

Prüfbericht - Nr.: 14016314 001					Seite 1	l von 14	
Test Report No.					Page	1 of 14	
Auftraggeber: Nokia Corporation							
Applicant		Joensuunkatu 7E					
		24100 SALO					
		FINLAND					
Gegenstand of Test item	der Prüfung:	Bluetooth Headphone					
Bezeichnung Identification	:	HS-96W (BH-604)	Serien Serial N		Enginee	ring sample	
Wareneingangs-Nr.: 070528006 Receipt No.				ngsdatum: receipt	28.05.20	07	
Prüfort: Testing location Testing location Tiv Rheinland Hong 9th Floor, Oriental New Hong Kong Hong Kong Producti HKPC Building, 78 Ta			s Building, 7 War ity Council	_		Bay, Kowloon,	
 Prüfgrundlag		FCC Part 15 Subpart C					
Test specificat	tion	ANSI C63.4-2003					
		CISPR 22:1997					
Prüfergebnis Test Result		Das vorstehend besch genannter Prüfgrundla The above mentioned pr	age.			spricht oben	
geprüft / t	ested by:		kontrolliert /	reviewed by	<i>/</i> :		
44.00.000	7 Chana	. Ork	44.00.0007	T F	. 77	R	
14.06.200 Datum	7 Sharon L Name	Unterschrift	14.06.2007 Datum	Thomas E		erschrift	
Pataiii	Name	Signature	Date	Name		ature	
Date		FCCID: PYAHS-96W	-0-10-000				
Date Sonstiges: Other Aspects							

Prüfzeichens.

This test report relates to the a. m. test sample. Without permission of the test center this test report is not permitted to be duplicate in extracts. This test report does not entitle to carry any safety mark on this or similar

Table of Content

	Page
Cover Page	1
Table of Content	2
Product information	3
Manufacturers declarations	3
Product function and intended use	4
Submitted documents	4
Submitted documents	4
Special accessories and auxiliary equipment	4
List of Test and Measurement Instruments	5
Result FCC Part 15 – Subpart C	6
Subclause 15.203 – Antenna Information	Pass6
Subclause 15.204 – Antenna Information	Pass6
Subclause 15.207 – Disturbance Voltage on AC Mains	Pass6
Subclause 15.247 (a) – Carrier Frequency Separation	Pass7
Subclause 15.247 (a) – Time of Occupancy (Dwell Time)	Pass8
Subclause 15.247 (a) – 20 dB Bandwidth	Pass9
Subclause 15.247 (a) – Hopping Sequence	Pass9
Subclause 15.247 (a) – Equal Hopping Frequency Use	Pass 10
Subclause 15.247 (a) – Receiver Input Bandwidth	Pass 11
Subclause 15.247 (a) – Receiver Hopping Capability	Pass 11
Subclause 15.247 (b) – Peak Output Power	Pass11
Subclause 15.247 (b) – Band edge compliance	Pass12
Subclause 15.247 (c) – Spurious Conducted Emissions	Pass12
Subclause 15.247 (c) – Spurious Radiated Emissions	Pass 13
Appendix 1 – Test protocols	17 pages
Appendix 2 – Test setup	2 pages
Appendix 3 – Photo documentation	6 pages
Appendix 4 – Product documentation	34 pages

Date: 14.06.2007

Product information

Manufacturers declarations

	Transceiver
Operating frequency range	2402 - 2480 MHz
Type of modulation	GFSK, Pi/4 DQPSK, 8 DPSK
Number of channels	79
Channel separation	1 MHz
Type of antenna	Integral Antenna
Antenna gain (dBi)	1.2
Power level	fix
Type of equipment	stand alone, plug-in radio device
Connection to public utility power line	No
Nominal voltage	V _{nor} : 3.7 V
Independent Operation Modes	Page scan
	Inquiry scan
	Connection state - ACL Link
	Connection state - SCO Link

Test Report No.: 14016314 001 Date: 14.06.2007 page 3 of 14

Product function and intended use

The test item is a Bluetooth Headset based on the Bluetooth technology.

Bluetooth is a short-range radio link intended to be a cable replacement between portable and/or fixed electronic devices.

Bluetooth operates in the unlicensed ISM Band at 2.4 GHz. In the US a band of 83.5 MHz width is available. In this band, 79 RF channels spaced 1 MHz apart are defined.

