped with a 50 Ω RF sampling port. The measurements were made using the "Quasi-Peak" and "Average" detector functions as defined in CISPR 16-1-1, and available on the test equipment selected for this test.

During the initial investigation of the EUT, the system was tested with no RF input, and terminated on the input terminal with a 50 ohm terminating resistor, and then tested again with minimum RF input and maximum RF input power as allowed by the EUT specifications. There was no discernable change in the response or emission levels from the EUT.

During the final tests, measurements were made with 1Watt nominal RF power input, as it will be the case in actual operation, with RF input levels tightly controlled by the Exciter.

The EUT was investigated in continuous operation for this portion of the testing, as described in section 1.2.3.1 of this report. Test automation software was used to perform the Conducted RF Emission measurements. The measuring receiver was operated with the IF resolution bandwidth (RBW) of 9 kHz for measurements between the frequencies of 150 kHz and 30 MHz (video bandwidth of 30 kHz). The applicable Class B limits, as noted in 47 CFR 15.107 for a Class B type digital product were applied.

2.1.7.5 Test Results

The EUT was found to **MEET** the requirements as described within the specifications of the FCC, Title 47 CFR, Part 15.107 for conducted emissions from a Class B digital product, onto AC Mains, as well as the Industry Canada requirements specified within ICES-003 for a Class B digital device. Supporting evidence of significant measured RF emissions, are tabulated and presented below.

CLIMATE TEST CONDITIONS

CERTIFIC TEDI	comprise
Temperature:	73 °F (22.8 °C)
Humidity:	48 % RH

	1		/					
		QU	QUASI-PEAK			AVERAGE		
Frequency (MHz)	Line	QP Measurement (dBµV)	QP Limit (dBµV)	QP Margin (dB)	Average Measurement (dBµV)	Average Limit (dBµV)	Average Margin (dB)	
0.155	120V - L1	44.0	65.9	21.9	36.4	55.9	19.5	
0.201	120V - L1	43.2	64.6	21.3	38.9	54.6	15.7	
0.206	120V - L1	45.8	64.4	18.6	41.6	54.4	12.8	
1.291	120V - L1	31.1	56.0	24.9	28.8	46.0	17.2	
3.344	120V - L1	14.1	56.0	41.9	6.3	46.0	39.7	
6.389	120V - L1	17.8	60.0	42.2	11.7	50.0	38.3	
14.271	120V - L1	35.8	60.0	24.2	24.7	50.0	25.3	
22.022	120V - L1	20.5	60.0	39.5	14.0	50.0	36.0	
0.198	120V - L2	36.2	64.6	28.4	31.9	54.6	22.7	
0.204	120V - L2	46.9	64.5	17.6	42.8	54.5	11.7	
0.341	120V - L2	28.1	60.5	32.4	24.7	50.5	25.8	
1.292	120V - L2	32.5	56.0	23.5	31.8	46.0	14.2	
1.364	120V - L2	28.3	56.0	27.7	23.4	46.0	22.6	
2.978	120V - L2	26.0	56.0	30.0	16.3	46.0	29.7	
3.538	120V - L2	26.3	56.0	29.7	16.8	46.0	29.2	
13.963	120V - L2	35.5	60.0	24.5	26.6	50.0	23.4	
14.766	120V - L2	33.0	60.0	27.0	23.4	50.0	26.6	
18.038	120V - L2	30.5	60.0	29.5	23.1	50.0	26.9	
28.876	120V - L2	27.6	60.0	32.4	20.5	50.0	29.5	

 Table 18: Results table – RF emissions conducted onto AC Mains (120VAC,60Hz) – 72.02 MHz, (5W)

5 Watt mode, 75.98 MHz

	QUASI-PEAK AVERAGE			VERAGE			
Frequency (MHz)	Line	QP Measurement (dBµV)	QP Limit (dBµV)	QP Margin (dB)	Average Measurement (dBµV)	Average Limit (dBµV)	Average Margin (dB)
0.155	120V - L1	44.2	65.9	21.6	37.2	55.9	18.7
0.206	120V - L1	46.8	64.4	17.6	41.5	54.4	12.9
1.291	120V - L1	31.8	56.0	24.2	31.0	46.0	15.0
3.240	120V - L1	10.7	56.0	45.3	6.1	46.0	39.9
13.664	120V - L1	35.0	60.0	25.0	27.0	50.0	23.0
14.272	120V - L1	37.5	60.0	22.5	29.3	50.0	20.7
17.744	120V - L1	33.1	60.0	26.9	26.4	50.0	23.6
28.212	120V - L1	26.0	60.0	34.0	20.0	50.0	30.0
0.155	120V - L2	43.9	65.9	21.9	36.9	55.9	18.9
0.204	120V - L2	47.7	64.5	16.7	42.6	54.5	11.9
0.271	120V - L2	33.0	62.5	29.5	27.2	52.5	25.4
1.292	120V - L2	33.1	56.0	22.9	32.5	46.0	13.5
3.541	120V - L2	28.0	56.0	28.0	18.4	46.0	27.6
14.207	120V - L2	36.4	60.0	23.6	25.5	50.0	24.5
18.062	120V - L2	29.0	60.0	31.0	23.3	50.0	26.7

