Report No.: FA3O2909 # **FCC SAR Test Report** APPLICANT : Sony Mobile Communications AB **EQUIPMENT**: Smart phone **BRAND NAME : SONY** TYPE NAME : PM-0673-BV MODEL NAME : D2104 FCC ID : PY7PM-0673 **STANDARD** : **FCC 47 CFR Part 2 (2.1093)** **ANSI/IEEE C95.1-1992** IEEE 1528-2003 We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the procedures and shown the compliance with the applicable technical standards. The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full. Reviewed by: Eric Huang / Deputy Manager Approved by: Jones Tsai / Manager lac-MRA #### SPORTON INTERNATIONAL INC. No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PY7PM-0673 Page Number : 1 of 53 Report Issued Date : Jan. 08, 2014 Report Version : Rev. 04 Report Template No. : BU5FAA131010 ## **Table of Contents** | 1. Statement of Compliance | 4 | |--|---------------------| | 2. Administration Data | 6 | | 2.1 Testing Laboratory | € | | 2.2 Applicant | 6 | | 2.3 Manufacturer | 6 | | 2.4 Application Details | 6 | | 3. General Information | | | 3.1 Description of Equipment Under Test (EUT) | 7 | | 3.2 Device Serial Number | 7 | | 3.3 Maximum RF output power among production units | | | 3.4 Applied Standard | | | 3.5 Device Category and SAR Limits | | | 3.6 Test Conditions | | | 4. Specific Absorption Rate (SAR) | | | 4.1 Introduction | | | 4.2 SAR Definition | | | 5. SAR Measurement System | | | 5.1 E-Field Probe | 12 | | 5.2 Data Acquisition Electronics (DAE) | | | 5.3 Robot | | | 5.4 Measurement Server | | | 5.5 Phantom | | | 5.6 Device Holder | | | 5.7 Data Storage and Evaluation | | | 5.8 Test Equipment List | | | 6. Tissue Simulating Liquids | | | 7. System Verification Procedures | 21 | | 7.1 Purpose of System Performance check | | | 7.2 System Setup | ۱ کے ۔۔۔۔۔۔۔۔۔۔۔۔۔۔ | | 8. EUT Testing Position | | | 8.1 Define two imaginary lines on the handset | 23 | | 8.2 Cheek Position | | | 8.3 Tilted Position | 2/ | | 8.4 Body Worn Position | | | 9. Measurement Procedures | | | 9.1 Spatial Peak SAR Evaluation | 26 | | 9.2 Power Reference Measurement | 27 | | 9.3 Area & Zoom Scan Procedures | 27 | | 9.4 Volume Scan Procedures | | | 9.5 SAR Averaged Methods | | | 9.6 Power Drift Monitoring | | | 9.7 Bluetooth Exclusions Applied | | | 10. Conducted RF Output Power (Unit: dBm) | | | 11. Antenna Location | 35 | | 12. SAR Test Results | | | 12.1 Head SAR | 36 | | 12.2 Hotspot SAR | 37 | | 12.3 Body Worn SAR | | | 12.4 Repeated SAR Measurement | | | 12.5 Highest SAR Plot | | | 13. Simultaneous Transmission Analysis | | | 13.1 Head Exposure Conditions | | | 13.2 Hotspot Exposure Conditions | | | 13.3 Body-Worn Exposure Conditions | 50 | | 14. Uncertainty Assessment | | | 15. References | 53 | Appendix A. Plots of System Performance Check Appendix B. Plots of SAR Measurement Appendix C. DASY Calibration Certificate Appendix D. Test Setup Photos TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PY7PM-0673 Page Number : 2 of 53 Report Issued Date: Jan. 08, 2014 Report Version : Rev. 04 Report Template No. : BU5FAA131010 # **Revision History** | | , | | | | |------------|---------|---|---------------|--| | REPORT NO. | VERSION | DESCRIPTION | ISSUED DATE | | | FA3O2909 | Rev. 01 | Initial issue of report | Dec. 17, 2013 | | | FA3O2909 | Rev. 02 | Revised WCDMA AMR conducted power to match tune-up limit on page33. | Dec. 25, 2013 | | | FA3O2909 | Rev. 03 | Revised HW version. | Dec. 30, 2013 | | | FA3O2909 | Rev. 04 | Revised GPRS/EGPRS mode up to multi slot calss33 on page7 | Jan. 08, 2014 | SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PY7PM-0673 Page Number : 3 of 53 Report Issued Date : Jan. 08, 2014 Report Version : Rev. 04 Report Template No. : BU5FAA131010 1. Statement of Compliance The maximum results of Specific Absorption Rate (SAR) found during testing for **Sony Mobile**Communications AB Smart phone, D2104 are as follows. <Highest 1g-SAR Summary> | Exposure Position | Frequency Band | Equipment Class | Maximum
RF output power
(dBm) | Reported 1g-SAR
(W/kg) | Highest Reported
1g-SAR (W/kg) | |---------------------------------|----------------------|-----------------|-------------------------------------|---------------------------|-----------------------------------| | | GSM850 Voice | | 33 | 0.72 | | | | GSM1900 (DTM 5) | DOE | 28 | 0.44 | | | Head
(Separation 0cm) | WCDMA Band V | PCE | 24 | 0.59 | 0.72 | | (Coparation Com) | WCDMA Band II | | 23.5 | 0.71 | | | | WLAN 2.4GHz Band | DTS | 16 | 0.25 | | | | GPRS850 (1Tx slots) | PCE | 33 | 1.31 | | | | GPRS1900 (2Tx slots) | | 28 | 0.60 | | | Hotspot
(Separation 1cm) | WCDMA Band V | | 24 | 1.30 | 1.35 | | (| WCDMA Band II | | 23.5 | 1.35 | | | | WLAN 2.4GHz Band | DTS | 16 | 0.12 | | | | GSM850 Voice | | 33 | 1.12 | | | Body-worn
(Separation 1.5cm) | GSM1900 (DTM 5) | PCE | 28 | 0.31 | | | | WCDMA Band V | | 24 | 1.00 | 1.12 | | | WCDMA Band II | | 23.5 | 0.56 | | | | WLAN 2.4GHz Band | | 16 | 0.04 | | <Highest Simultaneous transmission 1gSAR> | Exposure Position | Frequency Band | Equipment Class | Maximum
RF output power
(dBm) | Highest Reported Simultaneous
Transmission 1g-SAR (W/kg) | |--------------------|------------------|-----------------|-------------------------------------|---| | | WCDMA Band II | PCE | 23.5 | 0.07 | | Head | WLAN 2.4GHz Band | DTS | 16 | 0.97 | | (Separation 0cm) | GSM850 Voice | PCE | 33 | 1.10 | | | Bluetooth | DSS | 9.5 | 1.10 | | | WCDMA Band II | PCE | 23.5 | 1.47 | | Hotspot | WLAN 2.4GHz Band | DTS | 16 | 1.47 | | (Separation 1cm) | WCDMA Band II | PCE | 23.5 | 4.54 | | | Bluetooth | DSS | 9.5 | 1.54 | | | WCDMA Band V | PCE | 24 | 1.34 | | Body-worn | WLAN 2.4GHz Band | DTS | 16 | 1.34 | | (Separation 1.5cm) | WCDMA Band V | PCE | 24 | 1.42 | | | Bluetooth | DSS | 9.5 | 1.42 | **Note:** Simultaneous transmission was not evaluated as the sum of the individual SAR for WWAN and WLAN/Bluetooth was < 1.6 W/kg. This meets the requirements and simultaneous transmission exclusion specified in FCC KDB publication 648474 D04v01r02 - SAR Handset SAR. SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PY7PM-0673 Page Number : 4 of 53 Report Issued Date : Jan. 08, 2014 Report Version : Rev. 04 Report Template No. : BU5FAA131010 <Highest 10g-SAR Summary> | Exposure Position | Frequency Band | Maximum
RF output power (dBm) | Reported 10g-SAR
(W/kg) | Highest Reported
10g-SAR (W/kg) | |------------------------------|----------------------|----------------------------------|----------------------------|------------------------------------| | | GSM850 Voice | 33 | 0.55 | | | | GSM1900 (DTM 5) | 28 | 0.27 | | | Head
(Separation 0cm) | WCDMA Band V | 24 | 0.45 | 0.55 | | (00) a. a. a | WCDMA Band II | 23.5 | 0.45 | | | | WLAN 2.4GHz Band | 16 | 0.13 | | | | GPRS850 (1Tx slots) | 33 | 0.93 | | | | GPRS1900 (2Tx slots) | 28 | 0.36 | | | Hotspot
(Separation 1cm) | WCDMA Band V | 24 | 0.94 | 0.94 | | (00paranon 1011) | WCDMA Band II | 23.5 | 0.79 | | | | WLAN 2.4GHz Band | 16 | 0.07 | | | | GSM850 Voice | 33 | 0.80 | | | | GSM1900 (DTM 5) | 28 | 0.20 | | | Body-worn (Separation 1.5cm) | WCDMA Band V | 24 | 0.73 | 0.80 | | (5552.3.311 1.5511) | WCDMA Band II | 23.5 | 0.35 | | | | WLAN 2.4GHz Band | 16 | 0.02 | | <Highest Simultaneous transmission 10gSAR> | Exposure Position | Frequency Band | Maximum
RF output power (dBm) | Highest Reported Simultaneous Transmission 10g-SAR (W/kg) | | |--------------------|------------------|----------------------------------|---|--| | | GSM850 Voice | 33 | 0.65 | | | Head | WLAN 2.4GHz Band | 16 | 0.65 | | | (Separation 0cm) | GSM850 Voice | 33 | 0.70 | | | | Bluetooth | 9.5 | 0.70 | | | | WCDMA Band V | 24 | 4.04 | | | Hotspot | WLAN 2.4GHz Band | 16 | 1.01 | | | (Separation 1cm) | WCDMA Band V | 24 | 1.01 | | | | Bluetooth | 9.5 | 1.01 | | | | GSM850 Voice | 33 | 0.82 | | | Body-worn | WLAN 2.4GHz Band | 16 | 0.82 | | | (Separation 1.5cm) | GSM850 Voice | 33 | 0.95 | | | | Bluetooth | 9.5 | 0.85 | | This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2003. SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PY7PM-0673 Page Number : 5 of 53 Report Issued Date : Jan. 08, 2014 Report Version : Rev. 04 Report Template No. : BU5FAA131010 ## 2. Administration Data ### 2.1 Testing Laboratory | Test Site | SPORTON INTERNATIONAL INC. | | |--------------------|---|--| | Test Site Location | No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park,
Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.
TEL: +886-3-327-3456
FAX: +886-3-328-4978 | | ## 2.2 Applicant | Company Name | Sony Mobile Communications AB | |--------------|--------------------------------------| | Address | Nya Vattentornet, 22188 Lund, Sweden | ## 2.3 Manufacturer | Company Name | Arima Communications Corp. | |--------------|--| | Address | 6F, No 866,
Jhongjheng Rd., Jhonghe Dist., New Taipei City 23586, Taiwan | ## 2.4 Application Details | Date of Start during the Test | Nov. 03, 2013 | |-------------------------------|---------------| | Date of End during the Test | Nov. 20, 2013 | SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PY7PM-0673 Page Number : 6 of 53 Report Issued Date : Jan. 08, 2014 Report Version : Rev. 04 Report Template No. : BU5FAA131010 ## 3. General Information ### 3.1 Description of Equipment Under Test (EUT) The equipment under test is a smart phone supporting, GSM850/900/1800/1900, UMTS I / II / V, WLAN2.4GHz 802.11b/g/n, Bluetooth, FM Receiver and GPS features, and below is details of information. For FCC, only wireless modes Report No.: FA3O2909 | in US frequency bands are tested. | | | | | |---|--|--|--|--| | | Product Feature & Specification | | | | | EUT | Smart phone | | | | | Brand Name | SONY | | | | | Type Name | PM-0710-BV | | | | | Model Name | D2104 | | | | | FCC ID | PY7PM-0673 | | | | | Wireless Technology and | GSM850: 824.2 MHz ~ 848.8 MHz | | | | | Frequency Range | GSM1900: 1850.2 MHz ~ 1909.8 MHz | | | | | | WCDMA Band V: 826.4 MHz ~ 846.6 MHz | | | | | | WCDMA Band II: 1852.4 MHz ~ 1907.6 MHz | | | | | | WLAN 2.4GHz Band: 2412 MHz ~ 2462 MHz | | | | | | Bluetooth: 2402 MHz ~ 2480 MHz | | | | | Mode | • GSM/GPRS/EGPRS | | | | | | • RMC/AMR 12.2Kbps Rel 99 | | | | | | HSDPA Rel 7, Cat14 | | | | | | HSUPA Rel 6, Cat6 | | | | | | • 802.11b/g/n HT20 | | | | | Bluetooth v3.0+EDR Bluetooth v4.0+LE | | | | | | HW Version | A | | | | | SW Version | 20.0.B.0.26 | | | | | | WWAN: PIFA Antenna | | | | | Antenna Type | WLAN: PIFA Antenna | | | | | | Bluetooth: PIFA Antenna | | | | | Dual Transfer Mode | Class A – EUT can support Packet Switched and Circuit Switched Network simultaneously. | | | | | Category | Totass A - Lot can support Facket switched and circuit switched inetwork simultaneously. | | | | | EUT Stage | Production Unit | | | | | Domark | | | | | #### Remark: - 1. The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description. - This device supported VoIP in GSM, WCDMA (e.g. 3rd part VoIP). - This device 2.4GHz WLAN supports WiFi Direct and Hotspot operation. - This device supports GRPS/EGPRS mode up to multi-slot class33 and supports DTM up to multi-slot class11. - This device has 2 SIM slots and supports Dual SIM Dual Standby. The WWAN radio transmission will be enabled by either one SIM at a time (single active). ## 3.2 <u>Device Serial Number</u> | Sample | Serial Number | IMEI Code | |--------------------------------|---------------|-----------------| | WWAN SAR measurements | WUJ016LPAA | 004402147078491 | | WLAN SAR measurements | WUJ016LPVP | 004402147078798 | | WWAN Conducted measurements | WUJ016LPAA | 004402147078491 | | BT/WLAN Conducted measurements | WUJ016LPD8 | 004402147078574 | #### Note: Several samples were used with identical hardware to support SAR testing. The manufacturer has confirmed that the device tested gave the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units. SPORTON INTERNATIONAL INC. : 7 of 53 Page Number TEL: 886-3-327-3456 Report Issued Date: Jan. 08, 2014 FAX: 886-3-328-4978 Report Version : Rev. 04 FCC ID: PY7PM-0673 Report Template No. : BU5FAA131010 ## 3.3 Maximum RF output power among production units | Mode | | GSM 850 | GSM 1900 | | | |-------------------------|-------------------------|--------------------------|----------|--|--| | | iviode | Burst average power(dBm) | | | | | | GSM (GMSK, 1 Tx slot) | 33.0 | 31.0 | | | | | GPRS (GMSK, 1 Tx slot) | 33.0 | 31.0 | | | | (| GPRS (GMSK, 2 Tx slots) | 30.0 | 28.0 | | | | (| GPRS (GMSK, 3 Tx slots) | 28.2 | 26.2 | | | | (| GPRS (GMSK, 4 Tx slots) | 27.0 | 25.0 | | | | | EDGE (8PSK, 1 Tx slot) | 28.5 | 27.5 | | | | | EDGE (8PSK, 2 Tx slots) | 25.5 | 24.5 | | | | | EDGE (8PSK, 3 Tx slots) | 23.7 | 22.7 | | | | EDGE (8PSK, 4 Tx slots) | | 22.5 | 21.5 | | | | DTM 5 | GSM (GMSK, 1 Tx slot) | 30.0 | 28.0 | | | | DIWIS | GPRS (GMSK, 1 Tx slot) | 30.0 | 28.0 | | | | DTM 9 | GSM (GMSK, 1 Tx slot) | 30.0 | 28.0 | | | | DINIS | GPRS (GMSK, 1 Tx slot) | 30.0 | 28.0 | | | | DTM 11 | GSM (GMSK, 1 Tx slot) | 28.2 | 26.2 | | | | DINIII | GPRS (GMSK, 2 Tx slots) | 28.2 | 26.2 | | | | DTM 5 | GSM (GMSK, 1 Tx slot) | 30.0 | 28.0 | | | | DIMS | EDGE (8PSK, 1 Tx slot) | 25.5 | 24.5 | | | | DTM 9 | GSM (GMSK, 1 Tx slot) | 30.0 | 28.0 | | | | פואוט 9 | EDGE (8PSK, 1 Tx slot) | 25.5 | 24.5 | | | | DTM 11 | GSM (GMSK, 1 Tx slot) | 28.2 | 26.2 | | | | רו ואווט | EDGE (8PSK, 2 Tx slots) | 23.7 | 22.7 | | | | Mode | average power(dBm) | | | | |-----------------|--------------------|--------------|--|--| | iviode | WCDMA Band II | WCDMA Band V | | | | AMR 12.2K | 23.5 | 24.0 | | | | RMC 12.2K | 23.5 | 24.0 | | | | HSDPA Subtest-1 | 23.5 | 24.0 | | | | HSUPA Subtest-5 | 23.5 | 24.0 | | | | Mode | Average Power (dBm) | |--------------------|---------------------| | WLAN2.4GHz 802.11b | 16.0 | | WLAN2.4GHz 802.11g | 15.0 | | WLAN2.4GHz 802.11n | 13.0 | | Bluetooth v2.1+EDR | 9.5 | | Bluetooth v4.0+LE | 9.5 | SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PY7PM-0673 Page Number : 8 of 53 Report Issued Date : Jan. 08, 2014 Report Version : Rev. 04 Report Template No. : BU5FAA131010 ### 3.4 Applied Standard The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards: - FCC 47 CFR Part 2 (2.1093) - ANSI/IEEE C95.1-1992 - IEEE 1528-2003 - FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r02 - FCC KDB 865664 D02 SAR Reporting v01r01 - FCC KDB 447498 D01 General RF Exposure Guidance v05r01 - FCC KDB 648474 D04 Handset SAR v01r02 - FCC KDB 248227 D01 SAR meas for 802 11abg v01r02 - FCC KDB 941225 D01 SAR test for 3G devices v02 - FCC KDB 941225 D02 HSPA and 1x Advanced v02r02 - FCC KDB 941225 D03 SAR Test Reduction GSM GPRS EDGE v01 - FCC KDB 941225 D04 SAR for GSM E GPRS Dual Xfer Mode v01 - FCC KDB 941225 D06 Hot Spot SAR v01r01 #### 3.5 Device Category and SAR Limits This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue. ### 3.6 Test Conditions #### 3.6.1 Ambient Condition | Ambient Temperature | 20 to 24 ℃ | | | |---------------------|------------|--|--| | Humidity | < 60 % | | | #### 3.6.2 Test Configuration For WWAN SAR testing, the device was controlled by using a base station emulator. Communication between the device and the emulator was established by air link. The distance between the EUT and the antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of EUT. For WLAN SAR testing, WLAN engineering testing software installed on the EUT can provide continuous transmitting RF signal. SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PY7PM-0673 Page Number : 9 of 53 Report Issued Date : Jan. 08, 2014 Report Version : Rev. 04 Report No.: FA3O2909 Report Template No. : BU5FAA131010 ## 4. Specific Absorption Rate (SAR) ### 4.1 Introduction SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled. ### 4.2 SAR Definition The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below: $$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{odv} \right)$$ SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be either related to the temperature elevation in tissue by $$SAR = C \bigg(\frac{\delta T}{\delta t} \bigg)$$ Where: C is the specific heat capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by $$SAR = \frac{\sigma |E|^2}{\rho}$$ Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength. However for evaluating SAR of low power transmitter, electrical field measurement is typically applied. SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PY7PM-0673 Page Number : 10 of 53 Report Issued Date : Jan. 08, 2014 Report Version : Rev. 04 Report Template No. : BU5FAA131010 ## 5. SAR Measurement System Fig 5.1 SPEAG DASY System Configurations The DASY system for performance compliance tests is illustrated above graphically. This system consists of the following items: - A standard high precision 6-axis robot with controller, a teach pendant and software - A data acquisition electronic (DAE) attached to the robot arm extension - A dosimetric probe equipped with an optical surface detector system - > The electro-optical converter (EOC) performs the conversion between optical and electrical signals - A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast
movement interrupts. - A probe alignment unit which improves the accuracy of the probe positioning - A computer operating Windows XP - DASY software - Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc. - The SAM twin phantom - A device holder - > Tissue simulating liquid - Dipole for evaluating the proper functioning of the system Component details are described in in the following sub-sections. SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PY7PM-0673 Page Number : 11 of 53 Report Issued Date : Jan. 08, 2014 Report Version : Rev. 04 Report Template No. : BU5FAA131010 ## 5.1 E-Field Probe The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom. #### 5.1.1 E-Field Probe Specification #### <ES3DV3 Probe > | Construction | Symmetrical design with triangular core
Built-in optical fiber for surface detection
system.
Built-in shielding against static charges.
PEEK enclosure material (resistant to organic
solvents, e.g., DGBE) | | |---------------|--|---------| | Frequency | 10 MHz to 3 GHz; Linearity: ± 0.2 dB | | | Directivity | ± 0.2 dB in HSL (rotation around probe axis)
± 0.4 dB in HSL (rotation normal to probe
axis) | | | Dynamic Range | 5 μW/g to 100 mW/g; Linearity: ± 0.2 dB | | | Dimensions | Overall length: 337 mm (Tip: 10 mm) Tip diameter: 4 mm (Body: 10 mm) Distance from probe tip to dipole centers: 3 mm | Eig F 2 | | | | Fig 5.2 | Report No.: FA3O2909 #### <EX3DV4 Probe> | Construction | Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE) | | |---------------|---|--------------------------------| | Frequency | 10 MHz to 6 GHz; Linearity: ± 0.2 dB | | | Directivity | ± 0.3 dB in HSL (rotation around probe axis)
± 0.5 dB in tissue material (rotation normal to
probe axis) | Ī | | Dynamic Range | 10 μW/g to 100 mW/g; Linearity: ± 0.2 dB (noise: typically < 1 μW/g) | | | Dimensions | Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm | | | | | Fig 5.3 Photo of EX3DV4/ES3DV4 | #### 5.1.2 E-Field Probe Calibration Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than ± 10%. The spherical isotropy shall be evaluated and within ± 0.25dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data can be referred to appendix C of this report. SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PY7PM-0673 Page Number : 12 of 53 Report Issued Date: Jan. 08, 2014 Report Version : Rev. 04 Report Template No. : BU5FAA131010 ### 5.2 <u>Data Acquisition Electronics (DAE)</u> The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB. Report No.: FA3O2909 Fig 5.4 Photo of DAE ### 5.3 <u>Robot</u> The SPEAG DASY system uses the high precision robots (DASY4: RX90BL; DASY5: TX90XL) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version (DASY4: CS7MB; DASY5: CS8c) from Stäubli is used. The Stäubli robot series have many features that are important for our application: - High precision (repeatability ±0.035 mm) - > High reliability (industrial design) - Jerk-free straight movements - > Low ELF interference (the closed metallic construction shields against motor control fields) Fig 5.5 Photo of DASY4 Fig 5.6 Photo of DASY5 #### 5.4 Measurement Server The measurement server is based on a PC/104 CPU board with CPU (DASY4: 166 MHz, Intel Pentium; DASY5: 400 MHz, Intel Celeron), chipdisk (DASY4: 32 MB; DASY5: 128 MB), RAM (DASY4: 64 MB, DASY5: 128 MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O board, which is directly connected to the PC/104 bus of the CPU board. The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations. Fig 5.7 Photo of Server for DASY4 Fig 5.8 Photo of Server for DASY5 #### SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PY7PM-0673 Page Number : 13 of 53 Report Issued Date : Jan. 08, 2014 Report Version : Rev. 04 Report Template No. : BU5FAA131010 ## 5.5 Phantom #### <SAM Twin Phantom> | CAM I WIII I Hantoiii> | | | | |------------------------|-------------------------------------|------------------------------|--| | Shell Thickness | 2 ± 0.2 mm; | | | | | Center ear point: 6 ± 0.2 mm | | | | Filling Volume | Approx. 25 liters | THE PERSON NAMED IN | | | Dimensions | Length: 1000 mm; Width: 500 mm; | | | | | Height: adjustable feet | _ I | | | Measurement Areas | Left Hand, Right Hand, Flat Phantom | | | | | | | | | | | | | | | | Fig 5.9 Photo of SAM Phantom | | The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot. #### <ELI4 Phantom> | Shell Thickness | 2 ± 0.2 mm (sagging: <1%) | | |-----------------|--|--------------------------------| | Filling Volume | Approx. 30 liters | | | Dimensions | Major ellipse axis: 600 mm
Minor axis: 400 mm | Fig 5.10 Photo of ELI4 Phantom | The ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids. SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PY7PM-0673 Page Number : 14 of 53 Report Issued Date : Jan. 08, 2014 Report Version : Rev. 04 Report Template No. : BU5FAA131010 #### 5.6 <u>Device Holder</u> #### <Device Holder for SAM Twin Phantom> The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of \pm 0.5 mm would produce a SAR uncertainty of \pm 20 %. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards. The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles. The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity ε = 3 and loss tangent δ = 0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered. Fig 5.11 Device Holder #### <Laptop Extension Kit> The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms. Fig 5.12 Laptop Extension Kit SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PY7PM-0673 Page Number : 15 of 53 Report Issued Date : Jan. 08, 2014 Report Version : Rev. 04 Report Template No. : BU5FAA131010 ### 5.7 Data Storage and Evaluation #### 5.7.1 Data Storage The DASY software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated. The measured data can be visualized or exported in
different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [mW/g]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-lose media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages. #### 5.7.2 Data Evaluation **Device parameters:** The DASY post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software: $\label{eq:probe parameters: Sensitivity Norm_i, a_{i0}, a_{i1}, a_{i2}} \\ \text{Norm}_i, a_{i0}, a_{i1}, a_{i2}$ $\begin{array}{lll} \text{- Conversion factor} & \text{ConvF}_i \\ \text{- Diode compression point} & \text{dcp}_i \\ \text{- Frequency} & \text{f} \\ \text{- Crest factor} & \text{cf} \end{array}$ Media parameters :- Conductivityσ- Densityρ These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PY7PM-0673 Page Number : 16 of 53 Report Issued Date : Jan. 08, 2014 Report Version : Rev. 04 Report Template No. : BU5FAA131010 The formula for each channel can be given as : $$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$ with V_i = compensated signal of channel i, (i = x, y, z) U_i = input signal of channel i, (i = x, y, z) cf = crest factor of exciting field (DASY parameter) dcp_i = diode compression point (DASY parameter) From the compensated input signals, the primary field data for each channel can be evaluated: $\text{E-field Probes} \, \vdots \, E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$ H-field Probes : $H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$ with V_i = compensated signal of channel i, (i = x, y, z) Norm_i = sensor sensitivity of channel i, (i = x, y, z), $\mu V/(V/m)^2$ for E-field Probes ConvF = sensitivity enhancement in solution a_{ij} = sensor sensitivity factors for H-field probes f = carrier frequency [GHz] E_i = electric field strength of channel i in V/m H_i = magnetic field strength of channel i in A/m The RSS value of the field components gives the total field strength (Hermitian magnitude): $$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$ The primary field data are used to calculate the derived field units. $$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$ with SAR = local specific absorption rate in mW/g E_{tot} = total field strength in V/m σ = conductivity in [mho/m] or [Siemens/m] ρ = equivalent tissue density in g/cm³ Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PY7PM-0673 Page Number : 17 of 53 Report Issued Date : Jan. 08, 2014 Report Version : Rev. 04 Report Template No. : BU5FAA131010 ### 5.8 Test Equipment List | Manufacturan | Name of Environment | Towns /Masslel | Canial Namehan | Calibration | | | |--------------|---------------------------------|----------------|----------------|----------------------------|---------------|--| | Manufacturer | Name of Equipment | Type/Model | Serial Number | Last Cal. | Due Date | | | SPEAG | 835MHz System Validation Kit | D835V2 | 499 | Mar. 18, 2013 | Mar. 17, 2014 | | | SPEAG | 1900MHz System Validation Kit | D1900V2 | 5d041 | Mar. 20, 2013 | Mar. 19, 2014 | | | SPEAG | 2450MHz System Validation Kit | D2450V2 | 736 | Aug. 23, 2013 | Aug. 22, 2014 | | | SPEAG | Data Acquisition Electronics | DAE4 | 778 | Aug. 21, 2013 | Aug. 20, 2014 | | | SPEAG | Data Acquisition Electronics | DAE4 | 1338 | Nov. 05, 2013 | Nov. 04, 2014 | | | SPEAG | Dosimetric E-Field Probe | EX3DV4 | 3935 | Nov. 04, 2013 | Nov. 03, 2014 | | | SPEAG | Dosimetric E-Field Probe | EX3DV4 | 3925 | Jun. 12, 2013 | Jun. 11, 2014 | | | SPEAG | Dosimetric E-Field Probe | ES3DV3 | 3270 | Sep. 24, 2013 | Sep. 23, 2014 | | | Wisewind | Thermometer | ETP-101 | TM560 | Oct. 22, 2013 | Oct. 21, 2014 | | | Wisewind | Thermometer | HTC-1 | TM642 | Oct. 22, 2013 | Oct. 21, 2014 | | | Agilent | Wireless Communication Test Set | E5515C | GB46311322 | Mar. 25, 2013 | Mar. 24, 2015 | | | R&S | Radio communication Tester | CMW 500 | 116160 | Jan. 09, 2013 | Jan. 08, 2014 | | | SPEAG | Device Holder | N/A | N/A | NCR | NCR | | | R&S | Signal Generator | SMF 100A | 101107 | May. 27, 2013 | May. 26, 2014 | | | SPEAG | Dielectric Probe Kit | DAK-3.5 | 1126 | Jul. 23, 2013 | Jul. 22, 2014 | | | Agilent | ENA Network Analyzer | E5071C | MY46316648 | Feb. 07, 2013 | Feb. 06, 2014 | | | Anritsu | Power Meter | ML2495A | 1132003 | Aug. 28, 2013 | Aug. 27, 2014 | | | Anritsu | Power Sensor | MA2411B | 1126017 | Aug. 27, 2013 | Aug. 26, 2014 | | | Agilent | Dual Directional Coupler | 778D | 50422 | Note 2 | | | | Woken | Attenuator 1 | WK0602-XX | N/A | Note 2 | | | | PE | Attenuator 2 | PE7005-10 | N/A | Note 2 | | | | PE | Attenuator 3 | PE7005-3 | N/A | Note 2 | | | | AR | Power Amplifier | 5S1G4M2 | 328767 | Not | te 3 | | | R&S | Spectrum Analyzer | FSP 7 | 101131 | Jul. 09, 2013 Jul. 08, 201 | | | #### **Table 5.1 Test Equipment List** #### Note: - 1. The calibration certificate of DASY can be referred to appendix C of this report. - 2. The Insertion Loss calibration of Dual Directional Coupler and Attenuator were characterized via the network analyzer and compensated during system check. - 3. In system check we need to monitor the level on the power meter, and adjust the power amplifier level to have precise power level to the dipole; the measured SAR will be normalized to 1W input power according to the ratio of 1W to the input power to the dipole. For system check, the calibration of the power amplifier is deemed not critically required for correct measurement; the power meter is critical and we do have calibration for it - 4. Attenuator 1 insertion loss is calibrated by the network Analyzer, which the calibration is valid, before system check. SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PY7PM-0673 Page Number : 18 of 53 Report Issued Date : Jan. 08, 2014 Report Version : Rev. 04 Report Template No. : BU5FAA131010 Report No.: FA3O2909 ## 6. Tissue Simulating Liquids For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 6.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 6.2. Fig 6.1 Photo of Liquid Height for Head SAR Fig 6.2 Photo of Liquid Height for Body SAR The following table gives the recipes for tissue simulating liquid | Frequency | Water | Sugar | Cellulose | Salt | Preventol | DGBE | Conductivity | Permittivity | |------------------|-------|-------|-----------|----------|-----------|------|--------------|-------------------| | (MHz) | (%) | (%) | (%) | (%) | (%) | (%) | (σ) | (ε _r) | | | | | | For Head | | | | | | 750 | 41.1 | 57.0 | 0.2 | 1.4 | 0.2 | 0 | 0.89 | 41.9 | | 835 | 40.3 | 57.9 | 0.2 | 1.4 | 0.2 | 0 | 0.90 | 41.5 | | 900 | 40.3 | 57.9 | 0.2 | 1.4 | 0.2 | 0 | 0.97 | 41.5 | | 1800, 1900, 2000 | 55.2 | 0 | 0 | 0.3 | 0 | 44.5 | 1.40 | 40.0 | | 2450 | 55.0 | 0 | 0 | 0 | 0 | 45.0 | 1.80 | 39.2 | | | | | | For Body | | | | | | 750 | 51.7 | 47.2 | 0 | 0.9 | 0.1 | 0 | 0.96 | 55.5 | | 835 | 50.8 | 48.2 | 0 | 0.9 | 0.1 | 0 | 0.97 | 55.2 | | 900 | 50.8 | 48.2 | 0 | 0.9 | 0.1 | 0 | 1.05 | 55.0 | | 1800, 1900, 2000 | 70.2 | 0 | 0 | 0.4 | 0 | 29.4 | 1.52 | 53.3 | | 2450 | 68.6 | 0 | 0 | 0 | 0 | 31.4 | 1.95 | 52.7 | Table 6.1 Recipes of Tissue Simulating Liquid ### Simulating Liquid for 5G, Manufactured by SPEAG | Ingredients | (% by weight) | |--------------------|---------------| | Water | 64~78% | | Mineral oil | 11~18% | | Emulsifiers | 9~15% | | Additives and Salt | 2~3% | SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PY7PM-0673 : 19 of 53 Page Number Report Issued Date: Jan. 08, 2014 Report Version : Rev. 04 Report Template No. : BU5FAA131010 The dielectric parameters of the liquids were verified prior to the SAR evaluation using an SPEAG DAK-3.5 Dielectric Probe Kit and an Agilent Network Analyzer. The following table shows the measuring results for simulating liquid. | Frequency
(MHz) | Tissue
Type | Liquid
Temp.
