

the registration number: D-PL-12076-01-01 Area of Testing: Radio Communications & EMC (RCE)

Test standard/s 47 CFR Part 22 Title 47 of the Code of Federal Regulations; Chapter I; Part 22 - Public mobile services 47 CFR Part 24 Title 47 of the Code of Federal Regulations; Chapter I; Part 24 - Personal communications services For further applied test standards please refer to section 3 of this test report.

Test Item							
Kind of test item: Smart Phone GPRS/EGPRS 850/900/1800/1900; UMTS HSPA FDDI/II/V; LTE FDD1/3/17/18; LTE TDD41; CDMA 2K BC0/BC6; WLAN b/g/n/a/ac; BT 4.0; RFID; A-G							
FCC ID:	PY7PM-0750						
Frequency:	GSM: 824.2 – 848.8 MHz, 1850.2 – 1909.8 MHz UMTS: 826.4 – 846.6 MHz, 1852.4 – 1907.6 MHz						
Technology tested:	GPRS/EDGE, UMTS						
Antenna:	Integrated antenna						
Power supply:	Power supply: 3.7 V DC by Li - polymer battery						
Temperature range:	-30°C to +60°C						

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorised:

Test performed:

Nva Vattentornet

22188 Lund / SWEDEN

p.o.

Stefan Bös Senior Testing Manager Marco Bertolino Testing Manager

1 Table of contents

1	Tab	ole of co	ontents	2						
2	Ger	neral in	formation	4						
	2.1		es and disclaimer							
	2.2	•••	lication details							
3	Tes	Test standard/s4								
4	Tes	st envir	onment	5						
5	Tes	st item.		5						
	5.1	Add	litional information	5						
6	ΤΔς		atories sub-contracted	-						
7			of measurement results							
1										
	7.1 7.2		И 850 3 1900							
	7.3		Γ900 ΓS band II							
	7.4		ΓS band V							
8			rements							
0				-						
	8.1		cription of test setup							
		8.1.1 8.1.2	Radiated measurements							
	8.2	-	Conducted measurementsults GSM 850							
	0.2	8.2.1	RF output power							
		8.2.1	Frequency stability							
		8.2.3	Spurious emissions radiated							
		8.2.4	Spurious emissions conducted							
		8.2.5	Block edge compliance							
		8.2.6	Occupied bandwidth							
	8.3		ults PCS 1900							
		8.3.1	RF output power							
		8.3.2	Frequency stability							
		8.3.3	Spurious emissions radiated							
		8.3.4	Spurious emissions conducted	40						
		8.3.5	Block edge compliance	44						
		8.3.6	Occupied bandwidth							
	8.4		ults UMTS band II							
		8.4.1	RF output power							
		8.4.2	Frequency stability							
		8.4.3	Spurious emissions radiated							
		8.4.4	Spurious emissions conducted							
		8.4.5	Block edge compliance							
	0 E	8.4.6	Occupied bandwidth							
	8.5	8.5.1	RF output power	-						
		8.5.2	Frequency stability							
		o.ɔ.∠ 8.5.3	Spurious emissions radiated							
		8.5.4	Spurious emissions radiated							
		8.5.5	Block edge compliance							
		8.5.6	Occupied bandwidth							
9	Tee	t equin	ment and ancillaries used for tests							
	103		vations							
10										
Anr	nex /	A D	ocument history	92						

Annex B	Further information92	
Annex C	Accreditation Certificate93	

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM ICT Services GmbH.

The testing service provided by CETECOM ICT Services GmbH has been rendered under the current "General Terms and Conditions for CETECOM ICT Services GmbH".

CETECOM ICT Services GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM ICT Services GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM ICT Services GmbH test report include or imply any product or service warranties from CETECOM ICT Services GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM ICT Services GmbH.

All rights and remedies regarding vendor's products and services for which CETECOM ICT Services GmbH has prepared this test report shall be provided by the party offering such products or services and not by CETECOM ICT Services GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order:	2014-02-19
Date of receipt of test item:	2014-02-17
Start of test:	2014-02-17
End of test:	2014-02-27
Person(s) present during the test:	-/-

3 Test standard/s

Test standard	Date	Test standard description
47 CFR Part 22		Title 47 of the Code of Federal Regulations; Chapter I; Part 22 - Public mobile services
47 CFR Part 24		Title 47 of the Code of Federal Regulations; Chapter I; Part 24 - Personal communications services

4 Test environment

Temperature:	T _{nom} T _{max} T _{min}	 +22 °C during room temperature tests +60 °C during high temperature tests -30 °C during low temperature tests
Relative humidity content:		43 %
Barometric pressure:		not relevant for this kind of testing
Power supply:	V _{nom} V _{max} V _{min}	 3.7 V DC by Li - polymer battery 4.4 V 3.3 V

5 Test item

Kind of test item	:	Smart Phone GPRS/EGPRS 850/900/1800/1900; UMTS HSPA FDDI/II/V; LTE FDD1/3/17/18; LTE TDD41; CDMA 2K BC0/BC6; WLAN b/g/n/a/ac; BT 4.0; RFID; A-GPS
S/N serial number	:	Radiated units: CB5126D71H; CB5126D721 Conducted units: CB5126DAXC; CB5126DB0L
HW hardware status	:	AP1.0
SW software status	:	17.1.C.0.127
Frequency band [MHz]	:	GSM: 824.2 – 848.8 MHz, 1850.2 – 1909.8 MHz UMTS: 826.4 – 846.6 MHz, 1852.4 – 1907.6 MHz
Type of modulation	:	GMSK, 8-PSK, QPSK
Antenna	:	Integrated antenna
Power supply	:	3.7 V DC by Li - polymer battery
Temperature range	:	-30°C to +60 °C

5.1 Additional information

Test setup- and EUT-photos are included in test report:

1-6965/13-16-01_AnnexA 1-6965/13-16-01_AnnexB 1-6965/13-16-01_AnnexC

6 Test laboratories sub-contracted

None

7 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained

TC identifier	Description	verdict	date	Remark
RF-Testing	CFR Part 22, 24	passed	2014-02-28	-/-

7.1 GSM 850

Test Case	temperature conditions	power source voltages	Pass	Fail	NA	NP	Remark
RF Output Power	Nominal	Nominal	\boxtimes				-/-
Frequency Stability	Nominal	Nominal					-/-
Spurious Emissions Radiated	Nominal	Nominal					-/-
Spurious Emissions Conducted	Nominal	Nominal					-/-
Block Edge Compliance	Nominal	Nominal					-/-
Occupied Bandwidth	Nominal	Nominal					-/-

Note: NA = Not applicable; NP = Not performed

7.2 PCS 1900

Test Case	temperature conditions	power source voltages	Pass	Fail	NA	NP	Remark
RF Output Power	Nominal	Nominal					-/-
Frequency Stability	Nominal	Nominal					-/-
Spurious Emissions Radiated	Nominal	Nominal					-/-
Spurious Emissions Conducted	Nominal	Nominal					-/-
Block Edge Compliance	Nominal	Nominal					-/-
Occupied Bandwidth	Nominal	Nominal					-/-

Note: NA = Not applicable; NP = Not performed

7.3 UMTS band II

Test Case	temperature conditions	power source voltages	Pass	Fail	NA	NP	Remark
RF Output Power	Nominal	Nominal	\boxtimes				-/-
Frequency Stability	Nominal	Nominal					-/-
Spurious Emissions Radiated	Nominal	Nominal					-/-
Spurious Emissions Conducted	Nominal	Nominal					-/-
Block Edge Compliance	Nominal	Nominal					-/-
Occupied Bandwidth	Nominal	Nominal					-/-

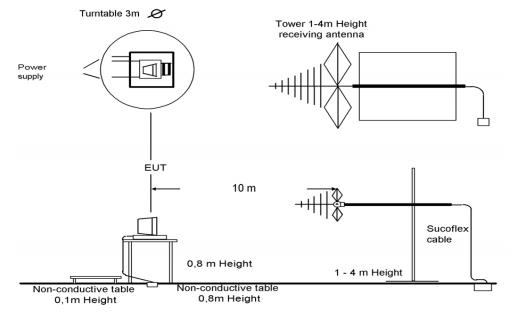
Note: NA = Not applicable; NP = Not performed

7.4 UMTS band V

Test Case	temperature conditions	power source voltages	Pass	Fail	NA	NP	Remark
RF Output Power	Nominal	Nominal	\boxtimes				-/-
Frequency Stability	Nominal	Nominal					-/-
Spurious Emissions Radiated	Nominal	Nominal					-/-
Spurious Emissions Conducted	Nominal	Nominal					-/-
Block Edge Compliance	Nominal	Nominal					-/-
Occupied Bandwidth	Nominal	Nominal					-/-

Note: NA = Not applicable; NP = Not performed

8 **RF** measurements


8.1 Description of test setup

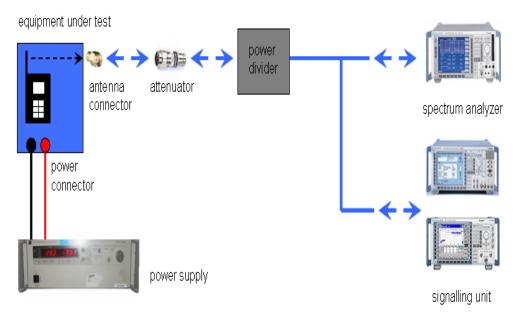
For the spurious measurements we use the substitution method according TIA/EIA 603.

8.1.1 Radiated measurements

The radiated emissions from the EUT are performed in a semi anechoic chamber. The EUT is placed on a conductive turntable and powered with nominal voltage. The signalling is performed either from outside the chamber with a signalling unit (AP or other) by air link using a signalling antenna or directly by special test software from the customer.

Semi anechoic chamber

Picture 1: Diagram radiated measurements


9 kHz - 30 MHz:	active loop antenna
30 MHz – 1 GHz:	tri-log antenna
> 1 GHz:	horn antenna

Frequency being measured f	Measuring receiver bandwidth 6 dB	Spectrum analyser bandwidth 3dB
f < 150 kHz	200 Hz or	300 Hz
150 kHz ≤ f < 25 MHz	9 kHz or	10 kHz
25 MHz ≤ f < 1000 MHz	120 kHz or	100 kHz
1000 MHz ≤ f		1 MHz
NOTE: Specific requirements in	CEPT/ERC/Recommendation 70-03 [2] shall be applied where applicable.

8.1.2 Conducted measurements

The EUT's RF signal is coupled out by the antenna connector which is supplied by the manufacturer. The signal is first 10dB attenuated before it is power divided (~6dB loss per branch). One of the signal paths is connected to the signalling unit (AP or other), the other one is connected to the spectrum analyzer. The specific losses for both signal paths are first checked within a calibration. The measurement readings on the signalling unit/spectrum analyzer are corrected by the specific test set-up loss. The attenuator, power divider, signalling unit and the spectrum analyzer are impedance matched on 50 Ohm. If special software is used, there is no power divider necessary.

Picture 2: Diagram conducted measurements

The term measuring receiver refers to either a selective voltmeter or a spectrum analyser.

Frequency being measured f	Measuring receiver bandwidth 6 dB	Spectrum analyser bandwidth 3dB
f < 150 kHz	200 Hz or	300 Hz
150 kHz ≤ f < 25 MHz	9 kHz or	10 kHz
25 MHz ≤ f < 1000 MHz	120 kHz or	100 kHz
1000 MHz ≤ f		1 MHz
NOTE: Specific requirements in (CEPT/ERC/Recommendation 70-03 [2] shall be applied where applicable.

8.2 Results GSM 850

All GSM-band measurements are done in GSM mode only (circuit switched).

All relevant tests have been repeated using 8-PSK modulation if EDGE mode is supported. All tests were performed with one timeslot in uplink activated and one timeslot in downlink activated. For each mode the highest output power was determined and used.

8.2.1 RF output power

Description:

This paragraph contains average power, peak output power and ERP measurements for the mobile station. In all cases, the peak output power is within the required mask (this mask is specified in the JTC standards, TIA PN3389 Vol. 1 Chap 7, and is no FCC requirement).

Measurement:

The mobile was set up for the maximum output power with pseudo random data modulation.

Measurement parameters		
Detector:	Peak and RMS (Power in Burst)	
Sweep time:	Auto	
Video bandwidth:	1 MHz	
Resolution bandwidth:	1 MHz	
Span:	Zero Span	
Trace-Mode:	Max Hold	

FCC	
CFR Part 22.913 CFR Part 2.1046	
Nominal Peak Output Power	
+38.45 dBm In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.	

Results:

Output Power (conducted) GMSK mode			
Frequency (MHz)	Average Output Power (dBm) Peak to Average Ratio (dB)		
824.2	31.8	0.3	
836.4	31.6	0.3	
848.8	31.5	0.3	
Measurement uncertainty	± 0.5 dB		

Output Power (conducted) 8-PSK mode			
Frequency (MHz)	Average Output Power (dBm) Peak to Average Ratio (dB)		
824.2	26.3	3.2	
836.4	26.3	3.2	
848.8	26.5	3.0	
Measurement uncertainty	± 0.5 dB		

Output Power (radiated) GMSK mode		
Frequency (MHz)	ncy (MHz) Average Output Power (dBm) - ERP	
824.2	28.2	
836.4	30.4	
848.8	31.6	
Measurement uncertainty	± 2.0 dB	

Output Power (radiated) 8-PSK mode		
Frequency (MHz)	Average Output Power (dBm) - ERP	
824.2	23.0	
836.4	25.4	
848.8	26.9	
Measurement uncertainty	± 2.0 dB	

Result: Passed

8.2.2 Frequency stability

Description:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the mobile station in a "call mode". This is accomplished with the use of a R&S CMU200 DIGITAL RADIOCOMMUNICATION TESTER.

