TEST REPORT No. 2013IOT00073 for Sony Mobile Communications AB GSM/WCDMA/LTE mobile phone Type: PM-0590-BV FCC ID: PY7PM-0590 with Hardware Version: AP1 Software Version: 14.1.F.0.111 Issued Date: Oct. 15th, 2013 #### Note: The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of TMC Beijing. **Test Laboratory:** CNAS accreditation (ISO/IEC 17025(CNAS-CL01)): No. CNAS L0442 FCC 2.948 Listed: No.733176 IC O.A.T.S listed: No.6629B-1 TMC Beijing, Telecommunication Metrology Center of Ministry of Industry and Information Technology No. 52, Huayuanbei Road, Haidian District, Beijing, P. R. China 100191 Tel:+86-10-62304633; Fax:+86-10-62304633; Email:welcome@emcite.com; Http://www.emcite.com/ ## **CONTENTS** | 1. | TES | T LABORATORY | 3 | |----|--------|---|----| | | 1.1. | TESTING LOCATION | 3 | | | 1.2. | TESTING ENVIRONMENT | 3 | | | 1.3. | PROJECT DATA | | | | 1.4. | SIGNATURE | 3 | | 2. | CLI | ENT INFORMATION | 4 | | | 2.1. | APPLICANT INFORMATION | 4 | | | 2.2. | MANUFACTURER INFORMATION | 4 | | 3. | EQU | UIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE) | 5 | | | 3.1. | ABOUT EUT | 5 | | | 3.2. | INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST | 5 | | | 3.3. | INTERNAL IDENTIFICATION OF AE USED DURING THE TEST | | | | 3.4. | GENERAL DESCRIPTION | | | | 3.5. | EUT SET-UPS | 6 | | 4. | REI | FERENCE DOCUMENTS | 7 | | | 4.1. | DOCUMENTS SUPPLIED BY THE APPLICANT | 7 | | | 4.2. | REGULATIONS AND STANDARDS | 7 | | 5. | LAI | BORATORY ENVIRONMENT | 8 | | 6. | SUN | MMARY OF TEST RESULTS | 9 | | | 6.1. | SUMMARY OF TEST RESULTS | 9 | | | 6.2. | TERMS USED IN THE SUMMARY OF TEST RESULTS | 9 | | | 6.3. | STATEMENTS | 10 | | 7. | TES | ST EQUIPMENTS UTILIZED | 11 | | A | NNEX | A: MEASUREMENT RESULTS | 12 | | | A 1 F | LECTRIC FIELD STRENGTH OF FUNDAMENTAL AND OUTSIDE THE ALLOCATED BANDS | 12 | | | | LECTRIC FIELD RADIATED EMISSIONS (< 30MHz) | | | | | LECTRIC FIELD RADIATED EMISSIONS (≥30MHz) | | | | | REQUENCY TOLERANCE | | | | A.5. 2 | 0dB Bandwidth | 20 | | | 460 | ONDLICTED EMISSION | 22 | ## 1. Test Laboratory ## 1.1. Testing Location Company Name: TM TMC Beijing, Telecommunication Metrology Center of MIIT Address: No 52, Huayuanbei Road, Haidian District, Beijing, P.R.China Postal Code: 100191 Telephone: +86-10-62304633-2678 Fax: +86-10-62304633-2504 ## 1.2. Testing Environment Ambient Temperature: 15 ~ 25 °C Relative Humidity: 30 ~ 60 % Air pressure 860 ~ 1060 mbar ## 1.3. Project Data Receipt of Sample: Jul. 26 th, 2013 Testing Start Date: Aug. 1st, 2013 Testing End Date: Aug. 13rd, 2013 ## 1.4. Signature Hu Xiaoyu (Prepared this test report) Yang Jun (Reviewed this test report) Wang Hongbo Deputy Director of the laboratory (Approved this test report) ## 2. Client Information ## 2.1. Applicant Information Company Name: Sony Mobile Communications AB Address /Post: Sony Mobile R&D Center, No. 16, Guangshun South Street, Chaoyang District City: Beijing Postal Code: 100102 Country: China Telephone: +86-10-58656312 Fax: +86-10-58659049 ## 2.2. Manufacturer Information Company Name: Sony Mobile Communications AB Address /Post: Sony Mobile R&D Center, No. 16, Guangshun South Street, **Chaoyang District** City: Beijing Postal Code: 100102 Country: China Telephone: +86-10-58656312 Fax: +86-10-58659049 ## 3. Equipment Under Test (EUT) and Ancillary Equipment (AE) ## 3.1. About EUT | Description: | GSM/WCDMA/LTE mobile phone | |------------------------|----------------------------| | Model Name: | PM-0590-BV | | Marketing Name: | 1 | | FCC ID: | PY7PM-0590 | | IC ID: | 1 | | With NFC Function: | Yes | | Frequency: | 13.56 MHz | | Antenna: | Integral Antenna | | Operation Voltage: | DC 3.6 ~ 4.2 V | | Operation Temperature: | -30 ~ 50 °C | Note1: Photographs of EUT are shown in ANNEX A of this test report. For component list, please refer to documents of the manufacturer. Note2: High and low voltage values of extreme conditions are given by the manufacturer. ## 3.2. Internal Identification of EUT Used during the Test ## Mobile phone identification | EUT ID* | SN / IMEI | HW Version | SW Version | |---------|-----------------|-------------------|--------------| | EUT1 | 004402451356657 | AP1 | 14.1.F.0.111 | ^{*}EUT ID: It is used to identify the test sample in the lab internally. ## 3.3. Internal Identification of AE Used during the Test | AE ID* | Description | SN | Revision | |--------|----------------|-----------------|----------| | AE1 | Mobile Phone | 004402451356566 | Λ | | #23305 | Travel Charger | 8512W19 100198 | 1C | | #22530 | USB Cable | 123107D30009FA0 | 1 | | AE1 | | | | Type PM-0590-BV Manufacturer Sony Mobile Communications AB #23305 Model AC-0400-EU Manufacturer SALCOMP SN or IMEI 8512W19 100198 #22530 Commercial name EC801 Model AI-0401 Manufacturer Sony Mobile Length of cable 96.5cm *AE ID: is used to identify the test sample in the lab internally. ## 3.4. General Description The Equipment Under Test (EUT) is a model of GSM/WCDMA/LTE mobile phone with integrated antenna and inbuilt battery. The EUT supports GSM 850/900/1800/1900MHz bands, WCDMA FDD band 1/2/4/5/8 and LTE FDD bands 4/17. It supports GPRS service with multi-slots class 12 and EGPRS service with multi-slots class 12. The HSDPA and HSUPA features are also supported. It has MP3, camera, USB memory, Mobile High-Definition Link (MHL), FM radio, GPS receiver, NFC, Bluetooth (EDR and Bluetooth 4.0), ANT+, WLAN (802.11 a/ac/b/g/n) and Wi-Fi hotspot functions. For WLAN 802.11n, it supports 20MHz bandwidth on 2.4GHz band and 20MHz/40MHz bandwidths on 5GHz/5.8GHz band. For WLAN 802.11 ac, it supports 20MHz/40MHz/80MHz bandwidths. It includes normal options: travel charger, USB cable, MHL dongle and HDMI cable. Manuals and specifications of the EUT were provided to fulfil the test. Samples undergoing test were selected by the client. Manufacturer's declaration: NFC work does not depend on other access methods, such as WLAN, GPRS, etc. ### 3.5. EUT Set-ups | EUT Set-up No. | Combination of EUT and AE | .Remarks | |----------------|---------------------------|---------------------| | Set. NFC01 | EUT1+AE1+#23305+#22530 | 9744470
Resident | | Set. NFC02 | EUT1+AE1 | | The Transmit State of NFC: The NFC function is on. The EUT will transmit the NFC data and command continuously during the test. The Transmit State of without modulation: The EUT will transmit the CW signal at the operating frequency. ## 4. Reference Documents ## 4.1. Documents Supplied by the Applicant EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing. ## 4.2. Regulations and Standards The following documents listed in this section are referred for testing. | Title | Version | |--|---| | Part 2 — Frequency Allocations and Radio Treaty Matters; | 2012 | | General Rules and Regulations. | | | Part 15 — Radio Frequency Devices. | 2012 | | Subpart C — Intentional Radiators. | | | § 