(°C) | Conductivity (σ) | Permittivity (ε _r) | Conductivity
Target (σ) | Permittivity
Target (ε _r) | Delta (σ)
(%) | Delta (ε _r)
(%) | Limit (%) | Date | |--------------------|----------------|-------------------------|------------------|--------------------------------|----------------------------|--|------------------|--------------------------------|-----------|------------| | 835 | Head | 22.5 | 0.881 | 42.165 | 0.90 | 41.50 | -2.11 | 1.60 | ±5 | 2013/11/4 | | 835 | Head | 22.5 | 0.895 | 41.661 | 0.90 |
41.50 | -0.56 | 0.39 | ±5 | 2013/11/8 | | 835 | Body | 22.4 | 0.985 | 54.535 | 0.97 | 55.20 | 1.55 | -1.20 | ±5 | 2013/11/3 | | 835 | Body | 22.7 | 0.955 | 52.690 | 0.97 | 55.20 | -1.55 | -4.55 | ±5 | 2013/11/7 | | 1900 | Head | 22.2 | 1.396 | 41.740 | 1.40 | 40.00 | -0.29 | 4.35 | ±5 | 2013/11/3 | | 1900 | Body | 22.2 | 1.523 | 54.798 | 1.52 | 53.30 | 0.20 | 2.81 | ±5 | 2013/11/3 | | 2450 | Head | 22.4 | 1.850 | 39.300 | 1.80 | 39.20 | 2.78 | 0.26 | ±5 | 2013/11/20 | | 2450 | Body | 22.5 | 1.920 | 53.200 | 1.95 | 52.70 | -1.54 | 0.95 | ±5 | 2013/11/20 | **Table 6.2 Measuring Results for Simulating Liquid** SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PY7PM-0673 Page Number : 20 of 53 Report Issued Date : Jan. 08, 2014 Report Version : Rev. 04 Report Template No. : BU5FAA131010 Report No. : FA3O2909 ## 7. System Verification Procedures Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder. ### 7.1 Purpose of System Performance check The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure. ### 7.2 System Setup In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below: Fig 7.1 System Setup for System Evaluation SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PY7PM-0673 Page Number : 21 of 53 Report Issued Date : Jan. 08, 2014 Report Version : Rev. 04 Report Template No. : BU5FAA131010 - 1. Signal Generator - 2. Amplifier - 3. Directional Coupler - 4. Power Meter - 5. Calibrated Dipole Fig 7.2 Photo of Dipole Setup ### 7.3 SAR System Verification Results Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Table 7.1 shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report. | Date | Frequency
(MHz) | Tissue
Type | Input
Power
(mW) | Dipole
S/N | Probe
S/N | DAE
S/N | Measured
SAR
(W/kg) | Targeted
SAR
(W/kg) | Normalized
SAR
(W/kg) | Deviation
(%) | |------------|--------------------|----------------|------------------------|------------------|--------------|------------|---------------------------|---------------------------|-----------------------------|------------------| | 2013/11/4 | 835 | Head | 250 | D835V2-SN:499 | 3925 | 778 | 2.43 | 9.57 | 9.72 | 1.57 | | 2013/11/8 | 835 | Head | 250 | D835V2-SN:499 | 3270 | 778 | 2.34 | 9.57 | 9.36 | -2.19 | | 2013/11/3 | 835 | Body | 250 | D835V2-SN:499 | 3925 | 778 | 2.28 | 9.63 | 9.12 | -5.30 | | 2013/11/7 | 835 | Body | 250 | D835V2-SN:499 | 3270 | 778 | 2.59 | 9.63 | 10.36 | 7.58 | | 2013/11/3 | 1900 | Head | 250 | D1900V2-SN:5d041 | 3925 | 778 | 10.10 | 40.60 | 40.4 | -0.49 | | 2013/11/3 | 1900 | Body | 250 | D1900V2-SN:5d041 | 3925 | 778 | 9.97 | 40.80 | 39.88 | -2.25 | | 2013/11/20 | 2450 | Head | 250 | D2450V2-SN:736 | 3935 | 1338 | 13.70 | 53.20 | 54.8 | 3.01 | | 2013/11/20 | 2450 | Body | 250 | D2450V2-SN:736 | 3935 | 1338 | 13.30 | 51.30 | 53.2 | 3.70 | **Table 7.1 Target and Measurement SAR after Normalized** SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PY7PM-0673 Page Number : 22 of 53 Report Issued Date : Jan. 08, 2014 Report Version : Rev. 04 Report Template No. : BU5FAA131010 8. EUT Testing Position ## 8.1 Define two imaginary lines on the handset - (a) The vertical centerline passes through two points on the front side of the handset the midpoint of the width w_t of the handset at the level of the acoustic output, and the midpoint of the width w_b of the bottom of the handset. - (b) The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output. The horizontal line is also tangential to the face of the handset at point A. - (c) The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset, especially for clamshell handsets, handsets with flip covers, and other irregularly shaped handsets. Fig 8.1 Illustration for Handset Vertical and Horizontal Reference Lines SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PY7PM-0673 Page Number : 23 of 53 Report Issued Date : Jan. 08, 2014 Report Version : Rev. 04 Report Template No. : BU5FAA131010 ### Report No.: FA3O2909 ### 8.2 Cheek Position - (a) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center piece in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the three ear and mouth reference point (M: Mouth, RE: Right Ear, and LE: Left Ear) and align the center of the ear piece with the line RE-LE. - (b) To move the device towards the phantom with the ear piece aligned with the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost (see Fig. 8.2). Fig 8.2 Illustration for Cheek Position ## 8.3 Tilted Position - (a) To position the device in the "cheek" position described above. - (b) While maintaining the device the reference plane described above and pivoting against the ear, moves it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost (see Fig. 8.3). Fig 8.3 Illustration for Tilted Position SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PY7PM-0673 Page Number : 24 of 53 Report Issued Date : Jan. 08, 2014 Report Version : Rev. 04 Report Template No. : BU5FAA131010 ## 8.4 Body Worn Position - (a) To position the device parallel to the phantom surface with either keypad up or down. - (b) To adjust the device parallel to the flat phantom. - (c) To adjust the distance between the device surface and the flat phantom to 1.5 cm. Fig 8.4 Illustration for Body Worn Position ## 8.5 Hotspot Position - (a) To position the device parallel to the phantom surface with all sides and either keypad up or down. - (b) To adjust the device parallel to the flat phantom. - (c) To adjust the distance between the device and the flat phantom to 1.0cm. #### <EUT Setup Photos> Please refer to Appendix D for the test setup photos. SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PY7PM-0673 Page Number : 25 of 53 Report Issued Date : Jan. 08, 2014 Report Version : Rev. 04 Report Template No. : BU5FAA131010 ## 9. Measurement Procedures The measurement procedures are as follows: #### <Conducted power measurement> (a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band. Report No.: FA3O2909 - (b) Read the WWAN RF power level from the base station simulator. - (c) For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band - (d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power #### <SAR measurement> - (a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel. - (b) Place the EUT in the positions as Appendix D demonstrates. - (c) Set scan area, grid size and other setting on the DASY software. - (d) Measure SAR results for the highest power channel on each testing position. - (e) Find out the largest SAR result on these testing positions of each band - (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps: - (a) Power reference measurement - (b) Area scan - (c) Zoom scan - (d) Power drift measurement ### 9.1 Spatial Peak SAR Evaluation The procedure for spatial peak SAR evaluation has been implemented according to the test standard.
It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value. The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan. The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages: - (a) Extraction of the measured data (grid and values) from the Zoom Scan - (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters) - (c) Generation of a high-resolution mesh within the measured volume - (d) Interpolation of all measured values form the measurement grid to the high-resolution grid - (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface - (f) Calculation of the averaged SAR within masses of 1g and 10g SPORTON INTERNATIONAL INC. Page Number : 26 of 53 TEL: 886-3-327-3456 Report Issued Date : Jan. 08, 2014 FAX: 886-3-328-4978 Report Version : Rev. 04 FCC ID: PY7PM-0673 Report Template No. : BU5FAA131010 #### 9.2 Power Reference Measurement The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties. ### 9.3 Area & Zoom Scan Procedures First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g. Area scan and zoom scan resolution setting follows KDB 865664 D01v01r02 quoted below. When the 1-g SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are required for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR. | | | | ≤ 3 GHz | > 3 GHz | | | | |--|--|---|---|---|--|--|--| | Maximum distance from
(geometric center of pro | | | 5 ± 1 mm | ½-δ·ln(2) ± 0.5 mm | | | | | Maximum probe angle t
normal at the measurem | | | 30° ± 1° | 20° ± 1° | | | | | | | | ≤ 2 GHz: ≤ 15 mm
2 − 3 GHz: ≤ 12 mm | 3 – 4 GHz: ≤ 12 mm
4 – 6 GHz: ≤ 10 mm | | | | | Maximum area scan spa | atial resoluti | on: ∆x _{Area} , ∆y _{Area} | When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device. | | | | | | Maximum zoom scan sp | oatial resolu | tion: Δx _{Zoom} , Δy _{Zoom} | ≤ 2 GHz: ≤ 8 mm
2 - 3 GHz: ≤ 5 mm* | 3 – 4 GHz: ≤ 5 mm*
4 – 6 GHz: ≤ 4 mm* | | | | | | uniform g | zrid: ∆z _{Zoom} (n) | ≤ 5 mm | 3 – 4 GHz: ≤ 4 mm
4 – 5 GHz: ≤ 3 mm
5 – 6 GHz: ≤ 2 mm | | | | | Maximum zoom scan
spatial resolution,
normal to phantom
surface | dz _{Zoom} (1): between 1 ^s
two points closest to
phantom surface | | ≤ 4 mm | 3 – 4 GHz: ≤ 3 mm
4 – 5 GHz: ≤ 2.5 mm
5 – 6 GHz: ≤ 2 mm | | | | | | grid | Δz _{Zoom} (n>1): between subsequent points | ≤ 1.5·Δz | Z _{Zoom} (n-1) | | | | | Minimum zoom scan volume x, y, z | | ≥ 30 mm | 3 – 4 GHz: ≥ 28 mm
4 – 5 GHz: ≥ 25 mm
5 – 6 GHz: ≥ 22 mm | | | | | Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details. SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PY7PM-0673 Page Number : 27 of 53 Report Issued Date : Jan. 08, 2014 Report Version : Rev. 04 Report Template No. : BU5FAA131010 When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. #### 9.4 Volume Scan Procedures The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR. Report No.: FA3O2909 ### 9.5 SAR Averaged Methods In DASY, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation. Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm. ## 9.6 Power Drift Monitoring All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested. #### 9.7 Bluetooth Exclusions Applied | Mode Band | Average power(dBm) | | | | | | |------------------|--------------------|-------------------|--|--|--|--| | Wode Balld | Bluetooth v3.0+EDR | Bluetooth v4.0+LE | | | | | | 2.4GHz Bluetooth | 9.5 | 9.5 | | | | | #### Note: Per KDB 447498 D01v05r01, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by: [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR - f(GHz) is the RF channel transmit frequency in GHz - Power and distance are rounded to the nearest mW and mm before calculation - The result is rounded to one decimal place for comparison | Bluetooth Max Power (dBm) | Test Distance (mm) | Frequency (GHz) | exclusion thresholds | |---------------------------|--------------------|-----------------|----------------------| | 9.5 | 5 | 2.48 | 2.83 | 2. Per KDB 447498 D01v05r01 exclusion thresholds is 2.83 < 3, RF exposure evaluation is not required. SPORTON INTERNATIONAL INC. Page Number : 28 of 53 TEL: 886-3-327-3456 Report Issued Date : Jan. 08, 2014 FAX: 886-3-328-4978 Report Version : Rev. 04 FCC ID: PY7PM-0673 Report Template No. : BU5FAA131010 ## 10. Conducted RF Output Power (Unit: dBm) #### <GSM Conducted Power> #### Note: - 1. For DTM multi-slot class mode, the device was linked with base station simulator (Agilent E5515C) and transmit maximum power on maximum number of TX slots, i.e. one CS timeslot, and additional PS timeslots (1 for DTM class 5 and 9, 2 for DTM class 11) in one TDMA frame. - 2. Agilent E5515C was used to setup the device operated under DTM mode for power measurement and SAR testing. For conducted power, the power of the burst for voice and the power of the bursts for data was reported separately in the table above, and the frame-average power is derived below to determine SAR testing. DTM frame average power (dBm) = $10*log [\sum (power of each slot, in mW)/8]$ Report No.: FA3O2909 - 3. Per KDB 447498 D01v05r01, the maximum output power channel is used for SAR testing and for further SAR test reduction. - For Head and Body-worn SAR testing, the EUT was set in GSM Voice for GSM850 and DTM Multi-slot class 5 for GSM1900. - 5. For hotspot mode SAR testing, GPRS, EDGE and DTM should be evaluated, therefore the EUT was set in GPRS 1 Tx slot for GSM850 and GPRS 2 Tx slots for GSM1900 due to its highest frame-average power. | | Band GSM850 | Burst Av | erage Powe | er (dBm) | Tune-up | Frame-A | verage Pow | er (dBm) | Tune-up | |-------------------------|-------------------------