1. Measure the carrier frequency at room temperature.

2. Subject the mobile station to overnight soak at -30 C.

3. With the mobile station, powered with V_{nom} , connected to the CMU200 and in a simulated call on channel 189 (centre channel), measure the carrier frequency. These measurements should be made within two minutes of powering up the mobile station, to prevent significant self warming.

4. Repeat the above measurements at 10°C increments from -30°C to +60°C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements.

5. Remeasure carrier frequency at room temperature with V_{nom} . Vary supply voltage from V_{min} to V_{max} , in 0.1 Volt steps remeasuring carrier frequency at each voltage. Pause at V_{nom} for 1.5 hours unpowered, to allow any self heating to stabilize, before continuing.

6. At all temperature levels hold the temperature to +/- 0.5°C during the measurement procedure.

Measurement:

Measurement parameters		
Detector:		
Sweep time:		
Video bandwidth:	Measured with CMU200	
Resolution bandwidth:	Measured with CM0200	
Span:		
Trace-Mode:		

FCC
CFR Part 22.355 CFR Part 2.1055
Frequency Stability
± 2.5 ppm

Results:

AFC FREQ ERROR versus VOLTAGE

Voltage (V)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)
3.3	18	0.00000215	0.0215
3.4	17	0.0000203	0.0203
3.5	14	0.00000167	0.0167
3.6	15	0.00000179	0.0179
3.7	17	0.0000203	0.0203
3.8	14	0.00000167	0.0167
3.9	18	0.00000215	0.0215
4.0	14	0.00000167	0.0167
4.1	15	0.00000179	0.0179
4.2	15	0.00000179	0.0179
4.3	14	0.00000167	0.0167
4.4	15	0.00000179	0.0179

AFC FREQ ERROR versus TEMPERATURE

Temperature (°C)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)
-30	12	0.00000143	0.0143
-20	15	0.00000179	0.0179
-10	15	0.00000179	0.0179
± 0	15	0.00000179	0.0179
10	18	0.00000215	0.0215
20	19	0.00000227	0.0227
30	16	0.00000191	0.0191
40	13	0.00000155	0.0155
50	17	0.0000203	0.0203
60	12	0.00000143	0.0143

Result: Passed

8.2.3 Spurious emissions radiated

Description:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2009 requirements and is recognized by the FCC to be in compliance for a 3 and a 10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 848.8 MHz. This was rounded up to 12 GHz. The resolution bandwidth is set as outlined in Part 22.917. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the GSM-850 band.

The final open field emission (here 10m semi-anechoic chamber listed by FCC) test procedure is as follows:

a) The test item was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna.

b) The antenna output was terminated in a 50 ohm load (if possible).

c) A double ridged wave guide antenna was placed on an adjustable height antenna mast 3 meters from the test item for emission measurements.

d) Detected emissions were maximized at each frequency by rotating the test item and adjusting the receive antenna height and polarization. The maximum meter reading was recorded. The radiated emission measurements of the harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and 1 MHz bandwidth. If the harmonic could not be detected above the noise floor, the ambient level was recorded. The equivalent power into a dipole antenna was calculated from the field intensity levels measured at 3 meters.

e) Now each detected emissions were substituted by the substitution method, in accordance with the TIA/EIA 603.

Measurement parameters					
Detector:	Peak				
Sweep time:	2 sec.				
Video bandwidth:	Below 1 GHz: 100 kHz Above 1 GHz: 1 MHz				
Resolution bandwidth:	Below 1 GHz: 100 kHz Above 1 GHz: 1 MHz				
Span:	100 MHz Steps				
Trace-Mode:	Max Hold				

Measurement:

FCC
CFR Part 22.917 CFR Part 2.1053
Spurious Emissions Radiated
Attenuation ≥ 43 + 10log(P) (P, Power in Watts)
-13 dBm

Results:

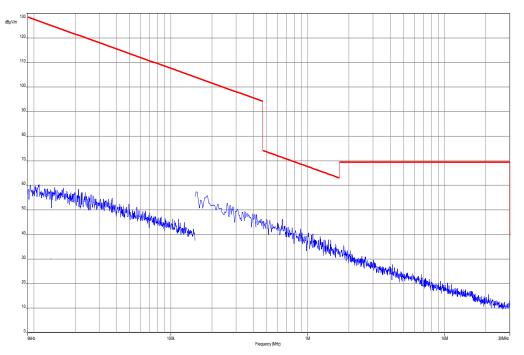
Radiated emissions measurements were made only at the upper, center, and lower carrier frequencies of the GSM-850 band (824.2 MHz, 836.4 MHz and 848.8 MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the GSM-850 band into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

The final open field radiated levels are presented on the next pages.

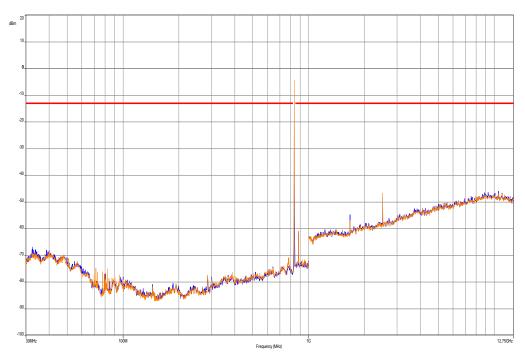
All measurements were done in horizontal and vertical polarization; the plots show the worst case.

The plots show only the middle channel. If spurious were detected, the lowest and highest channel were checked too. The found values are stated in the table below.

	Spurious Emission Level (dBm)							
Harmonic	Ch. 128 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 189 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 251 Freq. (MHz)	Level [dBm]
2	1648.4		2	1672.8		2	1697.6	
3	2472.6		3	2509.2		3	2546.4	
4	3296.8	A 11	4	3345.6	A 11	4	3395.2	A 11
5	4121.0	All detected	5	4182.0	All detected emissions	5	4244.0	All detected emissions
6	4945.2	emissions are more than 20	6	5018.4	are more than 20	6	5092.8	are more than 20
7	5769.4	dB below the limit.	7	5854.8	dB below the limit.	7	5941.6	dB below the limit.
8	6593.6		8	6691.2	the little.	8	6790.4	
9	7417.8		9	7527.6		9	7639.2	
10	8242.0		10	8364.0		10	8488.0	
	Measurement uncertainty					± 3dB		


As can be seen from this data, the emissions from the test item were within the specification limit.

Result: Passed



Plots:

Plot 2: Channel 189 (30 MHz - 12.75 GHz)

8.2.4 Spurious emissions conducted

Description:

The following steps outline the procedure used to measure the conducted emissions from the mobile station. 1. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 9 GHz, data taken from 10 MHz to 12 GHz.

2. Determine mobile station transmits frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

GSM-850 Transmitter Channel Frequency 128 824.2 MHz 189 836.4 MHz 251 848.8 MHz

Measurement:

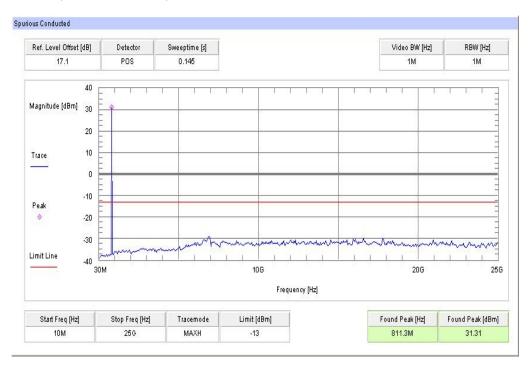
Measurement parameters				
Detector:	Peak			
Sweep time:	Auto			
Video bandwidth:	Pre-measurement with 1 MHz On spurious detection re-measurement below 1 GHz with 100 kHz Above 1 GHz with 1 MHz			
Resolution bandwidth:	Pre-measurement with 1 MHz On spurious detection re-measurement below 1 GHz with 100 kHz Above 1 GHz with 1 MHz			
Span:	30 MHz – 25 GHz			
Trace-Mode:	Max Hold			

FCC
CFR Part 22.917 CFR Part 2.1051
Spurious Emissions Conducted
Attenuation ≥ 43 + 10log(P) (P, Power in Watts)
-13 dBm

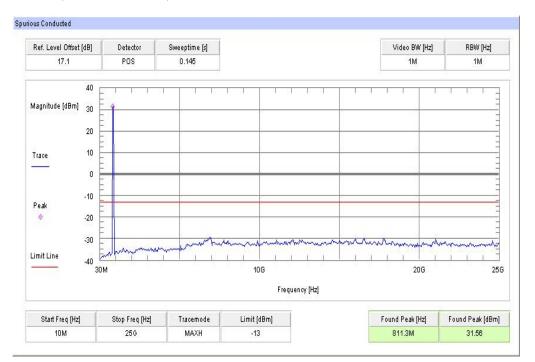
Results:

	Spurious Emission Level (dBm)							
Harmonic	Ch. 128 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 189 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 251 Freq. (MHz)	Level [dBm]
2	1648.4		2	1672.8		2	1697.6	
3	2472.6		3	2509.2		3	2546.4	
4	3296.8	No emissions detected.	4	3345.6	Na	4	3395.2	No
5	4121.0		5	4182.0		5	4244.0	
6	4945.2		6	5018.4	No emissions detected.	6	5092.8	emissions detected.
7	5769.4	delected.	7	5854.8	delected.	7	5941.6	delected.
8	6593.6		8	6691.2		8	6790.4	
9	7417.8		9	7527.6		9	7639.2	
10	8242.0		10	8364.0		10	8488.0	
	Measurement uncertainty					± 3dB		

Result: Passed



Plots:


Spurious Conducted RBW [Hz] Ref. Level Offset [dB] Video BW [Hz] Detector Sweeptime [s] 17.1 0.145 1M POS 1M 40 Magnitude [dBm] 30 20 10 Trace 0 -10 Peak 0 -20 -30 writ Limit Line 24 -40 30M 10G 20G 25G Frequency [Hz] Start Freq [Hz] Stop Freq [Hz] Tracemode Limit (dBm) Found Peak [Hz] Found Peak (dBm) 10M 25G MAXH -13 811.3M 31.56

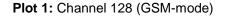
Plot 2: Channel 189 (10 MHz - 25 GHz)

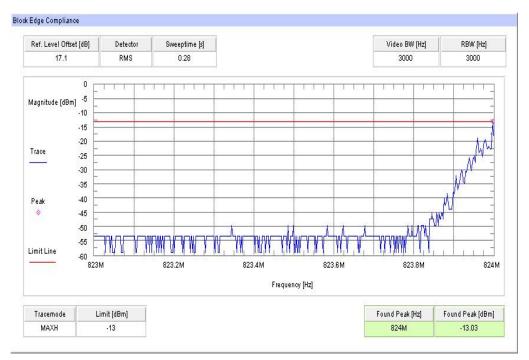
Plot 3: Channel 251 (10 MHz - 25 GHz)

8.2.5 Block edge compliance

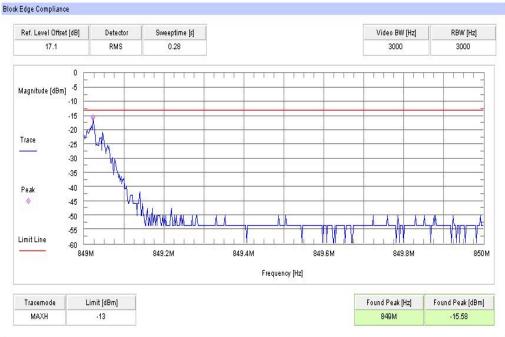
Description:

The spectrum at the band edges must comply with the spurious emissions limits.

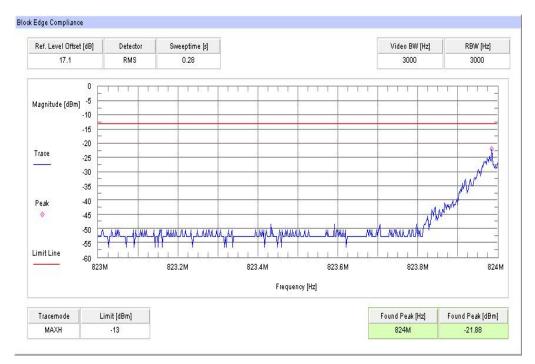

Measurement:

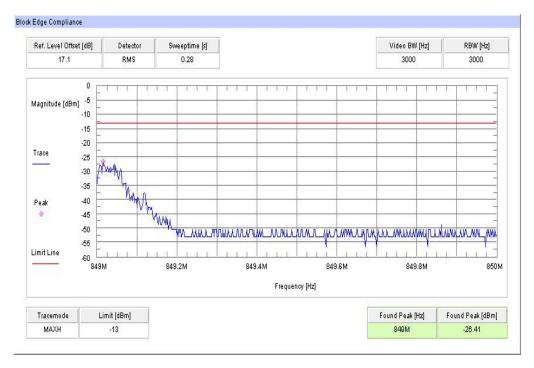

Measurement parameters				
Detector:	RMS			
Sweep time:	Auto			
Video bandwidth:	3 kHz			
Resolution bandwidth:	3 kHz			
Span:	1 MHz			
Trace-Mode:	Max Hold			

FCC
CFR Part 22.917 CFR Part 2.1051
Block Edge Compliance
Attenuation ≥ 43 + 10log(P) (P, Power in Watts)
-13 dBm



Plots:


Plot 2: Channel 251 (GSM-mode)


0.03

Plot 3: Channel 128 (EDGE-mode)

Plot 4: Channel 251 (EDGE-mode)

Result: Passed

8.2.6 Occupied bandwidth

Description:

Measurement of the occupied bandwidth of the transmitted signal.

