

TEST REPORT

Test of: C6603

To: OET Bulletin 65 Supplement C: (2001-01) IEEE1528:2003

Test Report Serial No: UL-SAR-RP90579JD02A V4.0

Version 4.0 supersedes all previous report versions

This Test Report Is Issued Under The Authority Of Richelieu Quoi, SAR Technology Consultan	/ / //
	(APPROVED SIGNATORY)
Checked By: Naseer Mirza	M. Maseen
	(APPROVED SIGNATORY)
Issue Date:	25 January 2013
Test Dates:	17 December 2012 to 14 January 2013

This report is issued in portable document format (PDF). It is only a valid copy of the report if it is being viewed in PDF format with the following security options not allowed: Changing the document, Selecting text and graphics, Adding or changing notes and form fields.

This report may not be reproduced other than in full, except with the prior written approval of UL. The results in this report apply only to the sample(s) tested.

The Bluetooth® word mark and logos are owned by the *Bluetooth* SIG, Inc. and any use of such marks by UL is under license. Other trademarks and trade names are those of their respective owners.

Issue Date: 25 January 2013

This page has been left intentionally blank.

Page: 2 of 285 UL

Issue Date: 25 January 2013

TABLE OF CONTENTS

1. Customer Information	4
2. Summary of Test Results	5
3. Test Specification, Methods and Procedures	7
4. Equipment Under Test (EUT)	
5. Deviations from the Test Specification	22
6. Operation and Configuration of the EUT during Testing	23
7. Measurements, Examinations and Derived Results	27
8. Measurement Uncertainty	68
Appendix 1. Test Equipment Used	76
Appendix 2. Measurement Methods	81
Appendix 3. SAR Distribution Scans	83
Appendix 4. Photographs	234
Appendix 5. System Check	269
Appendix 6. Simulated Tissues	
Appendix 7. DASY4 System Details	

Issue Date: 25 January 2013

1. Customer Information		
Company Name:	Sony Mobile Communications AB	
Address:	Nya Vattentornet 22188 Lund Sweden	

Page: 4 of 285

Issue Date: 25 January 2013

2. Summary of Test Results		
Test Name	Specification Reference	Result
Specific Absorption Rate-GSM 850	OET Bulletin 65 Supplement C: (2001-01)	Ø
Specific Absorption Rate-PCS 1900	OET Bulletin 65 Supplement C: (2001-01)	②
Specific Absorption Rate-UMTS-FDD 5	OET Bulletin 65 Supplement C: (2001-01)	②
Specific Absorption Rate - LTE Band 5 (1.4 MHz & 10MHz)	OET Bulletin 65 Supplement C: (2001-01)	②
Specific Absorption Rate-Wi-Fi 802.11b/g/n 2.4 GHz	OET Bulletin 65 Supplement C: (2001-01)	②
Specific Absorption Rate- Wi-Fi 802.11a/n 5.0 GHz	OET Bulletin 65 Supplement C: (2001-01)	Ø
Key to Results	= Complied = Did not comply	

2.1. Highest Reported I	ndividual SAR per Ba	nd per Exp	posure con	dition	
Individual Transmitter Ev	valuation per Band:				
Exposure Configuration	Technology Band	Highest Reported 1g -SAR (W/kg)	Equipment Class	Max Rated Source base Avg Power + Max Tolerance [dBm]	Highest Reported 1g-SAR (W/kg)
	GSM850	0.511		24.5	
	PCS1900	0.246	PCE	21.5	0.716
HEAD	UMTS FDD 5	0.716	PCE	24.8	0.716
(Separation Distance 0mm)	LTE Band 5	0.601		24.8	
	WLAN 2.4 GHz (802.11b)	0.853	DTO	16.0	0.853
	WLAN 5.0 GHz (802.11a)	0.423	DTS	10.1	
	GSM850	0.751		26.0	0.861
	PCS1900	0.861	PCE	22.5	
HOTSPOT	UMTS FDD 5	0.702	1 OL	24.8	
(Separation Distance 10mm)	LTE Band 5	0.755		24.8	
	WLAN 2.4 GHz (802.11b)	0.262	DTS	16.0	0.262
	WLAN 5.0 GHz (802.11a)	-	סוט	-	0.262
	GSM850	0.544		24.5	0.565
	PCS1900	0.362	PCE	21.5	
BODY-WORN	UMTS FDD 5	0.605		24.8	
(Separation Distance 15mm)	LTE Band 5	0.646		24.8	
	WLAN 2.4 GHz (802.11b)	0.099	DTS	16.0	0.099
WLAN 5.0 GHz (802.11a)			DIS	-	0.033

Page: 5 of 285

Issue Date: 25 January 2013

2.2. Highest Reported Simultaneous Transmitter SAR per Exposure condition

Simultineous Transmitter Evaluation:

Exposure Configuration	Technology Band	Highest Reported 1g SAR (W/kg)	Equipment Class	Max Rated Source base Avg Power + Max Tolerance [dBm]	Highest Reported Sum- SAR 1g-SAR (W/kg)	
HEAD	UMTS FDD 5	0.716	PCE	24.8	1.569	
(Separation Distance 0mm)	WLAN 2.4 GHz	0.853	DTS	16.0	1.509	
HOTSPOT (Separation Distance 10mm)	PCS1900	0.819	PCE	22.5	1.081	
	WLAN 2.4 GHz	0.262	DTS	16.0		
	PCS1900	0.819	PCE	22.5	4.000	
	Bluetooth 2.4 GHz	0.190	DSS	9.6	1.009	
BODY-WORN (Separation Distance 15mm)	PCS1900	0.356	PCE	21.5	0.455	
	WLAN 2.4 GHz	0.099	DTS	16.0	0.455	
	LTE Band 5	0.646	PCE	24.8	0.772	
	Bluetooth 2.4 GHz	0.127	DSS	9.6	0.773	

Note(s):

Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the <u>reported</u> standalone SAR of each applicable simultaneous transmitting antenna.

Simultaneous transmission was not required as the summation was < 1.6 W/kg (See section 7.4 of this report.

2.3. SAR measurement variability and measurement uncertainty analysis:

Exposure Configuration	Technology Band	Measured 1g -SAR (W/kg)	Equipment Class	Max Meas. Source base Avg Power [dBm]	Ratio of Largest to Smallest SAR Measured
HEAD	WLAN 2.4 GHz (Original)	0.853	DTS	16.0	1.01
(Separation Distance 0mm)	WLAN 2.4 GHz (Repeat)	0.846	DIS	16.0	1.01

Note(s):

- 1. The following step below were followed as per KDB publication 865664 D01:
- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
 - 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \geq 1.45 W/kg (\sim 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

2.4. Location of Tests

All the measurements described in this report were performed at the premises of UL, Pavilion A, Ashwood Park, Ashwood Way, Basingstoke, Hampshire, RG23 8BG United Kingdom

Page: 6 of 285

Issue Date: 25 January 2013

3. Test Specification, Methods and Procedures

3.1. Test Specification

o.i. rest opcomodion		
Reference:	OET Bulletin 65 Supplement C: (2001-01)	
Title:	Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields.	
Purpose of Test:	To determine whether the equipment met the basic restrictions as defined in OET Bulletin 65 Supplement C: (2001-01) using the SAR averaging method as described in the test specification above.	

The Equipment Under Test complied with the Specific Absorption Rate for general population/uncontrolled exposure limit of 1.6 W/kg as specified in FCC 47 CFR part 2 (2.1093) and ANSI C95.1-1992 and has been tested in accordance with the reference documents in section 3.2 of this report.

3.2. Methods and Procedures Reference Documentation

The methods and procedures used were as detailed in:

Federal Communications Commission, "Evaluating compliance with FCC Guidelines for human exposure to radio frequency electromagnetic fields", OET Bulletin 65 Supplement C, FCC, Washington, D.C, 20554, 2001.

Thomas Schmid, Oliver Egger and Neils Kuster, "Automated E-field scanning system for dosimetric assessments", IEEE Transaction on microwave theory and techniques, Vol. 44, pp. 105-113, January 1996.

Neils Kuster, Ralph Kastle and Thomas Schmid, "Dosimetric evaluation of mobile communications equipment with know precision", IEICE Transactions of communications, Vol. E80-B, No.5, pp. 645-652, May 1997.

IEEE 1528: 2003

IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques

EN 62209-1: 2006

Title: Basic standard for the measurement of specific absorption rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz).

EN 62209-2:2010

Human exposure to radio frequency fields from handheld and body mounted wireless communication devices — Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz) (IEC 62209-2:2010)

FCC KDB Publication:

KDB 248227 D01 "SAR measurements for 802.11a/b/g v01r02"

KDB 447498 D01 General RF Exposure Guidance v05

KDB 648474 D04 SAR Handsets Multi Xmiter and Ant v01

KDB 941225 D01 SAR test for 3G devices v02

KDB 941225 D03 "SAR Test Reduction GSM/GPRS/EDGE v01"

KDB 941225 D05 SAR for LTE Devices v02

KDB 941225 D06 "Hot Spot SAR v01"

KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01

KDB 865664 D02 SAR Reporting v01

3.3. Definition of Measurement Equipment

The measurement equipment used complied with the requirements of the standards referenced in the methods & procedures section above. Appendix 1 contains a list of the test equipment used.

Page: 7 of 285 UL

Issue Date: 25 January 2013

4. Equipment Under Test (EUT)		
4.1. Identification of Equipment Under	Test (EUT)	
Description:	Mobile Handset	
Brand Name:	Sony	
Model Name or Number:	C6603	
Type Number:	PM-0270-BV	
Serial Number:	CB5A1M5190	
IMEI Number:	00440245-057638-8	
Hardware Version Number:	AP1.2	
Software Version Number:	10.1.A.0.270	
Hardware Revision of GSM Module:	Not Specified	
Software Revision of GSM Module:	Not Specified	
FCC ID Number:	PY7PM-0270	
Industry Canada ID Number:	4170B-PM0270	
Country of Manufacture:	China	
Date of Receipt:	16 December 2012	
Note(s):		

This sample was used to perform WWAN SAR evaluation measurements on bands UMTS FDD Band 5 body and LTE Band 5 only. The sample supports simultaneous transmission with the WWAN and WLAN antenna > 5 cm apart. Wireless Personal Hotspot is also supported and was evaluated as per KDB 941225 D06 "Hot Spot SAR v01"

Description:	Mobile Handset
Brand Name:	Sony
Model Name or Number:	C6603
Type Number:	PM-0270-BV
Serial Number:	CB5A1M518H
IMEI Number:	00440245-057559-6
Hardware Version Number:	AP1.2
Software Version Number:	10.1.A.0.270
Hardware Revision of GSM Module:	Not Specified
Software Revision of GSM Module:	Not Specified
FCC ID Number:	PY7PM-0270
Industry Canada ID Number:	4170B-PM0270
Country of Manufacture:	China
Date of Receipt:	16 December 2012
Moto(c):	

This sample was used to perform WWAN SAR evaluation measurements on bands GSM850 Head and PCS1900, UMTS FDD 5 Head only. The sample supports simultaneous transmission with the WWAN and WLAN antenna > 5 cm apart. Wireless Personal Hotspot is also supported and was evaluated as per KDB 941225 D06 "Hot Spot SAR v01"

Page: 8 of 285 UL

Issue Date: 25 January 2013

Identification of Equipment Under Test (EUT) (Continued): Description: Mobile Handset **Brand Name:** Sony Model Name or Number: C6603 **Type Number:** PM-0270-BV **Serial Number:** CB5A1M798L 00440245-057714-7 **IMEI Number: Hardware Version Number:** AP1.2 **Software Version Number:** s_atp_0_0_32 Hardware Revision of GSM Module: Not Specified

Not Specified PY7PM-0270

4170B-PM0270

16 December 2012

Note(s):

FCC ID Number:

Date of Receipt:

Software Revision of GSM Module:

Industry Canada ID Number:

Country of Manufacture:

This sample was used to perform WLAN SAR evaluation measurements on bands WLAN 2.4 GHz and WLAN 5GHz Head only. The sample supports simultaneous transmission with the WWAN and WLAN antenna > 5 cm apart. Wireless Personal Hotspot is also supported and was evaluated as per KDB 941225 D06 "Hot Spot SAR v01"

China

Description:	Mobile Handset
Brand Name:	Sony
Model Name or Number:	C6603
Type Number:	PM-0270-BV
Serial Number:	CB5A1M517Y
IMEI Number:	00440245-05627-1
Hardware Version Number:	AP1.2
Software Version Number:	10.1.A.0.270
Hardware Revision of GSM Module:	Not Specified
Software Revision of GSM Module:	Not Specified
FCC ID Number:	PY7PM-0270
Industry Canada ID Number:	4170B-PM0270
Country of Manufacture:	China
Date of Receipt:	16 December 2012
Note(s)	

This sample was used to perform WWAN conducted power measurements only. The sample supports simultaneous transmission with the WWAN and WLAN antenna > 5 cm apart. Wireless Personal Hotspot is also supported and was evaluated as per KDB 941225 D06 "Hot Spot SAR v01"

Page: 9 of 285

Issue Date: 25 January 2013

Identification of Equipment Under Test (EUT) (Continued):		
Description:	Mobile Handset	
Brand Name:	Sony	
Model Name or Number:	C6603	
Type Number:	PM-0270-BV	
Serial Number:	CB5A1M7989	
IMEI Number:	00440245-057720-4	
Hardware Version Number:	AP1.2	
Software Version Number:	s_atp_0_0_32	
Hardware Revision of GSM Module:	Not Specified	
Software Revision of GSM Module:	Not Specified	
FCC ID Number:	PY7PM-0270	
Industry Canada ID Number:	4170B-PM0270	
Country of Manufacture:	China	
Date of Receipt:	16 December 2012	
Note(s)		

Note(s):

This sample was used to perform WLAN conducted power measurements only. The sample supports simultaneous transmission with the WWAN and WLAN antenna > 5 cm apart. Wireless Personal Hotspot is also supported and was evaluated as per KDB 941225 D06 "Hot Spot SAR v01"

Page: 10 of 285

Issue Date: 25 January 2013

4.2. Description of EUT

The Equipment Under Test is a Smart Phone with GSM 2G Quad Band, 3G Tri band, LTE Hexa Band and Wi-Fi bands. The EUT has GPRS Class 33 / EDGE Class 33, UMTS FDD 1, 5, 8 With HSPA (with HSDPA Category 14 and HSUPA Category 6), LTE Band 1, 3, 5, 7, 8, 20, WLAN 802.11 a/b/g/n, Bluetooth Class 1, Personal hotspot mode and RFID mode capabilities.

4.3. Modifications Incorporated in the EUT

EUT (IMEI: 00440245-057638-8) is used to perform UMTS FDD Band 5 body and LTE Band 5 SAR measurements only.

EUT (IMEI: 00440245-057559-6) is used to perform GSM850 Head, PCS1900 and UMTS FDD 5 Head SAR measurements only.

EUT (IMEI: 00440245-057714-7) is used to WLAN 2.4 GHz and WLAN 5GHz Head SAR measurements only.

EUT (IMEI: 00440245-05627-1) is used to perform WWAN conducted power measurements only.

EUT (IMEI: 00440245-057720-4) is used to perform WLAN conducted power measurements only.

