

FCC/IC RF Test Report

APPLICANT	:	Sony Mobile Communications Inc.
EQUIPMENT	:	Smart phone
BRAND NAME	:	SONY
TYPE NAME	:	PM-0385-BV
FCC ID	:	PY7PM-0385
STANDARD	:	FCC Part 15 Subpart C §15.247
		IC RSS-210 issue 8
CLASSIFICATION	:	(DTS) Digital Transmission System

The product was received on May 02, 2014 and testing was completed on May 31, 2014. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and the testing has shown the tested sample to be in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL INC. No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : PY7PM-0385 Page Number: 1 of 60Report Issued Date: Aug. 01, 2014Report Version: Rev. 02Report Template No.: BU5-FR15CBT4.0 Version 1.0Report Template No.: BU5-CR210BT4.0 Version 1.0

TABLE OF CONTENTS

RE	VISIO	N HISTORY	3
SU	MMAF	RY OF TEST RESULT	4
1	GEN	ERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Product Feature of Equipment Under Test	5
	1.4	Product Specification subjective to this standard	6
	1.5	Modification of EUT	7
	1.6	Test Location	7
	1.7	Applicable Standards	7
2	TES	CONFIGURATION OF EQUIPMENT UNDER TEST	8
	2.1	Descriptions of Test Mode	8
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	9
	2.4	Support Unit used in test configuration and system	10
	2.5	EUT Operation Test Setup	10
	2.6	Measurement Results Explanation Example	10
3	TES	result	11
	3.1	6dB and 99% Bandwidth Measurement	11
	3.2	Peak Output Power Measurement	16
	3.3	Power Spectral Density Measurement	18
	3.4	Conducted Band Edges and Spurious Emission Measurement	24
	3.5	Radiated Band Edges and Spurious Emission Measurement	32
	3.6	AC Conducted Emission Measurement	52
	3.7	Antenna Requirements	57
4	LIST	OF MEASURING EQUIPMENT	58
5	UNC	ERTAINTY OF EVALUATION	60

SREVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR450249B	Rev. 01	Initial issue of report	Jul. 14, 2014
FR450249B	Rev. 02	Update EUT Information List for SW version change as 18.4.C.1.10	Aug. 01, 2014

SUMMARY OF TEST RESULT

Report Section	FCC Rule	IC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(2)	RSS-210 A8.2(a)	6dB Bandwidth	≥ 0.5MHz	Pass	-
3.1	-	RSS-Gen 4.6.1	99% Bandwidth	-	Pass	-
3.2	15.247(b)(1)	RSS-210 A8.1(b)	Peak Output Power	≤ 30dBm	Pass	-
3.3	15.247(e)	RSS-210 A8.2(b)	Power Spectral Density	Power Spectral Density ≤ 8dBm		-
3.4	15.247(d)	RSS-210 A8.5	Conducted Band Edges and Spurious Emission	≤ 20dBc	Pass	-
3.5	15.247(d)	RSS-210 A8.5	Radiated Band Edges and Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 12.47 dB at 30.810 MHz
3.6	15.207	RSS-Gen 7.2.4	AC Conducted Emission	ed Emission 15.207(a)		Under limit 14.40 dB at 2.702 MHz
3.7	15.203 & 15.247(b)	RSS-210 A8.4	Antenna Requirement	N/A	Pass	-

1 General Description

1.1 Applicant

Sony Mobile Communications Inc. Nya Vattentornet, 22188 Lund, Sweden

1.2 Manufacturer

Arima Communication Corp.

6F,No.866,Jhongjheng Rd., Jhonghe Dist., New Taipei City 23586, Taiwan

1.3 Product Feature of Equipment Under Test

The Equipment Under Test (hereafter called: EUT) is smart phone supporting, GSM / WCDMA / LTE, Wi-Fi 2.4GHz 802.11b/g/n, Bluetooth with FM Receiver, ANT+, GPS, and NFC features, and below is details of information.

Product Feature				
Equipment	Smart phone			
Brand Name	SONY			
Type Name	PM-0385-BV			
FCC ID	PY7PM-0385			
GSM Operating Band(s)	GSM 850/900/1800/1900MHz			
GPRS / EGPRS Multi Slot Class	GPRS Class 33, EGPRS Class 33			
WCDMA Operating Band(s)	FDD Band I / II / IV / V			
WCDMA Rel. Version	Rel. 9			
LTE Operating Band(s)	FDD Band IV / VII / XVII			
LTE Rel. Version	Rel. 8			
Wi-Fi Specification	802.11b/g/n (HT20)			
Bluetooth Version	v3.0 + EDR / v4.0 - LE			
NFC Specification	ISO14443A / ISO14443B / Felica / ISO15693			
ANT+	ANT+			
Power Supply	Battery / AC Adapter / Car Charger			

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification subjective to this standard

Product Specification subjective to this standard				
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz			
Number of Channels	40			
Carrier Frequency of Each Channel	40 Channel(37 hopping + 3 advertising channel)			
Maximum Output Power to Antenna	0.60 dBm (0.0010 W)			
99% Occupied Bandwidth	1.06MHz			
Antenna Type	IFA Antenna type with gain -0.67 dBi			
Type of Modulation	Bluetooth LE : GFSK			

EUT Information List						
IMEI	HW Version SW Version	SW Version	S/N	Performed		
			•	Test Item		
IMEI : 004402452636586			ZL4416D28274	RF conducted measurement		
IMEI : 004402452638509	A	18.4.C.1.10	WUJ01AYKJ8	Radiated Spurious Emission		
IMEI : 004402452636123			ZL4416D28653	Conducted Emission		

Accessory List				
	Model No. : EP800			
	Type No. : CAA-0002016-US B			
AC Adapter	S/N :			
	3113W45408465 (for Radiated Spurious Emission)			
	3113W45408551 (for Conducted Emission)			
Battery	Model No. : LIS1551ERPC			
	Model No. : MH410c			
	Type No. : AG-1100			
Earphone	S/N :			
	13511E5B0076390 (for Radiated Spurious Emission)			
	13511E5B00763EC (for Conducted Emission)			
	Model No. : EC450			
	Type No. : AI-0700			
USB Cable	S/N :			
	134912DC0004380 (for Radiated Spurious Emission)			
	134912D80008076 (for Conducted Emission)			

- 1. Above EUT list and accessory list used are electrically identical per declared by manufacturer.
- 2. Above the accessories list are used to exercise the EUT during test.
- 3. For other wireless features of this EUT, test report will be issued separately.

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Test Location

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code : 1190) and the FCC designation No. TW1022 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC Test.

Test Site	SPORTON INT	SPORTON INTERNATIONAL INC.			
No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park,					
Test Site Location	Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.				
	TEL: +886-3-3273456 / FAX: +886-3-3284978				
Test Site No.	S	Sporton Site No).	IC Registration No.	
iest site No.	TH02-HY	CO05-HY	03CH07-HY	4086B-1	

1.7 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r02
- ANSI C63.4-2003
- IC RSS-210 Issue 8
- IC RSS-Gen Issue 3
- NOTICE 2012-DRS0126

Remark:

- **1.** All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.
- 3. Per the section 2.2.3 of Notice of 2012-DRS0126, "Receivers Excluded from Industry Canada Requirements", only radiocommunication receivers operating in stand-alone mode within the band 30-960 MHz and scanner receivers are subject to Industry Canada requirements.

2 Test Configuration of Equipment Under Test

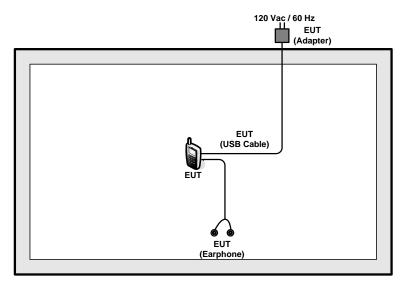
2.1 Descriptions of Test Mode

		Bluetooth 4.0 – LE RF Output Power
Channel	Fraguanay	Data Rate / Modulation
Channel	Frequency	GFSK
		1Mbps
Ch00	2402MHz	-0.33 dBm
Ch19	2440MHz	<mark>0.60</mark> dBm
Ch39	2480MHz	-0.31 dBm

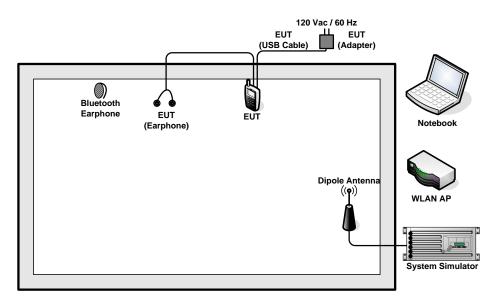
The RF output power was recorded in the following table:

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction (150 kHz to 30 MHz), radiation (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). Pre-scanned tests, X, Y, Z in three orthogonal panels to determine the final configuration (X plane as worst plane) from all possible combinations.
- b. AC power line Conducted Emission was tested under maximum output power.