Measurement:

Similar to conducted emissions, occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the GSM-850 frequency band. The table below lists the measured 99% power and -26dBc occupied bandwidths. Spectrum analyzer plots are included on the following pages.

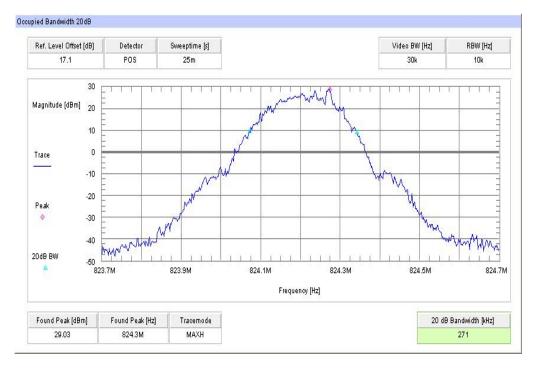
Part 22.917 requires a measurement bandwidth of at least 1% of the occupied bandwidth. For ca. 300 kHz, this equates to a resolution bandwidth of at least 3 kHz. For this testing, a resolution bandwidth 3.0 kHz was used.

Measurement parameters				
Detector:	Peak			
Sweep time:	Auto			
Video bandwidth:	30 kHz			
Resolution bandwidth:	10 kHz			
Span:	1 MHz			
Trace-Mode:	Max Hold			

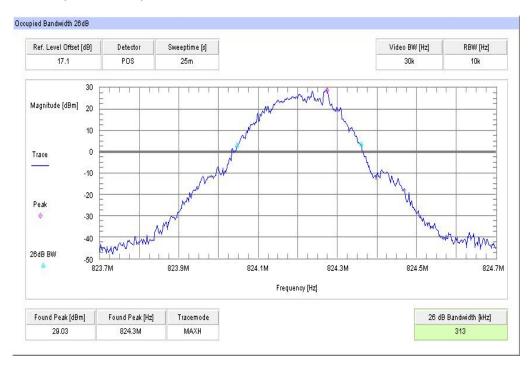
FCC
CFR Part 22.917 CFR Part 2.1049
Occupied Bandwidth
Spectrum must fall completely in the specified band

Results:

Occupied Bandwidth - GMSK mode					
Frequency (MHz)	99% OBW (kHz) -26 dBc BW (kHz)				
824.2	271 313				
836.4	261 305				
848.8	277 299				
Measurement uncertainty	± 3 kHz				


Occupied Bandwidth – 8-PSK mode				
Frequency (MHz)	99% OBW (kHz) -26 dBc BW (kHz)			
824.2	283 319			
836.4	275 313			
848.8	265 303			
Measurement uncertainty	± 3 kHz			

Result: Passed

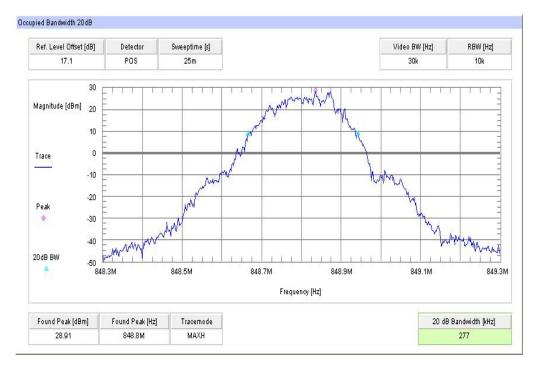


Plots:

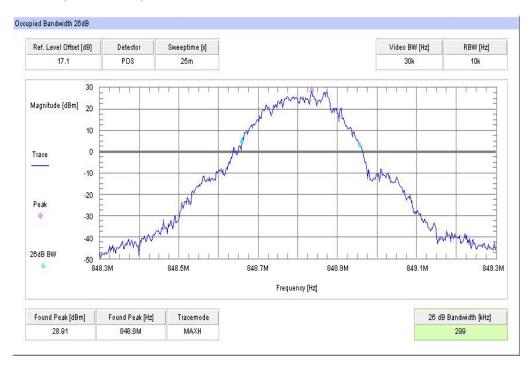
Plot 1: Channel 128 (99% - OBW)

Plot 2: Channel 128 (-26 dBc BW)

Plot 3: Channel 189 (99% - OBW)



Plot 4: Channel 189 (-26 dBc BW)

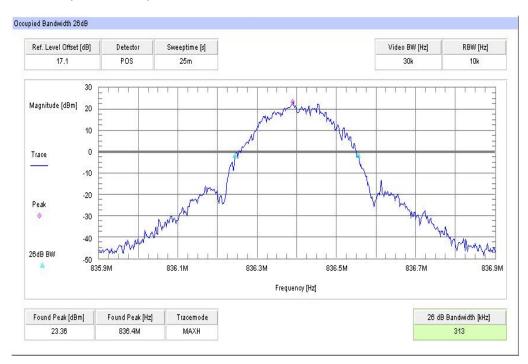


Plot 5: Channel 251 (99% - OBW)

Plot 6: Channel 251 (-26 dBc BW)

Plot 7: Channel 128 (99% - OBW) - 8-PSK

Plot 8: Channel 128 (-26 dBc BW) - 8-PSK



Plot 9: Channel 189 (99% - OBW) - 8-PSK

Plot 10: Channel 189 (-26 dBc BW) - 8-PSK

Plot 11: Channel 251 (99% - OBW) - 8-PSK

Plot 12: Channel 251 (-26 dBc BW) - 8-PSK

8.3 Results PCS 1900

All GSM-band measurements are done in GSM mode only (circuit switched).

All relevant tests have been repeated using 8-PSK modulation if EDGE mode is supported. All tests were performed with one timeslot in uplink activated and one timeslot in downlink activated. For each mode the highest output power was determined and used.

8.3.1 RF output power

Description:

This paragraph contains average power, peak output power and EIRP measurements for the mobile station. In all cases, the peak output power is within the required mask (this mask is specified in the JTC standards, TIA PN3389 Vol. 1 Chap 7, and is no FCC requirement).

Measurement:

The mobile was set up for the maximum output power with pseudo random data modulation.

Measurement parameters			
Detector: Peak and RMS (Power in Burst)			
Sweep time:	Auto		
Video bandwidth:	1 MHz		
Resolution bandwidth: 1 MHz			
Span: Zero Span			
Trace-Mode:	Max Hold		

FCC
CFR Part 24.232 CFR Part 2.1046
Nominal Peak Output Power
+33.00 dBm In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

Results:

Output Power (conducted) GMSK mode				
Frequency (MHz)	Average Output Power (dBm) Peak to Average Ratio (dB)			
1850.2	29.5 0.1			
1880.0	29.7 0.2			
1909.8	29.6 0.2			
Measurement uncertainty	± 0.5 dB			

Output Power (conducted) 8-PSK mode					
Frequency (MHz)	Average Output Power (dBm) Peak to Average Ratio (dB)				
1850.2	25.7 3.4				
1880.0	25.8 3.5				
1909.8	26.0 3.3				
Measurement uncertainty	± 0.5 dB				

Output Power (radiated) GMSK mode		
Frequency (MHz) Average Output Power (dBm) - EIRP		
1850.2	32.7	
1880.0	32.3	
1909.8	32.8	
Measurement uncertainty	± 2.0 dB	

Output Power (radiated) 8-PSK mode		
Frequency (MHz) Average Output Power (dBm) - EIRP		
1850.2	29.0	
1880.0	28.6	
1909.8	29.4	
Measurement uncertainty	± 2.0 dB	

Result: Passed

8.3.2 Frequency stability

Description:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the mobile station in a "call mode". This is accomplished with the use of a R&S CMU200 DIGITAL RADIOCOMMUNICATION TESTER.

1. Measure the carrier frequency at room temperature.

2. Subject the mobile station to overnight soak at -30 C.

3. With the mobile station, powered with V_{nom} , connected to the CMU200 and in a simulated call on channel 661 (centre channel), measure the carrier frequency. These measurements should be made within two minutes of powering up the mobile station, to prevent significant self warming.

4. Repeat the above measurements at 10°C increments from -30°C to +60°C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements.

5. Remeasure carrier frequency at room temperature with V_{nom} . Vary supply voltage from V_{min} to V_{max} , in 0.1 Volt steps remeasuring carrier frequency at each voltage. Pause at V_{nom} for 1.5 hours unpowered, to allow any self heating to stabilize, before continuing.

6. At all temperature levels hold the temperature to +/- 0.5°C during the measurement procedure.

Measurement:

Measurement parameters				
Detector:				
Sweep time:				
Video bandwidth:	Measured with CMU200			
Resolution bandwidth:	Measured with CM0200			
Span:				
Trace-Mode:				

FCC	
CFR Part 24.235 CFR Part 2.1055	
Frequency Stability	
The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.	

Results:

AFC FREQ ERROR versus VOLTAGE

Voltage (V)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)
3.3	54	0.0000646	0.0646
3.4	56	0.0000670	0.0670
3.5	49	0.0000586	0.0586
3.6	54	0.0000646	0.0646
3.7	53	0.0000634	0.0634
3.8	46	0.00000550	0.0550
3.9	52	0.0000622	0.0622
4.0	48	0.00000574	0.0574
4.1	52	0.0000622	0.0622
4.2	48	0.00000574	0.0574
4.3	44	0.00000526	0.0526
4.4	49	0.00000586	0.0586

AFC FREQ ERROR versus TEMPERATURE

Temperature (°C)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)
-30	51	0.0000610	0.0610
-20	50	0.0000598	0.0598
-10	54	0.0000646	0.0646
± 0	54	0.0000646	0.0646
10	55	0.0000658	0.0658
20	56	0.0000670	0.0670
30	57	0.0000681	0.0681
40	53	0.0000634	0.0634
50	52	0.0000622	0.0622
60	52	0.00000622	0.0622

<u>Result:</u> Passed

8.3.3 Spurious emissions radiated

Description:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2009 requirements and is recognized by the FCC to be in compliance for a 3 and a 10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 1910 MHz. This was rounded up to 20 GHz. The resolution bandwidth is set as outlined in Part 24.238. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the PCS1900 band.

The final open field emission (here 10m semi-anechoic chamber listed by FCC) test procedure is as follows:

a) The test item was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna.

b) The antenna output was terminated in a 50 ohm load (if possible).

c) A double ridged wave guide antenna was placed on an adjustable height antenna mast 3 meters from the test item for emission measurements.

d) Detected emissions were maximized at each frequency by rotating the test item and adjusting the receive antenna height and polarization. The maximum meter reading was recorded. The radiated emission measurements of the harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and 1 MHz bandwidth. If the harmonic could not be detected above the noise floor, the ambient level was recorded. The equivalent power into a dipole antenna was calculated from the field intensity levels measured at 3 meters.

e) Now each detected emissions were substituted by the substitution method, in accordance with the TIA/EIA 603.

Measurement parameters	
Detector:	Peak
Sweep time:	2 sec.
Video bandwidth:	Below 1 GHz: 100 kHz Above 1 GHz: 1 MHz
Resolution bandwidth:	Below 1 GHz: 100 kHz Above 1 GHz: 1 MHz
Span:	100 MHz Steps
Trace-Mode:	Max Hold

Measurement:

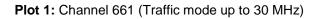
FCC	
CFR Part 24.238 CFR Part 2.1053	
Spurious Emissions Radiated	
Attenuation ≥ 43 + 10log(P) (P, Power in Watts)	
-13 dBm	

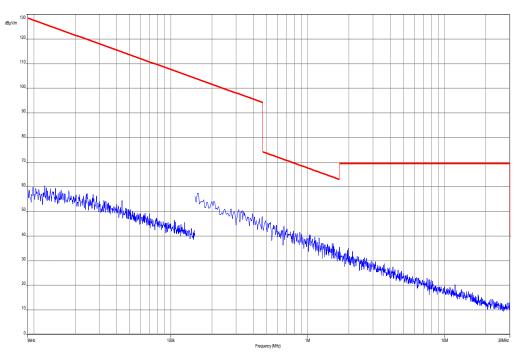
Results:

Radiated emissions measurements were made only at the upper, center, and lower carrier frequencies of the PCS1900 band (1850.2 MHz, 1880.0 MHz and 1909.8 MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the PCS1900 band into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

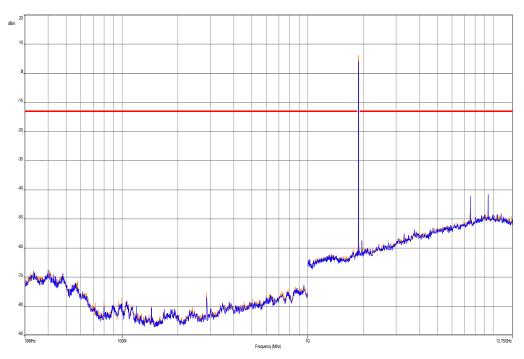
The final open field radiated levels are presented on the next pages.

