

Test Report

Product Name : Nokia Bluetooth Headset

Model No. : BH-902

FCC ID. : DoC

Applicant : Nokia Corporation, Nokia Mobile Phones

Address : Joensuunkatu 7E P.O. Box 86, Salo Fin-24100 Finland

Date of Receipt : 2007/04/18

Issued Date : 2007/05/29

Report No. : 074H058-RFUSP01V02

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuiTek Corporation.

DECLARATION OF CONFORMITY

Per FCC Part 2 Section 2. 1077(a)

The following equipment:

Product Name : Nokia Bluetooth Headset

Trade Name : NOKIA

Model Number : BH-902

Company Name : Nokia Corporation, Nokia Mobile Phones

It's herewith confirmed to comply with the requirements of FCC Part 15 Rules. (Class B)

Operation is subject to the following two conditions:

- (1) This device may not cause harmful interference, and
- (2) This device must accept any interference received, including interference that may cause undesired operation.

The result of electromagnetic emission has been evaluated by QuieTek EMC laboratory (NVLAP Lab. Code : 200347-0) and showed in the test report.

(Report No. : QTK- 074H058-RFUSP01V02)

It is understood that each unit marketed is identical to the device as tested, and Any changes to the device that could adversely affect the emission Characteristics will require retest.

The following importer / manufacturer is responsible for this declaration:

Company Name _____

Company Address _____

Telephone _____ Facsimile : _____

Person is responsible for marking this declaration:

Name (Full name)

Position / Title

Date

Legal Signature

Test Report Certification

Issued Date : 2007/05/29

Report No. : 074H058-RFUSP01V02

QuiTek

Product Name : Nokia Bluetooth Headset
Applicant : Nokia Corporation, Nokia Mobile Phones
Address : Joensuunkatu 7E P.O. Box 86, Salo Fin-24100 Finland
Manufacturer : FU GANG ELECTRONIC (KUNSHAN) CO.,LTD.
Model No. : BH-902
FCC ID. : DoC
Rated Voltage : AC 120 V / 60 Hz
EUT Voltage : AC 120 V / 60 Hz
Trade Name : NOKIA
Applicable Standard : FCC CFR Title 47 Part 15 Subpart B: 2006
Test Result : Complied

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuiTek Corporation.

This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Documented By : Sandy Chuang

(Sandy Chuang)

Tested By : Louis Hsu

(Louis Hsu)

Approved By : Roy Wang

(Roy Wang)

TABLE OF CONTENTS

Description	Page
1. General Information	4
1.1. EUT Description	4
1.2. Test Mode.....	6
1.3. Tested System Details	7
1.4. Configuration of tested System.....	7
1.5. EUT Exercise Software.....	7
1.6. Test Facility.....	8
2. Conducted Emission	9
2.1. Test Equipment.....	9
2.2. Test Setup	9
2.3. Limits	10
2.4. Test Procedure	10
2.5. Test Specification.....	10
2.6. Test Result.....	11
2.7. Test Photo	15
3. Radiated Emission	16
3.1. Test Equipment.....	16
3.2. Test Setup	16
3.3. Limits	17
3.4. Test Procedure	18
3.5. Test Specification.....	19
3.6. Test Result.....	20
3.7. Test Photo	22
Attachment	23
<input type="checkbox"/> EUT Photograph.....	23

Reference : Laboratory of License

1. General Information**1.1. EUT Description**

Product Name	Nokia Bluetooth Headset
Trade Name	NOKIA
Model No.	BH-902
Frequency Range	2402~2480MHz
Channel Number	79
Type of Modulation	GFSK, $\pi/4$ -DQPSK, 8-DPSK
Channel Control	Auto
Antenna Type	Micro-chip Antenna
Antenna Gain	1.0811dBi
Hardware Version	B3.2
Software Version	WK16
Mechanics Version	MPT2

Component	
Power Adapter	NOKIA, AC-5U I/P: AC 100-240V, 50-60 Hz, 180mA O/P: DC 5.0V, 800mA Cable Out: Non-Shielded, 1.75m