2.2 Test Mode


The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Summary table of Test Cases					
Test Item	Data Rate / Modulation					
Test item	Bluetooth 4.0 – LE / GFSK					
Conducted	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps					
TCs	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps					
TCS	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps					
Radiated	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps					
TCs	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps					
105	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps					
AC	Made 1: CSM1000 Idle + Blueteeth Link + W/LAN Link + Earphone + Bettery + USB					
Conducted	Mode 1: GSM1900 Idle + Bluetooth Link + WLAN Link + Earphone + Battery + USB					
Emission	Cable (Charging from Adapter) + MP3					



2.3 Connection Diagram of Test System

<Bluetooth 4.0 – LE Tx Mode>

<AC Conducted Emission Mode>

ltem	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	R&S	CMU 200	N/A	N/A	Unshielded, 1.8 m
2.	WLAN AP	D-Link	DIR-628	KA2DIR628A2	N/A	Unshielded, 1.8 m
3.	Bluetooth Earphone	Sony	SBH20	PY7-RD0010	Unshielded, 0.75m	N/A
4.	Notebook	DELL	Latitude E6320	FCC DoC/ Contains FCC ID: QDS-BRCM1054	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
5.	SD Card	SanDisk	MicroSD HC	FCC DoC	N/A	N/A

2.4 Support Unit used in test configuration and system

2.5 EUT Operation Test Setup

For Bluetooth function, programmed RF utility, "QRCT" installed in the notebook make the EUT provide functions like channel selection and power level for continuous transmitting and receiving signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

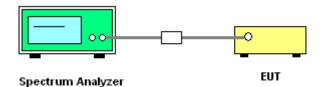
 $Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$ = 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

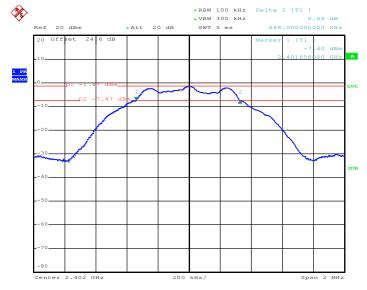

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedures

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r02.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- 5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 30kHz and set the Video bandwidth (VBW) = 100kHz.
- 6. Measure and record the results in the test report.

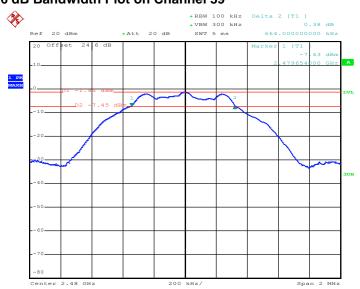
3.1.4 Test Setup



3.1.5 Test Result of 6dB Bandwidth

Test Mode : Bluetoot		h 4.0 - LE	Temperature :	22~25 ℃		
Test Engineer : Osolemi		io Chang Relative Humidity		: 51~55%		
Channel		uency IHz)	6dB Bandwi	dth (MHz)	6dB Bandwidth Min. Limit (MHz)	Pass/Fail
00	2	402	0.67	7	0.5	Pass
19	2	440	0.67	7	0.5	Pass
39	2	480	0.66	3	0.5	Pass

6 dB Bandwidth Plot on Channel 00

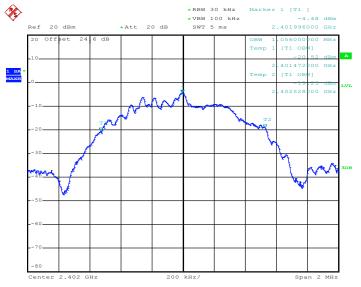

Date: 8.MAY.2014 22:41:10

Note: The total loss is 24.6 dB of the RF cable and attenuator, and has been compensated to the spectrum analyzer offset.

Date: 8.MAY.2014 22:45:49

6 dB Bandwidth Plot on Channel 39

Date: 8.MAY.2014 22:50:52

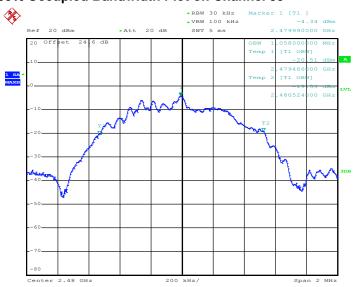

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : PY7PM-0385

3.1.6 Test Result of 99% Occupied Bandwidth

Test Mode :	Bluetooth 4.0 - LE		Temperature :	22~25 ℃
Test Engineer :	Osolemio Chang		Relative Humidity :	51~55%
Channel		Frequency (MHz)	99% Occupied Bandwidth (MHz)	
00		2402		1.06
19		2440		1.06
39		2480	1.06	

99% Bandwidth Plot on Channel 00

Date: 8.MAY.2014 22:42:41


Note: The total loss is 24.6 dB of the RF cable and attenuator, and has been compensated to the spectrum analyzer offset.

99% Occupied Bandwidth Plot on Channel 19

Date: 8.MAY.2014 22:47:07

99% Occupied Bandwidth Plot on Channel 39

Date: 8.MAY.2014 22:52:23

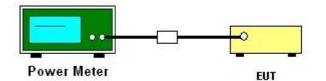
Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : PY7PM-0385 Page Number: 15 of 60Report Issued Date: Aug. 01, 2014Report Version: Rev. 02Report Template No.: BU5-FR15CBT4.0 Version 1.0Report Template No.: BU5-CR210BT4.0 Version 1.0

3.2 Peak Output Power Measurement

3.2.1 Limit of Peak Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.


3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

- The testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas. Guidance v03r02.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

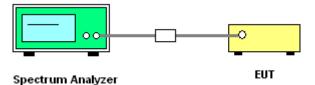
3.2.5 Test Result of Peak Output Power

Test Mode :	Bluetooth 4.0 - LE		Temperature : 22~25°		22~25 ℃	
Test Engineer : Osolemio Chang		Relative Humidity :		51~55%		
	F	_		RF Power (dBm)		
Channel	Frequency (MHz)	GF	SK	Max	. Limits	Pass/Fail
		1 MI	ops	(0	lBm)	Pass/Faii
00	2402	-0.3	33	3	0.00	Pass
19	2440	0.6	50	3	0.00	Pass
39	2480	-0.3	31	3	0.00	Pass

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.


3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

- The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r02.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.
 Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- 7. The Measured power density (dBm)/ 100kHz is a reference level and used as 20dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

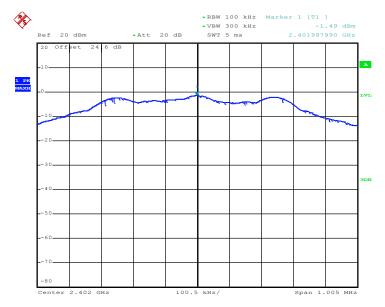
3.3.4 Test Setup

3.3.5 Test Result of Power Spectral Density

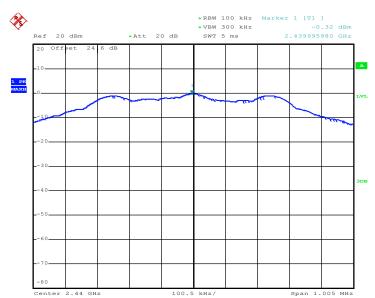
Test Mode : B		Bluetooth 4.0 - LE		Temperature :	22~25 ℃	
Test Engineer : O			blemio Chang Relative Humidity :		51~55%	
Freque		iency Power De		Density	Max. Limits	
Channel	(MHz)	PSD/100kHz (dBm)	PSD/3kHz (dBm)	(dBm/3kHz)	Pass/Fail
00	2402	2	-1.49	-16.74	8	Pass
19	2440		-0.32	-15.47	8	Pass
39	2480)	-1.46	-16.70	8	Pass

Note:

1. The total loss is 24.6 dB of the RF cable and attenuator, and has been compensated to the spectrum analyzer offset.


2. Measured power density (dBm) has offset with cable loss.

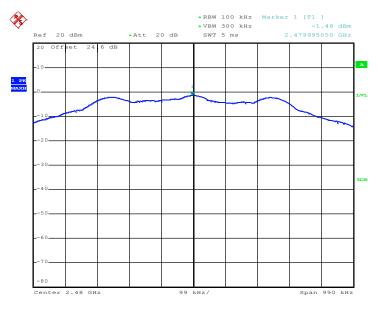
3. The Measured power density (dBm)/ 100kHz is reference level and used as 20dBc down for Conducted Band Edges and Conducted Spurious Emission limit line.



3.3.6 Test Result of Power Spectral Density Plots (100kHz)

PSD 100kHz Plot on Channel 00

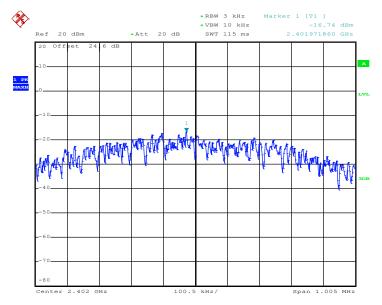
Date: 8.MAY.2014 22:41:38


PSD 100kHz Plot on Channel 19

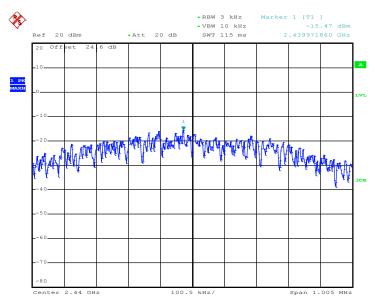
Date: 8.MAY.2014 22:46:18

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : PY7PM-0385 Page Number: 20 of 60Report Issued Date: Aug. 01, 2014Report Version: Rev. 02Report Template No.: BU5-FR15CBT4.0 Version 1.0Report Template No.: BU5-CR210BT4.0 Version 1.0

PSD 100kHz Plot on Channel 39


Date: 8.MAY.2014 22:51:20

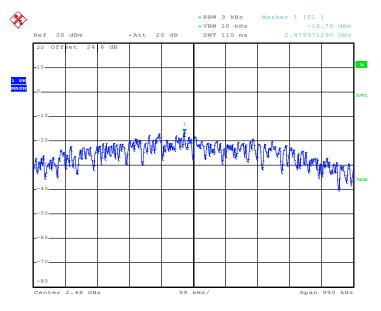
SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : PY7PM-0385



3.3.7 Test Result of Power Spectral Density Plots (3kHz)

PSD 3kHz Plot on Channel 00

Date: 8.MAY.2014 22:41:30


PSD 3kHz Plot on Channel 19

Date: 8.MAY.2014 22:46:09

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : PY7PM-0385 Page Number: 22 of 60Report Issued Date: Aug. 01, 2014Report Version: Rev. 02Report Template No.: BU5-FR15CBT4.0 Version 1.0Report Template No.: BU5-CR210BT4.0 Version 1.0

PSD 3kHz Plot on Channel 39

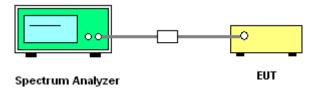
Date: 8.MAY.2014 22:51:11

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : PY7PM-0385

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

All harmonics/spurious must be at least 20 dB down from the highest emission level within the authorized band.