The channel is represented by a pseudo-random hopping sequence through the 79 channels. The channel is divided into time slots, with a nominal slot length of 625 μ s, where each slot corresponds to different RF hop frequencies. The nominal hop rate is 1600 hops/s. The symbol rate on the channel is 1 Ms/s.

Submitted documents

Circuit Diagram Block Diagram Bill of material User manual

Submitted documents

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases.

Special accessories and auxiliary equipment

The product has been tested together with the following additional accessory:

AC/DC power adaptor

Model: AC-4U

Input: 100-240VAC, 50/60Hz, 1800mA

Output: 5.0VDC 890mA

AC/DC power adaptor

Model: AC-5U

Input: 100-240VAC, 50/60Hz, 1800mA

Output: 5.0VDC 890mA

Test Report No.: 14016314 001 Date: 14.06.2007 page 4 of 14

List of Test and Measurement Instruments

	Kind of Equipment	Manufacturer	Туре	S/N
	Test Receiver	Rohde & Schwarz	ESH-3	890173/033
	L/I/S/N	Rohde & Schwarz	ESH 3-Z5	849876/026
	Oscilloscope	HP	54713B	US34510455
	Test Receiver	Rohde & Schwarz	ESVP	882402/033
	Absorbing Clamp	Rohde & Schwarz	MDS-21	979 3/4
	Test Receiver	Rohde & Schwarz	ESVS30	842807/009
	Biconical Antenna	Rohde & Schwarz	HK116	841489/015
	LogPeriodic Antenna	Rohde & Schwarz	HL223	841516/017
	Universal Power Analyzer	Voltech	PM3000A	9915
	Reference Impedance Network	Voltech	IEC 555 Standard	9946
	AC Power Source	California Instr.	4500L	HK51895
	Trip-Loop Antenna	Chase	LLA6142	1019
	Double Ridge Horn Antenna	EMCO	3115	9002-3351
	Double Ridge Horn Antenna	EMCO	3115	9002-3347
	RF Comms Test Set	HP	8920B	US36492628
	Spectrum Analyser + Tracking G.	HP	8596E	3639A00758
	Signal Generator	Rohde & Schwarz	SMY 01	844146/024
	Signal Generator	Rohde & Schwarz	SMY 01	844146/023
	BiLog Antenna	EMCO	3143	9607-1287
	Isotropic Field Probe	Holladay	HI-4422	90956
	Power Amplifier	Kalmus	757-LC	7620-1
	Power Amplifier	Kalmus	122-FC	7620-2
	Coupling Clamp	Schaffner	CDN 126	312
	Couple Device Network	Fischer	CDN-M2	9604
\boxtimes	Spectrum Analyzer	Rohde & Schwarz	FSP30	1093.4495K30
	Temperature Chamber	Binder	MK 240	9020-0028
	EFT,ESD,SURGE, DIPS tester	Schaffner	Best 96	IN3796-011
	Surge Generator	Schaffner	NSG650	280
\boxtimes	Active Loop Antenna	EMCO	6502	9107-2651

Test Report No.: 14016314 001 Date: 14.06.2007 page 5 of 14

Result FCC Part 15 – Subpart C

Subclause 15.203 – Antenna Information

Pass

Requirement: No antenna other than that furnished by the responsible party shall be used with the

device

Result: Permanent attached antenna

Verdict: Pass

Subclause 15.204 - Antenna Information

Pass

Requirement: Provide information for every antenna proposed for the use with the EUT

Result: a) Antenna type: Integral antenna soldered to the circuit board

b) Manufacturer and model no: N.A. c) Gain with reference to an isotropic radiator: 1.2 dBi

Verdict: Pass

Subclause 15.207 - Disturbance Voltage on AC Mains

Pass

Test Port: AC mains input port of the charger

Applied voltage: 100VAC

Applicable only to equipment designed to be connected to the public utiliy power line.