15.207 Conducted limits. | | | § 15.209 Radiated emission limits, general requirements. | | | § 15.215 Additional provisions to the general radiated | | | emission limitations. | | | § 15.225 Operation within the band 13.110–14.010 MHz. | | | American National Standard for Methods of Measurement | 2009 | | of Radio-Noise Emissions from Low-Voltage Electrical and | | | Electronic Equipment in the Range of 9 kHz to 40 GHz. | | | | Part 2 — Frequency Allocations and Radio Treaty Matters; General Rules and Regulations. Part 15 — Radio Frequency Devices. Subpart C — Intentional Radiators. § 15.207 Conducted limits. § 15.209 Radiated emission limits, general requirements. § 15.215 Additional provisions to the general radiated emission limitations. § 15.225 Operation within the band 13.110–14.010 MHz. American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and | ## 5. LABORATORY ENVIRONMENT **Semi-Anechoic Chamber SAC-2** (10m×6.7m×6.15m) did not exceed following limits along the testing: | Temperature | Min. = 15 °C, Max. = 25 °C | | |---|--|--| | Relative humidity | Min. = 30 %, Max. = 60 % | | | Shielding effectiveness | > 110 dB | | | Electrical insulation | > 2 MΩ | | | Ground system resistance | <1 Ω | | | Normalised site attenuation (NSA) | < ±3.5 dB, 3 m distance, from 30 to 1000 MHz | | | Site voltage standing-wave ratio (S_{VSWR}) | Between 0 and 6 dB, from 1 to 18 GHz | | | Uniformity of field strength | Between 0 and 6 dB, from 80 to 3000 MHz | | **Fully-Anechoic Chamber FAC-3** (8.6m×6.1m×3.85m) did not exceed following limits along the testing: | Temperature | Min. = 15 °C, Max. = 25 °C | | |---|---|--| | Relative humidity | Min. = 30 %, Max. = 60 % | | | Shielding effectiveness | > 110 dB | | | Electrical insulation | > 2 MΩ | | | Ground system resistance | <1 Ω | | | Site voltage standing-wave ratio (S_{VSWR}) | Between 0 and 6 dB, from 1 to 18GHz | | | Uniformity of field strength | Between 0 and 6 dB, from 80 to 4000 MHz | | ## Conducted Chamber did not exceed following limits along the testing: | Temperature | Min. = 15 °C, Max. = 25 °C | | |--------------------------|----------------------------|--| | Relative humidity | Min. = 30 %, Max. = 60 % | | | Shielding effectiveness | > 110 dB | | | Electrical insulation | > 2 MΩ | | | Ground system resistance | < 0.5 Ω | | ## Control Room did not exceed following limits along the testing: | Contraction of the o | | | |--|----------------------------|--| | Temperature | Min. = 15 °C, Max. = 25 °C | | | Relative humidity | Min. =30 %, Max. = 60 % | | | Shielding effectiveness | > 110 dB | | | Electrical insulation | > 2 MΩ | | | Ground system resistance | < 0.5 Ω | | ## 6. SUMMARY OF TEST RESULTS ## 6.1. Summary of Test Results | No | Test Cases | Clause in
Regulation | Section in
This Report | Verdict | |--|-----------------------------|-------------------------|---------------------------|---------------| | 1 | Electric Field Strength of | CFR 47 § 15.225(a) | | P(Set. NFC02) | | Ļ | Fundamental Emissions | | | F(Set. NFC02) | | 2 | Electric Field Strength of | CFR 47 § 15.225(b) | - A.1 | P(Set. NFC02) | | 2 | Outside the Allocated Bands | CFR 47 § 15.225(c) | | P(Set. NPC02) | | 3 | Electric Field Radiated | CFR 47 § 15.209 | A.2 | P(Set. NFC01) | | 3 | Emissions | CFR 47 § 15.225(d) | A.3 | P(Set. NFC01) | | 4 | Frequency Tolerance | CFR 47 § 15.225(e) | A.4 | P(Set. NFC02) | | 5 | 20dB