----------|------------|----------|---------|-------------------|------------|----------|---------| | | TX Channel | 128 | 189 | 251 | Limit | 128 | 189 | 251 | Limit | | F | requency (MHz) | 824.2 | 836.4 | 848.8 | (dBm) | 824.2 | 836.4 | 848.8 | (dBm) | | GSI | M (GMSK, 1 Tx slot) | 32.95 | 32.97 | 32.91 | 33.00 | 23.95 | 23.97 | 23.91 | 24.00 | | GPR | RS (GMSK, 1 Tx slot) | 32.97 | 32.98 | 32.94 | 33.00 | 23.97 | 23.98 | 23.94 | 24.00 | | GPR | S (GMSK, 2 Tx slots) | 29.91 | 29.94 | 29.86 | 30.00 | 23.91 | 23.94 | 23.86 | 24.00 | | GPR | S (GMSK, 3 Tx slots) | 28.08 | 28.07 | 28.17 | 28.20 | 23.82 | 23.81 | 23.91 | 23.94 | | GPR | S (GMSK, 4 Tx slots) | 26.92 | 26.84 | 26.86 | 27.00 | 23.92 | 23.84 | 23.86 | 24.00 | | EDO | GE (8PSK, 1 Tx slot) | 28.31 | 28.32 | 28.35 | 28.50 | 19.31 | 19.32 | 19.35 | 19.50 | | EDG | E (8PSK, 2 Tx slots) | 25.28 | 25.29 | 25.31 | 25.50 | 19.28 | 19.29 | 19.31 | 19.50 | | EDG | E (8PSK, 3 Tx slots) | 23.47 | 23.45 | 23.46 | 23.70 | 19.21 19.19 19.20 | | | 19.44 | | EDGE (8PSK, 4 Tx slots) | | 22.37 | 22.33 | 22.38 | 22.50 | 19.37 | 19.33 | 19.38 | 19.50 | | DTM 5 | GSM (GMSK, 1 Tx slot) | 29.98 | 29.95 | 29.94 | 30.00 | 22.02 | 22.00 | 22.00 | 22.00 | | (2Tx slots) | GPRS (GMSK, 1 Tx slot) | 29.91 | 29.89 | 29.87 | 30.00 | 23.92 | 23.90 | 23.88 | 23.98 | | DTM 9 | GSM (GMSK, 1 Tx slot) | 29.93 | 29.94 | 29.93 | 30.00 | 23.87 | 23.88 | 23.87 | 23.98 | | (2Tx slots) | GPRS (GMSK, 1 Tx slot) | 29.86 | 29.86 | 29.86 | 30.00 | 23.01 | 23.00 | 23.07 | 23.90 | | DTM 11 | GSM (GMSK, 1 Tx slot) | 28.15 | 28.12 | 28.19 | 28.20 | 23.84 | 23.81 | 23.92 | 23.94 | | (3Tx slots) | GPRS (GMSK, 2 Tx slots) | 28.07 | 28.04 | 28.17 | 28.20 | 23.04 | 23.01 | 23.92 | 23.94 | | DTM 5 | GSM (GMSK, 1 Tx slot) | 29.93 | 29.90 | 29.88 | 30.00 | 22.12 | 22.10 | 22.00 | 22.29 | | (2Tx slots) | EDGE (8PSK, 1 Tx slot) | 25.06 | 25.04 | 25.05 | 25.50 | 22.12 | 22.10 | 22.08 | 22.29 | | DTM 9 | GSM (GMSK, 1 Tx slot) | 29.93 | 29.93 | 29.93 | 30.00 | 22.10 | 22.10 | 22.11 | 22.20 | | (2Tx slots) | EDGE (8PSK, 1 Tx slot) | 24.96 | 24.97 | 24.99 | 25.50 | 22.10 | 22.10 | 22.11 | 22.29 | | DTM 11 | GSM (GMSK, 1 Tx slot) | 28.07 | 28.03 | 28.17 | 28.20 | 21.21 | 24.47 | 24.24 | 21.50 | | (3Tx slots) | | | 23.15 | 23.27 | 23.70 | 21.21 | 21.17 | 21.31 | 21.50 | Remark: The frame-averaged power is linearly scaled the maximum burst averaged power over 8 time slots. The calculated method are shown as below: Frame-averaged power = Maximum burst averaged power (1 Tx Slot) - 9 dB Frame-averaged power = Maximum burst averaged power (2 Tx Slots) - 6 dB Frame-averaged power = Maximum burst averaged power (3 Tx Slots) - 4.26 dB Frame-averaged power = Maximum burst averaged power (4 Tx Slots) - 3 dB SPORTON INTERNATIONAL INC. Page Number : 29 of 53 TEL: 886-3-327-3456 Report Issued Date : Jan. 08, 2014 FAX: 886-3-328-4978 Report Version : Rev. 04 FCC ID: PY7PM-0673 Report Template No. : BU5FAA131010 | | Band GSM1900 | Burst Av | erage Pow | er (dBm) | Tune-up | Frame-A | verage Pow | er (dBm) | Tune-up | |-------------|-----------------------------|----------|-----------|----------|---------|-------------------|------------|----------|---------| | | TX Channel | 512 | 661 | 810 | Limit | 512 | 661 | 810 | Limit | | | Frequency (MHz) | 1850.2 | 1880 | 1909.8 | (dBm) | 1850.2 | 1880 | 1909.8 | (dBm) | | GS | M (GMSK, 1 Tx slot) | 30.90 | 30.84 | 30.89 | 31.00 | 21.90 | 21.84 | 21.89 | 22.00 | | GPF | RS (GMSK, 1 Tx slot) | 30.86 | 30.83 | 30.88 | 31.00 | 21.86 | 21.83 | 21.88 | 22.00 | | GPR | S (GMSK, 2 Tx slots) | 27.95 | 27.90 | 27.85 | 28.00 | 21.95 | 21.90 | 21.85 | 22.00 | | GPR | S (GMSK, 3 Tx slots) | 26.19 | 26.10 | 26.10 | 26.20 | 21.93 | 21.84 | 21.84 | 21.94 | | GPR | S (GMSK, 4 Tx slots) | 24.90 | 24.80 | 24.66 | 25.00 | 21.90 | 21.80 | 21.66 | 22.00 | | EDO | GE (8PSK, 1 Tx slot) | 27.31 | 27.11 | 27.03 | 27.50 | 18.31 | 18.11 | 18.03 | 18.50 | | EDG | GE (8PSK, 2 Tx slots) | 24.48 | 24.28 | 24.19 | 24.50 | 18.48 | 18.28 | 18.19 | 18.50 | | EDG | GE (8PSK, 3 Tx slots) | 22.68 | 22.49 | 22.38 | 22.70 | 18.42 18.23 18.12 | | | 18.44 | | EDG | GE (8PSK, 4 Tx slots) | 21.47 | 21.48 | 21.45 | 21.50 | 18.47 | 18.48 | 18.45 | 18.50 | | DTM 5 | GSM (GMSK, 1 Tx slot) | 27.94 | 27.88 | 27.84 | 28.00 | 21.91 | 21.85 | 21.81 | 21.98 | | (2Tx slots) | GPRS (GMSK, 1 Tx slot) | 27.92 | 27.86 | 27.83 | 28.00 | 21.91 | 21.00 | 21.01 | 21.90 | | DTM 9 | GSM (GMSK, 1 Tx slot) | 27.92 | 27.85 | 27.82 | 28.00 | 21.89 | 21.82 | 21.79 | 21.98 | | (2Tx slots) | GPRS (GMSK, 1 Tx slot) | 27.90 | 27.83 | 27.80 | 28.00 | 21.09 | 21.02 | 21.79 | 21.90 | | DTM 11 | GSM (GMSK, 1 Tx slot) | 26.17 | 26.09 | 26.08 | 26.20 | 21.90 | 21.82 | 21.81 | 21.94 | | (3Tx slots) | GPRS (GMSK, 2 Tx slots) | 26.15 | 26.08 | 26.06 | 26.20 | 21.90 | 21.02 | 21.01 | 21.94 | | DTM 5 | GSM (GMSK, 1 Tx slot) | 27.92 | 27.87 | 27.83 | 28.00 | 20.50 | 20.41 | 20.35 | 20.57 | | (2Tx slots) | EDGE (8PSK, 1 Tx slot) | 24.45 | 24.26 | 24.17 | 24.50 | 20.50 | 20.41 | 20.33 | 20.57 | | DTM 9 | DTM 9 GSM (GMSK, 1 Tx slot) | | 27.86 | 27.81 | 28.00 | 20.49 | 20.40 | 20.34 | 20.57 | | (2Tx slots) | EDGE (8PSK, 1 Tx slot) | 24.43 | 24.24 | 24.16 | 24.50 | 20.49 | 20.40 | 20.34 | 20.37 | | DTM 11 | GSM (GMSK, 1 Tx slot) | 26.15 | 26.07 | 26.06 | 26.20 | 19.89 | 19.76 | 19.70 | 19.94 | | (3Tx slots) | EDGE (8PSK, 2 Tx slots) | 22.65 | 22.45 | 22.35 | 22.70 | 19.09 | 19.70 | 19.70 | 19.94 | Remark: The frame-averaged power is linearly scaled the maximum burst averaged power over 8 time slots. The calculated method are shown as below: Frame-averaged power = Maximum burst averaged power (1 Tx Slot) - 9 dB Frame-averaged power = Maximum burst averaged power (2 Tx Slots) - 6 dB Frame-averaged power = Maximum burst averaged power (3 Tx Slots) - 4.26 dB Frame-averaged power = Maximum burst averaged power (4 Tx Slots) - 3 dB SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PY7PM-0673 Page Number : 30 of 53 Report Issued Date: Jan. 08, 2014 Report Version : Rev. 04 Report Template No. : BU5FAA131010 #### <WCDMA Conducted Power> The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification. Report No.: FA3O2909 A summary of these settings are illustrated below: #### **HSDPA Setup Configuration:** - The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration. - b. The RF path losses were compensated into the measurements. - c. A call was established between EUT and Base Station with following setting: - i. Set Gain Factors (β_c and β_d) and parameters were set according to each - ii. Specific sub-test in the following table, C10.1.4, quoted from the TS 34.121 - iii. Set RMC 12.2Kbps + HSDPA mode. - iv. Set Cell Power = -86 dBm - v. Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK) - vi. Select HSDPA Uplink Parameters - vii. Set Delta ACK, Delta NACK and Delta CQI = 8 - viii. Set Ack-Nack Repetition Factor to 3 - ix. Set CQI Feedback Cycle (k) to 4 ms - x. Set CQI Repetition Factor to 2 - xi. Power Ctrl Mode = All Up bits - d. The transmitted maximum output power was recorded. Table C.10.1.4: β values for transmitter characteristics tests with HS-DPCCH | Sub-test | βο | βd | βd
(SF) | β _c /β _d | βнs
(Note1. | CM (dB)
(Note 3) | MPR (dB)
(Note 3) | |----------|----------|----------|------------|--------------------------------|----------------|---------------------|----------------------| | | | | (37) | | Note 2) | (14010-0) | (14010-0) | | 1 | 2/15 | 15/15 | 64 | 2/15 | 4/15 | 0.0 | 0.0 | | 2 | 12/15 | 15/15 | 64 | 12/15 | 24/15 | 1.0 | 0.0 | | | (Note 4) | (Note 4) | | (Note 4) | | | | | 3 | 15/15 | 8/15 | 64 | 15/8 | 30/15 | 1.5 | 0.5 | | 4 | 15/15 | 4/15 | 64 | 15/4 | 30/15 | 1.5 | 0.5 | - Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 30/15$ with $\beta_{hs} = 30/15 * \beta_{c}$. - Note 2: For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause 5.13.1AA, \triangle ACK and \triangle NACK = 30/15 with β_{hs} = 30/15 * β_c , and \triangle CQI = 24/15 with β_{hs} = 24/15 * β_c . - Note 3: CM = 1 for β_c/β_d =12/15, β_{hs}/β_c =24/15. For all other combinations of DPDCH, DPCCH and HSDPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases. - Note 4: For subtest 2 the β_d/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_0 = 11/15 and β_d = 15/15 Setup Configuration SPORTON INTERNATIONAL INC. Page Number : 31 of 53 TEL: 886-3-327-3456 Report Issued Date : Jan. 08, 2014 FAX: 886-3-328-4978 Report Version : Rev. 04 FCC ID: PY7PM-0673 Report Template No. : BU5FAA131010 #### **HSUPA Setup Configuration:** - a. The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration. - The RF path losses were compensated into the measurements. - A call was established between EUT and Base Station with following setting *: - Call Configs = 5.2B, 5.9B, 5.10B, and 5.13.2B with QPSK - Set the Gain Factors (β_c and β_d) and parameters (AG Index) were set according to each specific sub-test in the following table, C11.1.3, quoted from the TS 34.121 Report No.: FA3O2909 - Set Cell Power = -86 dBm iii. - iv. Set Channel Type = 12.2k + HSPA - Set UE Target Power - vi. Power Ctrl Mode= Alternating bits - vii. Set and observe the E-TFCI - viii. Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1, and other subtest's E-TFCI - The transmitted maximum output power was recorded. Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH | Sub-
test | βε | βa | β _d
(SF) | βc/βd |
βнs
(Note1) | βес | β _{ed}
(Note 5)
(Note 6) | β _{ed}
(SF) | β _{ed}
(Codes) | CM
(dB)
(Note
2) | MPR
(dB)
(Note
2) | AG
Index
(Note
6) | E-
TFCI | |--------------|-------------------|----------------------|------------------------|----------------------|----------------|-------------|--|-------------------------|----------------------------|---------------------------|----------------------------|----------------------------|------------| | 1 | 11/15
(Note 3) | 15/15
(Note
3) | 64 | 11/15
(Note
3) | 22/15 | 209/2
25 | 1309/225 | 4 | 1 | 1.0 | 0.0 | 20 | 75 | | 2 | 6/15 | 15/15 | 64 | 6/15 | 12/15 | 12/15 | 94/75 | 4 | 1 | 3.0 | 2.0 | 12 | 67 | | 3 | 15/15 | 9/15 | 64 | 15/9 | 30/15 | 30/15 | β _{ed} 1: 47/15
β _{ed} 2: 47/15 | 4 | 2 | 2.0 | 1.0 | 15 | 92 | | 4 | 2/15 | 15/15 | 64 | 2/15 | 4/15 | 2/15 | 56/75 | 4 | 1 | 3.0 | 2.0 | 17 | 71 | | 5 | 15/15
(Note 4) | 15/15
(Note
4) | 64 | 15/15
(Note
