Nemko Test Report:	2L0112RUS1
Applicant:	Matrics, Inc. 8850 Stanford Blvd. Suite 3000 Columbia, Md. 21045
Equipment Under Test: (E.U.T.)	RDR-MP-001
In Accordance With:	FCC Part 15, Subpart C, 15.247 Frequency Hopping Transmitters
Tested By:	Nemko Dallas Inc. 802 N. Kealy Lewisville, Texas 75057-3136
Authorized By:	70-7ill
	Tom Tidwall DE Croup Manager

Tom Tidwell, RF Group Manager

Date:

6/19/02

27

Total Number of Pages:

Table of Contents

Section 1.	Summary of Test Results	. 3
Section 2.	Equipment Under Test (E.U.T.)	. 5
Section 3.	Channel Separation	. 8
Section 4.	Pseudorandom Hopping Algorithm	10
Section 5.	Time of Occupancy	11
Section 6.	Test Equipment List	14
ANNEX A	- TEST DETAILS	15
ANNEX B	3 - TEST DIAGRAMS	25

Summary of Test Results Section 1.

Manufacturer: Telenexus, Inc.

Model No.: RDR-MP-001

Serial No.: P-0005

General: All measurements are traceable to national standards.

These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15, Subpart C, Paragraph 15.247 for Frequency Hopping Spread Spectrum devices. Radiated tests were conducted is accordance with ANSI C63.4-1992. Radiated emissions are made on an open area test site. A description of the test facility is on file with the FCC.

	New Submission	\square	Production Unit
\boxtimes	Class II Permissive Change		Pre-Production Unit
	Family Listing		

THIS TEST REPORT RELATES ONLY TO THE ITEM(S) TESTED.

THE FOLLOWING DEVIATIONS FROM, ADDITIONS TO, OR EXCLUSIONS FROM THE TEST SPECIFICATIONS HAVE BEEN MADE.

See "Summary of Test Data".

NVLAP LAB CODE: 100426-0

Nemko Dallas Inc. authorizes the above named company to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko Dallas Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

Summary Of Test Data

NAME OF TEST	PARA. NO.	SPEC.	RESULT
Powerline Conducted Emissions	15.207(a)	48 dBµV	Not tested
Channel Separation	15.247(a)(1)	Greater of 25 kHz or 20 dB Bandwidth	Complies
Pseudorandom Hopping Algorithm	15.247(a)(1)	Separate exhibit	Complies
Time of Occupancy	15.247(a)(1)(ii)	≤ 0.4 sec in 30 sec	Complies
20 dB Occupied Bandwidth	15.247(a)(1)	$\leq 1 \text{ MHz}$	Not tested
Peak Power Output	15.247(b)	1 Watt	Not tested
Spurious Emissions (Antenna Conducted)	15.247(c)	-20 dBc	Not tested
Spurious Emissions (Radiated)	15.247(c)	Table 15.209(a)	Not tested

Footnotes:

These items were not tested. The only change for this device is in the software controlling the hopping algorithm.

The duty cycle correction increased from -6.6 dB to -24.7, therefore increasing the margin on any radiated emissions.

Section 2. Equipment Under Test (E.U.T.)

General Equipment Information

Frequency Band:	 ✓ 902 – 928 MHz ✓ 2400 – 2483.5 MHz
Number of Channels:	>50
Channel Spacing:	500 kHz
Emissions Designator:	AM/OOK
User Frequency Adjustment:	Software controlled

Description of Modification for Modification Filing

The software controlling the hopping algorithm has been changed from the previously approved version. There are no hardware changes.

Family List Rational

Theory of Operation

Using a unique communication protocol, the 915 MHz frequency hopping spread spectrum reader can read a passive tag over a distance of more than 10 feet. The communication protocol greatly simplifies the tag circuitry and provides the ability to passively power the tag to greater distances.

The tag is completely passive and is powered by the energy it receives from the reader. Digital data is sent to the tag on a pulse width modulated On Off Keyed (OOK) transmitter signal. Data is communicated from the tag to the reader by modulated backscattered radiation.