Bandwidth | CFR 47 § 15.215(c) | A.5 | P(Set. NFC02) | | 6 | Conducted Emissions | CFR 47 § 15.207 | A.6 | P(Set. NFC01) | | The measurement is carried out according to ANSI C63.4. See ANNEX A for details. | | | | | ### **Test Conditions:** For this report, all the test cases listed above were tested under normal Temperature, Voltage, Humidity, and Air Pressure. The specific conditions are as following: | Tidmidity, and All Fressure. The specific conditions are as following. | | | | |--|-------|-----------|--| | | T min | -30 ℃ | | | Temperature | T nom | 20 ℃ | | | | T max | 50 ℃ | | | Voltage | V min | 3.6 V | | | | V nom | 3.7 V | | | | V max | 4.2 V | | | Humidity | H nom | 44% | | | Air Pressure | A nom | 1010 mbar | | ## 6.2. Terms Used in the Summary of Test Results ### **Terms Used in Condition Column:** | Tnom | Normal Temperature | |-------|--------------------| | T min | Low Temperature | | T max | High Temperature | | V nom | Normal Voltage | | V min | Low Voltage | | V max | High voltage | | H nom | Norm Humidity | | A nom | Norm Air Pressure | |-------|-------------------| #### **Terms Used in Verdict Column:** | Р | Pass, The EUT complies with the essential requirements in the standard. | |----|---| | NP | Not Perform, The test was not performed by TMC | | NA | Not Applicable, The test was not applicable | | F | Fail, The EUT does not comply with the essential requirements in the standard | ### **Abbreviations:** | AC | Alternating Current | |----------|---------------------------------------| | AFH | Adaptive Frequency Hopping | | BW | Band Width | | E.I.R.P. | equivalent isotropical radiated power | | ISM | Industrial, Scientific and Medical | | RF | Radio Frequency | | Tx | Transmitter | ## 6.3. Statements The test cases listed in Section 6.1 of this report for the EUT specified in Section 3 were performed by TMC according to the reference documents in Section 4. The EUT meets all applicable requirements of the regulations and standards in Section 4.2. This report only deals with the NFC function among the features described in section 3. ## 7. Test Equipments Utilized | NO. | NAME | TYPE | SERIES
NUMBER | PRODUCER | CAL. DUE
DATE
(YY-MM-DD) | |-----|---|---------------|------------------|--------------|--------------------------------| | 1. | NFC Tester | E1141 | 000019 | AT4 Wireless | 1 | | 2. | RFID Tester | NI PXIe-1062Q | 16929DF | VI | 2013-12-06 | | 3. | H-field Antenna | HFH2-Z2 | 829324/0007 | R&S | 2014-12-20 | | 4. | Spectrum Analyzer | RSA3408A | B 010277 | Tektronix | 2014-05-27 | | 5. | Thermal Chamber | PL-2G | 343074 | ESPEC | 2014-05-12 | | 6. | Test Receiver | ESU26 | 100376 | R&S | 2013-11-07 | | 7. | Spectrum Analyzer | E4440A | MY48250642 | Agilent | 2014-03-04 | | 8. | EMI Antenna | VULB 9163 | 514 | Schwarzbeck | 2014-11-10 | | 9. | EMI Antenna | VULB 9163 | 482 | Schwarzbeck | 2014-02-17 | | 10. | EMI Antenna | 3117 | 00119024 | ETS-Lindgren | 2014-02-02 | | 11. | LISN | ESH2-Z5 | 829991/012 | R&S | 2014-04-16 | | 12. | Signal Generator | SMF100A | 101295 | R&S | 2013-11-08 | | 13. | Universal Radio
Communication Tester | CMU200 | 102228 | R&S | 2014-06-23 | | 14. | Universal Radio
Communication Tester | CMU200 | 114724 | R&S | 2013-12-10 | | 15. | Universal Radio
Communication Tester | CMU200 | 116455 | R&S | 2014-05-19 | | 16. | Universal Radio
Communication Tester | E5515C | MY48363198 | Agilent | 2014-07-08 | | 17. | Universal Radio