1) Mode of operation: Charging and operating (Test adaptor: AC-5U)

Live measurement

Frequency range (MHz)	Frequency (MHz)	Quasi-peak dBμV	Average dBµV	Limit QP (dBµV)	Limit AV (dBµV)	Verdict
0,15 - 0,5	0.150	33.2	19.0	66 - 56	56 - 46	Pass
> 0,5 - 5	0.342	30.6	22.2	56	46	Pass
> 5 - 30	3.816	25.5	21.5	60	50	Pass

Neutral measurement

Frequency range (MHz)	Frequency (MHz)	Quasi-peak dBμV	Average dBμV	Limit QP (dBµV)	Limit AV (dBµV)	Verdict
0,15 - 0,5	0.348	30.8	25.1	66 - 56	56 - 46	Pass
> 0,5 - 5	-	=	-	56	46	Pass
> 5 - 30	5.928	27.2	20.5	60	50	Pass

Result: The radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150kHz to 30MHz does not exceed the limits. For test results plots refer to Appendix 1, page 4-5.

Test Report No.: 14016314 001 Date: 14.06.2007 page 6 of 14

Test Port: AC mains input port of the charger

Applied voltage: 100VAC

Applicable only to equipment designed to be connected to the public utiliy power line.

1) Mode of operation: Charging and operating (Test adaptor: AC-4U)

Live measurement

Frequency range (MHz)	Frequency (MHz)	Quasi-peak dBμV	Average dBμV	Limit QP (dBµV)	Limit AV (dBµV)	Verdict
0,15 - 0,5	0.174	37.8	18.5	66 - 56	56 - 46	Pass
> 0,5 - 5	1.500	27.0	14.5	56	46	Pass
> 5 - 30	-	-	ı	60	50	Pass

Neutral measurement

Frequency range (MHz)	Frequency (MHz)	Quasi-peak dBμV	Average dΒμV	Limit QP (dBµV)	Limit AV (dBµV)	Verdict
0,15 - 0,5	0.198	40.7	30.5	66 - 56	56 - 46	Pass
. 0.5. 5	0.786	28.7	19.6	56	46	Pass
> 0,5 - 5	1.638	30.6	20.9	56	46	Pass
> 5 - 30	-	-	=	60	50	Pass

Result: The radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150kHz to 30MHz does not exceed the limits. For test results plots refer to Appendix 1, page 2-3.

Subclause 15.247 (a) - Carrier Frequency Separation

Pass

Requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25kHz or the 20dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25KHz or two-thirds of the 20 dB bandwidth of hopping channel, whichever is greater, ;provided the systems operate with an output power no greater than 125mW.

Test Specification: FCC Part 15 Subpart A - Subclause 15.3

Mode of operation: Tx mode (hopping on)
Port of testing: Temporary antenna port

Detector : Peak

RBW/VBW : 100 kHz / 300 kHz

Supply voltage : 3.7VDC from DC power supply

Temperature : 23°C Humidity : 50%

Result:

Pre-scan has been conduced to determine the worst-case mode from all possible combinations between available modulations and packet types.

The centre frequencies of the hopping channels are separated by more than the 20dB bandwidth. For test results plots refer to Appendix 1, page 6.

Verdict: Pass

Test Report No.: 14016314 001 Date: 14.06.2007 page 7 of 14

Subclause 15.247 (a) – Time of Occupancy (Dwell Time)

Pass

Requirement: Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non-

overlapping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping

channels employed.

Test Specification: FCC Part 15 Subpart A – Subclause 15.31

Mode of operation: Tx mode (hopping on), DH5 packet

Port of testing : Temporary antenna port

Detector : Peak

RBW/VBW : 1 MHz / 3 MHz

Supply voltage : 3.7VDC from DC power supply

Temperature : 23°C Humidity : 50%

Result: The screenshot in Appendix 1 page 4 shows the occurrence of a channel in a 31.6 s time period.

In normal hopping mode Bluetooth is using 79 hopping channels only. The frequency was used 64 times. The dwell time for the longest supported packet type is about 3 ms. As a result the

average time of occupancy will not be greater than 400 ms.

i.e. Time period calculation:

 $0.4 \times 79 = 31.6s$

Limit calculation:

 $64 \times 2.896 \times 10^{-3} = 185.3 \times 10^{-3}$ <= 400×10^{-3} s

For test protocols please refer to Appendix 1, page 7.

Verdict: Pass

Test Report No.: 14016314 001 Date: 14.06.2007 page 8 of 14

Subclause 15.247 (a) - 20 dB Bandwidth

Pass

Requirement: Frequency hopping systems shall have hopping channel carrier frequencies separated by

a minimum of 25kHz or the 20dB bandwidth of the hopping channel, whichever is greater.