Page: 11 of 285 UL

Issue Date: 25 January 2013

	-							
4.4.	Δ	~	~	20	C	0	ri	20

The following accessories were supplied with the EUT during testing:

Description:	Personal Hands-Free Kit (PHF)
Brand Name:	Sony
Model Name or Number:	MH750
Serial Number:	12060C160061850
Cable Length and Type:	~1.2 m
Country of Manufacture:	None Stated
Connected to Port	3.5mm Audio jack and custom type

Description:	Memory Card
Brand Name:	None Stated (Generic)
Model Name or Number:	None Stated
Serial Number:	None Stated
Cable Length and Type:	Not Applicable
Country of Manufacture:	China
Connected to Port	Dedicated Micro SD Slot

Page: 12 of 285 UL

Issue Date: 25 January 2013

15	Sunn	ort Ea	uipment
4).	SUUU	OIL EU	ululell

The following support equipment was used to exercise the EUT during testing:

Description:	Wireless Communication Test Set
Brand Name:	Agilent
Model Name or Number:	8960 Series 10 (E5515C)
Serial Number:	GB46311280
Cable Length and Type:	~4.0m Utiflex Cable
Connected to Port:	RF (Input / Output) Air Link

Description:	Wireless Communication Test Set
Brand Name:	Agilent
Model Name or Number:	8960 Series 10 (E5515E)
Serial Number:	GB46200666
Cable Length and Type:	~4.0m Utiflex Cable
Connected to Port:	RF (Input / Output) Air Link

Description:	Radio Communication Analyzer
Brand Name:	Anritsu
Model Name or Number:	MT8820C
Serial Number:	6200938937
Cable Length and Type:	~4.0m Utiflex Cable
Connected to Port:	RF (Input / Output) Air Link

Description:	CMW500 Communication tester
Brand Name:	Rohde & Schwartz
Model Name or Number:	CMW500
Serial Number:	112933
Cable Length and Type:	~4.0m Utiflex Cable
Connected to Port:	RF (Input / Output) Air Link

Page: 13 of 285 UL

Issue Date: 25 January 2013

4.6. Additional Information Related to Testing				
Equipment Category	GSM/GPRS850 PCS/GPRS1900 UMTS FDD 5, LTE Band 5, WiFi802.11 a/b/g/n			
Type of Unit	Portable Transceiver			
Intended Operating Environment:	Within GSM, UMTS	S, LTE, WiFi and Bluetooth Coverage		
Transmitter Maximum Output Power Characteristics:	GSM850	Communication Test Set was configured to allow the EUT to transmit at a maximum power using Power Control Level (PCL) setting of 5.		
	PCS1900	Communication Test Set was configured to allow the EUT to transmit at a maximum power using Power Control Level (PCL) setting of 0.		
	UMTS FDD 5	Communication Test Set configured to allow to EUT to transmit at a maximum power as per KDB 941225 D01.		
	LTE Band 5	Communication Test Set configured to allow to EUT to transmit at a maximum power as per KDB 941225 D05.		
	2.4 GHz Wi-Fi 802.11b/g/n	Test Software was used to configure the EUT to transmit at a maximum power of up to 16.0dBm.		
	5.0 GHz Wi-Fi 802.11a/n (HT20 / HT40)	Test Software was used to configure the EUT to transmit at a maximum power of up to 10.1dBm.		
	Bluetooth	:= 9.6 dBm or 9.2 mW		

Page: 14 of 285 UL

Issue Date: 25 January 2013

Additional Information Related to Testing (Continued):						
Transmitter Frequency Range:	GSM850		824 to 849 MHz			
	PCS1900		1850 to 1910 MHz			
	UMTS FDD 5		826 to	826 to 847 MHz		
	LTE Band 5		824 to	824 to 844 MHz		
	2.4 GHz Wi-Fi 802.11b/g/n	_		2412 to 2472 MHz		
	5.0 GHz Wi-Fi 8 (HT20 / HT40)	302.11a/n	5180 to 5825 MHz			
Transmitter Frequency Allocation of EUT When Under	Bands	Chani Numb		Channel Description	Frequency (MHz)	
Test:		128		Low	824.2	
	GSM850	190		Middle	836.6	
		251		High	848.8	
		512		Low	1850.2	
	PCS1900	661		Middle	1880.0	
		810)	High	1909.8	
		4132		Low	826.4	
	UMTS FDD 5	4183	3	Middle	836.6	
		4233		High	846.6	
		20450(10	MHz)	Low	829.0	
		20525(10MHz)		Middle	836.5	
	LTE Band 5		MHz)	High	844.0	
	LIL Dand 3	20407(1.4MHz)		Low	824.7	
		20525(1.4	4MHz)	Middle	836.5	
		20643(1.4	4MHz)	High	848.3	
	2.4.011-145.5	1		Low	2412.0	
	2.4 GHz Wi-Fi 802.11b/g/n	6		Middle	2437.0	
		11		High	2462.0	

Page: 15 of 285

Issue Date: 25 January 2013

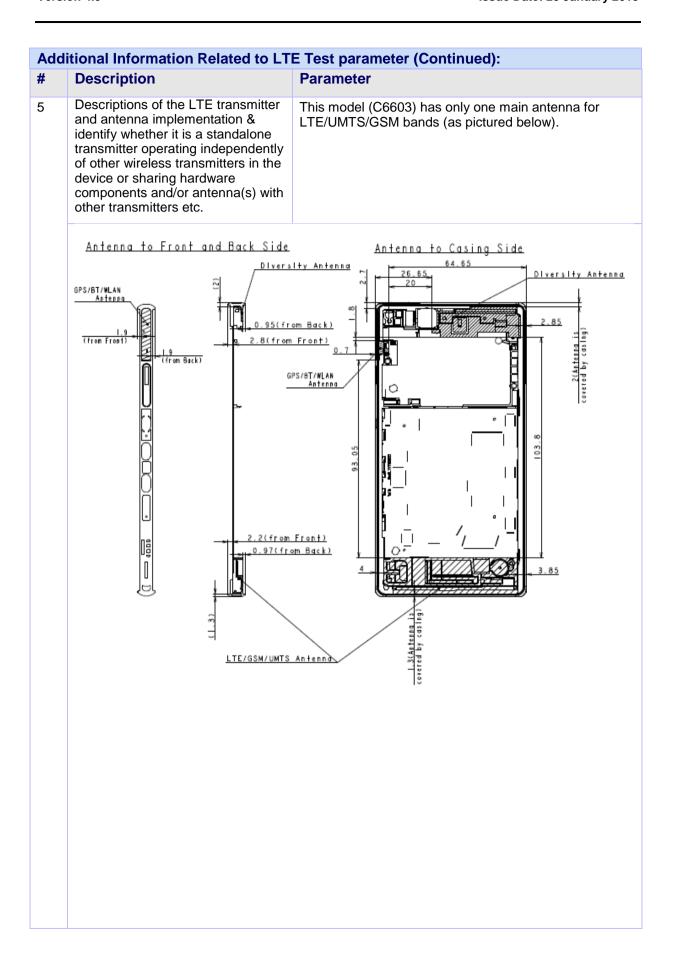
Additional Information Related to Testing (Continued)

Transmitter Frequency Allocation of EUT When Under Test:

Band: 5.0 GHz Wi-Fi 802.11a/n (HT20 / HT40)

Channel Number Frequency (MHz) 36 5180.0 38 5190.0 40 5200.0 44 5220.0 46 5230.0 48 5240.0 52 5260.0 54 5270.0 56 5280.0 60 5300.0	
38 5190.0 40 5200.0 44 5220.0 46 5230.0 48 5240.0 52 5260.0 54 5270.0 56 5280.0	
40 5200.0 44 5220.0 46 5230.0 48 5240.0 52 5260.0 54 5270.0 56 5280.0	
44 5220.0 46 5230.0 48 5240.0 52 5260.0 54 5270.0 56 5280.0	
46 5230.0 48 5240.0 52 5260.0 54 5270.0 56 5280.0	
48 5240.0 52 5260.0 54 5270.0 56 5280.0	
52 5260.0 54 5270.0 56 5280.0	
54 5270.0 56 5280.0	
56 5280.0	
60 5300 O	
0000.0	
62 5310.0	
64 5320.0	
100 5500.0	
102 5510.0	
104 5520.0	
108 5540.0	
110 5550.0	
112 5560.0	
116 5580.0	
118 5590.0	
120 5600.0	
124 5620.0	
126 5630.0	
128 5640.0	
132 5660.0	
134 5670.0	
136 5680.0	
140 5700.0	
149 5745.0	
151 5755.0	
153 5765.0	
157 5785.0	
159 5795.0	
161 5805.0	
165 5825.0	

Page: 16 of 285


Issue Date: 25 January 2013

Additional Information Related to To	esting (Continued):
Modulation(s):	GMSK (GSM/ GPRS): 217 Hz QPSK(UMTS / HSDPA/HSPA):0Hz DBPSK, CCK (Wi-Fi): 0 Hz FDD (QPSK/ 16QAM): 0 Hz
Modulation Scheme (Crest Factor):	GSMK (GSM): 8.3 GMSK (GPRS): 2 DBPSK, CCK (Wi-Fi): 1 QPSK(UMTS FDD / HSDPA): 1 FDD (QPSK/ 16QAM): 1
Antenna Type:	Internal integral
Antenna Length:	Unknown
Number of Antenna Positions:	1 fixed (WWAN) 1 fixed (GPS/WLAN/ <i>Bluetooth</i>) 1 fixed (NFC) 1 fixed (Diversity)
Power Supply Requirement:	3.7V
Battery Type(s):	Li-ion

Add	Additional Information Related to LTE Test parameter:						
#	Description	Parameter					
1	Identify the operating frequency range of each LTE transmission FCC band used by the device	Band 5: frequency range – 824 MHz– 849 MHz					
2	Identify the channel bandwidths used in each frequency band; e.g.: 1.4, 3, 5, 10, 15, 20 MHz etc.	Channel Bandwidths used are: B5 (1.4, 3, 5, 10) MHz					
3	Identify the high, middle and low (L, M, H) channel numbers and frequencies tested in each LTE frequency band	B5 -1.4 MHz (H,M,L)= (20643, 20525, 20407) (848.3, 836.5, 824.7) MHz B5 -3 MHz (H,M,L)= (20635, 20525, 20415) (847.5, 836.5, 825.5) MHz B5 -5 MHz (H,M,L)= (20625, 20525, 20425) (846.5, 836.5, 826.5) MHz B5 -10MHz (H,M,L)= (20600, 20525, 20450) (844.0, 836.5, 829.0) MHz					
4	Specify the UE category and uplink modulations used	The UE Category is 3 and the Uplink modulations used are QPSK, 16QAM.					

Page: 17 of 285

Issue Date: 25 January 2013

Page: 18 of 285 UL

Issue Date: 25 January 2013

Right hand side

Additional Information Related to LTE Test parameter (Continued): # **Description Parameter** The following exposure condition with respect to head and 6 Identify the LTE Band Voice/data body test are required for both voice and data modes due requirements in each operating to EUT functionality and antenna locations. mode and exposure condition with 1) Body-worn SAR is required at 15 mm separation respect to head and body test distance configurations, antenna locations. Mobile Hot Spot Mode will be tested by handset flip-cover or slide positioning the smart phone with 10 mm positions, antenna diversity separation distance. conditions, etc. Wireless Personal Hotspot mode with consideration for the Front Display of EUT, Back of EUT, Left Hand side of EUT, Right Hand side of EUT, Top Edge of EUT and Bottom Edge of EUT with respect to the antenna location. The test separation distance between the EUT edge and phantom flat surface for this mode will be 10mm as the dimensions of the device is > 9cm x 5cm. 3) Head SAR is required in LTE mode as this model supports SVLTE operation. Top

Left hand side

Front

Bottom

Page: 19 of 285 UL

Issue Date: 25 January 2013

Add	itional Information Related to L	TE Test parameter (Continued):
#	Description	Parameter
7	Identify if Maximum Power Reduction (MPR) is optional or mandatory, i.e. built-in by design: a) only mandatory MPR may be considered during SAR testing, when the maximum output power is permanently limited by the MPR implemented within the UE; and only for the applicable RB (resource block) configurations specified in LTE standards b) A- MPR (additional MPR) must be disabled.	The EUT does not incorporate MPR.
8	Include the maximum average conducted output power measured on the required test channels for each channel bandwidth and UL modulation used in each frequency band: a) with 1 RB allocated at the upper edge of a channel b) with 1 RB allocated at the low, centred, high end of a channel c) using 50% RB allocation low, centered, high end within a channel d) using 100% RB allocation	This is included in the section 7.2 of this report.
9	Identify all other U.S. wireless operating modes (3G, Wi-Fi, WiMax, Bluetooth etc), device/exposure configurations (head and body, antenna and handset flip-cover or slide positions, antenna diversity conditions etc.) and frequency bands used for these modes	The following bands are supported for the exposure conditions 1) GSM (850/1900) and UMTS FDD (850, 1700, 1900) - Exposure conditions: Head/Body worn SAR required for GSM / UMTS FDD and wireless personal hotspot. DTM is not supported. 2) Bluetooth 2.4GHz (Basic Rate & EDR) - Exposure conditions: BT SAR is not required as maximum output power < 19 mW threshold value for separation distance of 10mm & antenna separation distance > 5cm. 3) WiFi 2.4GHz - Exposure conditions: Head/Body SAR required for wireless personal hotspot. No power reduction. 4) WiFi 5 GHz - Exposure conditions: Head/Body SAR required for wireless personal hotspot. No power reduction

Page: 20 of 285

Issue Date: 25 January 2013

	litional Information Related to LT				COULI	iueu).		
10	Include the maximum average conducted output power measured for the other wireless mode and frequency bands	Parameter This is included in the section 7.2 of this report. Simultaneous transmission conditions						
11	Identify the simultaneous		condition	S				
transmission c voice and data supported by a device configu frequency band body exposure	transmission conditions for the voice and data configurations			WWAN		WLAN	WPAN	Sum of
	supported by all wireless modes, device configurations and frequency bands, for the head and body exposure conditions and	#	LTE BAND Voice/ Data	GSM Voice/Dat a	UMTS Voice/ Data	Wi-Fi 802.11a/b/g /n	Bluetooth	WWAN & WLAN or WPAN
	device operating configurations (handset flip or cover positions,	1	Х			Х		Х
	antenna diversity conditions etc.)	2		X		Х		Х
		3			Х	Х		Х
		4	Х				Х	Х
		5		Х			Х	Х
		6			Х		X	Х
12	When power reduction is applied to	thei be l	refore Ind based on	dividual SAR the estimate	will not b	ement is below e tested. Sim_ evel.		
13	certain wireless modes to satisfy SAR compliance for simultaneous transmission conditions, other equipment certification or operating requirements, include the maximum average conducted output power measured in each power reduction mode applicable to the simultaneous voice/data transmission configurations for such wireless configurations and frequency bands; and also include details of the power reduction implementation and measurement setup	Not applicable.						
13	equipment, test software, built-in test firmware etc. required to support testing the device when power reduction is applied to one or more transmitters/antennas for simultaneous voice/data transmission	Anritsu MT8820C communication simulator and CMW500 Communication tester which support LTE modes (voice/data) were used for testing.					TE	
14	When appropriate, include a SAR test plan proposal with respect to the above.	No	t Applic	cable				
15	If applicable, include preliminary SAR test data and/or supporting information in laboratory testing inquiries to address specific issues and concerns or for requesting further test reduction considerations appropriate for the device; for example simultaneous transmission configurations.	No	t Applic	cable				

Page: 21 of 285

Issue Date: 25 January 2013

5. Deviations from the Test Specification

Test was performed as per KDB 248227 D01 "SAR measurements for 802.11a/b/g v01r02", KDB 447498 D01 General RF Exposure Guidance v05, KDB 648474 D04 SAR Handsets Multi Xmiter and Ant v01, KDB 941225 D01 SAR test for 3G devices v02, KDB 941225 D03 "SAR Test Reduction GSM/GPRS/EDGE v01", KDB 941225 D05 SAR for LTE Devices v02, KDB 941225 D06 "Hot Spot SAR v01", KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01, KDB 865664 D02 SAR Reporting v01, according to the handset procedures in IEEE Std 1528-2003 and OET Bulletin 65 Supplement C 01-01. The assessment for Personal Wireless Hotspot was also evaluated as per the FCC KDB 941225 D06 "Hot Spot SAR v01".

For technologies bands supporting personal hotspot mode, SAR was evaluated on all the sides and surfaces within 25mm of the transmitting antenna (WWAN or WLAN) as per FCC KDB 941225 D06 "Hot Spot SAR v01".