All measurements were done in horizontal and vertical polarization; the plots show the worst case.

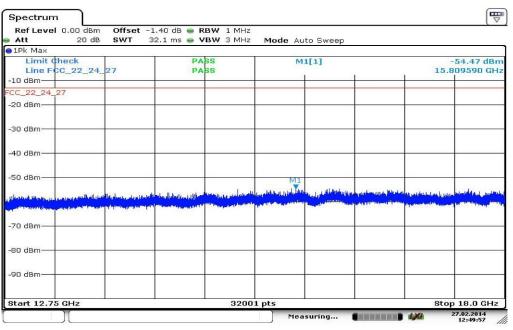

The plots show only the middle channel. If spurious were detected, the lowest and highest channel were checked too. The found values are stated in the table below.


	Spurious Emission Level (dBm)							
Harmonic	Ch. 512 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 661 Freq. (MH		Harmonic	Ch. 810 Freq. (MHz)	Level [dBm]
2	3700.4		2	3760.0)	2	3819.6	
3	5550.6		3	5640.0)	3	5729.4	
4	7400.8	All detected emissions are more than 20 dB below the limit.	4	7520.0		4	7639.2	
5	9251.0		5	9400.0	40.00.04	5	9549.0	All detected
6	11101.2		6	11280.	emissions are more than 20	6	11458.8	emissions are more than 20
7	12951.4		7	13160.		7	13368.6	dB below the limit.
8	14801.6		8	15040.		8	15278.4	
9	16651.8		9	16920.	0	9	17188.2	
10	18502.0		10	18800.	0	10	19098.0	
	Measurement uncertainty					± 3dB		

As can be seen from this data, the emissions from the test item were within the specification limit.



Plots:


Plot 2: Channel 661 (30 MHz - 12.75 GHz)

Carrier notched with 1.9 GHz rejection filter

Plot 3: Channel 661 (12.75 GHz - 18 GHz)

Date: 27.FEB.2014 12:49:57

Plot 4: Channel 661 (18 GHz - 26 GHz)

Att 20 dB SW1	et 4.00 dB 👄 RBW 1 MHz 32.1 ms 👄 VBW 3 MHz	Mode Auto Sweep		
●1Pk Max				
Limit Check Line FCC_22_24_27 -10 dBm	PASS PASS	M1[1]		-48.78 dBr 19.933060 GH
CC 22 24 27				
-20 dBm				
-30 dBm				
-40 dBm				
Sold Broden, classic discussed by		und autobally service and the second second	and alled as our source attractions for an an advance. The	al internate induces them, making
with and provide the second provide the second providence of	A state of the second strength and the second state of the second	In the second	Contract de la contraction provint la contraction de	
-60 dBm				
-70 dBm				
-80 dBm				
-90 dBm				
			1 1	

Date: 27.FEB.2014 12:51:12

8.3.4 Spurious emissions conducted

Description:

The following steps outline the procedure used to measure the conducted emissions from the mobile station. 1. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 19.1 GHz, data taken from 10 MHz to 20 GHz.

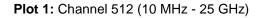
2. Determine mobile station transmits frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

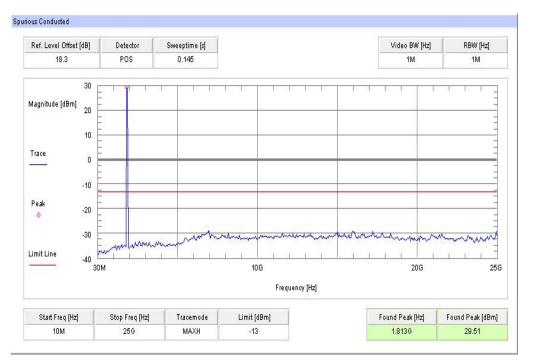
PCS1900 Transmitter Channel Frequency 512 1850.2 MHz 661 1880.0 MHz 810 1909.8 MHz

Measurement:

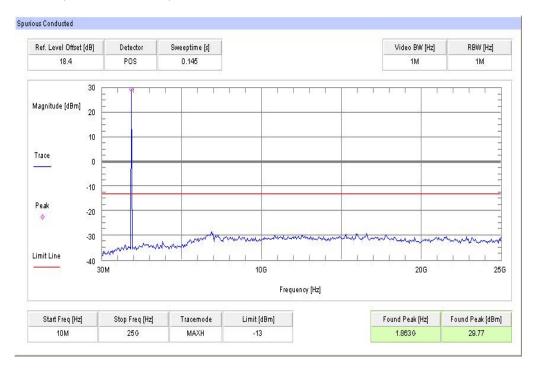
Measurement parameters			
Detector:	Peak		
Sweep time:	Auto		
Video bandwidth:	Pre-measurement with 1 MHz On spurious detection re-measurement below 1 GHz with 100 kHz Above 1 GHz with 1 MHz		
Resolution bandwidth:	Pre-measurement with 1 MHz On spurious detection re-measurement below 1 GHz with 100 kHz Above 1 GHz with 1 MHz		
Span:	30 MHz – 25 GHz		
Trace-Mode:	Max Hold		

FCC	
CFR Part 24.238 CFR Part 2.1051	
Spurious Emissions Conducted	
Attenuation ≥ 43 + 10log(P) (P, Power in Watts)	
-13 dBm	

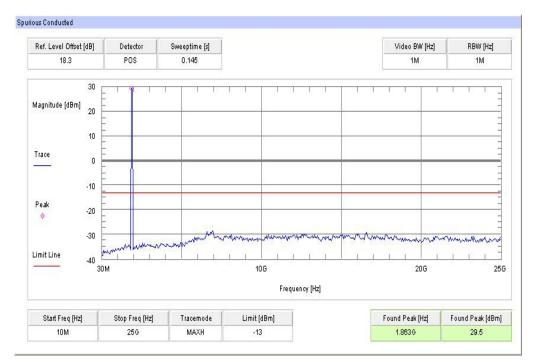



Results:

Spurious Emission Level (dBm)								
Harmonic	Ch. 512 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 661 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 810 Freq. (MHz)	Level [dBm]
2	3700.4		2	3760.0		2	3819.6	
3	5550.6		3	5640.0		3	5729.4	
4	7400.8	No emissions detected.	4	7520.0		4	7639.2	
5	9251.0		5	9400.0	- No	5	9549.0	No
6	11101.2		6	11280.0	emissions detected.	6	11458.8	emissions detected.
7	12951.4		7	13160.0	delected.	7	13368.6	delected.
8	14801.6		8	15040.0		8	15278.4	
9	16651.8		9	16920.0		9	17188.2	
10	18502.0		10	18800.0		10	19098.0	
	Measurement uncertainty					± 3dB		



Plots:



Plot 2: Channel 661 (10 MHz - 25 GHz)

Plot 3: Channel 810 (10 MHz - 25 GHz)

8.3.5 Block edge compliance

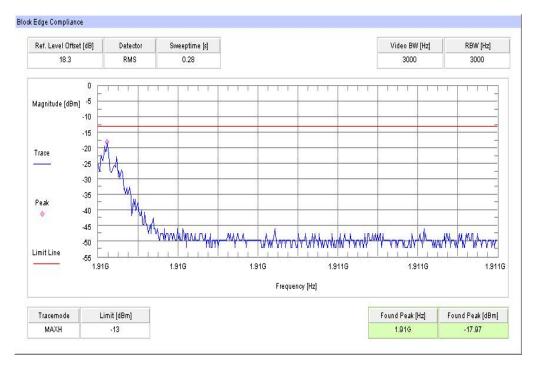
Description:

The spectrum at the band edges must comply with the spurious emissions limits.

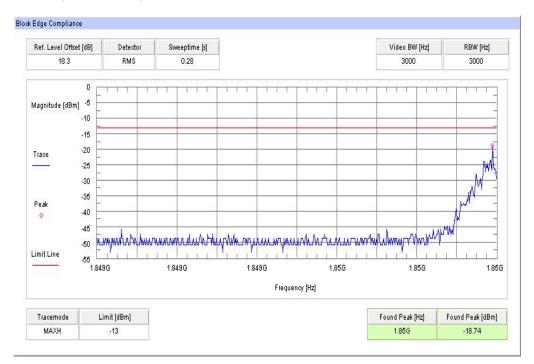
Measurement:

Measurement parameters			
Detector:	RMS		
Sweep time:	Auto		
Video bandwidth:	3 kHz		
Resolution bandwidth:	3 kHz		
Span:	1 MHz		
Trace-Mode:	Max Hold		

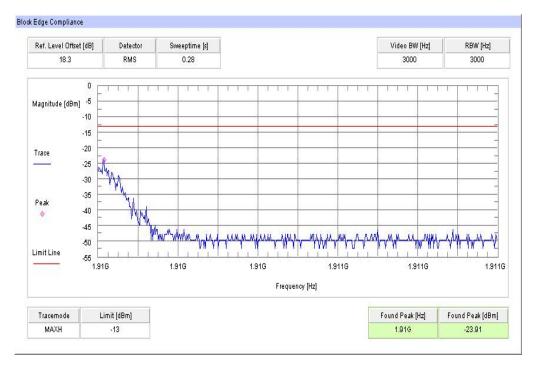
FCC
CFR Part 24.238 CFR Part 2.1051
Block Edge Compliance
Attenuation ≥ 43 + 10log(P) (P, Power in Watts)
-13 dBm



Plots:



Plot 2: Channel 810 (GSM-mode)



Plot 3: Channel 512 (EDGE-mode)

Plot 4: Channel 810 (EDGE-mode)

8.3.6 Occupied bandwidth

Description:

Measurement of the occupied bandwidth of the transmitted signal.

Measurement:

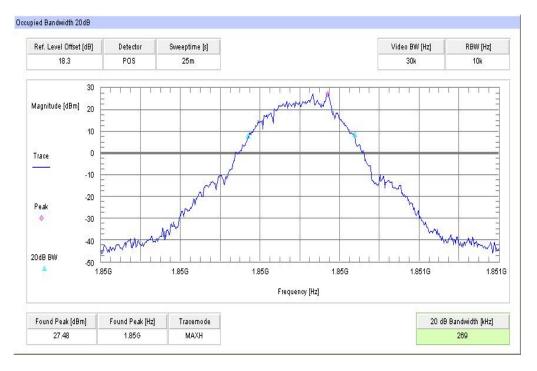
Similar to conducted emissions, occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the PCS1900 frequency band. The table below lists the measured 99% power and -26dBc occupied bandwidths. Spectrum analyzer plots are included on the following pages.

Part 24.238 requires a measurement bandwidth of at least 1% of the occupied bandwidth. For ca. 300 kHz, this equates to a resolution bandwidth of at least 3.0 kHz. For this testing, a resolution bandwidth 3.0 kHz was used.

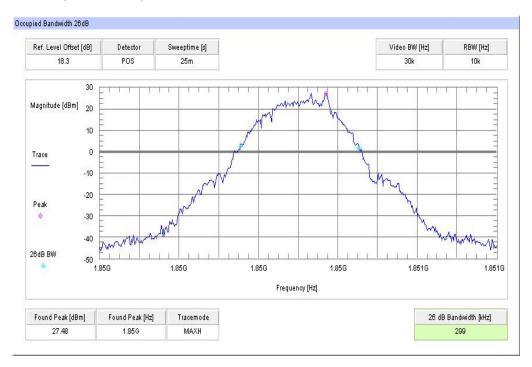
Measurement parameters			
Detector:	Peak		
Sweep time:	Auto		
Video bandwidth:	30 kHz		
Resolution bandwidth:	10 kHz		
Span:	1 MHz		
Trace-Mode:	Max Hold		

FCC
CFR Part 24.238 CFR Part 2.1049
Occupied Bandwidth
Spectrum must fall completely in the specified band

Results:

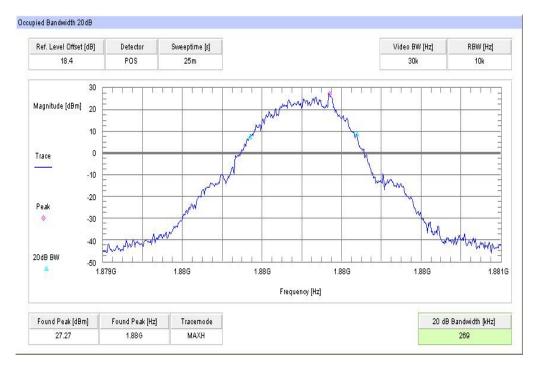

Occupied Bandwidth - GMSK mode					
Frequency (MHz)	99% OBW (kHz)	-26 dBc BW (kHz)			
1850.2	269	299			
1880.0	269	307			
1909.8	273	303			
Measurement uncertainty	± 3	kHz			

Occupied Bandwidth - EDGE mode					
Frequency (MHz)	99% OBW (kHz)	-26 dBc BW (kHz)			
1850.2	271	303			
1880.0	285	309			
1909.8	275	307			
Measurement uncertainty	± 3	kHz			

