

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctestlab.com

MEASUREMENT REPORT FCC Part 22, 24, 27 / IC RSS-132 RSS-133 RSS-139

Applicant Name:

Sony Mobile Communications Nya Vattentornet SE-221 88 Lund Sweden

Date of Testing: 6/12 – 7/16/2013 Test Site/Location: PCTEST Lab., Columbia, MD, USA Test Report Serial No.: 0Y1307231386.PY7

FCC ID:

PY7PM-0620

APPLICANT:

SONY MOBILE COMMUNICATIONS

Application Type: Type Number: EUT Type: FCC Classification: FCC Rule Part(s): IC Specification(s): Test Procedure(s): Test Device Serial No.:

Certification PM-0620-BV Portable Handset PCS Licensed Transmitter Held to Ear (PCE) §2 §22(H) §24(E) §27(L) RSS-132 Issue 3 RSS-133 Issue 6 RSS-139 Issue 2 ANSI/TIA-603-C-2004, KDB 971168 *identical prototype* [S/N:9236]

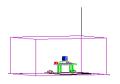
			ERP/	EIRP
Mode	Tx Frequency (MHz)	Emission Designator	Max. Power (W)	Max. Power (dBm)
GSM850	824.2 - 848.8	244KGXW	1.776	32.49
EDGE850	824.2 - 848.8	245KG7W	0.559	27.47
GSM1900	1850.2 - 1909.8	241KGXW	1.675	32.24
EDGE1900	1850.2 - 1909.8	241KG7W	0.513	27.10
WCDMA850	826.4 - 846.6	4M14F9W	0.128	21.07
WCDMA1700	1712.4 - 1752.5	4M13F9W	0.372	25.71
WCDMA1900	1852.4 - 1907.6	4M13F9W	0.271	24.32

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested.

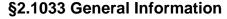
I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Randy Ortanez President

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 1 of 70	
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Page 1 of 72	
© 2013 PCTEST Engineering La	2013 PCTEST Engineering Laboratory, Inc.			

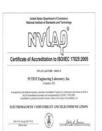

TABLE OF CONTENTS

FCC	PART 2	22, 24, 27 MEASUREMENT REPORT	3
1.0		ODUCTION	
	1.1	SCOPE	4
	1.2	TESTING FACILITY	4
2.0	PROE	DUCT INFORMATION	5
	2.1	EQUIPMENT DESCRIPTION	5
	2.2	DEVICE CAPABILITIES	5
	2.3	TEST CONFIGURATION	5
	2.4	EMI SUPPRESSION DEVICE(S)/MODIFICATIONS	5
3.0	DESC	CRIPTION OF TESTS	6
	3.1	EVALUATION PROCEDURE	6
	3.2	CELLULAR - BASE FREQUENCY BLOCKS	6
	3.3	CELLULAR - MOBILE FREQUENCY BLOCKS	6
	3.4	PCS - BASE FREQUENCY BLOCKS	6
	3.5	PCS - MOBILE FREQUENCY BLOCKS	7
	3.6	AWS - BASE FREQUENCY BLOCKS	7
	3.7	AWS - MOBILE FREQUENCY BLOCKS	7
	3.8	OCCUPIED BANDWIDTH	7
	3.9	SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL	8
	3.10	RADIATED POWER AND RADIATED SPURIOUS EMISSIONS	8
	3.11	PEAK-AVERAGE RATIO	9
	3.12	FREQUENCY STABILITY / TEMPERATURE VARIATION	9
4.0	TEST	EQUIPMENT CALIBRATION DATA	10
5.0	SAMF	PLE CALCULATIONS	11
6.0	TEST	RESULTS	12
	6.1	SUMMARY	12
	6.2	CELLULAR EFFECTIVE RADIATED POWER (ERP)	13
	6.3	AWS EFFECTIVE RADIATED POWER (EIRP)	14
	6.4	PCS EFFECTIVE RADIATED POWER (EIRP)	15
	6.5	CELLULAR GSM RADIATED MEASUREMENTS	16
	6.6	CELLULAR WCDMA RADIATED MEASUREMENTS	19
	6.7	AWS WCDMA RADIATED MEASUREMENTS	22
	6.8	PCS GSM RADIATED MEASUREMENTS	25
	6.9	PCS WCDMA RADIATED MEASUREMENTS	28
	6.10	CELLULAR GSM FREQUENCY STABILITY MEASUREMENTS	31
	6.11	CELLULAR WCDMA FREQUENCY STABILITY MEASUREMENTS	
	6.12	AWS WCDMA FREQUENCY STABILITY MEASUREMENTS	35
	6.13	PCS GSM FREQUENCY STABILITY MEASUREMENTS	-
	6.14	PCS WCDMA FREQUENCY STABILITY MEASUREMENTS	
7.0	PLOT	S OF EMISSIONS	41
8.0	CONC	CLUSION	72


FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Page 2 of 72
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Fage 2 01 72
© 2013 PCTEST Engineering La	aboratory, Inc.	·	V 2.9

04/15/2013

MEASUREMENT REPORT FCC Part 22, 24, 27


APPLICANT:	Sony Mobile Commun	ications		
APPLICANT ADDRESS:	Nya Vattentornet			
	SE-221 88 Lund, Swee	den		
TEST SITE:	PCTEST ENGINEERII	NG LABORATO	RY, INC.	
TEST SITE ADDRESS:	7185 Oakland Mills Ro	oad, Columbia, N	ID 21046 USA	
FCC RULE PART(S):	§2 §22(H) §24(E) §27((L)		
TYPE NUMBER:	PM-0620			
FCC ID:	PY7PM-0620			
FCC CLASSIFICATION:	PCS Licensed Transm	itter Held to Ear	(PCE)	
MODE:	GSM / EDGE / WCDM	IA		
FREQUENCY TOLERANCE:	±0.00025 % (2.5 ppm)			
Test Device Serial No.:	9236	Production	Pre-Production	Engineering
DATE(S) OF TEST:	6/12 – 7/16/2013			
TEST REPORT S/N:	0Y1307231386.PY7			

Test Facility / Accreditations

Measurements were performed at PCTEST Engineering Lab located in Columbia, MD 21046, U.S.A.

- PCTEST facility is an FCC registered (PCTEST Reg. No. 159966) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules and Industry Canada (2451B-1).
- PCTEST Lab is accredited to ISO 17025 by U.S. National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP Lab code: 100431-0) in EMC, FCC and Telecommunications.
- PCTEST Lab is accredited to ISO 17025-2005 by the American Association for Laboratory Accreditation (A2LA) in Specific Absorption Rate (SAR) testing, Hearing Aid Compatibility (HAC) testing, CTIA Test Plans, and wireless testing for FCC and Industry Canada Rules.
- PCTEST Lab is a recognized U.S. Conformity Assessment Body (CAB) in EMC and R&TTE (n.b. 0982) under the U.S.-EU Mutual Recognition Agreement (MRA).
 PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC
 - PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC Guide 65 by the American National Standards Institute (ANSI) in all scopes of FCC Rules and Industry Canada Standards (RSS).
 - PCTEST facility is an IC registered (2451B-1) test laboratory with the site description on file at Industry Canada.
 - PCTEST is a CTIA Authorized Test Laboratory (CATL) for AMPS, CDMA, and EvDO wireless devices and for Over-the-Air (OTA) Antenna Performance testing for AMPS, CDMA, GSM, GPRS, EGPRS, UMTS (W-CDMA), CDMA 1xEVDO, and CDMA 1xRTT.

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 2 of 72
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Page 3 of 72
2013 PCTEST Engineering Laboratory, Inc.			

04/15/2013

INTRODUCTION 1.0

Scope 1.1

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

1.2 Testing Facility

The map below shows the location of the PCTEST LABORATORY, its proximity to the FCC Laboratory, the Columbia vicinity, the Baltimore-Washington Internt'I (BWI) airport, the city of Baltimore and the Washington, DC area. (See Figure 1-1).

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The site coordinates are 39° 10'23" N latitude and 76° 49'50" W longitude. The facility is 0.4 miles North of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4-2009 on February 15, 2012.

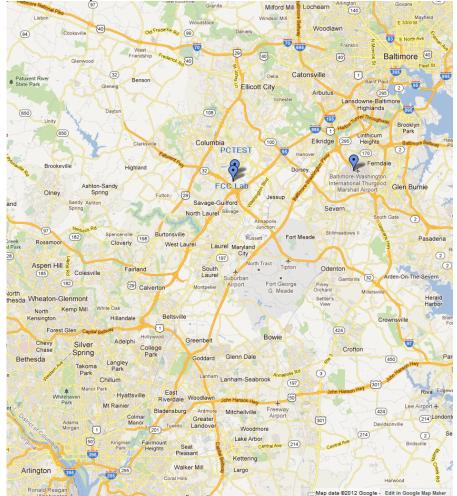


Figure 1-1. Map of the Greater Baltimore and Metropolitan Washington, D.C. area

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 4 of 70
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Page 4 of 72
© 2013 PCTEST Engineering	aboratory Inc	·	V 2 9

2013 PCTEST Engineering

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Sony Portable Handset FCC ID: PY7PM-0620**. The test data contained in this report pertains only to the emissions due to the EUT's 2G/3G licensed transmitters.

2.2 Device Capabilities

This device contains the following capabilities:

850/1900 GSM/GPRS/EDGE, 850/1700/1900 WCDMA/HSPA, Band 2, 4, 5, 7 LTE, 802.11a/b/g/n/ac WLAN (DTS/NII), Bluetooth (1x, EDR, LE), ANT+, NFC

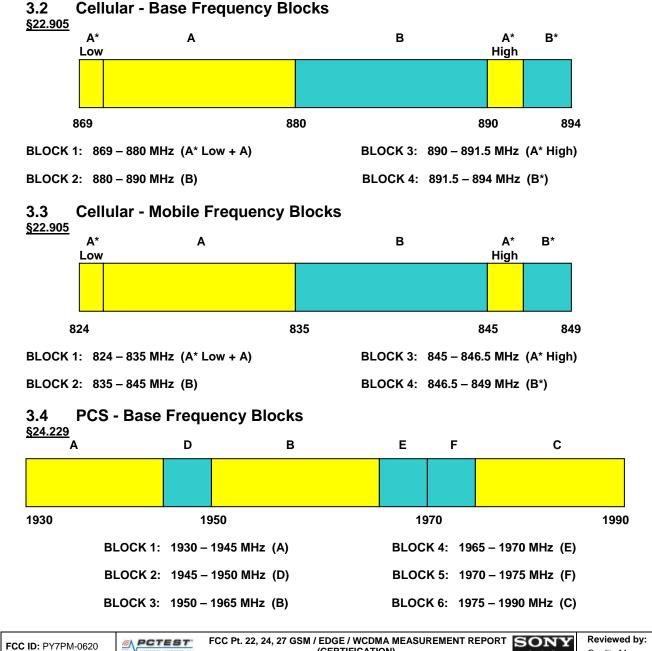
2.3 Test Configuration

The Sony Portable Handset FCC ID: PY7PM-0620 was tested per the guidance of ANSI/TIA-603-C-2004 and KDB 971168. See Section 3.0 of this test report for a description of the radiated and antenna port conducted emissions tests.

2.4 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 5 of 72
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Fage 5 01 72
© 2013 PCTEST Engineering La	aboratory, Inc.		V 2.9

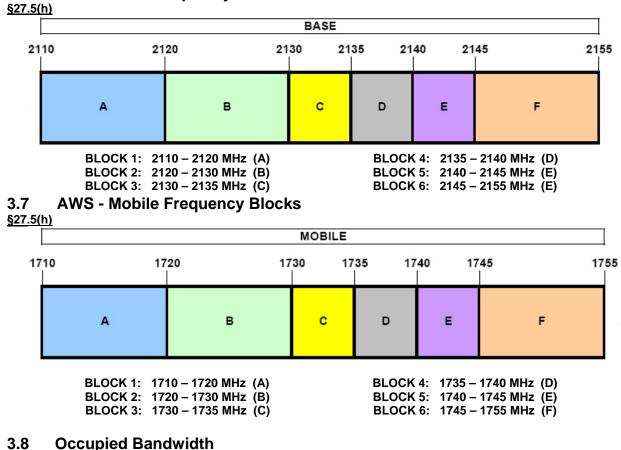


3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedures described in the "Land Mobile FM or PM – Communications Equipment – Measurements and Performance Standards" (ANSI/TIA-603-C-2004) and "Procedures for Compliance Measurement of the Fundamental Emission Power of Licensed Wideband (> 1 MHz) Digital Transmission Systems" (KDB 971168) were used in the measurement of the **Sony Portable Handset FCC ID: PY7PM-0620.**

Deviation from Measurement Procedure.....None


	Y INCIDENTIAL CONTRACTOR AL	(CERTIFICATION) make.believe	Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 6 of 72	l
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Fage 0 01 72	l
© 2013 PCTEST Engineering La	aboratory, Inc.		V 2.9	

3.5 PCS - Mobile Frequency Blocks

<u>§24.22</u>	<u>9</u> A	D	В	Е	F	С	
4050				100			1010
1850			370	189			1910
	BLOCK 1:	1850 –	1865 MHz (A)	BLOC	K 4: 18	85 – 1890 MHz (E)	
	BLOCK 2:	1865 –	1870 MHz (D)	BLOC	K 5: 18	90 – 1895 MHz (F)	
	BLOCK 3:	1870 –	1885 MHz (B)	BLOC	K 6: 189	95 – 1910 MHz (C)	

3.6 AWS - Base Frequency Blocks

§2.1049 RSS-Gen(4.6.1) RSS-133(2.3) RSS-139(2.3)

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. The spectrum analyzers' "occupied bandwidth" measurement function was used to record the occupied bandwidth in accordance with KDB 971168.

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 7 of 72
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Faye / 01 /2
© 2013 PCTEST Engineering La	aboratory, Inc.	·	V 2.9

Spurious and Harmonic Emissions at Antenna Terminal 3.9 §2.1051 §22.917(a) §24.238(a) §27.53(h) RSS-132(4.5.1) RSS-133(6.5.1) RSS-139(6.5.1)

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log(P) dB. Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater for Part 22 and 1 MHz or greater for Part 24, Part 27. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.

3.10 Radiated Power and Radiated Spurious Emissions

§2.1053 §22.913(a.2) §22.917(a) §24.232(c) §24.238(a) §27.50(d.10) §27.53(h) RSS-132(4.4) RSS-132(4.5.1) RSS-133(6.4) RSS-133(6.5.1) RSS-139(6.5.2)

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. An ETS Lindgren Model 2188 raised turntable is used for radiated measurement. It is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. A 78cm high PVC support structure is placed on top of the turntable. A 3/4" (~1.9cm) sheet of high density polyethylene is used as the table top and is placed on top of the PVC supports to bring the total height of the table to 80cm.

The equipment under test was transmitting while connected to its integral antenna and is placed on a wooden turntable 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height is adjusted between 1 and 4 meter height, the turntable is rotated through 360 degrees, and the EUT is manipulated through all orthogonal planes representative of its typical use to achieve the highest reading on the receive spectrum analyzer. Radiated power levels are also investigated with the receive antenna horizontally and vertically polarized. The maximized power level is recorded using the spectrum analyzer "Channel Power" function with the integration band set to the emissions' occupied bandwidth, a RMS detector, RBW = 100kHz, VBW = 300kHz, and a 1 second sweep time over a minimum of 10 sweeps, per the guidelines of KDB 971168.