Table 19: Results table – RF emissions conducted onto AC Mains (120VAC,60Hz) – 75.98 MHz, (5W)

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 79 of 97

		QU	ASI-PEAK		A	VERAGE	
Frequency (MHz)	Line	QP Measurement (dBµV)	QP Limit (dBµV)	QP Margin (dB)	Average Measurement (dBµV)	Average Limit (dBµV)	Average Margin (dB)
0.155	120V - L1	42.9	65.8	22.9	36.3	55.8	19.6
0.192	120V - L1	23.1	64.8	41.7	17.4	54.8	37.4
0.203	120V - L1	46.8	64.5	17.7	42.8	54.5	11.7
0.272	120V - L1	31.3	62.5	31.3	26.5	52.5	26.0
0.682	120V - L1	11.8	56.0	44.2	7.0	46.0	39.0
1.292	120V - L1	31.1	56.0	24.9	30.2	46.0	15.8
3.396	120V - L1	22.7	56.0	33.3	12.4	46.0	33.6
14.097	120V - L1	36.8	60.0	23.2	25.6	50.0	24.4
17.945	120V - L1	35.9	60.0	24.1	29.5	50.0	20.5
0.204	120V - L2	46.9	64.5	17.6	43.0	54.5	11.5
0.275	120V - L2	30.2	62.4	32.2	25.3	52.4	27.2
1.293	120V - L2	32.1	56.0	23.9	31.0	46.0	15.0
3.354	120V - L2	27.7	56.0	28.3	17.0	46.0	29.0
11.092	120V - L2	23.7	60.0	36.3	12.3	50.0	37.7
13.887	120V - L2	35.3	60.0	24.7	24.4	50.0	25.6
17.424	120V - L2	30.5	60.0	29.5	23.8	50.0	26.2

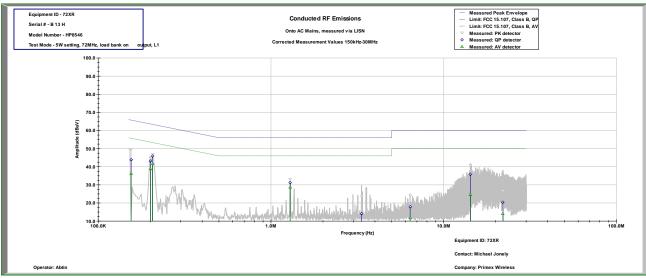
Table 20: Results table – RF emissions conducted onto AC Mains (120VAC,60Hz) – 72.02 MHz, (50W)

50 Watt mode, 75.98 MHz

		QU	JASI-PEAK		A	VERAGE	
Frequency (MHz)	Line	QP Measurement (dBµV)	QP Limit (dBμV)	QP Margin (dB)	Average Measurement (dBµV)	Average Limit (dBµV)	Average Margin (dB)
0.201	120V - L1	42.9	64.6	21.6	38.7	54.6	15.8
0.206	120V - L1	45.9	64.4	18.5	41.8	54.4	12.6
1.294	120V - L1	32.2	56.0	23.8	30.1	46.0	15.9
3.558	120V - L1	27.0	56.0	29.0	16.4	46.0	29.6
14.062	120V - L1	38.1	60.0	21.9	28.8	50.0	21.2
17.398	120V - L1	32.2	60.0	27.8	27.1	50.0	22.9
0.155	120V - L2	44.2	65.9	21.7	37.2	55.9	18.7
0.204	120V - L2 120V - L2	48.1	64.4	16.4	42.7	54.4	11.7
0.274	120V - L2	31.6	62.5	30.9	26.2	52.5	26.3
1.294	120V - L2	31.1	56.0	24.9	30.0	46.0	16.0
3.185	120V - L2	22.8	56.0	33.2	11.4	46.0	34.6
3.581	120V - L2	24.0	56.0	32.0	12.4	46.0	33.6
14.206	120V - L2	38.0	60.0	22.0	28.8	50.0	21.2
17.540	120V - L2	34.9	60.0	25.1	27.5	50.0	22.5