System Diagram

Section 3. Channel Separation

	NAME OF TEST: Channel Separation	PARA. NO.: 15.247(a)(1)
TESTED BY: David LightDATE: 6/17/2002	TESTED BY: David Light	DATE: 6/17/2002

Test Results: Complies.

FCC PART 15, SUBPART C FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: RDR-MP-001

PROJECT NO. 2L0112RUS1

Nemko

Dallas Headquarters: 802 N. Kealy Lewisville, TX 75057 Tel: (972) 436-9600 Fax: (972) 436-2667

Section 4. Pseudorandom Hopping Algorithm

NAME OF TEST:	Pseudorandom Hopping Algorithm	PARA. NO.: 15.247(a)(1)

Test Results:	Complies.
Measurement Data:	See sample hopping sequence and description of algorithm in separate exhibit.
	Number of Hopping Frequencies: 50+

Section 5. Time of Occupancy

NAME OF TEST: Time of Occupancy	PARA. NO.: 15.247(a)(1)
TESTED BY: David Light	DATE: 6/17/2002

Test Results: Complies.

Refer to Duty Cycle plot

FCC PART 15, SUBPART C FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER MP-001 PROJECT NO. 2L0112RUS1

EQUIPMENT: RDR-MP-001

Dallas Headquarters: 802 N. Kealy Nemko Lewisville, TX 75057 Tel: (972) 436-9600 Fax: (972) 436-2667 Nemko Dallas, Inc. Data Plot **Time of Occupancy** Page 1 of 2 Complete Date: 6/17/2002 Preliminary: Job No.: 2L0112 Specification: 15.247 Temperature(°C): 24 Tested By: Lance Walker Relative Humidity(%) 40 E.U.T.: 900 MHz HOPPER Configuration: TX ON ALL CHANNELS Sample Number: 1 RBW: Refer to plots Location: Lab 2 Measurement Peak VBW: Refer to plots Distance: NA Detector Type: m Test Equipment Used Antenna: Directional Coupler: Pre-Amp: 1045 Cable #1: Filter: Cable #2: Receiver: 1464 Cable #3: Attenuator #1 1469 Cable #4: Attenuator #2: 1477 Mixer: Additional equipment used: +/-1.7 dB Measurement Uncertainty: ATTEN 30dB ∆MKR -42.66dB RL 51.0dBm 10d B/ 5.83ms ∗ 1KR 83 ŝ Т ms 2,66 dв R فليروال CENTER 914.883333MHz SPAN ØHz *SWP 100ms *RBW 10kHz VBW 10kHz Notes: 5.83 mS/100 mS 20 log(5.83mS/100mS) = -24.7 dB Duty Cycle Correction

FCC PART 15, SUBPART C FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER MP-001 PROJECT NO. 2L0112RUS1

EQUIPMENT: RDR-MP-001

Dallas Headquarters: 802 N. Kealy Lewisville, TX 75057 Tel: (972) 436-9600 Fax: (972) 436-2667

EQUIPMENT:

Section 6. **Test Equipment List**

Nemko ID	Description	Manufacturer Model Number	Serial Number	Calibration Date
1464	Spectrum analyzer	Hewlett Packard 8563E	3551A04428	01/02/01
1477	20db Attenuator DC 18 Ghz	MCL Inc. BW-S20W5	NONE	CBU
1469	10 db Attenuator DC 18 Ghz	MCL Inc. BW-S10W2 10db-2WDC	NONE	CBU
1042	CABLE, 4M	STORM PR90-010-144	N/A	06/14/02

ANNEX A - TEST DETAILS

Nemko DallasFCC PART 15, SUBPART CFREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTEREQUIPMENT:RDR-MP-001PROJECT NO. 2L0112RUS1

Minimum Standard:The R.F. that is conducted back onto the AC power line on any
frequency within the band 0.45 to 30 MHz shall not exceed $250\mu V$
(48 dB μV) across 50 ohms.

