

TEST REPORT

Test of: C5502

To: OET Bulletin 65 Supplement C: (2001-01) IEEE1528: 2003

FCC ID: PY7PM-0310

Test Report Serial No: UL-SAR-RP91949JD02A V4.0

Version 4.0 superseded all previous report versions

This Test Report Is Issued Under The Authority Of Richelieu Quoi, SAR Technology Consultant:

Checked By: Naseer Mirza

(APPROVED SIGNATORY)

Issue Date:

07 June 2013

Test Dates:

27 February to 24 May 2013

This report is issued in portable document format (PDF). It is only a valid copy of the report if it is being viewed in PDF format with the following security options not allowed: Changing the document, Selecting text and graphics, Adding or changing notes and form fields.

This report may not be reproduced other than in full, except with the prior written approval of UL. The results in this report apply only to the sample(s) tested.

The Bluetooth® word mark and logos are owned by the *Bluetooth* SIG, Inc. and any use of such marks by UL. is under license. Other trademarks and trade names are those of their respective owners.

Issue Date: 07 June 2013

This page has been left intentionally blank.

Page: 2 of 289 UL

TABLE OF CONTENTS

1. Customer Information	4
2. Summary of Test Results	5
3. Test Specification, Methods and Procedures	10
4. Equipment Under Test (EUT)	11
5. Deviations from the Test Specification	22
6. Operation and Configuration of the EUT during Testing	23
7. Measurements, Examinations and Derived Results	28
8. Measurement Uncertainty	67
Appendix 1. Test Equipment Used	77
Appendix 2. Measurement Methods	81
Appendix 3. SAR Distribution Scans	83
Appendix 4. Photographs	225
Appendix 5. System Check	262
Appendix 6. Simulated Tissues	271
Appendix 7. DASY4 System Details	272
Appendix 8. 3G Test set-up	276
Appendix 9. CAT24 Test set-up	283

Version 4.0 Issue Date: 07 June 2013

1. Customer Information						
Company Name: Sony Mobile Communications AB						
Address:	Nya Vattentornet 22188 Lund Sweden					

Page: 4 of 289 UL

Issue Date: 07 June 2013

2. Summary of Test Results		
Test Name	Specification Reference	Result
Specific Absorption Rate - GSM 850	OET Bulletin 65 Supplement C: (2001-01)	Ø
Specific Absorption Rate - PCS 1900	OET Bulletin 65 Supplement C: (2001-01)	②
Specific Absorption Rate - UMTS FDD 2	OET Bulletin 65 Supplement C: (2001-01)	Ø
Specific Absorption Rate - UMTS FDD 4	OET Bulletin 65 Supplement C: (2001-01)	Ø
Specific Absorption Rate - UMTS FDD 5	OET Bulletin 65 Supplement C: (2001-01)	Ø
Specific Absorption Rate - Wi-Fi 802.11b/g/n 2.4 GHz	OET Bulletin 65 Supplement C: (2001-01)	Ø
Specific Absorption Rate- Wi-Fi 802.11a /n 5.0 GHz	OET Bulletin 65 Supplement C: (2001-01)	Ø
Key to Results	= Complied = Did not comply	

2.1. Highest Reported SAR

Individual Transmitter Ev	aluation per Band:				
Exposure Configuration	Technology Band	Highest Reported 1g -SAR (W/kg)	Equipment Class	Max Rated Source base Avg Power + Max Tolerance [dBm]	Highest Reported 1g-SAR (W/kg)
	GSM850	0.920		24.0	
	PCS1900	0.388		21.5	
	UMTS FDD 2	0.518	PCE	23.0	0.944
HEAD	UMTS FDD 4	0.517		23.0	
(Separation Distance 0mm)	UMTS FDD 5	0.944		24.5	
	WLAN 2.4 GHz	0.469	DTS	15.0	0.469
	WLAN 5.8 GHz	0.149	סוט	10.7	
	WLAN 5.2/5.3/5.6 GHz	0.321	NII	10.7	0.321
	GSM850	1.250		24.5	
	PCS1900	1.123		21.5	
	UMTS FDD 2	1.009	PCE	20.5	1.250
HOTSPOT (Separation Distance 10mm)	UMTS FDD 4	1.212		22.0	0.124
	UMTS FDD 5	1.226		24.5	
	WLAN 2.4 GHz	0.124	DTS	15.0	
	WLAN 5.8 GHz	-	סוט	-	
	WLAN 5.2/5.3/5.6 GHz	-	NII	-	-

Page: 5 of 289 UL

Issue Date: 07 June 2013

Highest Reported SAR (Continued):

	GSM850	1.063		24.0	
	PCS1900	0.499		21.5	1.063
	UMTS FDD 2	0.735	PCE	23.0	
BODY-WORN	UMTS FDD 4	0.704		23.0	
(Separation Distance 15mm)	UMTS FDD 5	0.801		24.5	
	WLAN 2.4 GHz	0.050	DTS	15.0	
	WLAN 5.8 GHz	-	סוט	-	0.050
	WLAN 5.2/5.3/5.6 GHz	-	NII	-	-

2.2. Highest Reported SAR (Continued):

Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the <u>reported</u> standalone SAR of each applicable simultaneous transmitting antenna.

Simultaneous Transmitter Evaluation:									
Exposure Configuration	Technology Band	Highest Reported 1g SAR (W/kg)	Equipment Class	Max Rated Source base Avg Power + Max Tolerance [dBm]	Highest Reported Sum- SAR 1g-SAR (W/kg)	SPLSR Ratio			
HEAD	GSM850	0.920	PCE	24.0	1.389	N/A			
(Separation Distance 0mm)	WLAN 2.4 GHz	0.469	DTS	15.0	1.509	IN/A			
	GSM850	1.217	PCE	24.5	1.341	N/A			
HOTSPOT	WLAN 2.4 GHz	0.124	DTS	15.0	1.041	IN/A			
(Separation Distance 10mm)	GSM850	1.250	PCE	24.5	1.434	N/A			
	Bluetooth	0.184	DSS	9.5	1.454	IN/A			
	GSM850	1.063	PCE	24.0	1.113	N/A			
BODY-WORN (Separation Distance 15mm)	WLAN 2.4 GHz	0.050	DTS	15.0	1.113	IN/A			
	GSM850	1.063	PCE	24.0	1.186	N/A			
	Bluetooth	0.123	DSS	9.5	1.100	IN/A			
Note(s):									

- 1. As per FCC KDB 447498 D01, the individual test positions of each exposure conditions were considered separately for the sum of 1g reported SAR Simultaneous Transmission test exclusion.
- 2. As per FCC KDB publication 447498, for cases where sum of WWAN and WLAN (or WPAN) exceed 1.6W/kg, the SAR to peak location separation ratio distance is calculated as shown below
 - SAR peak location separation ratio (SPLSR) for each antenna pair in each simultaneous transmission configuration is given by $(SAR_1 + SAR_2)^{1.5} / R_1 \le 0.04$ for 1-g, where R_1 is the antenna separation distance in mm.

Page: 6 of 289 UL

Issue Date: 07 June 2013

2.3. SAR measurement variability and measurement uncertainty analysis:

Technology Band	Measured 1g -SAR (W/Kg)	Equipment Class	Max Meas. Source base Avg Power [dBm]	Ratio of Largest to Smallest SAR Measured
GSM850 (Original)	1.140		24.1	1.02
GSM850 (Repeated)	1.120		24.1	1.02
PCS1900 (Original)	0.934		20.7	1.00
PCS1900 (Repeated)	0.932		20.1	1.00
UMTS FDD 2 (Original)	0.986	DCE	20.4	1.01
UMTS FDD 2 (Repeated)	0.974	FCL	20.4	1.01
UMTS FDD 4 (Original)	1.080		21.5	1.01
UMTS FDD 4 (Repeated)	1.070		21.5	1.01
UMTS FDD 5 (Original) 1.0			22.7	1.05
UMTS FDD 5 (Repeated)	0.968		23.1	1.05
	GSM850 (Original) GSM850 (Repeated) PCS1900 (Original) PCS1900 (Repeated) UMTS FDD 2 (Original) UMTS FDD 2 (Repeated) UMTS FDD 4 (Original) UMTS FDD 4 (Original) UMTS FDD 5 (Original)	Technology Band 1g -SAR (W/Kg) GSM850 (Original) 1.140 GSM850 (Repeated) 1.120 PCS1900 (Original) 0.934 PCS1900 (Repeated) 0.932 UMTS FDD 2 (Original) 0.986 UMTS FDD 2 (Repeated) 0.974 UMTS FDD 4 (Original) 1.080 UMTS FDD 5 (Original) 1.020	Technology Band 1g -SAR (W/Kg) Equipment Class GSM850 (Original) 1.140 GSM850 (Repeated) 1.120 PCS1900 (Original) 0.934 PCS1900 (Repeated) 0.932 UMTS FDD 2 (Original) 0.986 UMTS FDD 2 (Repeated) 0.974 UMTS FDD 4 (Original) 1.080 UMTS FDD 5 (Original) 1.020	Technology Band Measured 1g -SAR (W/Kg) Equipment Class Source base Avg Power [dBm] GSM850 (Original) 1.140 24.1 GSM850 (Repeated) 1.120 PCS1900 (Original) 0.934 PCS1900 (Repeated) 0.932 UMTS FDD 2 (Original) 0.986 UMTS FDD 4 (Original) 1.080 UMTS FDD 4 (Repeated) 1.070 UMTS FDD 5 (Original) 1.020

Note(s):

- 1. The following step below were followed as per KDB publication 865664 D01:
- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
 - 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

2.4. Location of Tests

All the measurements described in this report were performed at the premises of UL, Pavilion A, Ashwood Park, Ashwood Way, Basingstoke, Hampshire, RG23 8BG United Kingdom

Page: 7 of 289 UL

Issue Date: 07 June 2013

2.5. Nominal and Maximum Output power:

Note: The following source based average rated powers for GSM/GPRS/EDGE are without consideration of uplink time slot.

Bands	Speech (Voice Mode) (Power Back-off Disabled)					
Dallus	Target (dBm)	Tolerance ± (dB)				
GSM850	32.5	-1.5 ~ +0.5				
PCS1900	30.0	-1.5 ~ +0.5				

	GPRS (Power Back-off Disabled)									
Bands	Tx Slot 1		Tx Slot 2		Tx Slot 3		Tx Slot 4			
	Target (dBm)	Tolerance ± (dB)	Target (dBm)	Tolerance ± (dB)	Target (dBm)	Tolerance ± (dB)	Target (dBm)	Tolerance ± (dB)		
GSM850	32.5	-1.5 ~ +0.5	30.0	-1.5 ~ +0.5	28.0	-1.5 ~ +0.5	27.0	-1.5 ~ +0.5		
PCS1900	30.0	-1.5 ~ +0.5	27.0	-1.5 ~ +0.5	25.2	-1.5 ~ +0.5	24.0	-1.5 ~ +0.5		

	EDGE GMSK (MCS1-4) (Power Back-off Disabled)									
Bands	Tx Slot 1		Tx Slot 2		Tx Slot 3		Tx Slot 4			
	Target (dBm)	Tolerance ± (dB)	Target (dBm)	Tolerance ± (dB)	Target (dBm)	Tolerance ± (dB)	Target (dBm)	Tolerance ± (dB)		
GSM850	32.5	-1.5 ~ +0.5	30.0	-1.5 ~ +0.5	28.0	-1.5 ~ +0.5	27.0	-1.5 ~ +0.5		
PCS1900	30.0	-1.5 ~ +0.5	27.0	-1.5 ~ +0.5	25.2	-1.5 ~ +0.5	24.0	-1.5 ~ +0.5		

	EDGE 8PSK (MCS5-9) (Power Back-off Disabled)									
Bands	Tx Slot 1		Tx Slot 2		Tx Slot 3		Tx Slot 4			
	Target (dBm)	Tolerance ± (dB)	Target (dBm)	Tolerance ± (dB)	Target (dBm)	Tolerance ± (dB)	Target (dBm)	Tolerance ± (dB)		
GSM850	27.0	-1.5 ~ +1.0	25.0	-1.5 ~ +1.0	24.0	-1.5 ~ +1.0	23.0	-1.5 ~ +1.0		
PCS1900	26.0	-1.5 ~ +1.0	24.5	-1.5 ~ +1.0	23.5	-1.5 ~ +1.0	22.5	-1.5 ~ +1.0		

		CS		HS				
Bands)	Target (dBm) (Power Back-off Disabled	Target (dBm) (Power Back-off Enabled	Tolerance ± (dB)	Target (dBm) (Power Back-off Disabled	Target (dBm) (Power Back-off Enabled	Tolerance ± (dB)		
UMTS FDD 2	22.5	20.0	-1.0 ~ +0.5	22.5	20.0	-1.0 ~ +0.5		
UMTS FDD 4	22.5	21.5	-1.0 ~ +0.5	22.5	21.5	-1.0 ~ +0.5		
UMTS FDD 5	24.0	N/A	-1.0 ~ +0.5	24.0	N/A	-1.0 ~ +0.5		

Page: 8 of 289 UL

Tolerance) (dBm)

Serial No: UL-SAR-RP91949JD02A V4.0

Issue Date: 07 June 2013

10.5

10.5

Nominal and Maximum Output power (Continued):

15.0

	WLAN Modes (Power Back-off Disabled)					
	2.4 GHz	802.11b	2.4 GHz 802.11g		2.4 GHz 802.11n	
	1 Mbps 11 Mbps		6 Mbps	54 Mbps	6.5 Mbps	65 Mbps
Max Power {Target + Upper	45.0	45.0	44.5	44.5	40.5	40.5

15.0

11.5

11.5

WLAN Modes (Power Back-off Disabled)								
5.0 GHz 802.11a								
	5.2 GHz	802.11a	5.3 GHz	802.11a	5.6 GHz 802.11a		5.8 GHz 802.11a	
	6 Mbps	54 Mbps	6 Mbps	54 Mbps	6 Mbps	54 Mbps	6 Mbps	54 Mbps
Max Power {Target + Upper Tolerance} (dBm)	10.7	10.7	10.7	10.7	10.7	10.7	10.7	10.7

WLAN Modes (Power Back-off Disabled) 5.0 GHz 802.11n HT20								
	5.2 GHz	5.2 GHz 802.11n 5.3 GHz 802.11n 5.6 GHz 802.11n 5.8 GHz 802.1				802.11n		
	6.5 Mbps	65 Mbps	6.5 Mbps	65 Mbps	6.5 Mbps	65 Mbps	6.5 Mbps	65 Mbps
Max Power {Target + Upper Tolerance} (dBm)	9.7	9.7	9.7	9.7	9.7	9.7	9.7	9.7

WLAN Modes (Power Back-off Disabled)								
	5.0 GHz 802.11n HT40							
	5.2 GHz	802.11n	5.3 GHz	802.11n	5.6 GHz 802.11n		5.8 GHz 802.11n	
	13.5 Mbps	135 Mbps	13.5 Mbps	135 Mbps	13.5 Mbps	135 Mbps	13.5 Mbps	135 Mbps
Max Power {Target + Upper Tolerance} (dBm)	9.7	9.7	9.7	9.7	9.7	9.7	9.7	9.7

Band	Max Power {Target (dBm) + Upper Tolerance (dB)}
Bluetooth	9.5
Note:	

- 1. As per KDB865664 D02 SAR Reporting v01, 2.1.4(a), the nominal and maximum average source based rated power, declared by manufacturer are shown in the above tables.
- 2. These are specified maximum allowed average power for all the wireless modes and frequency bands supported.

Page: 9 of 289

3. Test Specification, Methods and Procedures				
3.1. Test Specification				
Reference:	OET Bulletin 65 Supplement C: (2001-01)			
Title:	Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields.			
Purpose of Test:	To determine whether the equipment met the basic restrictions as defined in OET Bulletin 65 Supplement C: (2001-01) using the SAR averaging method as described in the test specification above.			

The Equipment Under Test complied with the Specific Absorption Rate for general population/uncontrolled exposure limit of 1.6 W/kg as specified in FCC 47 CFR part 2 (2.1093) and ANSI C95.1-1992 and has been tested in accordance with the reference documents in section 3.2 of this report.

3.2. Methods and Procedures Reference Documentation

The methods and procedures used were as detailed in:

Federal Communications Commission, "Evaluating compliance with FCC Guidelines for human exposure to radio frequency electromagnetic fields", OET Bulletin 65 Supplement C, FCC, Washington, D.C, 20554, 2001.

Thomas Schmid, Oliver Egger and Neils Kuster, "Automated E-field scanning system for dosimetric assessments", IEEE Transaction on microwave theory and techniques, Vol. 44, pp. 105-113, January 1996.

Neils Kuster, Ralph Kastle and Thomas Schmid, "Dosimetric evaluation of mobile communications equipment with known precision", IEICE Transactions of communications, Vol. E80-B, No.5, pp. 645-652, May 1997.

IEEE 1528: 2003

IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques

FCC KDB Publication:

KDB 248227 D01 "SAR measurements for 802.11a/b/g v01r02"

KDB 447498 D01 General RF Exposure Guidance v05

KDB 648474 D04 SAR Handsets Multi Xmiter and Ant v01

KDB 941225 D01 SAR test for 3G devices v02

KDB 941225 D03 "SAR Test Reduction GSM/GPRS/EDGE v01"

KDB 941225 D06 "Hot Spot SAR v01"

KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01

KDB 865664 D02 SAR Reporting v01

3.3. Definition of Measurement Equipment

The measurement equipment used complied with the requirements of the standards referenced in the methods & procedures section above. Appendix 1 contains a list of the test equipment used.

Page: 10 of 289 UL

Serial No: UL-SAR-RP91949JD02A V4.0
Issue Date: 07 June 2013

4. Equipment Under Test (EUT)				
4.1. Identification of Equipment Under Test (EUT)				
Description:	Mobile Handset			
Brand Name:	Sony			
Model Name or Number:	C5502			
Type Number:	PM-0310-BV			
Serial Number:	CB5A1NVE4C			
IMEI Number:	00440214-657577-8			
Hardware Version Number:	AP1			
Software Version Number:	10.2.A.1.51			
Hardware Revision of GSM Module:	None Stated			
Software Revision of GSM Module:	None Stated			
FCC ID Number:	PY7PM-0310			
Country of Manufacture:	China			
Date of Receipt:	25 February 2013			
Note/e\.				

Note(s):

This sample was used to perform WWAN SAR evaluation measurements on bands PCS1900 Body and UMTS FDD 4 only. The sample supports simultaneous transmission with the WWAN and WLAN. Wireless Personal Hotspot is also supported and was evaluated as per KDB 941225 D06 "Hot Spot SAR v01"

Description:	Mobile Handset
Brand Name:	Sony
Model Name or Number:	C5502
Type Number:	PM-0310-BV
Serial Number:	CB5A1NVE6H
IMEI Number:	00440214-657568-7
Hardware Version Number:	AP1
Software Version Number:	10.2.A.1.51
Hardware Revision of GSM Module:	None Stated
Software Revision of GSM Module:	None Stated
FCC ID Number:	PY7PM-0310
Country of Manufacture:	China
Date of Receipt:	25 February 2013
N1 (/)	

Note(s):

This sample was used to perform WWAN SAR evaluation measurements on bands GSM850, PCS1900 Head, UMTS FDD 2 and UMTS FDD 5 Head only. The sample supports simultaneous transmission with the WWAN and WLAN. Wireless Personal Hotspot is also supported and was evaluated as per KDB 941225 D06 "Hot Spot SAR v01"

Page: 11 of 289 UL

Serial No: UL-SAR-RP91949JD02A V4.0
Issue Date: 07 June 2013

Identification of Equipment Under Test	(EUT) (Continued):
Description:	Mobile Handset
Brand Name:	Sony
Model Name or Number:	C5502
Type Number:	PM-0310-BV
Serial Number:	CB5A1NUVX9
IMEI Number:	00440214-657575-2
Hardware Version Number:	AP1
Software Version Number:	10.2.A.1.51
Hardware Revision of GSM Module:	None Stated
Software Revision of GSM Module:	None Stated
FCC ID Number:	PY7PM-0310
Country of Manufacture:	China
Date of Receipt:	25 February 2013
N	

Note(s):

This sample was used to perform WLAN SAR evaluation measurements on bands UMTS FDD 5 Body only. The sample supports simultaneous transmission with the WWAN and WLAN. Wireless Personal Hotspot is also supported and was evaluated as per KDB 941225 D06 "Hot Spot SAR v01"

Description:	Mobile Handset
Brand Name:	Sony
Model Name or Number:	C5502
Type Number:	PM-0310-BV
Serial Number:	CB5A1NVDME
IMEI Number:	00440214-657558-8
Hardware Version Number:	AP1
Software Version Number:	s_atp_dogo_0_0_36_0_e
Hardware Revision of GSM Module:	None Stated
Software Revision of GSM Module:	None Stated
FCC ID Number:	PY7PM-0310
Country of Manufacture:	China
Date of Receipt:	25 February 2013

Note(s):

This sample was used to perform WLAN SAR evaluation measurements on bands WLAN 2.4GHz and WLAN 5GHz only. The sample supports simultaneous transmission with the WWAN and WLAN. Wireless Personal Hotspot is also supported and was evaluated as per KDB 941225 D06 "Hot Spot SAR v01"

Page: 12 of 289 UL

Issue Date: 07 June 2013

Identification of Equipment Under Test (EUT) (Continued):			
Description:	Mobile Handset		
Brand Name:	Sony		
Model Name or Number:	C5502		
Type Number:	PM-0310-BV		
Serial Number:	CB5A1NUW3J		
IMEI Number:	00440214-657530-7		
Hardware Version Number:	AP1		
Software Version Number:	10.2.A.1.51		
Hardware Revision of GSM Module:	None Stated		
Software Revision of GSM Module:	None Stated		
FCC ID Number:	PY7PM-0310		
Country of Manufacture:	China		
Date of Receipt:	25 February 2013		

Note(s):

This sample was used to perform WWAN 2G conducted power measurements only. The sample supports simultaneous transmission with the WWAN and WLAN. Wireless Personal Hotspot is also supported and was evaluated as per KDB 941225 D06 "Hot Spot SAR v01"

Description:	Mobile Handset
Brand Name:	Sony
Model Name or Number:	C5502
Type Number:	PM-0310-BV
Serial Number:	CB5A1NUW1H
IMEI Number:	00440214-657542-2
Hardware Version Number:	AP1
Software Version Number:	10.2.A.1.51
Hardware Revision of GSM Module:	None Stated
Software Revision of GSM Module:	None Stated
FCC ID Number:	PY7PM-0310
Country of Manufacture:	China
Date of Receipt:	25 February 2013
Noto/o\.	

Note(s):

This sample was used to perform WWAN 3G conducted power measurements only. The sample supports simultaneous transmission with the WWAN and WLAN. Wireless Personal Hotspot is also supported and was evaluated as per KDB 941225 D06 "Hot Spot SAR v01"

Page: 13 of 289 UL

Serial No: UL-SAR-RP91949JD02A V4.0 Version 4.0 Issue Date: 07 June 2013

Identification of Equipment Under Test (EUT) (Continued):	
Description:	Mobile Handset
Brand Name:	Sony
Model Name or Number:	C5502
Type Number:	PM-0310-BV
Serial Number:	CB5A1NUW0G
IMEI Number:	00440214-657522-4
Hardware Version Number:	AP1
Software Version Number:	s_atp_dogo_0_0_36_0_e
Hardware Revision of GSM Module:	None Stated
Software Revision of GSM Module:	None Stated
FCC ID Number:	PY7PM-0310
Country of Manufacture:	China
Date of Receipt:	25 February 2013

Note(s):

This sample was used to perform WLAN conducted power measurements only. The sample supports simultaneous transmission with the WWAN and WLAN. Wireless Personal Hotspot is also supported and was evaluated as per KDB 941225 D06 "Hot Spot SAR v01"

'Auto RF Power Back-off' mode facility is available on 'Hotspot Mode Configuration of UMTS FDD 2 and UMTS FDD 4 bands only. Power Back off function is implemented to reduce the maximum output power to keep the value with in safe SAR limit. When Hotspot mode is activated, in all operating modes, the maximum output power level in UMTS Band 2 will not exceed 20.5 dBm. and UMTS Band 4 will not exceed 22.0 dBm."

4.2. Description of EUT

The Equipment Under Test is a Smart Phone with GSM 2G Quad Band, 3G Penta band and Wi-Fi bands. The EUT has GPRS Class 33 / EDGE Class 33, UMTS FDD 1, 2, 4, 5, 8 With HSPA (with HSDPA Category 24 and HSUPA Category 6) WLAN 802.11 a/b/g/n, Bluetooth Class 1, Personal hotspot mode with 'Auto RF Power Back-Off' and RFID mode capabilities.

4.3. Modifications Incorporated in the EUT

EUT (IMEI: 00440214-657577-8) is used to perform PCS1900 Body and UMTS FDD 4 SAR measurements only.

EUT (IMEI: 00440214-657568-7) is used to perform GSM850, PCS1900 Head, UMTS FDD 2 and UMTS FDD 5 Head SAR measurements only.

EUT (IMEI: 00440214-657575-2) is used to perform UMTS FDD 5 Body SAR measurements only.

EUT (IMEI: 00440214-657558-8) is used to perform WLAN 2.4GHz and WLAN 5GHz SAR measurements only.

EUT (IMEI: 00440214-657530-7) is used to perform WWAN 2G conducted power measurements only.

EUT (IMEI: 00440214-657542-2) is used to perform WWAN 3G conducted power measurements only.

EUT (IMEI: 00440214-657522-4) is used to perform WLAN conducted power measurements only.

UL Page: 14 of 289

Issue Date: 07 June 2013

4.4. Accessories

The following accessories were supplied with the EUT during testing:

Description:	Battery
Brand Name:	Sony
Model Name or Number:	BA950
Serial Number:	001789
Cable Length and Type:	Not Applicable
Country of Manufacture:	China
Connected to Port	5 pin contact

Description:	Battery
Brand Name:	Sony
Model Name or Number:	BA950
Serial Number:	001418
Cable Length and Type:	Not Applicable
Country of Manufacture:	China
Connected to Port	5 pin contact

Description:	Personal Hands-Free Kit (PHF)	
Brand Name:	Sony	
Model Name or Number:	MH750	
Serial Number:	12060C160061850	
Cable Length and Type:	~1.2 m	
Country of Manufacture:	None Stated	
Connected to Port	3.5mm Audio jack and custom type	

Page: 15 of 289 UL

Version 4.0 Issue Date: 07 June 2013

Accessories (Continued)		
Description:	Memory Card	
Brand Name:	None Stated (Generic)	
Model Name or Number:	None Stated	
Serial Number:	None Stated	
Cable Length and Type:	Not Applicable	
Country of Manufacture:	China	
Connected to Port	Dedicated Micro SD Slot	

Description:	Dummy Battery
Brand Name:	None Stated
Model Name or Number:	None Stated
Serial Number:	None Stated
Cable Length and Type:	~0.5m
Country of Manufacture:	None Stated
Connected to Port	5 pin contact
Note(s):	

This Dummy Battery was only used to perform conducted power measurements.