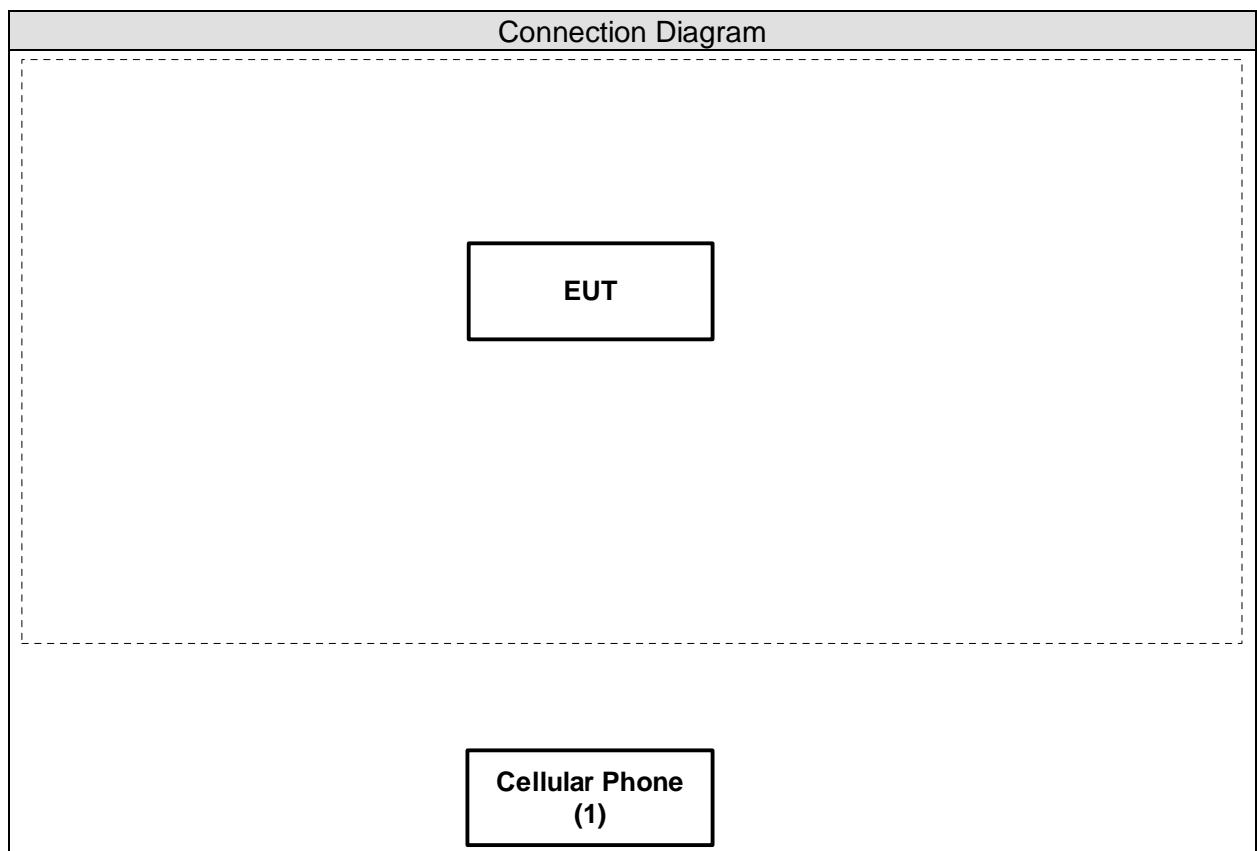
Working Frequency of Each Channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 00	2402 MHz	Channel 20	2422 MHz	Channel 40	2442 MHz	Channel 60	2462 MHz
Channel 01	2403 MHz	Channel 21	2423 MHz	Channel 41	2443 MHz	Channel 61	2463 MHz
Channel 02	2404 MHz	Channel 22	2424 MHz	Channel 42	2444 MHz	Channel 62	2464 MHz
Channel 03	2405 MHz	Channel 23	2425 MHz	Channel 43	2445 MHz	Channel 63	2465 MHz
Channel 04	2406 MHz	Channel 24	2426 MHz	Channel 44	2446 MHz	Channel 64	2466 MHz
Channel 05	2407 MHz	Channel 25	2427 MHz	Channel 45	2447 MHz	Channel 65	2467 MHz
Channel 06	2408 MHz	Channel 26	2428 MHz	Channel 46	2448 MHz	Channel 66	2468 MHz
Channel 07	2409 MHz	Channel 27	2429 MHz	Channel 47	2449 MHz	Channel 67	2469 MHz
Channel 08	2410 MHz	Channel 28	2430 MHz	Channel 48	2450 MHz	Channel 68	2470 MHz
Channel 09	2411 MHz	Channel 29	2431 MHz	Channel 49	2451 MHz	Channel 69	2471 MHz
Channel 10	2412 MHz	Channel 30	2432 MHz	Channel 50	2452 MHz	Channel 70	2472 MHz
Channel 11	2413 MHz	Channel 31	2433 MHz	Channel 51	2453 MHz	Channel 71	2473 MHz
Channel 12	2414 MHz	Channel 32	2434 MHz	Channel 52	2454 MHz	Channel 72	2474 MHz
Channel 13	2415 MHz	Channel 33	2435 MHz	Channel 53	2455 MHz	Channel 73	2475 MHz
Channel 14	2416 MHz	Channel 34	2436 MHz	Channel 54	2456 MHz	Channel 74	2476 MHz
Channel 15	2417 MHz	Channel 35	2437 MHz	Channel 55	2457 MHz	Channel 75	2477 MHz
Channel 16	2418 MHz	Channel 36	2438 MHz	Channel 56	2458 MHz	Channel 76	2478 MHz
Channel 17	2419 MHz	Channel 37	2439 MHz	Channel 57	2459 MHz	Channel 77	2479 MHz
Channel 18	2420 MHz	Channel 38	2440 MHz	Channel 58	2460 MHz	Channel 78	2480 MHz
Channel 19	2421 MHz	Channel 39	2441 MHz	Channel 59	2461 MHz		

Note:

1. This device is a Nokia Bluetooth Headset included a 2.4GHz receiving function, and 2.4GHz transmitting function.
2. These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15 Subpart B for normal function.
3. This device is a composite device in accordance with Part 15 regulations. The function for the 2.4GHz transmitting was measured and made a test report that the report number is 074H058-RFUSP06V01, certified under FCC ID: PYAHS-76W

1.2. Test Mode

QuiTek has verified the construction and function in typical operation. All the test modes were carried out with the EUT in normal operation, which was shown in this test report and defined as:


Pre-Test Mode	
EMI	Mode 1: Normal Link
Final Test Mode	
EMI	Mode 1: Normal Link

1.3. Tested System Details

The types for all equipments, plus descriptions of all cables used in the tested system (including inserted cards) are:

Product	Manufacturer	Model No.	Serial No.	Power Cord
1 Cellular Phone	NOKIA	7370	N/A	--

1.4. Configuration of tested System

1.5. EUT Exercise Software

1	Setup the EUT and simulators as shown on 1.4.
2	Turn on the power of all equipment.
3	Verify the model operation.
4	Repeat the above procedure (3) to (4).