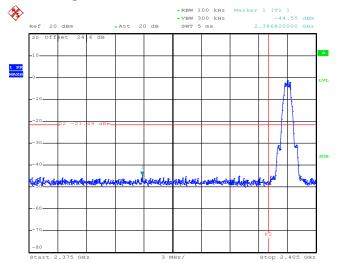

3.4.2 Measuring Instruments

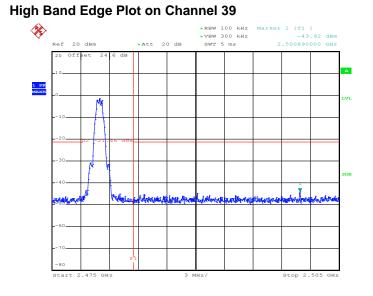
The measuring equipment is listed in the section 4 of this test report.

3.4.3 Test Procedure

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r02.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d).
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup




3.4.5 Test Result of Conducted Band Edges

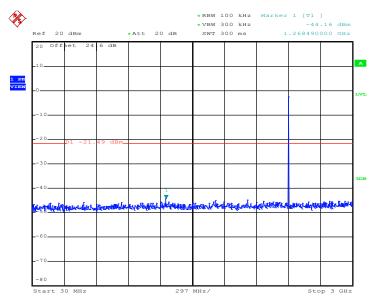
Test Mode :	Bluetooth 4.0 - LE	Temperature :	22~25 ℃
Test Channel :	00 and 39	Relative Humidity :	51~55%
		Test Engineer :	Osolemio Chang

Low Band Edge Plot on Channel 00

Date: 8.MAY.2014 22:43:56

Date: 8.MAY.2014 22:51:34

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : PY7PM-0385

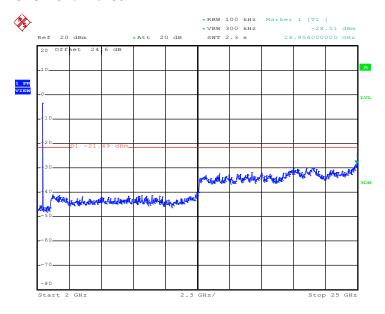


3.4.6 Test Result of Conducted Spurious Emission

Test Mode :	Bluetooth 4.0 - LE	Temperature :	22~25 ℃
Test Channel :	00	Relative Humidity :	51~55%
		Test Engineer :	Osolemio Chang

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

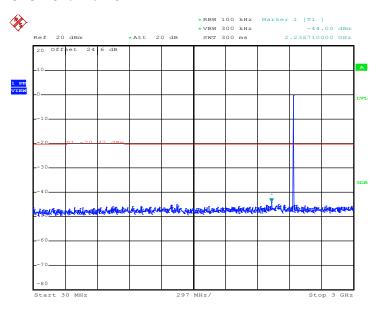
GFSK Channel 00



Date: 8.MAY.2014 22:42:12

- 1. The total loss is 24.6 of the RF cable and attenuator, and has been compensated to the spectrum analyzer offset.
- 2. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

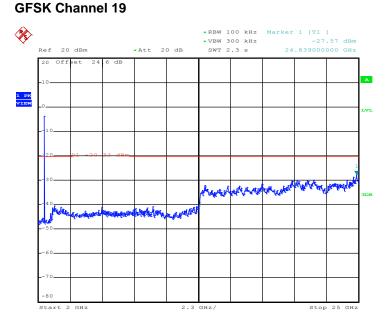
Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 00



Date: 8.MAY.2014 22:42:30

- 1. The total loss is 24.6 of the RF cable and attenuator, and has been compensated to the spectrum analyzer offset.
- 2. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

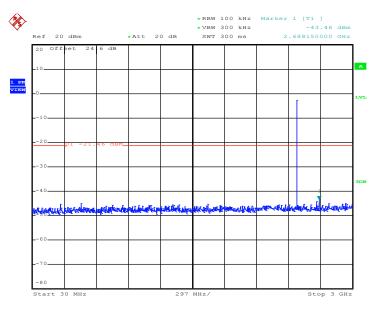
Test Mode :	Bluetooth 4.0 - LE	Temperature :	22~25 ℃
Test Channel :	19	Relative Humidity :	51~55%
		Test Engineer :	Osolemio Chang



GFSK Channel 19

Date: 8.MAY.2014 22:48:25

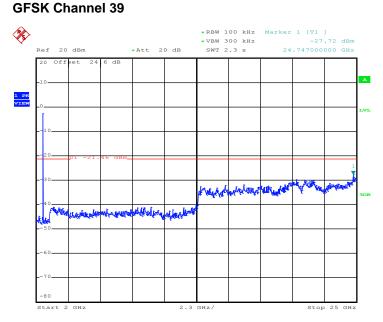
- 1. The total loss is 24.6 of the RF cable and attenuator, and has been compensated to the spectrum analyzer offset.
- 2. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.



Date: 8.MAY.2014 22:48:43

- 1. The total loss is 24.6 of the RF cable and attenuator, and has been compensated to the spectrum analyzer offset.
- 2. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

Test Mode :	Bluetooth 4.0 - LE	Temperature :	22~25 ℃
Test Channel :	39	Relative Humidity :	51~55%
		Test Engineer :	Osolemio Chang



GFSK Channel 39

Date: 8.MAY.2014 22:51:53

- 1. The total loss is 24.6 of the RF cable and attenuator, and has been compensated to the spectrum analyzer offset.
- 2. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

Date: 8.MAY.2014 22:52:12

- 1. The total loss is 24.6 of the RF cable and attenuator, and has been compensated to the spectrum analyzer offset.
- 2. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.5 Radiated Band Edges and Spurious Emission Measurement

3.5.1 Limit of Radiated Band Edges and Spurious Emission

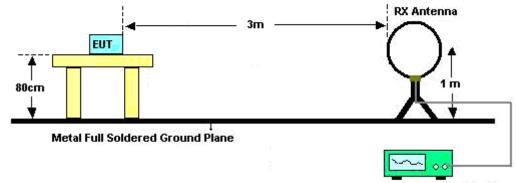
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

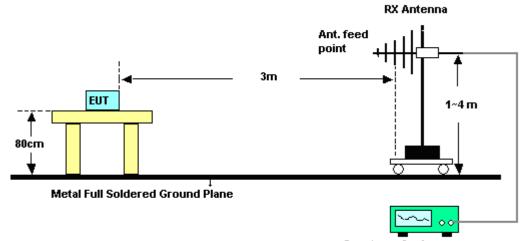
3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.5.3 Test Procedures

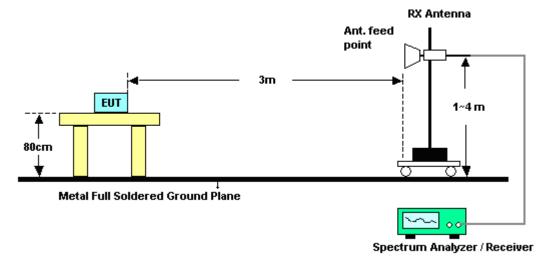

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r02.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT was placed on a turntable with 0.8 meter above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For measurement below 1GHz, if the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 7. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

Band	Duty Cycle(%)	T(µs)	1/T(kHz)	VBW Setting
Bluetooth 4.0 - LE	61.90	390.00	2.56	3kHz