Page: 16 of 289 UL

Issue Date: 07 June 2013

4.5. Support Equipment

The following support equipment was used to exercise the EUT during testing:

Description:	Wireless Communication Test Set	
Brand Name:	Agilent	
Model Name or Number:	8960 Series 10 (E5515C)	
Serial Number:	GB46311280	
Cable Length and Type:	~4.0m Utiflex Cable	
Connected to Port:	RF (Input / Output) Air Link	

Description:	Wireless Communication Test Set	
Brand Name:	Agilent	
Model Name or Number:	8960 Series 10 (E5515E)	
Serial Number:	GB46200666	
Cable Length and Type:	~4.0m Utiflex Cable	
Connected to Port:	RF (Input / Output) Air Link	

Description:	Wireless Communication Test Set	
Brand Name:	Agilent	
Model Name or Number:	8960 Series 10 (E5515E)	
Serial Number:	MY52112050	
Cable Length and Type:	~4.0m Utiflex Cable	
Connected to Port:	RF (Input / Output) Air Link	

Description:	Radio Communication Analyzer	
Brand Name:	Anritsu	
Model Name or Number:	MT8820C	
Serial Number:	6200938937	
Cable Length and Type:	~4.0m Utiflex Cable	
Connected to Port:	RF (Input / Output) Air Link	

Page: 17 of 289 UL

sion 4.0 Issue Date: 07 June 2013

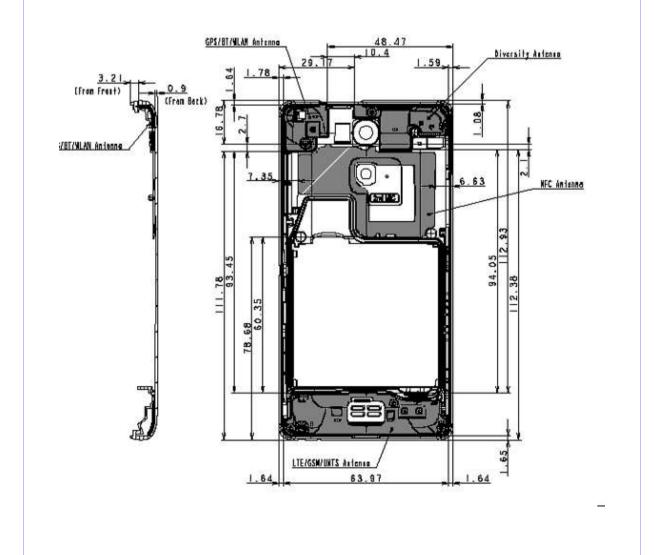
4.6. Additional Information Related to Testing		
Equipment Category	GSM/GPRS850 PCS/GPRS1900 UMTS FDD 2 UMTS FDD 4 UMTS FDD 5 WiFi802.11 a/b/g/n	
Type of Unit	Portable Transcei	ver
Intended Operating Environment:	Within GSM, UMT	S, WiFi and <i>Bluetooth</i> Coverage
Transmitter Maximum Output Power Characteristics:	GSM850	Communication Test Set was configured to allow the EUT to transmit at a maximum power using Power Control Level (PCL) setting of 5.
	PCS1900	Communication Test Set was configured to allow the EUT to transmit at a maximum power using Power Control Level (PCL) setting of 0.
	UMTS FDD 2	Communication Test Set configured to allow to EUT to transmit at a maximum power as per KDB 941225 D01.
	UMTS FDD 2	Communication Test Set configured to allow to EUT to transmit at a maximum power as per KDB 941225 D01.
	UMTS FDD 5	Communication Test Set configured to allow to EUT to transmit at a maximum power as per KDB 941225 D01.
	2.4 GHz Wi-Fi 802.11b/g/n	Test Software was used to configure the EUT to transmit at a maximum power of up to 14.5dBm.
	5.0 GHz Wi-Fi 802.11a/n (HT20 / HT40)	Test Software was used to configure the EUT to transmit at a maximum power of up to 9.9dBm.
	Bluetooth	:= 8.91 mW or ~9.50 dBm
Transmitter Frequency	GSM850	824 to 849 MHz
Range:	PCS1900	1850 to 1910 MHz
	UMTS FDD 2	1852 to 1908 MHz
	UMTS FDD 4	1712 to 1753 MHz
	UMTS FDD 5	826 to 847 MHz
	2.4 GHz Wi-Fi 802.11b/g/n	2412 to 2462 MHz
	5.0 GHz Wi-Fi 802.11a/n (HT20 / HT40)	5180 to 5825 MHz

Page: 18 of 289 UL

Additional Information Related to Testing (Continued)							
Transmitter Frequency Allocation of EUT When Under Test:	Bands	Channel Number	Channel Description	Frequency (MHz)			
		128	Low	824.2			
	GSM850	190	Middle	836.6			
		251	High	848.8			
		512	Low	1850.2			
	PCS1900	661	Middle	1880.0			
		810	High	1909.8			
	UMTS FDD 2	9262	Low	1852.4			
		9400	Middle	1880.0			
		9538	High	1907.6			
		1312	Low	1712.4			
	UMTS FDD 4	1412	Middle	1732.4			
		1513	High	1752.6			
		4132	Low	826.4			
	UMTS FDD 5	4183	Middle	836.6			
		4233	High	846.6			
		1	Low	2412.0			
	2.4 GHz Wi-Fi 802.11b/g/n	6	Middle	2437.0			
	20=:::0, 9,11	11	High	2462.0			

Page: 19 of 289 UL

Additional Information Related to Testing (Continued)


Transmitter Frequency Allocation of EUT When Under Test:

Band: 5.0 GHz Wi-Fi 802.11a/n (HT20 / HT40)

Band: 5.0 GHz WI-FI 802.11a/N (H120 / H140)					
Channel Number	Frequency (MHz)				
36	5180.0				
38	5190.0				
40	5200.0				
44	5220.0				
46	5230.0				
48	5240.0				
52	5260.0				
54	5270.0				
56	5280.0				
60	5300.0				
62	5310.0				
64	5320.0				
100	5500.0				
102	5510.0				
104	5520.0				
108	5540.0				
110	5550.0				
112	5560.0				
116	5580.0				
118	5590.0				
120	5600.0				
124	5620.0				
126	5630.0				
128	5640.0				
132	5660.0				
134	5670.0				
136	5680.0				
140	5700.0				
149	5745.0				
151	5755.0				
153	5765.0				
157	5785.0				
159	5795.0				
161	5805.0				
165	5825.0				

Page: 20 of 289 UL

Additional Information Related to To	Additional Information Related to Testing (Continued):				
Modulation(s):	GMSK (GSM/ GPRS): 217 Hz QPSK(UMTS / HSDPA / HSUPA):0Hz DBPSK, BPSK, CCK (Wi-Fi): 0 Hz				
Modulation Scheme (Crest Factor):	GSMK (GSM): 8.3 GMSK (GPRS850): 2 GMSK (GPRS1900): 2 QPSK(UMTS FDD / HSDPA / HSUPA): 1 DBPSK, BPSK, CCK (Wi-Fi): 1				
Antenna Type:	Internal integral				
Antenna Length:	Unknown				
Number of Antenna Positions:	1 fixed (WWAN) 1 fixed (WLAN/ <i>Bluetooth</i> /GPS) 1 fixed (Diversity) 1 fixed (NFC)				
Power Supply Requirement:	3.7V				
Battery Type(s):	Li-ion				

Page: 21 of 289 UL

Issue Date: 07 June 2013

5. Deviations from the Test Specification

Test was performed as per KDB 248227 D01 "SAR measurements for 802.11a/b/g v01r02", KDB 447498 D01 General RF Exposure Guidance v05, KDB 648474 D04 SAR Handsets Multi Xmiter and Ant v01, KDB 941225 D01 SAR test for 3G devices v02, KDB 941225 D03 "SAR Test Reduction GSM/GPRS/EDGE v01", KDB 941225 D06 "Hot Spot SAR v01", KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01, KDB 865664 D02 SAR Reporting v01, according to the handset procedures in IEEE Std 1528-2003 and OET Bulletin 65 Supplement C 01-01. The assessment for Personal Wireless Hotspot was also evaluated as per the FCC KDB 941225 D06 "Hot Spot SAR v01".

For technologies bands supporting personal hotspot mode, SAR was evaluated on all the sides and surfaces within 25mm of the transmitting antenna (WWAN or WLAN) as per FCC KDB 941225 D06 "Hot Spot SAR v01".

GPRS Class 33 / uplink setup of 1-uplink, 2-uplink, 3-uplink and 4-uplink were all evaluated to find the setting with the highest power reference point (unit v/m) as per the DASY4 system. 4-uplink was found to give the highest power reference point measurement on the DASY4 system (unit v/m) for GPRS850 and GPRS1900. All settings were performed with the device in a fixed position Front facing phantom at 0mm separation to ensure there were no positioning errors. The following values were measured relative to the uplink settings:

GPRS Mode	GPRS850 Power reference (v/m)	GPRS1900 Power reference (v/m)
1 uplink	18.28	10.52
2 uplink	20.59	10.60
3 uplink	22.99	10.50
4 uplink	23.43	10.65

Note: Power reference point measurements are from the DASY4 system and used to check the device power drift although the units are v/m. For informational purpose to ensure the worst case uplink time slot is also verified by the DASY4 SAR system, this was use as per above comment at a fixed point.

As per 648474 D04 SAR Handsets Multi Xmiter and Ant v01, "When the <u>reported</u> SAR for a bodyworn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest <u>reported</u> SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset". Hence, Body worn configurations were not evaluated with PHF attached.

Page: 22 of 289 UL

Issue Date: 07 June 2013

6. Operation and Configuration of the EUT during Testing

6.1. Operating Modes

The EUT was tested in the following operating mode(s) unless otherwise stated:

- GSM850 Voice allocated mode with Communication Test Set configured to allow the EUT to transmit at a maximum power using Power Control Level (PCL) setting of 5.
- GPRS850 Data allocated mode with Communication Test Set configured to allow the EUT to transmit at a maximum power using Power Control Level (PCL) setting of 5. Tested using 4 Uplink time slots with CS1 for GPRS.
- PCS1900 Voice allocated mode with Communication Test Set configured to allow the EUT to transmit at a maximum power using Power Control Level (PCL) setting of 0.
- GPRS1900 Data allocated mode with Communication Test Set configured to allow the EUT to transmit at a maximum power using Power Control Level (PCL) setting of 0. Tested using 4 Uplink time slots with CS1 for GPRS.

GSM850: Power Table Settings used for Test Set						
Power Control Level PCL	Nominal Power (dBm)					
0 2	39					
3	37					
4	35					
5	33					
6	31					
7	29					
8	27					
9	25					
10	23					
11	21					
12	19					
13	17					
14	15					
15	13					
16	11					
17	9					
18	7					
19 31	5					

PCS1900: Power Table Settings used for Test Set						
Power Control Level PCL						
22 29	Reserved					
30	33					
31	32					
0	30					
1	28					
2	26					
3	24					
4	22					
5	20					
6	18					
7	16					
8	14					
9	12					
10	10					
11	8					
12	6					
13	4					
14	2					
15	0					
16 21	Reserved					

- UMTS FDD 2, 4, 5 Call allocated mode with Communication Test Set configured to allow the EUT to transmit at a maximum as per KDB 941225 D01.
- UMTS FDD 2, 4, 5 RMC 12.2kbps + HSUPA with Test loop mode 1 and TPC bits configured to all "1's", Sub-test 5, AG Index set to 21 and E-TFCI set to 81 with Communication Test Set configured to allow to EUT to transmit at a maximum power as per KDB 941225 D01.
- UMTS FDD 2, 4, 5 RMC 12.2kbps + HSDPA with Test loop mode 1 and TPC bits configured to all "1's", Sub-test 1 with Communication Test Set configured to allow to EUT to transmit at a maximum power as per KDB 941225 D01.
- UMTS FDD 2, 4, 5 DC HSDPA (Cat 24) With Test loop mode 1 and TPC bits configured to all "1's", Sub-test 1 with Communication Test Set configured to allow to EUT to transmit at a maximum power as per KDB 941225 D01. (See Appendix 9 for detailed description)

Page: 23 of 289 UL

Version 4.0 Issue Date: 07 June 2013

Operating Modes (Continued)

• 2.4 GHz WiFi802.11b/g/n Data allocated mode using 'HyperTerminal' software to excise mode 'b', 'g' and 'n', with maximum power of up to 13.8 dBm for 'b' mode and 10.6 dBm for 'g' and 9.5 dBm for 'n' modes.

- 5.0 GHz WiFi802.11a/n Data allocated mode using 'HyperTerminal' software to excise mode 'a' and 'n', with maximum power of up to 9.9 dBm for 'a' mode and 8.8 dBm for 'n' modes.
- Activating the 'Portable Wi-Fi hotspot' mode

Go to the home screen of the EUT:

- 1. Press the 'Applications' icon on the screen of the device and then tap "Settings".
- 2. On the Settings screen, tap the "Wireless & networks" option, followed by "Portable Wi-Fi hotspot".
- 3. Click the check mark beside it to turn on the hotspot and the EUT starts acting like a wireless access point. (It should also see a message in the notification bar when it's activated.).
- 4. Once 'Portable Wi-Fi Hotspot' mode is activated, it is active until it is deactivated by the user.

'Auto RF Power Back-off' mode facility is available on 'Hotspot Mode Configuration of UMTS FDD 2 and UMTS FDD 4 bands only. **Power Back-Off** function is implemented to reduce the maximum output power to keep the value with in safe SAR limit.

When Hotspot mode is activated, in all operating modes, the maximum output power level in UMTS Band 2 will not exceed 20.5 dBm, and UMTS Band 4 will not exceed 22.0 dBm."

Once the 'Portable Wi-Fi hotspot' mode is activated, the 'Auto RF Power Reduction' mode is active. This enables 'Power Back-Off' and the RF power gets reduced on the specific band on which it is supported. This option is available in the device to 'Reduce the RF Power' and to comply with the *Standard* for the measured SAR and conducted power level. Once 'Auto RF Power Back-off' mode is activated, power reduction applies until 'Portable Wi-Fi hotspot' is deactivated by the user.

Page: 24 of 289 UL

Issue Date: 07 June 2013

6.1. Configuration and Peripherals

The EUT was tested in the following configuration(s) unless otherwise stated:

- Standalone fully charged battery powered.
- Head, Hotspot Mode and Body-worn configurations were evaluated.
- GPRS Class 33: setup for 1-uplink, 2-uplink, 3-uplink and 4-uplink were evaluated to find the
 setting with the highest power reference measurements. 4-uplink was found to give the
 highest power reference point measurement on the DASY4 system (unit v/m) for GPRS850
 and GPRS1900. All settings were performed with the device in a fixed position 'Back facing
 phantom' at 0mm separation to ensure there were no positioning errors.
- GSM, GPRS and EDGE power measurement were all measured as per FCC pubs. 941225
 D03. Although power reduction was allowed SAR test was performed on GPRS using GMSK.
 Test reduction was applied to EDGE using GMSK and 8PSK modulation scheme.

Head Configuration

- a) The EUT was placed in a normal operating position with the centre of the ear-piece aligned with the ear canal on the phantom.
- b) With the ear-piece touching the phantom the centre line of the EUT was aligned with an imaginary plane (X and Y axis) consisting of three lines connecting both ears and the mouth.
- c) For the cheek position the EUT was gradually moved towards the cheek until any point of the mouth-piece or keypad touched the cheek.
- d) For the tilted position the EUT was positioned as for the cheek position, and then the horizontal angle was increased by fifteen degrees (the phone keypad was moved away from the cheek by fifteen degrees).
- e) SAR measurements were evaluated at maximum power and the unit was operated for an appropriate period prior to the evaluation in order to minimise the drift.
- f) The device was keyed to operate continuously in the transmit mode for the duration of the test.
- g) The location of the maximum spatial SAR distribution (hot spot) was determined relative to the EUT and its antenna.
- h) The EUT was transmitting at full power throughout the duration of the test powered by a fully charged battery.

Body Configuration

- a) The EUT was placed in a normal operating position where the centre of EUT was aligned with the centre reference point on the flat section of the 'SAM' phantom.
- b) With the EUT touching the phantom at an imaginary centre line. The EUT was aligned with a marked plane (X and Y axis) consisting of two lines.
- c) For the touch-safe position the EUT was gradually moved towards the flat section of the 'SAM' phantom until any point of the EUT touched the phantom.
- d) For position(s) greater then 0mm separation the EUT was positioned as per the touch-safe position, and then the vertical height was decreased/adjusted as required.
- e) SAR measurements were evaluated at maximum power and the unit was operated for an appropriate period prior to the evaluation in order to minimise the drift.
- f) The device was keyed to operate continuously in the transmit mode for the duration of the test.
- g) The location of the maximum spatial SAR distribution (hot spot) was determined relative to the EUT and its antenna.
- h) The EUT was transmitting at full power throughout the duration of the test powered by a fully charged battery.

Page: 25 of 289 UL

Issue Date: 07 June 2013

6.2. Configuration Consideration						
Technology Antenna	Configuration	Antenna-to- User Separation	Position	Antenna-to- Edge Separation	Evaluation Considered	
			Touch Left	<25mm	Yes	
	Head	0mm	Tilt Left	<25mm	Yes	
	ricad	Omm	Touch Right	<25mm	Yes	
			Tilt Right	<25mm	Yes	
			Front	<25mm	Yes	
WWAN			Back	<25mm	Yes	
VVVAIN	Hotopot	10mm	Top Edge	>25mm	No	
	Hotspot	romm	Bottom Edge	<25mm	Yes	
			Right Edge	<25mm	Yes	
			Left Edge	<25mm	Yes	
	Body	15mm	Front	<25mm	Yes	
			Back	<25mm	Yes	
		0mm	Touch Left	<25mm	Yes	
	Head		Tilt Left	<25mm	Yes	
	Heau		Touch Right	<25mm	Yes	
			Tilt Right	<25mm	Yes	
			Front	<25mm	Yes	
WLAN			Back	<25mm	Yes	
WLAIN	Hotopot	10mm	Top Edge	<25mm	Yes	
	Hotspot	10111111	Bottom Edge	>25mm	No	
			Right Edge	<25mm	Yes	
			Left Edge	>25mm	No	
	Body	15mm	Front	<25mm	Yes	
	Бойу	13111111	Back	<25mm	Yes	

Note(s):

- 1. Test distances are as per FCC KDB publication 447498 D01v05 for mobile handsets.
- 2. Bluetooth standalone SAR is excluded as the output power meets the exclusion threshold:

1) The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f_{(GHz)}}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, ¹⁶ where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation¹⁷
- The result is rounded to one decimal place for comparison

" Taken from FCC KDB publication 447498 D01v05

Page: 26 of 289 UL

6.3. SAR Test Exclusion Consideration

Eroguanov Band	Configuration(s)				
Frequency Band	Head	Hotspot Mode	Body-worn		
GSM850	No	No	No		
PCS1900	No	No	No		
UMTS FDD 2	No	No	No		
UMTS FDD 5	No	No	No		
WLAN 2.4 GHz	No	No	No		
WLAN 5.0 GHz	No	Yes	Yes		
Bluetooth	N/A	Yes	Yes		

Note:

Version 4.0

1. As per KDB 447498 D01 General RF Exposure Guidance v05, The Frequency Bands with Rated Power including Upper tolerance, which qualify for **Standalone SAR Test Exclusion**, are as per the above table.

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] * $[\sqrt{f_{(GHz)}}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

- f_(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Applying the above formula for WLAN 5.0GHz Hotspot Mode we get:

- For 5200MHz, $[(11.7)/10]*[\sqrt{5.2}] = 2.7 \le 3.0$
- For 5500MHz, $[(11.7)/10]*[\sqrt{5.5}] = 2.7 \le 3.0$
- For 5800MHz, $[(11.7)/10]*[\sqrt{5.8}] = 2.8 \le 3.0$

Applying the above formula for WLAN 5.0GHz Body-worn we get:

- For 5200MHz, $[(11.7)/15]*[\sqrt{5.2}] = 1.8 \le 3.0$
- For 5500MHz, $[(11.7)/15]*[\sqrt{5.5}] = 1.8 \le 3.0$
- For 5800MHz, $[(11.7)/15]*[\sqrt{5.8}] = 1.9 \le 3.0$

Hence, testing is not required on WLAN 5.0GHz Hotspot Mode and Body-worn configurations.

Bluetooth Head configuration is not applicable and NOT most conservative, hence it is NOT Applicable for SAR Test Evaluation, whereas, Hotspot and Body-worn is. The SAR exclusion consideration is explained below.

Applying the above formula for Bluetooth Hotspot Mode we get:

For 2450MHz, $[(8.91)/10]*[\sqrt{2.45}] = 1.4 \le 3.0$

Applying the above formula for Bluetooth Body-worn we get:

For 2450MHz, $[(8.91)/15]*[\sqrt{2.45}] = 0.9 \le 3.0$

Hence, testing is not required on *Bluetooth* Hotspot Mode and Body-worn configurations.

2. The details for the *Maximum Rated Power* and tolerance(s) can be found in section 2.5.

Page: 27 of 289 UL

ersion 4.0 Issue Date: 07 June 2013

7. Measurements, Examinations and Derived Results

7.1. General Comments

This section contains test results only.

Measurement uncertainties are evaluated in accordance with current best practice. Our reported expanded uncertainties are based on standard uncertainties, which are multiplied by an appropriate coverage factor to provide a statistical confidence level of approximately 95%. Please refer to section 8 for details of measurement uncertainties.

Page: 28 of 289 UL

Issue Date: 07 June 2013

7.2. Conducted Power Measurements

7.2.1.Conducted Average Power Measurement 2G: GSM850 Power Back-off Disabled

Channel Number	Frequency (MHZ)	Power (dBm)	Avg. Burst Power with consideration for uplink time slot (dBm)	Note
128	824.2	32.3	23.3	Conducted, GMSK
190	836.6	32.2	23.2	Conducted, GMSK
251	848.8	32.1	23.1	Conducted, GMSK

GPRS850 - Measured Average Power without consideration for Uplink time slots:

Channel Number	Frequency (MHZ)	Power (dBm) 1Uplink	Power (dBm) 2Uplink	Power (dBm) 3Uplink	Power (dBm) 4Uplink	Note
128	824.2	32.3	30.1	28.0	27.0	Conducted, GMSK
190	836.6	32.2	30.1	28.1	27.1	Conducted, GMSK
251	848.8	32.1	30.0	28.1	26.9	Conducted, GMSK

GPRS850 - Calculated Value with consideration for Uplink time slots:

Channel Number	Frequency (MHZ)	Power (dBm) 1Uplink	Power (dBm) 2Uplink	Power (dBm) 3Uplink	Power (dBm) 4Uplink	Note
128	824.2	23.3	24.1	23.7	24.0	Conducted, GMSK
190	836.6	23.2	24.1	23.8	24.1	Conducted, GMSK
251	848.8	23.1	24.0	23.8	24.0	Conducted, GMSK

EDGE850 - Measured Average Power without consideration for Uplink time slots:

Channel Number	Frequency (MHZ)	Power (dBm) 1Uplink	Power (dBm) 2Uplink	Power (dBm) 3Uplink	Power (dBm) 4Uplink	Note
128	824.2	32.3	30.1	28.0	27.0	Conducted, GMSK
190	836.6	32.2	30.1	28.1	27.1	Conducted, GMSK
251	848.8	32.1	30.0	28.1	26.9	Conducted, GMSK

EDGE850 - Calculated Value with consideration for Uplink time slots:

Channel Number	Frequency (MHZ)	Power (dBm) 1Uplink	Power (dBm) 2Uplink	Power (dBm) 3Uplink	Power (dBm) 4Uplink	Note
128	824.2	23.3	24.1	23.7	24.0	Conducted, GMSK
190	836.6	23.2	24.1	23.8	24.1	Conducted, GMSK
251	848.8	23.1	24.0	23.8	24.0	Conducted, GMSK

Note:

Scale factor for uplink time slot:

- 1. 1 Uplink: time slot ratio = $8:1 \Rightarrow 10*\log(8/1) = 9.03 \text{ dB}$
- 2. 2 Uplink: time slot ratio = $8:2 \Rightarrow 10*\log(8/2) = 6.02 dB$
- 3. 3 Uplink: time slot ratio = $8:3 \Rightarrow 10*\log(8/3) = 4.26 \text{ dB}$
- 4. 4 Uplink: time slot ratio = $8:4 \Rightarrow 10 \log(8/4) = 3.01 \text{ dB}$

Page: 29 of 289 UL

Issue Date: 07 June 2013

EDGE (MCS9 ~ 8PSK) EDGE850 - Measured Average Power without consideration for Uplink time slots: Power Back-off Disabled

Channel Number	Frequency (MHZ)	Power (dBm) 1Uplink	Power (dBm) 2Uplink	Power (dBm) 3Uplink	Power (dBm) 4Uplink	Note
128	824.2	27.2	25.2	24.2	23.2	Conducted, 8PSK
190	836.6	27.1	25.1	24.0	23.0	Conducted, 8PSK
251	848.8	27.0	24.9	24.0	23.0	Conducted, 8PSK

EDGE850 - Calculated Value with consideration for Uplink time slots:

Channel Number	Frequency (MHZ)	Power (dBm) 1Uplink	Power (dBm) 2Uplink	Power (dBm) 3Uplink	Power (dBm) 4Uplink	Note
128	824.2	18.2	19.2	19.9	20.2	Conducted, 8PSK
190	836.6	18.1	19.1	19.7	20.0	Conducted, 8PSK
251	848.8	18.0	18.9	19.7	20.0	Conducted, 8PSK

Note:

Scale factor for uplink time slot:

- 1. 1 Uplink: time slot ratio = $8:1 \Rightarrow 10*\log(8/1) = 9.03 \text{ dB}$
- 2. 2 Uplink: time slot ratio = $8:2 \Rightarrow 10 \log(8/2) = 6.02 \text{ dB}$
- 3. 3 Uplink: time slot ratio = $8:3 \Rightarrow 10*\log(8/3) = 4.26 \text{ dB}$
- 4. 4 Uplink: time slot ratio = $8:4 \Rightarrow 10*log(8/4) = 3.01 dB$