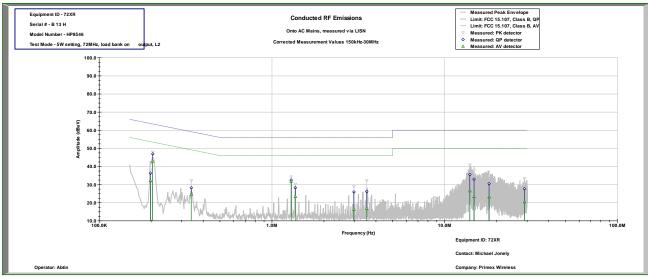
Table 21: Results table – RF emissions conducted onto AC Mains (120VAC,60Hz) – 75.98 MHz, (50W)

Uncertainty Calculations Includes a comparison between CISPR 16-4-2 and Ingenium Testing					
Measurement		Ingenium Testing			
Conducted Disturbance	150 kHz – 30 MHz	5.1 dB	4.2 dB		


Notes:

Date of Estimation: November 02, 2007.

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 80 of 97


SCREEN CAPTURES - RADIATED RF EMISSIONS TESTING

These screen captures represent Peak Emissions. For conducted emission measurements, both a Quasi-Peak detector and an Average detector function is utilized.

5 Watt mode, 72.02 MHz

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 81 of 97

5 Watt mode, 75.98 MHz

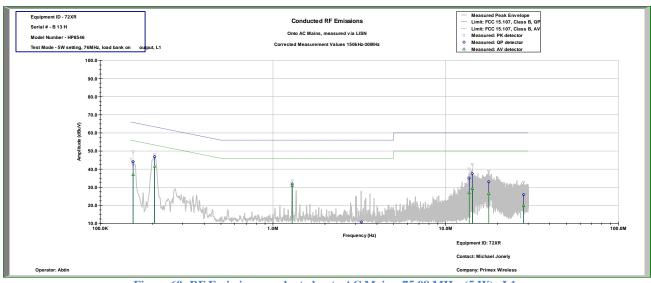


Figure 69: RF Emissions conducted onto AC Mains, 75.98 MHz, (5 W), L1

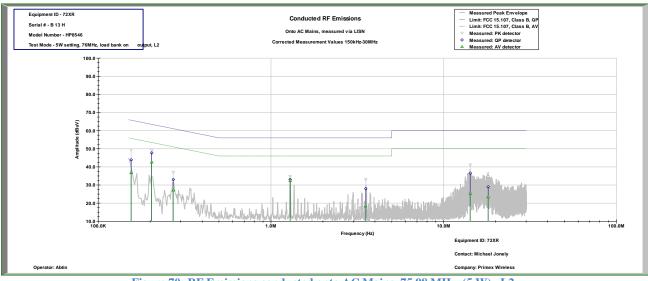
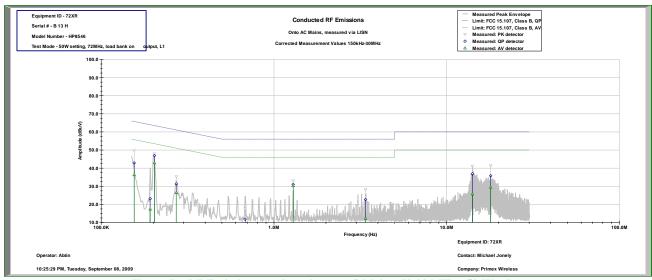
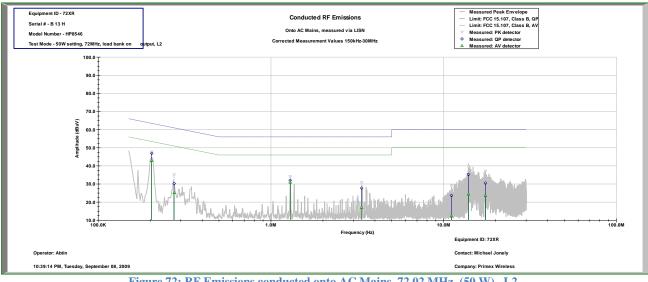
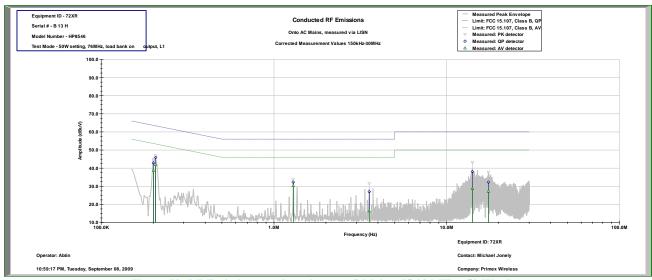