Per the guidance of ANSI/TIA-603-C-2004, a half-wave dipole is then substituted in place of the EUT. For emissions above 1GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer level previously recorded from the spurious emission from the EUT. The power of the emission is calculated using the following formula:

 $P_{d [dBm]} = P_{g [dBm]} - cable loss [dB] + antenna gain [dBd/dBi]$

Where, P_d is the dipole equivalent power, P_g is the generator output into the substitution antenna, and the antenna gain is the gain of the substitute antenna used relative to either a half-wave dipole (dBd) or an isotropic source (dBi). The substitute level is equal to Pg [dBm] - cable loss [dB].

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 9 of 70
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Page 8 of 72
2013 PCTEST Engineering Laboratory, Inc.			

The calculated P_d levels are then compared to the absolute spurious emission limit of -13dBm which is equivalent to the required minimum attenuation of 43 + 10log₁₀(Power [Watts]) specified in 22.917(a) and 24.238(a).

3.11 Peak-Average Ratio §24.232(d) §27.50(d.5) RSS-132(5.4) RSS-133(6.4) RSS-139(6.4)

A peak to average ratio measurement is performed at the conducted port of the EUT. The spectrum analyzers Complementary Cumulative Distribution Function (CCDF) measurement profile is used to determine the largest deviation between the average and the peak power of the EUT in a given bandwidth. The CCDF curve shows how much time the peak waveform spends at or above a given average power level. The percent of time the signal spends at or above the level defines the probability for that particular power level.

For pulsed signals, the spectrum analyzer is set to use an internal "RF Burst" trigger that is synced with an incoming pulse and the measurement interval is set to less than the duration of the "on time" of one burst to ensure that energy is only captured during a time in which the transmitter is operating at maximum power. For continuous signals, the trigger is set to "free run" in the CCDF measurement mode.

3.12 Frequency Stability / Temperature Variation §2.1055 §22.355 §22.863 §22.905 §24.229 §24.235 §27.5(h) §27.54 RSS-132(4.3) RSS-133(6.3) RSS-139(6.3)

Frequency stability testing is performed in accordance with the guidelines of ANSI/TIA-603-C-2004. The frequency stability of the transmitter is measured by:

- a.) **Temperature:** The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.
- b.) **Primary Supply Voltage:** The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

Specification – For Part 22, the frequency stability of the transmitter shall be maintained within $\pm 0.00025\%$ (± 2.5 ppm) of the center frequency. For Part 24 and Part 27, the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

Time Period and Procedure:

1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).

2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.

3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 9 of 72
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Page 9 01 72
© 2013 PCTEST Engineering La	aboratory, Inc.	•	V 2.9

v 2.9 04/15/2013

4.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST).

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	LTx1	Licensed Transmitter Cable Set	1/17/2013	Annual	1/17/2014	N/A
-	RE1	Radiated Emissions Cable Set (UHF/EHF)	3/29/2013	Annual	3/29/2014	N/A
Agilent	8447D	Broadband Amplifier	5/31/2013	Annual	5/31/2014	2443A01900
Agilent	N5183A	MXG Analog Signal Generator	1/6/2013	Annual	1/6/2014	MY50141900
Agilent	N9030A	PXA Signal Analyzer (44GHz)	1/11/2013	Annual	1/11/2014	MY52350166
Agilent	87405C	Pre-amplifier (0.1 - 18 GHz)	3/11/2013	Annual	3/11/2014	MY53010007
Espec	ESX-2CA	Environmental Chamber	4/16/2013	Annual	4/16/2014	17620
ETS Lindgren	3117	1-18 GHz DRG Horn (Medium)	7/22/2011	Biennial	7/22/2013	125518
ETS Lindgren	3160-09	18-26.5 GHz Standard Gain Horn	5/30/2012	Biennial	5/30/2014	135427
ETS Lindgren	3164-08	Quad Ridge Horn Antenna	11/7/2012	Biennial	11/7/2014	128338
Mini-Circuits	VHF-1200+	High Pass Filter	1/17/2013	Annual	1/17/2014	30923
Mini-Circuits	VHF-3100+	High Pass Filter	1/17/2013	Annual	1/17/2014	30841
Mini-Circuits	PWR-SENS-4RMS	USB Power Sensor	4/17/2013	Annual	4/17/2014	11210140001
Rohde & Schwarz	CMU200	Base Station Simulator	N/A		NA	836536/0005
Rohde & Schwarz	TS-PR18	1-18 GHz Pre-Amplifier	5/31/2013	Annual	5/31/2014	100071
Rohde & Schwarz	TS-PR26	18-26.5 GHz Pre-Amplifier	5/31/2013	Annual	5/31/2014	100040
Rohde & Schwarz	ESU26	EMI Test Receiver	2/25/2013	Annual	2/25/2014	100342
Schwarzbeck	UHA 9105	Dipole Antenna (400 - 1GHz) Tx	10/3/2011	Biennial	10/3/2013	91052522TX
Schwarzbeck	UHA 9105	Dipole Antenna (400 - 1GHz) Rx	10/3/2011	Biennial	10/3/2013	91052523RX
Seekonk	NC-100	Torque Wrench (8" lb)	3/5/2012	Triennial	3/5/2015	N/A
Sunol	JB5	Bi-Log Antenna (30M - 5GHz)	1/26/2012	Biennial	1/26/2014	A051107

Table 4-1. Test Equipment

Notes:

Equipment used for signaling with a calibration date of "N/A" shown in this list was only used for maintaining a link between the piece of equipment and the EUT. This equipment was not used to make direct calibrated measurements.

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 10 of 70
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Page 10 of 72
© 2013 PCTEST Engineering La	boratory, Inc.		V 2.9

5.0 SAMPLE CALCULATIONS

GSM Emission Designator

Emission Designator = 250KGXW

GSM BW = 250 kHz G = Phase Modulation X = Cases not otherwise covered W = Combination (Audio/Data)

EDGE Emission Designator

Emission Designator = 250KG7W

EDGE BW = 250 kHz G = Phase Modulation 7 = Quantized/Digital Info W = Combination (Audio/Data)

WCDMA Emission Designator

Emission Designator = 4M16F9W

WCDMA BW = 4.16 MHz F = Frequency Modulation 9 = Composite Digital Info W = Combination (Audio/Data) (Measured at the 99.75% power bandwidth)

Spurious Radiated Emission

Example: Spurious emission at 3700.40 MHz

The receive spectrum analyzer reading at 3 meters with the EUT on the turntable was -81.0 dBm. The gain of the substituted antenna is 8.1 dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of -81.0 dBm on the spectrum analyzer. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 3700.40 MHz. So 6.1 dB is added to the signal generator reading of -30.9 dBm yielding -24.80 dBm. The fundamental EIRP was 25.50 dBm so this harmonic was 25.50 dBm - (-24.80) = 50.3 dBc.

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager					
Test Report S/N:	Test Dates:	EUT Type:	Page 11 of 72					
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Fage 11 0172					
© 2013 PCTEST Engineering La	© 2013 PCTEST Engineering Laboratory, Inc.							

6.0 TEST RESULTS

6.1 Summary

Company Name:	Sony Mobile Communications
FCC ID:	PY7PM-0620
FCC Classification:	PCS Licensed Transmitter Held to Ear (PCE)
Mode(s):	<u>GSM / EDGE / WCDMA</u>

FCC Part Section(s)	RSS Section(s)	Test Description Test Limit		Test Condition	Test Result	Reference
TRANSMITTER			•			
2.1049	RSS-Gen(4.6.1) RSS-133(2.3) RSS-139(2.3)	Occupied Bandwidth	N/A		PASS	Section 7.0
2.1051 22.917(a) 24.238(a) 27.53(h)	RSS-132(4.5.1) RSS-133(6.5.2) RSS-139(6.5.2)	Band Edge / Conducted Spurious Emissions	> 43 + log ₁₀ (P[Watts]) at Band Edge and for all out-of-band emissions	CONDUCTED	PASS	Section 7.0
24.232(d) 27.50(d.5)	RSS-132(5.4) RSS-133(6.4) RSS-139(6.4)	Peak-Average Ratio	< 13 dB	CONDUCTED	PASS	Section 7.0
2.1046	RSS-132(4.4) RSS-133(4.1) RSS-139(4.1)	Transmitter Conducted Output Power	N/A		PASS	RF Exposure Report
22.913(a.2)	RSS-132(4.4) [SRSP-503(5.1.3)]	Effective Radiated Power	< 7 Watts max. ERP		PASS	Section 6.2
24.232(c)	RSS-133(6.4) [SRSP-510(5.1.2)]	Equivalent Isotropic Radiated Power	< 2 Watts max. EIRP		PASS	Section 6.4
27.50(d.4)	RSS-139(6.4)	Equivalent Isotropic Radiated Power (Band 4)	< 1 Watts max. EIRP	RADIATED	PASS	Section 6.3
2.1053 22.917(a) 24.238(a) 27.53(h)	RSS-132(4.5.1) RSS-133(6.5.2) RSS-139(6.5.2)	Undesirable Emissions	> 43 + log ₁₀ (P[Watts]) for all out- of-band emissions		PASS	Sections 6.5, 6.6, 6.7, 6.8, 6.9
2.1055 22.355 24.235 27.54	RSS-132(4.3) RSS-133(6.3) RSS-139(6.3)	Frequency Stability	< 2.5 ppm (Part 22) Emission must remain in band (Part 24, 27)		PASS	Sections 6.10, 6.11, 6.12, 6.13, 6.14

Table 6-1. Summary of Test Results

Notes:

- 1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots shown in Section 7.0 were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables, directional couplers, and attenuators used as part of the system to maintain a link between the call box and the EUT at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables, attenuators, and couplers.

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 12 of 70
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Page 12 of 72
© 2013 PCTEST Engineering L	aboratory. Inc.	·	V 2.9

6.2 Cellular Effective Radiated Power (ERP) §22.913(a)(2) RSS-132(4.4) [SRSP-503(5.1.3)]

Frequency [MHz]	Mode	Battery Type	Substitute Level [dBm]	Antenna Gain [dBd]	Pol [H/V]	ERP [dBm]	ERP [Watts]	ERP Limit [dBm]	Margin [dB]
824.20	GSM850	Standard	27.55	4.59	V	32.14	1.638	38.45	-6.31
836.60	GSM850	Standard	27.67	4.82	V	32.49	1.776	38.45	-5.96
848.80	GSM850	Standard	26.65	5.05	V	31.70	1.479	38.45	-6.75
836.60	EDGE850	Standard	22.65	4.82	V	27.47	0.559	38.45	-10.98

 Table 6-2. ERP (Cellular GSM)

Mode	Battery Type	Substitute Level [dBm]	Antenna Gain [dBd]	Pol [H/V]	ERP [dBm]	ERP [Watts]	ERP Limit [dBm]	Margin [dB]
WCDMA850	Standard	16.48	4.59	V	21.07	0.128	38.45	-17.38
WCDMA850	Standard	15.88	4.82	V	20.70	0.118	38.45	-17.75
WCDMA850	Standard	15.02	5.05	V	20.07	0.102	38.45	-18.38
_	WCDMA850 WCDMA850	ModeTypeWCDMA850StandardWCDMA850StandardWCDMA850Standard	ModeBattery TypeLevel [dBm]WCDMA850Standard16.48WCDMA850Standard15.88WCDMA850Standard15.02	ModeBattery TypeLevel [dBm]Gain [dBd]WCDMA850Standard16.484.59WCDMA850Standard15.884.82WCDMA850Standard15.025.05	ModeBattery TypeLevel [dBm]Gain [dBd]Pol [H/V]WCDMA850Standard16.484.59VWCDMA850Standard15.884.82VWCDMA850Standard15.025.05V	ModeBattery TypeLevel [dBm]Gain [dBd]Pol [H/V]ERP [dBm]WCDMA850Standard16.484.59V21.07WCDMA850Standard15.884.82V20.70WCDMA850Standard15.025.05V20.07	ModeBattery TypeLevel [dBm]Gain [dBd]Pol [H/V]ERP [dBm]ERP [Watts]WCDMA850Standard16.484.59V21.070.128WCDMA850Standard15.884.82V20.700.118WCDMA850Standard15.025.05V20.070.102	ModeBattery TypeLevel [dBm]Gain [dBd]Pol [H/V]ERP [dBm]ERP [Watts]ERP [Limit [dBm]WCDMA850Standard16.484.59V21.070.12838.45WCDMA850Standard15.884.82V20.700.11838.45

Table 6-4. ERP (Cellular WCDMA)

- This device was tested under all configurations and the highest power is reported in GPRS mode while transmitting with one slot active. This device employs UMTS technology with WCDMA (AMR/RMC), HSDPA, HSUPA, and GSM/GPRS/EDGE capabilities. This device was tested under all configurations and the highest power is reported in WCDMA mode with HSDPA Inactive at 12.2 kbps RMC and TPC bits all set to "1."
- 2) This unit was tested with its standard battery.
- 3) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The "H" positioning is defined with the EUT lying flat on the test surface, the "H2" positioning is defined with the EUT standing up on its side, and the "V" positioning is defined with the EUT standing up on its side, and the "V" position. The data reported in the table above was measured in this test setup.

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)						
Test Report S/N:	Test Dates:	EUT Type:	Dogo 12 of 72					
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Page 13 of 72					
© 2013 PCTEST Engineering La	© 2013 PCTEST Engineering Laboratory, Inc.							

6.3 AWS Effective Radiated Power (EIRP) §22.913(a)(2) RSS-132(4.4) [SRSP-503(5.1.3)]

Frequency [MHz]	Mode	Battery Type	Substitute Level [dBm]	Antenna Gain [dBi]	Pol [H/V]	EIRP [dBm]	EIRP [Watts]	EIRP Limit [dBm]	Margin [dB]
1712.40	WCDMA1700	Standard	14.72	9.89	H2	24.61	0.289	30.00	-5.39
1732.50	WCDMA1700	Standard	14.96	9.85	H2	24.81	0.303	30.00	-5.19
1752.50	WCDMA1700	Standard	15.90	9.81	H2	25.71	0.372	30.00	-4.29

Table 6-3. EIRP (AWS WCDMA)

- This device employs UMTS technology with WCDMA (AMR/RMC), HSDPA, HSUPA, and GSM/GPRS/EDGE capabilities. This device was tested under all configurations and the highest power is reported in WCDMA mode with HSDPA Inactive at 12.2 kbps RMC and TPC bits all set to "1."
- 2) This unit was tested with its standard battery.
- 3) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The "H" positioning is defined with the EUT lying flat on the test surface, the "H2" positioning is defined with the EUT standing up on its side, and the "V" positioning is defined with the EUT standing upright. The worst case configuration was found in the H2 position. The data reported in the table above was measured in this test setup.