Page: 30 of 289 UL

Issue Date: 07 June 2013

7.2.2.Conducted Average Power Measurement 2G: PCS1900 Power Back-off Disabled									
Channel Number		uency HZ)	Power (dBm)		Avg. Burst P consideration time slot	n for uplink	Note		
512	185	50.2		29.5	20.5		Conducted, GMSK		
661	188	30.0		29.6	20.	6	Conducted, GMSK		
810	190	9.8		29.5	20.	5	Conducted, GMSK		
GPRS1900	0 - Measu	red Ave	erage	Power witho	ut considera	tion for Upl	ink time slots:		
Channel F Number	requency (MHZ)	Pow (dBr 1Upli	n)	Power (dBm) 2Uplink	Power (dBm) 3Uplink	Power (dBm) 4Uplink	Note		
512	1850.2	29.	5	26.5	24.6	23.7	Conducted, GMSK		
661	1880.0	29.0	6	26.5	24.6	23.6	Conducted, GMSK		
810	1909.8	29.	5	26.7	24.7	23.7	Conducted, GMSK		
GPRS1900	0 - Calcul	ated Va	ilue w	ith consider	ation for Upli	nk time slot	ts:		
Channel F Number	requency (MHZ)	Pow (dBr 1Upli	n)	Power (dBm) 2Uplink	Power (dBm) 3Uplink	Power (dBm) 4Uplink	Note		
512	1850.2	20.	5	20.5	20.3	20.7	Conducted, GMSK		
661	1880.0	20.	6	20.5	20.3	20.6	Conducted, GMSK		
810	1909.8	20.	5	20.5	20.4	20.7	Conducted, GMSK		
EDGE1900	0 - Measu			Power witho	ut considera	tion for Upl	ink time slots:		
Channel F Number	requency (MHZ)	Pow (dBr 1Upli	n)	Power (dBm) 2Uplink	Power (dBm) 3Uplink	Power (dBm) 4Uplink	Note		
512	1850.2	29.	5	26.5	24.6	23.7	Conducted, GMSK		
661	1880.0	29.0	6	26.5	24.6	23.6	Conducted, GMSK		
810	1909.8	29.	5	26.7	24.7	23.7	Conducted, GMSK		
EDGE1900	0 - Calcul	ated Va	lue w	ith considera	ation for Upli	nk time slot	s:		
Channel F Number	requency (MHZ)	Pow (dBr 1Upli	n)	Power (dBm) 2Uplink	Power (dBm) 3Uplink	Power (dBm) 4Uplink	Note		
512	1850.2	20.	5	20.5	20.3	20.7	Conducted, GMSK		
661	1880.0	20.0	6	20.5	20.3	20.6	Conducted, GMSK		
810	1909.8	20.	5	20.5	20.4	20.7	Conducted, GMSK		
Note:									

Scale factor for uplink time slot:

- 1. 1 Uplink: time slot ratio = $8:1 \Rightarrow 10*log(8/1) = 9.03 dB$
- 2. 2 Uplink: time slot ratio = $8:2 \Rightarrow 10*\log(8/2) = 6.02 dB$
- 3. 3 Uplink: time slot ratio = $8:3 \Rightarrow 10*\log(8/3) = 4.26 \text{ dB}$
- 4. 4 Uplink: time slot ratio = $8:4 \Rightarrow 10*log(8/4) = 3.01 dB$

Page: 31 of 289 UL

Issue Date: 07 June 2013

EDGE (MCS9 ~ 8PSK):

EDGE1900 - Measured Average Power without consideration for Uplink time slots: Power Back-off Disabled

Channel Number	Frequency (MHZ)	Power (dBm) 1Uplink	Power (dBm) 2Uplink	Power (dBm) 3Uplink	Power (dBm) 4Uplink	Note
512	1850.2	25.5	24.0	23.0	21.9	Conducted, 8PSK
661	1880.0	25.5	24.1	23.0	21.9	Conducted, 8PSK
810	1909.8	25.4	24.0	23.0	21.9	Conducted, 8PSK

EDGE1900 - Calculated Value with consideration for Uplink time slots:

Channel Number	Frequency (MHZ)	Power (dBm) 1Uplink	Power (dBm) 2Uplink	Power (dBm) 3Uplink	Power (dBm) 4Uplink	Note
512	1850.2	16.5	18.0	18.7	18.9	Conducted, 8PSK
661	1880.0	16.5	18.1	18.7	18.9	Conducted, 8PSK
810	1909.8	16.5	18.0	18.7	18.9	Conducted, 8PSK
Note:						

Scale factor for uplink time slot:

1. 1 Uplink: time slot ratio = $8:1 \Rightarrow 10 \log(8/1) = 9.03 \text{ dB}$

2. 2 Uplink: time slot ratio = $8:2 \Rightarrow 10 \log(8/2) = 6.02 \text{ dB}$

3. 3 Uplink: time slot ratio = $8:3 \Rightarrow 10 \log(8/3) = 4.26 \text{ dB}$

4. 4 Uplink: time slot ratio = $8:4 \Rightarrow 10 \log(8/4) = 3.01 \text{ dB}$

Page: 32 of 289 UL

7.2.3.Conducted Average Power Measurement 3G: Power Back-off Disabled

Mod	des		HSI	PA				HSUPA			WCDMA
Set	S	1	2	3	4	1	2	3	4	5	Voice / RMC 12.2kbps
Band	Channel						Power [dBm]	Power [dBm]	Power [dBm]	Power [dBm]	Power [dBm]
	9262 9662	22.0	21.9	21.5	21.5	21.9	20.9	21.4	21.0	22.0	22.3
1900 (Band 2)	9400 9800	22.0	21.9	21.6	21.5	21.7	20.7	21.3	20.8	22.1	22.4
	9538 9938	22.0	21.9	21.6	21.5	22.2	21.1	21.6	21.0	22.1	22.3
	1312 1537	21.9	21.8	21.2	21.2	22.1	20.3	21.3	20.5	21.9	22.2
1700 (Band 4)	1412 1637	22.0	21.9	21.3	21.3	22.2	20.3	21.3	20.4	22.0	22.3
	1513 1738	22.0	21.9	21.3	21.3	22.1	20.2	21.3	20.3	22.0	22.4
	4132 4357	23.6	23.4	22.9	22.9	23.2	22.4	22.7	22.2	23.4	23.9
850 (Band 5)	4183 4408	23.5	23.3	22.7	22.8	23.1	22.4	22.6	22.2	23.5	23.7
	4233 4458	23.5	23.4	22.9	22.9	23.5	22.5	22.8	22.3	23.5	23.8
ße	C	2	12	15	15	11	6	15	2	15	
ßc	d	15	15	8	4	15	15	9	15	15	
ΔACK, Δ ΔC	•	8	8	8	8	8	8	8	8	8	
AG	V	-	-	-	-	20	12	15	17	21	

Page: 33 of 289 UL

Issue Date: 07 June 2013

Conducted Average Power Measurement 3G: Power Back-off Disabled

Mod	les		DC HSDP	A (Cat 24)		WCDMA
Sets	5	1	2	3	4	Voice / RMC 12.2kbps
Band	Channel	Power [dBm]	Power [dBm]	Power [dBm]	Power [dBm]	Power [dBm]
	9262 9662	20.8	20.7	20.7	20.8	22.3
1900 (Band 2)	9400 9800	21.5	21.1	21.3	20.8	22.4
	9538 9938	20.9	20.8	20.7	20.8	22.3
	1312 1537	21.0	20.6	20.6	20.4	22.2
1700 (Band 4)	1412 1637	21.1	20.8	20.8	20.7	22.3
	1513 1738	21.0	20.6	20.7	20.6	22.4
	4132 4357	22.8	22.8	22.8	22.8	23.9
850 (Band 5)	4183 4408	22.9	22.5	22.5	22.5	23.7
	4233 4458	22.9	22.5	22.5	22.5	23.8
ße	ßc		12	15	15	
ßd		15	15	8	4	
Δ ACK, Δ NA	8	8	8	8		
AG	V	-	-	-	-	

Page: 34 of 289 UL

7.2.4.Conducted Average	e Power Measurement 3G:
Power Back-off Enabled	

Mod	des		HSI)PA				HSUPA			WCDMA
Sets		1	2	3	4	1	2	3	4	5	Voice / RMC 12.2kbps
Band	Channel					Power [dBm]	Power [dBm]	Power [dBm]	Power [dBm]	Power [dBm]	Power [dBm]
	9262 9662	20.1	20.1	19.2	19.3	19.5	18.8	19.0	18.7	19.6	20.3
1900 (Band 2)	9400 9800	20.1	20.0	19.2	19.3	19.5	18.8	19.0	18.8	19.6	20.4
	9538 9938	20.2	20.2	19.3	19.4	19.8	19.0	19.2	19.0	19.8	20.4
	1312 1537	21.2	21.1	20.5	20.3	21.0	20.1	20.5	20.1	20.7	21.4
1700 (Band 4)	1412 1637	21.2	21.1	20.5	20.3	21.0	20.1	20.5	20.1	20.7	21.4
	1513 1738	21.2	21.1	20.6	20.4	21.1	20.2	20.6	20.2	20.8	21.5
ß	C	2	12	15	15	11	6	15	2	15	
ße	d	15	15	8	4	15	15	9	15	15	
ΔACK, Δ ΔC	•	8	8	8	8	8	8	8	8	8	
AG	V	-	-	-	-	20	12	15	17	21	

Conducted Average Power Measurement 3G: Power Back-off Enabled

Mod	les		DC HSDP	A (Cat 24)		WCDMA
Sets	5	1	2	3	4	Voice / RMC 12.2kbps
Band	Band Channel		Power [dBm]	Power [dBm]	Power [dBm]	Power [dBm]
	9262 9662	18.6	18.8	19.2	18.7	20.3
1900 (Band 2)	9400 9800	18.6	18.6	19.1	18.6	20.4
	9538 9938	18.6	18.6	19.1	18.7	20.4
	1312 1537	20.4	20.5	19.5	20.5	21.4
1700 (Band 4)	1412 1637	20.4	20.5	19.8	19.7	21.4
	1513 1738	20.4	20.5	19.6	19.5	21.5
ßc	•	2	12	15	15	
ßc	t	15	15	8	4	
Δ ACK, Δ NACK, Δ CQI		8	8	8	8	
AG	V	-	-	-	-	

Page: 35 of 289 UL

The module power levels were measured in both HSPA and 3G RMC 12.2kbps modes and compared to ensure the correct mode of operation had been established.

The following tables taken from FCC 3G SAR procedures (KDB 941225 D01 SAR test for 3G devices v02) below were applied using an Agilent 8960 series 10 wireless communications test set which supports 3G / HSDPA release 5 / HSUPA release 6.

Sub-test Setup for Release 5 HSDPA											
Sub-test	βc	β_d	B _d (SF)	$\beta_{c/}\beta_d$	${\beta_{hs}}^{(1)}$	SM (dB) ⁽²⁾					
1	2/15	15/15	64	2/15	4/15	0.0					
2	12/15 ⁽³⁾	15/15 ⁽³⁾	64	12/15 ⁽³⁾	24/15	1.0					
3	15/15	8/15	64	15/8	30/15	1.5					
4	15/15	4/15	64	15/4	30/15	1.5					

Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15 * \beta_c$

Note 2: CM = 1 for $\beta_{c/}$ β_{d} = 12/15, B_{hs}/β_{c} = 24/15

Note 3: For subtest 2 the $\beta_{c'}$ β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 11/15 and β_d = 15/15

Sub-test Setup for Release 6 HSUPA													
Sub -test	βς	βa	B _d (SF)	β _{c/} β _d	β _{hs} ⁽¹⁾	B _{oc}	B _{od}	B _{od} (SF)	B _{∞d} (codes)	CM ⁽² (dB)	Power Back- off (dB)	AG ⁽ Ind ex	E- TFC I
1	11/15 ⁽³	15/15 ⁽³	64	11/15 ⁽³	22/1 5	209/22 5	1039/22 5	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/1 5	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/1 5	31/15	B _{al1} : 47/15 B _{al2} : 47/15	4	1	2.0	1.0	15	92
4	2/15	15/15	64	2/15	2/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴	15/15 ⁽⁴	64	15/15 ⁽⁴	24/1 5	24/15	134/15	4	1	1.0	0.0	21	81

Note 1: $\Delta_{ACK, \Delta_{NACK}}$ and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15 * \beta_c$

Note 2: CM = 1 for $\beta_{c'}/\beta_d$ = 12/15, B_{hs}/β_c = 24/15. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH AND E-DPCCH for the Power Back-off is based on the relative CM difference.

Note 3: For subtest 1 the $\beta_{c'}$ β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 10/15 and β_d = 15/15.

Note 4: For subtest 5 the $\beta_{c'}$ β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 14/15 and β_d = 15/15.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Tayle 5.1g.

Note 6: B_{od} can not be set directly; it is set by Absolute Grant Value.

Page: 36 of 289 UL

Issue Date: 07 June 2013

7.2.5.Conducted Power Measurements Wi-Fi802.11b/g/n 802.11b/g Power Back-off Disabled					
Channel Number	Frequency (MHZ)	TX Power (dBm)	Note		
1	2412.0	13.8			
6	2437.0	13.6	2.4GHz 802.11b (1Mbps)		
11	2462.0	13.7	(
1	2412.0	13.6			
6	2437.0	13.1	2.4GHz 802.11b (11Mbps)		
11	2462.0	13.1	-1-7		
1	2412.0	10.6			
6	2437.0	10.4	2.4GHz 802.11g (6Mbps)		
11	2462.0	10.4	, ,		
1	2412.0	10.5	0.4011.000.44		
6	2437.0	10.2	2.4GHz 802.11g (54Mbps)		
11	2462.0	10.1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
802.11n					
Channel Number	Frequency (MHZ)	TX Power (dBm)	Note		
1	2412.0	9.5			
6	2437.0	9.0	2.4GHz 802.11n (MCS0 6.5Mbps)		
11	2462.0	9.0	(10000 0.0101000)		
1	2412.0	9.2	2.4GHz 802.11n		
6	2437.0	8.9	(MCS7 65Mbps)		
11	2462.0	8.9			

Page: 37 of 289 UL

Issue Date: 07 June 2013

7.2.6.Conducted Power Measurements Wi-Fi802.11a/n (5.0 GHz) 802.11a (5.0 GHz) Power Back-off Disabled

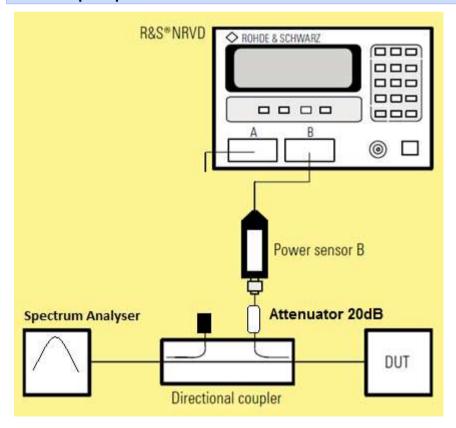
Channel Number	Frequency (MHZ)	TX Power (dBm) 6 Mbps	TX Power (dBm) 54 Mbps	Note
36*	5180.0	9.4	9.2	
40	5200.0	9.7	9.4	5.2 GHz
44	5220.0	9.7	9.4	5.2 GHZ
48*	5240.0	9.7	9.4	
52*	5260.0	9.4	9.0	
56	5280.0	9.3	9.0	5.3 GHz
60	5300.0	9.1	8.9	5.3 GHZ
64*	5320.0	9.5	9.2	
100	5500.0	9.2	9.0	
104*	5520.0	8.9	9.5	
108	5540.0	8.9	9.4	
112	5560.0	9.6	8.8	
116*	5580.0	9.5	9.3	
120	5600.0	9.7	9.7	5.6 GHz
124*	5620.0	9.7	9.7	
128	5640.0	9.8	9.7	
132	5660.0	9.8	9.7	
136*	5680.0	9.9	9.8	
140	5700.0	9.9	9.8	
149*	5745.0	8.9	9.5	
153	5765.0	9.9	9.7	
157*	5785.0	9.9	9.5	5.8 GHz
161	5805.0	9.5	9.4	
165*	5825.0	9.5	9.4	

^{*} Default test Channels

Page: 38 of 289 UL

Issue Date: 07 June 2013

802.11n (5.0 GHz) (HT20) **Power Back-off Disabled TX Power TX Power** Channel Frequency (dBm) (dBm) Note Number (MHZ) **6.5 Mbps** 65 Mbps 36* 5180.0 7.7 7.7 40 5200.0 7.9 7.9 5.2 GHz 44 5220.0 8.3 8.3 48* 5240.0 8.3 8.2 52* 5260.0 8.2 8.1 56 5280.0 8.1 8.0 5.3 GHz 5300.0 8.0 60 8.0 64* 5320.0 8.4 8.4 100 5500.0 8.2 8.1 104* 5520.0 8.3 8.3 7.9 108 5540.0 7.8 112 5560.0 8.4 8.4 116* 5580.0 8.4 7.8 120 5600.0 8.1 8.0 5.6 GHz 124* 5620.0 8.7 8.6 128 5640.0 8.7 8.6 132 5660.0 8.2 8.2 136* 5680.0 8.2 8.6 140 5700.0 8.4 8.4 149* 5745.0 7.9 7.9 153 5765.0 8.2 8.2 157* 5785.0 8.7 8.7 5.8 GHz 161 5805.0 8.4 8.3 165* 5825.0 8.4 8.3


Page: 39 of 289 UL

^{*} Default test Channels

Issue Date: 07 June 2013

802.11n (5.0 GHz) (HT40) Power Back-off Disabled						
Channel Number	Frequency (MHZ)	TX Power (dBm) 13.5 Mbps	TX Power (dBm) 135 Mbps	Note		
38	5190.0	8.2	8.2	5.2 GHz		
46	5230.0	8.0	8.0	3.2 GHZ		
54	5270.0	8.5	7.8	5.3 GHz		
62	5310.0	8.8	8.1	5.3 GHZ		
102	5510.0	7.9	7.8			
110	5550.0	7.7	7.7			
118	5590.0	8.1	8.1	5.6 GHz		
126	5630.0	8.4	8.2			
134	5670.0	8.5	8.4			
151	5755.0	7.7	8.8	5.8 GHz		
159	5795.0	7.8	7.9	5.0 GHZ		

Test setup for power measurements

Page: 40 of 289 UL

Issue Date: 07 June 2013

7.3. Test Results

For All SAR measurement in this report the SAR limit tested to is 1.6 W/Kg

7.3.1.Specific Absorption Rate - GSM 850 Head Configuration 1g Power Back-off Disabled

Test Summary:

Tissue Volume:	1g
Maximum Measured Level (W/kg):	0.748
Maximum Reported Level (W/kg):	0.920

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0 Temperature Variation in Liquid (°C): 23.3 to 23.3

Results:

Scan number	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
1	Touch Left	190	23.2	24.0	0.743	0.893	1	GMSK
2	Tilt Left	190	23.2	24.0	0.424	0.510	1	GMSK
3	Touch Right	190	23.2	24.0	0.738	0.887	1	GMSK
4	Tilt Right	190	23.2	24.0	0.394	0.474	1	GMSK
5	Touch Left	128	23.3	24.0	0.665	0.781	1	GMSK
6	Touch Left	251	23.1	24.0	0.748	0.920	1	GMSK
N. (/)			911		- 1		_	

Note(s):

1. Voice Mode

Page: 41 of 289 UL

Issue Date: 07 June 2013

7.3.2. Specific Absorption Rate - GSM 850 Hotspot Mode Configuration 1g Power Back-off Disabled Test Summary:

Tissue Volume: 1g

Maximum Measured Level (W/kg): 1.140

Maximum Reported Level (W/kg): 1.250

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0 Temperature Variation in Liquid (°C): 23.0 to 23.0

Results:

1100011101								
Scan number	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
7	Front	190	24.1	24.5	1.140	1.250	1, 2, 3	GMSK
8	Front	128	24.0	24.5	0.951	1.067	1, 2	GMSK
9	Front	251	24.0	24.5	1.090	1.223	1, 2	GMSK
10	Back	190	24.1	24.5	1.110	1.217	1, 2	GMSK
11	Back	128	24.0	24.5	1.010	1.133	1, 2	GMSK
12	Back	251	24.0	24.5	1.050	1.178	1, 2	GMSK
13	Left Hand Side	190	24.1	24.5	0.816	0.895	1, 2	GMSK
14	Left Hand Side	128	24.0	24.5	0.763	0.856	1, 2	GMSK
15	Left Hand Side	251	24.0	24.5	0.783	0.879	1, 2	GMSK
16	Right Hand Side	190	24.1	24.5	0.655	0.718	1, 2	GMSK
17	Bottom	190	24.1	24.5	0.175	0.192	1, 2	GMSK
NI 4 / X								

Note(s):

- 1. Data SAR measurements were performed using 4 uplink timeslots
- 2. SAR measurements were performed with the closest edge of the EUT at a separation distance of 10mm from the 'SAM' phantom flat section.
- 3. As per 865664 D01, the highest SAR measured > 0.8 W/kg has been re-measured and included in the report in section 2.3 under **SAR Measurement Variability and Measurement Uncertainty Analysis Results** Table.

*KDB 941225 D03 - SAR is not required for EDGE technology when the maximum average output power is lower than that measured on the corresponding GPRS channels.

Page: 42 of 289 UL

Issue Date: 07 June 2013

7.3.3. Specific Absorption Rate - GSM 850 Body-Worn Configuration 1g
Power Back-off Disabled
Test Summary:

Tissue Volume:	1g
Maximum Measured Level (W/kg):	0.905
Maximum Reported Level (W/kg):	1.063

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0 Temperature Variation in Liquid (°C): 23.0 to 23.0

Results:

Scan number	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
18	Front	190	23.2	24.0	0.781	0.939	1, 2	GMSK
19	Back	190	23.2	24.0	0.801	0.963	1, 2	GMSK
20	Back	128	23.3	24.0	0.905	1.063	1, 2	GMSK
21	Back	251	23.1	24.0	0.651	0.801	1, 2	GMSK

Note(s):

- 1. Voice Mode Worst case and most conservative channel of GPRS hotspot mode is applied to GSM Body-worn.
- 2. SAR measurements were performed with the closest edge of the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.

Page: 43 of 289 UL

Issue Date: 07 June 2013

7.3.4. Specific Absorption Rate - PCS 1900 Head Configuration 1g Power Back-off Disabled Test Summary:

Tissue Volume:	1g
Maximum Measured Level (W/kg):	0.308
Maximum Reported Level (W/kg):	0.388

Environmental Conditions:

Temperature Variation in Lab (°C): 23.0 to 23.0 Temperature Variation in Liquid (°C): 21.5 to 21.5

Results:

Scan number	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
22	Touch Left	661	20.6	21.5	0.281	0.346	1	GMSK
23	Tilt Left	661	20.6	21.5	0.047	0.057	1	GMSK
24	Touch Right	661	20.6	21.5	0.156	0.192	1	GMSK
25	Tilt Right	661	20.6	21.5	0.051	0.063	1	GMSK
26	Touch Left	512	20.5	21.5	0.258	0.325	1	GMSK
27	Touch Left	810	20.5	21.5	0.308	0.388	1	GMSK
Noto(a)								

Note(s):

1. Voice Mode

Page: 44 of 289 UL

Issue Date: 07 June 2013

7.3.5. Specific Absorption Rate - GPRS 1900 Hotspot Mode Configuration 1g Power Back-off Disabled Test Summary:

Tissue Volume:	1g
Maximum Measured Level (W/kg):	0.934
Maximum Reported Level (W/kg):	1.123

Environmental Conditions:

Temperature Variation in Lab (°C): 23.0 to 23.0 Temperature Variation in Liquid (°C): 21.5 to 21.5

Results:

Scan number	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
28	Front	661	20.6	21.5	0.676	0.832	1, 2	GMSK
29	Back	661	20.6	21.5	0.636	0.782	1, 2	GMSK
30	Left Hand Side	661	20.6	21.5	0.103	0.127	1, 2	GMSK
31	Right Hand Side	661	20.6	21.5	0.119	0.146	1, 2	GMSK
32	Bottom	661	20.6	21.5	0.826	1.016	1, 2	GMSK
33	Bottom	512	20.7	21.5	0.819	0.985	1, 2	GMSK
34	Bottom	810	20.7	21.5	0.934	1.123	1, 2, 3	GMSK

Note(s):

- 1. Data SAR measurements were performed using 4 uplink timeslots
- 2. SAR measurements were performed with the closest edge of the EUT at a separation distance of 10mm from the 'SAM' phantom flat section.
- 3. As per 865664 D01, the highest SAR measured > 0.8 W/kg has been re-measured and included in the report in section 2.3 under **SAR Measurement Variability and Measurement Uncertainty Analysis Results** Table.

Page: 45 of 289 UL

^{*}KDB 941225 D03 - SAR is not required for EDGE technology when the maximum average output power is lower than that measured on the corresponding GPRS channels.

Issue Date: 07 June 2013

7.3.6. Specific Absorption Rate - PCS 1900 Body-Worn Configuration 1	3
Power Back-off Disabled	
Test Summary:	

Tissue Volume: 1g

Maximum Measured Level (W/kg): 0.396

Maximum Reported Level (W/kg): 0.499

Environmental Conditions:

Temperature Variation in Lab (°C): 23.0 to 23.0 Temperature Variation in Liquid (°C): 21.5 to 21.5

Results:

Scan number	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
35	Front	810	20.5	21.5	0.364	0.458	1	GMSK
36	Back	810	20.5	21.5	0.396	0.499	1	GMSK

Note(s):

- 1. Voice Mode Worst case and most conservative channel of GPRS hotspot mode is applied to PCS Body-worn.
- 2. SAR measurements were performed with the closest edge of the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.