Test Specification: FCC Part 15 Subpart A - Subclause 15.31

Mode of operation: Tx mode (2402MHz, 2441MHz, 2480MHz), (8DPSK)

Port of testing : Temporary antenna port

Detector : Peak

RBW/VBW : 30 kHz / 100 kHz

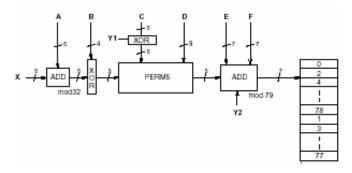
Supply voltage : 3.7VDC from DC power supply

Temperature : 23°C Humidity : 50%

Results

For test protocols refer to Appendix 1, page 8-9.

Frequency 20 dB left (MHz) (MHz)		20 dB right (MHz)	20dB bandwidth (MHz)	
2402	0.652	0.612	1.264	
2441	0.656	0.608	1.264	
2480	0.644	0.620	1.264	


Subclause 15.247 (a) - Hopping Sequence

Pass

Requirement: The hopping sequence is generated and provided with an example.

Hopping sequence

The channel is represented by a pseudo-random hopping sequence hopping through the 79 RF channels. The hopping sequence is unique for the piconet and is determined by the Bluetooth device address of the master. The X input determines the phase in the 32-hop segment, whereas Y1 and Y2 selects between master-to-slave and slave-to-master transmission. The inputs A to D determine the ordering within the segment, the inputs E and F determine the mapping onto the hop frequencies.

Test Report No.: 14016314 001 Date: 14.06.2007 page 9 of 14


```
Example data:
Hop sequence \{k\} for CONNECTION STATE:
CLK start: 0x0000010
ULAP: 0x00000000
#ticks:
            00 02 | 04 06 | 08 0a | 0c 0e | 10 12 | 14 16 | 18 1a | 1c 1e |
0x0000010: 08 66 | 10 70 | 12 19 | 14 23 | 16 01 | 18 05 | 20 33 | 22 37
0x0000030: 24 03 | 26 07 | 28 35 | 30 39 | 32 72 | 34 76 | 36 25 | 38 29
0x0000050: 40 74 | 42 78 | 44 27 | 46 31 | 48 09 | 50 13 | 52 41 | 54 45
0x0000070: 56 11 | 58 15 | 60 43 | 62 47 | 32 17 | 36 19 | 34 49 | 38 51
0x0000090: 40 21 | 44 23 | 42 53 | 46 55 | 48 33 | 52 35 | 50 65 | 54 67
0x00000b0: 56 37 | 60 39 | 58 69 | 62 71 | 64 25 | 68 27 | 66 57 | 70 59
0x00000d0: 72 29 | 76 31 | 74 61 | 78 63 | 01 41 | 05 43 | 03 73 | 07 75
0x00000f0: 09 45 | 13 47 | 11 77 | 15 00 | 64 49 | 66 53 | 68 02 | 70 06
0x0000110: 01 51 | 03 55 | 05 04 | 07 08 | 72 57 | 74 61 | 76 10 | 78 14
0x0000130: 09 59 | 11 63 | 13 12 | 15 16 | 17 65 | 19 69 | 21 18 | 23 22
0x0000150: 33 67 | 35 71 | 37 20 | 39 24 | 25 73 | 27 77 | 29 26 | 31 30
0x0000170: 41 75 | 43 00 | 45 28 | 47 32 | 17 02 | 21 04 | 19 34 | 23 36
0x0000190: 33 06 | 37 08 | 35 38 | 39 40 | 25 10 | 29 12 | 27 42 | 31 44
0x00001b0: 41 14 | 45 16 | 43 46 | 47 48 | 49 18 | 53 20 | 51 50 | 55 52
0x00001d0: 65 22 | 69 24 | 67 54 | 71 56 | 57 26 | 61 28 | 59 58 | 63 60
0x00001f0: 73 30 | 77 32 | 75 62 | 00 64 | 49 34 | 51 42 | 57 66 | 59 74
0x0000210: 53 36 | 55 44 | 61 68 | 63 76 | 65 50 | 67 58 | 73 03 | 75 11
0x0000230: 69 52 | 71 60 | 77 05 | 00 13 | 02 38 | 04 46 | 10 70 | 12 78
0x0000250: 06 40 | 08 48 | 14 72 | 16 01 | 18 54 | 20 62 | 26 07 | 28 15
0x0000270: 22 56 | 24 64 | 30 09 | 32 17 | 02 66 | 06 74 | 10 19 | 14 27
0x0000290: 04 70 | 08 78 | 12 23 | 16 31 | 18 03 | 22 11 | 26 35 | 30 43
0x00002b0: 20 07 | 24 15 | 28 39 | 32 47 | 34 68 | 38 76 | 42 21 | 46 29
0x00002d0: 36 72 | 40 01 | 44 25 | 48 33 | 50 05 | 54 13 | 58 37 | 62 45
0x00002f0: 52 09 | 56 17 | 60 41 | 64 49 | 34 19 | 36 35 | 50 51 | 52 67
0x0000310: 38 21 | 40 37 | 54 53 | 56 69 | 42 27 | 44 43 | 58 59 | 60 75
0x0000330: 46 29 | 48 45 | 62 61 | 64 77 | 66 23 | 68 39 | 03 55 | 05 71
0x0000350: 70 25 | 72 41 | 07 57 | 09 73 | 74 31 | 76 47 | 11 63 | 13 00
0x0000370: 78 33 | 01 49 | 15 65 | 17 02 | 66 51 | 70 67 | 03 04 | 07 20
0x0000390: 68 55 | 72 71 | 05 08 | 09 24 | 74 59 | 78 75 | 11 12 | 15 28
0x00003b0: 76 63 | 01 00 | 13 16 | 17 32 | 19 53 | 23 69 | 35 06 | 39 22
0x00003d0: 21 57 | 25 73 | 37 10 | 41 26 | 27 61 | 31 77 | 43 14 | 47 30
0x00003f0: 29 65 | 33 02 | 45 18 | 49 34 | 19 04 | 21 08 | 23 20 | 25 24 I
```