1.6. Test Facility

Ambient conditions in the laboratory:

Items	Test Item	Required (IEC 68-1)	Actual
Temperature (°C)	FCC PART 15 B 15.107 Conducted Emission	15 - 35	25
Humidity (%RH)		25 - 75	50
Barometric pressure (mbar)		860 - 1060	950-1000
Temperature (°C)	FCC PART 15 B 15.109 Radiated Emission	15 - 35	25
Humidity (%RH)		25 - 75	65
Barometric pressure (mbar)		860 - 1060	950-1000

Site Description:

January 24, 2005 File on
Federal Communications Commission
Laboratory Division
7435 Oakland Mills Road
Columbia, MD 21046
Registration Number: 365520

Accredited by CNLA
Accreditation Number: 1313
Effective through: September 27, 2007

Accredited by NVLAP
NVLAP Lab Code: 200347-0
Effective through: September 30, 2007

Site Name: Quietek Corporation

Site Address: No.75-1, Wang-Yeh Valley, Yung-Hsing,
Chiung-Lin, Hsin-Chu County,
Taiwan, R.O.C.

TEL : 886-3-592-8858 / FAX : 886-3-592-8859
E-Mail : service@quietek.com

2. Conducted Emission

2.1. Test Equipment

The following test equipment are used during the test:

Conducted Emission / SR3

Instrument	Manufacturer	Type No.	Serial No	Cal. Date
4-Wire ISN	R & S	ENY 41	837032/001	2007/04/15
Double 2-Wire ISN	R & S	ENY 22	835354/008	2007/04/15
LISN	R & S	ESH3-Z5	836679/013	2007/01/02
LISN	R&S	ESH3-Z5	836679/022	2006/07/17
Pulse Limiter	R & S	ESH3-Z2	100411	2006/11/16
Test Receiver	R & S	ESCS 30	100149	2006/11/15

Note: All equipment upon which need to calibrated are with calibration period of 1 year.

2.2. Test Setup

2.3. Limits

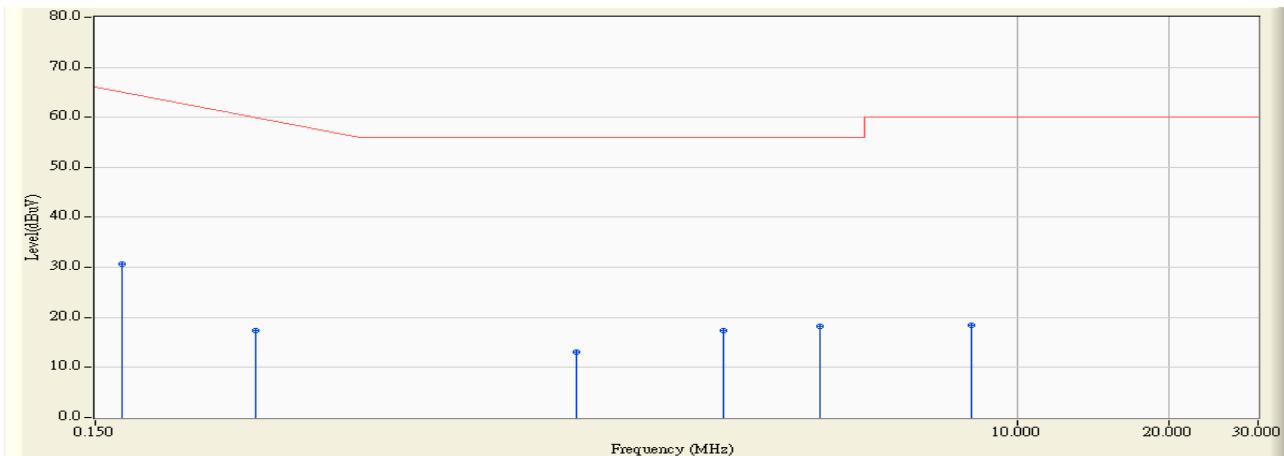
FCC Part 15 Subpart B Paragraph 15.107 Limits (dBuV)				
Frequency MHz	Class A		Class B	
	QP	AV	QP	AV
0.15 - 0.50	79	66	66-56	56-46
0.50-5.0	73	60	56	46
5.0 - 30	73	60	60	50

Remarks : In the above table, the tighter limit applies at the band edges.

2.4. Test Procedure

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs.)

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement.


Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

2.5. Test Specification

According to FCC Part 15 Subpart B Paragraph 15.107: 2006

2.6. Test Result

Site : QuiTek Shielding Room3	Time : 2007/05/27 - 18:02
Limit : CISPR_B_00M_QP	Margin : 0
EUT : Nokia Bluetooth Headset	Probe : SR3_LISN(16A) - Line1
Power : AC 120V/60Hz	Note : Mode 1: Normal Link