As per KDB 447498, the SAR exclusion threshold value for separation distance of 10mm is 19 mW for frequencies between 2450 MHz and hence Stand-Alone SAR body testing was not performed for the *Bluetooth* Technology.

SAR test was performed in the middle channels for WWAN and WLAN. The worst case configuration for both Head and Body test was evaluated in the low and high channels.

The measured maximum conducted power for WLAN 2.4 HGz 802.11b/n is 16.0dBm (equivalent to 40 mW) and for WLAN 5GHz is 10.1dBm (equivalent to 10.24 mW).

As per KDB 447498, the SAR exclusion threshold value for separation distance of 5mm is 10mW and for separation distance of ≥10mm is 19mW for 2450MHz and hence, Stand-Alone SAR testing was performed on WLAN 2.4 Head, Hotspot and Body Configurations.

As per KDB 447498, the SAR exclusion threshold value for separation distance of 5mm is 7mW for frequencies between 5.2 GHz and 6mW for 5.4-5.6 GHz Head configuration and for separation distance of ≥10mm 13mW for frequencies between 5.2- 5.4 GHz and 12mW for 5.8 GHz and hence, Stand-Alone SAR testing was performed on WLAN 5.0 GHz Head only. SAR evaluation is not required on Hotspot and Body Configurations.

GPRS clas33 / uplink setup of 1-uplink, 2-uplink, 3-uplink and 4-uplink were all evaluated to find the setting with the highest power reference point (unit v/m) as per the DASY4 system. 4-uplink was found to give the highest power reference point measurement on the DASY4 system (unit v/m) for GPRS850 and GPRS1900. All settings were performed with the device in a fixed position Front facing phantom at 0mm separation to ensure there were no positioning errors. The following values were measured relative to the uplink settings:

GPRS Mode	GPRS850 Power reference (v/m)	GPRS1900 Power reference (v/m)		
1 uplink	14.65	3.64		
2 uplink	16.40	3.87		
3 uplink	18.04	3.99		
4 uplink	18.25	4.09		

Note: Power reference point measurements are from the DASY4 system and used to check the device power drift although the units are v/m. For informational purpose to ensure the worst case uplink time slot is also verified by the DASY4 SAR system, this was use as per above comment at a fixed point.

For LTE testing, as per KDB 941225 D05, when the maximum average conducted output power for a smaller channel Bandwidth is >0.5 dB higher than that measured for the highest channel Bandwidth, the largest channel Bandwidth test procedures are applied to the smaller channel Bandwidth. Hence, for LTE Bands 5, testing was performed on both largest channel Bandwidth and 1.4MHz channel Bandwidth.

Page: 22 of 285 UL

Issue Date: 25 January 2013

6. Operation and Configuration of the EUT during Testing

The EUT was tested in the following operating mode(s) unless otherwise stated:

- GSM850 Voice allocated mode with Communication Test Set configured to allow the EUT to transmit at a maximum power using Power Control Level (PCL) setting of 5.
- GPRS850 Data allocated mode with Communication Test Set configured to allow the EUT to transmit at a maximum power using Power Control Level (PCL) setting of 5. Tested using 4 Uplink time slots with CS1 for GPRS.
- PCS1900 Voice allocated mode with Communication Test Set configured to allow the EUT to transmit at a maximum power using Power Control Level (PCL) setting of 0.
- GPRS1900 Data allocated mode with Communication Test Set configured to allow the EUT to transmit at a maximum power using Power Control Level (PCL) setting of 0. Tested using 4 Uplink time slots with CS1 for GPRS.

GSM850: Power Table Settings used for Test Set						
Power Control Level PCL	Nominal Power (dBm)					
0 2	39					
3	37					
4	35					
5	33					
6	31					
7	29					
8	27					
9	25					
10	23					
11	21					
12	19					
13	17					
14	15					
15	13					
16	11					
17	9					
18	7					
19 31	5					

PCS1900: Power Table Settings used for Test Set						
Power Control Level PCL						
22 29	Reserved					
30	33					
31	32					
0	30					
1	28					
2	26					
3	24					
4	22					
5	20					
6	18					
7	16					
8	14					
9	12					
10	10					
11	8					
12	6					
13	4					
14	2					
15	0					
16 21	Reserved					

- UMTS FDD 5 Call allocated mode with Communication Test Set configured to allow the EUT to transmit at a maximum as per KDB 941225 D01.
- UMTS FDD 5 RMC 12.2kbps + HSUPA With Test loop mode 1 and TPC bits configured to all "1's", Sub-test 5, AG Index set to 21 and E-TFCI set to 81 with Communication Test Set configured to allow to EUT to transmit at a maximum power as per KDB 941225 D01.
- UMTS FDD 5 RMC 12.2kbps + HSDPA With Test loop mode 1 and TPC bits configured to all "1's", Sub-test 1 with Communication Test Set configured to allow to EUT to transmit at a maximum power as per KDB 941225 D01.

Page: 23 of 285

Issue Date: 25 January 2013

Operating Modes (Continued)

 LTE Band 5 data allocated mode at QPSK on the 1.4MHz BW and 10MHz BW channels, using a Communication Test Set configured to allow to EUT to transmit at a maximum power as per KDB 941225 D05.

- 2.4 GHz WiFi802.11b/g/n Data allocated mode using 'HyperTerminal' software to excise mode 'b', 'g' and 'n', with maximum power of up to 16.0 dBm for 'b' mode and 15.7 dBm for 'g' and 14.4 dBm for 'n' modes.
- 5.0 GHz WiFi802.11a/n Data allocated mode using 'HyperTerminal' software to excise mode 'a' and 'n', with maximum power of up to 10.1 dBm for 'a' mode and 8.8 dBm for 'n' modes.

Page: 24 of 285 UL

Issue Date: 25 January 2013

6.1. Configuration and Peripherals

The EUT was tested in the following configuration(s) unless otherwise stated:

- Standalone fully charged battery powered.
- Head and Body-worn configurations were evaluated.
- The applied FCC body-worn Personal Hotspot orientations where the corresponding edge(s) closest to the user with the most conservative exposure condition were all evaluated at 10 mm from the body. For configuration that did not overlap with Personal hotspot, SAR evaluation was performed at 15mm separation.
- GPRS class 33: setup for 1-uplink, 2-uplink, 3-uplink and 4-uplink were evaluated to find the
 setting with the highest power reference measurements. 4-uplink was found to give the
 highest power reference point measurement on the DASY4 system (unit v/m) for GPRS850
 and GPRS1900. All settings were performed with the device in a fixed position 'Back facing
 phantom' at 0mm separation to ensure there were no positioning errors.
- GSM, GPRS and EDGE power measurement were all measured as per FCC pubs. 941225 D03. Although power reduction was allowed SAR test was performed on GPRS using GMSK. Test reduction was applied to EDGE using GMSK and 8PSK modulation scheme.

Head Configuration

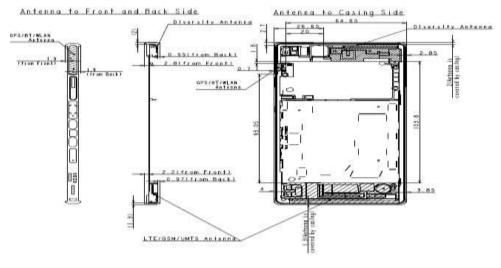
- a) The EUT was placed in a normal operating position with the centre of the ear-piece aligned with the ear canal on the phantom.
- b) With the ear-piece touching the phantom the centre line of the EUT was aligned with an imaginary plane (X and Y axis) consisting of three lines connecting both ears and the mouth.
- For the cheek position the EUT was gradually moved towards the cheek until any point of the mouth-piece or keypad touched the cheek.
- d) For the tilted position the EUT was positioned as for the cheek position, and then the horizontal angle was increased by fifteen degrees (the phone keypad was moved away from the cheek by fifteen degrees).
- e) SAR measurements were evaluated at maximum power and the unit was operated for an appropriate period prior to the evaluation in order to minimise the drift.
- f) The device was keyed to operate continuously in the transmit mode for the duration of the test.
- g) The location of the maximum spatial SAR distribution (hot spot) was determined relative to the EUT and its antenna.
- h) The EUT was transmitting at full power throughout the duration of the test powered by a fully charged battery.

Body Configuration

- a) The EUT was placed in a normal operating position where the centre of EUT was aligned with the centre reference point on the flat section of the 'SAM' phantom.
- b) With the EUT touching the phantom at an imaginary centre line. The EUT was aligned with a marked plane (X and Y axis) consisting of two lines.
- c) For the touch-safe position the EUT was gradually moved towards the flat section of the 'SAM' phantom until any point of the EUT touched the phantom.
- d) For position(s) greater then 0mm separation the EUT was positioned as per the touch-safe position, and then the vertical height was decreased/adjusted as required.
- e) SAR measurements were evaluated at maximum power and the unit was operated for an appropriate period prior to the evaluation in order to minimise the drift.
- f) The device was keyed to operate continuously in the transmit mode for the duration of the test.
- g) The location of the maximum spatial SAR distribution (hot spot) was determined relative to the EUT and its antenna.
- The EUT was transmitting at full power throughout the duration of the test powered by a fully charged battery.

Page: 25 of 285 UL

Issue Date: 25 January 2013


6.2. Configuration Consideration							
Technology Configuration		Antenna-to- User Separation	Position	Antenna-to- Edge Separation	Evaluation Considered		
			Touch Left	<25mm	Yes		
	Head	0mm	Tilt Left	<25mm	Yes		
	Heau	OHIIII	Touch Right	<25mm	Yes		
			Tilt Right	<25mm	Yes		
			Front	<25mm	Yes		
WWAN			Back	<25mm	Yes		
VVVV	Hotenot	10mm	Top Edge	>25mm	No		
	Hotspot	TOMM	Bottom Edge	<25mm	Yes		
			Right Edge	<25mm	Yes		
			Left Edge	<25mm	Yes		
	Body	15mm	Front	<25mm	Yes		
	Бойу	1311111	Back	<25mm	Yes		
	Head		Touch Left	<25mm	Yes		
		0mm	Tilt Left	<25mm	Yes		
	Heau		Touch Right	<25mm	Yes		
			Tilt Right	<25mm	Yes		
			Front	<25mm	Yes		
WLAN			Back	<25mm	Yes		
VVLAIN	Hotopot	10mm	Top Edge	<25mm	Yes		
	Hotspot	1011111	Bottom Edge	>25mm	No		
			Right Edge	<25mm	Yes		
			Left Edge	<25mm	Yes		
	Body	15mm	Front	<25mm	Yes		
	Бойу	1311111	Back	<25mm	Yes		

Note:

- 1. Test distances are as per FCC KDB publication 447498 D01v05 for mobile handsets.
- 2. Bluetooth standalone SAR is excluded as the output power meets the exclusion threshold:
 - The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances
 ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f_{(GHz)}}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, ¹⁶ where

- f_(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation¹⁷
- The result is rounded to one decimal place for comparison
- " Taken from FCC KDB publication 447498 D01v05

Page: 26 of 285 UL

Issue Date: 25 January 2013

7. Measurements, Examinations and Derived Results

7.1. General Comments

This section contains test results only.

Measurement uncertainties are evaluated in accordance with current best practice. Our reported expanded uncertainties are based on standard uncertainties, which are multiplied by an appropriate coverage factor to provide a statistical confidence level of approximately 95%. Please refer to section 8 for details of measurement uncertainties.

Page: 27 of 285 UL

Issue Date: 25 January 2013

7.2. Conducted Power Measurements

7.2.1.Co	nducte	ed A	verage	Powe	er Measureme	ent 2G: GSM8	350	
			luency IHZ)	Power (dBm)		Avg. Burst Power with consideration for uplink time slot (dBm)		Note
128		82	24.2		32.8	2 3	3.8	Conducted, GMSK
190		83	36.6		32.7	2 3	3.7	Conducted, GMSK
251		84	48.8		32.8	23	.8	Conducted, GMSK
GPRS85	50 - Me	asur	ed Ave	rage	Power withou	ut considerat	ion for Uplinl	k time slots:
Channel Number	Freque (MH		Pow (dBı 1Upl	n)	Power (dBm) 2Uplink	Power (dBm) 3Uplink	Power (dBm) 4Uplink	Note
128	824.	.2	32.	8	30.3	29.3	28.3	Conducted, GMSK
190	836.	.6	32.	7	30.5	29.5	28.3	Conducted, GMSK
251	848.	.8	32.	8	30.4	29.3	28.2	Conducted, GMSK
GPRS85	50 - C al	lcula	ted Val	ue w	ith considera	tion for Uplin	k time slots:	
Channel Number	Freque (MH		Pow (dBı 1Upl	n)	Power (dBm) 2Uplink	Power (dBm) 3Uplink	Power (dBm) 4Uplink	Note
128	824.	.2	23.	8	24.3	25.0	25.3	Conducted, GMSK
190	836.	.6	23.	7	24.5	25.2	25.3	Conducted, GMSK
251	848.8		23.	8	24.4	25.0	25.2	Conducted, GMSK
EDGE85	0 - Me	asur	ed Ave	rage	Power withou	ut considerat	ion for Uplinl	k time slots:
Channel Number	Freque (MH		Pow (dBı 1Upl	n)	Power (dBm) 2Uplink	Power (dBm) 3Uplink	Power (dBm) 4Uplink	Note
128	824.	.2	32.	8	30.3	29.3	28.3	Conducted, GMSK
190	836.	.6	32.	7	30.5	29.5	28.3	Conducted, GMSK
251	848.	.8	32.	8	30.4	29.3	28.2	Conducted, GMSK
EDGE85	50 - C al	lcula	ted Val	ue w	ith considera	tion for Uplin	k time slots:	
Channel Number	Freque (MH		Pow (dBı 1Upl	n)	Power (dBm) 2Uplink	Power (dBm) 3Uplink	Power (dBm) 4Uplink	Note
128	824.	.2	23.	8	24.3	25.0	25.3	Conducted, GMSK
190	836.	.6	23.	7	24.5	25.2	25.3	Conducted, GMSK
251	848.	.8	23.	8	24.4	25.0	25.2	Conducted, GMSK
Note:								

Scale factor for uplink time slot:

- 1. 1 Uplink: time slot ratio = $8:1 \Rightarrow 10*\log(8/1) = 9.03 \text{ dB}$
- 2. 2 Uplink: time slot ratio = $8:2 \Rightarrow 10*log(8/2) = 6.02 dB$
- 3. 3 Uplink: time slot ratio = $8:3 \Rightarrow 10*\log(8/3) = 4.26 \text{ dB}$
- **4.** 4 Uplink: time slot ratio = $8:4 \Rightarrow 10*\log(8/4) = 3.01 \text{ dB}$

Page: 28 of 285 UL

Issue Date: 25 January 2013

EDGE (MCS9 ~ 8PSK) EDGE850 - Measured Average Power without consideration for Uplink time slots:								
Channel Number	Frequency (MHZ)	Power (dBm) 1Uplink	Power (dBm) 2Uplink	Power (dBm) 3Uplink	Power (dBm) 4Uplink	Note		
128	824.2	26.8	25.3	24.3	22.4	Conducted, 8PSK		
190	836.6	26.8	25.4	24.4	22.4	Conducted, 8PSK		
251	848.8	26.8	25.3	24.3	22.4	Conducted, 8PSK		
EDGE85	io - Calcula	ted Value wi	th considerat	ion for Uplin	k time slots:			
Channel	_	Power	Power	Power	Power			
Number	Frequency (MHZ)	(dBm) 1Uplink	(dBm) 2Uplink	(dBm) 3Uplink	(dBm) 4Uplink	Note		
		` ,	` ,	` '		Note Conducted, 8PSK		
Number	(MHZ)	1Uplink	2Uplink	3Ùplink	4Ùplink			
Number 128	(MHZ) 824.2	1Uplink 17.8	2Uplink 19.3	3Uplink 20.0	4Ùplink 19.4	Conducted, 8PSK		