Subclause 15.247 (a) – Equal Hopping Frequency Use

Pass

Requirement: Each of the transmitter's hopping channels is used equally on average.

Equal hopping frequency use

The EUT complies with the Bluetooth RF specifications. For details refer to the Bluetooth standard.

Test Report No.: 14016314 001 Date: 14.06.2007 page 10 of 14

Subclause 15.247 (a) - Receiver Input Bandwidth

Pass

Requirement: The associated receiver(s) complies with the requirement that its input bandwidth matches

the bandwidth of the transmitted signal.

Receiver input bandwidth

The receiver bandwidth is equal to the receiver bandwidth in the 79 hopping channel mode, which is 1 MHz. The receiver bandwidth was verified during Bluetooth RF conformance testing.

Subclause 15.247 (a) – Receiver Hopping Capability

Pass

Requirement: The associated receiver has the ability to shift frequencies in synchronisation with the

transmitted signals.

Receiver hopping Capability

The EUT complies with the Bluetooth RF specifications. For details refer to the Bluetooth standard.

Subclause 15.247 (b) - Peak Output Power

Pass

Test Specification: FCC Part 15 Subpart A – Subclause 15.31

Mode of operation: Tx mode (2402MHz, 2441MHz, 2480MHz), 8DPSK

Port of testing : Temporary antenna port

Detector : Peak

RBW/VBW : 1 MHz / 3 MHz

Supply voltage : 3.7VDC from DC power supply

Temperature : 23°C Humidity : 50%

Requirement: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least

75 hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 Watt. For all other frequency hopping systems in the 2400 – 2483.5 MHz band: 0.125

Watts.

Result

Pre-scan has been conduced to determine the worst-case mode from all possible combinations between available modulations and packet types.

All three transmit frequency modes comply with the maximum peak output power limit.

For test protocols please refer to Appendix 1, page 10-11.

Frequency (MHz)	Maximum peak output power (dBm)	Cable attenuation (dB)	Output power (dBm)	Limit (W/dBm)	Verdict
2402	1.27	3.52	4.79	1 / 30.0	Pass
2441	0.96	3.65	4.61	1 / 30.0	Pass
2480	0.36	3.60	3.96	1 / 30.0	Pass

Test Report No.: 14016314 001 Date: 14.06.2007 page 11 of 14

Subclause 15.247 (b) - Band edge compliance

Pass

Test Specification: FCC Part 15 Subpart A – Subclause 15.31

Mode of operation: Tx mode (2402MHz, 2441MHz, 2480MHz), 8DPSK

Port of testing : Temporary antenna port

Detector : Peak

RBW/VBW : 300 kHz / 1 MHz

Supply voltage : 3.7VDC from DC power supply

Temperature : 23°C Humidity : 50%

Requirement: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or

digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on

either an RF conducted or a radiated measurement.