FCC PART 15, SUBPART C FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER RDR-MP-001 PROJECT NO. 2L0112RUS1 EQUIPMENT:

NAME OF TEST: Channel Separation PARA. NO.: 15.247(a)(1)

Minimum Standard: Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

FCC PART 15, SUBPART C FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER RDR-MP-001 PROJECT NO. 2L0112RUS1 EQUIPMENT:

NAME OF TEST: Pseudorandom Hopping Algorithm PARA. NO.: 15.247(a)(1)

The system shall hop to channel frequencies that are selected from **Minimum Standard:** a pseudorandomly ordered list of hopping frequencies. Each frequency must be used equally on average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their transmitters and shall shift frequencies in synchronization with the transmitted signals.

FCC PART 15, SUBPART C FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: RDR-MP-001

PROJECT NO. 2L0112RUS1

NAME OF TEST: Time of Occupancy

PARA. NO.: 15.247(a)(1)(ii)

Minimum Standard:

Frequency	20 dB	No. of	Average Time of
Band	Bandwidth	Hopping	Occupancy
(MHz)		Channels	
902 - 928	<250 kHz	50	=<0.4 sec. in 20 sec.
902 - 928	=>250 kHz	25	=<0.4 sec. in 10 sec.
2400 - 2483.5		75	=<0.4 sec. in 30 sec.
5725 - 5850		75	=<0.4 sec. in 30 sec.

Method Of Measurement:

The spectrum analyzer is set as follows:

RBW: 1 MHz VBW: = RBW Span: 0 Hz LOG dB/div.: 10 dB Sweep: Sufficient to see one hop time sequence. Trigger: Video

The occupancy time of one hop is measured as above. The average time of occupancy is calculated over the appropriate period of time from above table (10, 20, or 30 seconds).

Avg. time of occupancy = (period from table/duration of one hop)/no. of channels multiplied by the duration of one hop.

For instance:

If a 2.4 GHz system has a measured hop duration time of 1 msec. and uses 75 channels, then the average time of occupancy would be:

(30 sec.)/75 chan. = 400 x 1 msec. = 400 msec. or 0.4 sec. in 30 sec.

FCC PART 15, SUBPART C FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: RDR-MP-001

PROJECT NO. 2L0112RUS1

NAME OF TEST: Occupied Bandwidth

PARA. NO.: 15.247(a)(2)

Minimum Standard:

Frequency Band	Maximum
(MHz)	20 dB Bandwidth
902 - 928	500 kHz
2400 - 2483.5	1 MHz
5725 - 5850	1 MHz

Method Of Measurement:

The spectrum analyzer is set as follows:

RBW: At least 1% of span/div. VBW: >RBW Span: Sufficient to display 20 dB bandwidth LOG dB/div.: 10 dB Sweep: Auto

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

FCC PART 15, SUBPART C FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER

EQUIPMENT: RDR-MP-001

PROJECT NO. 2L0112RUS1

NAME OF TEST: Peak Power Output

PARA. NO.: 15.247(b)

Minimum Standard:

Frequency	No. of	Maximum Peak
Band	Hopping	Power Output at
(MHz)	Channels	Antenna Port
902 - 928	at least 50	1 watt
902 - 928	25 - 49	0.25 watts
2400 - 2483.5	75	1 watt
5725 - 5850	75	1 watt

If transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Systems operating in the 2400-2483.5 MHz band that are used exclusively for fixed, point to point operation may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceed 6 dBi.

Systems operating in the 5725 – 5850 MHz band that are used exclusively for fixed, point-to-point operation may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter peak output power.

Direct Measurement Method For Detachable Antennas:

If the antenna is detachable, a peak power meter is used to measure the power output with the transmitter operating into a 50 ohm load. The dBi gain of the antenna(s) employed shall be reported.