Figure 70: RF Emissions conducted onto AC Mains, 75.98 MHz, (5 W), L2

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 82 of 97



Pre	epared For:	Primex Wireless, Incorporated	
Tes	st Report #:	JCEAQ1132 Primex 72XR v1_1	Page 83 of 97

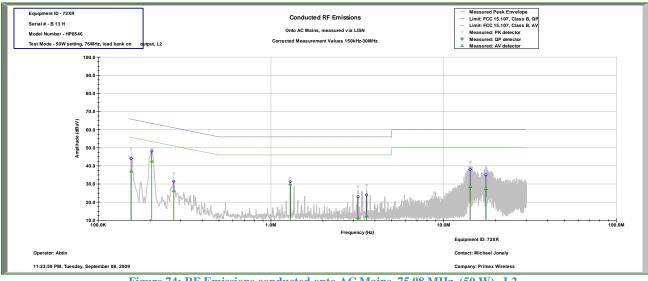


Figure 74: RF Emissions conducted onto AC Mains, 75.98 MHz, (50 W), L2

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 84 of 97

3.1 Electromagnetic Susceptibility Tests

No susceptibility tests were commissioned or performed during these series of tests.

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 85 of 97

4.1 Power Quality Tests

No susceptibility tests were commissioned or performed during these series of tests.

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 86 of 97

This page was intentionally left blank

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 87 of 97

Appendix A

A Conducted RF Performance Parameters – MPE Calculations. 5 Watt mode, 72.02 MHz

The following MPE calculations are based on:

- Measured RF output power of 36.74 dBm from the amplifier,
- 0 dBb (2.15 dBi) gain, Omni-directional dipole antenna (manufacturer specified antenna),
- 0.1 dB insertion loss of the co-axial protector (manufacturer specified coaxial surge arrestor) *Ignored during these calculations.*
- 0.1 dB insertion loss of the LMR-400 (2.07 meters of the manufacturer specified coaxial feeder cable) *Ignored during these calculations.*
- Manufacturer specified antenna installation height of 2.07 meters above the building (used as the prediction distance).

50	Load	l in Ω		
2.07	Separation	distance (m)		
0	System inser	tion loss (dB)		
2.15	Antenna	gain (dBi)		
dBm	mW W		dBµV/m (@xx m)	V/m (@xx m)
36.74	4720.630	4.720630	130.90	3.506

As compared to the limit of 28 V/m as specified in RSS-102, Table 4.2.

Or, alternatively, if using power density (typically not applicable for products below 100MHz):

	Prediction of MPE limit a	<u>it a given</u>	<u>distance</u>				
Equation	from page 18 of OET Bulle	etin 65, Ec	lition 97-01				
	$S = \frac{PG}{4\pi R^2}$						
	$S = 4\pi R^2$						
where:	S = power density						
	P = power input to the antenna						
	G = power gain of the antenna in the direction of interest relative to an isotropic radiat						
	R = distance to the center						
Maxim	im peak output power at an	itenna inpu	ut terminal:	36.74	(dBm)		
	im peak output power at an						
	A	ntenna ga	in(typical):		(dBi)		
	Ma	ximum ant	tenna gain:	1.641	(numeric)		
		Prediction	n distance:	207	(cm)		
	F	Prediction	frequency:	72	(MHz)		
PE limit fo	r uncontrolled exposure at p	prediction	frequency:	0.2	(mW/cm^	2)	
	Power density at p	prediction	frequency:	0.014383	(mW/cm^	2)	
	Maximum allo	wable ant	tenna gain:	13.6	(dBi)		
	Marrin of Commission of	207			٩D		
	Margin of Compliance a	t 207	cm =	11.4	aв		

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 88 of 97

The following MPE calculations are based on:

- Measured RF output power of 46.91 dBm from the amplifier,
- 0 dBb (2.15 dBi) gain, Omni-directional dipole antenna (manufacturer specified antenna),
- 0.1 dB insertion loss of the co-axial protector (manufacturer specified coaxial surge arrestor) *Ignored during these calculations.*
- 0.1 dB insertion loss of the LMR-400 (2.83 meters of the manufacturer specified coaxial feeder cable) *Ignored during these calculations.*
- Manufacturer specified antenna installation height of 2.83 meters above the building (used as the prediction distance).

50	Load	l in Ω		
2.83	Separation distance (m)			
0	System insertion loss (dB)			
2.15	Antenna gain (dBi)			
dBm	mW	W	dBµV/m (@xx m)	V/m (@xx m)
46.91	49090.79	49.09	143.78	15.46

As compared to the limit of 28 V/m as specified in RSS-102, Table 4.2.