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 14 of 70
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Page 14 of 72
© 2013 PCTEST Engineering La	aboratory, Inc.		V 2.9

PCS Effective Radiated Power (EIRP) 6.4 §22.913(a)(2) RSS-132(4.4) [SRSP-503(5.1.3)]

Frequency [MHz]	Mode	Battery Type	Substitute Level [dBm]	Antenna Gain [dBi]	Pol [H/V]	EIRP [dBm]	EIRP [Watts]	EIRP Limit [dBm]	Margin [dB]
1850.20	GSM1900	Standard	22.64	9.60	H2	32.24	1.675	33.01	-0.77
1880.00	GSM1900	Standard	21.56	9.53	H2	31.09	1.286	33.01	-1.92
1909.80	GSM1900	Standard	22.07	9.47	H2	31.54	1.427	33.01	-1.47
1850.20	EDGE1900	Standard	17.50	9.60	H2	27.10	0.513	33.01	-5.91

Table 6-4. EIRP (PCS GSM)

Frequency [MHz]	Mode	Battery Type	Substitute Level [dBm]	Antenna Gain [dBi]	Pol [H/V]	EIRP [dBm]	EIRP [Watts]	EIRP Limit [dBm]	Margin [dB]
1852.40	WCDMA1900	Standard	14.73	9.59	H2	24.32	0.271	33.01	-8.69
1880.00	WCDMA1900	Standard	13.43	9.53	H2	22.96	0.198	33.01	-10.05
1907.60	WCDMA1900	Standard	13.69	9.48	H2	23.17	0.207	33.01	-9.84

Table 6-4. EIRP (PCS WCDMA)

- 1) This device was tested under all configurations and the highest power is reported in GPRS mode while transmitting with one slot active. This device employs UMTS technology with WCDMA (AMR/RMC), HSDPA, HSUPA, and GSM/GPRS/EDGE capabilities. This device was tested under all configurations and the highest power is reported in WCDMA mode with HSDPA Inactive at 12.2 kbps RMC and TPC bits all set to "1."
- 2) This unit was tested with its standard battery.
- 3) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The "H" positioning is defined with the EUT lying flat on the test surface, the "H2" positioning is defined with the EUT standing up on its side, and the "V" positioning is defined with the EUT standing upright. The worst case configuration was found in the H2 position. The data reported in the table above was measured in this test setup.

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Page 15 of 72		
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Page 15 01 72		
© 2013 PCTEST Engineering Laboratory, Inc.					

ENGINEERING LABORATORY, INC.

6.5 Cellular GSM Radiated Measurements

<u>§2.1053 §22.917(a) RSS-132(4.5.1)</u>

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY:	824.2	MHz	
CHANNEL:	128	3	_
MEASURED OUTPUT POWER:	32.14	dBm =	1.638 W
MODULATION SIGNAL:	GSM (GMSK)		
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W) =	45.14	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
1648.40	-50.16	2.60	-47.56	Н	79.7
2472.60	-38.64	2.90	-35.75	Н	67.9
3296.80	-81.79	5.44	-76.35	Н	108.5
4121.00	-81.50	7.05	-74.45	Н	106.6
4945.20	-80.98	7.86	-73.12	Н	105.3

Table 6-5. Radiated Spurious Data (Cellular GSM Mode – Ch. 128)

- 1) This device was tested under all configurations and the highest power is reported in GPRS mode while transmitting with one slot active.
- 2) This unit was tested with its standard battery.
- 3) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The "H" positioning is defined with the EUT lying flat on the test surface, the "H2" positioning is defined with the EUT standing up on its side, and the "V" positioning is defined with the EUT standing upright. The worst case configuration was found in the H position. The data reported in the table above was measured in this test setup.

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 16 of 72	
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Fage 10 01 72	
© 2013 PCTEST Engineering Laboratory, Inc.				

<u>§2.1053 §22.917(a) RSS-132(4.5.1)</u>

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY:	836.	60	MHz
CHANNEL:	190)	_
MEASURED OUTPUT POWER:	32.49	dBm =	1.776W
MODULATION SIGNAL:	GSM (GMSK)		
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W) =	45.49	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	SPURIOUS EMISSION LEVEL (dBm)	EUT POL (H/V)	(dBc)
1673.20	-47.34	2.34	-45.00	Н	77.5
2509.80	-38.25	2.84	-35.41	н	67.9
3346.40	-81.98	5.64	-76.33	н	108.8
4183.00	-81.65	7.15	-74.51	Н	107.0
5019.60	-81.01	7.97	-73.04	Н	105.5

Table 6-6. Radiated Spurious Data (Cellular GSM Mode – Ch. 190)

- 1) This device was tested under all configurations and the highest power is reported in GPRS mode while transmitting with one slot active.
- 2) This unit was tested with its standard battery.
- 3) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The "H" positioning is defined with the EUT lying flat on the test surface, the "H2" positioning is defined with the EUT standing up on its side, and the "V" positioning is defined with the EUT standing up on its side, and the "V" positioning is defined with the EUT standing upright. The worst case configuration was found in the H position. The data reported in the table above was measured in this test setup.

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dege 17 of 70		
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Page 17 of 72		
© 2013 PCTEST Engineering Laboratory, Inc.					

Cellular GSM Radiated Measurements (Cont'd) §2.1053 §22.917(a) RSS-132(4.5.1)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY:	848.	80	MHz
CHANNEL:	25	1	
MEASURED OUTPUT POWER:	31.70	dBm =	<u>1.479</u> W
MODULATION SIGNAL:	GSM (GMSK)	_	
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W) =	44.70	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
1697.60	-48.20	2.08	-46.12	Н	77.8
2546.40	-38.84	3.17	-35.67	Н	67.4
3395.20	-82.15	5.84	-76.31	Н	108.0
4244.00	-81.80	7.24	-74.56	Н	106.3
5092.80	-80.78	8.03	-72.76	Н	104.5

Table 6-7. Radiated Spurious Data (Cellular GSM Mode – Ch. 251)

- 1) This device was tested under all configurations and the highest power is reported in GPRS mode while transmitting with one slot active.
- 2) This unit was tested with its standard battery.
- 3) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The "H" positioning is defined with the EUT lying flat on the test surface, the "H2" positioning is defined with the EUT standing up on its side, and the "V" positioning is defined with the EUT standing up on its side, and the "V" positioning is defined with the EUT standing upright. The worst case configuration was found in the H position. The data reported in the table above was measured in this test setup.

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 18 of 72	
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Page 18 01 72	
© 2013 PCTEST Engineering Laboratory, Inc.				

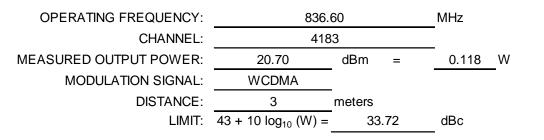
ENGINEERING LABORATORY, I

6.6 Cellular WCDMA Radiated Measurements §2.1053 §22.917(a) RSS-132(4.5.1)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY:	826.4	40	MHz
CHANNEL:	413	2	_
MEASURED OUTPUT POWER:	21.07	dBm =	0.128 W
MODULATION SIGNAL:	WCDMA		
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W) =	34.07	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
1652.80	-55.56	2.55	-53.01	Н	74.1
2479.20	-79.80	2.86	-76.93	Н	98.0
3305.60	-81.82	5.48	-76.35	Н	97.4
4132.00	-81.53	7.06	-74.46	Н	95.5
4958.40	-81.00	7.88	-73.12	Н	94.2


 Table 6-8. Radiated Spurious Data (Cellular WCDMA Mode – Ch. 4132)

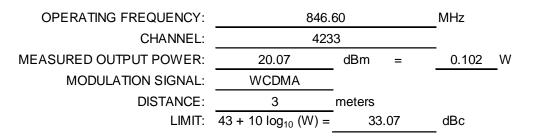
- This device employs UMTS technology with WCDMA (AMR/RMC), HSDPA, HSUPA, and GSM/GPRS/EDGE capabilities. This device was tested under all configurations and the highest power is reported in WCDMA mode with HSDPA Inactive at 12.2 kbps RMC and TPC bits all set to "1."
- 2) This unit was tested with its standard battery.
- 3) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The "H" positioning is defined with the EUT lying flat on the test surface, the "H2" positioning is defined with the EUT standing up on its side, and the "V" positioning is defined with the EUT standing up on its side, and the "V" positioning is defined with the EUT standing upright. The worst case configuration was found in the H position. The data reported in the table above was measured in this test setup.

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)		
Test Report S/N:	Test Dates:	EUT Type:	Page 19 of 72	
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Fage 19 01 72	
© 2013 PCTEST Engineering La	2013 PCTEST Engineering Laboratory, Inc.			

Cellular WCDMA Radiated Measurements (Cont'd) §2.1053 §22.917(a) RSS-132(4.5.1)

Field Strength of SPURIOUS Radiation

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	SPURIOUS EMISSION LEVEL (dBm)	EUT POL (H/V)	(dBc)
1673.20	-48.91	2.37	-46.54	Н	67.2
2509.80	-79.73	2.80	-76.93	Н	97.6
3346.40	-81.96	5.62	-76.35	Н	97.0
4183.00	-81.60	7.13	-74.46	н	95.2
5019.60	-81.07	7.96	-73.12	н	93.8


Table 6-9. Radiated Spurious Data (Cellular WCDMA Mode – Ch. 4183)

- This device employs UMTS technology with WCDMA (AMR/RMC), HSDPA, HSUPA, and GSM/GPRS/EDGE capabilities. This device was tested under all configurations and the highest power is reported in WCDMA mode with HSDPA Inactive at 12.2 kbps RMC and TPC bits all set to "1."
- 2) This unit was tested with its standard battery.
- 3) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The "H" positioning is defined with the EUT lying flat on the test surface, the "H2" positioning is defined with the EUT standing up on its side, and the "V" positioning is defined with the EUT standing up on its sole, and the "V" position. The data reported in the table above was measured in this test setup.

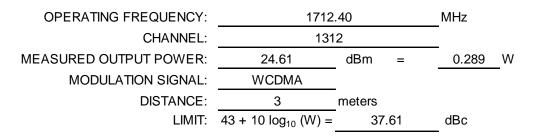
FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)			
Test Report S/N:	Test Dates:	EUT Type:	Page 20 of 72		
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Fage 20 01 72		
© 2013 PCTEST Engineering La	2013 PCTEST Engineering Laboratory, Inc.				

Cellular WCDMA Radiated Measurements (Cont'd) §2.1053 §22.917(a) RSS-132(4.5.1)

Field Strength of SPURIOUS Radiation

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
1693.20	-55.80	2.13	-53.67	Н	73.7
2539.80	-80.05	3.11	-76.93	Н	97.0
3386.40	-82.15	5.80	-76.35	Н	96.4
4233.00	-81.69	7.22	-74.46	Н	94.5
5079.60	-81.13	8.01	-73.12	Н	93.2

Table 6-10. Radiated Spurious Data (Cellular WCDMA Mode – Ch. 4233)


- This device employs UMTS technology with WCDMA (AMR/RMC), HSDPA, HSUPA, and GSM/GPRS/EDGE capabilities. This device was tested under all configurations and the highest power is reported in WCDMA mode with HSDPA Inactive at 12.2 kbps RMC and TPC bits all set to "1."
- 2) This unit was tested with its standard battery.
- 3) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The "H" positioning is defined with the EUT lying flat on the test surface, the "H2" positioning is defined with the EUT standing up on its side, and the "V" positioning is defined with the EUT standing up on its sole, and the "V" position. The data reported in the table above was measured in this test setup.

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)		
Test Report S/N:	Test Dates:	EUT Type:	Page 21 of 72	
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Fage 21 01 72	
© 2013 PCTEST Engineering La	2013 PCTEST Engineering Laboratory, Inc.			

--- V ENGINEERING CABORATORY, IN

6.7 AWS WCDMA Radiated Measurements §2.1053 §24.238(a) RSS-139(6.5.2)

Field Strength of SPURIOUS Radiation

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	SPURIOUS EMISSION LEVEL (dBm)	EUT POL (H/V)	(dBc)
3424.80	-53.22	8.11	-45.11	н	69.7
5137.20	-81.99	10.21	-71.78	н	96.4
6849.60	-80.47	11.32	-69.15	н	93.8
8562.00	-79.97	13.03	-66.94	н	91.6
10274.40	-76.88	13.02	-63.86	н	88.5

Table 6-11. Radiated Spurious Data (AWS WCDMA Mode – Ch. 9262)

- This device employs UMTS technology with WCDMA (AMR/RMC), HSDPA, HSUPA, and GSM/GPRS/EDGE capabilities. This device was tested under all configurations and the highest power is reported in WCDMA mode with HSDPA Inactive at 12.2 kbps RMC and TPC bits all set to "1."
- 2) This unit was tested with its standard battery.
- 3) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The "H" positioning is defined with the EUT lying flat on the test surface, the "H2" positioning is defined with the EUT standing up on its side, and the "V" positioning is defined with the EUT standing up on its side, and the "V" positioning is defined with the EUT standing upright. The worst case configuration was found in the H position. The data reported in the table above was measured in this test setup.

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)		
Test Report S/N:	Test Dates:	EUT Type:	Page 22 of 72	
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Fage 22 01 72	
© 2013 PCTEST Engineering La	2013 PCTEST Engineering Laboratory, Inc.			

AWS WCDMA Radiated Measurements (Cont'd) §2.1053 §24.238(a) RSS-139(6.5.2)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY:	1732.50		MHz
CHANNEL:	1412		_
MEASURED OUTPUT POWER:	24.81	dBm =	0.303 W
MODULATION SIGNAL:	WCDMA		
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W) =	37.81	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	SPURIOUS EMISSION LEVEL (dBm)	EUT POL (H/V)	(dBc)
3465.00	-51.83	8.26	-43.57	Н	68.4
5197.50	-82.04	10.26	-71.78	н	96.6
6930.00	-80.57	11.42	-69.15	Н	94.0
8662.50	-80.01	13.07	-66.94	Н	91.8
10395.00	-76.97	13.12	-63.86	Н	88.7

Table 6-12. Radiated Spurious Data (AWS WCDMA Mode – Ch. 9400)

- This device employs UMTS technology with WCDMA (AMR/RMC), HSDPA, HSUPA, and GSM/GPRS/EDGE capabilities. This device was tested under all configurations and the highest power is reported in WCDMA mode with HSDPA Inactive at 12.2 kbps RMC and TPC bits all set to "1."
- 2) This unit was tested with its standard battery.
- 3) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The "H" positioning is defined with the EUT lying flat on the test surface, the "H2" positioning is defined with the EUT standing up on its side, and the "V" positioning is defined with the EUT standing up on its side, and the "V" positioning is defined with the EUT standing upright. The worst case configuration was found in the H position. The data reported in the table above was measured in this test setup.

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 23 of 72	
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Fage 23 01 72	
© 2013 PCTEST Engineering La	2013 PCTEST Engineering Laboratory, Inc.			