Page: 46 of 289 UL

Issue Date: 07 June 2013

7.3.7.Specific Absorption Rate - UMTS-FDD 2 Head Configuration 1g Power Back-off Disabled Test Summary:								
Tissue Volume: 1g								
Maximum Measured Level (W/kg): 0.441								
Maximum Reported Level (W/kg):	0.518							
Environmental Conditions:								
Temperature Variation in Lab (°C):	Temperature Variation in Lab (°C): 24.0 to 24.0							
Temperature Variation in Liquid (°C):	24.0 to 24.0							

Results:

recounts.								
Scan number	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
37	Touch Left	9400	22.4	23.0	0.423	0.486	1	QPSK
38	Tilt Left	9400	22.4	23.0	0.117	0.134	1	QPSK
39	Touch Right	9400	22.4	23.0	0.353	0.405	1	QPSK
40	Tilt Right	9400	22.4	23.0	0.105	0.121	1	QPSK
41	Touch Left	9262	22.3	23.0	0.441	0.518	1	QPSK
42	Touch Left	9538	22.3	23.0	0.427	0.502	1	QPSK
Note(s):			•					

Page: 47 of 289 UL

^{1.} Circuit Switch (CS) - RMC 12.2kbps with Test loop mode 1 and TPC bits configured to All "1's"

Issue Date: 07 June 2013

7.3.8. Specific Absorption Rate - UMTS-FDD 2 Hotspot Mode Configuration 1g Power Back-off Enabled Test Summary:

Tissue Volume: 1g

Maximum Measured Level (W/kg): 0.986

Maximum Reported Level (W/kg): 1.009

Environmental Conditions:

Temperature Variation in Lab (°C): 23.0 to 23.0 Temperature Variation in Liquid (°C): 22.4 to 22.4

Results:

Scan number	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
43	Front	9400	20.4	20.5	0.725	0.742	1, 2	QPSK
44	Back	9400	20.4	20.5	0.764	0.782	1, 2	QPSK
45	Left Hand Side	9400	20.4	20.5	0.105	0.107	1, 2	QPSK
46	Right Hand Side	9400	20.4	20.5	0.114	0.117	1, 2	QPSK
47	Bottom	9400	20.4	20.5	0.899	0.920	1, 2	QPSK
48	Bottom	9262	20.3	20.5	0.772	0.808	1, 2	QPSK
49	Bottom	9538	20.4	20.5	0.986	1.009	1, 2, 3	QPSK

Note(s):

- 1. Circuit Switch (CS) RMC 12.2kbps with Test loop mode 1 and TPC bits configured to All "1's"
- 2. SAR measurements were performed with the closest edge of the EUT at a separation distance of 10mm from the 'SAM' phantom flat section.
- 3. As per 865664 D01, the highest SAR measured > 0.8 W/kg has been re-measured and included in the report in section 2.3 under **SAR Measurement Variability and Measurement Uncertainty Analysis Results** Table.

*KDB 941225 - SAR is not required for RMC+HSPA or RMC+DC-HSDPA (HSDPA/HSUPA/DC-HSDPA) channels when the maximum average output power is less than ¼ dB higher than that measured on the corresponding RMC channels and 1g SAR level <u>reported</u> in 'RMC 12.2kbps' is <75% SAR limit.

Page: 48 of 289 UL

Issue Date: 07 June 2013

7.3.9. Specific Absorption Rate - UMTS-FDD 2 Body-Worn Configuration 1g Power Back-off Disabled Test Summary:

Tissue Volume: 1g

Maximum Measured Level (W/kg): 0.626

Maximum Reported Level (W/kg): 0.735

Environmental Conditions:

Temperature Variation in Lab (°C): 23.0 to 23.0

Temperature Variation in Liquid (°C): 22.4 to 22.4

Results:

Scan number	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
50	Front	9400	22.4	23.0	0.591	0.679	1, 2	QPSK
51	Back	9400	22.4	23.0	0.588	0.675	1, 2	QPSK
52	Front	9262	22.3	23.0	0.566	0.665	1, 2	QPSK
53	Front	9538	22.3	23.0	0.626	0.735	1, 2	QPSK

Note(s):

- 1. Circuit Switch (CS) RMC 12.2kbps with Test loop mode 1 and TPC bits configured to All "1's" Worst case and most conservative channel of hotspot mode is applied to Body-worn.
- 2. SAR measurements were performed with the closest edge of the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.

*KDB 941225 - SAR is not required for RMC+HSPA or RMC+DC-HSDPA (HSDPA/HSUPA/DC-HSDPA) channels when the maximum average output power is less than ¼ dB higher than that measured on the corresponding RMC channels and 1g SAR level <u>reported</u> in 'RMC 12.2kbps' is <75% SAR limit.

Page: 49 of 289 UL

Issue Date: 07 June 2013

7.3.10.Specific Absorption Rate - Upon Back-off Disabled Test Summary:	JMTS-FDD 4 Head Configuration 1g
Tissue Volume:	1g
Maximum Measured Level (W/kg):	0.430
Maximum Reported Level (W/kg):	0.517

Environmental Conditions:

Temperature Variation in Lab (°C): 23.0 to 23.0 Temperature Variation in Liquid (°C): 21.5 to 21.5

Results:

Scan number	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
54	Touch Left	1412	22.3	23.0	0.369	0.434	1	QPSK
55	Tilt Left	1412	22.3	23.0	0.062	0.072	1	QPSK
56	Touch Right	1412	22.3	23.0	0.313	0.368	1	QPSK
57	Tilt Right	1412	22.3	23.0	0.065	0.076	1	QPSK
58	Touch Left	1312	22.2	23.0	0.430	0.517	1	QPSK
59	Touch Left	1513	22.4	23.0	0.387	0.444	1	QPSK
Noto(c)								

Note(s):

Page: 50 of 289 UL

^{1.} Circuit Switch (CS) - RMC 12.2kbps with Test loop mode 1 and TPC bits configured to All "1's"

Issue Date: 07 June 2013

7.3.11.Specific Absorption Rate - UMTS-FDD 4 Hotspot Mode Configuration 1g Power Back-off Enabled Test Summary:

Tissue Volume:	1g
Maximum Measured Level (W/kg):	1.080
Maximum Reported Level (W/kg):	1.212

Environmental Conditions:

Temperature Variation in Lab (°C): 23.0 to 23.0 Temperature Variation in Liquid (°C): 22.4 to 22.4

Results:

Scan number	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
60	Front	1412	21.4	22.0	0.998	1.146	1, 2	QPSK
61	Front	1312	21.4	22.0	0.936	1.075	1, 2	QPSK
62	Front	1513	21.5	22.0	1.080	1.212	1, 2, 3	QPSK
63	Back	1412	21.4	22.0	0.789	0.906	1, 2	QPSK
64	Left Hand Side	1412	21.4	22.0	0.111	0.127	1, 2	QPSK
65	Right Hand Side	1412	21.4	22.0	0.058	0.067	1, 2	QPSK
66	Bottom	1412	21.4	22.0	0.694	0.797	1, 2	QPSK

Note(s):

- 1. Circuit Switch (CS) RMC 12.2kbps with Test loop mode 1 and TPC bits configured to All "1's"
- 2. SAR measurements were performed with the closest edge of the EUT at a separation distance of 10mm from the 'SAM' phantom flat section.
- 3. As per 865664 D01, the highest SAR measured > 0.8 W/kg has been re-measured and included in the report in section 2.3 under **SAR Measurement Variability and Measurement Uncertainty Analysis Results** Table.

Page: 51 of 289 UL

Version 4.0 Issue Date: 07 June 2013

Serial No: UL-SAR-RP91949JD02A V4.0

7.3.12.Specific Absorption Rate - UMTS-FDD 4 (RMC+HSDPA / HSUPA / DC-HSDPA) Hotspot Mode Configuration 1g Power Back-off Enabled Test Summary:

Tissue Volume: 1g
Maximum Measured Level (W/kg): 0.694

Maximum Reported Level (W/kg): 0.938

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0

Temperature Variation in Liquid (°C): 24.0 to 24.0

Results:

Scan number	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
67	Front	1513	21.2	22.0	0.694	0.834	1, 2	QPSK
68	Front	1513	20.8	22.0	0.655	0.863	1, 3	QPSK
69	Front	1513	20.4	22.0	0.649	0.938	1, 4	QPSK

Note(s):

- SAR measurements were performed with the closest edge of the EUT at a separation distance of 10mm from the 'SAM' phantom flat section. - Worst case and most conservative channel of RMC hotspot mode is applied RMC+HSPA Hotspot Mode.
- 2. Packet Switch (PS) RMC 12.2kbps + HSDPA with Test loop mode 1 and TPC bits configured to all "1's", Sub-test 1 with Communication Test Set configured to allow to EUT to transmit at a maximum power.
- 3. Packet Switch (PS) RMC 12.2kbps + HSUPA with Test loop mode 1 and TPC bits configured to all "1's", Sub-test 5, AG Index set to 21 and E-TFCI set to 81 with Communication Test Set configured to allow to EUT to transmit at a maximum power.
- Packet Switch (PS) DC-HSDPA (Cat 24) With Test loop mode 1 and TPC bits configured to all "1's", Sub-test 1 with Communication Test Set configured to allow to EUT to transmit at a maximum power.

Page: 52 of 289 UL

Issue Date: 07 June 2013

7.3.13.Specific Absorption Rate - UMTS-FDD 4 Body-Worn Configuration 1g Power Back-off Disabled Test Summary:

Tissue Volume: 1g

Maximum Measured Level (W/kg): 0.613

Maximum Reported Level (W/kg): 0.704

Environmental Conditions:

Temperature Variation in Lab (°C): 23.0 to 23.0

Temperature Variation in Liquid (°C): 22.4 to 22.4

Results:

Scan number	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
70	Front	1412	22.3	23.0	0.593	0.697	1, 2	QPSK
71	Back	1412	22.3	23.0	0.397	0.466	1, 2	QPSK
72	Front	1312	22.2	23.0	0.584	0.702	1, 2	QPSK
73	Front	1513	22.4	23.0	0.613	0.704	1, 2	QPSK

Note(s):

- 1. Circuit Switch (CS)
- 2. SAR measurements were performed with the closest edge of the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.

*KDB 941225 - SAR is not required for RMC+HSPA or RMC+DC-HSDPA (HSDPA/HSUPA/DC-HSDPA) channels when the maximum average output power is less than ¼ dB higher than that measured on the corresponding RMC channels and 1g SAR level <u>reported</u> in 'RMC 12.2kbps' is <75% SAR limit.

Page: 53 of 289 UL

Issue Date: 07 June 2013

7.3.14.Specific Absorption Rate - UMTS-FDD 5 Head Configuration 1g Power Back-off Disabled Test Summary:						
Tissue Volume:	1g					
Maximum Measured Level (W/kg):	0.785					
Maximum Reported Level (W/kg):	0.944					
Environmental Conditions:						
Temperature Variation in Lab (°C):	24.0 to 24.0					
Temperature Variation in Liquid (°C):	23.0 to 23.0					
Results:						
	Meas. Max Meas Reported					

Scan number	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
74	Touch Left	4183	23.7	24.5	0.745	0.896	1	QPSK
75	Tilt Left	4183	23.7	24.5	0.441	0.530	1	QPSK
76	Touch Right	4183	23.7	24.5	0.785	0.944	1	QPSK
77	Tilt Right	4183	23.7	24.5	0.449	0.540	1	QPSK
78	Touch Right	4132	23.9	24.5	0.584	0.671	1	QPSK
79	Touch Right	4233	23.8	24.5	0.640	0.752	1	QPSK
Noto(a).								

Note(s):

Page: 54 of 289 UL

^{1.} Circuit Switch (CS) - RMC 12.2kbps with Test loop mode 1 and TPC bits configured to All "1's"

Issue Date: 07 June 2013

7.3.15.Specific Absorption Rate - UMTS-FDD 5 Hotspot Mode Configuration 1g Power Back-off Disabled Test Summary:

Tissue Volume: 1g
Maximum Measured Level (W/kg): 1.020

Maximum Reported Level (W/kg): 1.226

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0 Temperature Variation in Liquid (°C): 24.0 to 24.0

Results:

Scan number	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
80	Front	4183	23.7	24.5	1.020	1.226	1, 2, 3	QPSK
81	Front	4132	23.9	24.5	0.783	0.899	1, 2	QPSK
82	Front	4233	23.8	24.5	0.786	0.923	1, 2	QPSK
83	Back	4183	23.7	24.5	0.847	1.018	1, 2	QPSK
84	Back	4132	23.9	24.5	0.698	0.801	1, 2	QPSK
85	Back	4233	23.8	24.5	0.684	0.804	1, 2	QPSK
86	Left Hand Side	4183	23.7	24.5	0.813	0.977	1, 2	QPSK
87	Left Hand Side	4132	23.9	24.5	0.691	0.793	1, 2	QPSK
88	Left Hand Side	4233	23.8	24.5	0.681	0.800	1, 2	QPSK
89	Right Hand Side	4183	23.7	24.5	0.710	0.854	1, 2	QPSK
90	Bottom	4183	23.7	24.5	0.186	0.224	1, 2	QPSK

Note(s):

- 1. Circuit Switch (CS) RMC 12.2kbps with Test loop mode 1 and TPC bits configured to All "1's"
- 2. SAR measurements were performed with the closest edge of the EUT at a separation distance of 10mm from the 'SAM' phantom flat section.
- 3. As per 865664 D01, the highest SAR measured > 0.8 W/kg has been re-measured and included in the report in section 2.3 under *SAR Measurement Variability and Measurement Uncertainty Analysis Results* Table.

Page: 55 of 289 UL

Version 4.0 Issue Date: 07 June 2013

Serial No: UL-SAR-RP91949JD02A V4.0

7.3.16.Specific Absorption Rate - UMTS-FDD 5 (RMC+HSDPA / HSUPA / DC-HSDPA) Hotspot Mode Configuration 1g Power Back-off Disabled Test Summary:

Tissue Volume: 1g

Maximum Measured Level (W/kg): 0.943

Maximum Reported Level (W/kg): 1.223

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0

Temperature Variation in Liquid (°C): 24.0 to 24.0

Results:

Scan number	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
91	Front	4183	23.5	24.5	0.943	1.187	1, 2	QPSK
92	Front	4183	23.5	24.5	0.858	1.080	1, 3	QPSK
93	Front	4183	22.9	24.5	0.846	1.223	1, 4	QPSK

Note(s):

- SAR measurements were performed with the closest edge of the EUT at a separation distance of 10mm from the 'SAM' phantom flat section. - Worst case and most conservative channel of RMC hotspot mode is applied RMC+HSPA Hotspot Mode.
- 2. Packet Switch (PS) RMC 12.2kbps + HSDPA with Test loop mode 1 and TPC bits configured to all "1's", Sub-test 1 with Communication Test Set configured to allow to EUT to transmit at a maximum power.
- 3. Packet Switch (PS) RMC 12.2kbps + HSUPA with Test loop mode 1 and TPC bits configured to all "1's", Sub-test 5, AG Index set to 21 and E-TFCI set to 81 with Communication Test Set configured to allow to EUT to transmit at a maximum power.
- Packet Switch (PS) DC-HSDPA (Cat 24) With Test loop mode 1 and TPC bits configured to all "1's", Sub-test 1 with Communication Test Set configured to allow to EUT to transmit at a maximum power.

Page: 56 of 289 UL

Issue Date: 07 June 2013

7.3.17. Specific Absorption Rate - UMTS FDD 5 Body-Worn Configuration 1g **Power Back-off Disabled Test Summary:**

Tissue Volume:	1g
Maximum Measured Level (W/kg):	0.666
Maximum Reported Level (W/kg):	0.801

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0 Temperature Variation in Liquid (°C): 24.0 to 24.0

Results:

Scan number	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
94	Front	4183	23.7	24.5	0.666	0.801	1, 2	QPSK
95	Back	4183	23.7	24.5	0.607	0.730	1, 2	QPSK

Note(s):

- 1. Circuit Switch (CS) RMC 12.2kbps with Test loop mode 1 and TPC bits configured to All "1's"-Worst case and most conservative channel of hotspot mode is applied to Body-worn.
- 2. SAR measurements were performed with the closest edge of the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.

*KDB 941225 - SAR is not required for RMC+HSPA or RMC+DC-HSDPA (HSDPA/HSUPA/DC-HSDPA) channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding RMC channels and 1g SAR level reported in 'RMC 12.2kbps' is <75% SAR limit.

Page: 57 of 289 UL

Issue Date: 07 June 2013

7.3.18.Specific Absorption Rate - Wi-Fi 802.11b 2.4 GHz Head Configuration 1g Power Back-off Disabled Test Summary:

Tissue Volume: 1g

Maximum Measured Level (W/kg): 0.340

Maximum Reported Level (W/kg): 0.469

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0 Temperature Variation in Liquid (°C): 22.7 to 22.7

Results:

Scan number	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
96	Touch Left	6	13.6	15.0	0.340	0.469	1	DBPSK
97	Tilt Left	6	13.6	15.0	0.208	0.287	1	DBPSK
98	Touch Right	6	13.6	15.0	0.156	0.215	1	DBPSK
99	Tilt Right	6	13.6	15.0	0.099	0.137	1	DBPSK
100	Touch Left	1	13.8	15.0	0.206	0.272	1	DBPSK
101	Touch Left	11	13.7	15.0	0.309	0.417	1	DBPSK

Note(s):

Page: 58 of 289 UL

^{1.} WLAN 802.11b 1Mbps

^{*}KDB 248227 - SAR is not required for 802.11g/n channels when the maximum average output power is equal to that measured on the corresponding 802.11b channels.

Issue Date: 07 June 2013

7.3.19.Specific Absorption Rate - Wi-Fi 802.11b 2.4 GHz Hotspot Mode Configuration 1g

Power Back-off Disabled

Test Summary:

Tissue Volume: 1g

Maximum Measured Level (W/kg): 0.091

Maximum Reported Level (W/kg): 0.124

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0

Temperature Variation in Liquid (°C): 22.5 to 22.5

Results:

Scan number	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
102	Front	6	13.6	15.0	0.057	0.079	1, 2	DBPSK
103	Back	6	13.6	15.0	0.090	0.124	1, 2	DBPSK
104	Right Hand Side	6	13.6	15.0	0.033	0.046	1, 2	DBPSK
105	Тор	6	13.6	15.0	0.045	0.062	1, 2	DBPSK
106	Back	1	13.8	15.0	0.054	0.071	1, 2	DBPSK
107	Back	11	13.7	15.0	0.091	0.122	1, 2	DBPSK

Note(s):

- 1. WLAN 802.11b 1Mbps
- 2. SAR measurements were performed with the closest edge of the EUT at a separation distance of 10mm from the 'SAM' phantom flat section.

*KDB 248227 - SAR is not required for 802.11g/n channels when the maximum average output power is equal to that measured on the corresponding 802.11b channels.

Page: 59 of 289 UL

Issue Date: 07 June 2013

7.3.20.Specific Absorption Rate - Wi-Fi 802.11b 2.4 GHz Body-Worn Configuration 1g Power Back-off Disabled Test Summary:

Tissue Volume:	1g
Maximum Measured Level (W/kg):	0.036
Maximum Reported Level (W/kg):	0.050

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0 Temperature Variation in Liquid (°C): 22.5 to 22.5

Results:

Scan number	EUT Position	Channel Number	Meas. Avg Power (dBm)	Max Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
108	Front	6	13.6	15.0	0.028	0.039	1, 2	DBPSK
109	Back	6	13.6	15.0	0.036	0.050	1, 2	DBPSK

Note(s):

- 1. WLAN 802.11b 1Mbps Worst case and most conservative channel from Hotspot mode and used for Body-worn Configuration.
- 2. SAR measurements were performed with the closest edge of the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.

*KDB 248227 - SAR is not required for 802.11g/n channels when the maximum average output power is equal to that measured on the corresponding 802.11b channels.

Page: 60 of 289 UL

Issue Date: 07 June 2013

7.3.21.Specific Absorption Rate - Wi-Fi 802.11a 5.0GHz HT20 Head Configuration 1g Power Back-off Disabled Test Summary:

Tissue Volume:	1g
Maximum Measured Level (W/kg):	0.255
Maximum Reported Level (W/kg):	0.321

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0 Temperature Variation in Liquid (°C): 22.5 to 22.5

Results:

Position	Channel Number	Meas. Avg Power (dBm)	Rated Power (dBm)	Meas. Level (W/kg)	Reported SAR (W/kg)	Note(s)	Mod.
Touch Left	48	9.7	10.7	0.232	0.292	1, 2	BPSK
Tilt Left	48	9.7	10.7	0.255	0.321	1, 2	BPSK
Touch Right	48	9.7	10.7	0.131	0.165	1, 2	BPSK
Tilt Right	48	9.7	10.7	0.149	0.188	1, 2	BPSK
Tilt Left	64	9.5	10.7	0.208	0.274	1, 2	BPSK
Tilt Left	136	9.9	10.7	0.168	0.202	1, 3	BPSK
Tilt Left	157	9.9	10.7	0.124	0.149	1, 2	BPSK
-	Touch Left Tilt Left Touch Right Tilt Right Tilt Left Tilt Left	Touch Left 48 Tilt Left 48 Touch Right 48 Tilt Right 48 Tilt Left 64 Tilt Left 136	(dBm) Touch Left 48 9.7 Tilt Left 48 9.7 Touch Right 48 9.7 Tilt Right 48 9.7 Tilt Left 64 9.5 Tilt Left 136 9.9	(dBm) (dBm) Touch Left 48 9.7 10.7 Tilt Left 48 9.7 10.7 Touch Right 48 9.7 10.7 Tilt Right 48 9.7 10.7 Tilt Left 64 9.5 10.7 Tilt Left 136 9.9 10.7	Position Number (dBm) Power (dBm) (W/kg) Touch Left 48 9.7 10.7 0.232 Tilt Left 48 9.7 10.7 0.255 Touch Right 48 9.7 10.7 0.131 Tilt Right 48 9.7 10.7 0.149 Tilt Left 64 9.5 10.7 0.208 Tilt Left 136 9.9 10.7 0.168	Position Number (dBm) Power (dBm) (W/kg) (W/kg) Fouch Left 48 9.7 10.7 0.232 0.292 Filt Left 48 9.7 10.7 0.255 0.321 Fouch Right 48 9.7 10.7 0.131 0.165 Filt Right 48 9.7 10.7 0.149 0.188 Filt Left 64 9.5 10.7 0.208 0.274 Filt Left 136 9.9 10.7 0.168 0.202	Position Number (dBm) Power (dBm) (W/kg) (W/kg) (W/kg) Touch Left 48 9.7 10.7 0.232 0.292 1, 2 Tilt Left 48 9.7 10.7 0.255 0.321 1, 2 Touch Right 48 9.7 10.7 0.131 0.165 1, 2 Tilt Right 48 9.7 10.7 0.149 0.188 1, 2 Tilt Left 64 9.5 10.7 0.208 0.274 1, 2 Tilt Left 136 9.9 10.7 0.168 0.202 1, 3

Note(s):

- 1. WLAN 802.11a 6Mbps
- 2. For frequency bands with an operating range of < 100 MHz, when the <u>reported SAR</u> for the highest output power channel within is ≤ 0.8 W/kg, SAR for the remaining channels is not required. Per KDB 447498, section 4.3.3
- 3. For frequency bands with an operating range of < 200 MHz, when the <u>reported SAR</u> for the highest output power channel within is ≤ 0.4 W/kg, SAR for the remaining channels is not required. Per KDB 447498, section 4.3.3

Page: 61 of 289 UL

^{*}KDB 248227 - SAR is not required for 802.11n HT20 /HT40 channels as the maximum average output power is less than ¼ dB higher than 802.11a.

Issue Date: 07 June 2013

7.4. Simultaneous Transmission SAR Analysis

Simultaneous transmission analysis of worst cases is shown in the tables below.

Overall Worst Case:

- 1. WWAN+WLAN
- 2. WWAN+WPAN

Reported SAR 1g (W/kg)							
	Maximum						
EUT Position	GPRS850	Wi-Fi	Bluetooth 2.4 GHz	Sum of SAR			
Touch Left	0.920	0.469		1.389			
Front	1.250		0.184	1.434			

Normal Analysis:

Head Conf	iguration 1	g – Worst c	ases meas	urements V	VWAN + WL	.AN	
				Repor	ted SAR 1g ((W/Kg)	
				WWAN		WLAN	Sum of
EUT Position	GSM850	PCS1900	FDD 2	FDD 4	FDD 5	Wi-Fi	WWAN & WLAN
Touch Left	0.920					0.469	1.389
Touch Right	0.887					0.215	1.102
Tilt Left	0.510					0.321	0.831
Tilt Right	0.474					0.188	0.662
Touch Left		0.388				0.469	0.857
Touch Right		0.192				0.215	0.407
Tilt Left		0.057				0.321	0.378
Tilt Right		0.063				0.188	0.251
Touch Left			0.518			0.469	0.986
Touch Right			0.405			0.215	0.620
Tilt Left			0.134			0.321	0.455
Tilt Right			0.121			0.188	0.309
Touch Left				0.517		0.469	0.913
Touch Right				0.368		0.215	0.583
Tilt Left				0.072		0.321	0.393
Tilt Right				0.076		0.188	0.264
Touch Left					0.896	0.469	1.365
Touch Right					0.944	0.215	1.159
Tilt Left					0.530	0.321	0.851
Tilt Right					0.540	0.188	0.728

Page: 62 of 289 UL

Issue Date: 07 June 2013

Simultaneous Transmission SAR Analysis (Continued)

Hotspot Mode Configuration 1g – Worst cases measurements WWAN+WLAN

Hotspot Wode Co					ted SAR 1g							
			WWAN WLAN Sum									
EUT Position	GSM850	PCS1900	UMTS FDD 2	UMTS FDD 4	UMTS FDD 5	Wi-Fi	WWAN & WLAN					
Front	1.250					0.079	1.329					
Back	1.217					0.124	1.341					
Left Hand Side	0.895						0.895					
Right Hand Side	0.718					0.046	0.764					
Bottom	0.192						0.192					
Тор						0.062	0.062					
Front		0.832				0.079	0.911					
Back		0.782				0.124	0.906					
Left Hand Side		0.127					0.127					
Right Hand Side		0.146				0.046	0.192					
Bottom		1.123					1.123					
Тор						0.062	0.062					
Front			0.742			0.079	0.821					
Back			0.782			0.124	0.906					
Left Hand Side			0.107				0.107					
Right Hand Side			0.117			0.046	0.163					
Bottom			1.009				1.009					
Тор						0.062	0.062					
Front				1.212		0.079	1.291					
Back				0.906		0.124	1.030					
Left Hand Side				0.127			0.127					
Right Hand Side				0.067		0.046	0.113					
Bottom				0.797			0.797					
Тор						0.062	0.062					
Front					1.226	0.079	1.305					
Back					1.018	0.124	1.142					
Left Hand Side					0.977		0.977					
Right Hand Side					0.854	0.046	0.900					
Bottom					0.224		0.224					
Тор						0.062	0.062					

Page: 63 of 289 UL

Serial No: UL-SAR-RP91949JD02A V4.0 Issue Date: 07 June 2013

Body-Worn Configuration 1g – Worst cases measurements WWAN+WLAN

			Report	ed SAR 1g	(W/Kg)		
			WWAN			WLAN	Sum of
EUT Position	GSM850	PCS1900	UMTS FDD 2	UMTS FDD 4	UMTS FDD 5	Wi-Fi	WWAN & WLAN
Front	0.963					0.039	1.002
Back	1.063					0.050	1.113
Front		0.458				0.039	0.497
Back		0.499				0.050	0.549
Front			0.675			0.039	0.714
Back			0.735			0.050	0.785
Front				0.704		0.039	0.754
Back				0.466		0.050	0.505
Front					0.801	0.039	0.840
Back					0.730	0.050	0.780

Note(s):

- 1. The sum of <u>reported</u> SAR for WWAN and WLAN does not exceed 1.6W/kg in one of the above cases and hence, the SAR to peak location separation ratio distance is not calculated.
- 2. The highest of 1-g <u>reported</u> SAR value between 2.4 GHz and 5.0 GHz is chosen to determine WWAN+ WLAN worst case measurements.