Or, alternatively, if using power density (typically not applicable for products below 100MHz):

	· ·	· · · · ·	<u>```</u>		•			'
Prediction	on of MP	E limit at	t a given	distance				
from pag	e 18 of C	ET Bulle	tin 65, Ed	lition 97-01				
S = I	PG –							
5 – 4/	πR^2							
S = powe	er density							
P = powe	er input to	the ante	enna					
G = pow	er gain of	the ante	nna in the	direction	of interest relative	e to an isc	otropic ra	diator
R = dista	ince to the	e center o	of radiatio	on of the ar	ntenna			
						(dBm)		
im peak o	utput pow	ver at ant	tenna inpu	it terminal:	49090.788	(mW)		
		Ar	ntenna ga	in(typical):	2.15	(dBi)		
		Max	imum ant	enna gain:	1.641	(numeric))	
			Predictior	n distance:	283	(cm)		
r uncontro	lled expo	sure at p	rediction	frequency:	0.2	(mW/cm/	`2)	
F	Power dei	nsity at p	rediction	frequency:	0.080023	(mW/cm/	<u>`</u> 2)	
	Maxir	mum allov	wable ant	enna gain:	6.1	(dBi)		
		liance at	283	cm =	4.0	-ID		
	from page $S = \frac{1}{42}$ $S = power S = power G = power R = distance Im peak of Im $	from page 18 of C $S = \frac{PG}{4\pi R^2}$ S = power density P = power input to G = power gain of R = distance to the im peak output power im peak outpu	from page 18 of OET Bulle $S = \frac{PG}{4\pi R^2}$ S = power density P = power input to the ante G = power gain of the ante R = distance to the center Im peak output power at ant Im peak o	from page 18 of OET Bulletin 65, Ed $S = \frac{PG}{4\pi R^2}$ S = power density P = power input to the antenna G = power gain of the antenna in the R = distance to the center of radiation m peak output power at antenna input m peak output power at antenna input Maximum ant Prediction r uncontrolled exposure at prediction Power density at prediction	$S = \frac{PG}{4\pi R^2}$ S = power density P = power input to the antenna G = power gain of the antenna in the direction of R = distance to the center of radiation of the ar m peak output power at antenna input terminal: m peak output power at antenna input terminal: Maximum antenna gain: Prediction distance: Prediction frequency: r uncontrolled exposure at prediction frequency: Power density at prediction frequency:	from page 18 of OET Bulletin 65, Edition 97-01 $S = \frac{PG}{4\pi R^2}$ S = power density P = power input to the antenna G = power gain of the antenna in the direction of interest relative R = distance to the center of radiation of the antenna Im peak output power at antenna input terminal: Maximum antenna gain: Prediction distance: Prediction frequency: r uncontrolled exposure at prediction frequency: Maximum allowable antenna gain: Maximum allowable antenna gain: 6.1	from page 18 of OET Bulletin 65, Edition 97-01 $S = \frac{PG}{4\pi R^2}$ S = power density P = power input to the antenna G = power gain of the antenna in the direction of interest relative to an iso R = distance to the center of radiation of the antenna Im peak output power at antenna input terminal: 46.91 (dBm) Im peak output power at antenna input terminal: 49090.788 (mW) Antenna gain(typical): 2.15 (dBi) Maximum antenna gain: 1.641 (numeric Prediction distance: 283 (cm) Prediction frequency: 72 (MHz) r uncontrolled exposure at prediction frequency: 0.280023 (mW/cm/ Maximum allowable antenna gain: 6.1 (dBi)	from page 18 of OET Bulletin 65, Edition 97-01 $S = \frac{PG}{4\pi R^2}$ S = power density P = power input to the antenna G = power gain of the antenna in the direction of interest relative to an isotropic ra R = distance to the center of radiation of the antenna Impeak output power at antenna input terminal: 46.91 (dBm) Impeak output power at antenna input terminal: 49090.788 (mW) Antenna gain(typical): 2.15 (dBi) Maximum antenna gain: 1.641 (numeric) Prediction distance: 283 (cm) Prediction frequency: 72 (MHz) r uncontrolled exposure at prediction frequency: 0.2 (mW/cm^2) Maximum allowable antenna gain: 6.1 (dBi)

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 89 of 97

Appendix B

B Antenna Specifications.

The following are excerpts from the antenna specification document, re-printed without permission as supporting exhibits for the MPE calculations only.