Scale factor for uplink time slot:

- 1. 1 Uplink: time slot ratio = $8:1 \Rightarrow 10*\log(8/1) = 9.03 \text{ dB}$
- 2. 2 Uplink: time slot ratio = $8:2 \Rightarrow 10*\log(8/2) = 6.02 \text{ dB}$
- 3. 3 Uplink: time slot ratio = $8:3 \Rightarrow 10*\log(8/3) = 4.26 \text{ dB}$
- **4.** 4 Uplink: time slot ratio = $8:4 \Rightarrow 10*\log(8/4) = 3.01 \text{ dB}$

Page: 29 of 285

Issue Date: 25 January 2013

7.2.2.Co	nduc	ted A	verage	Powe	r Measureme	ent 2G: PCS1	900	
Channel Number		-	Frequency Po (MHZ) Po		ower (dBm)	Avg. Burst Power with consideration for uplink time slot (dBm)		Note
512		185	50.2		29.9	20.	9	Conducted, GMSK
661		188	30.0		29.8	20.	8	Conducted, GMSK
810		190	09.8		29.8	20.	8	Conducted, GMSK
GPRS19	00 - 1	Measu	ıred Av	erage	Power without	out considera	tion for Upl	ink time slots:
Channel Number		uency HZ)	Pow (dBı 1Upl	n)	Power (dBm) 2Uplink	Power (dBm) 3Uplink	Power (dBm) 4Uplink	Note
512	185	50.2	29.	9	27.3	25.9	24.8	Conducted, GMSK
661	188	30.0	29.	8	27.3	25.9	24.8	Conducted, GMSK
810	190	9.8	29.	8	27.3	25.9	24.9	Conducted, GMSK
GPRS19	900 - 0	Calcul	ated Va	alue w	ith consider	ation for Upli	nk time slo	ts:
Channel Number		uency HZ)	Pow (dBı 1Upl	n)	Power (dBm) 2Uplink	Power (dBm) 3Uplink	Power (dBm) 4Uplink	Note
512	185	50.2	20.	9	21.3	21.6	21.8	Conducted, GMSK
661	188	30.0	20.	8	21.3	21.6	21.8	Conducted, GMSK
810	1909.8		20.	8	21.3	21.6	21.9	Conducted, GMSK
EDGE19	000 - 1	Meası	ıred Av	erage	Power without	out considera	tion for Upl	ink time slots:
Channel Number		uency HZ)	Pow (dBı 1Upl	n)	Power (dBm) 2Uplink	Power (dBm) 3Uplink	Power (dBm) 4Uplink	Note
512	185	50.2	29.	9	27.3	25.9	24.8	Conducted, GMSK
661	188	30.0	29.	8	27.3	25.9	24.8	Conducted, GMSK
810	190	9.8	29.	8	27.3	25.9	24.9	Conducted, GMSK
EDGE19	900 - 0	Calcul	ated Va	alue w	ith consider	ation for Upli	nk time slo	ts:
Channel Number		uency HZ)	Pow (dBı 1Upl	n)	Power (dBm) 2Uplink	Power (dBm) 3Uplink	Power (dBm) 4Uplink	Note
512	185	50.2	20.	9	21.3	21.6	21.8	Conducted, GMSK
661	188	30.0	20.	8	21.3	21.6	21.8	Conducted, GMSK
810	190	9.8	20.	8	21.3	21.6	21.9	Conducted, GMSK
Note:								

Scale factor for uplink time slot:

- 1. 1 Uplink: time slot ratio = $8:1 \Rightarrow 10*log(8/1) = 9.03 dB$
- 2. 2 Uplink: time slot ratio = $8:2 \Rightarrow 10*\log(8/2) = 6.02 \text{ dB}$
- 3. 3 Uplink: time slot ratio = $8:3 \Rightarrow 10*\log(8/3) = 4.26 \text{ dB}$
- 4. 4 Uplink: time slot ratio = $8:4 \Rightarrow 10*\log(8/4) = 3.01 \text{ dB}$

Page: 30 of 285

Issue Date: 25 January 2013

EDGE (MCS9 ~ 8PSK):

EDGE1900 - Measured Average Power without consideration for Uplink time slots:

Channel Number	Frequency (MHZ)	Power (dBm) 1Uplink	Power (dBm) 2Uplink	Power (dBm) 3Uplink	Power (dBm) 4Uplink	Note
512	1850.2	25.7	24.3	23.3	22.4	Conducted, 8PSK
661	1880.0	25.7	24.3	23.4	22.5	Conducted, 8PSK
810	1909.8	25.8	24.3	23.5	22.5	Conducted, 8PSK

EDGE1900 - Calculated Value with consideration for Uplink time slots:

Channel Number	Frequency (MHZ)	Power (dBm) 1Uplink	Power (dBm) 2Uplink	Power (dBm) 3Uplink	Power (dBm) 4Uplink	Note
512	1850.2	16.7	18.3	19.0	19.4	Conducted, 8PSK
661	1880.0	16.7	18.3	19.1	19.5	Conducted, 8PSK
810	1909.8	16.8	18.3	19.2	19.5	Conducted, 8PSK
Note:						

Scale factor for uplink time slot:

1. 1 Uplink: time slot ratio = $8:1 \Rightarrow 10*\log(8/1) = 9.03 \text{ dB}$

2. 2 Uplink: time slot ratio = $8:2 \Rightarrow 10 \log(8/2) = 6.02 \text{ dB}$

3. 3 Uplink: time slot ratio = $8:3 \Rightarrow 10*\log(8/3) = 4.26 \text{ dB}$

4. 4 Uplink: time slot ratio = $8:4 \Rightarrow 10*\log(8/4) = 3.01 \text{ dB}$

Page: 31 of 285 UL

Issue Date: 25 January 2013

7.2.3.Conducted Average Power Measurement 3G:											
Mod	HSDPA					WCDMA					
Sets		1	2	3	4	1	2	3	4	5	Voice / RMC 12.2kbps
Band	Channel		Power [dBm]				Power [dBm]	Power [dBm]	Power [dBm]	Power [dBm]	Power [dBm]
UMTS	4132 4357	23.6	23.3	22.7	22.8	23.3	23.4	22.7	23.6	22.7	23.7
FDD 5 (850 MHz)	4183 4408	23.7	23.4	22.8	22.9	23.4	23.5	22.8	23.7	22.7	23.8
(830 WITI2)	4233 4458	23.6	23.3	22.7	22.8	23.3	23.4	22.7	23.6	22.7	23.7
Mod	les		HSI	DPA			WCDMA				
Sets	Sets		2	3	4	1	2	3	4	5	Voice / RMC 12.2kbps
ßc		2	12	15	15	11	6	15	2	15	
ßd		15	15	8	4	15	15	9	15	15	
ΔACK, ΔNACK, ΔCQI		8	8	8	8	8	8	8	8	8	
AG	V	-	-	-	-	20	12	15	17	21	

Page: 32 of 285

Issue Date: 25 January 2013

The module power levels were measured in both HSPA and 3G RMC 12.2kbps modes and compared to ensure the correct mode of operation had been established.

The following tables taken from FCC 3G SAR procedures (KDB 941225 D01 SAR test for 3G devices v02) below were applied using an Agilent 8960 series 10 wireless communications test set which supports 3G / HSDPA release 5 / HSPA release 6.

Sub-test Setup for Release 5 HSDPA											
Sub-test	βς	β_{d}	B _d (SF)	$\beta_{c/}\beta_d$	${\beta_{hs}}^{(1)}$	SM (dB) ⁽²⁾					
1	2/15	15/15	64	2/15	4/15	0.0					
2	12/15 ⁽³⁾	15/15 ⁽³⁾	64	12/15 ⁽³⁾	24/15	1.0					
3	15/15	8/15	64	15/8	30/15	1.5					
4	15/15	4/15	64	15/4	30/15	1.5					

Note 1: Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 8 \Leftrightarrow A_{hs} = $\beta_{\text{hs}}/\beta_{\text{c}}$ = 30/15 \Leftrightarrow β_{hs} = 30/15 * β_{c}

Note 2: CM = 1 for $\beta_{c/}$ β_{d} = 12/15, B_{hs}/β_{c} = 24/15

Note 3: For subtest 2 the $\beta_{c'}$ β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 11/15 and β_d = 15/15

Sub	Sub-test Setup for Release 6 HSPA												
Sub -test	βς	β _d	B _d (SF)	β _{c/} β _d	$\beta_{hs}^{(1)}$	B _{oc}	B _{od}	B₀d <i>(SF</i>)	B _{od} (codes)	CM ⁽²) (dB)	Power Back- off (dB)	AG ⁽ Ind ex	E- TFC I
1	11/15 ⁽³	15/15 ⁽³	64	11/15 ⁽³	22/1 5	209/22 5	1039/22 5	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/1 5	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/1 5	31/15	B _{al1} : 47/15 B _{al2} : 47/15	4	1	2.0	1.0	15	92
4	2/15	15/15	64	2/15	2/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴	15/15 ⁽⁴	64	15/15 ⁽⁴	24/1 5	24/15	134/15	4	1	1.0	0.0	21	81

Note 1: $\Delta_{ACK, \Delta_{NACK}}$ and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15 * \beta_c$

Note 2: CM = 1 for $\beta_{c'}/\beta_d$ = 12/15, $B_{hs'}/\beta_c$ = 24/15. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH AND E-DPCCH for the Power Back-off is based on the relative CM difference.

Note 3: For subtest 1 the $\beta_{c'}$ β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 10/15 and β_d = 15/15.

Note 4: For subtest 5 the $\beta_{c'}$ β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 14/15 and β_d = 15/15.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g. Note 6: B_{od} cannot be set directly; it is set by Absolute Grant Value.

Page: 33 of 285

Issue Date: 25 January 2013

7.2.4.Conducted Average Power Measurement: LTE Band 5 (850 MHz)										
						Actual	Measured Avg Power (dBm).			
Ch. BW	Modulations	RB Config	Start RB Offset		MPR	Max Power (dBm)	Frequency 829.0 MHz (Low)	Frequency 836.5 MHz (Middle)	Frequency 844.0 MHz (High)	
		1	Low	0	(0)	23.0	23.1	23.0	23.0	
		1	Mid	24	(0)	23.0	23.1	23.2	23.0	
		1	High	49	(0)	23.0	23.1	23.0	23.0	
	QPSK	25	Low	0	(1)	22.0	22.2	22.3	22.2	
		25	Mid	12	(1)	22.0	22.2	22.3	22.2	
		25	High	25	(1)	22.0	22.2	22.3	22.2	
10 MHz		50	-	0	(1)	22.0	22.1	22.2	22.1	
10 MHZ		1	Low	0	(1)	22.0	22.2	22.2	22.1	
		1	mid	24	(1)	22.0	22.2	22.2	22.1	
	16QAM	1	High	49	(1)	22.0	22.3	22.2	22.1	
		25	Low	0	(2)	21.0	21.2	21.4	21.2	
		25	Mid	12	(2)	21.0	21.2	21.4	21.2	
		25	High	25	(2)	21.0	21.2	21.4	21.2	
		50	-	0	(2)	21.0	21.1	21.3	21.2	
			Start RB 9 Offset		MPR	Actual Max Power (dBm)	Measured Avg Power (dBm).			
Ch. BW	Modulations	RB Config					Frequency 826.5 MHz (Low)	Frequency 836.5 MHz (Middle)	Frequency 846.5 MHz (High)	
		1	Low	0	(0)	23.0	23.2	23.2	23.2	
		1	Mid	12	(0)	23.0	23.2	23.2	23.2	
		1	High	24	(0)	23.0	23.2	23.2	23.2	
	QPSK	12	low	0	(1)	22.0	22.3	22.4	22.2	
		12	Mid	6	(1)	22.0	22.3	22.4	22.2	
		12	High	13	(1)	22.0	22.3	22.4	22.2	
5 MIL.		25	-	0	(1)	22.0	22.3	22.3	22.1	
5 MHz		1	Low	0	(1)	22.0	22.2	22.2	22.1	
		1	Mid	12	(1)	22.0	22.3	22.3	22.2	
	16QAM	1	High	24	(1)	22.0	22.2	22.2	22.2	
		12	low	0	(2)	21.0	21.3	21.4	21.2	
		12	Mid	6	(2)	21.0	21.3	21.4	21.2	
		12	High	13	(2)	21.0	21.3	21.4	21.2	
		25	-	0	(2)	21.0	21.2	21.3	21.2	

Page: 34 of 285 UL

Issue Date: 25 January 2013

Conducted Average Power Measurement: LTE Band 5 (850 MHz) (Continued)										
			Start RB			Actual	Measured Avg Power (dBm).			
Ch. BW	Modulations	RB Config		rt RB fset	MPR	Max Power (dBm)	Frequency 825.5 MHz (Low)	Frequency 836.5 MHz (Middle)	Frequency 847.5 MHz (High)	
		1	Low	0	(0)	23.0	23.0	23.0	23.0	
		1	Mid	7	(0)	23.0	23.1	23.1	23.0	
		1	High	14	(0)	23.0	23.1	23.1	23.0	
	QPSK	8	Low	0	(1)	22.0	22.3	22.4	22.2	
		8	Mid	4	(1)	22.0	22.3	22.4	22.3	
		8	High	7	(1)	22.0	22.3	22.4	22.3	
3 MHz		15	-	0	(1)	22.0	22.3	22.3	22.1	
O IVII IZ		1	Low	0	(1)	22.0	22.1	22.1	22.1	
		1	Mid	7	(1)	22.0	22.2	22.2	22.1	
		1	High	14	(1)	22.0	22.1	22.2	22.1	
	16QAM	8	Low	0	(2)	21.0	21.1	21.2	21.0	
		8	Mid	4	(2)	21.0	21.1	21.2	21.0	
		8	High	7	(2)	21.0	21.1	21.2	21.0	
		15	-	0	(2)	21.0	21.2	21.3	21.2	
			Start RB Offset		MPR	Actual Max Power (dBm)	Measured Avg Power (dBm).			
Ch. BW	Modulations	RB Config					Frequency 824.7 MHz (Low)	Frequency 836.5 MHz (Middle)	Frequency 848.3 MHz (High)	
		1	Low	0	(0)	23.0	23.1	23.2	23.1	
		1	Mid	3	(0)	23.0	23.2	23.3	23.1	
		1	High	5	(0)	23.0	23.0	23.2	23.1	
	QPSK	3	Low	0	(0)	23.0	23.3	23.3	23.3	
		3	Mid	1	(0)	23.0	23.2	23.3	23.3	
		3	high	3	(0)	23.0	23.2	23.3	23.3	
4 4 MU-		6	-	0	(1)	22.0	22.3	22.3	22.3	
1.4 MHz		1	Low	0	(1)	22.0	22.2	22.3	22.2	
		1	Mid	3	(1)	22.0	22.3	22.2	22.2	
		1	High	5	(1)	22.0	22.2	22.2	22.2	
	16QAM	3	Low	0	(1)	22.0	22.2	22.3	22.3	
		3	Mid	1	(1)	22.0	22.2	22.3	22.3	
		3	high	3	(1)	22.0	22.2	22.3	22.3	
		6	-	0	(2)	21.0	21.2	21.3	21.3	

Page: 35 of 285

Issue Date: 25 January 2013

7.2.5.Conducted Power Measurements Wi-Fi802.11b/g/n 802.11b/g								
Channel Number	Frequency (MHZ)	TX Power (dBm)	Note					
1	2412.0	15.7						
6	2437.0	15.7	2.4GHz 802.11b (1Mbps)					
11	2462.0	15.2	(
1	2412.0	15.6						
6	2437.0	16.0	2.4GHz 802.11b (11Mbps)					
11	2462.0	16.0	(-1 -/					
1	2412.0	15.6						
6	2437.0	15.6	2.4GHz 802.11g (6Mbps)					
11	2462.0	15.7	(0					
1	2412.0	14.6						
6	2437.0	14.6	2.4GHz 802.11g (54Mbps)					
11	2462.0	14.6	(1 -/					
802.11n								
Channel Number	Frequency (MHZ)	TX Power (dBm)	Note					
1	2412.0	14.2						
6	2437.0	14.4	2.4GHz 802.11n (MCS0 6.5Mbps)					
11	2462.0	14.4	(111000 0.0111000)					
1	2412.0	13.1	2.4GHz 802.11n					
6	2437.0	13.4	(MCS7 65Mbps)					
11	2462.0	13.3						