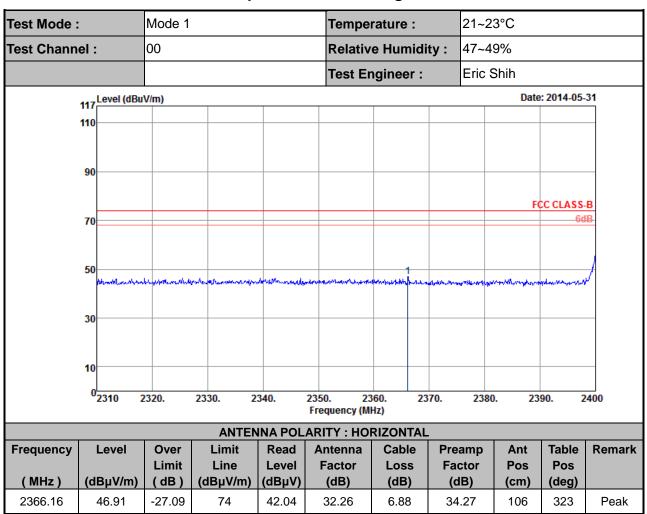

3.5.4 Test Setup

For radiated emissions below 30MHz

Spectrum Analyzer / Receiver

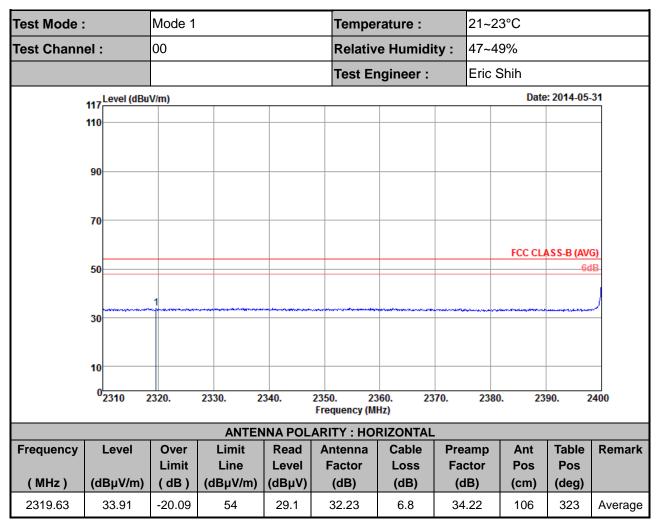

For radiated emissions from 30MHz to 1GHz

Spectrum Analyzer / Receiver

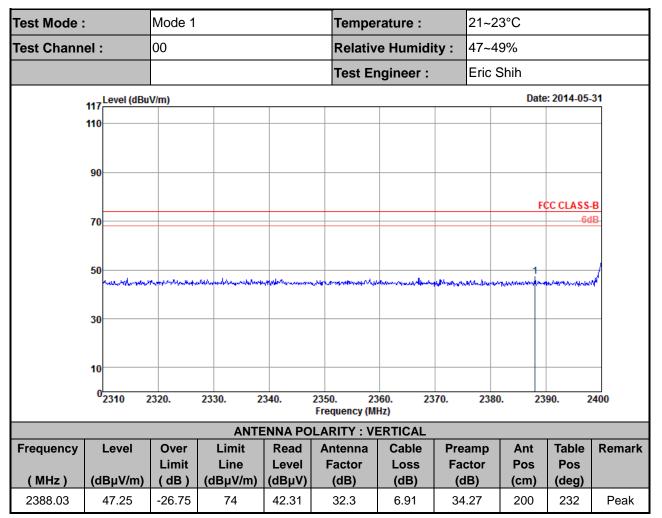

For radiated emissions above 1GHz

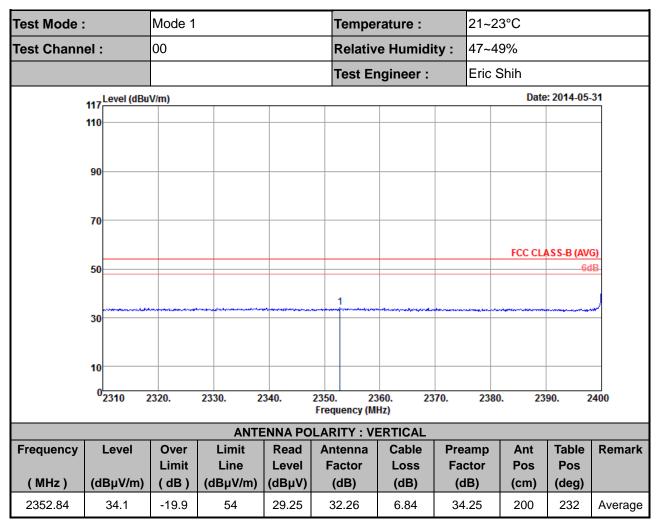
3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

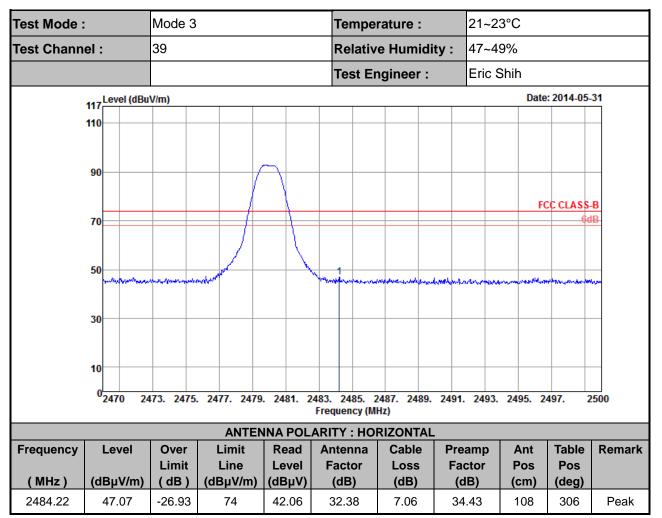
The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

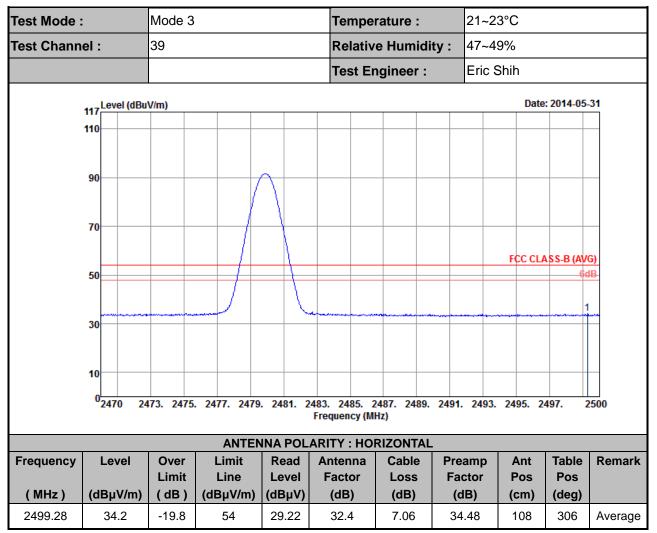


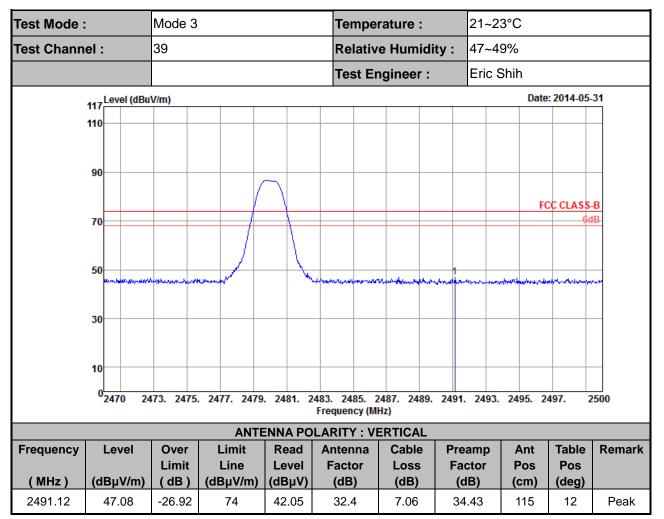
3.5.6 Test Result of Radiated Spurious at Band Edges

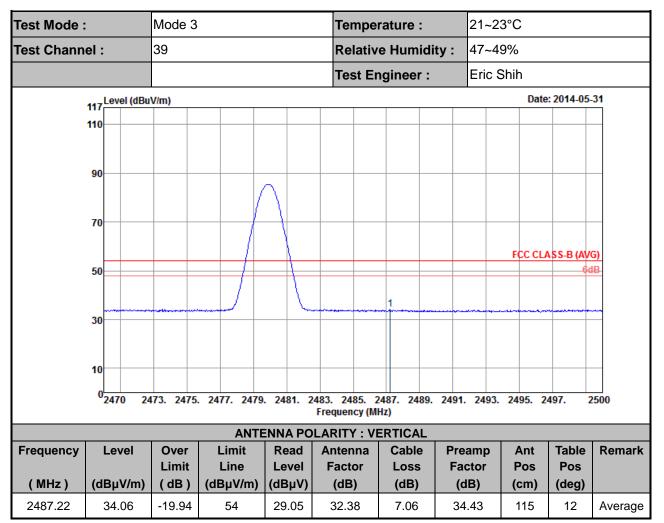

Note: Worst case measurement on 2366.16 MHz is compliance with 74/54 dBuV/m (peak/average) limit and Edge Measurement in the restricted band 2310-2390MHz. And, 2390-2400 MHz is non-restricted band which limit line is 20dB below the fundamental frequency emission level which is tested by conducted spurious emission. Both the test results are compliance with the FCC limit line.


Note: Worst case measurement on 2319.63 MHz is compliance with 74/54 dBuV/m (peak/average) limit and Edge Measurement in the restricted band 2310-2390MHz. And, 2390-2400 MHz is non-restricted band which limit line is 20dB below the fundamental frequency emission level which is tested by conducted spurious emission. Both the test results are compliance with the FCC limit line.


Note: Worst case measurement on 2388.03 MHz is compliance with 74/54 dBuV/m (peak/average) limit and Edge Measurement in the restricted band 2310-2390MHz. And, 2390-2400 MHz is non-restricted band which limit line is 20dB below the fundamental frequency emission level which is tested by conducted spurious emission. Both the test results are compliance with the FCC limit line.


Note: Worst case measurement on 2352.84 MHz is compliance with 74/54 dBuV/m (peak/average) limit and Edge Measurement in the restricted band 2310-2390MHz. And, 2390-2400 MHz is non-restricted band which limit line is 20dB below the fundamental frequency emission level which is tested by conducted spurious emission. Both the test results are compliance with the FCC limit line.