Calculation Of EIRP For Integral Antenna:

If the antenna is not detachable from the circuit then the Peak Power Output is derived from the peak radiated field strength of the fundamental emission by using the plane wave relation GP/4 π R² = E²/120 π and proceeding as follows:

$$P = \frac{E^2 R^2}{30G} = \frac{E^2 3^2}{30G}$$

where,

P = the equivalent isotropic radiated power in watts

E = the maximum measured field strength in V/m

R = the measurement range (3 meters)

G = the numeric gain of the transmit antenna in relation to an isotropic radiator

The RBW of the spectrum analyzer shall be set to a value greater than the measured 20 dB occupied bandwidth of the E.U.T.

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

FCC PART 15, SUBPART C FREQUENCY HOPPING SPREAD SPECTRUM TRANSMITTER -MP-001 PROJECT NO. 2L0112RUS1

EQUIPMENT: RDR-MP-001

NAME OF TEST: Spurious Emissions at Antenna Terminals PARA. NO.: 15.247(c)

Minimum Standard: In any 100kHz bandwidth outside the frequency band in which the transmitter is operating, emissions shall be at least 20 dB below the fundamental emission or shall not exceed the following field strength limits. Emissions falling in the restricted bands of 15.205 shall not exceed the following field strength limits:

Frequency (MHz)	Field Strength (μV/m @ 3m)	Field Strength (dB @ 3m)
30 - 88	100	40.0
88 - 216	150	43.5
216 - 960	200	46.0
Above 960	500	54.0

THE SPECTRUM WAS SEARCHED TO THE 10th HARMONIC

Method Of Measurement:

<u>30 MHz - 10th harmonic plot</u> RBW: 100 kHz VBW: 300 kHz Sweep: Auto Display line: -20 dBc

Lower Band Edge RBW: At least 1% of span/div. VBW: >RBW Span: As necessary to display any spurious at band edge. Sweep: Auto Center Frequency: 902 MHz, 2400 MHz, or 5725 MHz Marker: Peak of fundamental emission Marker Δ: Peak of highest spurious level below center frequency.

Upper Band Edge RBW: At least 1% of span/div. VBW: >RBW Span: As necessary to display any spurious at band edge. Sweep: Auto Center Frequency: 928 MHz, 2483.5 MHz, or 5850 MHz Marker: Peak of fundamental emission Marker Δ: Peak of highest spurious level above center frequency.

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

RDR-MP-001 EQUIPMENT:

	NAME OF TEST:	Radiated Spurious Emissions	PARA. NO.: 15.247(c)
--	---------------	-----------------------------	----------------------

Minimum Standard: In any 100kHz bandwidth outside the frequency band in which the transmitter is operating, emissions shall be at least 20 dB below the fundamental emission or shall not exceed the following field strength limits:

Emissions falling in the restricted bands of 15.205 shall not exceed the following field strength limits:

Frequency	Field Strength	Field Strength
(MHZ)	$(\mu V/m (a) 3m)$	(dB @ 3m)
30 - 88	100	40.0
88 - 216	150	43.5
216 - 960	200	46.0
Above 960	500	54.0

THE SPECTRUM WAS SEARCHED TO THE 10th HARMONIC

15.205 Restricted Bands				
MHz	MHz	MHz	GHz	
0.09-0.11	16.42-16.423	399.9-410	4.5-5.25	
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46	
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5	
6.125-6.218	74.8-75.2	1660-1710	10.6-12.7	
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4	
6.31175-6.31225	123-138	2200-2300	14.47-14.5	
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4	
8.37625-8.38675	156.7-156.9	2655-2900	22.01-23.12	
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8	
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5	
12.57675-12.57725	322-335.4	3600-4400	Above 38.6	
13.36-13.41	1718			

1 = 20 = D

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

Nemko Dallas		FCC PART 15, SUBPART C
	FREQUENCY HOP	PING SPREAD SPECTRUM TRANSMITTER
EQUIPMENT:	RDR-MP-001	PROJECT NO. 2L0112RUS1

ANNEX B - TEST DIAGRAMS

Test Site For Radiated Emissions

Conducted Emissions

Peak Power At Antenna Terminals