Page: 36 of 285

Issue Date: 25 January 2013

7.2.6.Conducted Power Measurements Wi-Fi802.11a/n (5.0 GHz) 802.11a (5.0 GHz)					
Channel Number	Frequency (MHZ)	TX Power (dBm) 6 Mbps	TX Power (dBm) 54 Mbps	Note	
36*	5180.0	9.2	7.7		
40	5200.0	8.8 7.6		5 2 CU-	
44	5220.0	9.1	7.8	5.2 GHz	
48*	5240.0	8.9	7.7		
52*	5260.0	8.6	7.6		
56	5280.0	8.6	7.6	5 2 CU-	
60	5300.0	8.8	7.5	5.3 GHz	
64*	5320.0	8.8	7.3		
100	5500.0	9.1	8.1		
104*	5520.0	9.9	8.5		
108	5540.0	9.5	8.3		
112	5560.0	9.3	8.1		
116*	5580.0	9.4	8.2		
120	5600.0	9.4	8.4	5.6 GHz	
124*	5620.0	10.0	8.8		
128	5640.0	10.0	8.7		
132	5660.0	9.9	8.8		
136*	5680.0	10.1	8.9		
140	5700.0	10.0	8.9		
149*	5745.0	9.9	8.7		
153	5765.0	10.0	8.8		
157*	5785.0	10.1	9.0	5.8 GHz	
161	5805.0	10.0	9.0		
165*	5825.0	10.1	9.1		

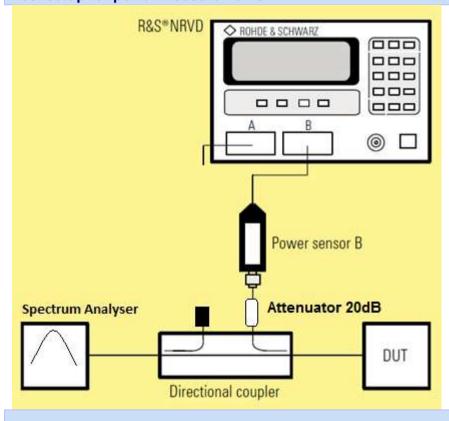
^{*} Default test Channels

Page: 37 of 285 UL

Serial No: UL-SAR-RP90579JD02A V4.0 Issue Date: 25 January 2013

802.11n (5.0 GHz) (HT20)						
Channel Number	Frequency (MHZ)	TX Power (dBm) 6.5 Mbps	TX Power (dBm) 65 Mbps	Note		
36*	5180.0	7.9	6.6			
40	5200.0	8.0	6.6	5.2 GHz		
44	5220.0	8.1	6.8	3.2 GHZ		
48*	5240.0	7.9	6.7			
52*	5260.0	7.8	6.1			
56	5280.0	7.8	6.1	5.3 GHz		
60	5300.0	7.6	6.4	3.3 GHZ		
64*	5320.0	7.5	6.5			
100	5500.0	8.1	6.6			
104*	5520.0	8.5	7.1			
108	5540.0	8.2	6.9			
112	5560.0	8.1	6.9			
116*	5580.0	8.2	6.7			
120	5600.0	8.2	6.9	5.6 GHz		
124*	5620.0	8.5	7.1			
128	5640.0	8.4	7.1			
132	5660.0	8.5	7.2			
136*	5680.0	8.7	7.2			
140	5700.0	8.5	7.2			
149*	5745.0	8.4	7.1			
153	5765.0	8.3	7.1			
157*	5785.0	8.4	7.2	5.8 GHz		
161	5805.0	8.7	7.3			
165*	5825.0	8.8	7.4			

^{*} Default test Channels


Page: 38 of 285 UL

Issue Date: 25 January 2013

802.11n (5.0 GH	Hz) (HT40)			
Channel Number	Frequency (MHZ)	TX Power (dBm) 13.5 Mbps	TX Power (dBm) 135 Mbps	Note
38	5190.0	8.0	7.3	5.0.011-

Channel Number	Frequency (MHZ)	TX Power (dBm) 13.5 Mbps	TX Power (dBm) 135 Mbps	Note
38	5190.0	8.0	7.3	5.2 GHz
46	5230.0	6.5	5.6	3.2 GHZ
54	5270.0	6.6	6.5	5.3 GHz
62	5310.0	6.6	6.5	3.3 GHZ
102	5510.0	6.9	6.2	
110	5550.0	6.5	5.6	
118	5590.0	8.0	7.1	5.6 GHz
126	5630.0	8.2	6.2	
134	5670.0	8.0	7.3	
151	5755.0	8.1	7.3	E 0 CU-
159	5795.0	8.6	7.3	5.8 GHz

Test setup for power measurements

Page: 39 of 285 UL

Issue Date: 25 January 2013

7.3. Test Results

All measurements in this report are tested to the SAR limit of 1.6W/kg
All Maximum Rated Power in the following table is inclusive of the maximum tolerance.

7.3.1. Specific Absorption Rate - GSM 850 Head Configuration 1g Test Summary:

Tissue Volume:	1g
Maximum Measured Level (W/kg):	0.435
Maximum Reported Level (W/kg)	0.511

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0 Temperature Variation in Liquid (°C): 22.1 to 22.1

Results:

Scan No.	EUT Position	Channel Number	Uplink Meas. Burst Avg. Power (dBm)	Max. Rated Power (dBm)	Meas. Level (W/Kg)	Reported SAR (W/Kg)	Note(s)	Mod.
1	Touch Left	190	23.7	24.5	0.403	0.485	1	GMSK
2	Tilt Left	190	23.7	24.5	0.199	0.239	1	GMSK
3	Touch Right	190	23.7	24.5	0.389	0.468	1	GMSK
4	Tilt Right	190	23.7	24.5	0.215	0.258	1	GMSK
5	Touch Left	128	23.8	24.5	0.339	0.398	1	GMSK
6	Touch Left	251	23.8	24.5	0.435	0.511	1	GMSK
Note/s	Nota(s):							

Note(s):

1. Voice Mode

Page: 40 of 285

Issue Date: 25 January 2013

7.3.2. Specific Absorption Rate - GPRS 850 Hotspot Mode Configuration 1g Test Summary:

Tissue Volume: 1g
Maximum Measured Level (W/kg): 0.625
Maximum Reported Level (W/kg) 0.751

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0 Temperature Variation in Liquid (°C): 22.1 to 22.1

Results:

Sca n No.	EUT Position	Channel Number	Uplink Meas. Burst Avg. Power (dBm)	Max. Rated Power (dBm)	Meas. Level (W/Kg)	Reported SAR (W/Kg)	Note(s)	Mod.
7	Front	190	25.3	26.0	0.593	0.697	1, 2	GMSK
8	Back	190	25.3	26.0	0.591	0.694	1, 2	GMSK
9	Left Hand Side	190	25.3	26.0	0.320	0.376	1, 2	GMSK
10	Right Hand Side	190	25.3	26.0	0.334	0.392	1, 2	GMSK
11	Bottom	190	25.3	26.0	0.184	0.216	1, 2	GMSK
12	Front	128	25.3	26.0	0.531	0.624	1, 2	GMSK
13	Front	251	25.2	26.0	0.625	0.751	1, 2	GMSK
NI = 4 = 4								

Note(s):

- 1. Data SAR measurements were performed using 4 uplink timeslots
- 2. EUT supports Hotspot: As per FCC KDB procedure SAR measurements were performed with the EUT at a separation distance of 10mm from the 'SAM' phantom flat section.

*KDB 941225 - SAR is not required for EDGE technology when the maximum average output power is less than ¼ dB higher than that measured on the corresponding GPRS channels.

Page: 41 of 285 UL

Issue Date: 25 January 2013

7.3.3.Specific Absorption Rate - GSM 850 Body-Worn Configuration 1g Test Summary:					
Tissue Volume:	1g				
Maximum Measured Level (W/kg): 0.463					
Maximum Reported Level (W/kg)	0.544				
Environmental Conditions:					
Temperature Variation in Lab (°C): 24.0 to 24.0					
Temperature Variation in Liquid (°C): 22.1 to 22.1					

Results:

Scan No.	EUT Position	Channel Number	Uplink Meas. Burst Avg. Power (dBm)	Max. Rated Power (dBm)	Meas. Level (W/Kg)	Reported SAR (W/Kg)	Note(s)	Mod.
14	Front	190	23.7	24.5	0.441	0.530	1, 2	GMSK
15	Front	128	23.8	24.5	0.408	0.479	1, 2	GMSK
16	Front	251	23.8	24.5	0.463	0.544	1, 2	GMSK
17	Front with PHF	251	23.8	24.5	0.437	0.513	1, 2, 3	GMSK

Note(s):

- 1. Voice Front of EUT is worst case and most conservative configuration of GPRS hotspot mode and is applied to GSM Body-worn.
- 2. SAR measurements were performed with the closest edge of the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.
- 3. Personal Hands-Free Kit attached, using the worst-case configuration acquired.

Page: 42 of 285 UL

Issue Date: 25 January 2013

7.3.4. Specific Absorption Rate - PCS 1900 Head Configuration 1g Test Summary:				
Tissue Volume: 1g				
Maximum Measured Level (W/kg): 0.209				
Maximum Reported Level (W/kg)	0.246			
Environmental Conditions:				
Temperature Variation in Lab (°C): 24.0 to 24.0				
Temperature Variation in Liquid (°C): 22.8 to 22.8				

Results:

Scan No.	EUT Position	Channel Number	Uplink Meas. Burst Avg. Power (dBm)	Max. Rated Power (dBm)	Meas. Level (W/Kg)	Reported SAR (W/Kg)	Note(s)	Mod.
18	Touch Left	661	20.8	21.5	0.209	0.246	1	GMSK
19	Tilt Left	661	20.8	21.5	0.049	0.058	1	GMSK
20	Touch Right	661	20.8	21.5	0.180	0.211	1	GMSK
21	Tilt Right	661	20.8	21.5	0.037	0.043	1	GMSK
22	Touch Left	512	20.9	21.5	0.199	0.228	1	GMSK
23	Touch Left	885	20.8	21.5	0.185	0.217	1	GMSK
Note(s	Note(s):							

1. Voice Mode

Page: 43 of 285 UL

Issue Date: 25 January 2013

7.3.5. Specific Absorption Rate - GP	RS 1900 Hotspot Mode Configuration 1g
Test Summary:	

Tissue Volume: 1g
Maximum Measured Level (W/kg): 0.733

Maximum Reported Level (W/kg) 0.861

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0 Temperature Variation in Liquid (°C): 23.7 to 23.7

Results:

Scan No.	EUT Position	Channel Number	Uplink Meas. Burst Avg. Power (dBm)	Max. Rated Power (dBm)	Meas. Level (W/Kg)	Reported SAR (W/Kg)	Note(s)	Mod.
24	Front	661	21.8	22.5	0.517	0.607	1, 2	GMSK
25	Back	661	21.8	22.5	0.697	0.819	1, 2	GMSK
26	Left Hand Side	661	21.8	22.5	0.086	0.101	1, 2	GMSK
27	Right Hand Side	661	21.8	22.5	0.145	0.170	1, 2	GMSK
28	Bottom	661	21.8	22.5	0.733	0.861	1, 2	GMSK
29	Bottom	512	21.8	22.5	0.711	0.835	1, 2	GMSK
30	Bottom	810	21.9	22.5	0.718	0.824	1, 2	GMSK
Natal	-1-							

Note(s):

- 1. Data SAR measurements were performed using 4 uplink timeslots
- 2. EUT supports Hotspot: As per FCC KDB procedure SAR measurements were performed with the EUT at a separation distance of 10mm from the 'SAM' phantom flat section.

*KDB 941225 - SAR is not required for EDGE technology when the maximum average output power is less than ¼ dB higher than that measured on the corresponding GPRS channels.

Page: 44 of 285 UL

Issue Date: 25 January 2013

7.3.6.Specific Absorption Rate - PCS 1900 Body-Worn Configuration 1g Test Summary:						
Tissue Volume:	1g					
Maximum Measured Level (W/kg):	0.315					
Maximum Reported Level (W/kg)	0.362					
Environmental Conditions:						
Temperature Variation in Lab (°C): 24.0 to 24.0						
Temperature Variation in Liquid (°C):	23.7 to 23.7					

Results:

Scan No.	EUT Position	Channel Number	Uplink Meas. Burst Avg. Power (dBm)	Max. Rated Power (dBm)	Meas. Level (W/Kg)	Reported SAR (W/Kg)	Note(s)	Mod.
31	Back	512	20.9	21.5	0.310	0.356	1, 2	GMSK
32	Back	661	20.8	21.5	0.283	0.332	1, 2	GMSK
33	Back	810	20.8	21.5	0.269	0.316	1, 2	GMSK
34	Back with PHF	512	20.9	21.5	0.315	0.362	1, 2, 3	GMSK

Note(s):

- 1. Voice Back of EUT is worst case and most conservative configuration of GPRS hotspot mode and is applied to GSM Body-worn.
- 2. SAR measurements were performed with the closest edge of the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.
- 3. Personal Hands-Free Kit attached, using the worst-case configuration acquired.

Page: 45 of 285 UL

Issue Date: 25 January 2013

7.3.7.Specific Absorption Rate - UMTS-FDD 5 Head Configuration 1g Test Summary:						
Tissue Volume:	1g					
Maximum Measured Level (W/kg):	0.556					
Maximum Reported Level (W/kg)	0.716					
Environmental Conditions:						
Temperature Variation in Lab (°C):	24.0 to 24.0					
Temperature Variation in Liquid (°C):	22.1 to 22.1					

Results:

Scan No.	EUT Position	Channel Number	Meas. Avg. Power (dBm)	Max. Rated Power (dBm)	Meas. Level (W/Kg)	Reported SAR (W/Kg)	Note(s)	Mod.
35	Touch Left	4183	23.8	24.8	0.438	0.551	1	QPSK
36	Tilt Left	4183	23.8	24.8	0.212	0.267	1	QPSK
37	Touch Right	4183	23.8	24.8	0.413	0.520	1	QPSK
38	Tilt Right	4183	23.8	24.8	0.213	0.268	1	QPSK
39	Touch Left	4132	23.7	24.8	0.513	0.661	1	QPSK
40	Touch Left	4233	23.7	24.8	0.556	0.716	1	QPSK
Note(s	s):							

^{1.} Circuit Switch (CS) - RMC 12.2kbps with Test loop mode 1 and TPC bits configured to All "1's"

Page: 46 of 285

Issue Date: 25 January 2013

7.3.8. Specific Absorption Rate - UMTS-FDD 5 Hotspot Mode Configuration 1g
Test Summary:

Tissue Volume: 1g

Maximum Measured Level (W/kg): 0.545

Maximum Reported Level (W/kg) 0.702

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0 Temperature Variation in Liquid (°C): 23.4 to 23.4

Results:

Scan No.	EUT Position	Channel Number	Meas. Avg. Power (dBm)	Max. Rated Power (dBm)	Meas. Level (W/Kg)	Reported SAR (W/Kg)	Note(s)	Mod.
41	Front	4183	23.8	24.8	0.465	0.585	1, 2	QPSK
42	Back	4183	23.8	24.8	0.421	0.530	1, 2	QPSK
43	Left Hand Side	4183	23.8	24.8	0.277	0.349	1, 2	QPSK
44	Right Hand Side	4183	23.8	24.8	0.287	0.361	1, 2	QPSK
45	Bottom	4183	23.8	24.8	0.144	0.181	1, 2	QPSK
46	Front	4132	23.7	24.8	0.545	0.702	1, 2	QPSK
47	Front	4233	23.7	24.8	0.499	0.643	1, 2	QPSK
NI=1=1								

Note(s):

- 1. Circuit Switch (CS) RMC 12.2kbps with Test loop mode 1 and TPC bits configured to All "1's"
- 2. EUT supports Hotspot: As per FCC KDB procedure SAR measurements were performed with the EUT at a separation distance of 10mm from the 'SAM' phantom flat section.