Note: Worst case measurement on 2484.22 MHz is compliance with 74/54 dBuV/m (peak/average) limit and Edge Measurement in the restricted band 2483.5-2500 MHz. And, 2470-2483.5 MHz is non-restricted band which limit line is 20dB below the fundamental frequency emission level which is tested by conducted spurious emission. Both the test results are compliance with the FCC limit line.


Note: Worst case measurement on 2499.28 MHz is compliance with 74/54 dBuV/m (peak/average) limit and Edge Measurement in the restricted band 2483.5-2500 MHz. And, 2470-2483.5 MHz is non-restricted band which limit line is 20dB below the fundamental frequency emission level which is tested by conducted spurious emission. Both the test results are compliance with the FCC limit line.

Note: Worst case measurement on 2491.12 MHz is compliance with 74/54 dBuV/m (peak/average) limit and Edge Measurement in the restricted band 2483.5-2500 MHz. And, 2470-2483.5 MHz is non-restricted band which limit line is 20dB below the fundamental frequency emission level which is tested by conducted spurious emission. Both the test results are compliance with the FCC limit line.

Note: Worst case measurement on 2487.22 MHz is compliance with 74/54 dBuV/m (peak/average) limit and Edge Measurement in the restricted band 2483.5-2500 MHz. And, 2470-2483.5 MHz is non-restricted band which limit line is 20dB below the fundamental frequency emission level which is tested by conducted spurious emission. Both the test results are compliance with the FCC limit line.

3.5.7 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Note: Pre-scanned all test modes and only choose the worst case mode recorded in the test report for radiated spurious emission below 1GHz.

Test Mode :	Mod	e 1			Ter	nperatur	e :	21~23°C			
Test Channel :	00				Rel	ative Hu	midity :	47~49%	,		
Test Engineer :	Eric	Shih									
Remark :	1. 2. 3. 4.	7206 below dBµV/ Avera avera The h	and 9609 the high /m. ge meas ge limit. narmonic) MHz : est em ureme (5 th ,	are n ission nt wa	signal wh ot within a n level. Fo as not per 7 th ,etc.) ower thar	a restricte or examp formed in and oth	ed band, a le, 95.94 f peak lev her spuri	and its dBµV/r vel wer ous ar	n - 20dE nt lower re not i	3 = 75.94 than the reported,
117	el (dBu	V/m)				1			Date:	2014-05-31	1
110 90 70 50 30	2	3	4	5						C CLASS-B 6dB SS-B (AVG) 6dB	
10 0	0	4000.	6000. 800	0. 1000		000. 14000		8000. 2000	0. 22000). 2500	00
		_				equency (MHz	-		_	_	
Frequency Leve	əl	Over	ANTEI Limit		oLAR ead	ITY : HOR Antenna	1	Preamp	Ant	Table	Remark
		Limit	Line	Le	vel	Factor	Loss	Factor	Pos	Pos	
(MHz) (dBµV		(dB)	(dBµV/m		βμV)	(dB)	(dB)	(dB)	(cm)	(deg)	A
2402 95.0		-	-		.14	32.3	6.91	34.3	106	323	Average
2402 95.9		-	-		.03	32.3	6.91 8 75	34.3	106	323	Peak
4803 41.6 7206 42.5		-32.38 -33.43	74 75.94		.58 .73	34.25 35.6	8.75 10.81	58.96 57.63	100 100	0 0	Peak Peak
9609 43.9		-31.97	75.94		.75	36.6	13.7	58.68	100	0	Peak

Note: Other harmonics are lower than background noise.

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : PY7PM-0385 Page Number: 44 of 60Report Issued Date: Aug. 01, 2014Report Version: Rev. 02Report Template No.: BU5-FR15CBT4.0 Version 1.0Report Template No.: BU5-CR210BT4.0 Version 1.0

Test Mode	:	Moc	de 1					Т	ēm	perat	ure	:	21~23	°C			
Test Chanı	nel :	00						F	Rela	ative H	lum	idity :	47~49	%			
Test Engin	eer :	Eric	Shih	۱													
		1.	240)2 I	ИНz	is fu	nda	ment	al s	ignal	whic	h can b	e ignoi	ed.			
		2.	720)6 a	and 9	609	Мŀ	lz are	e no	t withi	n a	restricte	ed band	J.			
Remark :		3.	Ave	era	ge m	eas	urer	nent	was	s not p	perfo	ormed if	peak	leve	l wen	t lower	than the
ittemark .					ge lin												
		4.	The	ə h	armo	onic	(5 ^{tt}	ⁿ , 6 th ,	, 7 ^t	^h ,et	c.) a	and oth	ner spi	uriou	us ar	e not i	eported,
			bec	cau	se th	ose	leve	els are	e lo	wer th	an a	average	limit lir	ne ai	nd ba	ckgrour	nd noise.
	117	el (dBu	ıV/m)												Date:	2014-05-31	
	110																
		2															
	90																
															FCC	CLASS-B	
	70															UUB	
	50													FC	CC CLAS	SS-B (AVG) 6dB	
				3		4	1	5									
	30																
	10																
	0 <mark>100</mark>	0	4000.	6	6 000 .	800). 1	0000.	1200			16000. 1	8000. 20	0000.	22000	. 2500	00
						NITE	-NINI			uency (N		TICAL					
Frequency	Lev	el	Ove	ər		mit		Read	. 1	Anten	- r	Cable	Pream	np	Ant	Table	Remark
<i></i>	<i></i>		Lim			ine		Level		Facto		Loss	Facto	-	Pos	Pos	
(MHz) 2402	<mark>(dBµ\</mark> 91.1		(dB	5)	(dBµ	iv/m) [(<mark>(dΒμV</mark> 86.2		(dB 32.3		(dB) 6.91	(dB 34.3		cm) 200	(deg) 232	Average
2402	92.2		-			_		87.33		32.3		6.91	34.3		200	232	Peak
4803			22	47	-	- 74		57.49							200		
	41.5		-32.4							34.2		8.75	58.96			0	Peak
7206	42.2		-31.7			74 74		53.45		35.6		10.81	57.63		100	0	Peak
9609	43.8	54	-30.1	10	1	74		52.22		36.6)	13.7	58.68	5	100	0	Peak

Test Mode :	Ν	lode 2		Т	emperatu	ıre :	21~23°C	;		
Test Channel	l: 1	9		R	elative H	umidity :	47~49%			
Test Enginee	er: E	ric Shih								
	1	. 2440	MHz is fu	Indamenta	al signal v	vhich can b	e ignored	J.		
	2	. 9759	MHz is n	ot within a	a restricte	d band, an	d its limit	line is	20dB b	elow the
		highe	est emissi	on level. F	or examp	ole, 94.46 d	BµV/m -	20dB =	= 74.46 (dBµV/m.
Remark :	3	. Aver	age meas	urement v	was not p	erformed if	peak lev	vel wen	t lower	than the
		avera	age limit.							
	4	. The	harmonic	(5 th , 6 th ,	7 th ,etc	.) and oth	er spuri	ous ar	e not r	eported,
		beca	use those	levels are	e lower tha	an average	limit line	and ba	ckgrour	nd noise.
11	17	dBuV/m)						Date:	2014-05-31	
	10									
		2								
ę	90									
								FC	C CLASS-B	
ī	70								6dB	
								FCC CLA	SS-B (AVG)	
:	50	3	4	5					008	
-	30									
1	10									
	0 <mark>1000</mark>	4000.	6000. 800	0. 10000.	12000. 1400	0. 16000. 1	8000. 2000	0. 22000	. 2500	0
					Frequency (M					
Frequency	Level	Over	ANTE Limit	NNA POLA Read	_	RIZONTAL	Preamp	Ant	Table	Remark
requency	Level	Limit	i	Level			Factor	Pos	Pos	Kennark
	lBµV/n	n) (dB)	(dBµV/m				(dB)	(cm)	(deg)	
2440	93.2	-	-	88.21	32.35		34.35	158	305	Average
2440	94.46	-	-	89.47		6.99	34.35	158	305	Peak
4881	40.9	-33.1	74	56.58	34.3	8.85	58.83	100	0	Peak
7320	43.95	-30.05	5 74	55.18	35.6	10.91	57.74	100	0	Peak
9759	45.1	-29.36	5 74.46	53.38	36.76	13.69	58.73	100	0	Peak

Test Mode	:	Mod	le 2			Ter	nperatu	re :	21~23°C			
Test Chan	nel :	19				Re	lative H	umidity :	47~49%	I		
Test Engin	eer :	Eric	Shih									
		1.	2440	MHz is	fundam	ental	signal w	hich can b	e ignored	d.		
		2.	9759	MHz is	not with	in a r	estricted	l band.				
Domork .		3.	Avera	ige mea	asureme	nt wa	as not pe	erformed if	f peak lev	/el wen	nt lower	than the
Remark :			avera	ge limit								
		4.	The	harmon	ic (5 th ,	6 th , [·]	7 th ,etc	.) and oth	ner spuri	ous ar	e not r	eported
			becau	use thos	se levels	are l	ower tha	in average	limit line	and ba	ckgrour	nd noise
	117	el (dBu	IV/m)							Date:	2014-05-31	
	110											
	90	2										
										FC	C CLASS-B	
	70										<u>6dB</u>	
	50									FCC CLA	SS-B (AVG) 6dB	
	50		3	4	5							
	30											
	10											
	0 <mark>100</mark>	0	4000.	6000. 8	000. 1000		000. 1400		8000. 2000	0. 22000). 2500	0
	_		_				equency (MH		_	_	_	_
Frequency	Lev	el	Over	Lim		ad	Antenna	ERTICAL	Preamp	Ant	Table	Remark
			Limit	Line		vel	Factor		Factor	Pos	Pos	
(MHz)			(dB)	(dBµV		βµV)	(dB)	(dB)	(dB)	(cm)		_
2440	90.1		-	-		.17	32.35	6.99	34.35	199	232	Average
2440	91.3		-	-		.34	32.35	6.99	34.35	199	232	Peak
4881	41.		-32.4	74		.28	34.3	8.85	58.83	100	0	Peak
7320	42.5	5	-31.45	74	53	.78	35.6	10.91	57.74	100	0	Peak
9759	44.1	9	-29.81	74	52	.47	36.76	13.69	58.73	100	0	Peak