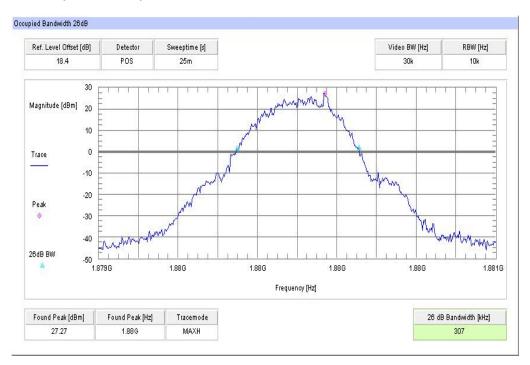


Plots:

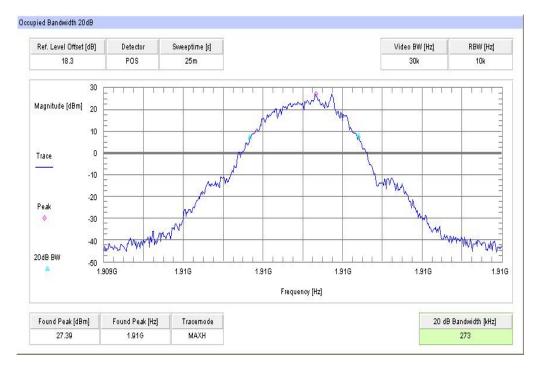
Plot 1: Channel 512 (99% - OBW)



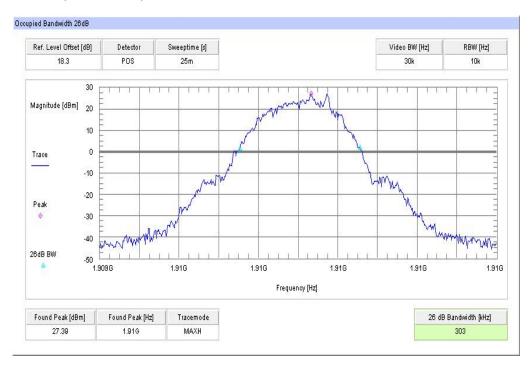
Plot 2: Channel 512 (-26 dBc BW)



Plot 3: Channel 661 (99% - OBW)

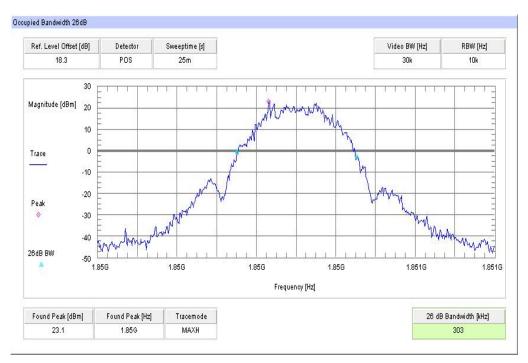


Plot 4: Channel 661 (-26 dBc BW)



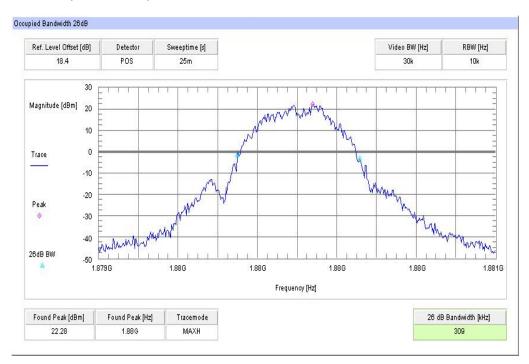
Plot 5: Channel 810 (99% - OBW)

Plot 6: Channel 810 (-26 dBc BW)



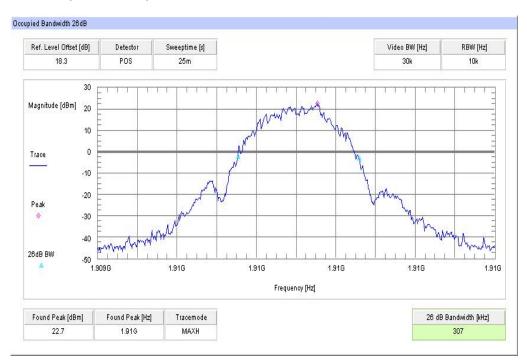
Plot 7: Channel 512 (99% - OBW) - EDGE

Plot 8: Channel 512 (-26 dBc BW) - EDGE



Plot 9: Channel 661 (99% - OBW) - EDGE

Plot 10: Channel 661 (-26 dBc BW) - EDGE



Plot 11: Channel 810 (99% - OBW) - EDGE

Plot 12: Channel 810 (-26 dBc BW) - EDGE

8.4 Results UMTS band II

All UMTS-band measurements are done in WCDMA mode only. The connection was established with the following setup: WCDMA CS-RMC, Max Power (All Bit up)

8.4.1 RF output power

Description:

This paragraph contains average power, peak output power and EIRP measurements for the mobile station. In all cases, the peak output power is within the required mask (this mask is specified in the JTC standards, TIA PN3389 Vol. 1 Chap 7, and is no FCC requirement).

Measurement:

The mobile was set up for the maximum output power with pseudo random data modulation.

To determine the Peak-To-Average Power Ratio (PAPR) the measurement was performed with the Power Complementary Cumulative Distribution Function (CCDF).

Measurement parameters			
Detector:	Peak and RMS (Power in Burst)		
Sweep time:	Auto		
Video bandwidth:	10 MHz		
Resolution bandwidth:	10 MHz		
Span:	Zero Span		
Trace-Mode:	Max Hold		

FCC
CFR Part 24.232 CFR Part 2.1046
Nominal Peak Output Power
+33.00 dBm In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

Results:

Output Power (conducted) WCDMA mode							
Frequency (MHz)	Average Output Power (dBm) Peak to Average Ratio (dB)						
1852.4	22.4	3.4					
1880.0	22.8	3.2					
1907.6	22.6 3.2						
Measurement uncertainty	± 0.5 dB						

Output Power (radiated) WCDMA mode				
Frequency (MHz)	Average Output Power (dBm) - EIRP			
1852.4	25.7			
1880.0	25.6			
1907.6	26.0			
Measurement uncertainty	± 2.0 dB			

8.4.2 Frequency stability

Description:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the mobile station in a "call mode". This is accomplished with the use of a R&S CMU200 DIGITAL RADIOCOMMUNICATION TESTER.

1. Measure the carrier frequency at room temperature.

2. Subject the mobile station to overnight soak at -30 C.

3. With the mobile station, powered with V_{nom} , connected to the CMU200 and in a simulated call on channel 9400 (centre channel), measure the carrier frequency. These measurements should be made within two minutes of powering up the mobile station, to prevent significant self warming.

4. Repeat the above measurements at 10°C increments from -30°C to +60°C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements.

5. Remeasure carrier frequency at room temperature with V_{nom} . Vary supply voltage from V_{min} to V_{max} , in 0.1 Volt steps remeasuring carrier frequency at each voltage. Pause at V_{nom} for 1.5 hours unpowered, to allow any self heating to stabilize, before continuing.

6. At all temperature levels hold the temperature to +/- 0.5°C during the measurement procedure.

Measurement:

Measurement parameters				
Detector:				
Sweep time:				
Video bandwidth:	Measured with CMU200			
Resolution bandwidth:	Measured with CM0200			
Span:				
Trace-Mode:				

FCC
CFR Part 24.235 CFR Part 2.1055
Frequency Stability
The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

Results:

AFC FREQ ERROR versus VOLTAGE

Voltage (V)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)
3.3	4	0.0000021	0.0021
3.4	7	0.0000037	0.0037
3.5	7	0.0000037	0.0037
3.6	6	0.0000032	0.0032
3.7	7	0.0000037	0.0037
3.8	5	0.0000027	0.0027
3.9	6	0.0000032	0.0032
4.0	5	0.0000027	0.0027
4.1	7	0.0000037	0.0037
4.2	4	0.0000021	0.0021
4.3	5	0.0000027	0.0027
4.4	3	0.00000016	0.0016

AFC FREQ ERROR versus TEMPERATURE

Temperature (°C)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)
-30	-2	-0.00000011	-0.0011
-20	3	0.0000016	0.0016
-10	7	0.0000037	0.0037
± 0	9	0.0000048	0.0048
10	11	0.0000059	0.0059
20	4	0.0000021	0.0021
30	-2	-0.00000011	-0.0011
40	-3	-0.00000016	-0.0016
50	2	0.0000011	0.0011
60	4	0.00000021	0.0021

8.4.3 Spurious emissions radiated

Description:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2009 requirements and is recognized by the FCC to be in compliance for a 3 and a 10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 1910 MHz. This was rounded up to 20 GHz. The resolution bandwidth is set as outlined in Part 24.238. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the UMTS band II.

The final open field emission (here 10m semi-anechoic chamber listed by FCC) test procedure is as follows:

a) The test item was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna.

b) The antenna output was terminated in a 50 ohm load (if possible).

c) A double ridged wave guide antenna was placed on an adjustable height antenna mast 3 meters from the test item for emission measurements.

d) Detected emissions were maximized at each frequency by rotating the test item and adjusting the receive antenna height and polarization. The maximum meter reading was recorded. The radiated emission measurements of the harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and 1 MHz bandwidth. If the harmonic could not be detected above the noise floor, the ambient level was recorded. The equivalent power into a dipole antenna was calculated from the field intensity levels measured at 3 meters.

e) Now each detected emissions were substituted by the substitution method, in accordance with the TIA/EIA 603.

Measurement parameters				
Detector:	Peak			
Sweep time:	2 sec.			
Video bandwidth:	Below 1 GHz: 100 kHz Above 1 GHz: 1 MHz			
Resolution bandwidth:	Below 1 GHz: 100 kHz Above 1 GHz: 1 MHz			
Span:	100 MHz Steps			
Trace-Mode:	Max Hold			

Measurement:

FCC
CFR Part 24.238 CFR Part 2.1053
Spurious Emissions Radiated
Attenuation ≥ 43 + 10log(P) (P, Power in Watts)
-13 dBm

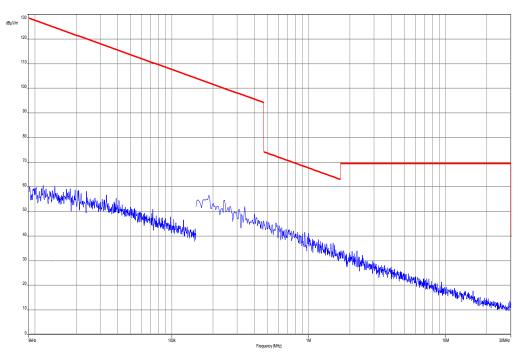
Results:

Radiated emissions measurements were made only at the upper, center, and lower carrier frequencies of the UMTS band II (1852.4 MHz, 1880.0 MHz and 1907.6 MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the UMTS band II into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

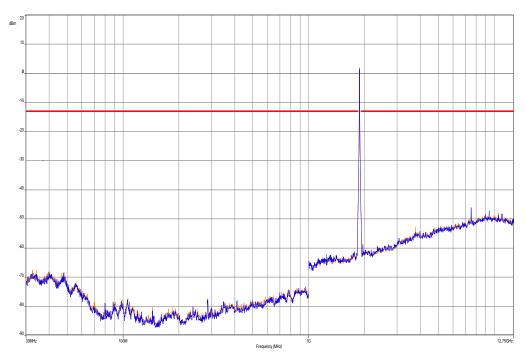
The final open field radiated levels are presented on the next pages.

All measurements were done in horizontal and vertical polarization; the plots show the worst case.

The plots show only the middle channel. If spurious were detected, the lowest and highest channel were checked too. The found values are stated in the table below.

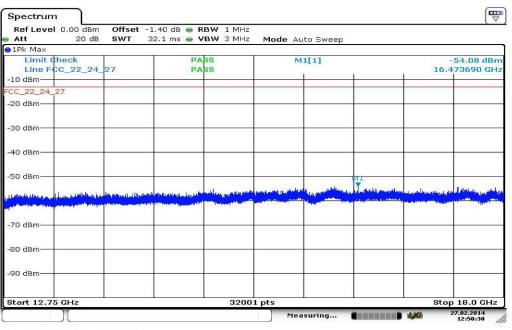

	Spurious Emission Level (dBm)								
Harmonic	Ch. 9262 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 940 Freq. (MH		Level [dBm]	Harmonic	Ch. 9538 Freq. (MHz)	Level [dBm]
2	3704.8		2	3760.0	0		2	3815.2	
3	5557.2		3	5640.0	0		3	5722.8	
4	7409.6	A 11	4	7520.0	0		4	7630.4	A 11
5	9262.0	All detected emissions are more than 20 db below the limit.	5	9400.0		All detected emissions	5	9538.0	All detected emissions
6	11114.4		6	11280.	.0 a	are more han 20 db	6	11445.6	are more than 20 db
7	12966.8		7	13160.		below the limit.	7	13353.2	below the limit.
8	14819.2		8	15040.	.0	IIITIIL.	8	15260.8	mint.
9	16671.6		9 16920.0 9	9	17168.4				
10	18524.0		10	18800.	.0		10	19076.0	
	Measurement uncertainty						± 3dB		

As can be seen from this data, the emissions from the test item were within the specification limit.