Page: 47 of 285 UL

Issue Date: 25 January 2013

7.3.9.Specific Absorption Rate - UMTS-FDD 5 Body-Worn Configuration 1g Test Summary:							
Tissue Volume: 1g							
Maximum Measured Level (W/kg):	0.470						
Maximum Reported Level (W/kg)	0.605						
Environmental Conditions:							
Temperature Variation in Lab (°C): 24.0 to 24.0							
Temperature Variation in Liquid (°C): 22.2 to 22.2							

Results:

Scan No.	EUT Position	Channel Number	Meas. Avg. Power (dBm)	Max. Rated Power (dBm)	Meas. Level (W/Kg)	Reported SAR (W/Kg)	Note(s)	Mod.
48	Front	4183	23.8	24.8	0.393	0.495	1, 2	QPSK
49	Front	4132	23.7	24.8	0.412	0.531	1, 2	QPSK
50	Front	4233	23.7	24.8	0.434	0.559	1, 2	QPSK
51	Front with PHF	4132	23.7	24.8	0.47	0.605	1, 2, 3	QPSK

Note(s):

- 1. Circuit Switch (CS) RMC 12.2kbps with Test loop mode 1 and TPC bits configured to All "1's"-Front of EUT, is worst case and most conservative configuration from Hotspot mode and used for Body-worn Configuration.
- 2. SAR measurements were performed with the closest edge of the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.
- 3. Personal Hands-Free Kit attached, using the worst-case configuration acquired.

Page: 48 of 285 UL

ersion 4.0 Issue Date: 25 January 2013

7.3.10.Specific Absorption Rate – LTE Band 5 - 10MHz Channel BW Head Configuration 1g Test Summary:

Tissue Volume: 1g

Maximum Measured Level (W/kg): 0.406

Maximum Reported Level (W/kg) 0.601

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0 Temperature Variation in Liquid (°C): 22.1 to 22.1

Results:

Scan No.	EUT Position	Channel Number	Meas. Avg. Power (dBm)	Max. Rated Power (dBm)	Meas. Level (W/Kg)	Reported SAR (W/Kg)	Note(s)	Mod.
52	Touch Left	20525	23.2	24.8	0.329	0.476	1	QPSK
53	Touch Left	20525	22.3	24.0	0.255	0.377	2	QPSK
54	Tilt Left	20525	23.2	24.8	0.183	0.265	1	QPSK
55	Tilt Left	20525	22.3	24.0	0.141	0.209	2	QPSK
56	Touch Right	20525	23.2	24.8	0.315	0.455	1	QPSK
57	Touch Right	20525	22.3	24.0	0.246	0.364	2	QPSK
58	Tilt Right	20525	23.2	24.8	0.172	0.249	1	QPSK
59	Tilt Right	20525	22.3	24.0	0.136	0.201	2	QPSK
60	Touch Left	20450	23.1	24.8	0.406	0.601	1	QPSK
61	Touch Left	20600	23.0	24.8	0.385	0.583	1	QPSK

Note(s):

- 1. 1 RB Allocation Centred within Channel Bandwidth.
- 2. 50% RB Allocation centred within the channel Bandwidth.

Largest Channel BW

1. QPSK 1RB Allocation

Start with 1RB offset Config with the highest maximum output power on required test channel (1RB low, 1RB high or 1RB mid). If value in (1) is <0.8W/kg, testing of remaining RB offset configurations and test channels not required for 1RB

2. QPSK 50% RB Allocation

Apply steps followed in (1) for measuring 50% RB

3. QPSK 100% RB Allocation

SAR not required if highest output power from (1) and (2) is greater than 100% RB by 0.5dB and if SAR Values in (1) and (2) <0.8W/kg

4. 16 QAM

Apply steps (1), (2) and (3) for testing 16-QAM/64-QAM, for each configuration SAR required only when highest maximum output power for the highest order modulation (ex. 16-QAM) > QPSK by 0.5dB or when reported SAR for QPSK > 1.45W/kg

Page: 49 of 285

^{*}As per KDB 941225 D05 SAR for LTE Devices v02r01, the following steps were followed to perform SAR evaluation:

Issue Date: 25 January 2013

7.3.11.Specific Absorption Rate - LTE Band 5 - 10MHz Channel BW Hotspot Mode Configuration 1g Test Summary:

Tissue Volume: 1g

Maximum Measured Level (W/kg): 0.499

Maximum Reported Level (W/kg) 0.755

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0 Temperature Variation in Liquid (°C): 22.9 to 22.9

Results:

iveanis								
Scan No.	EUT Position	Channel Number	Meas. Avg. Power (dBm)	Max. Rated Power (dBm)	Meas. Level (W/Kg)	Reported SAR (W/Kg)	Note(s)	Mod.
62	Front	20525	23.2	24.8	0.447	0.646	1, 3	QPSK
63	Front	20525	22.3	24.0	0.351	0.519	2, 3	QPSK
64	Back	20525	23.2	24.8	0.446	0.645	1, 3	QPSK
65	Back	20525	22.3	24.0	0.340	0.503	2, 3	QPSK
66	Left Hand Side	20525	23.2	24.8	0.307	0.444	1, 3	QPSK
67	Left Hand Side	20525	22.3	24.0	0.236	0.349	2, 3	QPSK
68	Right Hand Side	20525	23.2	24.8	0.250	0.361	1, 3	QPSK
69	Right Hand Side	20525	22.3	24.0	0.244	0.361	2, 3	QPSK
70	Bottom	20525	23.2	24.8	0.091	0.132	1, 3	QPSK
71	Bottom	20525	22.3	24.0	0.069	0.102	2, 3	QPSK

Page: 50 of 285

ersion 4.0 Issue Date: 25 January 2013

Specific Absorption Rate - LTE Band 5 - 10MHz Channel BW Hotspot Mode Configuration 1g (Continued):

Scan No.	EUT Position	Channel Number	Meas. Avg. Power (dBm)	Max. Rated Power (dBm)	Meas. Level (W/Kg)	Reported SAR (W/Kg)	Note(s)	Mod.
72	Front	20450	23.1	24.8	0.495	0.732	1, 3	QPSK
73	Front	20600	23.0	24.8	0.499	0.755	1, 3	QPSK

Note(s):

- 1. 1 RB Allocation Centred within Channel Bandwidth.
- 2. 50% RB Allocation centred within the channel Bandwidth.
- 3. SAR measurements were performed with the closest edge of the EUT at a separation distance of 10mm from the 'SAM' phantom flat section.

Largest Channel BW

1. QPSK 1RB Allocation

Start with 1RB offset Config with the highest maximum output power on required test channel (1RB low, 1RB high or 1RB mid). If value in (1) is <0.8W/kg, testing of remaining RB offset configurations and test channels not required for 1RB

2. QPSK 50% RB Allocation

Apply steps followed in (1) for measuring 50% RB

3. QPSK 100% RB Allocation

SAR not required if highest output power from (1) and (2) is greater than 100% RB by 0.5dB and if SAR Values in (1) and (2) <0.8W/kg

4. 16 QAM

Apply steps (1), (2) and (3) for testing 16-QAM/64-QAM, for each configuration SAR required only when highest maximum output power for the highest order modulation (ex. 16-QAM) > QPSK by 0.5dB or when reported SAR for QPSK > 1.45W/kg

Page: 51 of 285 UL

^{*}As per KDB 941225 D05 SAR for LTE Devices v02r01, the following steps were followed to perform SAR evaluation:

Issue Date: 25 January 2013

7.3.12.Specific Absorption Rate - LTE Band 5 - 10MHz Channel BW Body-Worn Configuration 1g Test Summary:

Tissue Volume: 1g

Maximum Measured Level (W/kg): 0.427

Maximum Reported Level (W/kg) 0.646

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0 Temperature Variation in Liquid (°C): 22.9 to 22.9

Results:

Scan No.	EUT Position	Channel Number	Meas. Avg. Power (dBm)	Max. Rated Power (dBm)	Meas. Level (W/Kg)	Reported SAR (W/Kg)	Note(s)	Mod.
74	Front with PHF	20600	23.0	24.8	0.427	0.646	1, 2, 3	QPSK

Note(s):

- 1. 1 RB Allocation Centred within Channel Bandwidth. Front of EUT, is worst case and most conservative configuration from Hotspot mode and used for Body-worn Configuration.
- 2. SAR measurements were performed with the closest edge of the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.
- 3. Personal Hands-Free Kit attached, using the worst-case configuration acquired.

Largest Channel BW

1. QPSK 1RB Allocation

Start with 1RB offset Config with the highest maximum output power on required test channel (1RB low, 1RB high or 1RB mid). If value in (1) is <0.8W/kg, testing of remaining RB offset configurations and test channels not required for 1RB

2. QPSK 50% RB Allocation

Apply steps followed in (1) for measuring 50% RB

3. QPSK 100% RB Allocation

SAR not required if highest output power from (1) and (2) is greater than 100% RB by 0.5dB and if SAR Values in (1) and (2) <0.8W/kg

4. 16 QAM

Apply steps (1), (2) and (3) for testing 16-QAM/64-QAM, for each configuration SAR required only when highest maximum output power for the highest order modulation (ex. 16-QAM) > QPSK by 0.5dB or when reported SAR for QPSK > 1.45W/kg

Page: 52 of 285 UL

^{*}As per KDB 941225 D05 SAR for LTE Devices v02r01, the following steps were followed to perform SAR evaluation:

Issue Date: 25 January 2013

7.3.13. Specific Absorption Rate - LTE Band 5 – 1.4MHz Channel BW Head Configuration 1g Test Summary:

Tissue Volume: 1g

Maximum Measured Level (W/kg): 0.406

Maximum Reported Level (W/kg) 0.587

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0 Temperature Variation in Liquid (°C): 22.1 to 22.1

Results:

Scan No.	EUT Position	Channel Number	Meas. Avg. Power (dBm)	Max. Rated Power (dBm)	Meas. Level (W/Kg)	Reported SAR (W/Kg)	Note(s)	Mod.
75	Touch Left	20525	23.3	24.8	0.329	0.465	1	QPSK
76	Touch Left	20525	23.3	24.8	0.346	0.489	2	QPSK
77	Tilt Left	20525	23.3	24.8	0.185	0.261	1	QPSK
78	Tilt Left	20525	23.3	24.8	0.185	0.261	2	QPSK
79	Touch Right	20525	23.3	24.8	0.320	0.452	1	QPSK
80	Touch Right	20525	23.3	24.8	0.316	0.446	2	QPSK
81	Tilt Right	20525	23.3	24.8	0.172	0.243	1	QPSK
82	Tilt Right	20525	23.3	24.8	0.174	0.246	2	QPSK
83	Touch Left	20407	23.2	24.8	0.406	0.587	2	QPSK
84	Touch Left	20643	23.3	24.8	0.380	0.537	2	QPSK

Note(s):

- 1. 1 RB Allocation Centred within Channel Bandwidth.
- 2. 50% RB Allocation centred within the channel Bandwidth

*As per KDB 941225 D05 SAR for LTE Devices v02r01, the following steps were followed to perform SAR evaluation, as when the maximum average conducted output power for a smaller channel Bandwidth is >0.5 dB higher than that measured for the highest channel Bandwidth, the largest channel Bandwidth test procedures are applied to the smaller channel Bandwidth.

Other Channel BW

1. QPSK 1RB Allocation

Start with 1RB offset Config with the highest maximum output power on required test channel (1RB low, 1RB high or 1RB mid). If value in (1) is <0.8W/kg, testing of remaining RB offset configurations and test channels not required for 1RB

2. QPSK 50% RB Allocation

Apply steps followed in (1) for measuring 50% RB

3. QPSK 100% RB Allocation

SAR not required if highest output power from (1) and (2) is greater than 100% RB by 0.5dB and if SAR Values in (1) and (2) <0.8W/kg

4. 16 QAM

Apply steps (1), (2) and (3) for testing 16-QAM/64-QAM, for each configuration SAR required only when highest maximum output power for the highest order modulation (ex. 16-QAM) > QPSK by 0.5dB or when reported SAR for QPSK > 1.45W/kg

Page: 53 of 285 UL

Issue Date: 25 January 2013

7.3.14.Specific Absorption Rate - LTE Band 5 – 1.4MHz Channel BW Hotspot Mode Configuration 1g Test Summary:

Tissue Volume: 1g

Maximum Measured Level (W/kg): 0.450

Maximum Reported Level (W/kg) 0.648

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0

Temperature Variation in Liquid (°C):

22.7 to 22.7

Results:

Scan No.	EUT Position	Channel Number	Meas. Avg. Power (dBm)	Max. Rated Power (dBm)	Meas. Level (W/Kg)	Reported SAR (W/Kg)	Note(s)	Mod.
85	Front	20525	23.3	24.8	0.450	0.636	1, 3	QPSK
86	Front	20525	23.3	24.8	0.440	0.622	2, 3	QPSK
87	Back	20525	23.3	24.8	0.436	0.616	1, 3	QPSK
88	Back	20525	23.3	24.8	0.430	0.607	2, 3	QPSK
89	Left Hand Side	20525	23.3	24.8	0.315	0.445	1, 3	QPSK
90	Left Hand Side	20525	23.3	24.8	0.314	0.444	2, 3	QPSK
91	Right Hand Side	20525	23.3	24.8	0.281	0.397	1, 3	QPSK
92	Right Hand Side	20525	23.3	24.8	0.281	0.397	2, 3	QPSK
93	Bottom	20525	23.3	24.8	0.094	0.133	1, 3	QPSK
94	Bottom	20525	23.3	24.8	0.093	0.131	2, 3	QPSK

Page: 54 of 285 UL

Issue Date: 25 January 2013

Specific Absorption Rate - LTE Band 5 – 1.4MHz Channel BW Hotspot Mode Configuration 1g (Continued):

Scan No.	EUT Position	Channel Number	Meas. Avg. Power (dBm)	Max. Rated Power (dBm)	Meas. Level (W/Kg)	Reported SAR (W/Kg)	Note(s)	Mod.
95	Front	20407	23.2	24.8	0.443	0.640	1, 3	QPSK
96	Front	20643	23.1	24.8	0.438	0.648	1, 3	QPSK

Note(s):

- 1. 1 RB Allocation Centred within Channel Bandwidth.
- 2. 50% RB Allocation centred within the channel Bandwidth.
- 3. SAR measurements were performed with the closest edge of the EUT at a separation distance of 10mm from the 'SAM' phantom flat section.

*As per KDB 941225 D05 SAR for LTE Devices v02r01, the following steps were followed to perform SAR evaluation, as when the maximum average conducted output power for a smaller channel Bandwidth is >0.5 dB higher than that measured for the highest channel Bandwidth, the largest channel Bandwidth test procedures are applied to the smaller channel Bandwidth.