AWS WCDMA Radiated Measurements (Cont'd) §2.1053 §24.238(a) RSS-139(6.5.2)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY:	1752	2.50	MHz
CHANNEL:	186	62	
MEASURED OUTPUT POWER:	25.71	dBm =	0.372 W
MODULATION SIGNAL:	WCDMA	_	
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W) =	38.71	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	SPURIOUS EMISSION LEVEL (dBm)	EUT POL (H/V)	(dBc)
3505.00	-53.95	8.40	-45.55	Н	71.3
5257.50	-82.09	10.31	-71.78	н	97.5
7010.00	-80.66	11.51	-69.15	н	94.9
8762.50	-80.05	13.11	-66.94	Н	92.7
10515.00	-77.06	13.20	-63.86	Н	89.6

Table 6-13. Radiated Spurious Data (AWS WCDMA Mode – Ch. 9538)

- This device employs UMTS technology with WCDMA (AMR/RMC), HSDPA, HSUPA, and GSM/GPRS/EDGE capabilities. This device was tested under all configurations and the highest power is reported in WCDMA mode with HSDPA Inactive at 12.2 kbps RMC and TPC bits all set to "1."
- 2) This unit was tested with its standard battery.
- 3) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The "H" positioning is defined with the EUT lying flat on the test surface, the "H2" positioning is defined with the EUT standing up on its side, and the "V" positioning is defined with the EUT standing up on its side, and the "V" positioning is defined with the EUT standing upright. The worst case configuration was found in the H position. The data reported in the table above was measured in this test setup.

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 24 of 72
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Page 24 of 72
© 2013 PCTEST Engineering La	aboratory, Inc.		V 2.9 04/15/2013

6.8 PCS GSM Radiated Measurements §2.1053 §24.238(a) RSS-133(6.5.2)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY:	1850	.20	MHz
CHANNEL:	512	2	_
MEASURED OUTPUT POWER:	32.24	dBm =	1.675 W
MODULATION SIGNAL:	GSM (GMSK)	_	
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W) =	45.24	dBc

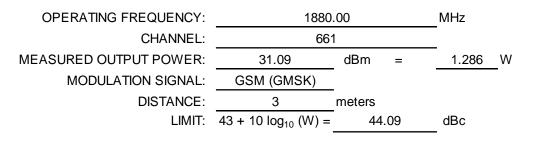

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
3700.40	-57.58	8.40	-49.18	Н	81.4
5550.60	-84.17	10.62	-73.55	Н	105.8
7400.80	-82.17	11.82	-70.35	Н	102.6
9251.00	-81.58	13.30	-68.28	Н	100.5
11101.20	-78.19	13.50	-64.69	Н	96.9

Table 6-14. Radiated Spurious Data (PCS GSM Mode – Ch. 512)

- 1) This device was tested under all configurations and the highest power is reported in GPRS mode while transmitting with one slot active.
- 2) This unit was tested with its standard battery.
- 3) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The "H" positioning is defined with the EUT lying flat on the test surface, the "H2" positioning is defined with the EUT standing up on its side, and the "V" positioning is defined with the EUT standing upright. The worst case configuration was found in the H position. The data reported in the table above was measured in this test setup.

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 25 of 72
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Fage 23 01 72
© 2013 PCTEST Engineering La	aboratory, Inc.		V 2.9

Field Strength of SPURIOUS Radiation

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	SPURIOUS EMISSION LEVEL (dBm)	EUT POL (H/V)	(dBc)
3760.00	-54.26	8.42	-45.83	Н	76.9
5640.00	-81.96	10.66	-71.30	н	102.4
7520.00	-79.89	11.92	-67.96	н	99.1
9400.00	-79.01	13.24	-65.77	н	96.9
11280.00	-75.76	13.49	-62.28	Н	93.4

Table 6-15. Radiated Spurious Data (PCS GSM Mode – Ch. 661)

- 1) This device was tested under all configurations and the highest power is reported in GPRS mode while transmitting with one slot active.
- 2) This unit was tested with its standard battery.
- 3) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The "H" positioning is defined with the EUT lying flat on the test surface, the "H2" positioning is defined with the EUT standing up on its side, and the "V" positioning is defined with the EUT standing up on its side, and the "V" positioning is defined with the EUT standing upright. The worst case configuration was found in the H position. The data reported in the table above was measured in this test setup.

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 26 of 72
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Fage 20 01 72
© 2013 PCTEST Engineering La	aboratory, Inc.		V 2.9

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY:	1909.80		MHz
CHANNEL:	810		
MEASURED OUTPUT POWER:	31.54	dBm =	1.427W
MODULATION SIGNAL:	GSM (GMSK)	_	
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W) =	44.54	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
3819.60	-57.97	8.57	-49.40	Н	80.9
5729.40	-84.04	10.69	-73.35	н	104.9
7639.20	-82.04	12.07	-69.97	н	101.5
9549.00	-80.84	13.20	-67.64	н	99.2
11458.80	-77.84	13.42	-64.43	Н	96.0

Table 6-16. Radiated Spurious Data (PCS GSM Mode – Ch. 810)

- 1) This device was tested under all configurations and the highest power is reported in GPRS mode while transmitting with one slot active.
- 2) This unit was tested with its standard battery.
- 3) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The "H" positioning is defined with the EUT lying flat on the test surface, the "H2" positioning is defined with the EUT standing up on its side, and the "V" positioning is defined with the EUT standing up on its side, and the "V" positioning is defined with the EUT standing upright. The worst case configuration was found in the H position. The data reported in the table above was measured in this test setup.

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 27 of 72
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Faye 21 01 12
© 2013 PCTEST Engineering La	aboratory, Inc.		V 2.9

6.9 PCS WCDMA Radiated Measurements

§2.1053 §24.238(a) RSS-133(6.5.2)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY:	1852.	.40	MHz
CHANNEL:	926	2	
MEASURED OUTPUT POWER:	24.32	dBm =	0.271 W
MODULATION SIGNAL:	WCDMA		
DISTANCE:	3	meters	
LIMIT:	43 + 10 log ₁₀ (W) =	37.32	dBc

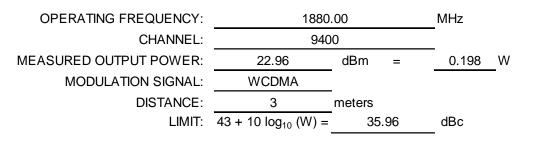

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
3704.80	-55.31	8.40	-46.91	Н	71.2
5557.20	-82.02	10.62	-71.39	н	95.7
7409.60	-80.01	11.83	-68.19	н	92.5
9262.00	-79.40	13.30	-66.10	н	90.4
11114.40	-76.02	13.50	-62.52	Н	86.8

Table 6-17. Radiated Spurious Data (PCS WCDMA Mode – Ch. 9262)

- This device employs UMTS technology with WCDMA (AMR/RMC), HSDPA, HSUPA, and GSM/GPRS/EDGE capabilities. This device was tested under all configurations and the highest power is reported in WCDMA mode with HSDPA Inactive at 12.2 kbps RMC and TPC bits all set to "1."
- 2) This unit was tested with its standard battery.
- 3) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The "H" positioning is defined with the EUT lying flat on the test surface, the "H2" positioning is defined with the EUT standing up on its side, and the "V" positioning is defined with the EUT standing upright. The worst case configuration was found in the H position. The data reported in the table above was measured in this test setup.

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 29 of 72
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Page 28 of 72
© 2013 PCTEST Engineering L	aboratory, Inc.		V 2.9 04/15/2013

Field Strength of SPURIOUS Radiation

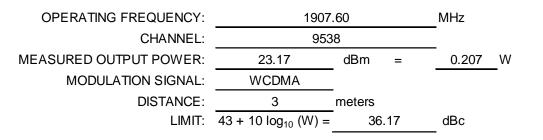

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	SPURIOUS EMISSION LEVEL (dBm)	EUT POL (H/V)	(dBc)
3760.00	-53.42	8.42	-45.00	н	68.0
5640.00	-82.05	10.66	-71.39	н	94.4
7520.00	-80.11	11.92	-68.19	н	91.1
9400.00	-79.34	13.24	-66.10	н	89.1
11280.00	-76.01	13.49	-62.52	н	85.5

 Table 6-18. Radiated Spurious Data (PCS WCDMA Mode – Ch. 9400)

- This device employs UMTS technology with WCDMA (AMR/RMC), HSDPA, HSUPA, and GSM/GPRS/EDGE capabilities. This device was tested under all configurations and the highest power is reported in WCDMA mode with HSDPA Inactive at 12.2 kbps RMC and TPC bits all set to "1."
- 2) This unit was tested with its standard battery.
- 3) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The "H" positioning is defined with the EUT lying flat on the test surface, the "H2" positioning is defined with the EUT standing up on its side, and the "V" positioning is defined with the EUT standing up on its sole, and the "V" position. The data reported in the table above was measured in this test setup.

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)		
Test Report S/N:	Test Dates:	EUT Type:	Page 29 of 72	
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Fage 29 01 72	
© 2013 PCTEST Engineering La	2013 PCTEST Engineering Laboratory, Inc.			

Field Strength of SPURIOUS Radiation

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
3815.20	-55.45	8.56	-46.89	Н	70.1
5722.80	-82.08	10.69	-71.39	Н	94.6
7630.40	-80.24	12.06	-68.19	Н	91.4
9538.00	-79.30	13.20	-66.10	Н	89.3
11445.60	-75.94	13.42	-62.52	Н	85.7

Table 6-19. Radiated Spurious Data (PCS WCDMA Mode – Ch. 9538)

- This device employs UMTS technology with WCDMA (AMR/RMC), HSDPA, HSUPA, and GSM/GPRS/EDGE capabilities. This device was tested under all configurations and the highest power is reported in WCDMA mode with HSDPA Inactive at 12.2 kbps RMC and TPC bits all set to "1."
- 2) This unit was tested with its standard battery.
- 3) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The "H" positioning is defined with the EUT lying flat on the test surface, the "H2" positioning is defined with the EUT standing up on its side, and the "V" positioning is defined with the EUT standing up on its sole, and the "V" position. The data reported in the table above was measured in this test setup.

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)		
Test Report S/N:	Test Dates:	EUT Type:	Page 30 of 72	
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Fage 50 01 72	
© 2013 PCTEST Engineering La	2013 PCTEST Engineering Laboratory, Inc.			

6.10 Cellular GSM Frequency Stability Measurements §2.1055 §22.355 RSS-132(4.3)

OPERATING FREQUENCY: 836,600,000 Hz

CHANNEL: _____190

REFERENCE VOLTAGE: 3.8 VDC

DEVIATION LIMIT: ±0.00025 % or 2.5 ppm

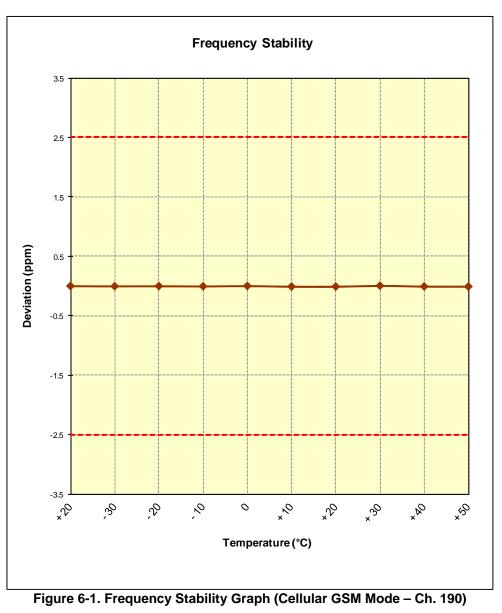

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	3.80	+20 (Ref)	836,599,999	-1	-0.0000001
100 %		- 30	836,599,996	-4	-0.0000005
100 %		- 20	836,599,998	-2	-0.0000002
100 %		- 10	836,599,995	-5	-0.0000006
100 %		0	836,600,000	0	0.0000000
100 %		+ 10	836,599,991	-9	-0.0000011
100 %		+ 20	836,599,991	-9	-0.0000011
100 %		+ 30	836,600,003	3	0.0000004
100 %		+ 40	836,599,993	-7	-0.0000008
100 %		+ 50	836,599,991	-9	-0.0000011
115 %	4.37	+ 20	836,599,994	-6	-0.0000007
BATT. ENDPOINT	3.2	+ 20	836,600,000	0	0.0000000

Table 6-20. Frequency Stability Data (Cellular GSM Mode – Ch. 190)

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 31 of 72	
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Fage ST 0172	
© 2013 PCTEST Engineering La	2013 PCTEST Engineering Laboratory, Inc.			

Cellular GSM Frequency Stability Measurements (Cont'd) §2.1055 §22.355 RSS-132(4.3)

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 32 of 72
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Fage 32 01 72
© 2013 PCTEST Engineering La	aboratory, Inc.		V 2.9 04/15/2013

6.11 Cellular WCDMA Frequency Stability Measurements §2.1055 §22.355 RSS-132(4.3)

OPERATING FREQUENCY: 836,600,000 Hz

CHANNEL: _____ 4183

REFERENCE VOLTAGE: 3.8 VDC

DEVIATION LIMIT: ±0.00025 % or 2.5 ppm

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	3.80	+20 (Ref)	836,600,003	3	0.0000004
100 %		- 30	836,599,999	-1	-0.0000001
100 %		- 20	836,599,991	-9	-0.0000011
100 %		- 10	836,600,002	2	0.0000002
100 %		0	836,599,993	-7	-0.0000008
100 %		+ 10	836,599,997	-3	-0.0000004
100 %		+ 20	836,599,997	-3	-0.0000004
100 %		+ 30	836,599,997	-3	-0.0000004
100 %		+ 40	836,599,993	-7	-0.0000008
100 %		+ 50	836,599,992	-8	-0.0000010
115 %	4.37	+ 20	836,599,995	-5	-0.0000006
BATT. ENDPOINT		+ 20	836,600,002	2	0.0000002

Table 6-21. Frequency Stability Data (Cellular WCDMA Mode – Ch. 4183)

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 33 of 72	
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Page 33 01 72	
© 2013 PCTEST Engineering La	2013 PCTEST Engineering Laboratory, Inc.			

04/15/2013

Cellular WCDMA Frequency Stability Measurements (Cont'd) §2.1055 §22.355 RSS-132(4.3)

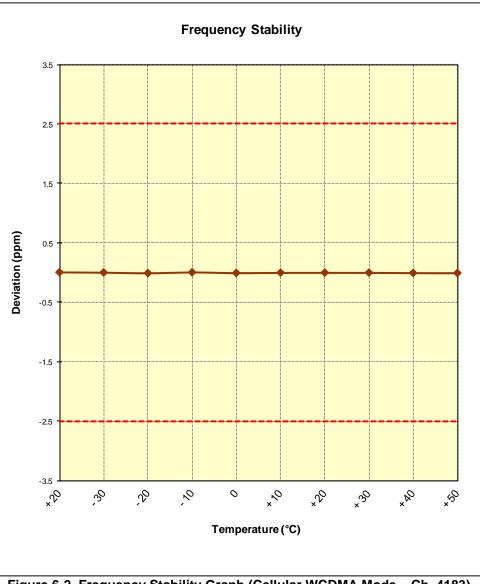


Figure 6-2. Frequency Stability Graph (Cellular WCDMA Mode – Ch. 4183)

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 24 of 72
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Page 34 of 72
© 2013 PCTEST Engineering La	aboratory, Inc.		V 2.9

04/15/2013

ENGINEERING LABORATORY, INC.