Result

Pre-scan has been conduced to determine the worst-case mode from all possible combinations between available modulations and packet types.

There is no peak found outside any 100 kHz bandwidth of the operating frequency band in the three transmit frequency. All three transmit frequency modes comply with the limit stated in subclause 15.247(c).

For test protocols refer to Appendix 1, page 12-16.

Subclause 15.247 (c) - Spurious Conducted Emissions

Pass

Test Specification: FCC Part 15 Subpart A – Subclause 15.31

Mode of operation: Tx mode (2402MHz, 2441MHz, 2480MHz), GFSK

Port of testing : Temporary antenna port

Detector : Peak

RBW/VBW : 100 kHz / 300 kHz

Supply voltage : 3.7VDC from DC power supply

Temperature : 23 °C Humidity : 50 %

Requirement: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or

digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on

either an RF conducted or a radiated measurement.

Result

Pre-scan has been conduced to determine the worst-case mode from all possible combinations between available modulations and packet types.

There is no peak found outside any 100kHz bandwidth of the operating frequency band in the three transmit frequency. All three transmit frequency modes comply with the limit stated in subclause 15.247(c).

For test protocols refer to Appendix 1, page 17-21.

Operating frequency (MHz)	Spurious frequency (MHz)	Spurious Level (dBm)	Reference value (dBm)	Delta (dB)	Verdict
2402	4795.660	-47.08	1.27	-48.35	Pass

Test Report No.: 14016314 001 Date: 14.06.2007 page 12 of 14

2441	4875.420	-47.30	0.50	-47.80	Pass
2480	4955.180	-46.40	0.38	-46.78	Pass

Subclause 15.247 (c) – Spurious Radiated Emissions

Pass

Test Specification: ANSI C63.4 - 2003

Mode of operation: Tx mode (2402MHz, 2441MHz, 2480MHz), 8PSK

Port of testing : Enclosure Detector : Peak

RBW/VBW : 100 kHz / 300 kHz for f < 1 GHz

1 MHz / 3 MHz for f > 1 GHz

Supply voltage : internal batteries has been activated

Temperature : 23°C Humidity : 50%

Requirement: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or

digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on

either an RF conducted or a radiated measurement.

Result

Pre-scan has been conduced to determine the worst-case mode from all possible combinations between available modulations and packet types.

All three transmit frequency modes comply with the field strength within the restricted bands.

There is no spurious found under the frequency below 30MHz

Tx frequency 2402MHz Vertical Polarization

Freq	Level	Limit/ Detector
MHz	dBuV/m	dBuV/m
-	-	43.5 / QP
-	-	74.0 / P
-	-	54.0 / A

Tx frequency 2402MHz Horizontal Polarization

Freq MHz	Level dBuV/m	Limit/ Detector dBuV/m
IVITZ	abuv/m	abuv/m
-	-	43.5 / QP
-	-	74.0 / P
-	-	54.0 / A

Test Report No.: 14016314 001 Date: 14.06.2007 page 13 of 14

Tx frequency 2441MHz	Vertical Polarization	
Freq MHz	Level dBuV/m	Limit/ Detector dBuV/m
-	-	43.5 / QP
-	-	74.0 / P
-	-	54.0 / A
Tx frequency 2441MHz	Horizontal Polarization	
Freq	Level	Limit/ Detector
MHz	dBuV/m	dBuV/m
-	-	43.5 / QP
-	-	74.0 / P
-	-	54.0 / A
Tx frequency 2480MHz	Vertical Polarization	
Freq MHz	Level dBuV/m	Limit/ Detector dBuV/m
-	-	43.5 / QP
-	-	74.0 / P
-	-	54.0 / A
Tx frequency 2480MHz	Horizontal Polarization	
Freq	Level	Limit/ Detector
MHz	dBuV/m	dBuV/m
-	-	43.5 / QP
-	-	74.0 / P
-	-	54.0 / A

Test Report No.: 14016314 001 Date: 14.06.2007 page 14 of 14