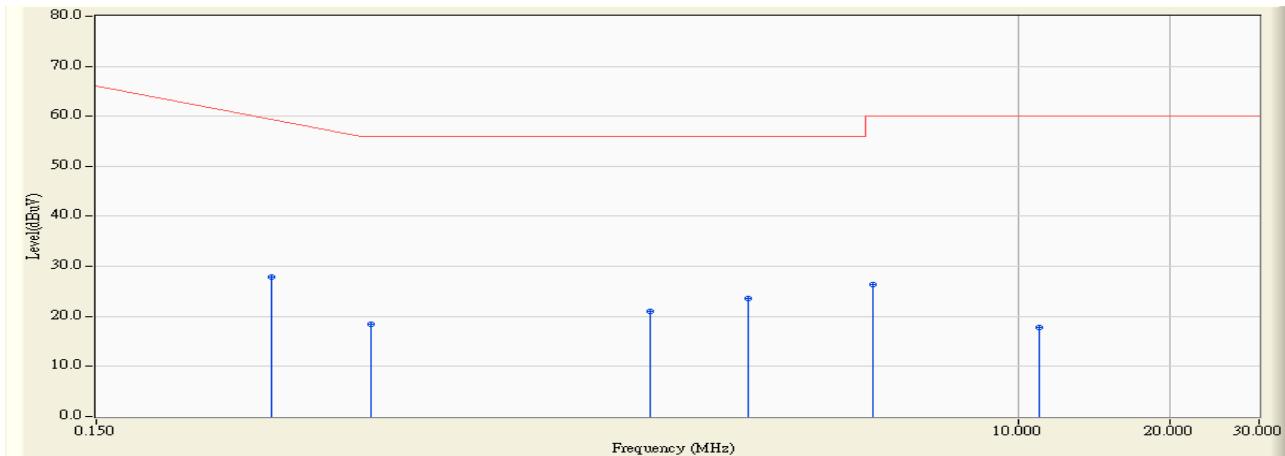


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV)	Margin (dB)	Limit (dBuV)	Detector Type
1	*	0.170	0.144	30.520	30.664	-34.765	65.429	QUASIPEAK
2		0.311	0.181	17.260	17.441	-43.959	61.400	QUASIPEAK
3		1.345	0.280	12.800	13.080	-42.920	56.000	QUASIPEAK
4		2.623	0.410	17.050	17.460	-38.540	56.000	QUASIPEAK
5		4.076	0.430	17.730	18.160	-37.840	56.000	QUASIPEAK
6		8.119	0.640	17.860	18.500	-41.500	60.000	QUASIPEAK

Note:

1. All Reading Levels are Quasi-Peak and average value.
2. " * ", means this data is the worst emission level.
3. Measurement Level = Reading Level + Correct Factor

Site : QuiTek Shielding Room3	Time : 2007/05/27 - 18:02
Limit : CISPR_B_00M_AV	Margin : 0
EUT : Nokia Bluetooth Headset	Probe : SR3_LISN(16A) - Line1
Power : AC 120V/60Hz	Note : Mode 1: Normal Link

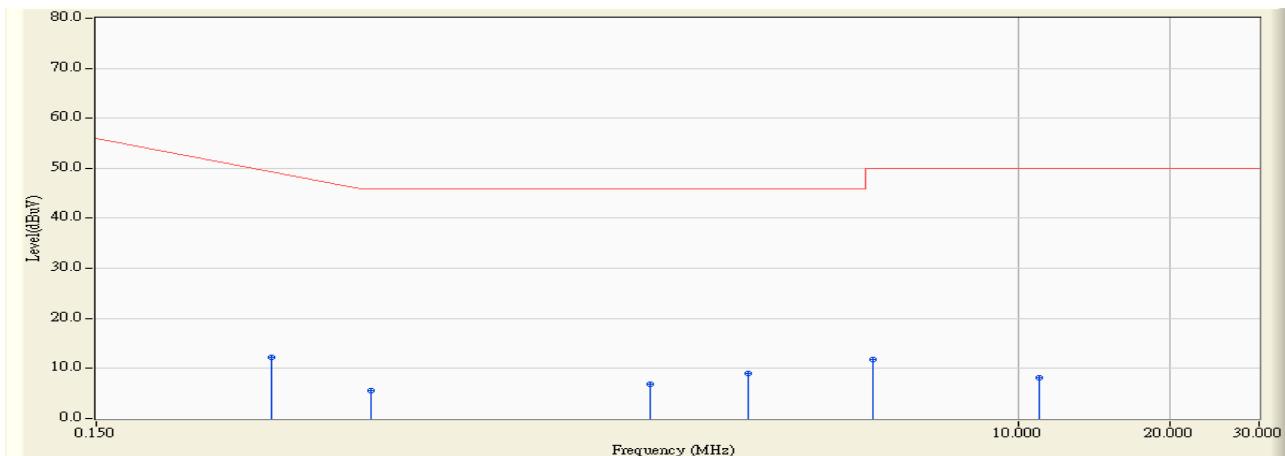


		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV)	Margin (dB)	Limit (dBuV)	Detector Type
1		0.170	0.144	12.460	12.604	-42.825	55.429	AVERAGE
2		0.311	0.181	4.810	4.991	-46.409	51.400	AVERAGE
3		1.345	0.280	4.540	4.820	-41.180	46.000	AVERAGE
4		2.623	0.410	6.130	6.540	-39.460	46.000	AVERAGE
5	*	4.076	0.430	6.650	7.080	-38.920	46.000	AVERAGE
6		8.119	0.640	7.690	8.330	-41.670	50.000	AVERAGE

Note:

1. All Reading Levels are Quasi-Peak and average value.
2. " * ", means this data is the worst emission level.
3. Measurement Level = Reading Level + Correct Factor

Site : QuiTek Shielding Room3	Time : 2007/05/27 - 18:05
Limit : CISPR_B_00M_QP	Margin : 0
EUT : Nokia Bluetooth Headset	Probe : SR3_LISN(16A) - Line2
Power : AC 120V/60Hz	Note : Mode 1: Normal Link



	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV)	Margin (dB)	Limit (dBuV)	Detector Type
1	0.334	0.188	27.710	27.898	-32.845	60.743	QUASIPEAK
2	0.525	0.210	18.130	18.340	-37.660	56.000	QUASIPEAK
3	1.873	0.370	20.660	21.030	-34.970	56.000	QUASIPEAK
4 *	2.935	0.410	23.130	23.540	-32.460	56.000	QUASIPEAK
5	5.149	0.470	25.880	26.350	-33.650	60.000	QUASIPEAK
6	10.986	0.670	17.160	17.830	-42.170	60.000	QUASIPEAK

Note:

1. All Reading Levels are Quasi-Peak and average value.
2. " * ", means this data is the worst emission level.
3. Measurement Level = Reading Level + Correct Factor