K5126411

GPB-75N

Omnidirectional Antenna 0 dBd gain 68–78 MHz

- The Kathrein GPB-75N omnidirectional groundplane antenna is intended for use in professional fixed-station applications in the 68–78 MHz band. It features:
- Stainless steel radiator with fiberglass reinforced radials.
- Excellent bandwidth, broadband over 68-80 MHz.
- Variable mounting configurations allow feeder cable to be run inside or outside the support pipe.
- Easy assembly.
- All metal parts at DC ground potential.
- · Stainless steel hardware and fastenings.

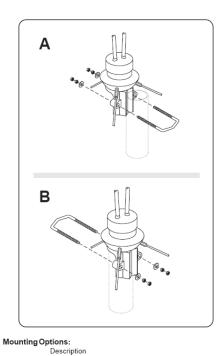
Specifications:

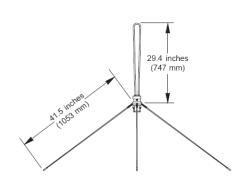
Frequency range	68–78 MHz (broadband)
Gain	0 dBd
Impedance	50 ohms
VSWR	<1.5:1
Polarization	Vertical
Maximum input power	75 watts (at 50°C)
H-plane beamwidth	Omni
E-plane beamwidth	78 degrees (half-power)
Connector	N female
Weight	3.97 lb (1.8 kg)
Dimensions radiating element ground radials	29.4 inches (747 mm) 41.5 inches (1053 mm)
Equivalent flat plate area	0.68 ft ² (0.063 m ²)
Wind survival rating*	120 mph (200 kph)
Shipping dimensions	43 x 5 x 5 inches (1093 x 127 x 127 mm)
Shipping weight	6 lb (2.8 kg)
	Mounting hardware supplied. i inch (20 to 40 mm) OD mast. i inch (40 to 54 mm) OD mast.

*Mechanical design is based on environmental conditions as stipulated in EIA-222-F (June 1996) and/or ETS 300 019-1-4 which include the static mechanical load imposed on an antenna by wind at maximum velocity. See the Engineering Section of the catalog for further details.

Horizontal pattern – V-polarization

E-plane Vertical pattern – V-polarization


Kathrein Inc., Scala Division Post Office Box 4580 Medford, OR 97501 (USA) Phone: (541) 779-6500 Fax: (541) 779-3991 Email: communications@kathrein.com Internet: www.kathrein-scala.com


Prepared For:	Primex Wireless, Incorporated
Test Report #:	JCEAQ1132 Primex 72XR v1_1

GPB-75N

Omnidirectional Antenna 0 dBd gain 68–78 MHz

A В

Mounting for 0.8 to 1.6 inch (20 to 40 mm) OD mast

Mounting for 1.6 to 2.2 inch (40 to 54 mm) OD mast

Order Information:

Description Model GPB-75N K5126411 68-78 MHz Antenna with N connector

All specifications are subject to change without notice

Kathrein Inc., Scala Division Post Office Box 4580 Medford, OR 97501 (USA) Phone: (541) 779-6500 Fax: (541) 779-3991 Email: communications@kathrein.com Internet: www.kathrein-scala.com

Appendix C

C Co-Axial Protector (Lightning Surge Arrestor).

The following are excerpts from the Co-Axial Protector document, re-printed without permission as supporting exhibits for the MPE calculations only.

PolyPhaser
P.O. BOX 9000 MINDEN, NV 89423 TEL: 775-782-2511 FAX: 775-782-4476 DWG NO/PART NO/DESCRIPTION
IS-B50HN-CO
CUSTOMER PRINT
MAXIMUM CHARACTERISTICS
APPLICATION: BULKHEAD MOUNT
FREQUENCY RANGE: 1.5MHz TO 400MHz
SURGE: 50kA IEC 1000-4-5 8/20µs WAVEFORM
TURN-ON: 1200Vdc ±20% 7ns FOR 2kV/ns
VSWR: <1.2:1 @ 1.5MHz TO 2MHz
≤1.1:1 @ 2MHz TO 400MHz
INSERTION LOSS:
<0.1dB OVER FREQUENCY RANGE MAX POWER:
HF 3kW, VHF 500W, UHF 250W
THROUGHPUT ENERGY: ≤20mJ TYPICAL
OPERATING TEMPERATURE: +50°C
STORAGE/TEMPERATURE: -45°C TO +85°C
RELATIVE HUMIDITY: 90% @ 40°C
VIBRATION: 1G AT 5Hz TO 100Hz

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 92 of 97

Appendix D

D Cable Specifications.

The following are excerpts from the Cable Specification document, and internet site, re-printed without permission as supporting exhibits for the MPE calculations only.