6.12 AWS WCDMA Frequency Stability Measurements §2.1055 §27.54 RSS-139(6.3)

OPERATING FREQUENCY: 1,732,500,000 Hz

CHANNEL: 1412

 REFERENCE VOLTAGE:
 3.8
 VDC

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	3.80	+20 (Ref)	1,732,499,994	-6	-0.0000003
100 %		- 30	1,732,500,001	1	0.0000001
100 %		- 20	1,732,499,998	-2	-0.0000001
100 %		- 10	1,732,500,001	1	0.0000001
100 %		0	1,732,499,998	-2	-0.0000001
100 %		+ 10	1,732,500,003	3	0.0000002
100 %		+ 20	1,732,499,991	-9	-0.0000005
100 %		+ 30	1,732,499,989	-11	-0.0000006
100 %		+ 40	1,732,499,994	-6	-0.0000003
100 %		+ 50	1,732,499,987	-13	-0.0000008
115 %	4.37	+ 20	1,732,499,986	-14	-0.0000008
BATT. ENDPOINT	3.20	+ 20	1,732,499,993	-7	-0.0000004

Table 6-22. Frequency Stability Data (AWS WCDMA Mode – Ch. 1413)

Note:

Based on the results of the frequency stability test at the center channel the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain inband when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 25 of 72
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Page 35 of 72
© 2013 PCTEST Engineering La	aboratory, Inc.		V 2.9 04/15/2013

AWS WCDMA Frequency Stability Measurements (Cont'd) §2.1055 §27.54 RSS-139(6.3)

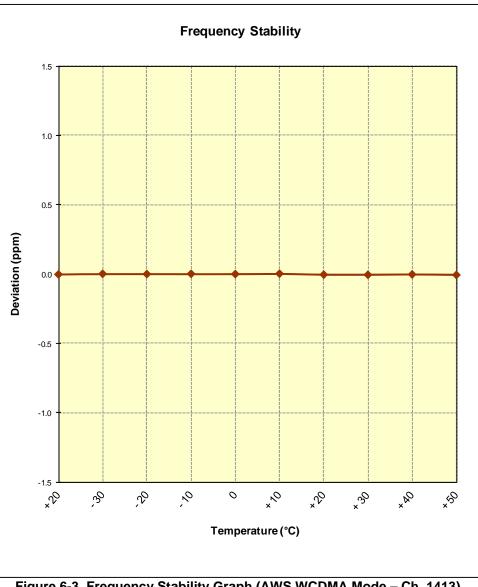


Figure 6-3. Frequency Stability Graph (AWS WCDMA Mode – Ch. 1413)

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 36 of 72
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Page 36 01 72
© 2013 PCTEST Engineering La	aboratory, Inc.	·	V 2.9

04/15/2013

--- V ENGINEERING LABORATORY, INC.

6.13 PCS GSM Frequency Stability Measurements §2.1055 §24.235 RSS-139(6.3)

OPERATING FREQUENCY: 1,880,000,000 Hz

CHANNEL: 661

REFERENCE VOLTAGE: 3.8 VDC

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	3.80	+20 (Ref)	1,880,000,004	4	0.0000002
100 %		- 30	1,879,999,988	-12	-0.0000006
100 %		- 20	1,879,999,988	-12	-0.0000006
100 %		- 10	1,879,999,989	-11	-0.0000006
100 %		0	1,880,000,004	4	0.0000002
100 %		+ 10	1,879,999,998	-2	-0.0000001
100 %		+ 20	1,879,999,985	-15	-0.0000008
100 %		+ 30	1,879,999,990	-10	-0.0000005
100 %		+ 40	1,879,999,988	-12	-0.0000006
100 %		+ 50	1,879,999,995	-5	-0.0000003
115 %	4.37	+ 20	1,879,999,994	-6	-0.0000003
BATT. ENDPOINT	3.20	+ 20	1,879,999,988	-12	-0.0000006

Table 6-23. Frequency Stability Data (PCS GSM Mode - Ch. 661)

Note:

Based on the results of the frequency stability test at the center channel the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain inband when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 27 of 72
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Page 37 of 72
© 2013 PCTEST Engineering La	aboratory, Inc.		V 2.9 04/15/2013

PCS GSM Frequency Stability Measurements (Cont'd) §2.1055 §24.235 RSS-139(6.3)

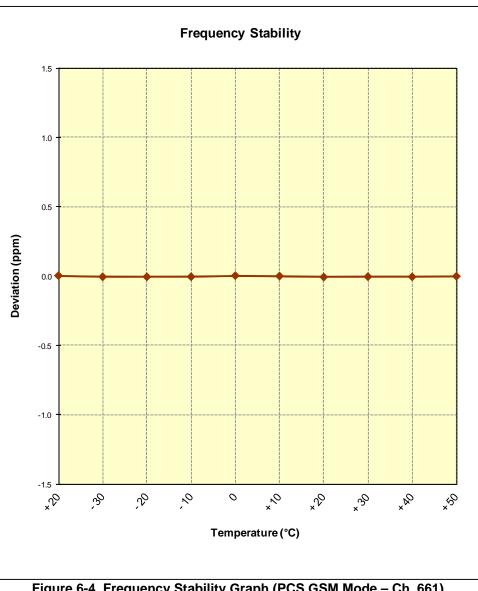


Figure 6-4. Frequency Stability Graph (PCS GSM Mode – Ch. 661)

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 38 of 72
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Page 36 01 72
© 2013 PCTEST Engineering La	boratory, Inc.		V 2.9

PCTEST

V ENGINEERING LABORATORY, INC.

6.14 PCS WCDMA Frequency Stability Measurements §2.1055 §24.235 RSS-139(6.3)

OPERATING FREQUENCY: 1,880,000,000 Hz

CHANNEL: 9400

REFERENCE VOLTAGE: <u>3.8</u> VDC

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	3.80	+20 (Ref)	1,879,999,988	-12	-0.0000006
100 %		- 30	1,879,999,988	-12	-0.0000006
100 %		- 20	1,879,999,999	-1	-0.0000001
100 %		- 10	1,880,000,000	0	0.0000000
100 %		0	1,879,999,997	-3	-0.0000002
100 %		+ 10	1,879,999,993	-7	-0.0000004
100 %		+ 20	1,879,999,985	-15	-0.0000008
100 %		+ 30	1,880,000,003	3	0.0000002
100 %		+ 40	1,879,999,993	-7	-0.0000004
100 %		+ 50	1,879,999,988	-12	-0.0000006
115 %	4.37	+ 20	1,879,999,994	-6	-0.0000003
BATT. ENDPOINT	3.20	+ 20	1,880,000,000	0	0.0000000

Table 6-24. Frequency Stability Data (PCS WCDMA Mode – Ch. 9400)

Note:

Based on the results of the frequency stability test at the center channel the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain inband when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 20 of 72
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Page 39 of 72
© 2013 PCTEST Engineering La	aboratory, Inc.		V 2.9 04/15/2013

PCS WCDMA Frequency Stability Measurements (Cont'd) §2.1055 §24.235 RSS-139(6.3)

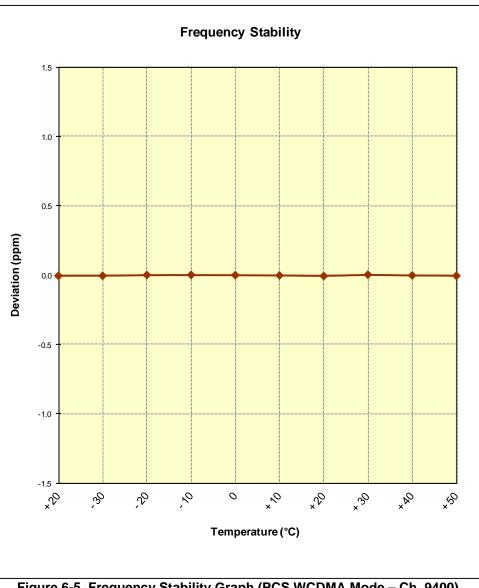
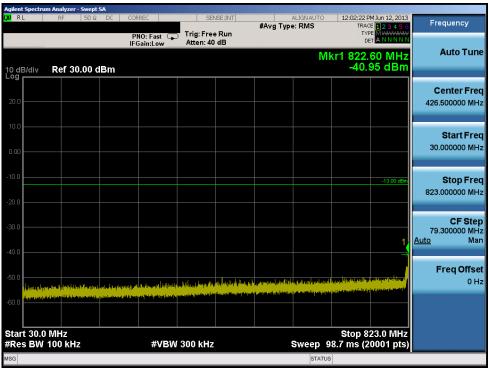
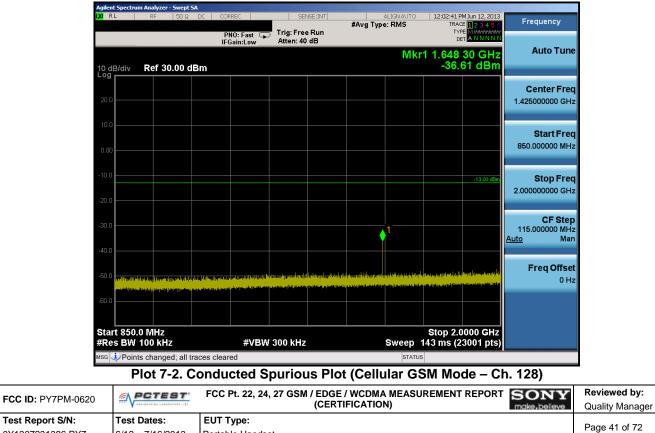
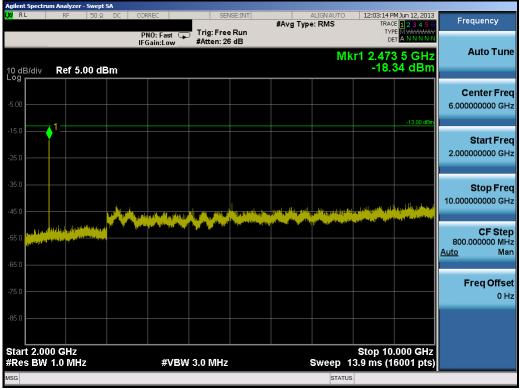
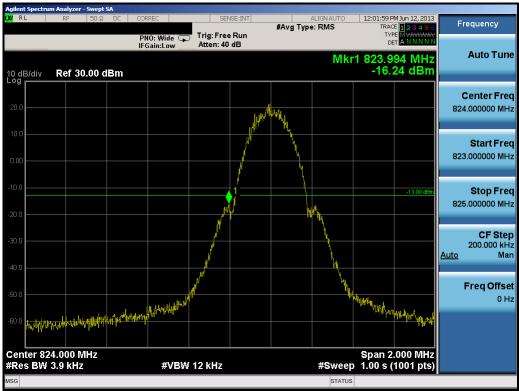



Figure 6-5. Frequency Stability Graph (PCS WCDMA Mode – Ch. 9400)


FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 40 of 72
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Page 40 01 72
© 2013 PCTEST Engineering La	aboratory, Inc.		V 2.9

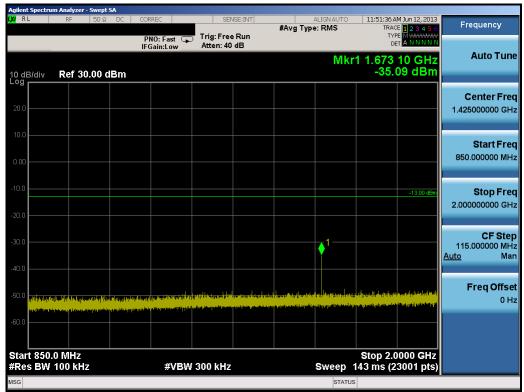
PLOTS OF EMISSIONS 7.0


Plot 7-1. Conducted Spurious Plot (Cellular GSM Mode - Ch. 128)


	····· Y INCIDENTIAL LINGUARDAY, INC.	(CERTIFICATION)	make.believe
Test Report S/N:	Test Dates:	EUT Type:	
0Y1307231386.PY7	6/12 – 7/16/2013	Portable Handset	
© 2013 PCTEST Engineering L	aboratory Inc		

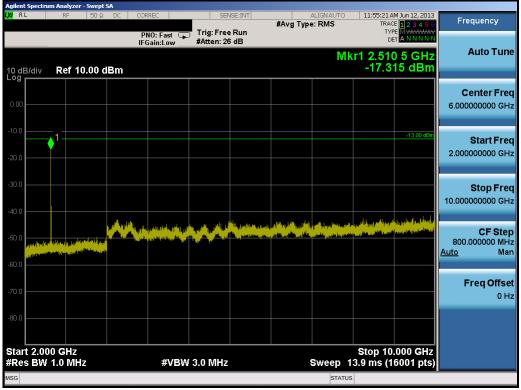
© 2013 PCTEST E neering Laboratory, Inc. ngii

Plot 7-3. Conducted Spurious Plot (Cellular GSM Mode - Ch. 128)


Plot 7-4. Band Edge Plot (Cellular GSM Mode – Ch. 128)

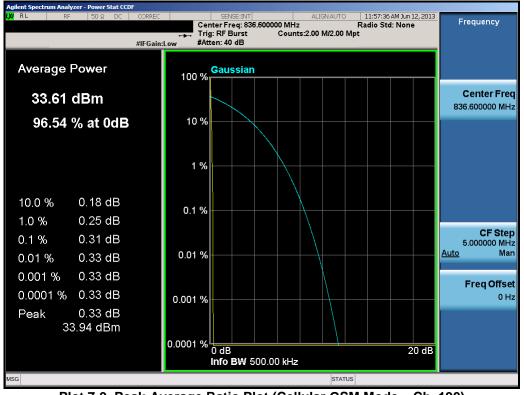
FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 42 of 72
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Page 42 of 72
© 2013 PCTEST Engineering La	aboratory, Inc.	•	V 2.9

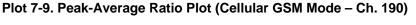
igilent Spectrum Analyzer - Swept SA XI RL RF 50 Ω DC	CORREC	SENSE:INT	ALIGNAUTO #Avg Type: RMS	11:51:03 AM Ju TRACE	n 12,2013 2 3 4 5 6 Wallward
10 dB/div Ref 30.00 dBm		rig: Free Run Atten: 40 dB	N	Ikr1 702.86 -49.56	MHz Auto Tune
20.0					Center Free 426.500000 MH
0.00					Start Free 30.000000 MH
-10.0					-13.00 dBm Stop Free 823.000000 MH
30.0					CF Ste 79.300000 MH <u>Auto</u> Ma
50.0	d (jeweit) begenste Amerika beredense		an bhuan na chun bha an bha an bha an tair an 1916. An tairtean bhaile An tairtean an tairtean an tair		Freq Offse
60.0 biological and the second of particular second s	n an an the action of the Unit of the U				
FRES BW 100 kHz	#VBW 30	00 kHz	Sweep	Stop 823. 98.7 ms (200	01 pts)

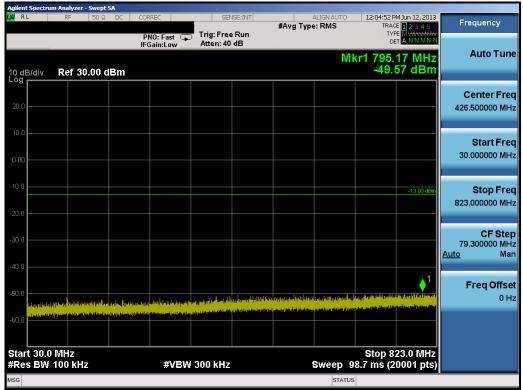


Plot 7-6. Conducted Spurious Plot (Cellular GSM Mode – Ch. 190)

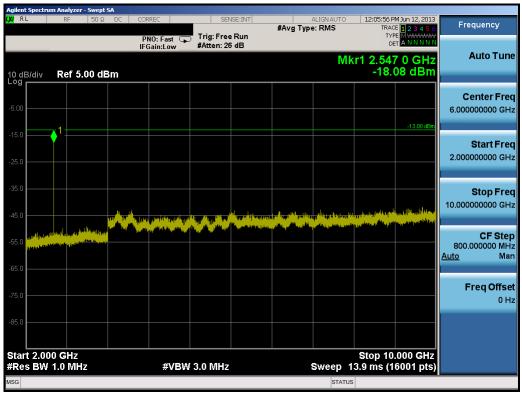
FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 42 of 72
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Page 43 of 72
© 2013 PCTEST Engineering Laboratory, Inc.			