Site : QuiTek Shielding Room3	Time : 2007/05/27 - 18:05
Limit : CISPR_B_00M_AV	Margin : 0
EUT : Nokia Bluetooth Headset	Probe : SR3_LISN(16A) - Line2
Power : AC 120V/60Hz	Note : Mode 1: Normal Link

		Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV)	Margin (dB)	Limit (dBuV)	Detector Type
1		0.334	0.188	11.990	12.178	-38.565	50.743	AVERAGE
2		0.525	0.210	5.330	5.540	-40.460	46.000	AVERAGE
3		1.873	0.370	6.500	6.870	-39.130	46.000	AVERAGE
4	*	2.935	0.410	8.690	9.100	-36.900	46.000	AVERAGE
5		5.149	0.470	11.340	11.810	-38.190	50.000	AVERAGE
6		10.986	0.670	7.520	8.190	-41.810	50.000	AVERAGE

Note:

1. All Reading Levels are Quasi-Peak and average value.
2. " * ", means this data is the worst emission level.
3. Measurement Level = Reading Level + Correct Factor

2.7. Test Photo

Test Mode : Mode 1: Normal Link

Description : Front View of Conducted Emission Test Setup

Test Mode : Mode 1: Normal Link

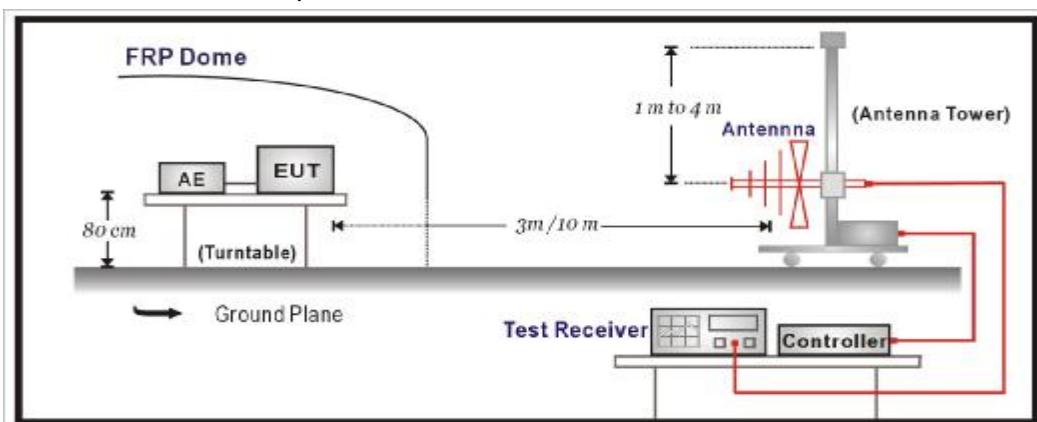
Description : Back View of Conducted Emission Test Setup

3. Radiated Emission

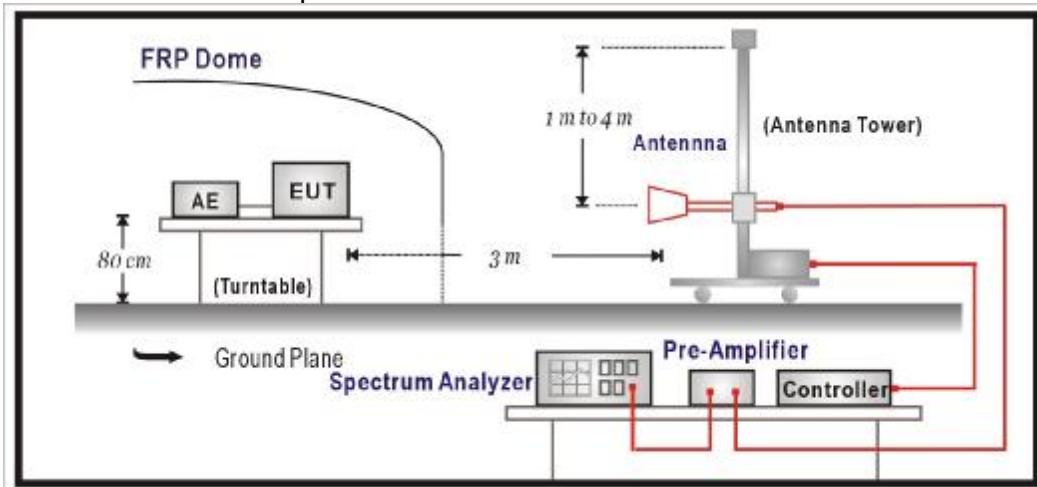
3.1. Test Equipment

The following test equipment are used during the test:

Radiated Emission / Site1


Instrument	Manufacturer	Type No.	Serial No	Cal. Date
Bilog Antenna	Schaffner Chase	CBL6112B	2895	2006/09/03
Horn Antenna	Electro Metrics	EM-6961	103325	2007/03/15
Pre-Amplifier	HP	8449B	3008A01123	2006/11/15
Pre-Amplifier	Quietek	AP-025C	N/A	N/A
Spectrum Analyzer	R & S	FSP40	100005	2006/08/25
Spectrum Analyzer	Advantest	R3162	120300649	2006/11/24
Test Receiver	R & S	ESCS 30	825442/017	2007/02/13

Note: 1. All equipments that need to calibrate are with calibration period of 1 year.


2. Mark "X" test instruments are used to measure the final test results.

3.2. Test Setup

Under 1GHz Test Setup:

Above 1GHz Test Setup:

3.3. Limits

CISPR 22 Limits (dBuV/m)				
Frequency MHz	Class A		Class B	
	Distance (m)	dBuV/m	Distance (m)	dBuV/m
30 – 230	10	40	10	30
230 – 1000	10	47	10	37

Remark: 1. The tighter limit shall apply at the edge between two frequency bands.

2. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

3. RF Voltage (dBuV/m) = 20 log RF Voltage (uV/m)

FCC Part 15 Subpart B Paragraph 15.109 Limits				
Frequency MHz	Class A		Class B	
	Distance (m)	dBuV/m	Distance (m)	dBuV/m
30-88	10	39	3	40
88-216	10	43.5	3	43.5
216-960	10	46.4	3	46
Above 960	10	49.5	3	54

Remarks : 1. RF Voltage (dBuV) = 20 log RF Voltage (uV)

2. In the Above Table, the tighter limit applies at the band edges.

3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

Carrier current systems used as unintentional radiators or other unintentional radiators that are designed to conduct their radio frequency emissions via connecting wires or cables and that operate in the frequency range of 9 kHz to 30 MHz, including devices that deliver the radio frequency energy to transducers, such as ultrasonic devices not covered under part 18 of this chapter, shall comply with the radiated emission limits for intentional radiators provided in §15.209 for the frequency range of 9 kHz to 30 MHz. As an alternative, carrier current systems used as unintentional radiators and operating in the frequency range of 525 kHz to 1705 kHz may comply with the radiated emission limits provided in §15.221(a).

3.4. Test Procedure

Under 30MHz Test:

The EUT and its simulators are placed on a turn table which is 1.0 meter above ground.

The turn table can rotate 360 degrees to determine the position of the maximum electric field strength. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna which is 1.0 meter above ground. All X-axis, Y-axis and Z-axis polarization of the antenna are set on measurement.

The bandwidth below 30MHz setting on the field strength meter (R&S Test Receiver ESCS 30) is 200Hz and above 30MHz is 9 kHz.

The emission limit shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000MHz. Radiated emission limit in these three bands are based on measurements employing an average detector.

Above 30MHz Test:

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level.

The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

For class A, the EUT was positioned such that the distance from antenna to the EUT was 10 meters for under 1GHz and above 1GHz.

For class B, the EUT was positioned such that the distance from antenna to the EUT was 3 or 10 meters for under 1GHz and 3 meters for above 1GHz.

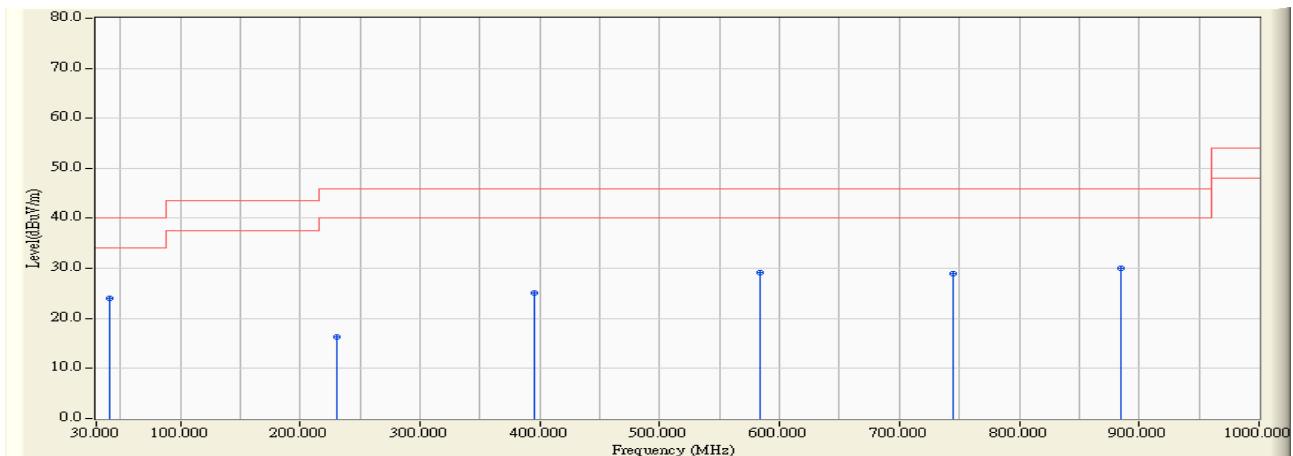
The bandwidth below 1GHz setting on the field strength meter (R&S Test Receiver ESCS 30) is 120 kHz and above 1GHz is 1MHz.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission.

All of the interface cables must be manipulated according to ANSI C63.4:2003 on radiated measurement.

For an unintentional radiator, including a digital device, the spectrum shall be investigated from the lowest radio frequency signal generated or used in the device, without going below the lowest frequency for which a radiated emission limit is specified, up to the frequency shown in the following table:

Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement range (MHz)
Below 1.705	30
1.705 – 108	1000
108 – 500	2000
500 – 1000	5000
Above 1000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower

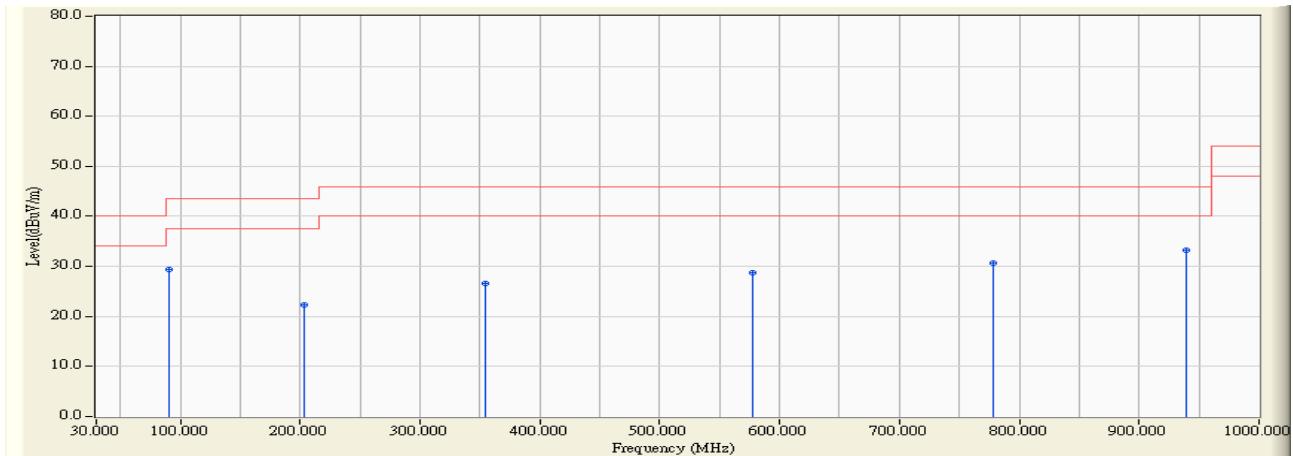

On any frequency or frequencies below or equal to 1000 MHz, the limits shown are based on measuring equipment employing a CISPR quasi-peak detector function and on any frequency or frequencies above 1000 MHz the radiated limits shown are based upon the use of measurement instrumentation employing an average detector function. When average radiated emission measurement are included emission measurement below 1000 MHz, there also is a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit.

3.5. Test Specification

According to FCC Part 15 Subpart B Paragraph 15.109: 2006

3.6. Test Result

Site : Site 1	Time : 2007/05/23 - 14:30
Limit : FCC_CLASS_B_03M_QP	Margin : 6
EUT : Nokia Bluetooth Headset	Probe : FCC_RF_30-1G(200605) - HORIZONTAL
Power : AC 120V/60Hz	Note : Mode 1: Normal Link



	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Detector Type	
1	41.663	-1.896	25.889	23.993	-16.007	40.000	Quasi-Peak	
2	230.220	-11.265	27.560	16.295	-29.705	46.000	Quasi-Peak	
3	395.451	1.023	24.044	25.067	-20.933	46.000	Quasi-Peak	
4	584.008	4.469	24.757	29.226	-16.774	46.000	Quasi-Peak	
5	745.351	4.188	24.684	28.872	-17.128	46.000	Quasi-Peak	
6	*	885.311	5.028	25.023	30.051	-15.949	46.000	Quasi-Peak

Note:

1. All Reading Levels are Quasi-Peak value.
2. “ * ”, means this data is the worst emission level.
3. Measurement Level = Reading Level + Correct Factor.

Site : Site 1	Time : 2007/05/23 - 14:32
Limit : FCC_CLASS_B_03M_QP	Margin : 6
EUT : Nokia Bluetooth Headset	Probe : FCC_RF_30-1G(200605) - VERTICAL
Power : AC 120V/60Hz	Note : Mode 1: Normal Link

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Detector Type
1	90.261	-2.879	32.296	29.417	-14.083	43.500	PEAK
2	203.006	-3.127	25.502	22.375	-21.125	43.500	PEAK
3	354.629	-3.700	30.191	26.491	-19.509	46.000	PEAK
4	578.176	4.216	24.543	28.759	-17.241	46.000	PEAK
5	778.397	5.770	24.944	30.715	-15.285	46.000	PEAK
6	*	9.014	24.287	33.301	-12.699	46.000	PEAK

Note:

1. All Reading Levels are Quasi-Peak value.
2. “ * ”, means this data is the worst emission level.
3. Measurement Level = Reading Level + Correct Factor.

3.7. Test Photo

Test Mode : Mode 1: Normal Link

Description : Front View of Radiated Emission Test Setup

Test Mode : Mode 1: Normal Link

Description : Back View of Radiated Emission Test Setup

Attachment

Ø EUT Photograph

(1) EUT Photo

(2) EUT Photo

Reference : Laboratory of License

United States Department of Commerce
National Institute of Standards and Technology

Certificate of Accreditation to ISO/IEC 17025:2005

NVLAP LAB CODE: 200347-0

Quietek Corporation

Hsin-Chu Country
TAIWAN

*is recognized by the National Voluntary Laboratory Accreditation Program for conformance with criteria set forth in
NVLAP accreditation documents and all requirements of ISO/IEC 17025:2005.
Accreditation is granted for specific services, listed on the Scope of Accreditation, for:*

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

2006-10-01 through 2007-09-30

Effective dates

Sally S. Bruce
For the National Institute of Standards and Technology

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005

Quietek Corporation
No. 75-2 Wang-Yeh Velley, Yung-Hsing
Chiung-Lin
Hsin-Chu Country
TAIWAN
Mr. Gene Chang
Phone: 886-3-5928858 Fax: 886-3-5928859
E-Mail: gene@quietek.com
URL: <http://www.quietek.com>

**ELECTROMAGNETIC COMPATIBILITY
AND TELECOMMUNICATIONS**

NVLAP LAB CODE 200347-0

NVLAP Code Designation / Description

Emissions Test Methods:

12/610006c	EN 61000-6-3 (2001) and IEC 61000-6-3 (1996): Electromagnetic compatibility (EMC) - Part 6-3: Generic standards - Emission standard for residential, commercial and light-industrial environments
12/610006d	EN 61000-6-4 (2001) and IEC 61000-6-4 (1997): Electromagnetic compatibility (EMC) - Part 6-4: Generic standards - Emission standard for industrial environments
12/CIS11d	EN 55011 (1998), A1 (1999), A2 (2001): Industrial, Scientific and Medical (ISM) radio frequency equipment - Electromagnetic disturbance characteristics - Limits and methods of measurement
12/CIS14	CISPR 14-1 (March 30, 2000): Limits and Methods of Measurement of Radio interference Characteristics of Household Electrical Appliances, Portable Tools and Similar Electrical Apparatus - Part 1: Emissions
12/CIS14a	EN 55014-1 (1993), A1 (1997), A2 (1999):
12/CIS14b	AS/NZS 1044 (1995):