Communication Tester | E5515C | MY48361083 | Agilent | 2014-03-16 | ## ANNEX A: MEASUREMENT RESULTS ## A.1. Electric Field Strength of Fundamental and Outside the Allocated bands #### A.1.1. Reference See Clause 13.5, Clause 13.4, Clause 8, and Annex E of ANSI C63.4-2009 specifically. See Clause 4, Clause 5, and Clause 6 of ANSI C63.4-2009 generally. #### A.1.2. Measurement Methods The transmitter carrier output levels (E-Field) from the EUT are measured in a semi-anechoic chamber. The EUT is placed on a non-conductive stand of 80cm high, and at a measurement distance of 3m from the receiving antenna. The center of the receiving loop antenna is 1.0 meter above the ground. The E-field is measured with a shielded loop antenna connected to a measurement receiver. Detected E-field was maximized by rotating the EUT through 360° and adjusting the receiving antenna polarizations. The maximization processes were repeated with the EUT positioned respectively in its three orthogonal axes. The measurements were performed with the peak detector and if required, the quasi-peak detector. The measurement bandwidth is: | Frequency of Emission (MHz) | RBW/VBW | | |-----------------------------|-----------|--| | 12.56-14.56 | 10/30 kHz | | The E-field measured at 3m is calculated as: E-field $(dB\mu V/m) = Rx (dB\mu V) + Cable Loss (dB) + AF@3m (dB/m)$ #### A.1.3. EUT Operating Mode and Test Conditions The measurement of EUT is carried out under the transmit state of NFC (See 3.5). The EUT is powered by a travel adapter. During the measurements, the ambient temperature of the electromagnetic anechoic chamber is in the range of 15 ~ 25 °C. ### A.1.4. Limits | Frequency Range (MHz) | E-field Strength Limit @ 30 m
(μV/m) | E-field Strength Limit @ 3 m
(dBµV/m) | | |-----------------------|---|--|--| | 13.560 ± 0.007 | +15,848 | 124 | | | 13.410 to 13.553 | 1224 | 90 | | | 13.567 to 13.710 | +334 | | | | 13.110 to 13.410 | 1106 | 01 | | | 13.710 to 14.010 | +106 | 81 | | Note: Where the limits have been defined at one distance, and a signal level measured at another, the limits have been extrapolated using the following formula: Extrapolation(dB) = 40log₁₀ (Measurement Distance/Specification Distance) #### A.1.5. Measurement Results Measurement results of normal conditions see Figure A-1 for different set-ups of EUT. The result displayed take into account applicable antenna factors and cable losses. Conclusions: Set. NFC02, PASS. 130 120 110 100 Level in dB | µ V/m/ 80 FCC15.225 Mask 60 13.562004 MHz 50 39.315 dB | µ V/m/ 40 20 10 13 13.5 14 12.56 14.56 Frequency in MHz $FCC\,15.225\,MASK$ Figure A-1: Set. NFC02 ### A.1.6. Measurement Uncertainty Measurement uncertainty: U = 4.0 dB, k=2. ## A.2. Electric Field Radiated Emissions (< 30MHz) #### A.2.1. Reference See Clause 13.4, Clause 8 and Annex E of ANSI C63.4-2009 specifically. See Clause 4, Clause 5, and Clause 6 of ANSI C63.4-2009 generally. ## A.2.2. Measurement Methods The transmitter carrier output levels (E-Field) from the EUT are measured in a semi-anechoic chamber. The EUT is placed on a non-conductive stand of 80cm high, and at a measurement distance of 3m from the receiving antenna. The center of the receiving loop antenna is 1.0 meter above the ground. The E-field is measured with a shielded loop antenna connected to a measurement receiver. Detected E-field was maximized by rotating the EUT through 360° and