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : PY7PM-0385

Test Mode	:	Moc	le 3		Те	emperature	e :	21~23°0			
Test Chan	nel :	39			R	elative Hu	nidity :	47~49%)		
Test Engin	eer:	Eric	Shih								
		1.	2480	MHz is fund	damenta	l signal wh	ich can b	e ignore	d.		
		2.	9921	MHz is not	within a	restricted b	band.				
Domonic		3.	Avera	ge measure	ement w	as not per	formed it	f peak lev	vel wen	t lower	than the
Remark :			avera	ge limit.							
		4.	The h	narmonic (5 th , 6 th ,	7 th ,etc.)	and oth	ner spuri	ous ar	e not r	eported,
			becau	ise those le	vels are	lower than	average	limit line	and ba	ckgrour	nd noise.
	117Leve	l (dBuV	//m)						Date	e: 2014-05-	31
	110										-
		ę									
	90										-
									F	CC CLASS-	_
	70									6d	B
	50								FCC CL	ASS-B (AVC	<u>.</u>
			ç	9 10							_
	30 5										
	P4										
	10										_
	0 ₃₀	3	000. 50	00. 7000.	9000. 110	00. 13000.	15000. 170	00. 19000.	21000.	23000. 25	000
						requency (MHz) RITY : HOR					
Frequency	Lev	el	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
			Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)			(dB)				(dB)	(dB)	(cm)	(deg)	
34.05	19.		-20.2	40	33.85	16.72	0.57	31.34	-	-	Peak
116.67	20.2		-23.29	43.5	39.08	11.18	1.08	31.13	-	-	Peak
139.08	16.9		-26.58	43.5	35.32	11.5	1.2	31.1	-	-	Peak
428.8	21.7		-24.25	46	33.39	16.88	2.24	30.76	-	-	Peak
524.7	27.7		-18.24	46	37.76	18.2	2.5	30.7	145	33	Peak
624.1	25.4	15	-20.55	46	32.97	20.27	2.76	30.55	-	-	Peak

	ANTENNA POLARITY : HORIZONTAL													
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark				
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos					
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)					
2480	92.04	-	-	87.03	32.38	7.06	34.43	108	306	Average				
2480	93.19	-	-	88.18	32.38	7.06	34.43	108	306	Peak				
4959	41.42	-32.58	74	56.79	34.37	8.92	58.66	100	0	Peak				
7440	40.6	-33.4	74	51.81	35.6	11.04	57.85	100	0	Peak				
9921	44.74	-29.26	74	52.91	36.93	13.68	58.78	100	0	Peak				

Test Mode :	Mo	de 3		Те	mperature	:	21~23°C	;		
Test Channel :	39			Re	elative Hun	nidity :	47~49%			
Test Engineer	: Eric	: Shih								
	1.	2480	MHz is fund	lamental	l signal whi	ch can b	e ignored	ł.		
	2.	9921	MHz is not	within a	restricted b	and.				
Dement	3.	Avera	ge measure	ement w	as not perf	ormed if	f peak lev	vel wen	t lower	than the
Remark :		avera	ge limit.							
	4.	The h	narmonic (5 th , 6 th ,	7 th ,etc.)	and oth	ner spuri	ous ar	e not r	eported,
		becau	ise those le	vels are	lower than	average	limit line	and ba	ckgrour	nd noise.
	vel (dBu)	V/m)	1					Date	e: 2014-05-	31
110	_									_
90		,								_
								F	CC CLASS-	в
70									<u>6d</u>	<u>B-</u>
								FCC CL	ASS-B (AVC	
50	-		9 10	11					6d	<u>B-</u>
30 - 5 2 4 3 1	b									
10										
0 ¹¹¹ 30		3000. 50	00. 7000.	9000. 110 Fr	00. 13000. 1 requency (MHz)	5000. 170	00. 19000.	21000.	23000. 25	000
			1		ARITY : VER		1_	-		
Frequency Le	evel	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz) (dB	µV/m)		(dBµV/m)			(dB)	(dB)		(deg)	
30.81 27	7.53	-12.47	40	40.17	18.28	0.54	31.46	111	147	Peak
43.5 23	3.79	-16.21	40	43.15	11.2	0.64	31.2	-	-	Peak
169.86 19	9.28	-24.22	43.5	39.45	9.7	1.23	31.1	-	-	Peak
431.6 23	3.29	-22.71	46	34.86	16.92	2.25	30.74	-	-	Peak
521.2 2	7.6	-18.4	46	37.68	18.12	2.49	30.69	-	-	Peak

	ANTENNA POLARITY : VERTICAL													
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark				
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos					
(MHz)	($dB\mu V/m$)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)					
2480	85.99	-	-	80.98	32.38	7.06	34.43	115	12	Average				
2480	87.05	-	-	82.04	32.38	7.06	34.43	115	12	Peak				
4959	41.13	-32.87	74	56.5	34.37	8.92	58.66	100	0	Peak				
7440	42.1	-31.9	74	53.31	35.6	11.04	57.85	100	0	Peak				
9921	44.12	-29.88	74	52.29	36.93	13.68	58.78	100	0	Peak				

3.6 AC Conducted Emission Measurement

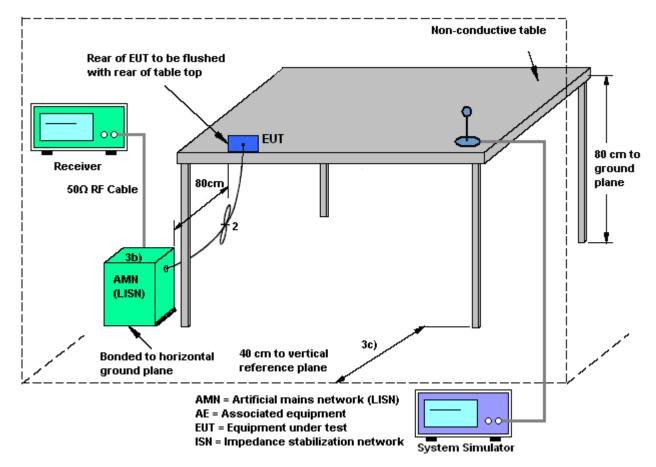
3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of omission (MHz)	Conducted	limit (dBµV)
Frequency of emission (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

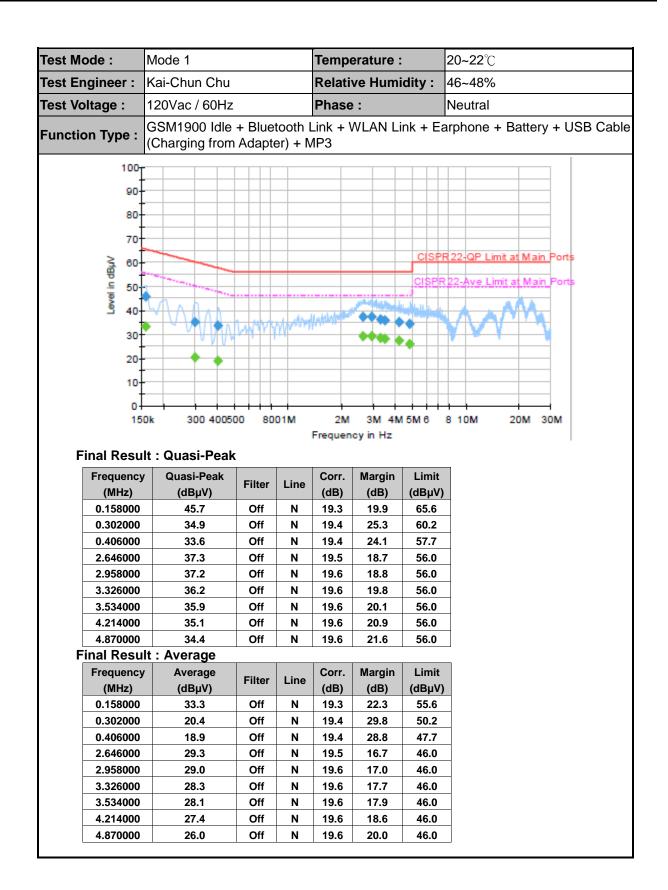
3.6.2 Measuring Instruments


The measuring equipment is listed in the section 4 of this test report.

3.6.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.