4) | 30/15 | 24/15 | 134/15 | 4 | 1 | 1.0 | 0.0 | 21 | 81 | Note 1: $\Delta_{\rm ACK}$, $\Delta_{\rm NACK}$ and $\Delta_{\rm CQI}$ = 30/15 with β_{hs} = 30/15 * β_c . CM = 1 for β_c/β_d =12/15, β_{hs}/β_c =24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference. Note 2: Note 3: For subtest 1 the β_0/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 10/15 and β_d = 15/15. Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 14/15 and β_d = 15/15. Note 5: In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to TS25.306 Table 5.1g. Note 6: β_{ed} can not be set directly, it is set by Absolute Grant Value. #### **Setup Configuration** SPORTON INTERNATIONAL INC. Page Number : 32 of 53 TEL: 886-3-327-3456 Report Issued Date: Jan. 08, 2014 FAX: 886-3-328-4978 Report Version : Rev. 04 FCC ID: PY7PM-0673 Report Template No. : BU5FAA131010 ### < WCDMA Conducted Power> #### Note: Per KDB 941225 D02v02r02, RMC 12.2kbps setting is used to evaluate SAR. If HSDPA/HSUPA output power is < 0.25dB higher than RMC, or reported SAR with RMC 12.2kbps setting is ≤ 1.2W/kg, HSDPA/HSUPA SAR evaluation can be excluded. | | Band | | | WCDMA V | | Tune-up | , | WCDMA I | I | Tune-up | |----------|-------------|-----------------|-------|---------|-------|---------|--------|---------|--------|---------| | | TX Chani | nel | 4132 | 4182 | 4233 | Limit | 9262 | 9400 | 9538 | Limit | | | Frequency (| MHz) | 826.4 | 836.4 | 846.6 | (dBm) | 1852.4 | 1880 | 1907.6 | (dBm) | | MDD (4D) | 3GPP Rel 99 | AMR 12.2Kbps | 23.93 | 23.96 | 23.94 | 24.00 | 23.31 | 23.45 | 23.41 | 23.50 | | MPR (dB) | 3GPP Rel 99 | RMC 12.2Kbps | 23.94 | 23.98 | 23.96 | 24.00 | 23.33 | 23.45 | 23.42 | 23.50 | | 0 | 3GPP Rel 6 | HSDPA Subtest-1 | 22.99 | 23.06 | 23.02 | 24.00 | 22.63 | 22.70 | 22.43 | 23.50 | | 0 | 3GPP Rel 6 | HSDPA Subtest-2 | 23.00 | 23.09 | 23.08 | 24.00 | 22.64 | 22.74 | 22.54 | 23.50 | | 0.5 | 3GPP Rel 6 | HSDPA Subtest-3 | 22.54 | 22.59 | 22.57 | 23.50 | 22.15 | 22.16 | 22.14 | 23.00 | | 0.5 | 3GPP Rel 6 | HSDPA Subtest-4 | 22.55 | 22.62 | 22.52 | 23.50 | 22.15 | 22.25 | 22.16 | 23.00 | | 0 | 3GPP Rel 6 | HSUPA Subtest-1 | 22.81 | 22.86 | 22.79 | 24.00 | 22.28 | 22.46 | 22.24 | 23.50 | | 2 | 3GPP Rel 6 | HSUPA Subtest-2 | 21.54 | 21.59 | 21.51 | 23.00 | 21.25 | 21.53 | 21.38 | 22.50 | | 1 | 3GPP Rel 6 | HSUPA Subtest-3 | 22.01 | 22.05 | 21.95 | 23.00 | 21.56 | 21.83 | 21.69 | 22.50 | | 2 | 3GPP Rel 6 | HSUPA Subtest-4 | 21.60 | 21.69 | 21.42 | 23.00 | 21.28 | 21.57 | 21.40 | 22.50 | | 0 | 3GPP Rel 6 | HSUPA Subtest-5 | 22.92 | 22.91 | 22.93 | 24.00 | 22.46 | 22.64 | 22.43 | 23.50 | SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PY7PM-0673 Page Number : 33 of 53 Report Issued Date : Jan. 08, 2014 Report Version : Rev. 04 Report Template No. : BU5FAA131010 #### <WLAN 2.4GHz Conducted Power> | | WLAN | 2.4GHz 802.11b | Average Power (dBi | m) | | | | | | |---------|---------------------------------------|----------------|--------------------|-----------|-----------|-------|--|--|--| | | Power vs. Channel Power vs. Data Rate | | | | | | | | | | Channal | Frequency | Data Rate | 2Mbps | 5.5Mbps | 11Mbps | (dBm) | | | | | Charmer | Channel (MHz) | | Ζίνιομδ | 5.5ivibps | i rivibps | | | | | | CH 1 | 2412 | 14.52 | | | | | | | | | CH 6 | 2437 | 14.81 | 14.71 | 14.61 | 14.67 | 16.0 | | | | | CH 11 | 2462 | 14.77 | | | | | | | | | | | WLAN 2.4GHz 802.11g Average Power (dBm) | | | | | | | | | | | |---------------------------------------|-----------|---|---------|---|--------|----------|----------|----------|----------|------------------|--|--| | Power vs. Channel Power vs. Data Rate | | | | | | | | | | Tune up
Limit | | | | Channel | Frequency | Data Rate | 9Mbps | 9Mbps 12Mbps 18Mbps 24Mbps 36Mbps 48Mbps 54Mbps | | | | | (dBm) | | | | | Channel | (MHz) | 6Mbps | alviops | 121010005 | 18Mbps | 24101000 | JOIVIDPS | 40101DP3 | 341VIDPS | (==::,) | | | | CH 1 | 2412 | 12.06 | | | | | | | | | | | | CH 6 | 2437 | 12.31 | 12.27 | 12.27 | 12.23 | 12.27 | 12.29 | 12.29 | 12.26 | 15.0 | | | | CH 11 | 2462 | 12.29 | | | | | | | | | | | | | | WL | AN 2.4GHz | 802.11n-HT | 20 Average I | Power (dBm) | | | | | |---------------------------------------|-----------|-----------|-----------|------------------------------------|--------------|-------------|--------|-------|------------------|-------| | Power vs. Channel Power vs. MCS Index | | | | | | | | | Tune up
Limit | | | Channel | Frequency | MCS Index | MCS1 | MCS1 MCS2 MCS3 MCS4 MCS5 MCS6 MCS7 | | | | | | (dBm) | | Channel | (MHz) | MCS0 | IVICST | IVICOZ | IVICOS | IVIC 34 | IVICOS | IVICO | IVICO | (5.2) | | CH 1 | 2412 | 10.01 | | | | | | | | | | CH 6 | 2437 | 10.18 | 10.17 | 10.16 | 10.12 | 10.11 | 10.04 | 10.14 | 10.06 | 13.0 | | CH 11 | 2462 | 10.15 | | | | | | | | | #### Note: - Per KDB 248227 D01 v01r02, choose the highest output power channel to test SAR and determine further SAR exclusion - 2. For each frequency band, testing at higher data rates and higher order modulations is not required when the maximum average output power for each of these configurations is less than 1/4dB higher than those measured at the lowest data rate - 3. Apply the test exclusion rule in KDB 248227 D01 v01r02 11g and 11n-HT20 output power is less than 1/4dB higher than 11b mode, thus the SAR can be excluded. SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PY7PM-0673 Page Number : 34 of 53 Report Issued Date : Jan. 08, 2014 Report Version : Rev. 04 Report No.: FA3O2909 Report Template No. : BU5FAA131010 Report No.: FA3O2909 ## 11. Antenna Location | Distance of the Antenna to the EUT surface/edge | | | | | | | | | | |---|--------------|--------|----------|-------------|------------|-----------|--|--|--| | Antennas | ntennas Back | | Top Side | Bottom Side | Right Side | Left Side | | | | | WWAN Main | ≤ 25mm | ≤ 25mm | 99.5 mm | ≤ 25mm | ≤ 25mm | ≤ 25mm | | | | | BT&WLAN | ≤ 25mm | ≤ 25mm | ≤ 25mm | 95.5mm | ≤ 25mm | 51mm | | | | | Positions for SAR tests; Hotspot mode | | | | | | | | | | |---------------------------------------|---------------|-----|----------|-------------|------------|-----------|--|--|--| | Antennas | Antennas Back | | Top Side | Bottom Side | Right Side | Left Side | | | | | WWAN Main | Yes | Yes | No | Yes | Yes | Yes | | | | | BT&WLAN | Yes | Yes | Yes | No | Yes | No | | | | #### Note: 1. Per KDB 941225 D06 v01r01, when the overall device length and width are ≥ 9cm*5cm, the test distance is 10 mm. SAR must be measured for all sides and surfaces with a transmitting antenna located within 25mm from that surface or edge. #### SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PY7PM-0673 Page Number : 35 of 53 Report Issued Date : Jan. 08, 2014 Report Version : Rev. 04 Report Template No. : BU5FAA131010 ## 12. SAR Test Results #### Note: - 1. Per KDB 447498 D01v05r01, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance. - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units. Report No.: FA3O2909 - b. For WWAN/WLAN: Reported SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor - 2. Per KDB 447498 D01v05r01, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance. Per KDB 447498 D01v05r01, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the *reported* 1-g or 10-g SAR for the mid-band or highest output power channel is: - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz - \cdot ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz - Per KDB 447498 D01v05r01, for handsets the test separation distance is determined by the smallest distance between the outer surface of the device and the user; which is 0mm for head SAR, 10mm for hotspot SAR, and 15mm for body-worn SAR. - 4. The device does not have limitation to operate VOIP in EGPRS wireless interface; considering the data rate of EGPRS to support VOIP quality and realistic operation, SAR testing was not performed evaluation VOIP operation in
EGPRS mode. - Per KDB 941225 D02v02r02, RMC 12.2kbps setting is used to evaluate SAR. If HSDPA/HSUPA output power is < 0.25dB higher than RMC, or reported SAR with RMC 12.2kbps setting is ≤ 1.2W/kg, HSDPA/HSUPA SAR evaluation can be excluded. - 6. Per KDB 648474 D04v01r02, when the reported SAR for a body-worn accessory measured without a headset connected to the handset is ≤ 1.2 W/kg, SAR testing with a headset connected to the handset is not required. ### 12.1 Head SAR #### <GSM SAR> | Plot
No. | Band | Mode | Modulation | Test
Position | Ch. | | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | Measured
10g SAR
(W/kg) | Reported
10g SAR
(W/kg) | |-------------|---------|------------------------|------------|------------------|-----|--------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------|-------------------------------|-------------------------------| | 86 | GSM850 | GSM Voice | GMSK | Right Cheek | 189 | 836.4 | 32.97 | 33 | 1.007 | -0.06 | 0.712 | 0.717 | 0.542 | 0.546 | | 87 | GSM850 | GSM Voice | GMSK | Right Tilted | 189 | 836.4 | 32.97 | 33 | 1.007 | -0.05 | 0.419 | 0.422 | 0.321 | 0.323 | | 88 | GSM850 | GSM Voice | GMSK | Left Cheek | 189 | 836.4 | 32.97 | 33 | 1.007 | 0.03 | 0.692 | 0.697 | 0.516 | 0.520 | | 89 | GSM850 | GSM Voice | GMSK | Left Tilted | 189 | 836.4 | 32.97 | 33 | 1.007 | 0.01 | 0.380 | 0.383 | 0.292 | 0.294 | | 21 | GSM1900 | DTM Multi-slot class 5 | GMSK | Right Cheek | 512 | 1850.2 | 27.94 | 28 | 1.014 | 0.13 | 0.344 | 0.349 | 0.224 | 0.227 | | 22 | GSM1900 | DTM Multi-slot class 5 | GMSK | Right Tilted | 512 | 1850.2 | 27.94 | 28 | 1.014 | -0.01 | 0.232 | 0.235 | 0.133 | 0.135 | | 23 | GSM1900 | DTM Multi-slot class 5 | GMSK | Left Cheek | 512 | 1850.2 | 27.94 | 28 | 1.014 | -0.01 | 0.430 | <mark>0.436</mark> | 0.268 | 0.272 | | 24 | GSM1900 | DTM Multi-slot class 5 | GMSK | Left Tilted | 512 | 1850.2 | 27.94 | 28 | 1.014 | 0.08 | 0.235 | 0.238 | 0.144 | 0.146 | SPORTON INTERNATIONAL INC. Page Number : 36 of 53 TEL: 886-3-327-3456 Report Issued Date : Jan. 08, 2014 FAX: 886-3-328-4978 Report Version : Rev. 04 FCC ID: PY7PM-0673 Report Template No.: BU5FAA131010 #### <WCDMA SAR> | Plot
No. | Band | Mode | Modulation | Test
Position | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | Measured
10g SAR
(W/kg) | Reported
10g SAR
(W/kg) | |-------------|----------|--------------|------------|------------------|------|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------|-------------------------------|-------------------------------| | 52 | WCDMA V | RMC 12.2Kbps | QPSK | Right Cheek | 4182 | 836.4 | 23.98 | 24 | 1.005 | 0.06 | 0.585 | 0.588 | 0.449 | 0.451 | | 53 | WCDMA V | RMC 12.2Kbps | QPSK | Right Tilted | 4182 | 836.4 | 23.98 | 24 | 1.005 | 0.01 | 0.329 | 0.331 | 0.256 | 0.257 | | 54 | WCDMA V | RMC 12.2Kbps | QPSK | Left Cheek | 4182 | 836.4 | 23.98 | 24 | 1.005 | -0.02 | 0.542 | 0.545 | 0.403 | 0.405 | | 55 | WCDMA V | RMC 12.2Kbps | QPSK | Left Tilted | 4182 | 836.4 | 23.98 | 24 | 1.005 | 0.01 | 0.332 | 0.334 | 0.254 | 0.255 | | 1 | WCDMA II | RMC 12.2Kbps | QPSK | Right Cheek | 9400 | 1880 | 23.45 | 23.5 | 1.012 | -0.04 | 0.569 | 0.576 | 0.375 | 0.379 | | 2 | WCDMA II | RMC 12.2Kbps | QPSK | Right Tilted | 9400 | 1880 | 23.45 | 23.5 | 1.012 | 0 | 0.417 | 0.422 | 0.241 | 0.244 | | 3 | WCDMA II | RMC 12.2Kbps | QPSK | Left Cheek | 9400 | 1880 | 23.45 | 23.5 | 1.012 | 0.01 | 0.705 | 0.713 | 0.445 | 0.450 | | 4 | WCDMA II | RMC 12.2Kbps | QPSK | Left Tilted | 9400 | 1880 | 23.45 | 23.5 | 1.012 | -0.03 | 0.393 | 0.398 | 0.242 | 0.245 | ### <WLAN2.4GHz SAR> | Plot
No. | Band | Mode | Modulation | Test
Position | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | Measured
10g SAR
(W/kg) | Reported
10g SAR
(W/kg) | |-------------|------------|---------------|------------|------------------|-----|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------|-------------------------------|-------------------------------| | 70 | WLAN2.4GHz | 802.11b 1Mbps | DBPSK | Right Cheek | 6 | 2437 | 14.81 | 16 | 1.315 | 0.016 | 0.122 | 0.160 | 0.065 | 0.085 | | 71 | WLAN2.4GHz | 802.11b 1Mbps | DBPSK | Right Tilted | 6 | 2437 | 14.81 | 16 | 1.315 | 0.004 | 0.099 | 0.130 | 0.052 | 0.068 | | 72 | WLAN2.4GHz | 802.11b 1Mbps | DBPSK | Left Cheek | 6 | 2437 | 14.81 | 16 | 1.315 | -0.14 | 0.193 | <mark>0.254</mark> | 0.098 | <mark>0.129</mark> | | 95 | WLAN2.4GHz | 802.11b 1Mbps | DBPSK | Left Tilted | 6 | 2437 | 14.81 | 16 | 1.315 | -0.174 | 0.122 | 0.160 | 0.059 | 0.078 | # 12.2 Hotspot SAR | | Distance | of the Antenna | to the EUT surf | ace/edge | | | |-----------|----------|----------------|-----------------|-------------|------------|-----------| | Antennas | Back | Front | Top Side | Bottom Side | Right Side | Left Side | | WWAN Main | ≤ 25mm | ≤ 25mm | 99.5 mm | ≤ 25mm | ≤ 25mm | ≤ 25mm | | BT&WLAN | ≤ 25mm | ≤ 25mm | ≤ 25mm | 95.5mm | ≤ 25mm | 51mm | | | Pos | itions for SAR to | ests; Hotspot m | ode | | | |-----------|------|-------------------|-----------------|-------------|------------|-----------| | Antennas | Back | Front | Top Side | Bottom Side | Right Side | Left Side | | WWAN Main | Yes | Yes | No | Yes | Yes | Yes | | BT&WLAN | Yes | Yes | Yes | No | Yes | No | ### Note: Per KDB 941225 D06 v01r01, when the overall device length and width are ≥ 9cm*5cm, the test distance is 10 mm. SAR must be measured for all sides and surfaces with a transmitting antenna located within 25mm from that surface or edge. SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PY7PM-0673 Page Number : 37 of 53 Report Issued Date : Jan. 08, 2014 Report Version : Rev. 04 Report No.: FA3O2909 Report Template No. : BU5FAA131010 ### <GSM SAR> | Plot
No. | Band | Mode | Modulation | Test
Position | Gap
(cm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | Measured
10g SAR
(W/kg) | Reported
10g SAR