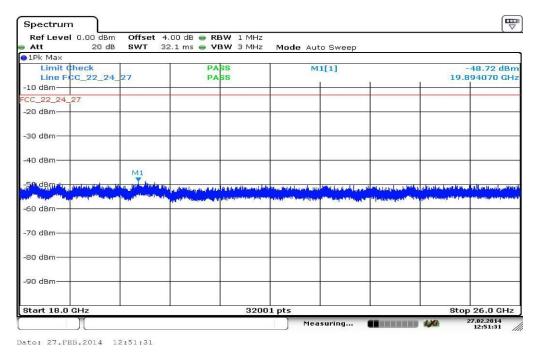


Plots:

Plot 1: Channel 9400 (Traffic mode up to 30 MHz)


Plot 2: Channel 9400 (30 MHz - 12.75 GHz)

Carrier notched with 1.9 GHz rejection filter



Plot 3: Channel 9400 (12.75 GHz - 18 GHz)

Date: 27.FEB.2014 12:50:30

Plot 4: Channel 9400 (18 GHz - 26 GHz)

8.4.4 Spurious emissions conducted

Description:

The following steps outline the procedure used to measure the conducted emissions from the mobile station. 1. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 19.1 GHz, data taken from 10 MHz to 20 GHz.

2. Determine mobile station transmits frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

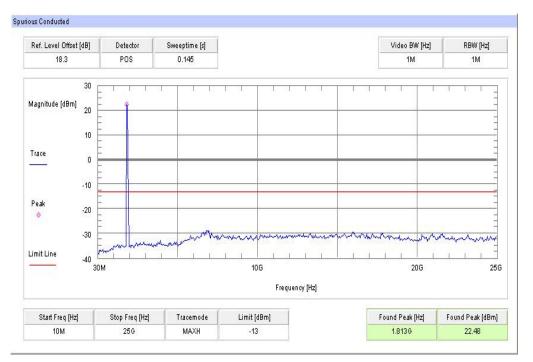
UMTS band II Transmitter Channel Frequency 9262 1852.4 MHz 9400 1880.0 MHz 9538 1907.6 MHz

Measurement:

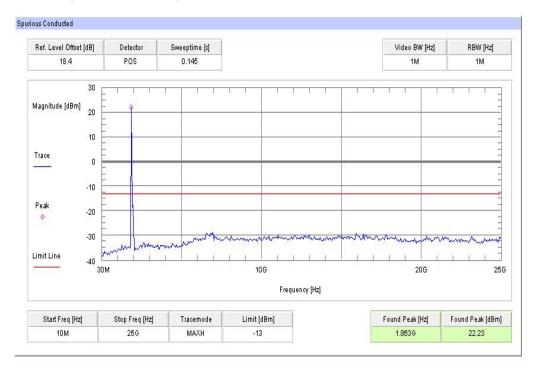
Measurement parameters				
Detector:	Peak			
Sweep time:	Auto			
Video bandwidth:	Pre-measurement with 1 MHz On spurious detection re-measurement below 1 GHz with 100 kHz Above 1 GHz with 1 MHz			
Resolution bandwidth:	Pre-measurement with 1 MHz On spurious detection re-measurement below 1 GHz with 100 kHz Above 1 GHz with 1 MHz			
Span:	30 MHz – 25 GHz			
Trace-Mode:	Max Hold			

FCC	
CFR Part 24.238 CFR Part 2.1051	
Spurious Emissions Conducted	
Attenuation ≥ 43 + 10log(P) (P, Power in Watts)	
-13 dBm	

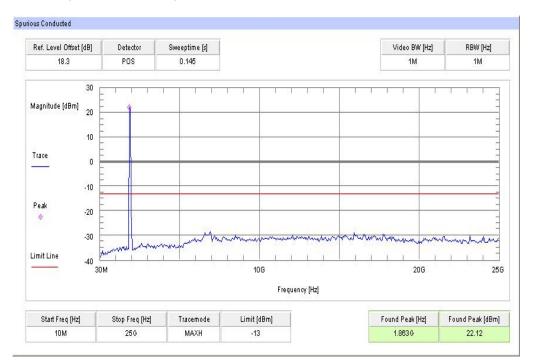



Results:

Spurious Emission Level (dBm)								
Harmonic	Ch. 9262 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 9400 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 9538 Freq. (MHz)	Level [dBm]
2	3704.8	No emissions detected.	2	3760.0	No emissions detected.	2	3815.2	No emissions detected.
3	5557.2		3	5640.0		3	5722.8	
4	7409.6		4	7520.0		4	7630.4	
5	9262.0		5	9400.0		5	9538.0	
6	11114.4		6	11280.0		6	11445.6	
7	12966.8		7	13160.0		7	13353.2	
8	14819.2		8	15040.0		8	15260.8	
9	16671.6		9	16920.0		9	17168.4	
10	18524.0		10	18800.0		10	19076.0	
	Measurement uncertainty				± 3dB			



Plots:



Plot 2: Channel 9400 (10 MHz - 25 GHz)

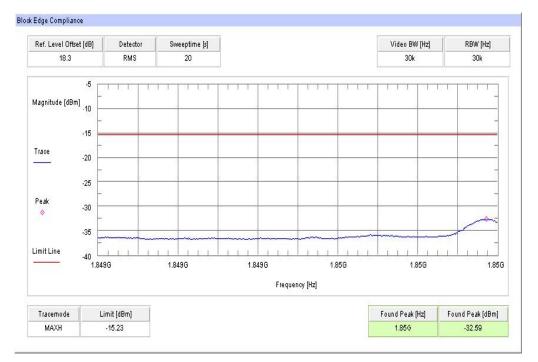
Plot 3: Channel 9538 (10 MHz - 25 GHz)

8.4.5 Block edge compliance

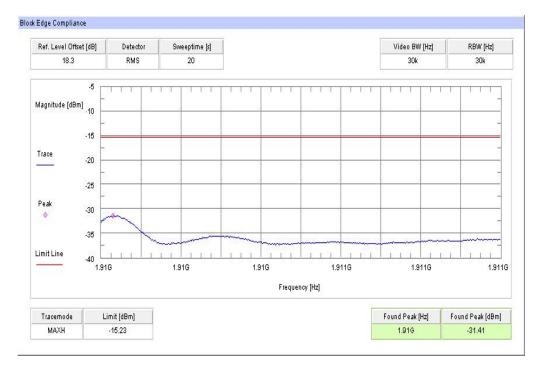
Description:

The spectrum at the band edges must comply with the spurious emissions limits.

Measurement:


Measurement parameters				
Detector:	RMS			
Sweep time:	20 sec.			
Video bandwidth:	30 kHz			
Resolution bandwidth:	30 kHz			
Span:	1 MHz			
Trace-Mode:	Max Hold			

FCC
CFR Part 24.238 CFR Part 2.1051
Block Edge Compliance
Part 24.238 specifies that "the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB."
However, in publication number 890810, The FCC Office of Engineering and Technology specified the following correction to the limits when a resolution bandwidth smaller than 1% of the emission bandwidth is used:
"An alternative is to add an additional correction factor of 10 Log (RBW1/ RBW2) to the 43 +10 Log (P) limit. RBW1 is the narrower measurement resolution bandwidth and RBW2 is either the 1% emissions bandwidth or 1 MHz."
When using a 30 kHz bandwidth, this yields a -2.2185 adjustment to the limit [10log(30kHz/50kHz) = -2.2185]. When this adjustment is applied to the limit, the limit becomes -15.2185.
-15.22 dBm



Plots:

Plot 1: Channel 9262

Plot 2: Channel 9538

8.4.6 Occupied bandwidth

Description:

Measurement of the occupied bandwidth of the transmitted signal.

Measurement:

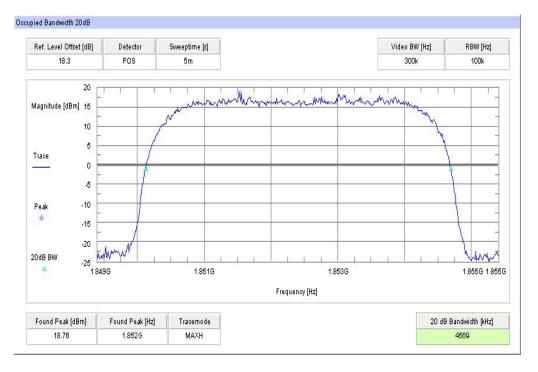
Similar to conducted emissions, occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the UMTS band II frequency band. The table below lists the measured 99% power and -26dBc occupied bandwidths. Spectrum analyzer plots are included on the following pages.

Part 24.238 requires a measurement bandwidth of at least 1% of the occupied bandwidth. For ca. 4700 kHz, this equates to a resolution bandwidth of at least 50 kHz. For this testing, a resolution bandwidth 100 kHz was used.

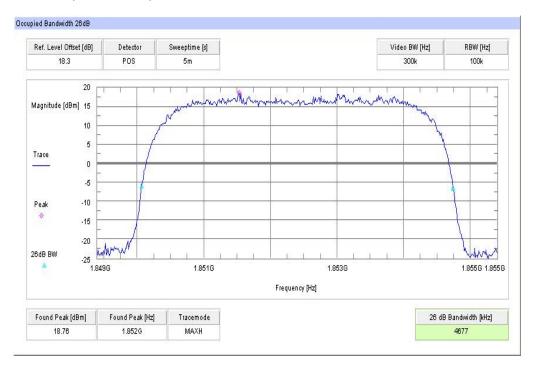
Measurement parameters				
Detector:	Peak			
Sweep time:	Auto			
Video bandwidth:	300 kHz			
Resolution bandwidth:	100 kHz			
Span:	6 MHz			
Trace-Mode:	Max Hold			

Limits:

FCC		
CFR Part 24.238		
CFR Part 2.1049		
Occupied Bandwidth		
Spectrum must fall completely in the specified band		

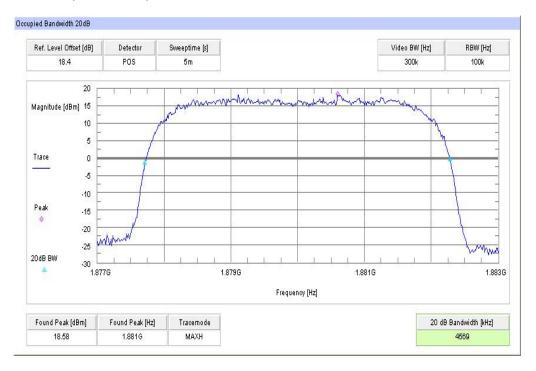

Results:

Occupied Bandwidth						
Frequency (MHz)	99% OBW (kHz)	-26 dBc BW (kHz)				
1852.4	4569	4677				
1880.0	4569	4677				
1907.6	4581	4677				
Measurement uncertainty	± 100 kHz					

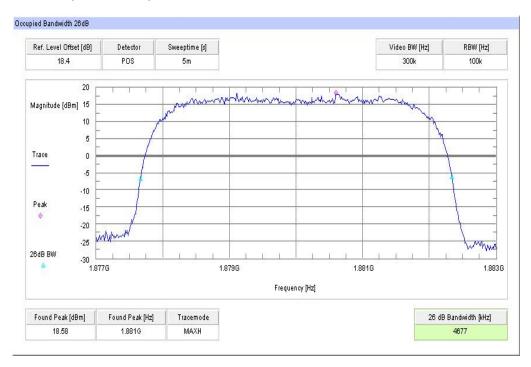


Plots:

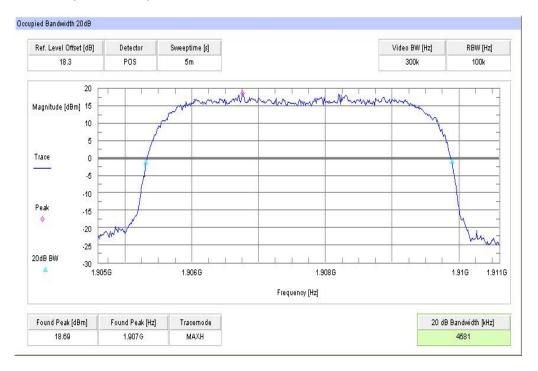
Plot 1: Channel 9262 (99% - OBW)



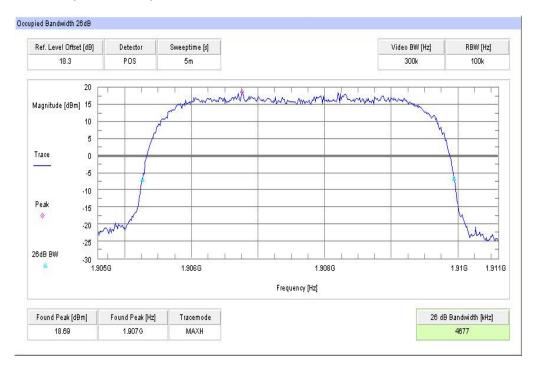
Plot 2: Channel 9262 (-26 dBc BW)



Plot 3: Channel 9400 (99% - OBW)



Plot 4: Channel 9400 (-26 dBc BW)



Plot 5: Channel 9538 (99% - OBW)

Plot 6: Channel 9538 (-26 dBc BW)

8.5 Results UMTS band V

All UMTS-band measurements are done in WCDMA mode only. The connection was established with the following setup: WCDMA CS-RMC, Max Power (All Bit up)

8.5.1 RF output power

Description:

This paragraph contains average power, peak output power and ERP measurements for the mobile station. In all cases, the peak output power is within the required mask (this mask is specified in the JTC standards, TIA PN3389 Vol. 1 Chap 7, and is no FCC requirement).