Other Channel BW

1. QPSK 1RB Allocation

Start with 1RB offset Config with the highest maximum output power on required test channel (1RB low, 1RB high or 1RB mid). If value in (1) is <0.8W/kg, testing of remaining RB offset configurations and test channels not required for 1RB

2. QPSK 50% RB Allocation

Apply steps followed in (1) for measuring 50% RB

3. QPSK 100% RB Allocation

SAR not required if highest output power from (1) and (2) is greater than 100% RB by 0.5dB and if SAR Values in (1) and (2) <0.8W/kg

4. 16 QAM

Apply steps (1), (2) and (3) for testing 16-QAM/64-QAM, for each configuration SAR required only when highest maximum output power for the highest order modulation (ex. 16-QAM) > QPSK by 0.5dB or when reported SAR for QPSK > 1.45W/kg

Page: 55 of 285 UL

Issue Date: 25 January 2013

7.3.15.Specific Absorption Rate - LTE Band 5 – 1.4MHz Channel BW Body-Worn Configuration 1g Test Summary:								
Tissue Volume:	1g							
Maximum Measured Level (W/kg):	0.320							
Maximum Reported Level (W/kg)	0.452							
Environmental Conditions:								
Temperature Variation in Lab (°C):	Temperature Variation in Lab (°C): 24.0 to 24.0							
Temperature Variation in Liquid (°C):	22.7 to 22.7							

Results:

Scan No.	EUT Position	Channel Number	Meas. Avg. Power (dBm)	Max. Rated Power (dBm)	Meas. Level (W/Kg)	Reported SAR (W/Kg)	Note(s)	Mod.
97	Front with PHF	20525	23.3	24.8	0.320	0.452	1, 2, 3	QPSK

Note(s):

- 1. 1 RB Allocation Centred within Channel Bandwidth. Front of EUT, is worst case and most conservative configuration from Hotspot mode and used for Body-worn Configuration.
- 2. SAR measurements were performed with the closest edge of the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.
- 3. Personal Hands-Free Kit attached, using the worst-case configuration acquired.

*As per KDB 941225 D05 SAR for LTE Devices v02r01, the following steps were followed to perform SAR evaluation, as when the maximum average conducted output power for a smaller channel Bandwidth is >0.5 dB higher than that measured for the highest channel Bandwidth, the largest channel Bandwidth test procedures are applied to the smaller channel Bandwidth.

Other Channel BW

1. QPSK 1RB Allocation

Start with 1RB offset Config with the highest maximum output power on required test channel (1RB low, 1RB high or 1RB mid). If value in (1) is <0.8W/kg, testing of remaining RB offset configurations and test channels not required for 1RB

2. QPSK 50% RB Allocation

Apply steps followed in (1) for measuring 50% RB

3. QPSK 100% RB Allocation

SAR not required if highest output power from (1) and (2) is greater than 100% RB by 0.5dB and if SAR Values in (1) and (2) <0.8W/kg

4. 16 QAM

Apply steps (1), (2) and (3) for testing 16-QAM/64-QAM, for each configuration SAR required only when highest maximum output power for the highest order modulation (ex. 16-QAM) > QPSK by 0.5dB or when reported SAR for QPSK > 1.45W/kg

Page: 56 of 285 UL

Issue Date: 25 January 2013

7.3.16.Specific Absorption Rate - Wi-Fi 2450 Head Configuration 1g Test Summary: Tissue Volume: 1g Maximum Measured Level (W/kg): 0.853 Maximum Reported Level (W/kg) 0.853

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0 Temperature Variation in Liquid (°C): 24.0 to 24.0

Results:

Scan No.	EUT Position	Channel Number	Meas. Avg. Power (dBm)	Max. Rated Power (dBm)	Meas. Level (W/Kg)	Reported SAR (W/Kg)	Note(s)	Mod.
98	Touch Left	6	16.0	16.0	0.436	0.436	1	DBPSK
99	Tilt Left	6	16.0	16.0	0.219	0.219	1	DBPSK
100	Touch Right	6	16.0	16.0	0.158	0.158	1	DBPSK
101	Tilt Right	6	16.0	16.0	0.120	0.120	1	DBPSK
102	Touch Left	1	15.6	16.0	0.239	0.262	1	DBPSK
103	Touch Left	11	16.0	16.0	0.853	0.853	1, 2, 3	DBPSK
Notole	۸.							

Note(s):

- 1. WLAN 802.11b 11Mbps
- 2. As per KDB 865664 D01, when highest SAR is ≥ 0.8 W/Kg, repeat that measurement once and are within <5% variation to original.
- 3. As per 865664 D01, the highest SAR measured > 0.8 W/Kg has been re-measured and included in the report in section 2.3 under **SAR Measurement Variability and Measurement Uncertainty Analysis Results** Table.

*KDB 248227 - SAR is not required for 802.11g/n channels when the maximum average output power is equal to that measured on the corresponding 802.11b channels.

Page: 57 of 285 UL

Issue Date: 25 January 2013

7.3.17. Specific Absorption Rate - Wi-Fi 2450 Hotspot Mode Configuration 1g
Test Summary:

Tissue Volume: 1g
Maximum Measured Level (W/kg): 0.262

Maximum Reported Level (W/kg) 0.262

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0 Temperature Variation in Liquid (°C): 24.0 to 24.0

Results:

Scan No.	EUT Position	Channel Number	Meas. Avg. Power (dBm)	Max. Rated Power (dBm)	Meas. Level (W/Kg)	Reported SAR (W/Kg)	Note(s)	Mod.
104	Front	6	16.0	16.0	0.100	0.100	1, 2	DBPSK
105	Back	6	16.0	16.0	0.138	0.138	1, 2	DBPSK
106	Left Hand Side	6	16.0	16.0	0.011	0.011	1, 2	DBPSK
107	Right Hand Side	6	16.0	16.0	0.063	0.063	1, 2	DBPSK
108	Bottom	6	16.0	16.0	0.053	0.053	1, 2	DBPSK
109	Back	1	15.6	16.0	0.072	0.072	1, 2	DBPSK
110	Back	11	16.0	16.0	0.262	0.262	1, 2	DBPSK
Nota/a	\							

Note(s):

- 1. WLAN 802.11b 11Mbps
- 2. EUT supports Hotspot: As per FCC KDB procedure SAR measurements were performed with the EUT at a separation distance of 10mm from the 'SAM' phantom flat section.

*KDB 248227 - SAR is not required for 802.11g/n channels when the maximum average output power is equal to that measured on the corresponding 802.11b channels.

Page: 58 of 285 UL

Issue Date: 25 January 2013

7.3.18.Specific Absorption Rate - Wi-Fi 2450 Body-Worn Configuration 1g Test Summary:								
Tissue Volume: 1g								
Maximum Measured Level (W/kg):	0.099							
Maximum Reported Level (W/kg) 0.099								
Environmental Conditions:	Environmental Conditions:							
T () () () () () () () ()	04.04.04.0							

Temperature Variation in Lab (°C): 24.0 to 24.0 Temperature Variation in Liquid (°C): 24.0 to 24.0

Results:

Scan No.	EUT Position	Channel Number	Meas. Avg. Power (dBm)	Max. Rated Power (dBm)	Meas. Level (W/Kg)	Reported SAR (W/Kg)	Note(s)	Mod.
111	Back	11	16.0	16.0	0.099	0.099	1, 2	DBPSK
112	Back with PHF	11	16.0	16.0	0.090	0.090	1, 2, 3	DBPSK

Note(s):

- 1. WLAN 802.11b 11Mbps Back of EUT, is worst case and most conservative configuration from Hotspot mode and used for Body-worn Configuration.
- 2. SAR measurements were performed with the closest edge of the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.
- 3. Personal Hands-Free Kit attached, using the worst-case configuration acquired.

Page: 59 of 285 UL

^{*}KDB 248227 - SAR is not required for 802.11g/n channels when the maximum average output power is equal to that measured on the corresponding 802.11b channels.

Issue Date: 25 January 2013

7.3.19. Specific Absorption Rate - Wi-Fi 802.11a 5GHz Configuration 1g Test Summary:

Tissue Volume: 1g
Maximum Measured Level (W/kg): 0.389

Maximum Reported Level (W/kg) 0.423

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0 Temperature Variation in Liquid (°C): 22.8 to 22.8

Results:

Scan No.	EUT Position	Channel Number	Meas. Avg. Power (dBm)	Max. Rated Power (dBm)	Meas. Level (W/Kg)	Reported SAR (W/Kg)	Note(s)	Mod.
113	Touch Left	36	9.2	10.1	0.344	0.423	1, 2	BPSK
114	Tilt Left	36	9.2	10.1	0.159	0.196	1, 2	BPSK
115	Touch Right	36	9.2	10.1	0.053	0.065	1, 2	BPSK
116	Tilt Right	36	9.2	10.1	0.038	0.047	1, 2	BPSK
117	Touch Left	64	8.8	10.1	0.149	0.201	1, 2	BPSK
118	Touch Left	136	10.1	10.1	0.389	0.389	1, 3	BPSK
119	Touch Left	157	10.1	10.1	0.088	0.088	1, 2	BPSK

Note(s):

- 1. WLAN 802.11a 6Mbps
- 2. For frequency bands with an operating range of < 100 MHz, when the SAR measured for the highest output power channel within is ≤ 0.8 W/kg, SAR for the remaining channels is not required. Per KDB 447498 1) e) i)
- 3. For frequency bands with an operating range of < 200 MHz, when the SAR for the highest output power channel within is ≤ 0.4 W/kg, SAR for the remaining channels is not required. Per KDB 447498 1) e) i)

*KDB 248227 - SAR is not required for 802.11n HT20 channels as the maximum average output power is less than ¼ dB higher than 802.11a.

*As per KDB 447498, the SAR exclusion threshold value for separation distance of 5mm is 7mW for frequencies between 5.2 GHz and 6mW for 5.4-5.6 GHz Head configuration and for separation distance of ≥10mm 13mW for frequencies between 5.2- 5.4 GHz and 12mW for 5.8 GHz and hence, Stand-Alone SAR testing was performed on WLAN 5.0 GHz Head only. SAR evaluation is not required on Hotspot and Body Configurations.

Page: 60 of 285 UL

Issue Date: 25 January 2013

7.3.20.Specific Absorption Rate - Wi-Fi 802.11n HT40 5GHz Head Configuration 1g Test Summary:

Tissue Volume: 1g

Maximum Measured Level (W/kg): 0.295

Maximum Reported Level (W/kg) 0.355

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0 Temperature Variation in Liquid (°C): 21.6 to 21.6

Results:

Scan No.	EUT Position	Channel Number	Meas. Avg. Power (dBm)	Max. Rated Power (dBm)	Meas. Level (W/Kg)	Reported SAR (W/Kg)	Note(s)	Mod.
120	Touch Left	38	8.0	9.0	0.228	0.287	1, 2, 3	BPSK
121	Touch Left	54	6.6	9.0	0.129	0.224	1, 2, 3	BPSK
122	Touch Left	126	8.2	9.0	0.295	0.355	1, 2, 4	BPSK
123	Touch Left	159	8.6	9.0	0.040	0.044	1, 2, 3	BPSK

Note(s):

- 1. WLAN 802.11n 13.5Mbps
- 2. The Worst case and most conservative configuration of Wi-Fi 802.11a Mode is applied to Wi-Fi 802.11n HT40 mode.
- 3. For frequency bands with an operating range of < 100 MHz, when the SAR measured for the highest output power channel within is ≤ 0.8 W/kg, SAR for the remaining channels is not required. Per KDB 447498 1) e) i)
- 4. For frequency bands with an operating range of < 200 MHz, when the SAR for the highest output power channel within is ≤ 0.4 W/kg, SAR for the remaining channels is not required. Per KDB 447498 1) e) i)

Page: 61 of 285 UL

^{*}As per KDB 447498, the SAR exclusion threshold value for separation distance of 5mm is 7mW for frequencies between 5.2 GHz and 6mW for 5.4-5.6 GHz Head configuration and for separation distance of ≥10mm 13mW for frequencies between 5.2- 5.4 GHz and 12mW for 5.8 GHz and hence, Stand-Alone SAR testing was performed on WLAN 5.0 GHz Head only. SAR evaluation is not required on Hotspot and Body Configurations.

Issue Date: 25 January 2013

7.4. Simultaneous Transmission SAR Analysis WWAN + WLAN

Simultaneous transmission is not required as the overall analysis shows that the sum of SAR is < 1.6 W/kg

Overall Worst Case:

- 1. WWAN+WLAN
- 2. WWAN+WPAN

		Re	ported SAR 1g (W/	(g)	Maximum Sum of SAR				
	ww	/AN	WLAN	WPAN	M 0				
EUT Position	PCS1900	UMTS FDD 5	Wi-Fi 802.11b 2.4 GHz	Bluetooth 2.4 GHz					
Touch Left		0.716	0.853		1.569				
Back	0.819			0.190	1.009				

Normal Analysis:

Head Configura	ation 1g –	Worst ca	ses meas	urements \	WWAN+WL	AN	
			Rej	oorted SAR	1g (W/kg)		
			WWAN	l		WLAN	0
EUT Position	GSM 850	PCS 1900	UMTS FDD 5	LTE Band 5 (10MHz)	LTE Band 5 (1.4MHz)	Wi-Fi	Sum of WWAN & WLAN
Touch Left	0.511					0.853	1.364
Touch Right	0.468					0.158	0.626
Tilt Left	0.239					0.219	0.458
Tilt Right	0.258					0.120	0.378
Touch Left		0.246				0.853	1.099
Touch Right		0.211				0.158	0.369
Tilt Left		0.058				0.219	0.277
Tilt Right		0.043				0.120	0.163
Touch Left			0.716			0.853	1.569
Touch Right			0.520			0.158	0.678
Tilt Left			0.267			0.219	0.486
Tilt Right			0.268			0.120	0.388
Touch Left				0.601		0.853	1.454
Touch Right				0.455		0.158	0.613
Tilt Left				0.265		0.219	0.484
Tilt Right				0.249		0.120	0.369
Touch Left					0.587	0.853	1.440
Touch Right					0.452	0.158	0.610
Tilt Left					0.261	0.219	0.480
Tilt Right					0.246	0.120	0.366

Page: 62 of 285 UL

Issue Date: 25 January 2013

Simultaneous Transmission SAR Analysis (Continued)

Hotspot Mode Configuration 1g – Worst cases measurements WWAN+WLAN

		Repor	ted SAR 1g (W	/kg)	
		WWAN		WLAN	Sum of
EUT Position	GSM850	PCS1900	UMTS FDD 5	Wi-Fi	WWAN & WLAN
Front	0.751			0.100	0.851
Back	0.694			0.262	0.956
Left Hand Side	0.376			0.011	0.387
Right Hand Side	0.392			0.063	0.455
Bottom	0.216				0.216
Тор				0.053	0.053
Front		0.607		0.100	0.707
Back		0.819		0.262	1.081
Left Hand Side		0.101		0.011	0.112
Right Hand Side		0.170		0.063	0.233
Bottom		0.861			0.861
Тор				0.053	0.053
Front			0.702	0.100	0.802
Back			0.530	0.262	0.792
Left Hand Side			0.349	0.011	0.360
Right Hand Side			0.361	0.063	0.424
Bottom			0.181		0.181
Тор				0.053	0.053

Hotspot Mode Configuration 1g – Worst cases measurements WWAN+WLAN (Continued)

		Reported SAR	1g (W/kg)		
	ww	/AN	WLAN	Sum of	
EUT Position	LTE Band 5 (10MHz)	LTE Band 5 (1.4MHz)	Wi-Fi	WWAN & WLAN	
Front	0.755		0.100	0.855	
Back	0.645		0.262	0.907	
Left Hand Side	0.444		0.011	0.455	
Right Hand Side	0.361		0.063	0.424	
Bottom	0.132			0.132	
Тор			0.053	0.053	
Front		0.648	0.100	0.748	
Back		0.616	0.262	0.878	
Left Hand Side		0.445	0.011	0.456	
Right Hand Side		0.397	0.063	0.460	
Bottom		0.133		0.133	
Тор			0.053	0.053	

Page: 63 of 285

Issue Date: 25 January 2013

Simultaneous Transmission SAR Analysis (Continued) Body-Worn Configurations 1g – Worst cases measurements WWAN+WLAN

Reported SAR 1g (W/kg)										
		WWAN	1		WLAN					
GSM 850	PCS 1900	UMTS FDD 5	LTE Band 5 (10MHz)	LTE Band 5 (1.4MHz)	Wi-Fi	Sum of WWAN & WLAN				
0.544						0.544				
					0.099					
0.513						0.513				
					0.090					
	0.356				0.099	0.455				
	0.362				0.090	0.452				
		0.559				0.559				
					0.099					
		0.605				0.605				
					0.090					
					0.099					
			0.646			0.646				
					0.090					
					0.099					
				0.452		0.452				
					0.090					
	850 0.544	0.544 0.513 0.356	WWAN GSM PCS UMTS FDD 5 0.544 0.513 0.356 0.362 0.559	WWAN GSM 850 PCS 1900 UMTS FDD 5 (10MHz) 0.544 0.513 0.356 0.362 0.605	WWAN GSM 850 PCS 1900 UMTS EDD 5 (10MHz) 0.544 0.513 0.356 0.362 0.605	WLAN WLAN WINTS LTE Band 5 (1.4MHz) Wi-Fi				

Note(s):

- 1. The sum of WWAN and WLAN did not exceed 1.6W/kg in any of the above cases and hence, the SAR to peak location separation ratio distance was not calculated.
- 2. For Bluetooth, SAR results are provided in the following table below. The separation distance of 10mm was used for hotspot mode and 15mm for body-worn configuration.
- 3. Since WLAN 2.4 GHz 1g Reported SAR were higher than WLAN 5.0 GHz 1g Reported SAR, WLAN 2.4 GHz is considered as worst case for the Simultaneous transmission worst case measurements in above tables.
- 4. All the above EUT positions used for Hotspot and Body-worn configurations are most conservative configuration.