Plot 7-7. Conducted Spurious Plot (Cellular GSM Mode - Ch. 190)



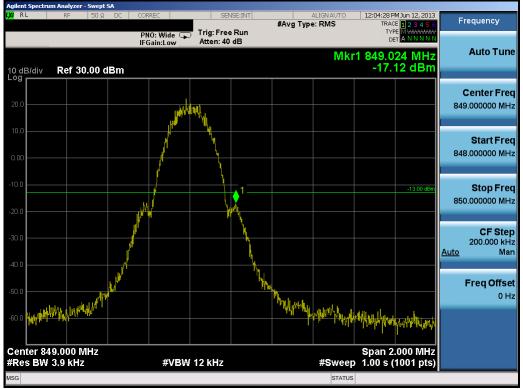

Plot 7-8. Occupied Bandwidth Plot (Cellular GSM Mode - Ch. 190)

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 44 of 72
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Faye 44 01 72
© 2013 PCTEST Engineering La	aboratory, Inc.	·	V 2.9


Plot 7-10. Conducted Spurious Plot (Cellular GSM Mode – Ch. 251)

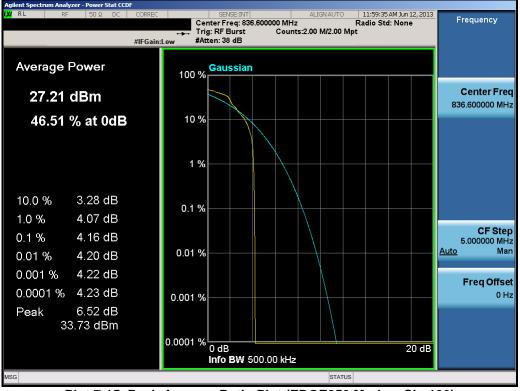
FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 45 of 72
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Fage 45 01 72
© 2013 PCTEST Engineering La	aboratory, Inc.		V 2.9

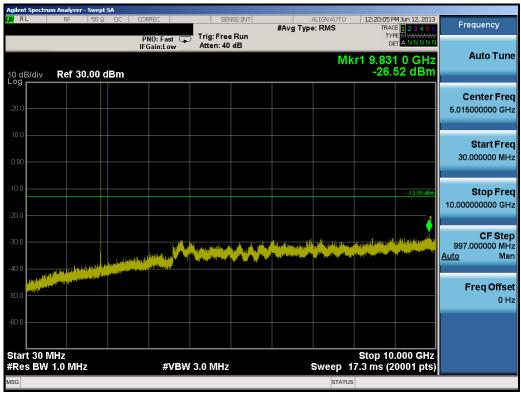
Agilent Spectru	m Analyzer - Swept SA RF 50 Ω DC	CORREC	SENSE:INT		ALIGNAUTO	10/05/00 DM 3	m 10, 0010	
LA KL	KF SU 92 DC			#Avg Typ		12:05:22 PM Ju TRACE	2 3 4 5 6	Frequency
		PNO: Fast 🖵 IFGain:Low	Trig: Free Run Atten: 40 dB			DET	NNNNN	
10 dB/div	Ref 30.00 dBm				Mkr	1 1.697 75 -35.53	5 GHz dBm	Auto Tune
20.0								Center Freq 1.425000000 GHz
0.00								Start Freq 850.000000 MHz
-10.0							-13.00 dBm	Stop Freq 2.000000000 GHz
-30.0					•1			CF Step 115.000000 MHz <u>Auto</u> Man
	Navigni) na ppanya na fijna kana pa	gargenil (1997) og som er ra sjil i Verense 1 jangenil (1997) og som er ra sjil i Verense	an a	e <mark>len allen av der besette</mark> Rechtere beiden		t ya hizang kateng Kande Mille a palanang Pepuanatan New	n ann an tha ann an tha tha	Freq Offset 0 Hz
-60.0								
Start 850. #Res BW		#VBW	300 kHz		Sweep	Stop 2.000 143 ms (230	00 GHz	
1	ts changed; all traces				STATUS		/***	
•								054)



Plot 7-12. Conducted Spurious Plot (Cellular GSM Mode - Ch. 251)

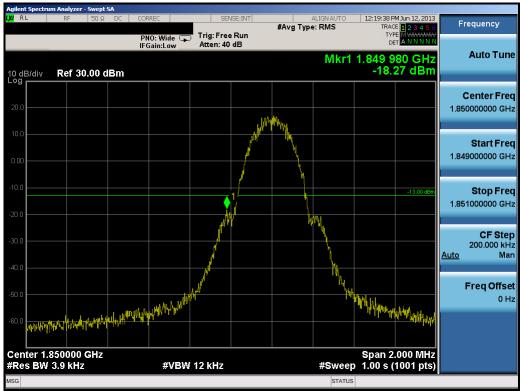
FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:	Daga 46 of 70			
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Page 46 of 72			
© 2013 PCTEST Engineering La	2013 PCTEST Engineering Laboratory, Inc.					


Plot 7-13. Band Edge Plot (Cellular GSM Mode - Ch. 251)


Plot 7-14. Occupied Bandwidth Plot (EDGE850 Mode – Ch. 190)

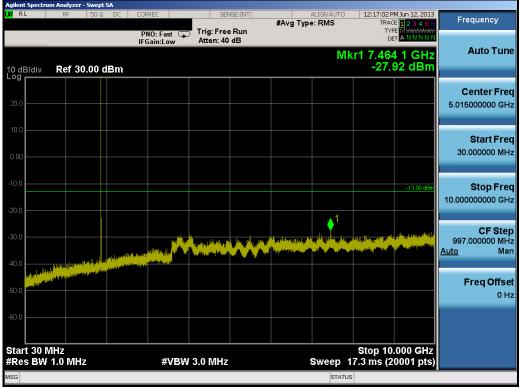
FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 47 of 72
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Fage 47 01 72
© 2013 PCTEST Engineering La	aboratory, Inc.	·	V 2.9

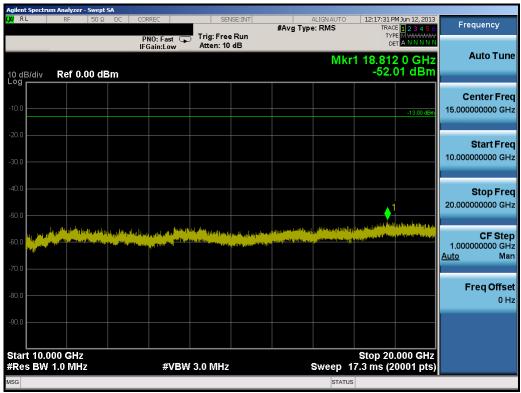
Plot 7-15. Peak-Average Ratio Plot (EDGE850 Mode - Ch. 190)



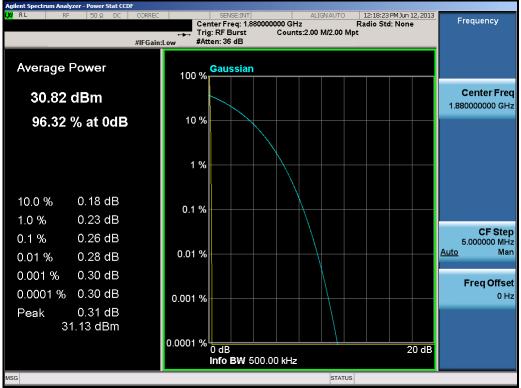
FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:	Daga 49 of 70			
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Page 48 of 72			
© 2013 PCTEST Engineering L	2013 PCTEST Engineering Laboratory, Inc.					

Agilent Spectrum Analyzer - Swept SA				-	
LX/RL RF 50Ω DC	CORREC	SENSE:INT	ALIGNAUTO #Avg Type: RMS	12:20:35 PM Jun 12, 2013 TRACE 1 2 3 4 5 6	Frequency
10 dB/div Ref 0.00 dBm		rig: Free Run Atten: 10 dB	Mkr	TYPE ANNNNN DET ANNNNN 1 18.749 5 GHz -51.60 dBm	Auto Tune
-10.0				-13.00 dBm	Center Freq 15.000000000 GHz
-20.0					Start Freq 10.000000000 GHz
-40.0					Stop Freq 20.000000000 GHz
-60.0 Here is a structure of the struct	neg half til fög h _{all förstand} sig half på säg på hand hand band at Sin half til fög half som som hand hand band band band band band band band b		Angen Tanga Angen pakalan panakan pana Pang panakan pan		CF Step 1.000000000 GHz <u>Auto</u> Man
-80.0					Freq Offset 0 Hz
-90.0 Start 10.000 GHz #Res BW 1.0 MHz	#VBW 3.	0 MHz	Sween 1	Stop 20.000 GHz 7.3 ms (20001 pts)	
	#VDVV J.	9 IVII 12	SWEEP		
	0 1 4 14				

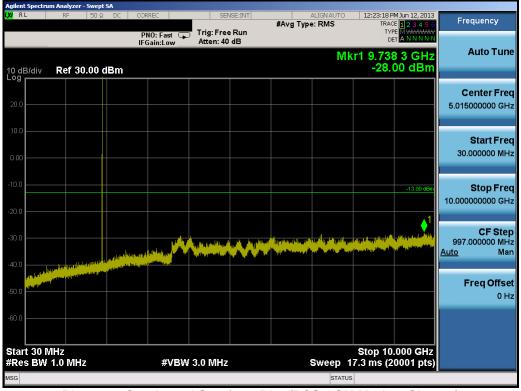


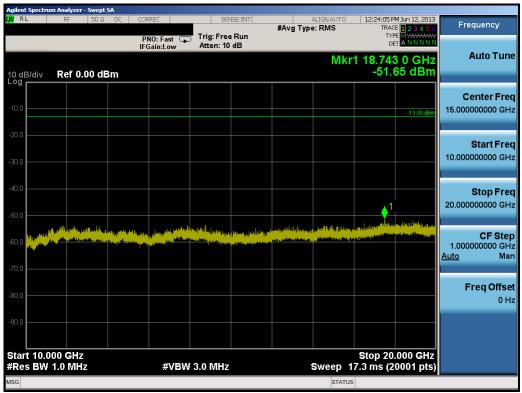

Plot 7-18. Band Edge Plot (PCS GSM Mode - Ch. 512)

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:	Page 49 of 72			
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Page 49 01 72			
© 2013 PCTEST Engineering L	© 2013 PCTEST Engineering Laboratory, Inc.					

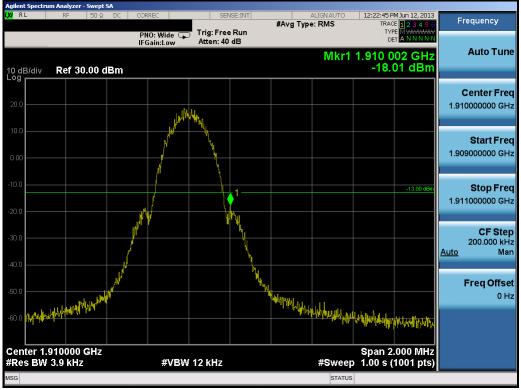

Plot 7-20. Conducted Spurious Plot (PCS GSM Mode - Ch. 661)

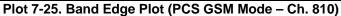
FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 50 of 72
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Fage 50 01 72
© 2013 PCTEST Engineering La	aboratory, Inc.		V 2.9




Plot 7-22. Peak-Average Ratio Plot (PCS GSM Mode – Ch. 661)

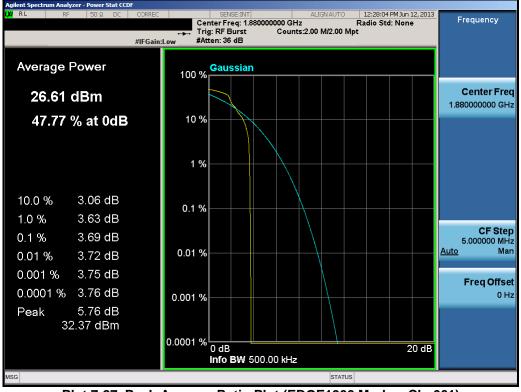
FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 51 of 70
0Y1307231386.PY7	6/12 – 7/16/2013	Portable Handset	Page 51 of 72
© 2013 PCTEST Engineering L	aboratory, Inc.		V 2.9 04/15/2013

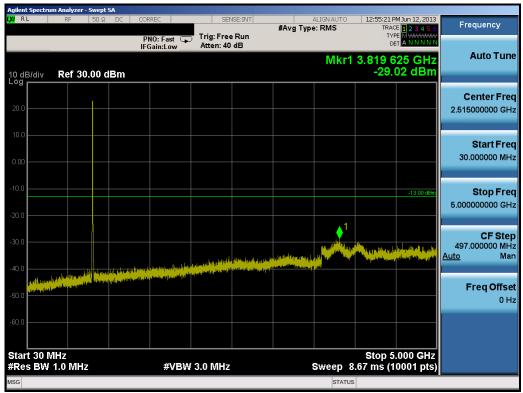




Plot 7-24. Conducted Spurious Plot (PCS GSM Mode - Ch. 810)

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 52 of 72
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Page 52 of 72
© 2013 PCTEST Engineering La	aboratory, Inc.		V 2.9




Plot 7-26. Occupied Bandwidth Plot (EDGE1900 Mode - Ch. 661)

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 52 of 72
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Page 53 of 72
© 2013 PCTEST Engineering La	aboratory, Inc.		V 2.9 04/15/2013

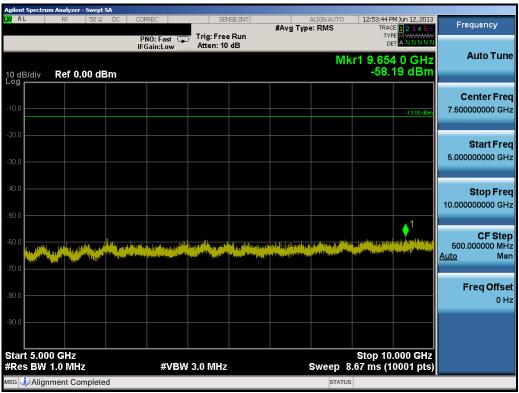
Plot 7-27. Peak-Average Ratio Plot (EDGE1900 Mode - Ch. 661)

Plot 7-28. Conducted Spurious Plot (Cellular WCDMA Mode – Ch. 4132)

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Page 54 of 72		
0Y1307231386.PY7	6/12 – 7/16/2013	Portable Handset	Fage 54 01 72		
© 2013 PCTEST Engineering La	2013 PCTEST Engineering Laboratory, Inc.				