TIMES MICROWAVE SYSTEMS A Smiths Industries company 358 Hall Ave., Wallingford, CT, 06492-5039 U.S.A. Phone: 203-949-8400 Fax: 203-949-8423

LMR-400 Flexible Communications Cable

Electrical Specifications					
Cutoff frequency	16.2 GHz*				
Velocity of propagation	85%				
Voltage withstand	2,500 VDC				
Peakpower	16 kW				
DC resistance					
Inner conductor, ohms	1.39/1,000'	4.56/km			
Outer conductor, ohms	1.65 /1,000'	5.41/km			
Jacket spark	8,000 VRMS				
Impedance	50 ohms				
Capacitance	23.9 pF/ft	78.40 pF/m			
Inductance	0.060 uH/ft	0.20 uH/m			
Shielding effectiveness	>90 dB				
Phase stability	<10 ppm/ °C				
*Consult factory for applications over 6 GHz.					

Frequency	Attenu		Avg. Power		
MHz	dB/100 ft		kW		
30 MHz	0.7	2.2	3.3		
50 MHz	0.9	2.9	2.6		
150 MHz	1.5	5.0	1.5		
220 MHz	1.9	6.1	1.2		
450 MHz	2.7	8.9	0.83		
900 MHz	3.9	12.8	0.58		
1500 MHz	5.1	16.8	0.44		
1800 MHz	5.7	18.6	0.40		
2000 MHz	6.0	19.6	0.37		
2500 MHz	6.8	22.2	0.33		
5800 MHz	10.8	35.5	0.21		
Add 15% to tabulated attenuation for LMR-UltraFlex Calculate Attenuation = (0.12229) • √ FMHz + (0.00026) • FMHz (interactive calculator available at http://www.timesmicrowave.com) Attenuation: VSWR=1.0; Ambient = +25°C (77°F) Power: VSWR=1.0; Ambient = +40°C; Inner Conductor = 100°C (212°F);					
	ry air; atmosphe				

Coaxial Cable Attenuation & Power Handling Calculator

Product	Frequency	Attenuation	Attenuation	Average Power
	(MHz)	(db/100 feet)	(db/100 mtrs)	(kW)
LMR-400	72	1.056	3.465	2.13
Calculate		Run Length	Total Run	Efficiency
		(feet)	Attenuation(dB)	(%)
		9.28	0.1	97.8

Copyright ©2002 Times Microwave Systems All rights reserved.

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 93 of 97

Appendix E

E Ingenium Testing, LLC Applicable Accreditations.

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 94 of 97

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005

INGENIUM TESTING, LLC 3761 South Central Avenue Rockford, IL 61102 James Blaha 815 315 9250 x117

ELECTRICAL

Valid To: February 28, 2010

Certificate Number: 2674.01

In recognition of the successful completion of the A2LA evaluation process, accreditation is granted to this laboratory to perform the following <u>electromagnetic compatibility tests</u>:

Test	Test Method
Emissions	
Radiated Emissions	47 CFR FCC Part 15.109, 209, 225, 231, 247, 249 using ANSI C63.4; 47 CFR FCC Part 18 using ANSI C63.4; FCC/OST MP-5; EN 55011; CISPR 11; AS/NZS CISPR 11; EN 55012; CISPR 12; AS/NZS CISPR 12; EN 55014- 1; CISPR 14-1; AS/NZS CISPR 14-1; EN 55022; CISPR 22; AS/NZS CISPR 22; EN 61000-6-3; IEC 61000-6-3; EN 61000-6-4; IEC 61000-6-4; AS/NZS 4268+A1/A2; AS/NZS 4251-1; AS/NZS 4251-2; MIL-STD 461(E) (Methods: RE101, RE102, RE103); RTCA/DO160 Section 21
Conducted Emissions	47 CFR FCC Part 15.107, 207 using ANSI C63.4; 47 CFR FCC Part 18 using ANSI C63.4; FCC/OST MP-5; EN 55011; CISPR 11; AS/NZS CISPR 11; EN 55012; CISPR 12; AS/NZS CISPR 12; EN 55014-1; CISPR 14-1; AS/NZS CISPR 14-1; EN 55022; CISPR 22; AS/NZS CISPR 22; AS/NZS 4268 +A1/A2; AS/NZS 4251-1; AS/NZS 4251-2; AS/NZS 4260-1; AS/NZS 4250-2; MIL-STD 461(E) (Methods: CE101, CE102, CE106); RTCA/DO160 Section 21
Harmonics	EN 61000-3-2; IEC 61000-3-2; AS/NZS 61000-3-2
Flicker	EN 61000-3-3; IEC 61000-3-3; AS/NZS 61000-3-3
Immunity	
Electrostatic Discharge (ESD)	EN 61000-4-2; IEC 61000-4-2; AS/NZS 61000-4-2; RTCA/DO160 Section 25
Electrical Fast Transient/Burst	EN 61000-4-4; IEC 61000-4-4; AS/NZS 61000-4-4
Surge Immunity	EN 61000-4-5; IEC 61000-4-5; AS/NZS 61000-4-5
Radiated	EN 61000-4-3; IEC 61000-4-3; AS/NZS 61000-4-3; MIL-STD 461(E) (<i>Methods: RS101, RS103</i>); RTCA/DO160 Section 20