adjusting the receiving antenna polarizations. The maximization processes were repeated with the EUT positioned respectively in its three orthogonal axes. The measurements were performed with the peak detector and if required, the quasi-peak detector. #### The measurement bandwidth is: | Frequency of Emission (MHz) | RBW/VBW | |-----------------------------|------------| | 0.009-0.15 | 100/300 Hz | | 0.15-30 | 10/30 kHz | The E-field measured at 3m is calculated as: E-field $(dB\mu V/m) = Rx (dB\mu V) + Cable Loss (dB) + AF@3m (dB/m)$ #### A.2.3. EUT Operating Mode and Test Conditions The measurement of EUT is carried out under the transmit state of NFC (See 3.5). The EUT is powered by a travel adapter. During the measurements, the ambient temperature of the electromagnetic anechoic chamber is ©Copyright. All rights reserved by TMC Beijing. in the range of $15 \sim 25$ °C. ### A.2.4. Limits | Fraguency Bango (MUz) | E-field Strength Limit @ 30m | E-field Strength Limit @ 3m | | |-----------------------|------------------------------|-----------------------------|--| | Frequency Range (MHz) | (mV/m) | (dBµV/m) | | | 0.009-0.490 | 2400/F(kHz) | 129-94 | | | 0.490-1.705 | 24000/F(kHz) | 74-63 | | | 1.705-30 | 30 | 70 | | Note: Where the limits have been defined at one distance, and a signal level measured at another, the limits have been extrapolated using the following formula: Extrapolation(dB) = $40\log_{10}$ (Measurement Distance/Specification Distance) #### A.2.5. Measurement Results Measurement results of normal conditions see Figure A-2 for different set-ups of EUT. The result displayed take into account applicable antenna factors and cable losses. Conclusions: Set. NFC01, PASS. FCC 15.225 RSE T Figure A-2: Set. NFC01 ## A.2.6. Measurement Uncertainty Measurement uncertainty: U = 4.0 dB, k=2. ## A.3. Electric Field Radiated Emissions (≥30MHz) #### A.3.1. Reference See Clause 13.4, Clause 8, and Annex E of ANSI C63.4-2009 specifically. See Clause 4, Clause 5, and Clause 6 of ANSI C63.4-2009 generally. #### A.3.2. Measurement Methods The electric field radiated emissions from the EUT are measured in a semi-anechoic chamber. The EUT is placed on a non-conductive stand of 80cm high, and at a measurement distance of 3m from the receiving antenna. The receiving antennas connected to a measurement receiver comply with Clause 15 of ANSI C63.2-1996 and Clause 4.1.5 of ANSI C63.4-2009. In order to search for maximum field strength emitted from the EUT, the receiving antenna can be moved between the height of 1.0 m to 4.0 m. Detected E-field was maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna positions for both vertical and horizontal antenna polarizations. The maximization processes were repeated with the EUT positioned respectively in its three orthogonal axes. The measurements were performed with the peak detector and if required, the quasi-peak detector. The measurement bandwidth is: | Frequency of Emission (MHz) | RBW/VBW | | |-----------------------------|---------|--| | 30-1000 | 120kHz | | The E-field measured at 3m is calculated as: E-field $(dB\mu V/m) = Rx (dB\mu V) + Cable Loss (dB) + AF@3m (dB/m)$ #### A.3.3. EUT Operating Mode and Test Conditions The measurement of EUT is carried out under the transmit state of NFC (See 3.5). EUT1 had been connected to a travel adapter. During the measurements, the ambient temperature of the electromagnetic anechoic chamber is in the range of $15 \sim 25$ °C. #### A.3.4. Limits | Frequency Range (MHz) | E-field Strength Limit @ 3m