(W/kg) | |-------------|---------|-------------------|------------|------------------|-------------|-----|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------|-------------------------------|-------------------------------| | 73 | GSM850 | GPRS (1 Tx slot) | GMSK | Front | 1cm | 189 | 836.4 | 32.98 | 33 | 1.005 | 0.02 | 0.799 | 0.803 | 0.586 | 0.589 | | 74 | GSM850 | GPRS (1 Tx slot) | GMSK | Front | 1cm | 128 | 824.2 | 32.97 | 33 | 1.007 | -0.01 | 0.715 | 0.720 | 0.522 | 0.526 | | 75 | GSM850 | GPRS (1 Tx slot) | GMSK | Front | 1cm | 251 | 848.8 | 32.94 | 33 | 1.014 | 0.04 | 0.768 | 0.779 | 0.565 | 0.573 | | 76 | GSM850 | GPRS (1 Tx slot) | GMSK | Back | 1cm | 189 | 836.4 | 32.98 | 33 | 1.005 | -0.06 | 1.270 | 1.276 | 0.907 | 0.911 | | 77 | GSM850 | GPRS (1 Tx slot) | GMSK | Back | 1cm | 128 | 824.2 | 32.97 | 33 | 1.007 | 80.0 | 1.300 | 1.309 | 0.924 | 0.930 | | 78 | GSM850 | GPRS (1 Tx slot) | GMSK | Back | 1cm | 251 | 848.8 | 32.94 | 33 | 1.014 | 0.02 | 1.160 | 1.176 | 0.835 | 0.847 | | 79 | GSM850 | GPRS (1 Tx slot) | GMSK | Left Side | 1cm | 189 | 836.4 | 32.98 | 33 | 1.005 | 0 | 0.756 | 0.759 | 0.515 | 0.517 | | 80 | GSM850 | GPRS (1 Tx slot) | GMSK | Right Side | 1cm | 189 | 836.4 | 32.98 | 33 | 1.005 | 0.04 | 0.703 | 0.706 | 0.488 | 0.490 | | 81 | GSM850 | GPRS (1 Tx slot) | GMSK | Bottom Side | 1cm | 189 | 836.4 | 32.98 | 33 | 1.005 | -0.01 | 0.162 | 0.163 | 0.092 | 0.092 | | 14 | GSM1900 | GPRS (2 Tx slots) | GMSK | Front | 1cm | 512 | 1850.2 | 27.95 | 28 | 1.012 | 0.04 | 0.456 | 0.461 | 0.279 | 0.282 | | 15 | GSM1900 | GPRS (2 Tx slots) | GMSK | Back | 1cm | 512 | 1850.2 | 27.95 | 28 | 1.012 | -0.01 | 0.594 | <mark>0.601</mark> | 0.356 | <mark>0.360</mark> | | 16 | GSM1900 | GPRS (2 Tx slots) | GMSK | Left Side | 1cm | 512 | 1850.2 | 27.95 | 28 | 1.012 | 0.04 | 0.138 | 0.140 | 0.081 | 0.082 | | 17 | GSM1900 | GPRS (2 Tx slots) | GMSK | Right Side | 1cm | 512 | 1850.2 | 27.95 | 28 | 1.012 | 0.08 | 0.114 | 0.115 | 0.067 | 0.068 | | 18 | GSM1900 | GPRS (2 Tx slots) | GMSK | Bottom Side | 1cm | 512 | 1850.2 | 27.95 | 28 | 1.012 | 0.01 | 0.498 | 0.504 | 0.264 | 0.267 | ### <WCDMA SAR> | Plot
No. | Band | Mode | Modulation | Test
Position | Gap
(cm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | Measured
10g SAR
(W/kg) | Reported
10g SAR
(W/kg) | |-------------|----------|--------------|------------|------------------|-------------|------|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------|-------------------------------|-------------------------------| | 33 | WCDMA V | RMC 12.2Kbps | QPSK | Front | 1cm | 4182 | 836.4 | 23.98 | 24 | 1.005 | -0.04 | 0.758 | 0.761 | 0.559 | 0.562 | | 34 | WCDMA V | RMC 12.2Kbps | QPSK | Back |
1cm | 4182 | 836.4 | 23.98 | 24 | 1.005 | -0.01 | 1.290 | 1.296 | 0.931 | 0.935 | | 35 | WCDMA V | RMC 12.2Kbps | QPSK | Left Side | 1cm | 4182 | 836.4 | 23.98 | 24 | 1.005 | 0.03 | 0.654 | 0.657 | 0.452 | 0.454 | | 36 | WCDMA V | RMC 12.2Kbps | QPSK | Right Side | 1cm | 4182 | 836.4 | 23.98 | 24 | 1.005 | 0.03 | 0.703 | 0.706 | 0.493 | 0.495 | | 37 | WCDMA V | RMC 12.2Kbps | QPSK | Bottom Side | 1cm | 4182 | 836.4 | 23.98 | 24 | 1.005 | 0.04 | 0.129 | 0.130 | 0.075 | 0.075 | | 38 | WCDMA V | RMC 12.2Kbps | QPSK | Back | 1cm | 4132 | 826.4 | 23.94 | 24 | 1.014 | -0.04 | 1.250 | 1.267 | 0.899 | 0.912 | | 39 | WCDMA V | RMC 12.2Kbps | QPSK | Back | 1cm | 4233 | 846.6 | 23.96 | 24 | 1.009 | 0.01 | 1.260 | 1.272 | 0.919 | 0.928 | | 5 | WCDMA II | RMC 12.2Kbps | QPSK | Front | 1cm | 9400 | 1880 | 23.45 | 23.5 | 1.012 | -0.08 | 0.727 | 0.735 | 0.441 | 0.446 | | 6 | WCDMA II | RMC 12.2Kbps | QPSK | Back | 1cm | 9400 | 1880 | 23.45 | 23.5 | 1.012 | -0.08 | 1.100 | 1.113 | 0.649 | 0.657 | | 9 | WCDMA II | RMC 12.2Kbps | QPSK | Left Side | 1cm | 9400 | 1880 | 23.45 | 23.5 | 1.012 | -0.13 | 0.213 | 0.215 | 0.126 | 0.127 | | 10 | WCDMA II | RMC 12.2Kbps | QPSK | Right Side | 1cm | 9400 | 1880 | 23.45 | 23.5 | 1.012 | -0.02 | 0.187 | 0.189 | 0.109 | 0.110 | | 11 | WCDMA II | RMC 12.2Kbps | QPSK | Bottom Side | 1cm | 9400 | 1880 | 23.45 | 23.5 | 1.012 | 0.03 | 0.989 | 1.000 | 0.526 | 0.532 | | 93 | WCDMA II | RMC 12.2Kbps | QPSK | Back | 1cm | 9262 | 1852.4 | 23.33 | 23.5 | 1.040 | -0.1 | 1.300 | <mark>1.352</mark> | 0.758 | <mark>0.788</mark> | | 8 | WCDMA II | RMC 12.2Kbps | QPSK | Back | 1cm | 9538 | 1907.6 | 23.33 | 23.5 | 1.040 | -0.02 | 1.100 | 1.144 | 0.652 | 0.678 | | 31 | WCDMA II | RMC 12.2Kbps | QPSK | Bottom Side | 1cm | 9262 | 1852.4 | 23.33 | 23.5 | 1.040 | 0.19 | 0.863 | 0.897 | 0.458 | 0.476 | | 32 | WCDMA II | RMC 12.2Kbps | QPSK | Bottom Side | 1cm | 9538 | 1907.6 | 23.42 | 23.5 | 1.019 | -0.11 | 0.933 | 0.950 | 0.494 | 0.503 | ### <WLAN2.4GHz SAR> | Plot
No. | Band | Mode | Modulation | Test
Position | Gap
(cm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | Measured
10g SAR
(W/kg) | Reported
10g SAR
(W/kg) | |-------------|------------|---------------|------------|------------------|-------------|-----|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------|-------------------------------|-------------------------------| | 63 | WLAN2.4GHz | 802.11b 1Mbps | DBPSK | Front | 1cm | 6 | 2437 | 14.81 | 16 | 1.315 | 0.092 | 0.055 | 0.072 | 0.031 | 0.041 | | 64 | WLAN2.4GHz | 802.11b 1Mbps | DBPSK | Back | 1cm | 6 | 2437 | 14.81 | 16 | 1.315 | -0.023 | 0.093 | 0.122 | 0.055 | 0.072 | | 65 | WLAN2.4GHz | 802.11b 1Mbps | DBPSK | Left Side | 1cm | 6 | 2437 | 14.81 | 16 | 1.315 | 0.081 | 0.022 | 0.029 | 0.012 | 0.016 | | 66 | WLAN2.4GHz | 802.11b 1Mbps | DBPSK | Right Side | 1cm | 6 | 2437 | 14.81 | 16 | 1.315 | 0.137 | 0.083 | 0.109 | 0.045 | 0.059 | | 67 | WLAN2.4GHz | 802.11b 1Mbps | DBPSK | Top Side | 1cm | 6 | 2437 | 14.81 | 16 | 1.315 | 0.062 | 0.052 | 0.068 | 0.028 | 0.037 | SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PY7PM-0673 Page Number : 38 of 53 Report Issued Date : Jan. 08, 2014 Report Version : Rev. 04 Report Template No. : BU5FAA131010 ### 12.3 Body Worn SAR #### <GSM SAR> | Plot
No. | Band | Mode | Modulation | Test
Position | Gap
(cm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | Measured
10g SAR
(W/kg) | Reported
10g SAR
(W/kg) | |-------------|---------|------------------------|------------|------------------|-------------|-----|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------|-------------------------------|-------------------------------| | 82 | GSM850 | GSM Voice | GMSK | Front | 1.5cm | 189 | 836.4 | 32.97 | 33 | 1.007 | 0.05 | 0.717 | 0.722 | 0.53 | 0.534 | | 83 | GSM850 | GSM Voice | GMSK | Back | 1.5cm | 189 | 836.4 | 32.97 | 33 | 1.007 | 0.04 | 1.110 | <mark>1.118</mark> | 0.793 | <mark>0.798</mark> | | 84 | GSM850 | GSM Voice | GMSK | Back | 1.5cm | 128 | 824.2 | 32.95 | 33 | 1.012 | -0.01 | 1.070 | 1.082 | 0.767 | 0.776 | | 85 | GSM850 | GSM Voice | GMSK | Back | 1.5cm | 251 | 848.8 | 32.91 | 33 | 1.021 | -0.02 | 1.030 | 1.052 | 0.740 | 0.755 | | 19 | GSM1900 | DTM Multi-slot class 5 | GMSK | Front | 1.5cm | 512 | 1850.2 | 27.94 | 28 | 1.014 | -0.01 | 0.309 | 0.313 | 0.192 | <mark>0.195</mark> | | 20 | GSM1900 | DTM Multi-slot class 5 | GMSK | Back | 1.5cm | 512 | 1850.2 | 27.94 | 28 | 1.014 | -0.06 | 0.310 | 0.314 | 0.189 | 0.192 | #### <WCDMA SAR> | Plot
No. | Band | Mode | Modulation | Test
Position | Gap
(cm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | Measured
10g SAR
(W/kg) | Reported
10g SAR
(W/kg) | |-------------|----------|--------------|------------|------------------|-------------|------|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------|-------------------------------|-------------------------------| | 40 | WCDMA V | RMC 12.2Kbps | QPSK | Front | 1.5cm | 4182 | 836.4 | 23.98 | 24 | 1.005 | -0.02 | 0.631 | 0.634 | 0.471 | 0.473 | | 41 | WCDMA V | RMC 12.2Kbps | QPSK | Back | 1.5cm | 4182 | 836.4 | 23.98 | 24 | 1.005 | 0.06 | 0.995 | 1.000 | 0.729 | <mark>0.732</mark> | | 42 | WCDMA V | RMC 12.2Kbps | QPSK | Back | 1.5cm | 4132 | 826.4 | 23.94 | 24 | 1.014 | -0.02 | 0.942 | 0.955 | 0.69 | 0.700 | | 43 | WCDMA V | RMC 12.2Kbps | QPSK | Back | 1.5cm | 4233 | 846.6 | 23.96 | 24 | 1.009 | 0.03 | 0.953 | 0.962 | 0.699 | 0.705 | | 12 | WCDMA II | RMC 12.2Kbps | QPSK | Front | 1.5cm | 9400 | 1880 | 23.45 | 23.5 | 1.012 | -0.06 | 0.536 | 0.542 | 0.336 | 0.340 | | 13 | WCDMA II | RMC 12.2Kbps | QPSK | Back | 1.5cm | 9400 | 1880 | 23.45 | 23.5 | 1.012 | -0.05 | 0.553 | 0.559 | 0.341 | 0.345 | #### <WLAN2.4GHz SAR> | Plot
No. | | Mode | Modulation | Test
Position | Gap
(cm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | Measured
10g SAR
(W/kg) | Reported
10g SAR
(W/kg) | |-------------|------------|---------------|------------|------------------|-------------|-----|----------------|---------------------------|---------------------------|------------------------------|--------|------------------------------|------------------------------|-------------------------------|-------------------------------| | 98 | WLAN2.4GHz | 802.11b 1Mbps | DBPSK | Back | 1.5cm | 6 | 2437 | 14.81 | 16 | 1.315 | -0.008 | 0.024 | 0.032 | 0.014 | 0.018 | | 99 | WLAN2.4GHz | 802.11b 1Mbps | DBPSK | Back | 1.5cm | 6 | 2437 | 14.81 | 16 | 1.315 | -0.022 | 0.033 | 0.043 | 0.018 | <mark>0.024</mark> | ### 12.4 Repeated SAR Measurement | Plot
No. | Band | Mode | Modulation | | Gap
(cm) | | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Ratio | Reported
1g SAR
(W/kg) | |-------------|----------|------------------|------------|------|-------------|------|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|-------|------------------------------| | 77 | GSM850 | GPRS (1 Tx slot) | GMSK | Back | 1cm | 128 | 824.2 | 32.97 | 33 | 1.007 | 0.08 | 1.300 | - | 1.309 | | 94 | GSM850 | GPRS (1 Tx slot) | GMSK | Back | 1cm | 128 | 824.2 | 32.97 | 33 | 1.007 | -0.02 | 1.130 | 1.15 | 1.138 | | 93 | WCDMA II | RMC 12.2Kbps | QPSK | Back | 1cm | 9262 | 1852.4 | 23.33 | 23.5 | 1.040 | -0.1 | 1.300 | - | 1.352 | | 7 | WCDMA II | RMC 12.2Kbps | QPSK | Back | 1cm | 9262 | 1852.4 | 23.33 | 23.5 | 1.040 | -0.02 | 1.290 | 1.01 | 1.341 | #### Note: - 1. Per KDB 865664 D01v01r02, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg - 2. Per KDB 865664 D01v01r02, if the ratio among the repeated measurement is ≤ 1.2 and the measured SAR <1.45W/kg, only one repeated measurement is required. - 3. The ratio is the largest SAR to the smallest SAR among original and repeated measurement. - 4. All measurement SAR result is scaled-up to account for tune-up tolerance and is compliant. SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PY7PM-0673 Page Number : 39 of 53 Report Issued Date : Jan. 08, 2014 Report Version : Rev. 04 Report Template No. : BU5FAA131010 ### 12.5 Highest SAR Plot Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2013/11/7 #### #77_GSM850_GPRS (1 Tx slot)_Back_1cm_Ch128 Communication System: GSM850; Frequency: 824.2 MHz; Duty Cycle: 1:8.3 Medium: MSL_850_131107 Medium parameters used: f = 824.2 MHz; $\sigma = 0.943$ S/m; $\varepsilon_r = 52.797$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.7 °C; Liquid Temperature: 22.7 °C #### DASY5 Configuration: - Probe: ES3DV3 SN3270; ConvF(6.08, 6.08, 6.08); Calibrated: 2013/9/24; - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn778; Calibrated: 2013/8/21 - Phantom: SAM-Left; Type: QD 000 P40 C; Serial: TP-1478 - Measurement SW: DASY52, Version