Page: 64 of 289 UL

Serial No: UL-SAR-RP91949JD02A V4.0 Issue Date: 07 June 2013

Simultaneous Transmission SAR Analysis (continued)

Hotspot Mode Configuration 1g – Worst cases measurements WWAN+WPAN

notopot modo o		Reported SAR 1g (W/Kg) WWAN WPAN Sum of											
			WPAN	Sum of									
EUT Position	GSM850	PCS1900	UMTS FDD 2	UMTS FDD 4	UMTS FDD 5	Bluetooth	WWAN & WPAN						
Front	1.250					0.184	1.434						
Back	1.217					0.184	1.401						
Left Hand Side	0.895						0.895						
Right Hand Side	0.718					0.184	0.902						
Bottom	0.192						0.192						
Тор						0.184	0.184						
Front		0.832				0.184	1.016						
Back		0.782				0.184	0.966						
Left Hand Side		0.127					0.127						
Right Hand Side		0.146				0.184	0.330						
Bottom		1.123					1.123						
Тор						0.184	0.184						
Front			0.742			0.184	0.926						
Back			0.782			0.184	0.966						
Left Hand Side			0.107				0.107						
Right Hand Side			0.117			0.184	0.301						
Bottom			1.009				1.009						
Тор						0.184	0.184						
Front				1.212		0.184	1.396						
Back				0.906		0.184	1.090						
Left Hand Side				0.127			0.127						
Right Hand Side				0.067		0.184	0.251						
Bottom				0.797			0.797						
Тор						0.184	0.184						
Front					1.226	0.184	1.410						
Back					1.018	0.184	1.202						
Left Hand Side					0.977		0.977						
Right Hand Side					0.854	0.184	1.038						
Bottom					0.224		0.224						
Тор						0.184	0.184						

Page: 65 of 289 UL

Issue Date: 07 June 2013

Simultaneous Transmission SAR Analysis (Continued) Body-Worn Configuration 1g – Worst cases measurements WWAN+WPAN

			Reporte	ed SAR 1g	(W/Kg)			
			WWAN			WPAN	Sum of	
EUT Position	GSM850	PCS1900	UMTS FDD 2	UMTS FDD 4	UMTS FDD 5	Bluetooth	WWAN & WPAN	
Front	0.963					0.123	1.086	
Back	1.063					0.123	1.186	
Front		0.458				0.123	0.581	
Back		0.499				0.123	0.622	
Front			0.675			0.123	0.798	
Back			0.735			0.123	0.858	
Front				0.704		0.123	0.827	
Back				0.466		0.123	0.589	
Front					0.801	0.123	0.924	
Back					0.730	0.123	0.853	

Note(s):

- 1. As per FCC KDB publication 447498 D01, for cases where sum of WWAN and WLAN (or WPAN) exceed 1.6W/kg, the SAR to peak location separation ratio distance is calculated as shown below
 - SAR peak location separation ratio (SPLSR) for each antenna pair in each simultaneous transmission configuration is given by $(SAR_1 + SAR_2)^{1.5} / R_1 \le 0.04$ for 1-g, where R_1 is the separation distance between peak SAR locations for the antenna pair in mm.
- 2. The sum of <u>reported</u> SAR for WWAN and WPAN does not exceed 1.6W/kg in any of the above cases and hence, the SAR to peak location separation ratio distance was not calculated.
- 3. Bluetooth estimated SAR result is calculated as per the formula below following FCC KDB publication 447498.
- 4. Separation distance of 10mm was used for hotspot mode and 15mm for body-worn configuration.

When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[√f_(GHz)/x] W/kg for test separation distances ≤ 50 mm;
 where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

10mm Bluetooth estimated SAR level:

Estimated Bluetooth SAR = $(8.91 \text{mW}/10 \text{mm})^*(\sqrt{2.4}/7.5) = 0.184 \text{ W/kg}$

15mm Bluetooth estimated SAR level:

Estimated Bluetooth SAR = $(8.91 \text{mW}/15 \text{mm})^*(\sqrt{2.4}/7.5) = 0.123 \text{ W/kg}$

Page: 66 of 289 UL

Issue Date: 07 June 2013

8. Measurement Uncertainty

No measurement or test can ever be perfect and the imperfections give rise to error of measurement in the results. Consequently, the result of a measurement is only an approximation to the value of the measurand (the specific quantity subject to measurement) and is only complete when accompanied by a statement of the uncertainty of the approximation.

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

The uncertainty of the result may need to be taken into account when interpreting the measurement results.

The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor, such that a confidence level of approximately 95% is maintained. For the purposes of this document "approximately" is interpreted as meaning "effectively" or "for most practical purposes".

Test Name	Confidence Level	Calculated Uncertainty
Specific Absorption Rate-GSM 850/ UMTS FDD 5 Head Configuration 1g	95%	±19.94%
Specific Absorption Rate-GSM / GPRS / EDGE 850 / UMTS FDD 5 Body Configurations 1g	95%	±20.07%
Specific Absorption Rate-UMTS FDD 4 Head Configuration 1g	95%	±18.49%
Specific Absorption Rate- UMTS FDD 4 Body Configuration 1g	95%	±18.27%
Specific Absorption Rate-PCS 1900 / UMTS FDD 2 Head Configuration 1g	95%	±20.72%
Specific Absorption Rate-GSM / GPRS / EDGE 1900 / UMTS FDD 2 Body Configuration 1g	95%	±20.00%
Specific Absorption Rate-Wi-Fi 2450 MHz Head Configuration 1g	95%	±19.47%
Specific Absorption Rate-Wi-Fi 2450 MHz Body Configuration 1g	95%	±19.90%
Specific Absorption Rate-Wi-Fi 5GHz Head Configuration 1g	95%	±20.14%

The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty, the published guidance of the appropriate accreditation body is followed.

Page: 67 of 289 UL

Issue Date: 07 June 2013

8.1. Specific Absorption Rate Uncertainty -GSM 850 / UMTS FDD 5 Head Configuration 1g Standard υi **Probability** Uncertainty Type Source of uncertainty **Divisor** or Ci (1g) Value Value Distribution + u (%) - u (%) υ_{eff} Probe calibration В 6.000 6.000 normal (k=1) 1.0000 1.0000 6.000 6.000 00 В 0.250 1.0000 0.250 0.250 Axial Isotropy 0.250 normal (k=1) 1.0000 ∞ В 1.300 1.300 1.0000 1.0000 1.300 1.300 Hemispherical Isotropy normal (k=1) 00 В Spatial Resolution 0.500 0.500 Rectangular 1.7321 1.0000 0.289 0.289 ∞ В **Boundary Effect** 0.769 1.0000 0.444 0.444 0.769 Rectangular 1.7321 00 В Linearity 0.600 0.600 Rectangular 1.7321 1.0000 0.346 0.346 00 В **Detection Limits** 0.200 0.200 Rectangular 1.7321 1.0000 0.115 0.115 В Readout Electronics 0.160 0.160 normal (k=1) 1.0000 1.0000 0.160 0.160 0.000 1.0000 0.000 0.000 В Response Time 0.000 Rectangular 1.7321 В 1.730 1.0000 0.999 0.999 Integration Time 1.730 Rectangular 1.7321 ∞ R RF Ambient conditions 3.000 3.000 1.7321 1.0000 1.732 1.732 Rectangular ∞ Probe Positioner Mechanical В 4.000 4 000 Rectangular 1.7321 1.0000 2.309 2.309 00 Restrictions Probe Positioning with В 2.850 1.7321 1.0000 1.645 1.645 2 850 Rectangular α regard to Phantom Shell Extrapolation and integration В 5.080 5.080 Rectangular 1.7321 1.0000 2.933 2.933 ∞ / Maximum SAR evaluation 2.400 1.0000 1.0000 Α Test Sample Positioning 2.400 normal (k=1) 2.400 2.400 10 Α **Device Holder uncertainty** 0.154 0.154 normal (k=1) 1.0000 1.0000 0.154 0.154 10 В Phantom Uncertainty 4.000 4.000 Rectangular 1.7321 1.0000 2.309 2.309 00 В Drift of output power 5.000 5.000 Rectangular 1.7321 1.0000 2.887 2.887 ∞ Liquid Conductivity В 5.000 5.000 Rectangular 1.7321 0.6400 1.848 1.848 (target value) Liquid Conductivity 0.6400 Α 4.920 4.920 normal (k=1) 1.0000 3.149 3.149 5 (measured value) Liquid Permittivity В 5.000 5.000 Rectangular 1.7321 0.6000 1.732 1.732 ∞ (target value) Liquid Permittivity Α 4.970 4.970 normal (k=1) 1.0000 0.6000 2.982 2.982 5 (measured value) Combined standard t-distribution 10.17 10.17 >250 uncertainty 19.94 >250 Expanded uncertainty k = 1.9619.94

Page: 68 of 289 UL

Issue Date: 07 June 2013

Туре	Source of uncertainty	. +	-	Probability	Divisor	C _{i (1g)}	Stan Uncer	dard tainty	ს _i or
Type	Course of uncertainty	Value	Value	Distribution	DIVISOR	Oi (ig)	+ u (%)	- u (%)	υ _{eff}
В	Probe calibration	6.000	6.000	normal (k=1)	1.0000	1.0000	6.000	6.000	∞
В	Axial Isotropy	0.250	0.250	normal (k=1)	1.0000	1.0000	0.250	0.250	∞
В	Hemispherical Isotropy	1.300	1.300	normal (k=1)	1.0000	1.0000	1.300	1.300	∞
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	∞
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	∞
В	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	∞
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	×
В	Readout Electronics	0.160	0.160	normal (k=1)	1.0000	1.0000	0.160	0.160	∞
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞
В	Integration Time	1.730	1.730	Rectangular	1.7321	1.0000	0.999	0.999	∞
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	∞
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	∞
В	Extrapolation and integration /Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	∞
Α	Test Sample Positioning	2.900	2.900	normal (k=1)	1.0000	1.0000	2.900	2.900	10
Α	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	∞
Α	Liquid Conductivity (measured value)	4.690	4.690	normal (k=1)	1.0000	0.6400	3.002	3.002	5
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	∞
Α	Liquid Permittivity (measured value)	4.860	4.860	normal (k=1)	1.0000	0.6000	2.916	2.916	5
	Combined standard uncertainty			t-distribution			10.24	10.24	>250
	Expanded uncertainty			k = 1.96			20.07	20.07	>250

Page: 69 of 289 UL

Version 4.0 Issue Date: 07 June 2013

8.3. 5	8.3. Specific Absorption Rate-UMTS FDD 4 Head Configuration 1g											
Туре	Source of uncertainty	+ Value	- Value	Probability Distribution	Divisor	C i (1g)	Stan Uncer	tainty	ບ _i or			
		ruiuo	raido	Diot. ibation			+ u (%)	- u (%)	veff			
В	Probe calibration	6.000	6.000	normal (k=1)	1.0000	1.0000	6.000	6.000	∞			
В	Axial Isotropy	0.250	0.250	normal (k=1)	1.0000	1.0000	0.250	0.250	∞			
В	Hemispherical Isotropy	1.300	1.300	normal (k=1)	1.0000	1.0000	1.300	1.300	∞			
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	∞			
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	∞			
В	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	∞			
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	∞			
В	Readout Electronics	0.160	0.160	normal (k=1)	1.0000	1.0000	0.160	0.160	∞			
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞			
В	Integration Time	1.730	1.730	Rectangular	1.7321	1.0000	0.999	0.999	∞			
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	∞			
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞			
В	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	∞			
В	Extrapolation and integration/ Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	∞			
Α	Test Sample Positioning	1.700	1.700	normal (k=1)	1.0000	1.0000	1.700	1.700	10			
А	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10			
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞			
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞			
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.4300	1.241	1.241	∞			
Α	Liquid Conductivity (measured value)	4.980	4.980	normal (k=1)	1.0000	0.4300	2.141	2.141	5			
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.4900	1.415	1.415	∞			
Α	Liquid Permittivity (measured value)	4.770	4.770	normal (k=1)	1.0000	0.4900	2.337	2.337	5			
	Combined standard uncertainty			t-distribution			9.43	9.43	>500			
	Expanded uncertainty			k = 1.96			18.49	18.49	>500			

Page: 70 of 289 UL

Issue Date: 07 June 2013

Туре	Source of uncertainty	+ Value	- Value	Probability Distribution	Divisor	C _{i (1g)}	Stan Uncer	dard tainty	ບ _i or
		value	value	Distribution		,	+ u (%)	- u (%)	veff
В	Probe calibration	6.000	6.000	normal (k=1)	1.0000	1.0000	6.000	6.000	∞
В	Axial Isotropy	0.250	0.250	normal (k=1)	1.0000	1.0000	0.250	0.250	∞
В	Hemispherical Isotropy	1.300	1.300	normal (k=1)	1.0000	1.0000	1.300	1.300	∞
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	∞
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	∞
В	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	∞
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	∞
В	Readout Electronics	0.160	0.160	normal (k=1)	1.0000	1.0000	0.160	0.160	∞
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞
В	Integration Time	1.730	1.730	Rectangular	1.7321	1.0000	0.999	0.999	×
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	∞
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	∞
В	Extrapolation and integration/ Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	∞
Α	Test Sample Positioning	1.000	1.000	normal (k=1)	1.0000	1.0000	1.000	1.000	10
Α	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.4300	1.241	1.241	∞
Α	Liquid Conductivity (measured value)	4.990	4.990	normal (k=1)	1.0000	0.4300	2.146	2.146	5
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.4900	1.415	1.415	∞
Α	Liquid Permittivity (measured value)	4.660	4.660	normal (k=1)	1.0000	0.4900	2.283	2.283	5
	Combined standard uncertainty			t-distribution			9.32	9.32	>50
	Expanded uncertainty			k = 1.96			18.27	18.27	>50

Page: 71 of 289 UL

Issue Date: 07 June 2013

8.5. 5	Specific Absorption Rate	-PCS 19	900 / UN	ITS FDD 2 He	ad Confi	guratio	n 1g		
Туре	Source of uncertainty	+ Value	- Value	Probability Distribution	Divisor	C _{i (1g)}	Stan Uncer	dard tainty	Ն _i or
		value	value	Distribution			+ u (%)	- u (%)	Veff
В	Probe calibration	6.000	6.000	normal (k=1)	1.0000	1.0000	6.000	6.000	∞
В	Axial Isotropy	0.250	0.250	normal (k=1)	1.0000	1.0000	0.250	0.250	∞
В	Hemispherical Isotropy	1.300	1.300	normal (k=1)	1.0000	1.0000	1.300	1.300	∞
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	∞
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	∞
В	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	∞
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	∞
В	Readout Electronics	0.160	0.160	normal (k=1)	1.0000	1.0000	0.160	0.160	×
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞
В	Integration Time	1.730	1.730	Rectangular	1.7321	1.0000	0.999	0.999	∞
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	∞
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Probe Positioning with Regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	∞
В	Extrapolation and integration / Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	∞
Α	Test Sample Positioning	3.800	3.800	normal (k=1)	1.0000	1.0000	3.800	3.800	10
Α	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	∞
Α	Liquid Conductivity (measured value)	4.900	4.900	normal (k=1)	1.0000	0.6400	3.136	3.136	5
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	∞
Α	Liquid Permittivity (measured value)	4.880	4.880	normal (k=1)	1.0000	0.6000	2.928	2.928	5
	Combined standard uncertainty			t-distribution			10.57	10.57	>200
	Expanded uncertainty			k = 1.96			20.72	20.72	>200

Page: 72 of 289 UL

Serial No: UL-SAR-RP91949JD02A V4.0

Issue Date: 07 June 2013

Туре	Source of uncertainty	+	- V-l	Probability	Divisor	C _{i (1g)}	Stan Uncer		ს _i or
71	,	Value	Value	Distribution		(-9/	+ u (%)	- u (%)	υ _{eff}
В	Probe calibration	6.000	6.000	normal (k=1)	1.0000	1.0000	6.000	6.000	∞
В	Axial Isotropy	0.250	0.250	normal (k=1)	1.0000	1.0000	0.250	0.250	∞
В	Hemispherical Isotropy	1.300	1.300	normal (k=1)	1.0000	1.0000	1.300	1.300	×
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	∞
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	∞
В	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	∞
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	∞
В	Readout Electronics	0.160	0.160	normal (k=1)	1.0000	1.0000	0.160	0.160	∞
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞
В	Integration Time	1.730	1.730	Rectangular	1.7321	1.0000	0.999	0.999	∞
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	∞
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	∞
В	Extrapolation and integration / Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	∞
Α	Test Sample Positioning	2.500	2.500	normal (k=1)	1.0000	1.0000	2.500	2.500	10
Α	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	∞
Α	Liquid Conductivity (measured value)	4.940	4.940	normal (k=1)	1.0000	0.6400	3.162	3.162	5
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	∞
Α	Liquid Permittivity (measured value)	4.980	4.980	normal (k=1)	1.0000	0.6000	2.988	2.988	5
	Combined standard uncertainty			t-distribution			10.20	10.20	>25
	Expanded uncertainty			k = 1.96			20.00	20.00	>25

Page: 73 of 289 UL

Serial No: UL-SAR-RP91949JD02A V4.0

8.7. Specific Absorption Rate-Wi-Fi 2450 MHz Head Configuration 1g									
Туре	Source of uncertainty	+ Value	- Value	Probability Distribution	Divisor	C _{i (1g)}		tainty	ບ _i or
	5						+ u (%)	- u (%)	υ _{eff}
В	Probe calibration	6.000	6.000	normal (k=1)	1.0000	1.0000	6.000	6.000	∞
В	Axial Isotropy	0.250	0.250	normal (k=1)	1.0000	1.0000	0.250	0.250	×
В	Hemispherical Isotropy	1.300	1.300	normal (k=1)	1.0000	1.0000	1.300	1.300	∞
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	∞
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	∞
В	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	∞
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	∞
В	Readout Electronics	0.160	0.160	normal (k=1)	1.0000	1.0000	0.160	0.160	oc
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞
В	Integration Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	∞
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	∞
В	Extrapolation and integration / Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	∞
Α	Test Sample Positioning	2.000	2.000	normal (k=1)	1.0000	1.0000	2.000	2.000	10
Α	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	∞
Α	Liquid Conductivity (measured value)	4.410	4.410	normal (k=1)	1.0000	0.6400	2.822	2.822	5
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	∞
Α	Liquid Permittivity (measured value)	4.930	4.930	normal (k=1)	1.0000	0.6000	2.958	2.958	5
	Combined standard uncertainty			t-distribution			9.93	9.93	>300
	Expanded uncertainty			k = 1.96			19.47	19.47	>300

Page: 74 of 289 UL

Serial No: UL-SAR-RP91949JD02A V4.0

Туре	Source of uncertainty	+ Value	- Value	Probability Distribution	Divisor	C _{i (1g)}	Stan Uncer		ນ _i or
	·	value	value	Distribution		```	+ u (%)	- u (%)	υef
В	Probe calibration	6.000	6.000	normal (k=1)	1.0000	1.0000	6.000	6.000	∞
В	Axial Isotropy	0.250	0.250	normal (k=1)	1.0000	1.0000	0.250	0.250	∞
В	Hemispherical Isotropy	1.300	1.300	normal (k=1)	1.0000	1.0000	1.300	1.300	∞
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	∞
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	∞
В	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	∞
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	∞
В	Readout Electronics	0.160	0.160	normal (k=1)	1.0000	1.0000	0.160	0.160	∞
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞
В	Integration Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	×
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	œ
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	œ
В	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	œ
В	Extrapolation and integration / Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	œ
Α	Test Sample Positioning	2.570	2.570	normal (k=1)	1.0000	1.0000	2.570	2.570	10
Α	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	œ
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	oc
Α	Liquid Conductivity (measured value)	4.900	4.900	normal (k=1)	1.0000	0.6400	3.136	3.136	5
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	œ
Α	Liquid Permittivity (measured value)	4.920	4.920	normal (k=1)	1.0000	0.6000	2.952	2.952	5
	Combined standard uncertainty			t-distribution			10.15	10.15	>2
	Expanded uncertainty			k = 1.96			19.90	19.90	>2

Page: 75 of 289 UL

8.9. 8	Specific Absorption Rate	-Wi-Fi 5	GHz He	ead Configura	ation 1g				
Туре	Source of uncertainty	+ Value	- Value	Probability Distribution	Divisor	C _{i (1g)}	Stan Uncer	tainty	ა _i or
		Value	value	Distribution			+ u (%)	- u (%)	veff
В	Probe calibration	6.550	6.550	normal (k=1)	1.0000	1.0000	6.550	6.550	∞
В	Axial Isotropy	0.250	0.250	normal (k=1)	1.0000	1.0000	0.250	0.250	∞
В	Hemispherical Isotropy	1.300	1.300	normal (k=1)	1.0000	1.0000	1.300	1.300	∞
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	∞
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	∞
В	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	∞
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	∞
В	Readout Electronics	0.160	0.160	normal (k=1)	1.0000	1.0000	0.160	0.160	∞
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	oc
В	Integration Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	∞
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	∞
В	Extrapolation and integration / Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	×
Α	Test Sample Positioning	2.540	2.540	normal (k=1)	1.0000	1.0000	2.540	2.540	10
Α	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	∞
Α	Liquid Conductivity (measured value)	4.690	4.690	normal (k=1)	1.0000	0.6400	3.002	3.002	5
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	∞
Α	Liquid Permittivity (measured value)	3.830	3.830	normal (k=1)	1.0000	0.6000	2.298	2.298	5
	Combined standard uncertainty			t-distribution			10.28	10.28	>400
	Expanded uncertainty			k = 1.96			20.14	20.14	>400

Page: 76 of 289 UL

UL No.	Instrument	Manufacturer	Type No.	Serial No.	Date Last Calibrated	Cal. Interval (Months
A034	Narda 20W Termination	Narda	374BNM	8706	Calibrated as part of system	-
A1097	SMA Directional Coupler	MiDISCO	MDC6223- 30	None	Calibrated as part of system	-
A1137	3Db Attenuator	Narda	779	04690	Calibrated as part of system	-
A1328	Handset Positioner	Schmid & Partner Engineering AG	Modification	SD 000 H01 DA	-	-
A1182	Handset Positioner	Schmid & Partner Engineering AG	V3.0	None	-	-
A2111	Data Acquisition Electronics	Schmid & Partner Engineering AG	DAE3	432	02 May 2012	12
A2110	Data Acquisition Electronics	Schmid & Partner Engineering AG	DAE3	431	20 Sept 2012	12
A1234	Data Acquisition Electronics	Schmid & Partner Engineering AG	DAE3	450	22 Jan 2013	12
A2077	Probe	Schmid & Partner Engineering AG	EX3 DV4	3814	24 Sep 2012	12
A2243	Probe	Schmid & Partner Engineering AG	ES3DV3	3304	31 Aug 2012	12
A2113	Probe	Schmid & Partner Engineering AG	ET3 DV6	1587	11 May 2012	12
A1185	Probe	Schmid & Partner Engineering AG	ET3 DV6	1528	26 Jul 2012	12
A2112	Probe	Schmid & Partner Engineering AG	ET3 DV6	1586	22 April 2013	12
A2201	900 MHz Dipole Kit	Schmid & Partner Engineering AG	D900V2	035	16 Aug 2012	12
A1190	1800 MHz Dipole Kit	Schmid & Partner Engineering AG	D1800V2	264	15 Aug 2012	12
A2200	1900 MHz Dipole Kit	Schmid & Partner Engineering AG	D1900V2	537	14 Aug 2012	12
A2202	2440 MHz Dipole Kit	Schmid & Partner Engineering AG	D2440V2	701	13 Aug 2012	12
A1377	5.0 GHz Dipole Kit	Schmid & Partner Engineering AG	D5GHzV2	1016	20 Feb 2013	12

Page: 77 of 289 UL

Serial No: UL-SAR-RP91949JD02A V4.0

Issue Date: 07 June 2013

Cal. Date Last Serial No. UL No. Instrument Manufacturer Type No. Interval Calibrated (Months) zhl-42w Calibrated as A1497 **Amplifier** Mini-Circuits e020105 (sma) part of system SAM Schmid & Partner Calibrated A1566 SAM Phantom TP-1207 Engineering AG (Site 56) before use Schmid & Partner SAM Calibrated A1238 SAM Phantom TP-1192 Engineering AG before use (Site 56) SAM Schmid & Partner Calibrated A2125 SAM Phantom TP-1031 Engineering AG before use (Site 57) Calibrated 2mm Oval Schmid & Partner Eli5 A2252 1177 Phantom Engineering AG (Site 57) before use Schmid & Partner SAM Calibrated A2124 SAM Phantom TP-1020 Engineering AG before use (Site 58) SAM Schmid & Partner Calibrated A2255 SAM Phantom TP-1193 Engineering AG before use (Site 58) Calibrated as A215 20 Db Attenuator Narda 766-20 9402 part of system A1531 Antenna **AARONIA AG** 7025 02458 9453C90B FA2263 Digital Camera PL211 Samsung 607487L Agilent M1015 Network Analyser 8753ES US39172406 09 Oct 2012 12 Technologies Rosenberger FA147A Calibrated as MICRO-C1145 Cable 41843-1 F003003030 part of system COAX Rosenberger FA147A Calibrated as C1146 Cable 41752-1 MICRO-COAX F030003030 part of system Robot Power Schmid & Partner Calibrated G0528 DASY4 None Engineering AG before use Supply Robot Power Schmid & Partner Calibrated GO591 DASY4 None Engineering AG Supply before use Robot Power Schmid & Partner Calibrated G0592 DASY53 None Engineering AG before use Supply Calibrated **PSU** G087 Thurlby Thandar CPX200 100701 before use F00/SD8 Calibrated Robot Arm M1047 Staubli **RX908 L** before use 9A1/A/01 F01/5J8 Calibrated M1653 Robot Arm Staubli **RX908 L** before use 6A1/C/01 F12/5MZ7 Calibrated M1680 Robot Arm Staubli TX60 L before use A1/A/01 Internal Agilent Checked M1159 Signal Generator E8241A US42110332 4 Technologies 10 Dec 2012 M1647 Signal Generator **Hewlett Packward** 8648C 3537A01598 01 Jun 2012 12

Page: 78 of 289 UL

Serial No: UL-SAR-RP91949JD02A V4.0 Issue Date: 07 June 2013

UL No.	Instrument	Manufacturer	Type No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
M1071	Spectrum Analyzer	Agilent	HP8590E	3647U00514	(Monitoring use only)	-
M1270	Digital Thermometer	RS	N/A	N/A	Internal Checked 13 May 2012	12
M1023	Dual Channel Power Meter	R&S	NRVD	863715/030	18 July 2012	12
S256	SAR Lab	UL	Site 56	N/A	Calibrated before use	-
S512	SAR Lab	UL	Site 57	N/A	Calibrated before use	-
S513	SAR Lab	UL	Site 58	N/A	Calibrated before use	-

Note:

All the assets were in calibration during the course of testing.