2006-10-01 through 2007-09-30

Effective dates

National Voluntary Laboratory Accreditation Program

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

NVLAP LAB CODE 200347-0

NVLAP Code	Designation / Description
12/CIS14c	CNS 13783-1: Electromagnetic Compatibility Requirements for household appliances, electric tools and similar apparatus - Part 1: Emissions
12/CIS22	IEC/CISPR 22 (1997) & EN 55022 (1998) + A1(2000): Limits and methods of measurement of radio disturbance characteristics of information technology equipment
12/CIS22a	IEC/CISPR 22 (1993) and EN 55022 (1994): Limits and methods of measurement of radio disturbance characteristics of information technology equipment, Amendment 1 (1995) and Amendment 2 (1996)
12/CIS22b	CNS 13438 (1997): Limits and Methods of Measurement of Radio Interference Characteristics of Information Technology Equipment
12/EM02a	IEC 61000-3-2, Edition 2.1 (2001-10), EN 61000-3-2 (2000), and AS/NZS 2279.1 (2000): Electromagnetic compatibility (EMC) Part 3-2: Limits - Limits for harmonic current emissions (equipment input current <= 16 A)
12/EM03b	IEC 61000-3-3, Edition 1.1(2002-03) & EN 61000-3-3, A1(2001): EMC - Part 3-3: Limits - Limitations of voltage changes, voltage fluctuations and flicker, in public low-voltage supply-systems, for equipment with rated current <=16 A per phase and not subject to conditional connections
12/FCC15b	ANSI C63.4 (2003) with FCC Method 47 CFR Part 15, Subpart B: Unintentional Radiators
12/FCC15c	ANSI C63.4 (2003) with FCC Method 47 CFR Part 15, Subpart C: Intentional Radiators
12/FCC15c2	DA 00-705 - March 30, 2000 and KDB Pub. No. 558074: with FCC Method - 47 CFR Part 15, Subpart C: Intentional Radiators - (Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems - and - New Guidance on Measurements for Digital Transmission Systems in Section 15.247)
12/FCC15cz	SS - MP with FCC Method - 15 CFR Part 15, Subpart C: Intentional Radiators

2006-10-01 through 2007-09-30

Effective dates

Page 2 of 4

Sally S. Bruce
For the National Institute of Standards and Technology

NVLAP-01S (REV. 2005-05-19)

National Voluntary Laboratory Accreditation Program

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

NVLAP LAB CODE 200347-0

NVLAP Code Designation / Description

12/FCC15e	ANSI C63.4 (2003) with FCC Method 47 CFR Part 15, Subpart E: Unlicensed National Information Infrastructure Service Devices
12/FCC15ez	UNII - MP with FCC Method - 47 CFR Part 15, Subpart E: Unlicensed National Information Infrastructure Services Devices
12/ICES003	ICES-003 Issue 4 (2004): Implementation and Interpretation of the Interference-Causing Equipment Standard for Digital Apparatus. (Industry Canada)
12/T51	AS/NZS CISPR 22 (2002) and AS/NZS 3548 (1997): Electromagnetic Interference - Limits and Methods of Measurement of Information Technology Equipment

Immunity Test Methods:

12/610006a	EN 61000-6-1 (2001): Electromagnetic compatibility (EMC) - Part 6 - 1: Generic standards - Immunity for residential, commercial and light-industrial environments
12/610006b	EN 61000-6-2 (2001): Electromagnetic compatibility (EMC) - Part 6-2: Generic standards - Immunity for industrial environments
12/I01	IEC 61000-4-2, Ed. 1.2 (2001) + A1, A2; EN 61000-4-2: Electrostatic Discharge Immunity Test
12/I02b	IEC/EN 61000-4-3, Ed. 2.1 (2002), A1 (2002); EN 61000-4-3: Radiated, radio-frequency, electromagnetic field immunity test
12/I03	IEC 61000-4-4(1995), A1(2000), A2(2001); EN 61000-4-4: Electromagnetic compatibility (EMC) - Part 4-4: Testing and measurement techniques - Electrical Fast Transient/Burst Immunity Test
12/I04b	IEC 61000-4-5 (2001), A1(2000); EN 61000-4-5(2001), A1(2000): Surge Immunity Test
12/I05b	IEC/EN 61000-4-6 (2001), A1 (2001): Immunity to Conducted Disturbances, Induced by Radio Frequency Fields

2006-10-01 through 2007-09-30

Effective dates

Page 3 of 4

Sally S. Bruce
For the National Institute of Standards and Technology

NVLAP-01S (REV. 2005-05-19)

**ELECTROMAGNETIC COMPATIBILITY
AND TELECOMMUNICATIONS**

NVLAP LAB CODE 200347-0

NVLAP Code Designation / Description

12/I06b IEC 61000-4-8 (2001), A1(2000); EN 61000-4-8 (2001),A1(2000): Power Frequency Magnetic Field Immunity Test

12/I07b IEC/EN 61000-4-11 (2001), A1 (2001): Voltage Dips, Short Interruptions and Voltage Variations Immunity Tests

Radio Test Methods

12/RSS210 RSS-210, Issue 6 (Sept. 2005); Low Power Licence-Exempt Radiocommunication Devices (All Frequency Bands): Category 1 Equipment

12/RSS210a RSS-210, Issue 5, Amendments: A1 (2001), A2 (2003), A3 (2004), and A4 (2004)

2006-10-01 through 2007-09-30

Effective dates