3.6.4 Test Setup


3.6.5 Test Result of AC Conducted Emission

Test Mode	e :	Mode 1			Temp	erature :		20~22 ℃
Test Engi	neer :	Kai-Chun Chu			Relati	ve Humi	idity :	46~48%
Test Volta	ge :	120Vac / 60Hz			Phase	:		Line
Function	Туре :	GSM1900 Idle (Charging from				WLAN Li	nk + Ea	arphone + Battery + USB Cabl
	100 90 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 80 80 70 80 80 80 80 80 80 80 80 80 80 80 80 80							PR22-OP Limit at Main Ports R22-Ave Limit at Main Ports
Fina	20- 10- 0- 150 al Resul	0k 300 4005		001M	2N Freque	1 3M 4 ency in Hz	M 5M 6	8 10M 20M 30M
	10 0+ 150 al Resul	lt : Quasi-Peak		00 1M	Freque Corr.	ncy in Hz Margin	Limit	
Fr	10 150 al Resul requency (MHz)	lt : Quasi-Peak Quasi-Peak (dBµV)	Filter	Line	Freque Corr. (dB)	mcy in Hz Margin (dB)	Limit (dBµV)	
Fr 0	10 0 150 al Resul requency (MHz) 0.158000	lt : Quasi-Peak Quasi-Peak (dBµV) 44.8	Filter	Line L1	Corr. (dB) 19.3	Margin (dB) 20.8	Limit (dBµV) 65.6	
Fr 0 0	10 150 al Resul requency (MHz) 0.158000 0.302000	lt : Quasi-Peak Quasi-Peak (dBµV)	Filter	Line	Freque Corr. (dB) 19.3 19.4	Margin (dB) 20.8 21.9	Limit (dBµV)	
Fr 0 0 0	10 0 150 al Resul requency (MHz) 0.158000	lt : Quasi-Peak Quasi-Peak (dBµV) 44.8 38.3	Filter Off Off	Line L1 L1	Corr. (dB) 19.3 19.4 19.3	Margin (dB) 20.8	Limit (dBµV) 65.6 60.2	
Fr 0 0 0 2	10 0 150 al Resul requency (MHz) 0.158000 0.302000 0.406000	It : Quasi-Peak Quasi-Peak (dBµV) 44.8 38.3 37.9	Filter Off Off Off	Line L1 L1 L1	Freque Corr. (dB) 19.3 19.4	Margin (dB) 20.8 21.9 19.8	Limit (dBµV) 65.6 60.2 57.7	
Fr 0 0 0 2 2	10 10 150 al Resul requency (MHz) 0.158000 0.302000 0.406000 0.478000	It : Quasi-Peak Quasi-Peak (dBµV) 44.8 38.3 37.9 38.7	Filter Off Off Off	Line L1 L1 L1 L1	Corr. (dB) 19.3 19.4 19.3 19.5	Margin (dB) 20.8 21.9 19.8 17.3	Limit (dBµV) 65.6 60.2 57.7 56.0	
Fr 0 0 2 2 2 2	10 10 150 150 150 150 150 158000 1.158000 1.158000 1.406000 1.478000 1.542000	It : Quasi-Peak Quasi-Peak (dBµV) 44.8 38.3 37.9 38.7 40.7	Filter Off Off Off Off Off	Line L1 L1 L1 L1 L1 L1	Freque Corr. (dB) 19.3 19.4 19.3 19.5 19.6	Margin (dB) 20.8 21.9 19.8 17.3 15.3	Limit (dBµV) 65.6 60.2 57.7 56.0 56.0	
Fr 0 0 2 2 2 2 2 2	10 150 150 150 150 150 158000 158000 158000 158000 158000 1542000 1542000	It : Quasi-Peak Quasi-Peak (dBµV) 44.8 38.3 37.9 38.7 40.7 40.9	Filter Off Off Off Off Off Off	Line L1 L1 L1 L1 L1 L1 L1	Freque Corr. (dB) 19.3 19.4 19.3 19.5 19.6 19.5	Margin (dB) 20.8 21.9 19.8 17.3 15.3 15.1	Limit (dBµV) 65.6 60.2 57.7 56.0 56.0 56.0	
Fr 0 0 2 2 2 2 2 3	10 10 150 150 150 150 150 150 15	It : Quasi-Peak Quasi-Peak (dBμV) 44.8 38.3 37.9 38.7 40.7 40.9 40.1	Filter Off Off Off Off Off Off	Line L1 L1 L1 L1 L1 L1 L1 L1	Freque Corr. (dB) 19.3 19.4 19.3 19.5 19.6 19.5 19.6	Margin (dB) 20.8 21.9 19.8 17.3 15.3 15.1 15.9	Limit (dBµV) 65.6 60.2 57.7 56.0 56.0 56.0 56.0	
Fr 0 0 2 2 2 2 2 3 3 3	10 10 150 150 150 158000 158000 158000 158000 158000 158000 158000 158000 158000 158000 158000 158000 158000 159 150 150 150 150 150 150 150 150	It : Quasi-Peak Quasi-Peak (dBµV) 44.8 38.3 37.9 38.7 40.7 40.9 40.1 39.8	Filter Off Off Off Off Off Off Off Off	Line L1 L1 L1 L1 L1 L1 L1 L1 L1	Freque (dB) 19.3 19.4 19.3 19.5 19.6 19.5 19.6 19.6	Margin (dB) 20.8 21.9 19.8 17.3 15.3 15.1 15.9 16.2	Limit (dBµV) 65.6 60.2 57.7 56.0 56.0 56.0 56.0 56.0	
Fr 0 0 2 2 2 2 2 3 3 3 3 3 3	10 10 150 150 150 150 150 150 15	It : Quasi-Peak Quasi-Peak (dBµV) 44.8 38.3 37.9 38.7 40.7 40.9 40.1 39.8 39.1	Filter Off Off Off Off Off Off Off Off Off	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Freque Corr. (dB) 19.3 19.4 19.3 19.5 19.6 19.5 19.6 19.6 19.6	Margin (dB) 20.8 21.9 19.8 17.3 15.3 15.1 15.9 16.2 16.9	Limit (dBµV) 65.6 60.2 57.7 56.0 56.0 56.0 56.0 56.0 56.0	
Fr 0 0 2 2 2 2 2 3 3 3 3 3 3 3 3	10 10 150 150 150 150 150 150 15	It : Quasi-Peak Quasi-Peak (dBµV) 44.8 38.3 37.9 38.7 40.7 40.9 40.1 39.8 39.1 38.5	Filter Off Off Off Off Off Off Off Off Off Of	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Freque Corr. (dB) 19.3 19.4 19.3 19.5 19.6 19.5 19.6 19.6 19.6 19.6	Margin (dB) 20.8 21.9 19.8 17.3 15.3 15.1 15.9 16.2 16.9 17.5	Limit (dBµV) 65.6 60.2 57.7 56.0 56.0 56.0 56.0 56.0 56.0 56.0	