Page: 79 of 289 UL

Serial No: UL-SAR-RP91949JD02A V4.0

4.0 Issue Date: 07 June 2013

A.1.1. Calibration Certificates

This section contains the calibration certificates and data for the Probe(s) and Dipole(s) used, which are not included in the total number of pages for this report.

Page: 80 of 289 UL

Checked by A Just DATE: 26-SEPT-2012

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

A2077

Accreditation No.: SCS 108

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

RFI

Certificate No: EX3-3814_Sep12

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3814

Calibration procedure(s)

QA CAL-01.v8, QA CAL-14.v3, QA CAL-23.v4, QA CAL-25.v4

Calibration procedure for dosimetric E-field probes

Calibration date:

September 24, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B GB41293874		29-Mar-12 (No. 217-01508)	Apr-13
Power sensor E4412A	MY41498087	29-Mar-12 (No. 217-01508)	Apr-13
Reference 3 dB Attenuator	SN: S5054 (3c)	27-Mar-12 (No. 217-01531)	Apr-13
Reference 20 dB Attenuator	SN: S5086 (20b)	27-Mar-12 (No. 217-01529)	Apr-13
Reference 30 dB Attenuator	SN: S5129 (30b)	27-Mar-12 (No. 217-01532)	Apr-13
Reference Probe ES3DV2	SN: 3013	29-Dec-11 (No. ES3-3013_Dec11)	Dec-12
DAE4	SN: 660	20-Jun-12 (No. DAE4-660_Jun12)	Jun-13
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753F	US37390585	18-Oct-01 (in house check Oct-11)	In house check: Oct-12

Calibrated by:

Signature

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: September 24, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3814_Sep12

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal

A. B. C modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3814_Sep12 Page 2 of 11

Probe EX3DV4

SN:3814

Manufactured:

September 2, 2011

Calibrated:

September 24, 2012

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3814

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	0.53	0.50	0.44	± 10.1 %
DCP (mV) ^B	99.9	93.7	98.7	

Modulation Calibration Parameters

UID	Communication System Name	PAR		Α	В	С	VR	Unc [⊨]
		1		dB	dB	dB	mV	(k=2)
0	CW	0.00	Х	0.00	0.00	1.00	172.6	±3.0 %
			Y	0.00	0.00	1.00	154.1	
			Z	0.00	0.00	1.00	144.1	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^B Numerical linearization parameter: uncertainty not required.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3814

Calibration Parameter Determined in Head Tissue Simulating Media

					_			
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
1450	40.5	1.20	8.56	8.56	8.56	0.19	2.04	± 12.0 %
2450	39.2	1.80	6.89	6.89	6.89	0.33	0.97	± 12.0 %
2600	39.0	1.96	6.81	6.81	6.81	0.34	1.00	± 12.0 %
5200	36.0	4.66	5.06	5.06	5.06	0.42	1.80	± 13.1 %
5300	35.9	4.76	4.73	4.73	4.73	0.42	1.80	± 13.1 %
5500	35.6	4.96	4.54	4.54	4.54	0.45	1.80	± 13.1 %
5600	35.5	5.07	4.26	4.26	4.26	0.50	1.80	± 13.1 %
5800	35.3	5.27	4.50	4.50	4.50	0.45	1.80	± 13.1 %

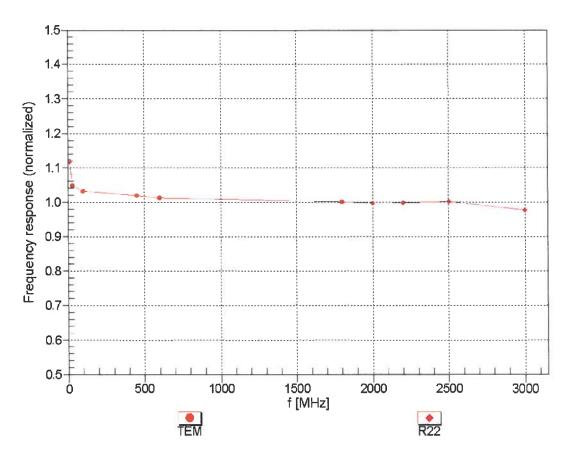
Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

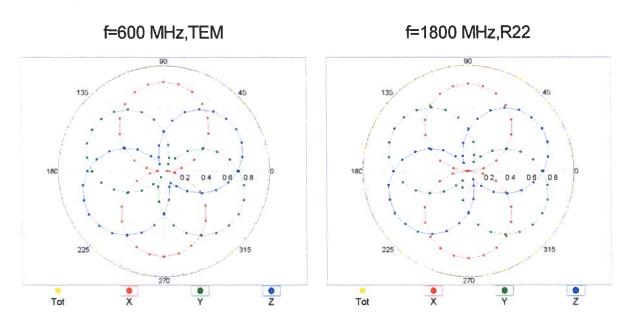
DASY/EASY - Parameters of Probe: EX3DV4 - SN:3814

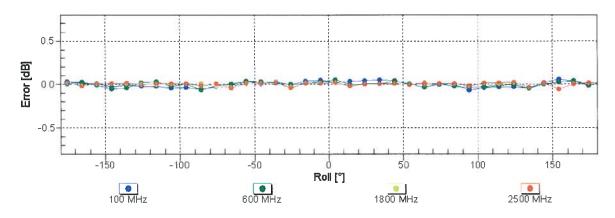
Calibration Parameter Determined in Body Tissue Simulating Media


			-		_			
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
1450	54.0	1.30	8.26	8.26	8.26	0.23	1.40	± 12.0 %
2450	52.7	1.95	7.41	7.41	7.41	0.80	0.66	± 12.0 %
2600	52.5	2.16	7.08	7.08	7.08	0.79	0.61	± 12.0 %
3700	51.0	3.55	6.27	6.27	6.27	0.22	2.24	± 13.1 %
5200	49.0	5.30	4.39	4.39	4.39	0.52	1.90	± 13.1 %
5300	48.9	5.42	4.11	4.11	4.11	0.55	1.90	± 13.1 %
5500	48.6	5.65	4.02	4.02	4.02	0.52	1.90	± 13.1 %
5600	48.5	5.77	3.71	3.71	3.71	0.60	1.90	± 13.1 %
5800	48.2	6.00	3.97	3.97	3.97	0.60	1.90	± 13.1 %

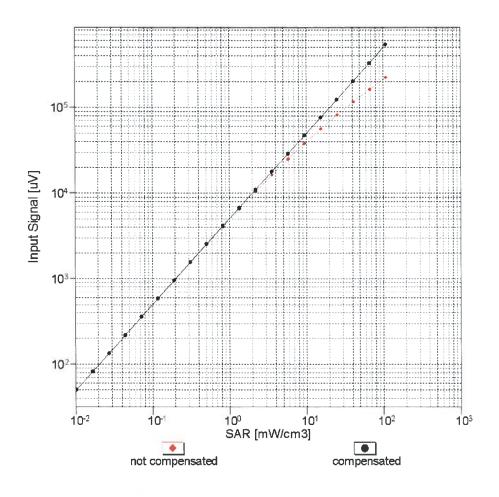
Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

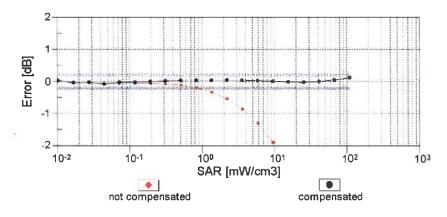
F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.


September 24, 2012 EX3DV4-SN:3814

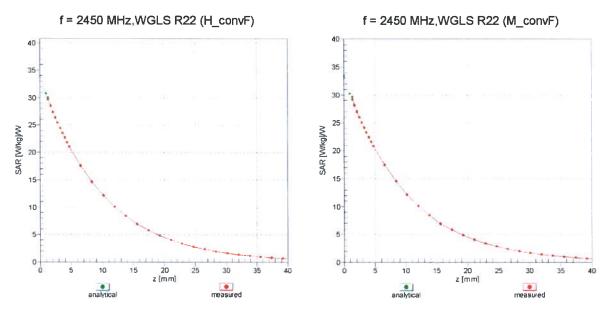

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

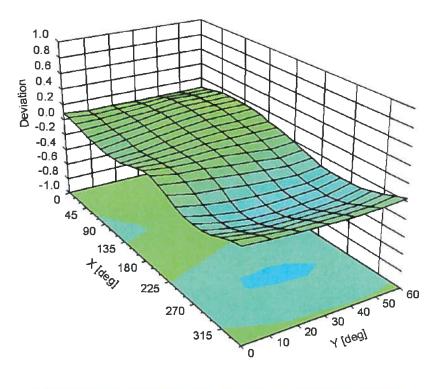
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

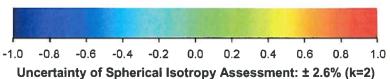

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)




Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

EX3DV4-SN:3814

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3814

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-65.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Theehed by RB DATE: 18-09-2012

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

RFI

Accreditation No.: SCS 108

Certificate No: ES3-3304_Aug12

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3304

Calibration procedure(s)

QA CAL-01.v8, QA CAL-23.v4, QA CAL-25.v4 Calibration procedure for dosimetric E-field probes

Calibration date:

August 31, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	andards ID Cal Date (Certificate No.)		Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-12 (No. 217-01508)	Apr-13
Power sensor E4412A	MY41498087	29-Mar-12 (No. 217-01508)	Apr-13
Reference 3 dB Attenuator	SN: S5054 (3c)	27-Mar-12 (No. 217-01531)	Apr-13
Reference 20 dB Attenuator	SN: S5086 (20b)	27-Mar-12 (No. 217-01529)	Apr-13
Reference 30 dB Attenuator	SN: S5129 (30b)	27-Mar-12 (No. 217-01532)	Apr-13
Reference Probe ES3DV2	SN: 3013	29-Dec-11 (No. ES3-3013_Dec11)	Dec-12
DAE4	SN: 660	20-Jun-12 (No. DAE4-660_Jun12)	Jun-13
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-11)	In house check: Oct-12

Calibrated by:

Name
Function
Signature
Laboratory Technician

Approved by:

Katja Pokovic
Technical Manager

Issued: September 3, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ES3-3304_Aug12

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3304_Aug12 Page 2 of 11

Probe ES3DV3

SN:3304

Manufactured: August 27, 2010

Calibrated:

August 31, 2012

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ES3-3304_Aug12 Page 3 of 11

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3304

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.14	1.33	1.33	± 10.1 %
DCP (mV) ^B	104.7	101.1	103.7	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc [⊨] (k=2)
0	CW	0.00	X	0.00	0.00	1.00	146.4	±3.8 %
			Υ	0.00	0.00	1.00	159.8	
			Z	0.00	0.00	1.00	158.8	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^B Numerical linearization parameter: uncertainty not required.

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3304

Calibration Parameter Determined in Head Tissue Simulating Media

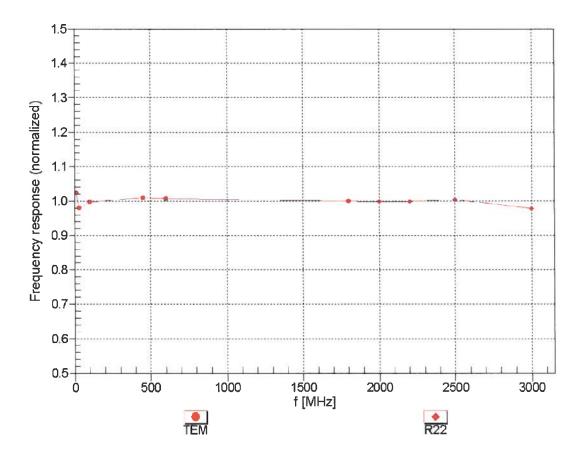
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	41.9	0.89	6.44	6.44	6.44	0.29	1.92	± 12.0 %
835	41.5	0.90	6.17	6.17	6.17	0.27	1.96	± 12.0 %
900	41.5	0.97	6.09	6.09	6.09	0.33	1.75	± 12.0 %
1750	40.1	1.37	5.47	5.47	5.47	0.61	1.36	± 12.0 %
1900	40.0	1.40	5.24	5.24	5.24	0.80	1.18	± 12.0 %
2100	39.8	1.49	5.24	5.24	5.24	0.80	1.16	± 12.0 %
2450	39.2	1.80	4.59	4.59	4.59	0.78	1.22	± 12.0 %
2600	39.0	1.96	4.40	4.40	4.40	0.75	1.28	± 12.0 %

^C Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

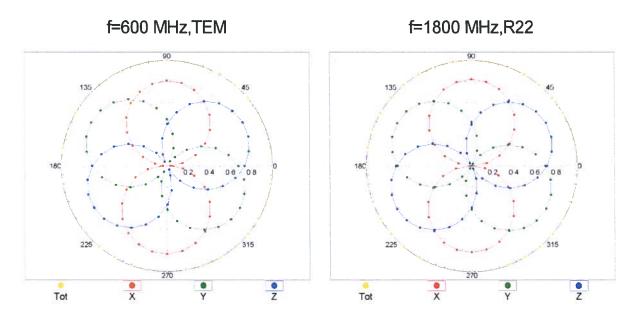
^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

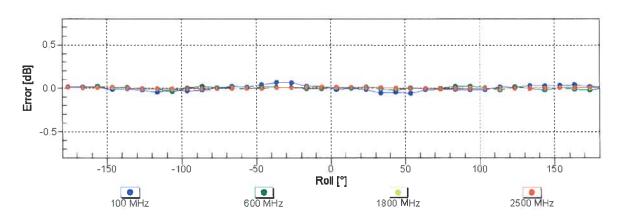
DASY/EASY - Parameters of Probe: ES3DV3 - SN:3304


Calibration Parameter Determined in Body Tissue Simulating Media

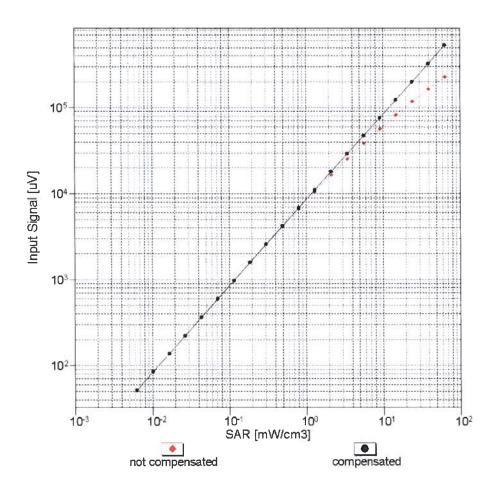
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	55.5	0.96	6.25	6.25	6.25	0.58	1.30	± 12.0 %
835	55.2	0.97	6.13	6.13	6.13	0.60	1.32	± 12.0 %
900	55.0	1.05	6.11	6.11	6.11	0.80	1.18	± 12.0 %
1750	53.4	1.49	5.15	5.15	5.15	0.45	1.78	± 12.0 %
1900	53.3	1.52	4.88	4.88	4.88	0.70	1.35	± 12.0 %
2100	53.2	1.62	4.94	4.94	4.94	0.64	1.43	± 12.0 %
2450	52.7	1.95	4.32	4.32	4.32	0.74	1.09	± 12.0 %
2600	52.5	2.16	4.16	4.16	4.16	0.68	0.99	± 12.0 %

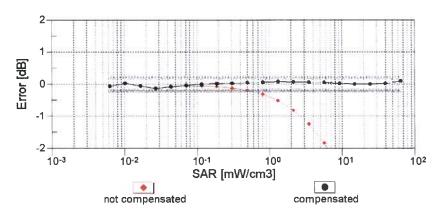
Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.


F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

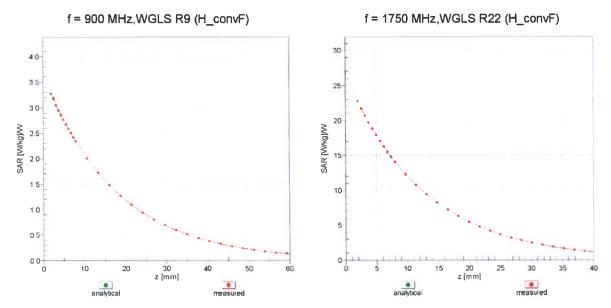

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

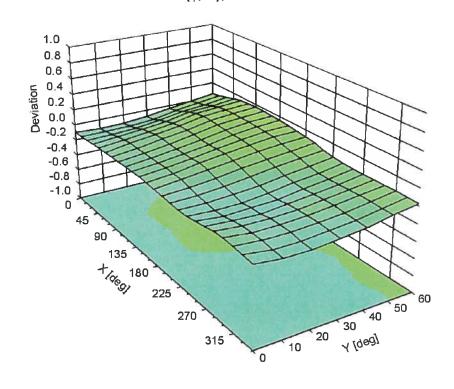
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

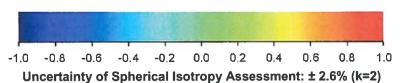

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)




Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (ϕ , ϑ), f = 900 MHz

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3304

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	33.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

17-May-2012

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Callbration Service**

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

RFI

ASSET A2113

Certificate No: ET3-1587_May12

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object

ET3DV6 - SN:1587

Calibration procedure(s)

QA CAL-01.v8, QA CAL-23.v4, QA CAL-25.v4 Calibration procedure for dosimetric E-field probes

Calibration date:

May 11, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	TID	Cal Date (Certificate No.)	Scheduled Calibration	
<u> </u>		29-Mar-12 (No. 217-01508)		
Power meter E4419B	Power meter E4419B GB41293874		Apr-13	
Power sensor E4412A	MY41498087	29-Mar-12 (No. 217-01508)	Apr-13	
Reference 3 dB Attenuator	SN: S5054 (3c)	27-Mar-12 (No. 217-01531)	Apr-13	
Reference 20 dB Attenuator	SN: S5086 (20b)	27-Mar-12 (No. 217-01529)	Apr-13	
Reference 30 dB Attenuator	SN: S5129 (30b)	27-Mar-12 (No. 217-01532)	Apr-13	
Reference Probe ES3DV2	SN: 3013	29-Dec-11 (No. ES3-3013_Dec11)	Dec-12	
DAE4	SN: 660	10-Jan-12 (No. DAE4-660_Jan12)	Jan-13	
Secondary Standards	ID	Check Date (in house)	Scheduled Check	
RF generator HP 8648C US3642U01700		4-Aug-99 (in house check Apr-11)	In house check: Apr-13	
Network Analyzer HP 8753E US37390585		18-Oct-01 (in house check Oct-11)	In house check: Oct-12	

Signature **Function** Calibrated by: Claudio Leubler **Laboratory Technician** Approved by: Katja Pokovic Technical Manager

Issued: May 11, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizlo svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization ϕ ϕ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1587_May12 Page 2 of 11

ET3DV6 - SN:1587 May 11, 2012

Probe ET3DV6

SN:1587

Manufactured:

May 7, 2001

Calibrated:

May 11, 2012

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

ET3DV6- SN:1587 May 11, 2012

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1587

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	2.14	1.92	1.79	± 10.1 %
DCP (mV) ^B	99.0	97.5	99.1	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
0	cw	0.00	X	0.00	0.00	1.00	119.0	±2.7 %
			Υ	0.00	0.00	1.00	114.6	
			Z	0.00	0.00	1.00	111.6	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

^{**} In a uncertainties of Norma, 1,2 do not anset the Language anset and the uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value,

ET3DV6- SN:1587 May 11, 2012

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1587

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
835	41.5	0.90	6.33	6.33	6.33	0.24	3.00	± 12.0 %
900	41.5	0.97	6.18	6.18	6.18	0.28	3.00	± 12.0 %
1750	40.1	1.37	5.47	5.47	5.47	0.58	2.35	± 12.0 %
1900	40.0	1.40	5.18	5.18	5.18	0.80	1.68	± 12.0 %
2450	39.2	1.80	4.52	4.52	4.52	0.80	1.95	± 12.0 %

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

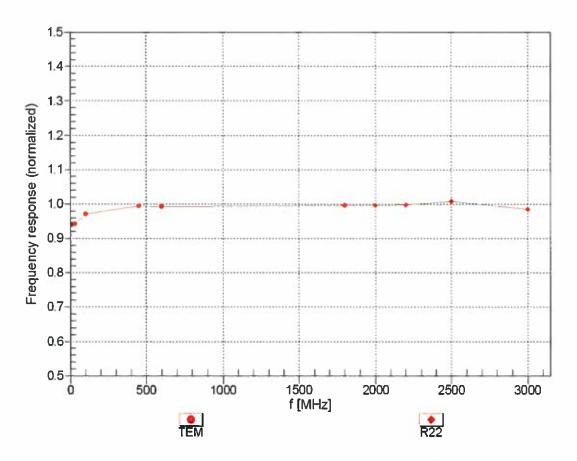
F At frequencies below 3 GHz, the validity of tissue parameters (c and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

^{*} At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

ET3DV6- SN:1587 May 11, 2012

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1587

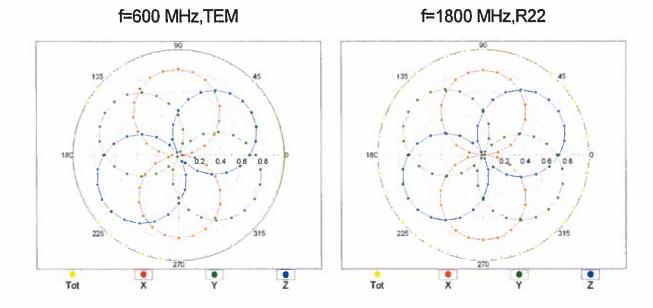
Calibration Parameter Determined in Body Tissue Simulating Media

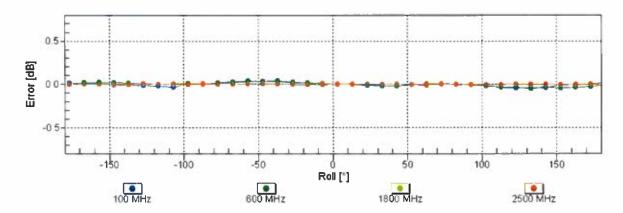

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
835	55.2	0.97	6.28	6.28	6.28	0.30	3.00	± 12.0 %
900	55.0	1.05	6.26	6.26	6.26	0.37	2.56	± 12.0 %
1750	53.4	1.49	4.92	4.92	4.92	0.74	2.18	± 12.0 %
1900	53.3	1.52	4.69	4.69	4.69	0.77	2.38	± 12.0 %
2450	52.7	1.95	4.13	4.13	4.13	0.80	2.02	± 12.0 %

Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

At frequencies below 3 GHz, the validity of tissue parameters (c and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

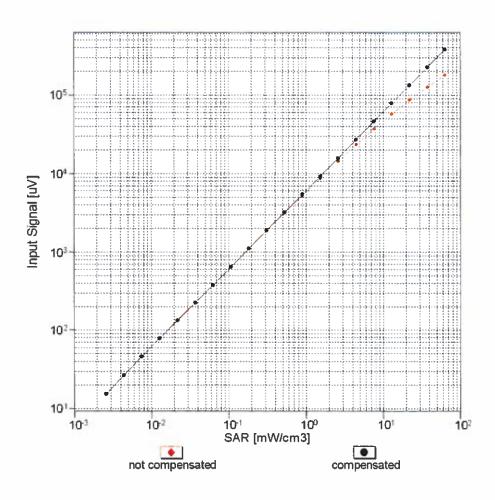

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

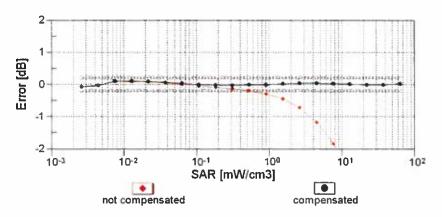


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

ET3DV6-SN:1587 May 11, 2012

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

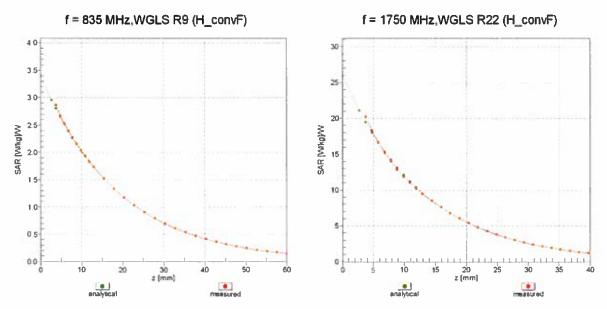


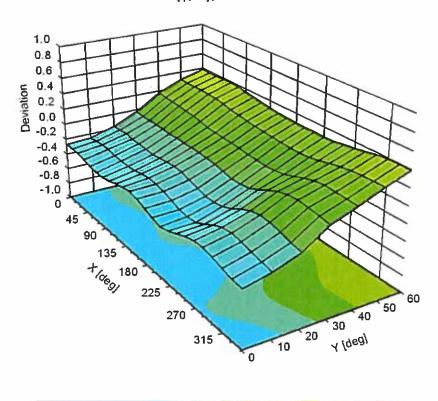


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

ET3DV6- SN:1587 May 11, 2012

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)




Uncertainty of Linearity Assessment: ± 0.6% (k=2)

ET3DV6- SN:1587 May 11, 2012

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

ET3DV6- SN:1587 May 11, 2012

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1587

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	72.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	enabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	6.8 mm
Probe Tip to Sensor X Calibration Point	2.7 mm
Probe Tip to Sensor Y Calibration Point	2.7 mm
Probe Tip to Sensor Z Calibration Point	2.7 mm
Recommended Measurement Distance from Surface	4 mm

Certificate No: ET3-1587_May12 Page 11 of 11

fiset: A1185

Calibration Laboratory of Schmid & Partner **Engineering AG**

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

RFI

Accreditation No.: SCS 108

Certificate No: ET3-1528_Jul12

CALIBRATION CERTIFICATE

Object

ET3DV6 - SN:1528

Calibration procedure(s)