Agilent Spectrum Analyzer - Swept SA XI RL RF 50 Ω DC	CORREC	SENSE:INT	ALIGNAUTO #Avg Type: RMS	12:55:48 PM Jun 12, 2013 TRACE 1 2 3 4 5 6	Frequency
	PNO: Fast 😱 IFGain:Low	Trig: Free Run Atten: 10 dB		TYPE MWWWWW DET ANNNNN	
10 dB/div Ref 0.00 dBm			Mk	r1 9.775 5 GHz -58.13 dBm	Auto Tuno
-10.0				-13.00 dBm	Center Fre 7.500000000 GH
30.0					Start Fre 5.000000000 GH
-40.0					Stop Fre 10.000000000 GH
	n de serve () folder d'ar ging fond de serve general a de la serve de serve de la serve de la serve de la serve	and an and a second	n 1949 yang di CC 1949 dan sa kang di ²⁹⁴ 8 di Managan di Kang di Kang di Kang di Kang di Kang	The first first particular state of the stat	CF Ste 500.000000 MH <u>Auto</u> Ma
80.0					Freq Offse 0 ⊢
-90.0				Stop 10 000 CHr	
Res BW 1.0 MHz	#VBW	3.0 MHz	Sweep 8	Stop 10.000 GHz .67 ms (10001 pts)	
ISG			STATUS		

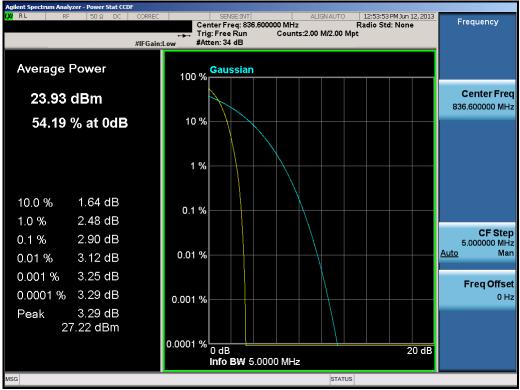
Plot 7-29. Conducted Spurious Plot (Cellular WCDMA Mode – Ch. 4132)


Plot 7-30. Band Edge Plot (Cellular WCDMA Mode - Ch. 4132)

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 55 of 72
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Fage 55 0172
© 2013 PCTEST Engineering La	aboratory, Inc.	·	V 2.9

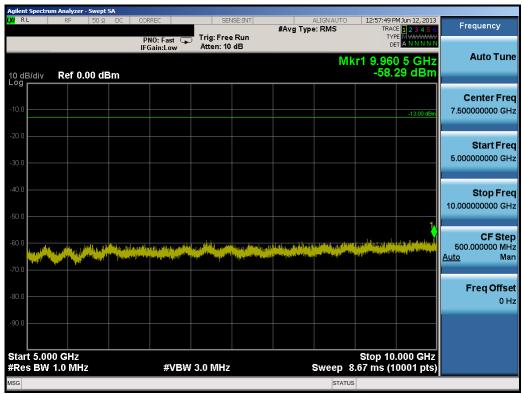
Agilent Spectrum Analyzer - Swept SA X/ RL RF 50 Ω		SENSE:INT	ALIGN AUTO	12:53:17 PM Jun 12, 2013	
	PNO: Fast 😱	Trig: Free Run	#Avg Type: RMS	TRACE 123456 TYPE MWMMMM	Frequency
	IFGain:Low	Atten: 40 dB	BAland		Auto Tune
10 dB/div Ref 30.00 dB	m		WIKET	3.830 559 GHz -29.01 dBm	
					Center Freq
20.0					2.515000000 GHz
10.0					Start Freq
0.00					30.000000 MHz
-10.0				-13.00 dBm	Stop Freq 5.00000000 GHz
-20.0					
-30.0				a an	CF Step 497.000000 MHz
-40.0	and the state of the state of the state of the	an and an a stand of the standard stands			<u>Auto</u> Man
and a first to a static factor of the first state o	a statistic deal and sold a subseque a second story of the sub-	Article in the second se			Freq Offset
-50.0					0 Hz
-60.0					
Start 30 MHz				Stop 5.000 GHz	
#Res BW 1.0 MHz	#VBW :	3.0 MHz	Sweep 8	.67 ms (10001 pts)	
MSG			STATUS		

Plot 7-31. Conducted Spurious Plot (Cellular WCDMA Mode - Ch. 4183)


Plot 7-32. Conducted Spurious Plot (Cellular WCDMA Mode – Ch. 4183)

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 56 of 72
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Fage 50 01 72
© 2013 PCTEST Engineering La	aboratory, Inc.		V 2.9

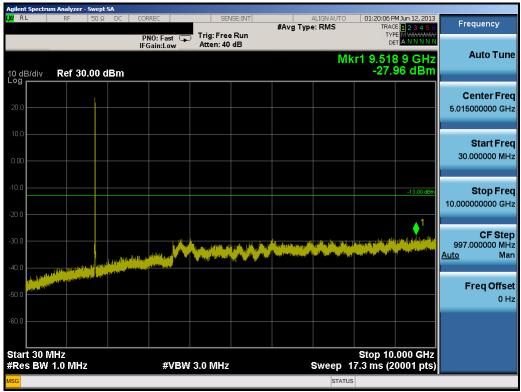
Plot 7-33. Occupied Bandwidth Plot (Cellular WCDMA Mode - Ch. 4183)


Plot 7-34. Peak-Average Ratio Plot (Cellular WCDMA Mode – Ch. 4183)

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 57 of 72
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Fage 57 0172
© 2013 PCTEST Engineering La	aboratory, Inc.	-	V 2.9

Agilent Spectrum Analyzer - Swept SA X/ RL RF 50 Ω DC	CORREC	SENSE:INT	A	LIGNAUTO	12:57:23 P	M Jun 12, 2013	
	PNO: Fast Trig: Fi	ree Run	#Avg Type		TRAC	^æ <mark>123456</mark> е М илили	Frequency
	IFGain:Low Atten:	40 dB		Mind			Auto Tune
10 dB/div Ref 30.00 dBm				IVIKET	-28.	34 GHz 98 dBm	
							Center Freq
20.0							2.515000000 GHz
10.0							Start Freq
0.00							30.000000 MHz
-10.0						-13.00 dBm	Stop Freq 5.00000000 GHz
-20.0				. 1			
-30.0				المريرة الأركان براد			CF Step 497.000000 MHz
-40.0		ullus al Pessenary, bat	The state of the s				<u>Auto</u> Mar
	a balance of the day is the old bits of the second distribution of the seco	disk on the second second					Freq Offset
-50.0							0 Hz
-60.0							
Start 30 MHz #Res BW 1.0 MHz	#VBW 3.0 MH	Iz	s	Sweep 8.		.000 GHz 0001 pts)	
MSG				STATUS			

Plot 7-35. Conducted Spurious Plot (Cellular WCDMA Mode - Ch. 4233)


Plot 7-36. Conducted Spurious Plot (Cellular WCDMA Mode - Ch. 4233)

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:	Daga 59 of 70			
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Page 58 of 72			
© 2013 PCTEST Engineering Laboratory, Inc.						

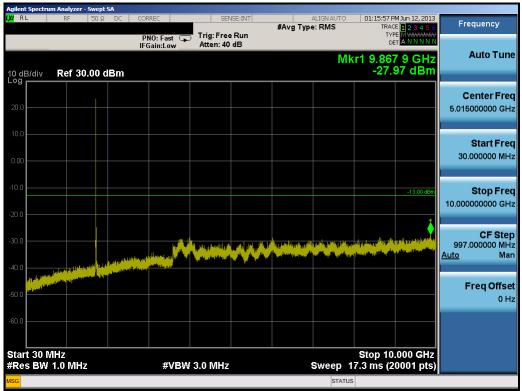
Plot 7-37. Band Edge Plot (Cellular WCDMA Mode – Ch. 4233)


Plot 7-38. Conducted Spurious Plot (AWS WCDMA Mode - Ch. 1312)

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:	Page 59 of 72			
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Fage 59 01 72			
© 2013 PCTEST Engineering La	© 2013 PCTEST Engineering Laboratory, Inc.					

Ag <mark>ilent Spectrum Analyzer - Swept SA</mark> XI RL RF 50Ω DC	CORREC SEN	ISE:INT ALIGN AUT	01:20:39 PM Jun 12, 2013	
		#Avg Type: RMS	TRACE 123456 TYPE MWWWW	Frequency
	PNO: Fast 🗭 Trig: Free IFGain:Low Atten: 10	dB	_{det} <u>а n n n n</u> kr1 18.749 5 GHz	Auto Tune
10 dB/div Ref 0.00 dBm			-51.31 dBm	
-10.0			-13.00 dBm	Center Fred 15.000000000 GH:
-20.0				Start Free 10.000000000 GH
-40.0			↓1	Stop Free 20.000000000 GH:
	ni ny Maria a daga kana ana ang kana da kana da kana da kana ang kana ang kana ang kana ang kana ang kana ang k Maria da pang kana ang	la faite ann a sa a bha an a faite ann a bhann ann an an an ann ann ann ann ann an	Hang al () Anna An Anna () Mar an Anna Anna Anna Anna Anna Anna Anna	CF Step 1.00000000 GH <u>Auto</u> Mar
-80.0				Freq Offse 0 H
-90.0				
Start 10.000 GHz #Res BW 1.0 MHz	#VBW 3.0 MHz	Sween	Stop 20.000 GHz 17.3 ms (20001 pts)	
		STA		

Plot 7-39. Conducted Spurious Plot (AWS WCDMA Mode - Ch. 1312)


Plot 7-40. Band Edge Plot (AWS WCDMA Mode - Ch. 1312)

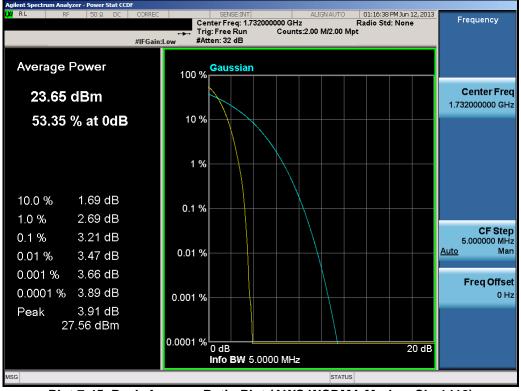
FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 60 of 72
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Page 60 01 72
© 2013 PCTEST Engineering La	aboratory, Inc.	·	V 2.9

gilent Spectrum Analyzer - Swept SA					
XIRL RF 50Ω DC	CORREC	SENSE:INT	ALIGNAUTO #Avg Type: RMS	01:17:56 PM Jun 12, 2013 TRACE 1 2 3 4 5 6	Frequency
	PNO: Wide 🔸 IFGain:Low	Trig: Free Run Atten: 40 dB	Billow	TRACE 123456 TYPE MWWWW DET A N N N N N	
10 dB/div Ref 30.00 dBm				1 1.709 000 GHz -16.31 dBm	
20.0					Center Fred 1.707000000 GHz
0.00					Start Fred 1.705000000 GHz
-10.0				-13.00 c 1	Stop Fred 1.709000000 GH2
30.0	ne station of the state of the		and the second s		CF Step 400.000 kH <u>Auto</u> Mar
50.0					Freq Offse 0 H
-60.0				Span 4.000 <u>MHz</u>	
#Res BW 1.0 MHz	#VBW	3.0 MHz	#Swee	Span 4.000 MHz p 3.00 s (1001 pts)	
ISG			STATU	IS	

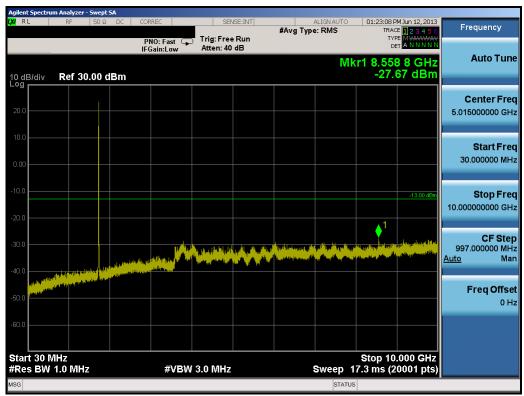
Plot 7-42. Conducted Spurious Plot (AWS WCDMA Mode - Ch. 1412)

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 61 of 70
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Page 61 of 72
© 2013 PCTEST Engineering La	aboratory, Inc.		V 2.9

ISG								STATUS			
	t 10.00 s BW 1	U GHZ .0 MHZ		#V	BW 3.0 MI	Hz		Sweep 1	- stop 20 7.3 ms (2	.000 GHz 0001 pts)	
1	4 10 00								Stop 20		
											0 H
80.0											Freq Offse
											Mato Ma
		ر منظم ر مانتشر ر الله ر	ala a faith a start a s		وجرين فالنقر رجا فر مثقان	القري العرب واللان ويتوجه	ر بنالاطلاط باللار مر بي و الرالاطلاط بالالار مر بي و	. In an hearing at the s	the state of the second second		1.000000000 GH
			والمتأور وروا للمارات	darar ratania	and the second second	والمراجع والمحافظ	and the second state of the second		TO A REPORT OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPT	and the advanceme	CF Ste
50.0										1	20.00000000 GH
40.0											Stop Fre
											10.000000000 GH
											Start Fre
20.0											
										-13.00 dBm	Center Free 15.000000000 GH
0 d _og	B/div	Ref 0.00	aBm						-01.		
		D - 6 0 00	-15					Mkr	1 19.56) 5 GHz 68 dBm	Auto Tun
				PNO: Fast IFGain:Lov		ree Run : 10 dB			TYF	E M WAWAA A N N N N N	
KU R	-	RF 5	OΩ DC	CORREC		SENSE:INT	#Avg Typ	ALIGNAUTO e: RMS		M Jun 12, 2013 E <mark>1 2 3 4 5 6</mark>	Frequency


Plot 7-43. Conducted Spurious Plot (AWS WCDMA Mode - Ch. 1412)




Plot 7-44. Occupied Bandwidth Plot (AWS WCDMA Mode - Ch. 1412)

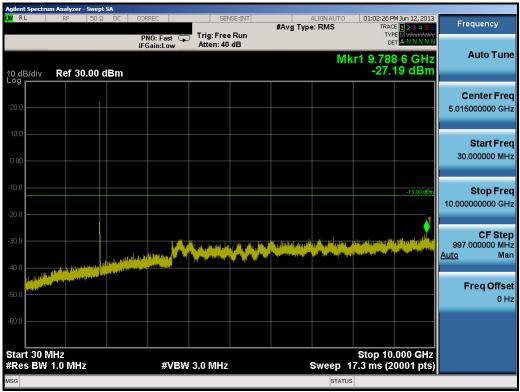
FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 62 of 72
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Fage 62 01 72
© 2013 PCTEST Engineering La	aboratory, Inc.		V 2.9