(mV/m) | E-field Strength Limit @ 3m
(dBµV/m) | | |-----------------------|---------------------------------------|---|--| | 30-88 | 100 | 40 | | | 88-216 | 150 | 43.5 | | | 216-960 | 200 | 46 | | ### A.3.5. Measurement Results Measurement results of normal conditions see Figure A-3 for different set-ups of EUT. The result displayed take into account applicable antenna factors and cable losses. RE 30MHz-1GHz Conclusions: Set. NFC01, PASS. Figure A-3: Set. NFC01 ## A.3.6. Measurement Uncertainty Measurement uncertainty: U = 3.9 dB, k=2 ## **A.4. Frequency Tolerance** #### A.4.1. Reference See Clause 13.6 of ANSI C63.4-2009 specifically. See Clause 4, Clause 5, and Clause 6 of ANSI C63.4-2009 generally. #### A.4.2. Measurement Methods The transmitter output signal was picked up by coil antenna connected to the spectrum analyzer. The center frequency was measured with 30Hz RBW and 1kHz span. During the test, the EUT was placed in a thermal chamber until thermal balance and lasting appropriate time. ### A.4.3. EUT Operating Mode and Test Conditions The measurement of EUT is carried out under the transmit state of without modulation (See 3.5). EUT1 had been not connected to a travel adapter. Operation Temperature: T min, T nom, and T max with V nom. Operation Voltage: V min and V max with T nom. ## A.4.4. Test Layouts See A.4.2. #### A.4.5. Limits The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% of the operating frequency. #### A.4.6. Measurement Results Measurement results see Table A-1 for different test conditions. Conclusions: Set. NFC02, PASS. Table A-1: Frequency Stability VS Temperature and Voltage | Tomporatura | Voltage - | Frequency Error (MHz) | | | | |-------------|-----------|-----------------------|-------------|-------------|--------------| | Temperature | | Startup | 2 Min Later | 5 Min Later | 10 Min Later | | T min | V nom | 13.5602363 | 13.5602125 | 13.5601988 | 13.5601907 | | T max | V nom | 13.5602313 | 13.5602163 | 13.5602101 | 13.5602058 | | T nom | V nom | 13.5603125 | 13.5603010 | 13.5602688 | 13.5602681 | | T nom | V min | 13.5602866 | 13.5602803 | 13.5602722 | 13.5602696 | | T nom | V max | 13.5603063 | 13.5602981 | 13.5602966 | 13.5602816 | | Temperature | Voltage | Frequency Error (%) | | | | | | |-------------|---------|---------------------|-------------|-------------|--------------|--|--| | | | Startup | 2 Min Later | 5 Min Later | 10 Min Later | | | | T min | V nom | 0.002 | 0.002 | 0.001 | 0.001 | | | | T max | V nom | 0.002 | 0.002 | 0.002 | 0.002 | | | | T nom | V nom | 0.002 | 0.002 | 0.002 | 0.002 | | | | T nom | V min | 0.002 | 0.002 | 0.002 | 0.002 | | | | T nom | V max | 0.002 | 0.002 | 0.002 | 0.002 | | | ## A.4.7. Measurement Uncertainty Measurement uncertainty: *U* =77 Hz, k=2 ## A.5. 20dB Bandwidth #### A.5.1. Reference See Clause 13.7 of ANSI C63.4-2009 specifically. See Clause 4, Clause 5, and Clause 6 of ANSI C63.4-2009 generally. #### A.5.2. Measurement Methods The transmitter output signal was picked up by coil antenna to the spectrum analyzer. The transmitter output signal was picked up by coil antenna connected to the spectrum analyzer. The bandwidth of the center frequency was measured with 100Hz RBW, 300Hz VBW and 5kHz span. ### A.5.3. EUT Operating Mode and Test Conditions The measurement