QA CAL-01.v8, QA CAL-12.v7, QA CAL-23.v4, QA CAL-25.v4

Calibration procedure for dosimetric E-field probes

Calibration date:

July 26, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate,

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-12 (No. 217-01508)	Apr-13
Power sensor E4412A	MY41498087	29-Mar-12 (No. 217-01508)	Apr-13
Reference 3 dB Attenuator	SN: S5054 (3c)	27-Mar-12 (No. 217-01531)	Apr-13
Reference 20 dB Attenuator	SN: S5086 (20b)	27-Mar-12 (No. 217-01529)	Apr-13
Reference 30 dB Attenuator	SN: S5129 (30b)	27-Mar-12 (No. 217-01532)	Apr-13
Reference Probe ES3DV2	SN: 3013	29-Dec-11 (No. ES3-3013_Dec11)	Dec-12
DAE4	SN: 660	20-Jun-12 (No. DAE4-660_Jun12)	Jun-13
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-11)	In house check: Oct-12

Name Function Signature Laboratory Technician Calibrated by: Jeton Kastrati Katja Pokovic **Technical Manager** Approved by:

Issued: July 26, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ET3-1528_Jul12

Page 1 of 11

Calibration Laboratory of Schmid & Partner **Engineering AG**

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid TSL NORMx,y,z sensitivity in free space

sensitivity in TSL / NORMx,y,z ConvF DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters A. B. C

φ rotation around probe axis Polarization φ

9 rotation around an axis that is in the plane normal to probe axis (at measurement center), Polarization 9

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1. "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- *NORMx,y,z:* Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF).
- $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx.v.z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Page 2 of 11 Certificate No: ET3-1528_Jul12

Probe ET3DV6

SN:1528

Manufactured:

March 21, 2000

Calibrated:

July 26, 2012

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1528

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.45	1.86	1.61	± 10.1 %
DCP (mV) ^B	95.5	97.5	100.3	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc [±] (k=2)
0	CW	0.00	Х	0.00	0.00	1.00	166.6	±1.9 %
			Υ	0.00	0.00	1.00	160.4	
			Z	0.00	0.00	1.00	170.5	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

ET3DV6- SN:1528 July 26, 2012

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1528

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	43.5	0.87	7.01	7.01	7.01	0.23	2.32	± 13.4 %
750	41.9	0.89	6.37	6.37	6.37	0.49	2.16	± 12.0 %
835	41.5	0.90	6.06	6.06	6.06	0.61	1.95	± 12.0 %
900	41.5	0.97	5.95	5.95	5.95	0.30	3.00	± 12.0 %
1450	40.5	1.20	5.22	5.22	5.22	0.49	2.80	± 12.0 %
1750	40.1	1.37	5.12	5.12	5.12	0.80	2.07	± 12.0 %
1900	40.0	1.40	4.92	4.92	4.92	0.80	2.10	± 12.0 %
2150	39.7	1.53	4.65	4.65	4.65	0.80	2.00	± 12.0 %
2450	39.2	1.80	4.31	4.31	4.31	0.80	1.74	± 12.0 %

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (s and g) can be relaxed to ± 10% if liquid compensation formula is applied to

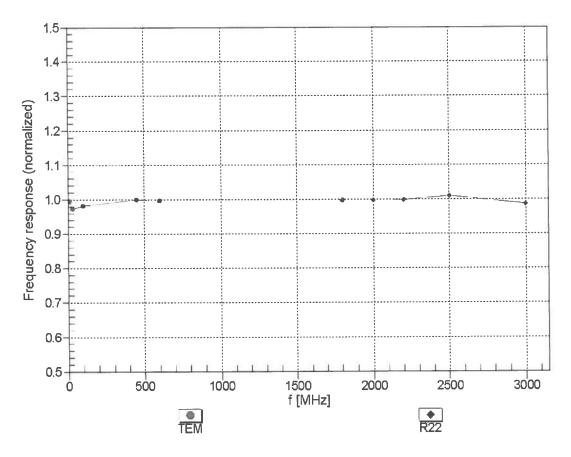
F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

ET3DV6- SN:1528 July 26, 2012

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1528

Calibration Parameter Determined in Body Tissue Simulating Media

			_					
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	56.7	0.94	7.47	7.47	7.47	0.16	2.32	± 13.4 %
750	55.5	0.96	6.17	6.17	6.17	0.33	2.75	± 12.0 %
835	55.2	0.97	5.99	5.99	5.99	0.33	3.00	± 12.0 %
900	55.0	1.05	5.92	5.92	5.92	0.55	2.18	± 12.0 %
1450	54.0	1.30	5.11	5.11	5.11	0.76	2.07	± 12.0 %
1750	53.4	1.49	4.64	4.64	4.64	0.80	2.45	± 12.0 %
1900	53.3	1.52	4.42	4.42	4.42	0.80	2.33	± 12.0 %
2150	53.1	1.66	4.37	4.37	4.37	0.80	1.93	± 12.0 %
2450	52.7	1.95	3.99	3.99	3.99	0.56	0.98	± 12.0 %

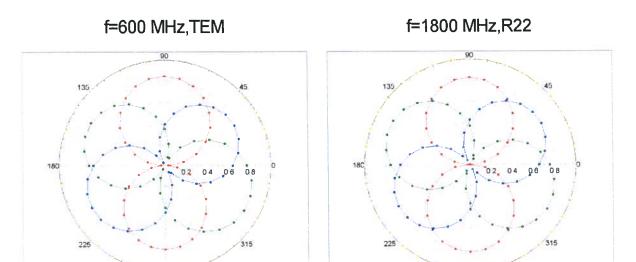

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

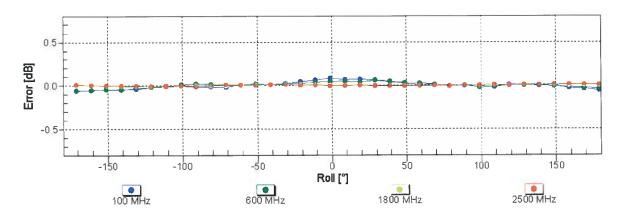
F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

July 26, 2012 ET3DV6-SN:1528

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)



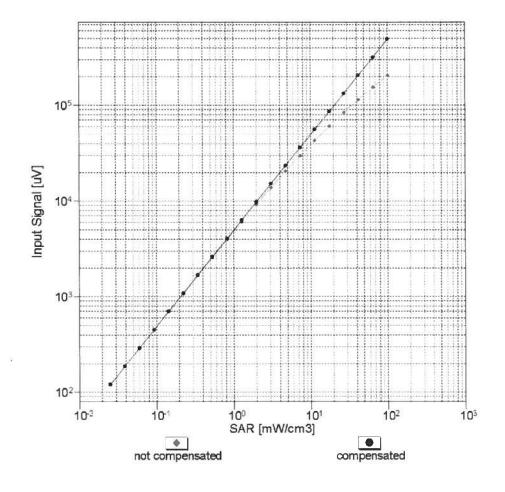
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

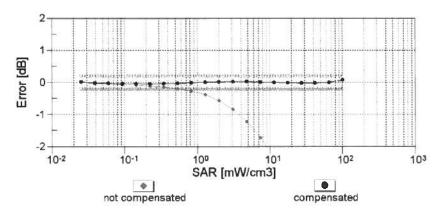

Certificate No: ET3-1528_Jul12

ET3DV6- SN:1528 July 26, 2012

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Tot

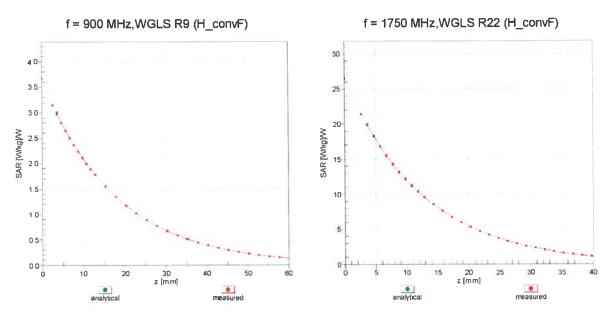


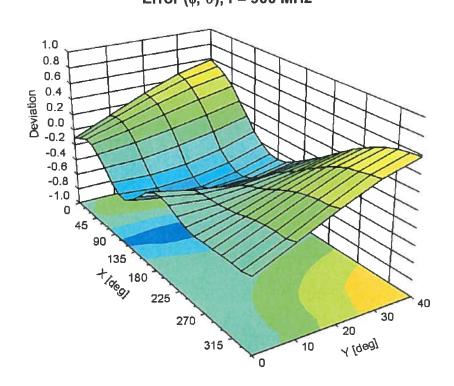

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

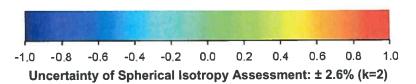
Tot

July 26, 2012 ET3DV6-SN:1528

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)




Uncertainty of Linearity Assessment: ± 0.6% (k=2)


ET3DV6- SN:1528 July 26, 2012

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

July 26, 2012

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1528

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	18.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	enabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	6.8 mm
Probe Tip to Sensor X Calibration Point	2.7 mm
Probe Tip to Sensor Y Calibration Point	2.7 mm
Probe Tip to Sensor Z Calibration Point	2.7 mm
Recommended Measurement Distance from Surface	4 mm

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

RFI

Accreditation No.: SCS 108

Certificate No: ET3-1586_Apr13

CALIBRATION CERTIFICATE

Object

ET3DV6 - SN:1586

Calibration procedure(s)

QA CAL-01.v8, QA CAL-12.v7, QA CAL-23.v4, QA CAL-25.v4

Calibration procedure for dosimetric E-field probes

Calibration date:

April 22, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%,

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	04-Apr-13 (No. 217-01733)	Apr-14
Power sensor E4412A	MY41498087	04-Apr-13 (No. 217-01733)	Apr-14
Reference 3 dB Attenuator	SN: S5054 (3c)	04-Apr-13 (No. 217-01737)	Apr-14
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-13 (No. 217-01735)	Apr-14
Reference 30 dB Attenuator	SN: S5129 (30b)	04-Apr-13 (No. 217-01738)	Apr-14
Reference Probe ES3DV2	SN: 3013	28-Dec-12 (No. ES3-3013_Dec12)	Dec-13
DAE4	SN: 660	31-Jan-13 (No. DAE4-660_Jan13)	Jan-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-15
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-12)	In house check: Oct-13

Calibrated by:

Calibrated by:

Claudio Leubler

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: April 22, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space sensitivity in TSL / NORMx,y,z ConvF DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- *NORMx*, *y*, *z*: Assessed for E-field polarization ϑ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,v,z; Bx,v,z; Cx,v,z; Dx,v,z; VRx,v,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1586_Apr13

Probe ET3DV6

SN:1586

Manufactured: May 7, 2001

April 22, 2013

Calibrated:

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1586

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	1.86	1.90	1.93	± 10.1 %
DCP (mV) ^B	99.7	98.7	98.8	

Modulation Calibration Parameters

UID	Communication System Name		Α	В	С	D	VR	Unc ^E
			dB	dB√μV		dB	mV	(k=2)
0	CW	X	0.0	0.0	1.0	0.00	198.4	±1.7 %
		Υ	0.0	0.0	1.0		150.8	
		Z	0.0	0.0	1.0		148.2	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Numerical linearization parameter: uncertainty not required.

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1586

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	43.5	0.87	7.33	7.33	7.33	0.21	2.26	± 13.4 %
750	41.9	0.89	6.82	6.82	6.82	0.34	2.52	± 12.0 %
835	41.5	0.90	6.52	6.52	6.52	0.38	2.39	± 12.0 %
900	41.5	0.97	6.40	6.40	6.40	0.51	2.05	± 12.0 %
1750	40.1	1.37	5.60	5.60	5.60	0.77	2.10	± 12.0 %
1900	40.0	1.40	5.33	5.33	5.33	0.80	1.98	± 12.0 %
2100	39.8	1.49	5.31	5.31	5.31	0.80	1.92	± 12.0 %
2450	39.2	1.80	4.65	4.65	4.65	0.70	2.05	± 12.0 %

^C Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

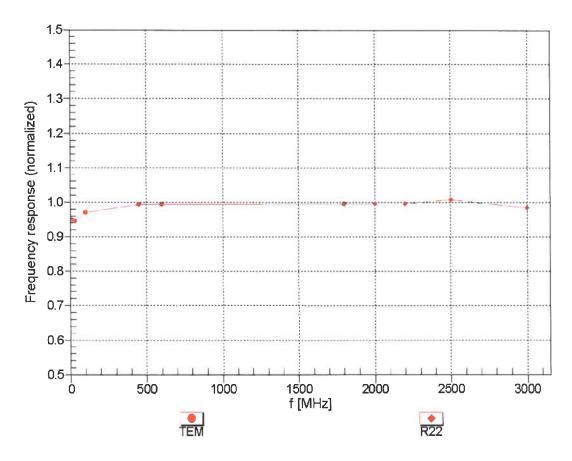
F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

ET3DV6-SN:1586

Certificate No: ET3-1586_Apr13

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1586

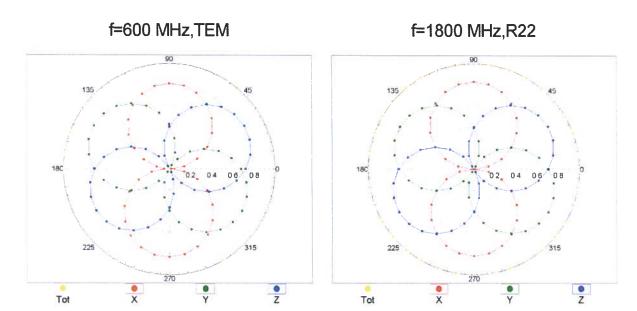
Calibration Parameter Determined in Body Tissue Simulating Media

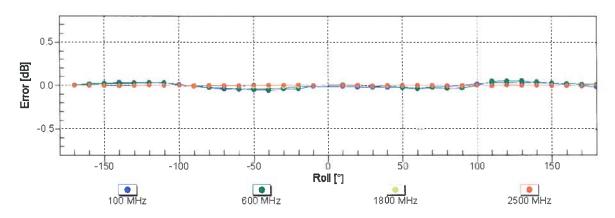

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	56.7	0.94	7.90	7.90	7.90	0.16	2.18	± 13.4 %
750	55.5	0.96	6.52	6.52	6.52	0.28	3.00	± 12.0 %
835	55.2	0.97	6.36	6.36	6.36	0.32	2.78	± 12.0 %
900	55.0	1.05	6.26	6.26	6.26	0.34	3.00	± 12.0 %
1750	53.4	1.49	4.90	4.90	4.90	0.80	2.40	± 12.0 %
1900	53.3	1.52	4.69	4.69	4.69	0.80	2.27	± 12.0 %
2100	53.2	1.62	4.78	4.78	4.78	0.80	2.08	± 12.0 %
2450	52.7	1.95	4.15	4.15	4.15	0.65	1.90	± 12.0 %

^C Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

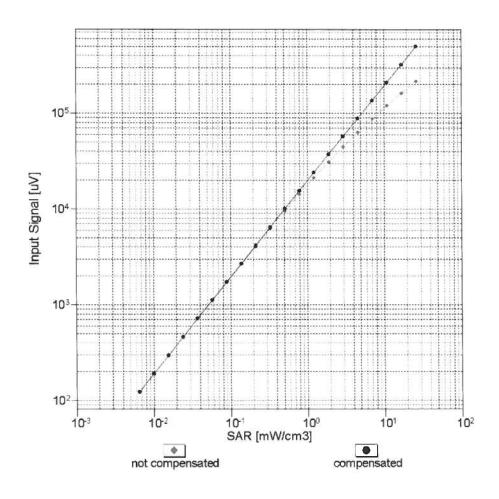
F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

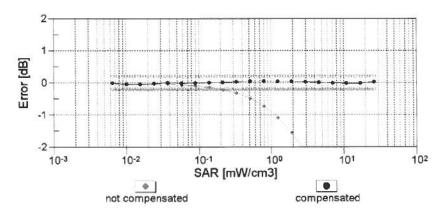

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

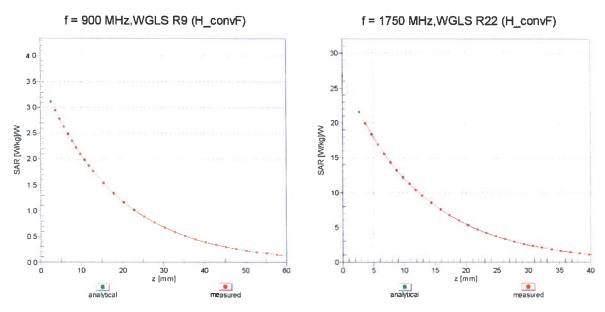
ET3DV6-SN:1586


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

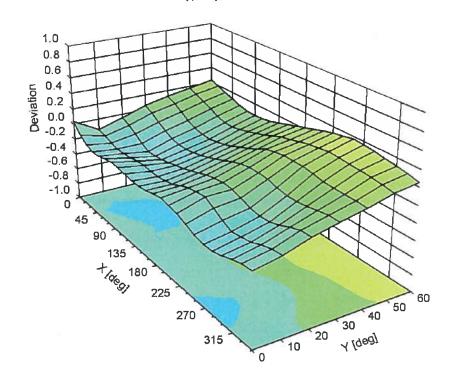


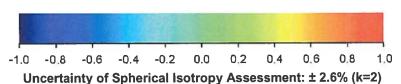
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Page 9 of 11


ET3DV6- SN:1586

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (ϕ , ϑ), f = 900 MHz

ET3DV6-SN:1586

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1586

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-50
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	enabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	6.8 mm
Probe Tip to Sensor X Calibration Point	2.7 mm
Probe Tip to Sensor Y Calibration Point	2.7 mm
Probe Tip to Sensor Z Calibration Point	2.7 mm
Recommended Measurement Distance from Surface	4 mm

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

DATE , 7-August 2012

S Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) ASSET: A 220/
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

RFI

Certificate No: D900V2-035_Aug12

CALIBRATION CERTIFICATE

Object

D900V2 - SN: 035

Calibration procedure(s)

QA CAL-05.v8

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

August 16, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	05-Oct-11 (No. 217-01451)	Oct-12
Power sensor HP 8481A	US37292783	05-Oct-11 (No. 217-01451)	Oct-12
Reference 20 dB Attenuator	SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
Type-N mismatch combination	SN: 5047.2 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
Reference Probe ES3DV3	SN: 3205	30-Dec-11 (No. ES3-3205_Dec11)	Dec-12
DAE4	SN: 601	27-Jun-12 (No. DAE4-601_Jun12)	Jun-13
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-11)	In house check: Oct-12
	Name	Function	Signature
Calibrated by:	Israe El-Naouq	Laboratory Technician	Mran El Daon
Approved by:	Katja Pokovic	Technical Manager	2011

Issued: August 16, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D900V2-035_Aug12

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D900V2-035_Aug12 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.97 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.6 ± 6 %	0.96 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.62 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	10.5 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.68 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.74 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.0	1.05 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.6 ± 6 %	1.06 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.74 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	10.8 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.76 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	6.96 mW / g ± 16.5 % (k=2)

Certificate No: D900V2-035_Aug12 Page 3 of 8

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.8 Ω - 5.8 jΩ
Return Loss	- 24.4 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.5 Ω - 5.5 jΩ
Return Loss	- 24.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.404 ns
	l

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	February 26, 1998	

Certificate No: D900V2-035_Aug12 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 16.08.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN: 035

Communication System: CW; Frequency: 900 MHz

Medium parameters used: f = 900 MHz; $\sigma = 0.96 \text{ mho/m}$; $\varepsilon_r = 40.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(5.97, 5.97, 5.97); Calibrated: 30.12.2011;

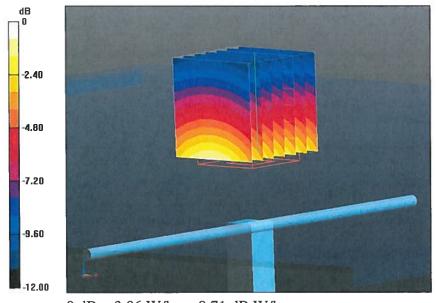
• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 27.06.2012

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

DASY52 52.8.2(969); SEMCAD X 14.6.6(6824)

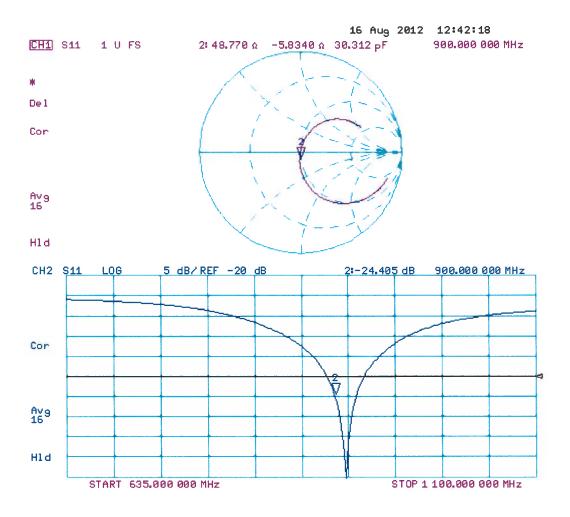
Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.325 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.926 mW/g

SAR(1 g) = 2.62 mW/g; SAR(10 g) = 1.68 mW/g


Maximum value of SAR (measured) = 3.06 W/kg

0 dB = 3.06 W/kg = 9.71 dB W/kg

Certificate No: D900V2-035_Aug12

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 16.08.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN: 035

Communication System: CW; Frequency: 900 MHz

Medium parameters used: f = 900 MHz; $\sigma = 1.06 \text{ mho/m}$; $\varepsilon_r = 52.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.94, 5.94, 5.94); Calibrated: 30.12.2011;

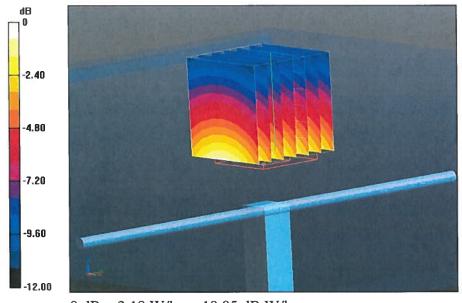
• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 27.06.2012

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

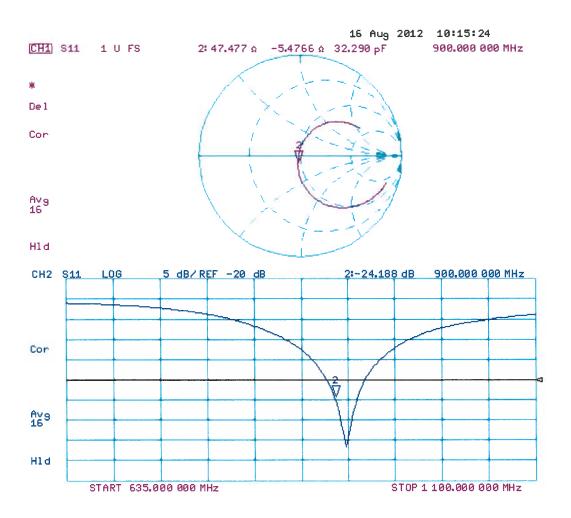
• DASY52 52.8.2(969); SEMCAD X 14.6.6(6824)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.325 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 4.184 mW/g


SAR(1 g) = 2.74 mW/g; SAR(10 g) = 1.76 mW/g

Maximum value of SAR (measured) = 3.18 W/kg

0 dB = 3.18 W/kg = 10.05 dB W/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) ASS AM AMP The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

RFI

Certificate No: D1800V2-264_Aug12

CALIBRATION CERTIFICATE

Object D1800V2 - SN: 264

Calibration procedure(s) QA CAL-05.v8

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

August 15, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	05-Oct-11 (No. 217-01451)	Oct-12
Power sensor HP 8481A	US37292783	05-Oct-11 (No. 217-01451)	Oct-12
Reference 20 dB Attenuator	SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
Type-N mismatch combination	SN: 5047.2 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
Reference Probe ES3DV3	SN: 3205	30-Dec-11 (No. ES3-3205_Dec11)	Dec-12
DAE4	SN: 601	27-Jun-12 (No. DAE4-601_Jun12)	Jun-13
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-11)	In house check: Oct-12
	Name	Function	Signature
Calibrated by			
Calibrated by:	Israe El-Naouq	Laboratory Technician	Wran El-Vaong
Approved by:	Katja Pokovic	Technical Manager	2011
Approved by:	Raija Forovic	i oci inical ividi layer	palalis.