Measurement:

The mobile was set up for the maximum output power with pseudo random data modulation.

To determine the Peak-To-Average Power Ratio (PAPR) the measurement was performed with the Power Complementary Cumulative Distribution Function (CCDF).

Measurement parameters			
Detector:	Peak and RMS (Power in Burst)		
Sweep time:	Auto		
Video bandwidth:	10 MHz		
Resolution bandwidth:	10 MHz		
Span:	Zero Span		
Trace-Mode:	Max Hold		

FCC				
CFR Part 22.913 CFR Part 2.1046				
Nominal Peak Output Power				
+38.45 dBm In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.				

Results:

Output Power (conducted) WCDMA mode					
Frequency (MHz)	Average Output Power (dBm) Peak to Average Ratio (dB)				
826.4	23.0	2.7			
836.0	22.9	3.1			
846.6	23.1 3.5				
Measurement uncertainty	± 0.5 dB				

Output Power (radiated) WCDMA mode				
Frequency (MHz) Average Output Power (dBm) - ERP				
826.4	19.7			
836.0	22.0			
846.6	23.5			
Measurement uncertainty	± 2.0 dB			

8.5.2 Frequency stability

Description:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the mobile station in a "call mode". This is accomplished with the use of a R&S CMU200 DIGITAL RADIOCOMMUNICATION TESTER.

1. Measure the carrier frequency at room temperature.

2. Subject the mobile station to overnight soak at -30 C.

3. With the mobile station, powered with V_{nom} , connected to the CMU200 and in a simulated call on channel 4180 (centre channel), measure the carrier frequency. These measurements should be made within two minutes of powering up the mobile station, to prevent significant self warming.

4. Repeat the above measurements at 10°C increments from -30°C to +60°C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements.

5. Remeasure carrier frequency at room temperature with V_{nom} . Vary supply voltage from V_{min} to V_{max} , in 0.1 Volt steps remeasuring carrier frequency at each voltage. Pause at V_{nom} for 1.5 hours unpowered, to allow any self heating to stabilize, before continuing.

6. At all temperature levels hold the temperature to +/- 0.5°C during the measurement procedure.

Measurement:

Measurement parameters				
Detector:				
Sweep time:				
Video bandwidth:	Measured with CMU200			
Resolution bandwidth:	Measured with CM0200			
Span:				
Trace-Mode:				

FCC		
CFR Part 22.355 CFR Part 2.1055		
Frequency Stability		
± 0.1 ppm		

Results:

AFC FREQ ERROR versus VOLTAGE

Voltage (V)	Frequency Error (Hz) Frequency Error (%)		Frequency Error (ppm)	
3.3	3	0.0000016	0.0016	
3.4	1	0.0000005	0.0005	
3.5	-4	-0.0000021	-0.0021	
3.6	-2	-0.00000011	-0.0011	
3.7	3.7 -2		-0.0011	
3.8	3.8 2 0.00000		0.0011	
3.9	3	0.0000016	0.0016	
4.0	2	0.0000011	0.0011	
4.1	3	0.0000016	0.0016	
4.2	5 0.0000027		0.0027	
4.3	4	0.0000021	0.0021	
4.4	3	0.00000016	0.0016	

AFC FREQ ERROR versus TEMPERATURE

Temperature (°C)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)	
-30	-4	-0.0000021	-0.0021	
-20	-4	-0.0000021	-0.0021	
-10	3	0.0000016	0.0016	
± 0	-2	-0.00000011	-0.0011	
10	3	0.0000016	0.0016	
20	3	0.0000016	0.0016	
30	3	0.0000016	0.0016	
40	-3	-0.00000016	-0.0016	
50	3	0.0000016	0.0016	
60	3	0.00000016	0.0016	

<u>Result:</u> Passed

8.5.3 Spurious emissions radiated

Description:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2009 requirements and is recognized by the FCC to be in compliance for a 3 and a 10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 846.6 MHz. This was rounded up to 12 GHz. The resolution bandwidth is set as outlined in Part 22.917. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the UMTS band V.

The final open field emission (here 10m semi-anechoic chamber listed by FCC) test procedure is as follows:

a) The test item was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna.

b) The antenna output was terminated in a 50 ohm load (if possible).

c) A double ridged wave guide antenna was placed on an adjustable height antenna mast 3 meters from the test item for emission measurements.

d) Detected emissions were maximized at each frequency by rotating the test item and adjusting the receive antenna height and polarization. The maximum meter reading was recorded. The radiated emission measurements of the harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and 1 MHz bandwidth. If the harmonic could not be detected above the noise floor, the ambient level was recorded. The equivalent power into a dipole antenna was calculated from the field intensity levels measured at 3 meters.

e) Now each detected emissions were substituted by the substitution method, in accordance with the TIA/EIA 603.

Measurement parameters			
Detector:	Peak		
Sweep time:	2 sec.		
Video bandwidth:	Below 1 GHz: 100 kHz Above 1 GHz: 1 MHz		
Resolution bandwidth:	Below 1 GHz: 100 kHz Above 1 GHz: 1 MHz		
Span:	100 MHz Steps		
Trace-Mode:	Max Hold		

Measurement:

FCC		
CFR Part 22.917 CFR Part 2.1053		
Spurious Emissions Radiated		
Attenuation ≥ 43 + 10log(P) (P, Power in Watts)		
-13 dBm		

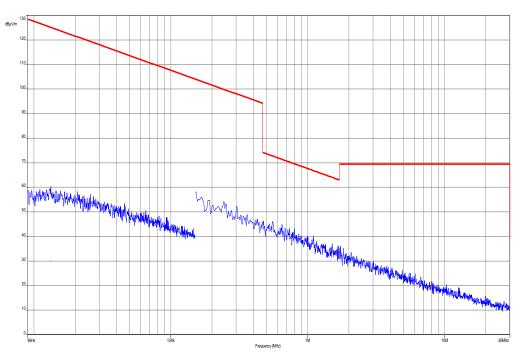
Results:

Radiated emissions measurements were made only at the upper, center, and lower carrier frequencies of the UMTS band V (826.4 MHz, 836.0 MHz and 846.6 MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the UMTS band V into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

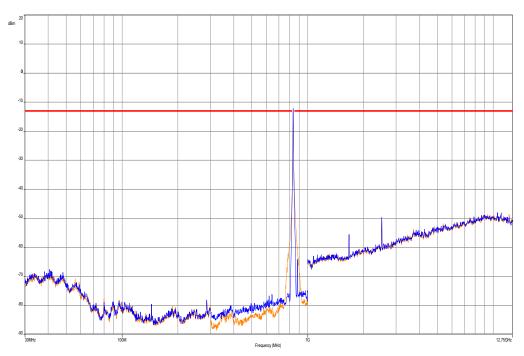
The final open field radiated levels are presented on the next pages.

All measurements were done in horizontal and vertical polarization; the plots show the worst case.

The plots show only the middle channel. If spurious were detected, the lowest and highest channel were checked too. The found values are stated in the table below.


Spurious Emission Level (dBm)								
Harmonic	Ch. 4132 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 4180 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 4233 Freq. (MHz)	Level [dBm]
2	1652.8		2	1672.0		2	1693.2	
3	2479.2		3	2508.0		3	2539.8	
4	3305.6	A 11	4	3344.0	All	4	3386.4	A 11
5	4132.0	All detected	5	4180.0	detected emissions	5	4233.0	All detected
6	4958.4	emissions are more than 20	6	5016.0	are more than 20	6	5079.6	emissions are more than 20
7	5784.8	dB below the limit.	7	5852.0	dB below the limit.	7	5926.2	dB below the limit.
8	6611.2		8	6688.0		8	6772.8	
9	7437.6		9	7524.0		9	7619.4	
10	8264.0		10	8360.0		10	8466.0	
	Measurement uncertainty					± 3dB		

As can be seen from this data, the emissions from the test item were within the specification limit.



Plots:

Plot 1: Channel 4180 (Traffic mode up to 30 MHz)

Plot 2: Channel 4180 (30 MHz - 12.75 GHz)

8.5.4 Spurious emissions conducted

Description:

The following steps outline the procedure used to measure the conducted emissions from the mobile station. 1. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 9 GHz, data taken from 10 MHz to 12 GHz.

2. Determine mobile station transmits frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

UMTS band V Transmitter Channel Frequency 4132 826.4 MHz 4180 836.0 MHz 4233 846.6 MHz

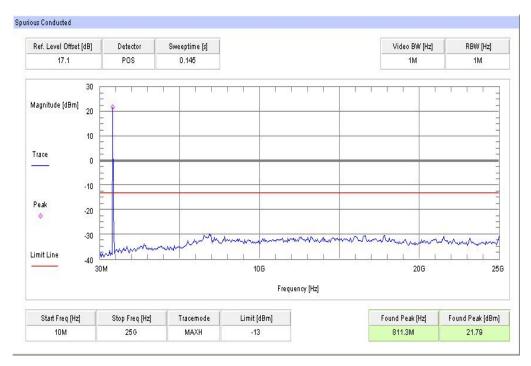
Measurement:

Measurement parameters			
Detector:	Peak		
Sweep time:	Auto		
Video bandwidth:	Pre-measurement with 1 MHz On spurious detection re-measurement below 1 GHz with 100 kHz Above 1 GHz with 1 MHz		
Resolution bandwidth:	Pre-measurement with 1 MHz On spurious detection re-measurement below 1 GHz with 100 kHz Above 1 GHz with 1 MHz		
Span:	30 MHz – 25 GHz		
Trace-Mode:	Max Hold		

FCC
CFR Part 22.917 CFR Part 2.1051
Spurious Emissions Conducted
Attenuation ≥ 43 + 10log(P) (P, Power in Watts)
-13 dBm

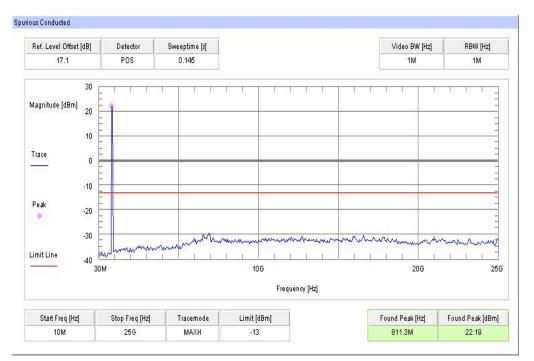
Results:

Spurious Emission Level (dBm)									
Harmonic	Ch. 4132 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 4180 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 4233 Freq. (MHz)	Level [dBm]	
2	1652.8	No emissions detected.	2	1672.0		2	1693.2		
3	2479.2		3	2508.0		3	2539.8	No	
4	3305.6		4	3344.0	No	4	3386.4		
5	4132.0		5	4180.0		5	4233.0		
6	4958.4		6	5016.0	emissions detected.	6	5079.6	emissions detected.	
7	5784.8		7	5852.0	delected.	7	5926.2	delected.	
8	6611.2		8	6688.0		8	6772.8		
9	7437.6		9	7524.0		9	7619.4		
10	8264.0		10	8360.0		10	8466.0		
	Measurement uncertainty					± 3dB			



Plots:

Plot 1: Channel 4132 (10 MHz - 25 GHz)


Spurious Conducted RBW [Hz] Ref. Level Offset [dB] Detector Sweeptime [s] Video BW [Hz] 17.1 0.145 1M POS 1M 30 Magnitude [dBm] 20 10 0 Trace -10 -20 Peak 0 -30 mound mar have not -40 Limit Line -50 30M 10G 20G 25G Frequency [Hz] Start Freq [Hz] Stop Freq [Hz] Tracemode Limit (dBm) Found Peak [Hz] Found Peak (dBm) 10M 25G MAXH -13 811.3M 22.15

Plot 2: Channel 4180 (10 MHz - 25 GHz)

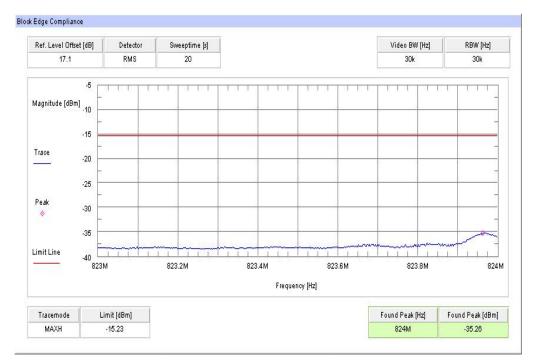
Plot 3: Channel 4233 (10 MHz - 25 GHz)

8.5.5 Block edge compliance

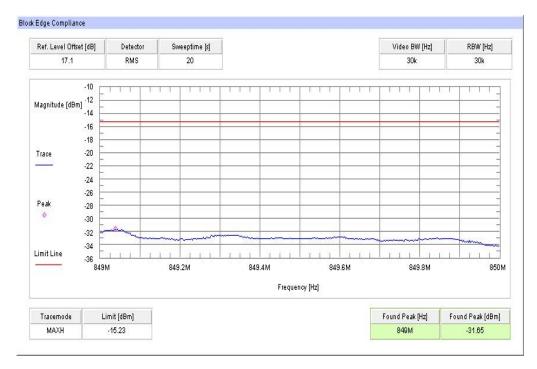
Description:

The spectrum at the band edges must comply with the spurious emissions limits.