52.8 (6); SEMCAD X Version 14.6.9 (7117) Configuration/Ch128/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.46 W/kg ### Configuration/Ch128/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 40.330 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 1.85 W/kg #### SAR(1 g) = 1.3 W/kg; SAR(10 g) = 0.924 W/kg Maximum value of SAR (measured) = 1.48 W/kg # Configuration/Ch128/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 40.330 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 1.80 W/kg #### SAR(1 g) = 1.05 W/kg; SAR(10 g) = 0.649 W/kg Maximum value of SAR (measured) = 1.27 W/kg 0 dB = 1.27 W/kg = 1.04 dBW/kg #### SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PY7PM-0673 Page Number : 40 of 53 Report Issued Date : Jan. 08, 2014 Report Version : Rev. 04 Report Template No. : BU5FAA131010 C SAR Test Report No. : FA3O2909 Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2013/11/3 #### #15_GSM1900_GPRS (2 Tx slots)_Back_1cm_Ch512 Communication System: PCS; Frequency: 1850.2 MHz; Duty Cycle: 1:4.15 Medium: MSL_1900_131103 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.464$ S/m; $\epsilon_r = 54.933$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.2 °C; Liquid Temperature: 22.2 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3925; ConvF(7.91, 7.91, 7.91); Calibrated: 2013/6/12; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn778; Calibrated: 2013/8/21 - Phantom: SAM-Left; Type: QD 000 P40 C; Serial: TP-1478 - Measurement SW: DASY52, Version 52.8 (6); SEMCAD X Version 14.6.9 (7117) Configuration/Ch512/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.822 W/kg # Configuration/Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.566 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.966 W/kg #### SAR(1 g) = 0.594 W/kg; SAR(10 g) = 0.356 W/kg Maximum value of SAR (measured) = 0.773 W/kg 0 dB = 0.773 W/kg = -1.12 dBW/kg TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PY7PM-0673 Page Number : 41 of 53 Report Issued Date : Jan. 08, 2014 Report Version : Rev. 04 Report Template No. : BU5FAA131010 FCC SAR Test Report Report No.: FA3O2909 Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2013/11/3 #### #34_WCDMA V_RMC 12.2Kbps_Back_1cm_Ch4182 Communication System: WCDMA; Frequency: 836.4 MHz; Duty Cycle: 1:1 Medium: MSL_850_131103 Medium parameters used: f = 836.4 MHz; $\sigma = 0.987$ S/m; $\epsilon_r = 54.539$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.4°C; Liquid Temperature: 22.4°C #### DASY5 Configuration: - Probe: EX3DV4 SN3925; ConvF(10.02, 10.02, 10.02); Calibrated: 2013/6/12; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn778; Calibrated: 2013/8/21 - Phantom: SAM-Right; Type: QD 000 P40 C; Serial: TP-1446 - Measurement SW: DASY52, Version 52.8 (6); SEMCAD X Version 14.6.9 (7117) Configuration/Ch4182/Area Scan (61x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.53 W/kg # Configuration/Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 40.082 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 1.74 W/kg #### SAR(1 g) = 1.29 W/kg; SAR(10 g) = 0.931 W/kg Maximum value of SAR (measured) = 1.53 W/kg 0 dB = 1.53 W/kg = 1.85 dBW/kg TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PY7PM-0673 Page Number : 42 of 53 Report Issued Date : Jan. 08, 2014 Report Version : Rev. 04 Report Template No. : BU5FAA131010 Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2013/11/3 #### #93_WCDMA II_RMC 12.2Kbps_Back_1cm_Ch9262 Communication System: WCDMA; Frequency: 1852.4 MHz; Duty Cycle: 1:1 $Medium: MSL_1900_131103 \ Medium \ parameters \ used: f=1852.4 \ MHz; \ \sigma=1.467 \ S/m; \ \epsilon_r=54.927;$ $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.2 °C; Liquid Temperature: 22.2 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3925; ConvF(7.91, 7.91, 7.91); Calibrated: 2013/6/12; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn778; Calibrated: 2013/8/21 - Phantom: SAM-Left; Type: QD 000 P40 C; Serial: TP-1478 - Measurement SW: DASY52, Version 52.8 (6); SEMCAD X Version 14.6.9 (7117) **Configuration/Ch9262/Area Scan (61x101x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.71 W/kg ### Configuration/Ch9262/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 33.227 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 2.13 W/kg ### SAR(1 g) = 1.3 W/kg; SAR(10 g) = 0.758 W/kg Maximum value of SAR (measured) = 1.74 W/kg 0 dB = 1.74 W/kg = 2.41 dBW/kg TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PY7PM-0673 Page Number : 43 of 53 Report Issued Date : Jan. 08, 2014 Report Version : Rev. 04 Report Template No. : BU5FAA131010 Report No.: FA3O2909 Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2013/11/20 #### #72_WLAN2.4GHz_802.11b 1Mbps_Left Cheek_Ch6 Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: HSL_2450_131120 Medium parameters used: f = 2437 MHz; $\sigma = 1.84$ mho/m; $\varepsilon_r = 39.3$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.4 °C; Liquid Temperature: 22.4 °C #### DASY4 Configuration: - Probe: EX3DV4 SN3935; ConvF(7.43, 7.43, 7.43); Calibrated: 2013/11/4 - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1338; Calibrated: 2013/11/5 - Phantom: SAM_Left; Type: SAM; Serial: TP-1150 - Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 ### Ch6/Area Scan (71x121x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.277 mW/g #### Ch6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 12.2 V/m; Power Drift = -0.140 dB Peak SAR (extrapolated) = 0.381 W/kg #### SAR(1 g) = 0.193 mW/g; SAR(10 g) = 0.098 mW/g Maximum value of SAR (measured) = 0.282 mW/g 0 dB = 0.282 mW/g TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PY7PM-0673 Page Number : 44 of 53 Report Issued Date: Jan. 08, 2014 Report Version : Rev. 04 Report Template No. : BU5FAA131010 ### 13. Simultaneous Transmission Analysis | NO | Cimultona que Transmission Configurations | | Smart Phone | | Note | |-----|---|--------------------|--------------------|---------|-----------------------| | NO. | Simultaneous Transmission Configurations | Head | Body-worn | Hotspot | Note | | 1. | GSM(Voice) + WLAN2.4GHz(data) | Yes | Yes | | | | 2. | WCDMA(Voice) + WLAN2.4GHz(data) | Yes | Yes | | | | 3. | GSM(Voice) + Bluetooth(data) | Yes | Yes | | | | 4. | WCDMA(Voice) + Bluetooth(data) | Yes | Yes | | | | 5. | GPRS/EDGE(Data) + WLAN2.4GHz(data) | ⁽¹⁾ Yes | ⁽¹⁾ Yes | Yes | Hotspot / WiFi Direct | | 6. | WCDMA(Data) + WLAN2.4GHz(data) | Yes | Yes | Yes | Hotspot / WiFi Direct | | 7. | GPRS/EDGE(Data) + Bluetooth(data) | ⁽¹⁾ Yes | ⁽¹⁾ Yes | Yes | Bluetooth Tethering | | 8. | WCDMA(Data) + Bluetooth(data) | Yes | Yes | Yes | Bluetooth Tethering | Report No.: FA3O2909 #### Note: - Considering the possibility of 3rd party VoIP app installation by end users and the device does not have limitation to operate VoIP in EGPRS wireless interface; considering the data rate of EGPRS to support VOIP quality and realistic operation, SAR testing was not performed evaluation VOIP operation in EGPRS mode. - WLAN and Bluetooth share the same antenna, and cannot transmit simultaneously. - The Scaled SAR summation is calculated based on the same configuration and test position. - Per KDB 447498 D01v05r01, simultaneous transmission SAR is compliant if. - i) Scalar SAR summation < 1.6W/kg. ii) SPLSR = (SAR₁ + SAR₂)^{1.5} / (*min. separation distance, mm*), and the peak separation distance is determined from the square root of [(x₁-x₂)² + (y₁-y₂)² + (z₁-z₂)²], where (x₁, y₁, z₁) and (x₂, y₂, z₂) are the coordinates of the extrapolated peak SAR locations in the zoom scan - If SPLSR ≤ 0.04, simultaneously transmission SAR measurement is not necessary - iii) Simultaneously transmission SAR measurement, and the reported multi-band SAR < 1.6W/kg - For simultaneous transmission analysis, Bluetooth SAR is estimated per KDB 447498 D01v05r01 based on the formula below. - (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)][√f(GHz)/x] W/kg for test separation distances \leq 50 mm; where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR. - ii) 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm. | Bluetooth | Exposure Position | Head | Hotspot | Body-worn | |-----------|--------------------------|------------|------------|------------| | Max Power | Test separation | 0 mm | 10 mm | 15 mm | | 9.5 dBm | Estimated 1g SAR (W/kg) | 0.378 W/kg | 0.189 W/kg | 0.126 W/kg | | 9.5 dBm | Estimated 10g SAR (W/kg) | 0.151 W/kg | 0.076 W/kg | 0.050 W/kg | SPORTON INTERNATIONAL INC. : 45 of 53 Page Number TEL: 886-3-327-3456 Report Issued Date: Jan. 08, 2014 FAX: 886-3-328-4978 Report Version : Rev. 04 FCC ID: PY7PM-0673 Report Template No. : BU5FAA131010 # 13.1 Head Exposure Conditions #### <WWAN + WLAN2.4GHz> | | | WWAN | | W | LAN | Summed | |----------------|-----------|---------|---------------|------------|---------------|---------------| | Position | WWAN Band | Plot No | SAR
(W/kg) | Plot
No | SAR
(W/kg) | 1g SAR (W/kg) | | | GSM850 | 86 | 0.717 | 70 | 0.160 | 0.88 | | Diaht Chook | GSM1900 | 21 | 0.349 | 70 | 0.160 | 0.51 | | Right Cheek | WCDMA V | 52 | 0.588 | 70 | 0.160 | 0.75 | | | WCDMA II | 1 | 0.576 | 70 | 0.160 | 0.74 | | | GSM850 | 87 | 0.422 | 71 | 0.130 | 0.55 | | Dialet Tilta d | GSM1900 | 22 | 0.235 | 71 | 0.130 | 0.37 | | Right Tilted | WCDMA V | 53 | 0.331 | 71 |
0.130 | 0.46 | | | WCDMA II | 2 | 0.422 | 71 | 0.130 | 0.55 | | | GSM850 | 88 | 0.697 | 72 | 0.254 | 0.95 | | Laft Ohaali | GSM1900 | 23 | 0.436 | 72 | 0.254 | 0.69 | | Left Cheek | WCDMA V | 54 | 0.545 | 72 | 0.254 | 0.80 | | | WCDMA II | 3 | 0.713 | 72 | 0.254 | 0.97 | | | GSM850 | 89 | 0.383 | 95 | 0.160 | 0.54 | | Left Tilted | GSM1900 | 24 | 0.238 | 95 | 0.160 | 0.40 | | | WCDMA V | 55 | 0.334 | 95 | 0.160 | 0.49 | | | WCDMA II | 4 | 0.398 | 95 | 0.160 | 0.56 | | | | WWAN | | WI | _AN | Summed | |--------------|-----------|---------|---------------|------------|---------------|----------------| | Position | WWAN Band | Plot No | SAR
(W/kg) | Plot
No | SAR
(W/kg) | 10g SAR (W/kg) | | | GSM850 | 86 | 0.546 | 70 | 0.085 | 0.63 | | Diaht Chaol | GSM1900 | 21 | 0.227 | 70 | 0.085 | 0.31 | | Right Cheek | WCDMA V | 52 | 0.451 | 70 | 0.085 | 0.54 | | | WCDMA II | 1 | 0.379 | 70 | 0.085 | 0.46 | | | GSM850 | 87 | 0.323 | 71 | 0.068 | 0.39 | | Dialet Tite | GSM1900 | 22 | 0.135 | 71 | 0.068 | 0.20 | | Right Tilted | WCDMA V | 53 | 0.257 | 71 | 0.068 | 0.33 | | | WCDMA II | 2 | 0.244 | 71 | 0.068 | 0.31 | | | GSM850 | 88 | 0.520 | 72 | 0.129 | 0.65 | | Laft Ohaala | GSM1900 | 23 | 0.272 | 72 | 0.129 | 0.40 | | Left Cheek | WCDMA V | 54 | 0.405 | 72 | 0.129 | 0.53 | | | WCDMA II | 3 | 0.450 | 72 | 0.129 | 0.58 | | | GSM850 | 89 | 0.294 | 95 | 0.078 | 0.37 | | Laft Tilta d | GSM1900 | 24 | 0.146 | 95 | 0.078 | 0.22 | | Left Tilted | WCDMA V | 55 | 0.255 | 95 | 0.078 | 0.33 | | | WCDMA II | 4 | 0.245 | 95 | 0.078 | 0.32 | SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PY7PM-0673 Page Number : 46 of 53 Report Issued Date : Jan. 08, 2014 Report Version : Rev. 04 Report Template No. : BU5FAA131010 #### <WWAN + Bluetooth> | | | WWAN | | Bluetooth | Summed | |--------------|-----------|---------|---------------|-------------------------|---------------| | Position | WWAN Band | Plot No | SAR
(W/kg) | Estimated
SAR (W/kg) | 1g SAR (W/kg) | | | GSM850 | 86 | 0.717 | 0.378 | 1.10 | | Dight Chaols | GSM1900 | 21 | 0.349 | 0.378 | 0.73 | | Right Cheek | WCDMA V | 52 | 0.588 | 0.378 | 0.97 | | | WCDMA II | 1 | 0.576 | 0.378 | 0.95 | | | GSM850 | 87 | 0.422 | 0.378 | 0.80 | | Diaht Tiltod | GSM1900 | 22 | 0.235 | 0.378 | 0.61 | | Right Tilted | WCDMA V | 53 | 0.331 | 0.378 | 0.71 | | | WCDMA II | 2 | 0.422 | 0.378 | 0.80 | | | GSM850 | 88 | 0.697 | 0.378 | 1.08 | | Loft Chook | GSM1900 | 23 | 0.436 | 0.378 | 0.81 | | Left Cheek | WCDMA V | 54 | 0.545 | 0.378 | 0.92 | | | WCDMA II | 3 | 0.713 | 0.378 | 1.09 | | | GSM850 | 89 | 0.383 | 0.378 | 0.76 | | Laft Tiltad | GSM1900 | 24 | 0.238 | 0.378 | 0.62 | | Left Tilted | WCDMA V | 55 | 0.334 | 0.378 | 0.71 | | | WCDMA II | 4 | 0.398 | 0.378 | 0.78 | | | | WWAN | | Bluetooth | Summed | |--------------|-----------|---------|---------------|-------------------------|----------------| | Position | WWAN Band | Plot No | SAR
(W/kg) | Estimated
SAR (W/kg) | 10g SAR (W/kg) | | | GSM850 | 86 | 0.546 | 0.151 | 0.70 | | Diaht Chask | GSM1900 | 21 | 0.227 | 0.151 | 0.38 | | Right Cheek | WCDMA V | 52 | 0.451 | 0.151 | 0.60 | | | WCDMA II | 1 | 0.379 | 0.151 | 0.53 | | | GSM850 | 87 | 0.323 | 0.151 | 0.47 | | Diaht Tiltod | GSM1900 | 22 | 0.135 | 0.151 | 0.29 | | Right Tilted | WCDMA V | 53 | 0.257 | 0.151 | 0.41 | | | WCDMA II | 2 | 0.244 | 0.151 | 0.40 | | | GSM850 | 88 | 0.520 | 0.151 | 0.67 | | Loft Chook | GSM1900 | 23 | 0.272 | 0.151 | 0.42 | | Left Cheek | WCDMA V | 54 | 0.405 | 0.151 | 0.56 | | | WCDMA II | 3 | 0.450 | 0.151 | 0.60 | | | GSM850 | 89 | 0.294 | 0.151 | 0.45 | | Left Tilted | GSM1900 | 24 | 0.146 | 0.151 | 0.30 | | | WCDMA V | 55 | 0.255 | 0.151 | 0.41 | | | WCDMA II | 4 | 0.245 | 0.151 | 0.40 | SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PY7PM-0673 Page Number : 47 of 53 Report Issued Date : Jan. 08, 2014 Report Version : Rev. 04 Report Template No. : BU5FAA131010 # 13.2 Hotspot Exposure Conditions | | Distance of the Antenna to the EUT surface/edge | | | | | | | | | |----------------|---|---------------------|-------------------|-------------|------------|-----------|--|--|--| | Antennas | Back | Front | Top Side | Bottom Side | Right Side | Left Side | | | | | WWAN Main | ≤ 25mm | ≤ 25mm | 99.5 mm | ≤ 25mm | ≤ 25mm | ≤ 25mm | | | | | BT&WLAN | ≤ 25mm | ≤ 25mm | ≤ 25mm | 95.5mm | ≤ 25mm | 51mm | | | | | | Po | ositions for SAR to | ests; Hotspot mod | de | | | | | | | Antennas | Back | Front | Top Side | Bottom Side | Right Side | Left Side | | | | | WWAN Main | Yes | Yes | No | Yes | Yes | Yes | | | | | BT&WLAN | Yes | Yes | Yes | No | Yes | No | | | | | | Simultaneous Transmission | | | | | | | | | | WWAN + BT&WLAN | Yes | Yes | No | No | Yes | No | | | | #### <WWAN + WLAN2.4GHz> | | | WWAN | | W | LAN | Summed | |------------|-----------|---------|---------------|------------|---------------|---------------| | Position | WWAN Band | Plot No | SAR