Issued: August 15, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1800V2-264_Aug12

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1800V2-264_Aug12 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	1800 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.8 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		****

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.22 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	37.2 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.87 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	19.6 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.0 ± 6 %	1.52 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		****

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.50 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	37.8 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.04 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	20.1 mW / g ± 16.5 % (k=2)

Certificate No: D1800V2-264_Aug12 Page 3 of 8

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	45.8 Ω - 5.8 jΩ
Return Loss	- 22.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	42.9 Ω - 5.3 jΩ	
Return Loss	- 20.4 d B	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.201 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	March 05, 2000	

Certificate No: D1800V2-264_Aug12 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 15.08.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 264

Communication System: CW; Frequency: 1800 MHz

Medium parameters used: f = 1800 MHz; $\sigma = 1.38 \text{ mho/m}$; $\varepsilon_r = 39.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.07, 5.07, 5.07); Calibrated: 30.12.2011;

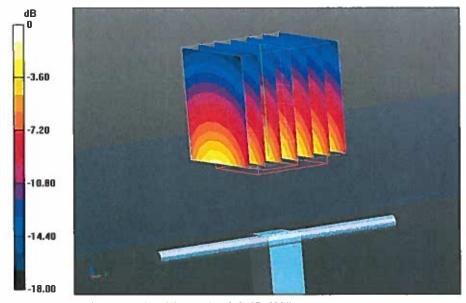
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 27.06.2012

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

DASY52 52.8.2(969); SEMCAD X 14.6.6(6824)

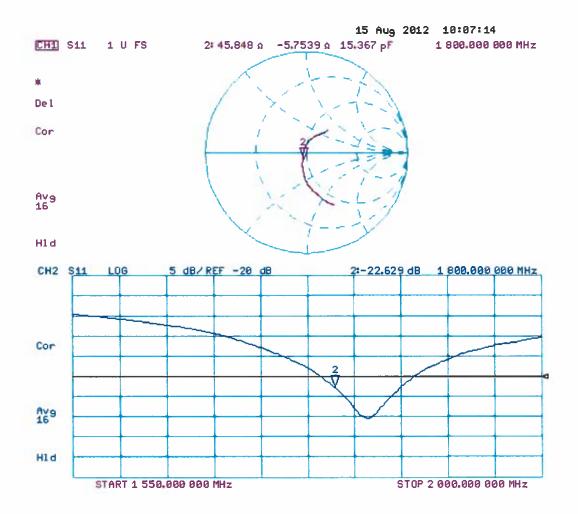
Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.984 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 16.364 mW/g

SAR(1 g) = 9.22 mW/g; SAR(10 g) = 4.87 mW/g


Maximum value of SAR (measured) = 11.3 W/kg

0 dB = 11.3 W/kg = 21.06 dB W/kg

Certificate No: D1800V2-264_Aug12 Page 5 of 8

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 15.08.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 264

Communication System: CW; Frequency: 1800 MHz

Medium parameters used: f = 1800 MHz; $\sigma = 1.52 \text{ mho/m}$; $\varepsilon_r = 52$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(4.74, 4.74, 4.74); Calibrated: 30.12.2011;

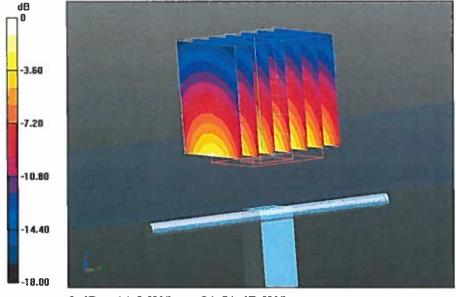
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 27.06.2012

• Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.8.2(969); SEMCAD X 14.6.6(6824)

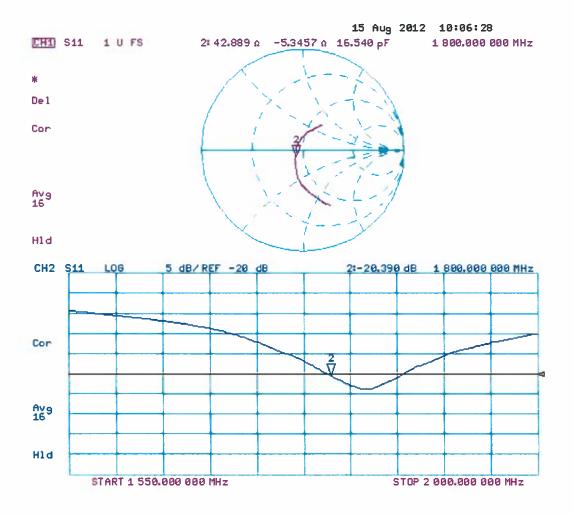
Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 92.107 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 16.733 mW/g

SAR(1 g) = 9.5 mW/g; SAR(10 g) = 5.04 mW/g


Maximum value of SAR (measured) = 11.9 W/kg

0 dB = 11.9 W/kg = 21.51 dB W/kg

Certificate No: D1800V2-264_Aug12 Page 7 of 8

Impedance Measurement Plot for Body TSL

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

RFI

Certificate No: D1900V2-537_Aug12

CALIBRATION CERTIFICATE

Object

D1900V2 - SN: 537

Calibration procedure(s)

QA CAL-05.v8

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

August 14, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	1D #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	05-Oct-11 (No. 217-01451)	Oct-12
Power sensor HP 8481A	US37292783	05-Oct-11 (No. 217-01451)	Oct-12
Reference 20 dB Attenuator	SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
Type-N mismatch combination	SN: 5047.2 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
Reference Probe ES3DV3	SN: 3205	30-Dec-11 (No. ES3-3205_Dec11)	Dec-12
DAE4	SN: 601	27-Jun-12 (No. DAE4-601_Jun12)	Jun-13
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-11)	In house check: Oct-12
	Name	Function	Signature
Calibrated by:	Israe El-Naouq	Laboratory Technician	Orrea Elabou
Approved by:	Katja Pokovic	Technical Manager	20M

Issued: August 14, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.9 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		****

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.78 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	39.4 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.16 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	20.7 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.5 ± 6 %	1.53 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		4800

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	40.5 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.37 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.4 mW / g ± 16.5 % (k=2)

Certificate No: D1900V2-537_Aug12

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.1 Ω - 5.7 jΩ
Return Loss	- 24.3 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	44.0 Ω - 5.2 jΩ
Return Loss	- 21.5 dB

General Antenna Parameters and Design

	1
Electrical Delay (one direction)	1.181 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 22, 2001

Certificate No: D1900V2-537_Aug12 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 14.08.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 537

Communication System: CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.38 \text{ mho/m}$; $\varepsilon_r = 39.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.01, 5.01, 5.01); Calibrated: 30.12.2011;

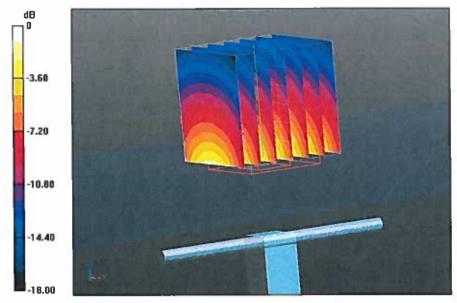
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 27.06.2012

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

DASY52 52.8.2(969); SEMCAD X 14.6.6(6824)

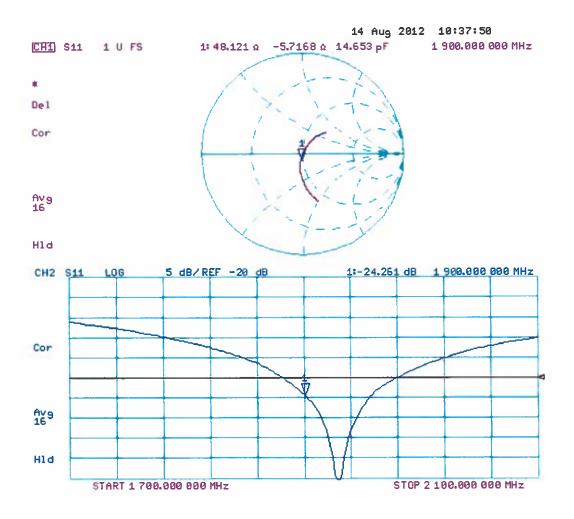
Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.874 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 17.436 mW/g

SAR(1 g) = 9.78 mW/g; SAR(10 g) = 5.16 mW/g


Maximum value of SAR (measured) = 11.9 W/kg

0 dB = 11.9 W/kg = 21.51 dB W/kg

Certificate No: D1900V2-537_Aug12 Page 5 of 8

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 14.08.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 537

Communication System: CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.53 \text{ mho/m}$; $\varepsilon_r = 52.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.62, 4.62, 4.62); Calibrated: 30.12.2011;

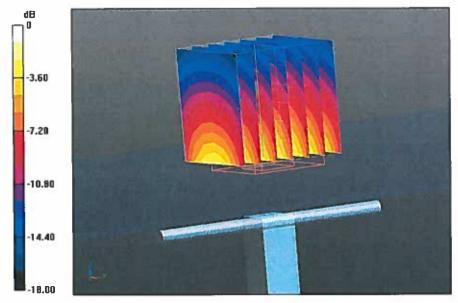
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 27.06.2012

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

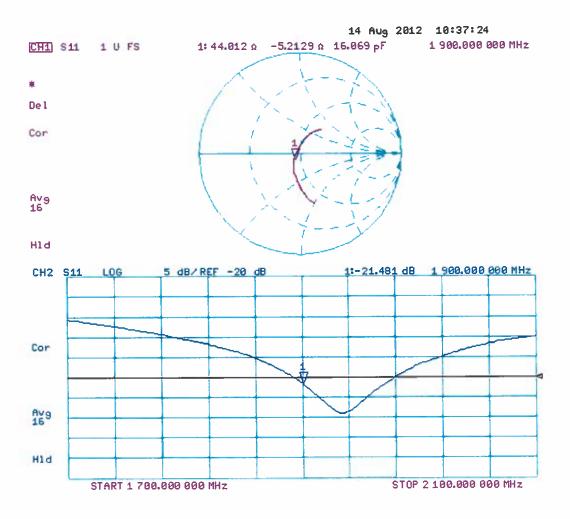
• DASY52 52.8.2(969); SEMCAD X 14.6.6(6824)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.874 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 17.899 mW/g


SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.37 mW/g

Maximum value of SAR (measured) = 12.8 W/kg

0 dB = 12.8 W/kg = 22.14 dB W/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) ASET: A 2202
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client RFI Certificate No: D2440V2-701_Aug12

CALIBRATION CERTIFICATE

Object D2440V2 - SN: 701

Calibration procedure(s) QA CAL-05.v8

Calibration procedure for dipole validation kits above 700 MHz

Calibration date: August 13, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

ID#	Cal Date (Certificate No.)	Scheduled Calibration
GB37480704	05-Oct-11 (No. 217-01451)	Oct-12
US37292783	05-Oct-11 (No. 217-01451)	Oct-12
SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
SN: 5047.2 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
SN: 3205	30-Dec-11 (No. ES3-3205_Dec11)	Dec-12
SN: 601	27-Jun-12 (No. DAE4-601_Jun12)	Jun-13
1D #	Check Date (in house)	Scheduled Check
MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
US37390585 S4206	18-Oct-01 (in house check Oct-11)	In house check: Oct-12
Name	Function	Signature
Israe El-Naouq	Laboratory Technician	Deran El-Duous
Katja Pokovic	Technical Manager	70110
	GB37480704 US37292783 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name Israe El-Naouq	GB37480704 05-Oct-11 (No. 217-01451) US37292783 05-Oct-11 (No. 217-01451) SN: 5058 (20k) 27-Mar-12 (No. 217-01530) SN: 5047.2 / 06327 27-Mar-12 (No. 217-01533) SN: 3205 30-Dec-11 (No. ES3-3205_Dec11) SN: 601 27-Jun-12 (No. DAE4-601_Jun12) ID # Check Date (in house) MY41092317 18-Oct-02 (in house check Oct-11) 100005 04-Aug-99 (in house check Oct-11) US37390585 S4206 18-Oct-01 (in house check Oct-11) Name Function Israe El-Naouq Laboratory Technician

Issued: August 13, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2440V2-701_Aug12

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2440V2-701_Aug12 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.2 ± 6 %	1.81 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.1 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	52.3 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.06 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.2 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.3 ± 6 %	1.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	****	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	52.0 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.09 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	24.1 mW / g ± 16.5 % (k=2)

Certificate No: D2440V2-701_Aug12 Page 3 of 8

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.4 Ω - 8.2 jΩ
Return Loss	- 21.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.8 Ω - 6.9 <u>j</u> Ω	
Return Loss	- 21.5 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.141 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	August 24, 2000

Certificate No: D2440V2-701_Aug12 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 13.08.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2440 MHz; Type: D2440V2; Serial: D2440V2 - SN: 701

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.81$ mho/m; $\varepsilon_r = 39.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 30.12.2011;

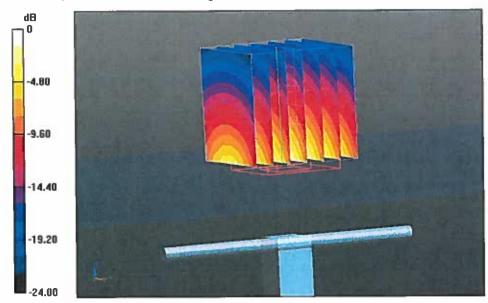
• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 27.06.2012

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

DASY52 52.8.2(969); SEMCAD X 14.6.6(6824)

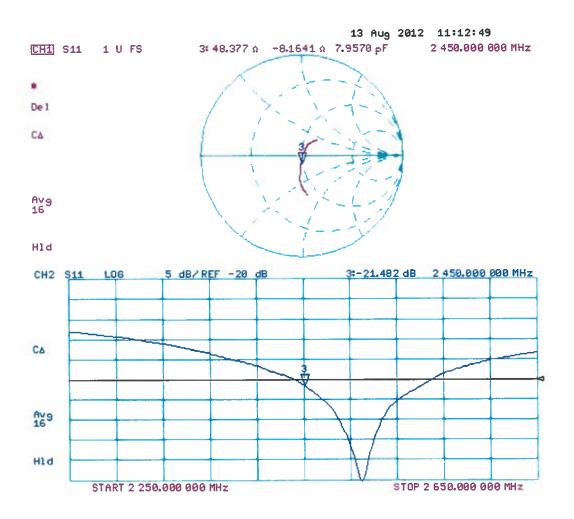
Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 99.955 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 27.027 mW/g

SAR(1 g) = 13.1 mW/g; SAR(10 g) = 6.06 mW/g


Maximum value of SAR (measured) = 16.8 W/kg

0 dB = 16.8 W/kg = 24.51 dB W/kg

Certificate No: D2440V2-701_Aug12 Page 5 of 8

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 13.08.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2440 MHz; Type: D2440V2; Serial: D2440V2 - SN: 701

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.99$ mho/m; $\varepsilon_r = 51.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

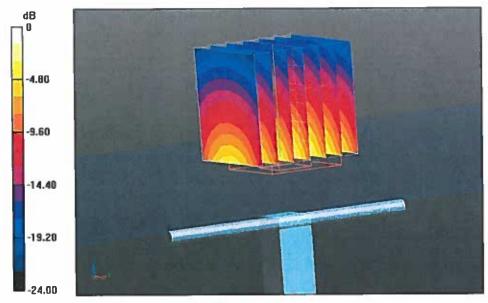
Probe: ES3DV3 - SN3205; ConvF(4.26, 4.26, 4.26); Calibrated: 30.12.2011;

• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 27.06.2012

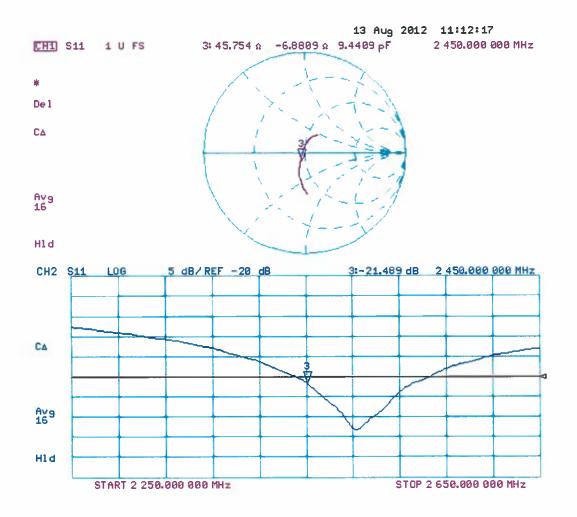
• Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.8.2(969); SEMCAD X 14.6.6(6824)


Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.149 V/m; Power Drift = 0.00 dB


Peak SAR (extrapolated) = 26.944 mW/g

SAR(1 g) = 13.2 mW/g; SAR(10 g) = 6.09 mW/gMaximum value of SAR (measured) = 17.1 W/kg

0 dB = 17.1 W/kg = 24.66 dB W/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

26-FEB - 2013

Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

RFI

A1377

Certificate No: D5GHzV2-1016_Feb13

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object D5GHzV2 - SN: 1016

Calibration procedure(s) QA CAL-22.v2

Calibration procedure for dipole validation kits between 3-6 GHz

Calibration date: February 20, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	01-Nov-12 (No. 217-01640)	Oct-13
Power sensor HP 8481A	US37292783	01-Nov-12 (No. 217-01640)	Oct-13
Reference 20 dB Attenuator	SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
Type-N mismatch combination	SN: 5047.3 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
Reference Probe EX3DV4	SN: 3503	28-Dec-12 (No. EX3-3503_Dec12)	Dec-13
DAE4	SN: 601	27-Jun-12 (No. DAE4-601_Jun12)	Jun-13
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-12)	in house check; Oct-13
	Name	Function	Signature
Calibrated by:	Israe El-Naouq	Laboratory Technician	Mran El Dang
Approved by:	Katja Pokovic	Technical Manager	Se les

Issued: February 20, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z not applicable or not measured

N/A

Calibration is Performed According to the Following Standards:

- a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters". March 2010
- b) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency" Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1016_Feb13 Page 2 of 13

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.5
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, $dy = 4.0$ mm, $dz = 1.4$ mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5500 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.7 ± 6 %	4.47 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.88 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.26 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.3 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.2 ± 6 %	4.74 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.34 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.5 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.5 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	33.9 ± 6 %	5.05 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		****

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.78 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	77.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.22 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.9 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.9 ± 6 %	5.36 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	****	

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.58 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.13 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.1 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.3 ± 6 %	5.71 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	200-	

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.98 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	79.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.23 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.0 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	45.9 ± 6 %	6.12 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	****	

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.51 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.09 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.6 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1016_Feb13 Page 6 of 13

Appendix

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	52.7 Ω - 9.7 jΩ
Return Loss	- 20.2 dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	48.5 Ω - 0.8 jΩ
Return Loss	- 35.3 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	57.1 Ω + 7.1 jΩ
Return Loss	- 20.6 dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	53.2 Ω - 9.1 jΩ
Return Loss	- 20.6 dB

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	48.7 Ω - 0.2 jΩ
Return Loss	- 37.3 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	57.1 Ω + 8.7 jΩ
Return Loss	- 19.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.199 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 14, 2003

Certificate No: D5GHzV2-1016_Feb13 Page 7 of 13

DASY5 Validation Report for Head TSL

Date: 20.02.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1016

Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.47$ S/m; $\epsilon_r = 34.7$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 4.74$ S/m; $\epsilon_r = 34.2$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 5.05$ S/m; $\epsilon_r = 33.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.41, 5.41, 5.41); Calibrated: 28.12.2012, ConvF(4.91, 4.91, 4.91); Calibrated: 28.12.2012, ConvF(4.81, 4.81, 4.81); Calibrated: 28.12.2012;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan.

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.875 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 29.2 W/kg

SAR(1 g) = 7.88 W/kg; SAR(10 g) = 2.26 W/kg

Maximum value of SAR (measured) = 18.5 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

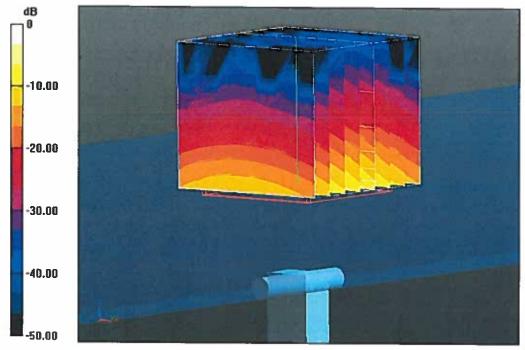
Reference Value = 65.120 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 33.0 W/kg

SAR(1 g) = 8.34 W/kg; SAR(10 g) = 2.38 W/kg

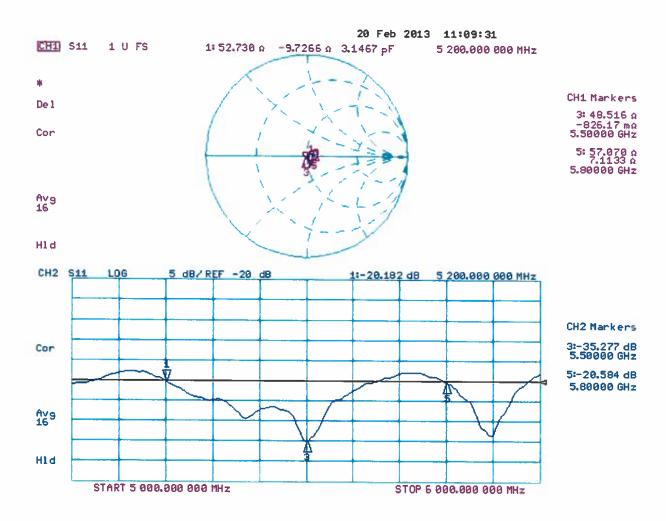
Maximum value of SAR (measured) = 20.1 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan.


dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 61.682 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 32.4 W/kg


SAR(1 g) = 7.78 W/kg; SAR(10 g) = 2.22 W/kg

Maximum value of SAR (measured) = 19.1 W/kg

0 dB = 19.1 W/kg = 12.81 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 14.02.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1016

Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 5.36$ S/m; $\varepsilon_r = 46.9$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 5.71$ S/m; $\varepsilon_r = 46.3$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 6.12$ S/m; $\varepsilon_r = 45.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.91, 4.91, 4.91); Calibrated: 28.12.2012, ConvF(4.43, 4.43, 4.43); Calibrated: 28.12.2012, ConvF(4.38, 4.38, 4.38); Calibrated: 28.12.2012;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan.

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 60.072 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 30.6 W/kg

SAR(1 g) = 7.58 W/kg; SAR(10 g) = 2.13 W/kg

Maximum value of SAR (measured) = 18.0 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

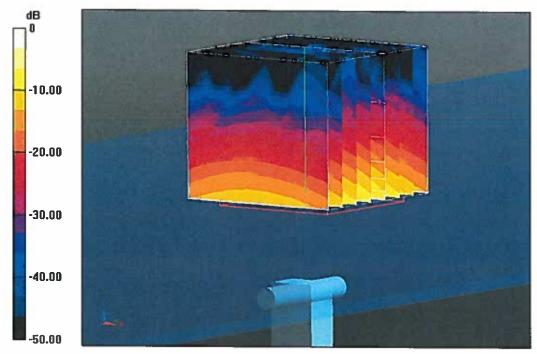
Reference Value = 59.550 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 35.1 W/kg

SAR(1 g) = 7.98 W/kg; SAR(10 g) = 2.23 W/kg

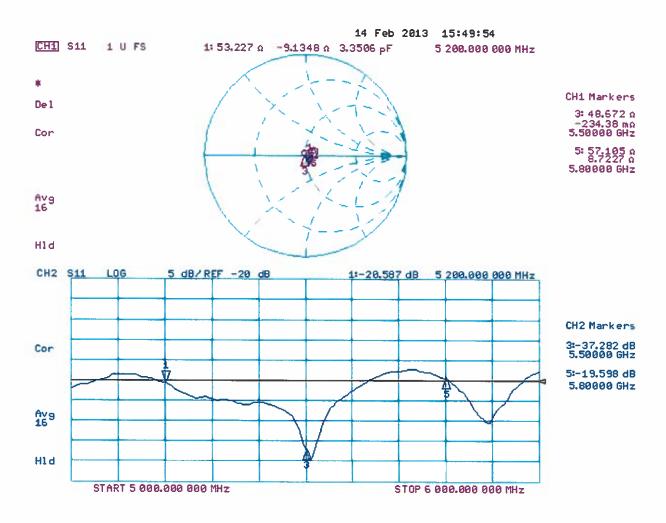
Maximum value of SAR (measured) = 19.5 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan.


dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 56.431 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 35.6 W/kg


SAR(1 g) = 7.51 W/kg; SAR(10 g) = 2.09 W/kg

Maximum value of SAR (measured) = 18.8 W/kg

0 dB = 18.8 W/kg = 12.74 dBW/kg

Impedance Measurement Plot for Body TSL

Serial No: UL-SAR-RP91949JD02A V4.0

on 4.0 Issue Date: 07 June 2013

Appendix 2. Measurement Methods

A.2.1. Evaluation Procedure

The Specific Absorption Rate (SAR) evaluation was performed in the following manner:

- a) (i) The evaluation was performed in an applicable area of the phantom depending on the type of device being tested. For devices worn about the ear during normal operation, both the left and right ear positions were evaluated at the centre frequency of the band at maximum power. The side, which produced the greatest SAR, determined which side of the phantom would be used for the entire evaluation. The positioning of the head worn device relative to the phantom was dictated by the test specification identified in section 3.1 of this report.
 - (ii) For body worn devices or devices which can be operated within 20 cm of the body, the flat section of the SAM phantom was used were the size of the device(s) is normal. for bigger devices and base station the 2mm Oval phantom is used for evaluation. The type of device being evaluated dictated the distance of the EUT to the outer surface of the phantom flat section.
- b) The SAR was determined by a pre-defined procedure within the DASY4 software. The exposed region of the phantom was scanned near the inner surface with a grid spacing of 20mm x 20mm or appropriate resolution.
- c) A 5x5x7 matrix for measurement < 2.0 GHz, 7x7x7 matrix for measurement 2.0 GHz to 3.0 GHz, and 7x7x12 for > 5.0 GHz was performed around the greatest spatial SAR distribution found during the area scan of the applicable exposed region. SAR values were then calculated using a 3-D spline interpolation algorithm and averaged over spatial volumes of 1 and 10 grams.
- d) If the EUT had any appreciable drift over the course of the evaluation, then the EUT was reevaluated. Any unusual anomalies over the course of the test also warranted a re-evaluation.

Page: 81 of 289 UL

Serial No: UL-SAR-RP91949JD02A V4.0

ersion 4.0 Issue Date: 07 June 2013

A.2.2. Specific Absorption Rate (SAR) Measurements to OET Bulletin 65 Supplement C: (2001-01)

Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields

SAR measurements were performed in accordance with Appendix D of the standard FCC OET Bulletin 65 Supplement C: 2001, IEEE 1528 and FCC KDB procedures, against appropriate limits for each measurement position in accordance with the standard. In some cases the FCC was contacted using a PBA or KDB process to ensure test is performed correctly.

The test was performed in a shielded enclosure with the temperature controlled to remain between +18.0°C and +25.0°C. The tissue equivalent material fluid temperature was controlled to give a maximum variation of ± 2.0°C

Prior to any SAR measurements on the EUT, system Check and material dielectric property measurements were conducted. In the absence of a detailed procedure within the specification, system Check and material dielectric property measurements were performed in accordance with Appendix C and Appendix D of FCC OET Bulletin 65 Supplement C: 2001 and FCC KDB publication 865664 D01.

Following the successful system Check and material dielectric property measurements, a SAR versus time sweep shall be performed within 10 mm of the phantom inner surface. If the EUT power output is stable after three minutes then the measurement probe will perform a coarse surface level scan at each test position in order to ascertain the location of the maximum local SAR level. Once this area had been established, a 5x5x7 cube of 175 points for frequency below 2.0 GHz, above 2.0GHz up to 3.0 GHz 7x7x7 cube of 343 points and a 7x7x12 cube of 588 points for frequency 5.0 GHz and above will be centred at the area of concern. Extrapolation and interpolation will then be carried out on the 27g of tissue and the highest averaged SAR over a 1g cube determined.

Once the maximum interpolated SAR measurement is complete; the coarse scan is visually assessed to check for secondary peaks within 50% of the maximum SAR level. If there are any further SAR measurements required, extra 5x5x7 or 7x7x7 or 7x7x12 cubes shall be centred on each of these extra local SAR maxima.

At the end of each position test case a second time sweep shall be performed to check whether the EUT has remained stable throughout the test.

Page: 82 of 289 UL