Measurement:


Measurement parameters				
Detector:	RMS			
Sweep time:	20 sec.			
Video bandwidth:	30 kHz			
Resolution bandwidth:	30 kHz			
Span:	1 MHz			
Trace-Mode:	Max Hold			

FCC
CFR Part 22.917 CFR Part 2 1051
CFR Part 2.1051
Block Edge Compliance
Part 22.917 specifies that "the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB."
However, in publication number 890810, The FCC Office of Engineering and Technology specified the following correction to the limits when a resolution bandwidth smaller than 1% of the emission bandwidth is used:
"An alternative is to add an additional correction factor of 10 Log (RBW1/ RBW2) to the 43 +10 log(P) limit. RBW1 is the narrower measurement resolution bandwidth and RBW2 is either the 1% emissions bandwidth or 1 MHz."
When using a 30 kHz bandwidth, this yields a -2.2185 adjustment to the limit [10 log(30kHz/50kHz) = -2.2185]. When this adjustment is applied to the limit, the limit becomes -15.2185.
-15.22 dBm



Plots:

Plot 1: Channel 4132

Plot 2: Channel 4233

8.5.6 Occupied bandwidth

Description:

Measurement of the occupied bandwidth of the transmitted signal.

Measurement:

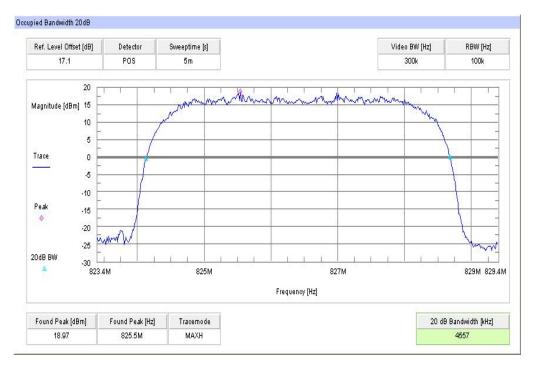
Similar to conducted emissions, occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the UMTS band V. The table below lists the measured 99% power and -26dBc occupied bandwidths. Spectrum analyzer plots are included on the following pages.

Part 22.917 requires a measurement bandwidth of at least 1% of the occupied bandwidth. For ca. 4700 kHz, this equates to a resolution bandwidth of at least 50 kHz. For this testing, a resolution bandwidth 100 kHz was used.

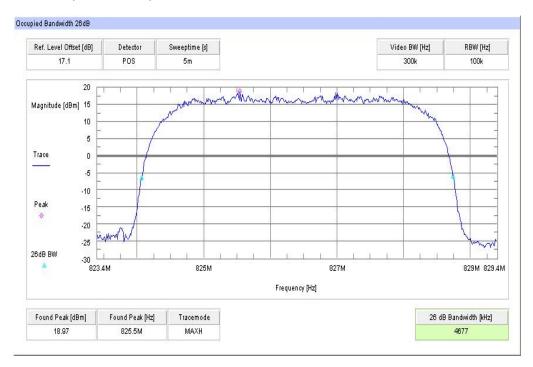
Measurement parameters					
Detector:	Peak				
Sweep time:	Auto				
Video bandwidth:	300 kHz				
Resolution bandwidth:	100 kHz				
Span:	6 MHz				
Trace-Mode:	Max Hold				

Limits:

FCC
CFR Part 22.917
CFR Part 2.1049
Occupied Bandwidth
Spectrum must fall completely in the specified band

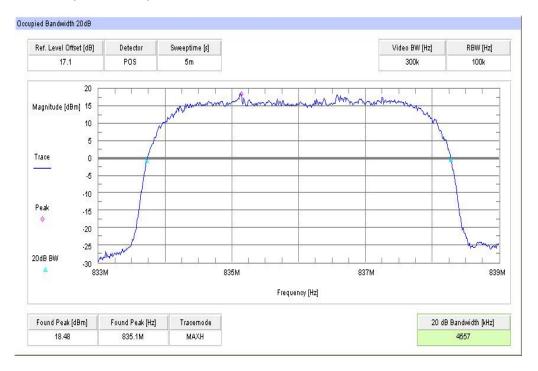

Results:

Occupied Bandwidth							
Frequency (MHz)99% OBW (kHz)-26 dBc BW (kHz)							
826.4	4557	4677					
836.0	4557	4677					
846.6	4581	4689					
Measurement uncertainty	± 100 kHz						

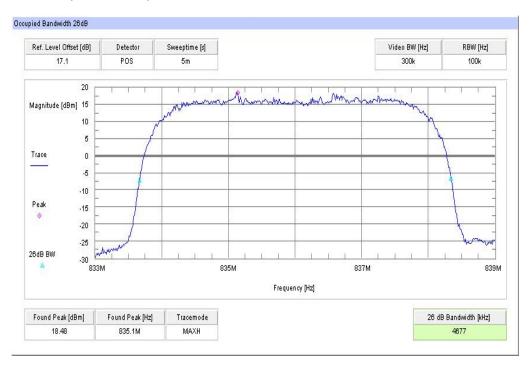


Plots:

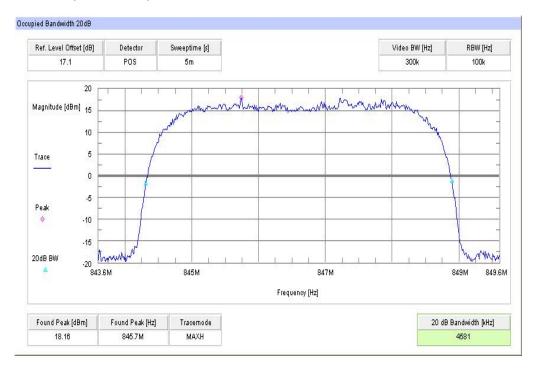
Plot 1: Channel 4132 (99% - OBW)



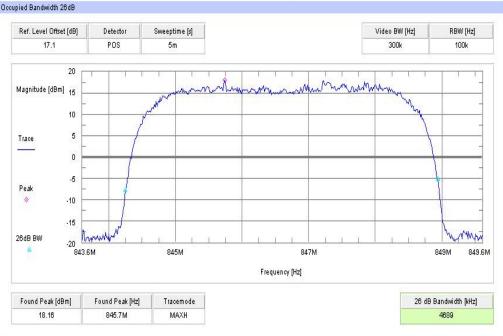
Plot 2: Channel 4132 (-26 dBc BW)



Plot 3: Channel 4180 (99% - OBW)



Plot 4: Channel 4180 (-26 dBc BW)



Plot 5: Channel 4233 (99% - OBW)

Plot 6: Channel 4233 (-26 dBc BW)

Occupied Bandwidth 26dB

9 Test equipment and ancillaries used for tests

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, rf-generating and signalling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3088	300001032	viKI!	08.05.2013	08.05.2015
2	n. a.	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev		
3	n. a.	Switch / Control Unit	3488A	HP Meßtechnik	*	300000199	ne		
4	n. a.	Switch / Control Unit	3488A	HP Meßtechnik	2719A15013	300001156	ne		
5	n. a.	Three-Way Power Splitter, 50 Ohm	11850C	HP Meßtechnik		300000997	ne		
6	90	Active Loop Antenna 10 kHz to 30 MHz	6502	Kontron Psychotech	8905-2342	300000256	k	13.06.2013	13.06.2015
7	n. a.	Amplifier	js42- 00502650- 28-5a	Parzich GMBH	928979	300003143	ne		
8	n. a.	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbe ck	371	300003854	viKi!	14.10.2011	14.10.2014
9	n. a.	MXE EMI Receiver 20 Hz bis 26,5 GHz	N9038A	Agilent Technologi es	MY51210197	300004405	k	21.02.2013	21.02.2015
10	11b	Microwave System Amplifier, 0.5- 26.5 GHz	83017A	HP Meßtechnik	00419	300002268	ev		
11	A026	Std. Gain Horn Antenna 12.4 to 18.0 GHz	639	Narda	8402	300000787	k	22.07.2013	22.07.2015
12	A029	Std. Gain Horn Antenna 18.0 to 26.5 GHz	638	Narda	8205	300002442	k	19.07.2013	19.07.2015
13	n. a.	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	21.01.2014	21.01.2015
14	n. a.	Universal Communication Tester	CMU200	R&S	103992	300003231	vIKI!	21.08.2012	21.08.2014
15	n. a.	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP Meßtechnik	2920A04590	300001041	Ve	12.01.2012	12.01.2015
16	n. a.	Temperature Test Chamber	VT 4002	Heraeus Voetsch	521/83761	300002326	Ve	26.09.2013	26.09.2015
17	n. a.	Switch / Control Unit	3488A	HP Meßtechnik	2605e08770	300001443	ne		
18	n. a.	Signal Analyzer 20Hz-26,5GHz- 150 to + 30 DBM	FSiQ26	R&S	835111/0004	300002678	Ve	15.01.2013	15.01.2015

Agenda: Kind of Calibration

k ne ev Ve	calibration / calibrated not required (k, ev, izw, zw not required) periodic self verification long-term stability recognized	EK zw izw	limited calibration cyclical maintenance (external cyclical maintenance) internal cyclical maintenance blocked for accredited testing
vlkl!	Attention: extended calibration interval	g	blocked for accredited testing
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

10 Observations

No observations exceeding those reported with the single test cases have been made.

Annex A Document history

Version	Applied changes	Date of release
	Initial release	2014-02-28

Annex B Further information

<u>Glossary</u>

Annex C **Accreditation Certificate** Front side of certificate Back side of certificate (DAkkS Deu Akk Deutsche Akkreditierungsstelle GmbH Deutsche Akkreditierungsstelle GmbH Beliehene gemäß § 8 Absatz 1 AkkStelleG I.V.m. § 1 Absatz 1 AkkStelleGBV Unterzeichnerin der Multilateralen Abkommen von EA, ILAC und IAF zur gegenseitigen Anerkennung Standort Frankfurt am Main Gartenstraße 6 60594 Frankfurt am Main Standort Berlin Spittelmarkt 10 10117 Berlin Bundesallee 100 38116 Braunschw reig Akkreditierung Die Deutsche Akkreditierungsstelle GmbH bestätigt hiermit, dass das Prüflaborato CETECOM ICT Services GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken die Kompetenz nach DIN EN ISO/IEC 17025:2005 besitzt, Prüfungen in folgenden Bereichen durchzuführen: Drahtgebundene Kommunikation einschließlich xDSL VolP und DECT VolP und DECT Akustik Funk einschließlich WLAN Short Range Devices (SRD) RFID Wilharu und Richtlunk Mobilonum (GSM JDCS, Over the Air (OTA) Performance) Milharum (GSM JDCS, Over the Air (OTA) Performance) Perduktischerheit SAR und Hearing Aid Compatibility (HAC) Umwelsimulation Smart Card Terminals Bluetooth Wi-Fi- Services Die auszugsweise Veröffentlichung der Akkreditierungsurkunde bedarf der vorhengen schriftlichen Zustimmung der Deutsche Akkreditierungsstelle GmbH (DAKKS). Ausgenommen davon ist die separate Weiterverkreitung des Deckbattes durch die umseitig genannte Könformitätsbewertungsstelle in umerinderter Förme. Es darf nicht der Anschein erweckt werden, dass sich die Akkreditierung auch auf Bereiche erstreckt, die über den durch die DAkkS bestätigten Akkreditierungsbereich hinausgehen. Die Akkreditierung erfolgte gemäß des Gesetzes über die Akkreditierungsstelle (AkkStelleG) vom 31. Juli 2009 (BGBI. 15. 2623) sowie der Verordnung (FG) Nr. 765/2008 des Europäischen Parlaments und des Rates vom 5. Juli 2008 über die Verschriften Erf die Akkreditierung und Marktüberwachung im Zusammenhang mit der Vermarktung von Produkten (Abl. 1218 vom 9. Juli 2008, 5. 30). Die DAkks ist Unterschnern der Mutilitateralen Abkommen zur agenseitsigen Anerkennung der European co-operation för Accreditation (EA), des International Accreditation Forum (IAF) und der International Laboratory Accreditation Cooperation (ILAC). Die Unterzeichner dieser Abkommen erkennen ihre Akkreditierungen gegenseitig an. Die Akkreditierungsurkunde gilt nur in Verbindung mit dem Bescheid vom 18.01.2013 mit der Akkreditierungsnummer D-PL-12076-01 und ist gültig 17.01.2018. Sie besteht aus diesem Deckblatt, der Rückseite des Deckblatts und der folgenden Anlage mit ingesamt 80 Seiten. r aktuelle Stand der Mitgliedschaft kann folgenden Webseiten entnommen werd www.european-accreditation.org Registrierungsnummer der Urkunde: D-PL-12076-01-01 EA: www.europe ILAC: www.ilac.org IAF: www.iaf.nu Frankfurt am Main, 18.01.2013 Sala Hyweise auf der Röckseite

Note:

The current certificate including annex is published on our website (see link below) or may be received from CETECOM ICT Services on request.

http://www.cetecom.com/eu/de/cetecom-group/europa/deutschland-saarbruecken/akkreditierungen.html