Test Mode :	N	lode 1			Tempe	erature :		20~22 ℃
Test Enginee	er:K	ai-Chun Chu			Relati	ve Humi	idity :	46~48%
Test Voltage	: 1	20Vac / 60Hz			Phase	:		Line
Function Typ		SM1900 Idle Charging from				WLAN Li	ink + Ea	arphone + Battery + USB Cab
Level in dBµV	100 90 80 70 60 50 40							PR22-QP Limit at Main Ports R22-Ave Limit at Main Ports
	20	300 4005		001M		1 3M 4	M 5M 6	8 10M 20M 30M
	20	300 4005	00 80	00 1 M	2N Freque	1 3M 4	M 5M 6	8 10M 20M 30M
Frequ	20 10 150k esult ency	: Average Average	Filter	DO 1M	Freque Corr.	ncy in Hz Margin	Limit]
	20 10 150k esult ency tz)	: Average			Freque	ncy in Hz	:]
Frequ (MH	20 10 150k esult ency iz) 3000	: Average Average (dBµV)	Filter	Line	Freque Corr. (dB)	mcy in Hz Margin (dB)	Limit (dBµV)]
Freque (MH 0.158	20 10 150k esult ency 12) 3000 2000	: Average Average (dBµV) 32.8	Filter	Line L1	Corr. (dB) 19.3	Margin (dB) 22.8	Limit (dBµV) 55.6]
Freque (MH 0.158 0.302 0.406 2.478	20 10 150k esult ency tz) 3000 2000 3000 3000	: Average Average (dBµV) 32.8 26.6 25.5 29.0	Filter Off Off Off	Line L1 L1 L1 L1	Freque Corr. (dB) 19.3 19.4 19.3 19.5	Margin (dB) 22.8 23.6 22.2 17.0	Limit (dBµV) 55.6 50.2 47.7 46.0]
Frequ (MH 0.158 0.302 0.406	20 10 150k esult ency tz) 3000 2000 3000 3000	: Average Average (dBµV) 32.8 26.6 25.5	Filter Off Off	Line L1 L1 L1	Freque Corr. (dB) 19.3 19.4 19.3	Margin (dB) 22.8 23.6 22.2	Limit (dBµV) 55.6 50.2 47.7]
Freque (MH 0.158 0.302 0.406 2.478 2.542 2.702	20 10 150k esult ency 12) 3000 2000 3000 2000 2000	: Average Average (dBµV) 32.8 26.6 25.5 29.0 30.9 31.6	Filter Off Off Off Off Off	Line L1 L1 L1 L1 L1 L1 L1	Freque Corr. (dB) 19.3 19.4 19.3 19.5 19.6 19.5	Margin (dB) 22.8 23.6 22.2 17.0 15.1 14.4	Limit (dBµV) 55.6 50.2 47.7 46.0 46.0 46.0]
Freque (MH 0.158 0.302 0.406 2.478 2.542	20 10 150k esult ency 12) 3000 2000 3000 2000 2000	: Average Average (dBµV) 32.8 26.6 25.5 29.0 30.9 31.6 30.7	Filter Off Off Off Off	Line L1 L1 L1 L1 L1 L1	Freque Corr. (dB) 19.3 19.4 19.3 19.5 19.6	Margin (dB) 22.8 23.6 22.2 17.0 15.1	Limit (dBµV) 55.6 50.2 47.7 46.0 46.0]
Freque (MH 0.158 0.302 0.406 2.478 2.542 2.702 2.902 3.102	20 10 150k esult ency 12) 3000 3000 3000 3000 2000 2000 2000 2000 2000	: Average Average (dBµV) 32.8 26.6 25.5 29.0 30.9 31.6 30.7 29.9	Filter Off Off Off Off Off Off Off Off	Line L1 L1 L1 L1 L1 L1 L1 L1 L1	Freque Corr. (dB) 19.3 19.4 19.3 19.5 19.6 19.5 19.6 19.6	Margin (dB) 22.8 23.6 22.2 17.0 15.1 14.4 15.3 16.1	Limit (dBµV) 55.6 50.2 47.7 46.0 46.0 46.0 46.0 46.0]
Frequ (MH 0.158 0.302 0.406 2.478 2.542 2.702 2.902	20 10 150k esult ency 12) 3000 3000 3000 3000 2000 2000 2000 2000 2000	: Average Average (dBµV) 32.8 26.6 25.5 29.0 30.9 31.6 30.7	Filter Off Off Off Off Off Off Off	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Freque (dB) 19.3 19.4 19.3 19.5 19.6 19.5 19.6	Margin (dB) 22.8 23.6 22.2 17.0 15.1 14.4 15.3	Limit (dBµV) 55.6 50.2 47.7 46.0 46.0 46.0 46.0]
Freque (MH 0.158 0.302 0.406 2.478 2.542 2.702 2.902 3.102	20 10 150k esult ency 12) 3000 200	: Average Average (dBµV) 32.8 26.6 25.5 29.0 30.9 31.6 30.7 29.9	Filter Off Off Off Off Off Off Off Off	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Freque Corr. (dB) 19.3 19.4 19.3 19.5 19.6 19.5 19.6 19.6	Margin (dB) 22.8 23.6 22.2 17.0 15.1 14.4 15.3 16.1	Limit (dBµV) 55.6 50.2 47.7 46.0 46.0 46.0 46.0 46.0]
Freque (MH 0.158 0.302 0.406 2.478 2.542 2.702 2.902 3.102 3.310 3.518 3.814	20 10 150k esult ency 12) 3000 3000 3000 200	: Average Average (dBµV) 32.8 26.6 25.5 29.0 30.9 31.6 30.7 29.9 29.4 29.3 28.9	Filter Off Off Off Off Off Off Off Off Off Of	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Freque (dB) 19.3 19.4 19.3 19.5 19.6 19.6 19.6 19.6 19.6 19.6 19.6	Margin (dB) 22.8 23.6 22.2 17.0 15.1 14.4 15.3 16.1 16.6 16.7 17.1	Limit (dBµV) 55.6 50.2 47.7 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0]
Freque (MH 0.158 0.302 0.406 2.478 2.542 2.702 2.902 3.102 3.310 3.518	20 10 150k esult ency 12) 3000 3000 3000 200	: Average Average (dBµV) 32.8 26.6 25.5 29.0 30.9 31.6 30.7 29.9 29.4 29.3	Filter Off Off Off Off Off Off Off Off Off Of	Line L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1	Freque Corr. (dB) 19.3 19.4 19.3 19.5 19.6 19.6 19.6 19.6 19.6	Margin (dB) 22.8 23.6 22.2 17.0 15.1 14.4 15.3 16.1 16.6 16.7	Limit (dBµV) 55.6 50.2 47.7 46.0 46.0 46.0 46.0 46.0 46.0 46.0]

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : PY7PM-0385 Page Number: 56 of 60Report Issued Date: Aug. 01, 2014Report Version: Rev. 02Report Template No.: BU5-FR15CBT4.0 Version 1.0Report Template No.: BU5-CR210BT4.0 Version 1.0

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	Rohde & Schwarz	FSP40	100055	9kHz~40GHz	Jun. 07, 2013	May 07, 2014 ~ May 08, 2014	Jun. 06, 2014	Conducted (TH02-HY)
Power Meter	Agilent	E4416A	GB41292344	300MHz~40GHz	Jan. 28, 2014	May 07, 2014 ~ May 08, 2014	Jan. 27, 2015	Conducted (TH02-HY)
Power Sensor	Agilent	E9327A	US40441548	300MHz~40GHz	Jan. 28, 2014	May 07, 2014 ~ May 08, 2014	Jan. 27, 2015	Conducted (TH02-HY)
Hygrometer	Testo	608-H1	34897199	N/A	May 06, 2014	May 07, 2014 ~ May 08, 2014	May 05, 2015	Conducted (TH02-HY)
RF cable	WOKEN	S05	S05-130708-03 8	N/A	Jan. 22, 2014	May 07, 2014 ~ May 08, 2014	Jan. 21, 2015	Conducted (TH02-HY)
EMI Test Receiver	Rohde & Schwarz	ESCI 7	100724	9 kHz~7 GHz	Sep. 06, 2013	May 31, 2014	Sep. 05, 2014	Radiation (03CH07-HY)
Spectrum Analyzer	Rohde & Schwarz	FSV30	101749	10Hz ~ 30GHz	Feb. 10, 2014	May 31, 2014	Feb. 09, 2015	Radiation (03CH07-HY)
Bilog Antenna	Schaffner	CBL6111C	2726	30 MHz ~ 1 GHz	Oct. 10, 2013	May 31, 2014	Oct. 09, 2014	Radiation (03CH07-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	860004/0001	9 kHz~30 MHz	Jul. 03, 2012	May 31, 2014	Jul. 03, 2014	Radiation (03CH07-HY)
Double Ridge Horn Antenna	ESCO	3117	75962	1 GHz~18 GHz	Aug. 22, 2013	May 31, 2014	Aug. 21, 2014	Radiation (03CH07-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170251	15GHz- 40GHz	Oct. 03, 2013	May 31, 2014	Oct. 02, 2014	Radiation (03CH07-HY)
Preamplifier	COM-POWER	PA-103A	161241	10 MHz ~ 1000MHz	Mar. 17, 2014	May 31, 2014	Mar. 16, 2015	Radiation (03CH07-HY)
Preamplifier	Agilent	8449B	3008A02362	1 GHz~26.5 GHz	Nov. 29, 2013	May 31, 2014	Nov. 28, 2014	Radiation (03CH07-HY)
Preamplifier	MITEQ	AMF-7D-00 101800-30- 10P	1590074	DC~18 G	Jul. 09, 2013	May 31, 2014	Jul. 08, 2014	Radiation (03CH07-HY)
Turn Table	ChainTek	ChainTek 3000	N/A	0 ~ 360 degree	N/A	May 31, 2014	N/A	Radiation (03CH07-HY)
Antenna Mast	ChainTek	ChainTek 3000	N/A	N/A	N/A	May 31, 2014	N/A	Radiation (03CH07-HY)
LF RF Cable	Warison+HUB ER SUHNER	WCBA-WC 04NM.NM2	N/A	30MHz~1GHz	Nov. 28, 2013	May 31, 2014	Nov. 27, 2014	Radiation (03CH07-HY)
HF RF Cable	HUBER SUHNER	SUCOFLEX 104	38411/6	1GHz~26.5GHz	Nov. 28, 2013	May 31, 2014	Nov. 27, 2014	Radiation (03CH07-HY)
High Pass Filter	Microwave Circuits	H3G018G1	SN477220	3G HPF	Nov. 28, 2013	May 31, 2014	Nov. 27, 2014	Radiation (03CH07-HY)
Low Pass Filter	Wainwright Instruments Gmbh	WLKS1200- 8SS	SN3	1.5G LPF	Nov. 28, 2013	May 31, 2014	Nov. 27, 2014	Radiation (03CH07-HY)
Hygrometer	Testo	608-H1	34897197	N/A	May 06, 2014	May 31, 2014	May 05, 2015	Radiation (03CH07-HY)
Test Software	Audix	E3 V6.0	N/A	N/A	N/A	May 31, 2014	N/A	Radiation (03CH07-HY)

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : PY7PM-0385 Page Number: 58 of 60Report Issued Date: Aug. 01, 2014Report Version: Rev. 02Report Template No.: BU5-FR15CBT4.0 Version 1.0Report Template No.: BU5-CR210BT4.0 Version 1.0

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
EMI Test Receiver	Rohde & Schwarz	ESCS 30	100356	9kHz ~ 2.75GHz	Nov. 15, 2013	May 20, 2014	Nov. 14, 2014	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100081	9kHz ~ 30MHz	Dec. 12, 2013	May 20, 2014	Dec. 11, 2014	Conduction (CO05-HY)
LISN (for auxiliary equipment)	Rohde & Schwarz	ENV216	100080	9kHz ~ 30MHz	Dec. 04, 2013	May 20, 2014	Dec. 03, 2014	Conduction (CO05-HY)
AC Power Source	APC	APC-1000 W	N/A	N/A	N/A	May 20, 2014	N/A	Conduction (CO05-HY)
Test Software	N/A	EMC32	8.40.0	N/A	N/A	May 20, 2014	N/A	Conduction (CO05-HY)
Hygrometer	Testo	608-H1	34913912	N/A	Apr. 23, 2014	May 20, 2014	Apr. 22, 2015	Conduction (CO05-HY)
LF Cable	Shuner	RG-402	N/A	N/A	Oct. 17, 2013	May 20, 2014	Oct. 16, 2014	Conduction (CO05-HY)

Note: Test equipment calibration is traceable to the procedure of ISO17025.

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.26
of 95% (U = 2Uc(y))	2.20

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	4.50	
of 95% (U = 2Uc(y))	4.50	