Plot 7-46. Conducted Spurious Plot (AWS WCDMA Mode - Ch. 1862)

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 63 of 72
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Fage 03 01 72
© 2013 PCTEST Engineering La	aboratory, Inc.		V 2.9

Agilent Spectrum Analyzer - Swept SA XI RL RF 50 Ω DC	CORREC SENS	#Avg Type: RMS	01:23:40 PM Jun 12, 2013 TRACE 1 2 3 4 5 6 TYPE MWWWW	Frequency
10 dB/div Ref 0.00 dBm	PNO: Fast Fill Ing: Free IFGain:Low Atten: 10 d	В	r1 18.706 0 GHz -50.42 dBm	Auto Tune
-10.0			-13.00 dBm	Center Free 15.000000000 GH
30.0				Start Fre 10.000000000 GH
-40.0			1	Stop Fre 20.000000000 GH
	laineann _{an t} arann an tarlann an tarlan	in langu na hili langu kang banang na hang kang kang banang na hang kang banang na hang banang na hang banang Pengang na hang banang kang banang kang banang na hang banang na hang banang na hang banang na hang banang mang Pengang na hang banang bana	g an	CF Step 1.000000000 GH <u>Auto</u> Ma
80.0				Freq Offse 0 H
.90.0			Stop 20.000 GHz	
#Res BW 1.0 MHz	#VBW 3.0 MHz	Sweep	17.3 ms (20001 pts)	

Plot 7-47. Conducted Spurious Plot (AWS WCDMA Mode - Ch. 1862)


Plot 7-48. Band Edge Plot (AWS WCDMA Mode - Ch. 1862)

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 64 of 72
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Fage 04 01 72
© 2013 PCTEST Engineering La	aboratory, Inc.		V 2.9

Agilent Spectrum Analyzer - Swept SA	CODDEC		4170114117		10.0010	
XURL RF 50Ω DC	CORREC	SENSE:INT	ALIGNAUT #Avg Type: RMS		123456 MWWWWWW ANNNNN	Frequency
	PNO: Wide 🔸 IFGain:Low	Atten: 40 dB		DET	ANNNNN	
			Mk	r1 1.756 00	0 GHz 6 dBm	Auto Tune
10 dB/div Ref 30.00 dBm				-19.90	вивш	
						Center Free
20.0						1.758000000 GH
10.0						
						Start Fred 1.756000000 GH;
0.00						1.756000000 GH.
-10.0						Oton Eno
1					-13.00 dBm	Stop Fred 1.76000000 GH:
-20.0						
30.0	and the second					CF Step
						400.000 kH <u>Auto</u> Mai
40.0						
-50.0						Freq Offse
						0 H:
60.0						
Center 1.758000 GHz				Span 4.0 eep 3.00 s (10	00 MHz	
#Res BW 1.0 MHz	#VBW	3.0 MHz		-	001 pts)	
ISG			ST	ATUS		

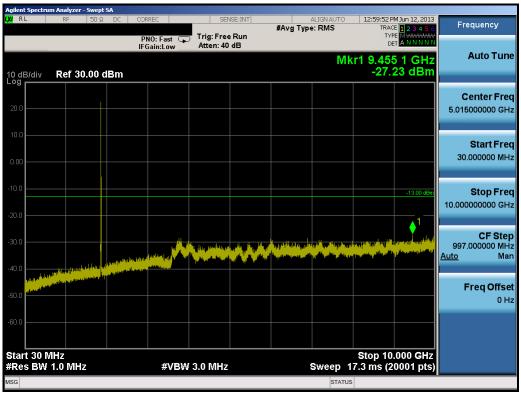
Plot 7-49. 4MHz Span Plot (AWS WCDMA Mode - Ch. 1862)


Plot 7-50. Conducted Spurious Plot (PCS WCDMA Mode - Ch. 9262)

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 65 of 72
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Page 65 of 72
© 2013 PCTEST Engineering La	aboratory, Inc.	-	V 2.9

PN0: Fast Trig: Free Run Trace 12.3.4.5.5 Frequency 100 IFGain:Low Atten: 10 dB Mkr1 19.057 5 GHz Auto Tur 100 GE/div Ref 0.00 dBm -52.21 dBm Image: Comparison of the second of the seco	Agilent Spectrum Analyzer - Swept S				-	
PN0: Fast Trig: Free Run Atten: 10 dB Mkr1 19.057 5 GHz -52.21 dBm Auto Tur 100 dB/div Ref 0.00 dBm	<mark>lX/</mark> RL RF 50Ω	DC CORREC	SENSE:INT	ALIGNAUTO	01:02:56 PM Jun 12, 2013 TRACE 12 3 4 5 6	Frequency
Log Image: Control interview		IFGain:Low F		•		Auto Tune
300 Start Free 400 Start Free 400 Start Free 500 Image: Start Free </td <td>Log</td> <td></td> <td></td> <td></td> <td></td> <td>Center Freq 15.00000000 GHz</td>	Log					Center Freq 15.00000000 GHz
500 1 1 20.00000000 GHz 500 1						Start Freq 10.000000000 GHz
-60.0 -7					1	Stop Freq 20.000000000 GHz
-80 0 -90 0 Start 10.000 GHz Stop 20.000 GHz		A transmission of the second	h na Antal Alam ya ya ka ƙafa ya ya ana ƙafa ƙasar	g an gan an sharan an gan an gan an a	an a	CF Step 1.000000000 GHz <u>Auto</u> Man
Start 10.000 GHz Stop 20.000 GHz						Freq Offset 0 Hz
	Start 10.000 GHz	#VBW 3.	0 MHz	Sweep 1	Stop 20.000 GHz 7.3 ms (20001 pts)	
MSG JAlignment Completed	1					

Plot 7-51. Conducted Spurious Plot (PCS WCDMA Mode - Ch. 9262)


Plot 7-52. Band Edge Plot (PCS WCDMA Mode - Ch. 9262)

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 66 of 72
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Page 66 01 72
© 2013 PCTEST Engineering La	aboratory, Inc.	·	V 2.9

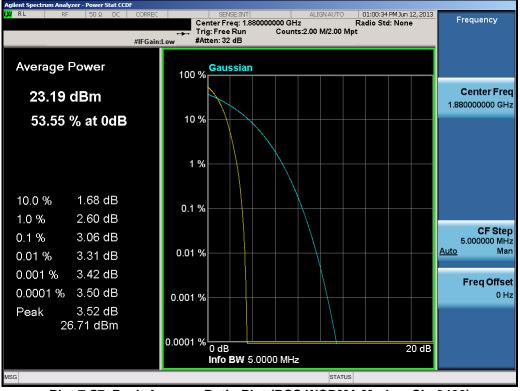
Agilent Spectrum Analyzer - Swept SA	CORREC	SENSE:INT		IGNAUTO	01 00 00 01	1Jun 12, 2013	
		ig: Free Run	#Avg Type:		TRACE	123456 MWWWWWW ANNNNN	Frequency
		tten: 40 dB					Auto Tune
10 dB/div Ref 30.00 dBm				Mkr1	1.849 0 16.7-	00 GHz 1 dBm	Auto Tulle
Log							Center Free
20.0							1.847000000 GH:
10.0							Otort Frank
0.00							Start Fred 1.845000000 GH:
-10.0						-13.00 c 1	Stop Fred 1.849000000 GH
-20.0							1.84900000 GH
-30.0			· · · · · · · · · · · · · · · · · · ·		araan ahad ahaa ahaa ahaa ahaa ahaa ahaa a		CF Ster 400.000 kH
and a contract of the contract							Auto Mai
-40.0							Freq Offse
-50.0							0 H
-60.0							
Center 1.847000 GHz #Res BW 1.0 MHz	#VBW 3.0	MHz		#Sweep	Span 4. 3.00 s <u>(</u> 1	000 MHz 001 pts)	
NSG				STATUS			

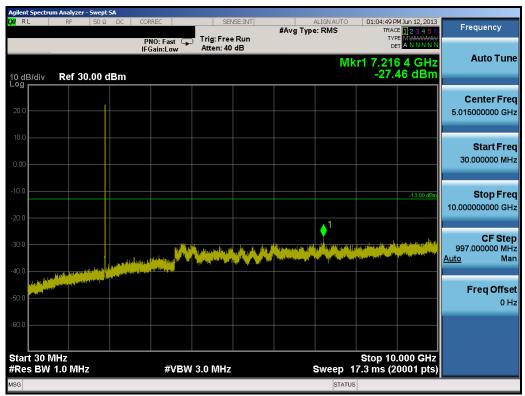
Plot 7-53. 4MHz Span Plot (PCS WCDMA Mode - Ch. 9262)

Plot 7-54. Conducted Spurious Plot (PCS WCDMA Mode – Ch. 9400)

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege 67 of 70
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Page 67 of 72
© 2013 PCTEST Engineering L	aboratory, Inc.	·	V 2.9

Agilent Spectrum Analy						
🗶 RL RF	50 Ω DC	CORREC	SENSE:INT	ALIGNAUTO #Avg Type: RMS	01:00:24 PM Jun 12, 2013 TRACE 1 2 3 4 5 6	Frequency
10 dB/div Ref	0.00 dBm	PNO: Fast 🖵 IFGain:Low	Trig: Free Run Atten: 10 dB	Mkr	1 19.432 5 GHz -51.96 dBm	Auto Tune
					-13.00 dBm	Center Fred 15.000000000 GHz
-20.0						Start Freq 10.000000000 GHz
-40.0					1 	Stop Fred 20.000000000 GH:
.70.0	A Mahard Maland Kitego Akitego and a sang Ho Mahard Maland Kitego Akitego ang Kitego ang Kitego ang Kitego ang Mahard Mahard Malang ang Kitego an	n Leve, _{el} potes est el 10 filosòpie el 1 potes en 10 de como de la como el 1 potes en 10 de como de como de la como	n et en fallejen propinsjen po klappen po kla Na na	in the second second Second second		CF Step 1.000000000 GH <u>Auto</u> Mar
80.0						Freq Offse 0 H
-90.0 Start 10.000 G	Hz				Stop 20.000 GHz	
#Res BW 1.0 N		#VBW	3.0 MHz	Sweep 1	7.3 ms (20001 pts)	
ISG				STATUS		


Plot 7-55. Conducted Spurious Plot (PCS WCDMA Mode - Ch. 9400)


Plot 7-56. Occupied Bandwidth Plot (PCS WCDMA Mode - Ch. 9400)

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 60 of 70
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Page 68 of 72
© 2013 PCTEST Engineering L	aboratory, Inc.	•	V 2.9

Plot 7-58. Conducted Spurious Plot (PCS WCDMA Mode – Ch. 9538)

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Page 69 of 72		
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Page 69 01 72		
© 2013 PCTEST Engineering Laboratory, Inc.					

PN0: Fast IFGain.Low Trig: Free Run Atten: 10 dB Mkr1 19.834 5 GHz -52.16 dBm Auto Tune 0 dB/div Ref 0.00 dBm -52.16 dBm -52.16 dBm Center Freq 15.00000000 GHz 20 0	Agilent Spectrum Analyzer - Swept SA					
Atten: 10 dB Mkr1 19.834 5 GHz -52.16 dBm Certer Freq 10 0 0 dB/div Ref 0.00 dBm -52.16 dBm -52.16 dBm Center Freq 15.0000000 GHz 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0	XIRL RF 50Ω DC	CORREC	SENSE:INT	ALIGN AUTO #Avg Type: RMS	01:05:19 PM Jun 12, 2013 TRACE 123456	Frequency
Control in the interval interval in the interval interval interval in the interval				Mkr	_{det} <u>annnn</u> 1 19.834 5 GHz	Auto Tune
10.0	10 dB/div Ref 0.00 dBm				-52.16 aBm	
Start Freq Start Start	-10.0				-13.00 dBm	
50.0 50.0	-30.0					
600 Image: Constraint of the straint of the strain	-40.0					
80.0 90.0 Start 10.000 GHz Res BW 1.0 MHz #VBW 3.0 MHz Sweep 17.3 ms (20001 pts)	-60.0		n Hard Harvey () (yw Marywer y Affar (yw Angar Hard Hard Anwer Harver y Affar y yw Arwer y Affar (yw Arwer Harver y A		a py production in the state of the second second second as the second sec	1.000000000 GHz
Start 10.000 GHz Stop 20.000 GHz Res BW 1.0 MHz #VBW 3.0 MHz Sweep 17.3 ms (20001 pts)	-80.0					
	-90.0					
	Start 10.000 GHz #Res BW 1.0 MHz	#VBW 3.0	MH ₇	Sween 1	Stop 20.000 GHz 7.3 ms (20001 nts)	
	MSG	#TBN 5.0				

Plot 7-59. Conducted Spurious Plot (PCS WCDMA Mode - Ch. 9538)

Plot 7-60. Band Edge Plot (PCS WCDMA Mode - Ch. 9538)

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 70 of 70	
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Page 70 of 72	
© 2013 PCTEST Engineering Laboratory, Inc.				

Agilent Spectrum Analyzer - Swept SA XW RL RF 50 Q DC CORREC SENSE:INT ALIGNAUTO 01:04:25 PMJun 12:2013						
CAU KL	RF 50Ω DC		SENSE:INT	ALIGNAUTO #Avg Type: RMS	01:04:25 PM Jun 12, 2013 TRACE 123456	Frequency
		PNO: Wide 🔸 IFGain:Low	Trig: Free Run Atten: 40 dB		TRACE 123456 TYPE M WWWW DET A N N N N N	
				Mkr1	1.911 000 GHz -16.84 dBm	Auto Tune
10 dB/div Log	Ref 30.00 dBm	1			-16.84 dBm	
						Center Freq
20.0						1.913000000 GHz
10.0						Start Freq
0.00						1.911000000 GHz
-10.0					-13.00 dBm	Stop Freq
-20.0						1.915000000 GHz
-20.0						
-30.0						CF Step 400.000 kHz
					·····	<u>Auto</u> Man
-40.0						
-50.0						Freq Offset
						0 Hz
-60.0						
Center 1.	913000 GHz	<i>"</i>			Span 4.000 MHz 5 3.00 s (1001 pts)	
#Res BW	1.0 MHz	#VBW	3.0 MHz			
MSG				STATUS		

Plot 7-61. 4MHz Span Plot (PCS WCDMA Mode – Ch. 9538)

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 71 of 72	
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Page / 1 01 / 2	
© 2013 PCTEST Engineering Laboratory, Inc.				

8.0 CONCLUSION

The data collected relate only to the item(s) tested and show that the **Sony Portable Handset FCC ID: PY7PM-0620** complies with all the requirements of Parts 2, 22, 24, 27 of the FCC rules and RSS-132, RSS-133, RSS-139 of the Industry Canada rules.

FCC ID: PY7PM-0620		FCC Pt. 22, 24, 27 GSM / EDGE / WCDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dega 72 of 72	
0Y1307231386.PY7	6/12 - 7/16/2013	Portable Handset	Page 72 of 72	
© 2013 PCTEST Engineering Laboratory, Inc.				

04/15/2013