(W/kg) | Plot
No | SAR
(W/kg) | 1g SAR (W/kg) | | | GSM850 | 73 | 0.803 | 63 | 0.072 | 0.88 | | Front | GSM1900 | 14 | 0.461 | 63 | 0.072 | 0.53 | | FION | WCDMA V | 33 | 0.761 | 63 | 0.072 | 0.83 | | | WCDMA II | 5 | 0.735 | 63 | 0.072 | 0.81 | | | GSM850 | 77 | 1.309 | 64 | 0.122 | 1.43 | | Dools | GSM1900 | 15 | 0.601 | 64 | 0.122 | 0.72 | | Back | WCDMA V | 34 | 1.296 | 64 | 0.122 | 1.42 | | | WCDMA II | 93 | 1.352 | 64 | 0.122 | 1.47 | | | GSM850 | 80 | 0.706 | 66 | 0.109 | 0.82 | | Right Side | GSM1900 | 17 | 0.115 | 66 | 0.109 | 0.22 | | | WCDMA V | 36 | 0.706 | 66 | 0.109 | 0.82 | | | WCDMA II | 10 | 0.189 | 66 | 0.109 | 0.30 | | | | WWAN | | WL | _AN | Summed | |------------|-----------|---------|---------------|------------|---------------|----------------| | Position | WWAN Band | Plot No | SAR
(W/kg) | Plot
No | SAR
(W/kg) | 10g SAR (W/kg) | | | GSM850 | 73 | 0.589 | 63 | 0.041 | 0.63 | | Front | GSM1900 | 14 | 0.282 | 63 | 0.041 | 0.32 | | FIORI | WCDMA V | 33 | 0.562 | 63 | 0.041 | 0.60 | | | WCDMA II | 5 | 0.446 | 63 | 0.041 | 0.49 | | | GSM850 | 77 | 0.93 | 64 | 0.072 | 1.00 | | Back | GSM1900 | 15 | 0.36 | 64 | 0.072 | 0.43 | | DdCK | WCDMA V | 34 | 0.935 | 64 | 0.072 | 1.01 | | | WCDMA II | 93 | 0.788 | 64 | 0.072 | 0.86 | | | GSM850 | 80 | 0.49 | 66 | 0.059 | 0.55 | | Right Side | GSM1900 | 17 | 0.068 | 66 | 0.059 | 0.13 | | Right Side | WCDMA V | 36 | 0.495 | 66 | 0.059 | 0.55 | | | WCDMA II | 10 | 0.11 | 66 | 0.059 | 0.17 | SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PY7PM-0673 Page Number : 48 of 53 Report Issued Date : Jan. 08, 2014 Report Version : Rev. 04 Report Template No. : BU5FAA131010 #### <WWAN + Bluetooth> | | | WWAN | | Bluetooth | Summed | |------------|-----------|---------|---------------|-------------------------|---------------| | Position | WWAN Band | Plot No | SAR
(W/kg) | Estimated
SAR (W/kg) | 1g SAR (W/kg) | | | GSM850 | 73 | 0.803 | 0.189 | 0.99 | | Front | GSM1900 | 14 | 0.461 | 0.189 | 0.65 | | FIOIIL | WCDMA V | 33 | 0.761 | 0.189 | 0.95 | | | WCDMA II | 5 | 0.735 | 0.189 | 0.92 | | | GSM850 | 77 | 1.309 | 0.189 | 1.50 | | Back | GSM1900 | 15 | 0.601 | 0.189 | 0.79 | | Dack | WCDMA V | 34 | 1.296 | 0.189 | 1.49 | | | WCDMA II | 93 | 1.352 | 0.189 | 1.54 | | | GSM850 | 80 | 0.706 | 0.189 | 0.90 | | Right Side | GSM1900 | 17 | 0.115 | 0.189 | 0.30 | | | WCDMA V | 36 | 0.706 | 0.189 | 0.90 | | | WCDMA II | 10 | 0.189 | 0.189 | 0.38 | | | | WWAN | | Bluetooth | Summed | |------------|-----------|---------|---------------|-------------------------|----------------| | Position | WWAN Band | Plot No | SAR
(W/kg) | Estimated
SAR (W/kg) | 10g SAR (W/kg) | | | GSM850 | 73 | 0.589 | 0.076 | 0.67 | | Front | GSM1900 | 14 | 0.282 | 0.076 | 0.36 | | FION | WCDMA V | 33 | 0.562 | 0.076 | 0.64 | | | WCDMA II | 5 | 0.446 | 0.076 | 0.52 | | | GSM850 | 77 | 0.93 | 0.076 | 1.01 | | Back | GSM1900 | 15 | 0.36 | 0.076 | 0.44 | | Dack | WCDMA V | 34 | 0.935 | 0.076 | 1.01 | | | WCDMA II | 93 | 0.788 | 0.076 | 0.86 | | | GSM850 | 80 | 0.49 | 0.076 | 0.57 | | Dight Cide | GSM1900 | 17 | 0.068 | 0.076 | 0.14 | | Right Side | WCDMA V | 36 | 0.495 | 0.076 | 0.57 | | | WCDMA II | 10 | 0.11 | 0.076 | 0.19 | SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PY7PM-0673 Page Number : 49 of 53 Report Issued Date : Jan. 08, 2014 Report Version : Rev. 04 Report Template No. : BU5FAA131010 ### 13.3 Body-Worn Exposure Conditions #### <WWAN + WLAN2.4GHz> | | WWAN | | | WI | _AN | Summed | |----------|-----------|---------|---------------|------------|---------------|---------------| | Position | WWAN Band | Plot No | SAR
(W/kg) | Plot
No | SAR
(W/kg) | 1g SAR (W/kg) | | | GSM850 | 82 | 0.722 | 98 | 0.032 | 0.75 | | Front | GSM1900 | 19 | 0.313 | 98 | 0.032 | 0.35 | | FIONE | WCDMA V | 33 | 0.761 | 98 | 0.032 | 0.79 | | | WCDMA II | 12 | 0.542 | 98 | 0.032 | 0.57 | | | GSM850 | 83 | 1.118 | 99 | 0.043 | 1.16 | | Dools | GSM1900 | 20 | 0.314 | 99 | 0.043 | 0.36 | | Back | WCDMA V | 34 | 1.296 | 99 | 0.043 | 1.34 | | | WCDMA II | 13 | 0.559 | 99 | 0.043 | 0.60 | | | WWAN | | | WI | Summed | | |----------|-----------|---------|---------------|------------|---------------|----------------| | Position | WWAN Band | Plot No | SAR
(W/kg) | Plot
No | SAR
(W/kg) | 10g SAR (W/kg) | | | GSM850 | 82 | 0.534 | 98 | 0.018 | 0.55 | | Front | GSM1900 | 19 | 0.195 | 98 | 0.018 | 0.21 | | Front | WCDMA V | 40 | 0.473 | 98 | 0.018 | 0.49 | | | WCDMA II | 12 | 0.34 | 98 | 0.018 | 0.36 | | | GSM850 | 83 | 0.798 | 99 | 0.024 | 0.82 | | Dook | GSM1900 | 20 | 0.192 | 99 | 0.024 | 0.22 | | Back | WCDMA V | 41 | 0.732 | 99 | 0.024 | 0.76 | | | WCDMA II | 13 | 0.345 | 99 | 0.024 | 0.37 | #### <WWAN + Bluetooth> | | WWAN | | | Bluetooth | Summed | | |----------|-----------|---------|---------------|-------------------------|---------------|--| | Position | WWAN Band | Plot No | SAR
(W/kg) | Estimated
SAR (W/kg) |
1g SAR (W/kg) | | | Front | GSM850 | 82 | 0.722 | 0.126 | 0.85 | | | | GSM1900 | 19 | 0.313 | 0.126 | 0.44 | | | | WCDMA V | 33 | 0.761 | 0.126 | 0.89 | | | | WCDMA II | 12 | 0.542 | 0.126 | 0.67 | | | Back | GSM850 | 83 | 1.118 | 0.126 | 1.24 | | | | GSM1900 | 20 | 0.314 | 0.126 | 0.44 | | | | WCDMA V | 34 | 1.296 | 0.126 | 1.42 | | | | WCDMA II | 13 | 0.559 | 0.126 | 0.69 | | | | WWAN | | | Bluetooth | Summed | |----------|-----------|---------|---------------|-------------------------|----------------| | Position | WWAN Band | Plot No | SAR
(W/kg) | Estimated
SAR (W/kg) | 10g SAR (W/kg) | | Front | GSM850 | 82 | 0.534 | 0.050 | 0.58 | | | GSM1900 | 19 | 0.195 | 0.050 | 0.25 | | | WCDMA V | 40 | 0.473 | 0.050 | 0.52 | | | WCDMA II | 12 | 0.34 | 0.050 | 0.39 | | Back | GSM850 | 83 | 0.798 | 0.050 | 0.85 | | | GSM1900 | 20 | 0.192 | 0.050 | 0.24 | | | WCDMA V | 41 | 0.732 | 0.050 | 0.78 | | | WCDMA II | 13 | 0.345 | 0.050 | 0.40 | Test Engineer: Vic Yang, Tom Jiang, Angelo Chang, Iran Wang, Galen Zhang and Tom Jiang SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PY7PM-0673 Page Number : 50 of 53 Report Issued Date : Jan. 08, 2014 Report Version : Rev. 04 Report Template No. : BU5FAA131010 ### 14. Uncertainty Assessment The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance. A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement. A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience, and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in Table 14.1 | Uncertainty Distributions | Normal | Rectangular | Triangular | U-Shape | |------------------------------------|--------------------|-------------|------------|---------| | Multi-plying Factor ^(a) | 1/k ^(b) | 1/√3 | 1/√6 | 1/√2 | - (a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity - (b) κ is the coverage factor #### Table 14.1. Standard Uncertainty for Assumed Distribution The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances. Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is shown in the following tables. SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PY7PM-0673 Page Number : 51 of 53 Report Issued Date : Jan. 08, 2014 Report Version : Rev. 04 Report Template No. : BU5FAA131010 | Error Description | Uncertainty
Value
(±%) | Probability
Distribution | Divisor | Ci
(1g) | Ci
(10g) | Standard
Uncertainty
(1g) | Standard
Uncertainty
(10g) | |-------------------------------|------------------------------|-----------------------------|---------|------------|-------------|---------------------------------|----------------------------------| | Measurement System | | | | | | • | | | Probe Calibration | 6.0 | Normal | 1 | 1 | 1 | ± 6.0 % | ± 6.0 % | | Axial Isotropy | 4.7 | Rectangular | √3 | 0.7 | 0.7 | ± 1.9 % | ± 1.9 % | | Hemispherical Isotropy | 9.6 | Rectangular | √3 | 0.7 | 0.7 | ± 3.9 % | ± 3.9 % | | Boundary Effects | 1.0 | Rectangular | √3 | 1 | 1 | ± 0.6 % | ± 0.6 % | | Linearity | 4.7 | Rectangular | √3 | 1 | 1 | ± 2.7 % | ± 2.7 % | | System Detection Limits | 1.0 | Rectangular | √3 | 1 | 1 | ± 0.6 % | ± 0.6 % | | Readout Electronics | 0.3 | Normal | 1 | 1 | 1 | ± 0.3 % | ± 0.3 % | | Response Time | 0.8 | Rectangular | √3 | 1 | 1 | ± 0.5 % | ± 0.5 % | | Integration Time | 2.6 | Rectangular | √3 | 1 | 1 | ± 1.5 % | ± 1.5 % | | RF Ambient Noise | 3.0 | Rectangular | √3 | 1 | 1 | ± 1.7 % | ± 1.7 % | | RF Ambient Reflections | 3.0 | Rectangular | √3 | 1 | 1 | ± 1.7 % | ± 1.7 % | | Probe Positioner | 0.4 | Rectangular | √3 | 1 | 1 | ± 0.2 % | ± 0.2 % | | Probe Positioning | 2.9 | Rectangular | √3 | 1 | 1 | ± 1.7 % | ± 1.7 % | | Max. SAR Eval. | 1.0 | Rectangular | √3 | 1 | 1 | ± 0.6 % | ± 0.6 % | | Test Sample Related | | | | | | | | | Device Positioning | 2.9 | Normal | 1 | 1 | 1 | ± 2.9 % | ± 2.9 % | | Device Holder | 3.6 | Normal | 1 | 1 | 1 | ± 3.6 % | ± 3.6 % | | Power Drift | 5.0 | Rectangular | √3 | 1 | 1 | ± 2.9 % | ± 2.9 % | | Phantom and Setup | | | | | | | | | Phantom Uncertainty | 4.0 | Rectangular | √3 | 1 | 1 | ± 2.3 % | ± 2.3 % | | Liquid Conductivity (Target) | 5.0 | Rectangular | √3 | 0.64 | 0.43 | ± 1.8 % | ± 1.2 % | | Liquid Conductivity (Meas.) | 2.5 | Normal | 1 | 0.64 | 0.43 | ± 1.6 % | ± 1.1 % | | Liquid Permittivity (Target) | 5.0 | Rectangular | √3 | 0.6 | 0.49 | ± 1.7 % | ± 1.4 % | | Liquid Permittivity (Meas.) | 2.5 | Normal | 1 | 0.6 | 0.49 | ± 1.5 % | ± 1.2 % | | Combined Standard Uncertainty | | | | | | ± 11.0 % | ± 10.8 % | | Coverage Factor for 95 % | | | | | K=2 | | | | Expanded Uncertainty | | | | | ± 22.0 % | ± 21.5 % | | Table 14.2. Uncertainty Budget for frequency range 300 MHz to 3 GHz SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PY7PM-0673 Page Number : 52 of 53 Report Issued Date : Jan. 08, 2014 Report Version : Rev. 04 Report Template No. : BU5FAA131010 ### 15. <u>References</u> - [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations" - [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992 - [3] IEEE Std. 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - [4] SPEAG DASY System Handbook - [5] FCC KDB 248227 D01 v01r02, "SAR Measurement Procedures for 802.11 a/b/g Transmitters", May 2007 - [6] FCC KDB 447498 D01 v05r01, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", May 2013 - [7] FCC KDB 648474 D04 v01r02, "SAR Evaluation Considerations for Wireless Handsets", December 2013 - [8] FCC KDB 941225 D03 v01, "Recommended SAR Test Reduction Procedures for GSM / GPRS / EDGE", December 2008 - [9] FCC KDB 941225 D04 v01, "Evaluating SAR for GSM/(E)GPRS Dual Transfer Mode", January 2010 - [10] FCC KDB 941225 D01 v02, "SAR Measurement Procedures for 3G Devices CDMA 2000 / Ev-Do / WCDMA / HSDPA / HSPA", October 2007 - [11] FCC KDB 941225 D02 v02r02, "SAR Guidance for HSPA, HSPA+, DC-HSDPA and 1x-Advanced", May 2013. - [12] FCC KDB 941225 D06 v01r01, "SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities", May 2013 - [13] FCC KDB 865664 D01 v01r02, "SAR Measurement Requirements for 100 MHz to 6 GHz", December 2013. SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PY7PM-0673 Page Number : 53 of 53 Report Issued Date : Jan. 08, 2014 Report Version : Rev. 04 Report Template No. : BU5FAA131010 # Appendix A. Plots of System Performance Check The plots are shown as follows. SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PY7PM-0673 Page Number : A1 of A1 Report Issued Date : Jan. 08, 2014 **Report No. : FA3O2909** Report Version : Rev. 04 # Appendix B. Plots of SAR Measurement The plots are shown as follows. SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PY7PM-0673 Page Number : B1 of B1 Report Issued Date : Jan. 08, 2014 Report Version : Rev. 04 # Appendix C. DASY Calibration Certificate The DASY calibration certificates are shown as follows. SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: PY7PM-0673 Page Number : C1 of C1 Report Issued Date : Jan. 08, 2014 Report Version : Rev. 04