(A2LA Cert. No. 2674.01) 05/20/08

Page 1 of 2

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 95 of 97

Test Immunity (cont'd)	Test Method
Conducted	EN 61000-4-6; IEC 61000-4-6; AS/NZS 61000-4-6; MIL-STD 461(E) (Methods: CS101, CS103, CS104, CS105,
Power Frequency Magnetic Field	CS109, CS114, CS115, CS116); RTCA/DO160 Section 20 EN 61000-4-8; IEC 61000-4-8; AS/NZS 61000-4-8; RTCA/DO160 Section 15
Pulsed Magnetic Field	EN 61000-4-9; IEC 61000-4-9
Voltage Dips/Interrupts and	EN 61000-11; IEC 6100-11; AS/NZS 61000-4-11;
Variations	RTCA/DO160 Section 17
Power Input	RTCA/DO160 Section 16
Audio Frequency Conducted	RTCA/DO160 Section 18
Susceptibility Power Inputs	
Induced Signal Susceptibility	RTCA/DO160 Section 19
Lightning Inducted Transient	RTCA/DO160 Section 22
Generic and Product Family Standards	EN 61000-6-1; IEC 61000-6-1; AS/NZS 61000-6-1; EN 61000-6-2; IEC 61000-6-2; AS/NZS 61000-6-2; CISPR 14- 2; EN 55014-2; AS/NZS CISPR 14-2; CISPR 24; EN 55024; AS/NZS CISPR 24; BS EN 60601-1-2; IEC 60601-1-2; BS EN 60947-1; IEC 60947-1; BS EN 60439-1; IEC 60439-1; BS EN 61326; IEC 61326; BS EN 50130-4; BS EN 50131-1; EN 61800-3, IEC 61800-3 (limited to 75A, 1000V); BS EN ISO 14892, ISO 14892 (using component methods except ISO-7637, ISO-11452-3)
D I	-
Radio European Union	ETSI EN 300220-1 V2.1.1; ETSI EN 300 220-2 V2.1.1; ETSI EN 300 220-3 V1.1.1; ETSI EN 300 328 V1.7.1; ETSI EN 300 328-1 V1.3.1; ETSI EN 300 328-2 V1.2.1; ETSI EN 300 330 V1.2.1; ETSI EN 300 330-1 V1.5.1; ETSI EN 300 330-2 V1.3.1; ETSI EN 300 440-1 V1.3.1; ETSI EN 300 440-2 V1.1.2; ETSI EN 301 489-1 V1.7.1; ETSI EN 301 489-3 V1.4.1; ETSI EN 301 489-17 V1.3.1;
Canada	E131 EN 301 489-3 V1.4.1, E131 EN 301 489-17 V1.3.1, RSS-119; RSS-210; RSS-243; ICES-001; ICES-002; ICES-003
Telecommunications	47 CFR FCC Parts 2, 90, 95.628

(A2LA Cert. No. 2674.01) 05/20/08

Page 2 of 2

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 96 of 97

FEDERAL COMMUNICATIONS COMMISSION

Laboratory Division 7435 Oakland Mills Road Columbia, MD 21046

June 12, 2008

Ingenium Testing, LLC 3761 South Central Avenue, Rockford, IL 61102

Attention: James Blaha

Re: Accreditation of Ingenium Testing, LLC Designation Number: US1107 Test Firm Registration #: 191720

Dear Sir or Madam:

We have been notified by American Association for Laboratory Accreditation that Ingenium Testing, LLC has been accredited as a Conformity Assessment Body (CAB).

At this time Ingenium Testing, LLC is hereby designated to perform compliance testing on equipment subject to Declaration Of Conformity (DOC) and Certification under Parts 15 and 18 of the Commission's Rules.

This designation will expire upon expiration of the accreditation or notification of withdrawal of designation.

"incerely,

eorge Tannahil

vrge Tannahill tronics Engineer

Prepared For:	Primex Wireless, Incorporated	
Test Report #:	JCEAQ1132 Primex 72XR v1_1	Page 97 of 97