of EUT is carried out under the transmit state of NFC and without modulation (See 3.5). EUT1 had been not connected to a travel adapter.. During the measurements, the ambient temperature is in the range of 15 ~ 25 °C. ### A.5.4. Test Layouts See A.5.2. #### A.5.5. Limits The 20dB bandwidth shall be less than 80% of the permitted frequency band. For 13.56 MHz NFC, the permitted frequency band is 14 kHz, so the limit is 11.2 kHz. ### A.5.6. Measurement Results Measurement results see Figure A-4. Conclusions: Set. NFC02, PASS. ### A.5.7. Measurement Uncertainty Measurement uncertainty: *U* =77 Hz, k=2 Frequency: 13.56 MHz RBW: 140 Hz Input Att: --- Trace 2: (Freeze) Emission BandWidth: 346.627 Hz Figure A-4: 20dB Bandwidth Test result ## **A.6 Conducted emission** ### A.6.1. Reference See Clause 13.3 and Clause 7 of ANSI C63.4-2009 specifically. See Clause 4, Clause 5, and Clause 6 of ANSI C63.4-2009 generally. #### A.6.2. Measurement Methods The conducted emissions from the AC port of the EUT are measured in a shielding room. The EUT is connected to a Line Impedance Stabilization Network (LISN). An overview sweep with peak detection was performed. The measurements were performed with a quasi-peak detector and if required, an average detector. The conducted emission measurements were made with the following detector of the test receiver: Quasi-Peak / Average Detector. The measurement bandwidth is: | Frequency of Emission (MHz) | RBW/VBW | | | |-----------------------------|---------|--|--| | 0.15-30 | 9kHz | | | ### A.6.3. EUT Operating Mode and Test Conditions The measurement of EUT is carried out under the transmit state of NFC (See 3.5). The EUT is powered by a travel adapter. During the measurements, the ambient temperature is in the range of $15 \sim 25$ °C. ### A.6.4. Limits | Frequency range
(MHz) | Quasi-peak Limit (dBμV) | Average Limit (dBμV) | | |--------------------------|-------------------------|----------------------|--| | 0.15 to 0.5 | 66 to 56 | 56 to 46 | | | 0.5 to 5 | 56 | 46 | | | 5 to 30 | 60 | 50 | | ©Copyright. All rights reserved by TMC Beijing. #### A.6.5. Measurement Results Measurement results see Figure A-5. Conclusions: Set. NFC01, PASS. Note: The measurement result at 13.56MHz is the fundamental emission of NFC signal. ## **Final Result 1** | Frequency | QuasiPeak | PE | Line | Corr. | Margin | Limit | |-----------|-----------|-----|------|-------|--------|--------| | (MHz) | (dBµV) | | | (dB) | (dB) | (dBµV) | | 1.297500 | 45.5 | GND | L1 | 9.7 | 10.5 | 56.0 | | 1.369500 | 41.4 | GND | L1 | 9.7 | 14.6 | 56.0 | | 1.423500 | 47.0 | GND | L1 | 9.7 | 9.0 | 56.0 | | 1.482000 | 46.3 | GND | L1 | 9.7 | 9.7 | 56.0 | | 1.549500 | 44.1 | GND | L1 | 9.7 | 11.9 | 56.0 | | 13.560000 | 53.0 | GND | L1 | 9.5 | 7.0 | 60.0 | ## **Final Result 2** | Frequency | Average | PE | Line | Corr. | Margin | Limit | |-----------|---------|-----|------|-------|--------|--------| | (MHz) | (dBµV) | | | (dB) | (dB) | (dBµV) | | 0.933000 | 32.7 | GND | L1 | 9.7 | 13.3 | 46.0 | | 0.991500 | 34.7 | GND | L1 | 9.7 | 11.3 | 46.0 | | 1.369500 | 31.7 | GND | L1 | 9.7 | 14.3 | 46.0 | | 1.423500 | 37.0 | GND | L1 | 9.7 | 9.0 | 46.0 | | 13.560000 | 47.9 | GND | L1 | 9.5 | 2.1 | 50.0 | | 27.118500 | 43.1 | GND | L1 | 9.5 | 6.9 | 50.0 | Figure A-5: Test result at test set. NFC01 ## A.6.6. Measurement Uncertainty Measurement uncertainty: U = 3.2 dB, k=2 ***END OF REPORT***