*All WWAN and WLAN 1g SAR values used for Simultaneous Transmission SAR analysis are Reported SAR values

Page: 64 of 285 UL

Issue Date: 25 January 2013

7.5. Simultaneous Transmission SAR Analysis WWAN+WPAN Hotspot Mode Configuration 1g – Worst cases measurements WWAN+WPAN

		Repor	ted SAR 1g (W/	kg)	
		WWAN		WPAN	Sum of
EUT Position	GSM850	PCS1900	UMTS FDD 5	Bluetooth	WWAN & WPAN
Front	0.751			0.190	0.941
Back	0.694			0.190	0.884
Left Hand Side	0.376			0.190	0.566
Right Hand Side	0.392			0.190	0.582
Bottom	0.216				0.216
Тор				0.190	0.190
Front		0.607		0.190	0.797
Back		0.819		0.190	1.009
Left Hand Side		0.101		0.190	0.291
Right Hand Side		0.170		0.190	0.360
Bottom		0.861			0.861
Тор				0.190	0.190
Front			0.702	0.190	0.892
Back			0.530	0.190	0.720
Left Hand Side			0.349	0.190	0.539
Right Hand Side			0.361	0.190	0.551
Bottom			0.181		0.181
Тор				0.190	0.190

Page: 65 of 285 UL

Issue Date: 25 January 2013

		Reported SAR 1g (W/kg)						
	wv	VAN	Sum of					
EUT Position	LTE Band 5 (10MHz)	LTE Band 5 (1.4MHz) Bluetooth		WWAN & WPAN				
Front	0.755		0.190	0.945				
Back	0.645		0.190	0.835				
Left Hand Side	0.444		0.190	0.634				
Right Hand Side	0.361		0.190	0.551				
Bottom	0.132			0.132				
Тор			0.190	0.190				
Front		0.648	0.190	0.838				
Back		0.616	0.190	0.806				
Left Hand Side		0.445	0.190	0.635				
Right Hand Side		0.397	0.190	0.587				
Bottom		0.133		0.133				
Тор			0.190	0.190				

Page: 66 of 285

Issue Date: 25 January 2013

Simultaneous Transmission SAR Analysis WWAN+WPAN (Continued) Body-Worn Configurations 1g – Worst cases measurements WWAN+WPAN

Reported SAR 1g (W/kg)								
		WWAN	I		WPAN			
GSM 850	PCS 1900	UMTS FDD 5	LTE Band 5 (10MHz)	LTE Band 5 (1.4MHz)	Bluetooth	Sum of WWAN & WPAN		
0.544					0.127	0.671		
0.513					0.127	0.640		
	0.356				0.127	0.483		
	0.362				0.127	0.489		
		0.559			0.127	0.686		
		0.605			0.127	0.732		
			0.646		0.127	0.773		
				0.452	0.127	0.579		
	850 0.544	0.544 0.513 0.356	WWAN GSM 850 PCS UMTS FDD 5 0.544 0.513 0.356 0.362 0.559	WWAN GSM 850 PCS 1900 UMTS FDD 5 (10MHz) 0.544 0.513 0.356 0.362 0.605	Casm PCS 1900 FDD 5 LTE Band 5 (1.4MHz)	WPAN Same PCS 1900 FDD 5 Can Same S		

Note(s):

- 1. The sum of WWAN and WLAN did not exceed 1.6W/Kg in any of the above cases and hence, the SAR to peak location separation ratio distance was not calculated.
- 2. Bluetooth SAR result is calculated as per the formula below following FCC KDB publication 447498.
- 3. Separation distance of 10mm was used for hotspot mode and 15mm for body-worn configuration.

When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

- (max. power of channel, including time-up tolerance, mW)/(min. test separation distance, mm)]-[√f_(GHz)/x] W/kg for test separation distances ≤ 50 mm;
 where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.
 - 10mm Bluetooth estimated SAR level:
 Estimated Bluetooth SAR = (9.2mW/10mm)*(√2.4 / 7.5) = 0.190 W/kg
 - 15mm Bluetooth estimated SAR level: Estimated Bluetooth SAR = (9.2mW/15mm)*(√2.4 / 7.5) = 0.127 W/kg

*All WWAN and WLAN 1g SAR values used for Simultaneous Transmission SAR analysis are Reported SAR values

Page: 67 of 285

Issue Date: 25 January 2013

8. Measurement Uncertainty

No measurement or test can ever be perfect and the imperfections give rise to error of measurement in the results. Consequently, the result of a measurement is only an approximation to the value of the measurand (the specific quantity subject to measurement) and is only complete when accompanied by a statement of the uncertainty of the approximation.

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

The uncertainty of the result may need to be taken into account when interpreting the measurement results.

The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor, such that a confidence level of approximately 95% is maintained. For the purposes of this document "approximately" is interpreted as meaning "effectively" or "for most practical purposes".

Test Name	Confidence Level	Calculated Uncertainty
Specific Absorption Rate-GSM 850/ UMTS FDD 5 / LTE Band 5 Head Configuration 1g	95%	±19.94%
Specific Absorption Rate-GSM / GPRS / EDGE 850 / UMTS FDD 5 / LTE Band 5 Body Configurations 1g	95%	±20.07%
Specific Absorption Rate-PCS 1900 Head Configuration 1g	95%	±20.72%
Specific Absorption Rate-GSM / GPRS / EDGE 1900 Body Configuration 1g	95%	±20.00%
Specific Absorption Rate-Wi-Fi 2450 MHz Head Configuration 1g	95%	±19.47%
Specific Absorption Rate-Wi-Fi 2450 MHz Body Configuration 1g	95%	±19.90%
Specific Absorption Rate-Wi-Fi 5GHz Head Configuration 1g	95%	±20.14%

The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty, the published guidance of the appropriate accreditation body is followed.

Page: 68 of 285

Issue Date: 25 January 2013

Туре	Source of uncertainty	+ Value	- Value	Probability Distribution	Divisor	C _{i (1g)}	Stan Uncer	dard tainty	ບ _i or
		value	value	Distribution		,	+ u (%)	- u (%)	υ _{eff}
В	Probe calibration	6.000	6.000	normal (k=1)	1.0000	1.0000	6.000	6.000	∞
В	Axial Isotropy	0.250	0.250	normal (k=1)	1.0000	1.0000	0.250	0.250	∞
В	Hemispherical Isotropy	1.300	1.300	normal (k=1)	1.0000	1.0000	1.300	1.300	∞
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	∞
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	×
В	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	×
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	×
В	Readout Electronics	0.160	0.160	normal (k=1)	1.0000	1.0000	0.160	0.160	∞
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞
В	Integration Time	1.730	1.730	Rectangular	1.7321	1.0000	0.999	0.999	×
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	∞
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	×
В	Extrapolation and integration / Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	∞
Α	Test Sample Positioning	2.400	2.400	normal (k=1)	1.0000	1.0000	2.400	2.400	10
Α	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	∞
Α	Liquid Conductivity (measured value)	4.920	4.920	normal (k=1)	1.0000	0.6400	3.149	3.149	5
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	œ
Α	Liquid Permittivity (measured value)	4.970	4.970	normal (k=1)	1.0000	0.6000	2.982	2.982	5
	Combined standard uncertainty			t-distribution			10.17	10.17	>25
	Expanded uncertainty			k = 1.96			19.94	19.94	>25

Page: 69 of 285

В

В

В

В

В

В

В

В

Α

Α

В

В

В

Α

В

Α

Detection Limits

Response Time

Integration Time

Restrictions

Readout Electronics

RF Ambient conditions

Probe Positioning with

regard to Phantom Shell
Extrapolation and integration

/Maximum SAR evaluation

Test Sample Positioning

Phantom Uncertainty

Drift of output power

Liquid Conductivity

(measured value) Liquid Permittivity

(measured value)
Combined standard

Expanded uncertainty

(target value)
Liquid Permittivity

uncertainty

(target value)
Liquid Conductivity

Device Holder uncertainty

Probe Positioner Mechanical

Serial No: UL-SAR-RP90579JD02A V4.0

Issue Date: 25 January 2013

8.2. Specific Absorption Rate-GSM / GPRS / EDGE 850 / UMTS FDD 5 / LTE Band 5 Body **Configuration 1g** Standard υi **Probability** Uncertainty Type Source of uncertainty **Divisor** or C_{i (1g)} Value Value Distribution + u (%) - u (%) υeff 6.000 6.000 1.0000 В Probe calibration normal (k=1) 1.0000 6.000 6.000 В 0.250 0.250 0.250 0.250 Axial Isotropy normal (k=1) 1.0000 1.0000 1.0000 1.300 1.300 В Hemispherical Isotropy 1.300 1.300 normal (k=1) 1.0000 В Spatial Resolution 0.500 0.500 Rectangular 1.7321 1.0000 0.289 0.289 ∞ В 1.0000 **Boundary Effect** 0.769 0.769 1.7321 0.444 0.444 Rectangular ∞ В Linearity 0.600 0.600 1.7321 1.0000 0.346 0.346 Rectangular α

Rectangular

normal (k=1)

Rectangular

Rectangular

Rectangular

Rectangular

Rectangular

Rectangular

normal (k=1)

normal (k=1)

Rectangular

Rectangular

Rectangular

normal (k=1)

Rectangular

normal (k=1)

t-distribution

k = 1.96

1.7321

1.0000

1.7321

1.7321

1.7321

1.7321

1.7321

1.7321

1.0000

1.0000

1.7321

1.7321

1.7321

1.0000

1.7321

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

0.6400

0.6400

0.6000

0.6000

0.115

0.160

0.000

0.999

1.732

2.309

1.645

2.933

2.900

0.154

2.309

2.887

1.848

3.002

1.732

2.916

10.24

20.07

0.115

0.160

0.000

0.999

1.732

2.309

1.645

2.933

2.900

0.154

2.309

2.887

1.848

3.002

1.732

2.916

10.24

20.07

00

00

 ∞

 ∞

 ∞

10

10

 ∞

00

00

5

 ∞

5

>250

>250

0.200

0.160

0.000

1.730

3.000

4.000

2.850

5.080

2.900

0.154

4.000

5.000

5.000

4.690

5.000

4.860

0.200

0.160

0.000

1.730

3.000

4.000

2.850

5.080

2.900

0.154

4.000

5.000

5.000

4.690

5.000

4.860

Page: 70 of 285

Issue Date: 25 January 2013

8.3. 8	Specific Absorption Rate	-PCS 19	900 Hea	d Configurati	on 1g				
Туре	Source of uncertainty	+ Value	- Value	Probability Distribution	Divisor	C _{i (1g)}	Stan Uncer	dard tainty	Ն _i or
		value	value	Distribution			+ u (%)	- u (%)	v_{eff}
В	Probe calibration	6.000	6.000	normal (k=1)	1.0000	1.0000	6.000	6.000	∞
В	Axial Isotropy	0.250	0.250	normal (k=1)	1.0000	1.0000	0.250	0.250	∞
В	Hemispherical Isotropy	1.300	1.300	normal (k=1)	1.0000	1.0000	1.300	1.300	œ
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	œ
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	œ
В	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	∞
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	œ
В	Readout Electronics	0.160	0.160	normal (k=1)	1.0000	1.0000	0.160	0.160	∞
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞
В	Integration Time	1.730	1.730	Rectangular	1.7321	1.0000	0.999	0.999	œ
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	∞
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Probe Positioning with Regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	∞
В	Extrapolation and integration / Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	∞
Α	Test Sample Positioning	3.800	3.800	normal (k=1)	1.0000	1.0000	3.800	3.800	10
Α	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	∞
Α	Liquid Conductivity (measured value)	4.900	4.900	normal (k=1)	1.0000	0.6400	3.136	3.136	5
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	∞
Α	Liquid Permittivity (measured value)	4.880	4.880	normal (k=1)	1.0000	0.6000	2.928	2.928	5
	Combined standard uncertainty			t-distribution			10.57	10.57	>200
	Expanded uncertainty			k = 1.96			20.72	20.72	>200

Page: 71 of 285

Issue Date: 25 January 2013

8.4. Specific Absorption Rate-PCS / GPRS / EDGE 1900 Body Configuration 1g									
Туре	Source of uncertainty	+ Value	- Value	Probability Distribution	Divisor	C _{i (1g)}	Standard Uncertainty		სi or
							+ u (%)	- u (%)	Veff
В	Probe calibration	6.000	6.000	normal (k=1)	1.0000	1.0000	6.000	6.000	∞
В	Axial Isotropy	0.250	0.250	normal (k=1)	1.0000	1.0000	0.250	0.250	∞
В	Hemispherical Isotropy	1.300	1.300	normal (k=1)	1.0000	1.0000	1.300	1.300	oc
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	oc
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	∞
В	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	∞
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	∞
В	Readout Electronics	0.160	0.160	normal (k=1)	1.0000	1.0000	0.160	0.160	∞
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞
В	Integration Time	1.730	1.730	Rectangular	1.7321	1.0000	0.999	0.999	∞
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	∞
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	∞
В	Extrapolation and integration / Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	∞
Α	Test Sample Positioning	2.500	2.500	normal (k=1)	1.0000	1.0000	2.500	2.500	10
Α	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	∞
Α	Liquid Conductivity (measured value)	4.940	4.940	normal (k=1)	1.0000	0.6400	3.162	3.162	5
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	∞
Α	Liquid Permittivity (measured value)	4.980	4.980	normal (k=1)	1.0000	0.6000	2.988	2.988	5
	Combined standard uncertainty			t-distribution			10.20	10.20	>250
	Expanded uncertainty			k = 1.96			20.00	20.00	>250

Page: 72 of 285

Issue Date: 25 January 2013

8.5. 8	Specific Absorption Rate	-Wi-Fi 2	450 MH	z Head Confi	guration	1g			
Туре	Source of uncertainty	+ Value	- Value	Probability Distribution	Divisor	Ci (1g)	Stan Uncer		სi or
		value	value	Distribution			+ u (%)	- u (%)	Veff
В	Probe calibration	6.000	6.000	normal (k=1)	1.0000	1.0000	6.000	6.000	∞
В	Axial Isotropy	0.250	0.250	normal (k=1)	1.0000	1.0000	0.250	0.250	∞
В	Hemispherical Isotropy	1.300	1.300	normal (k=1)	1.0000	1.0000	1.300	1.300	∞
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	∞
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	∞
В	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	∞
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	∞
В	Readout Electronics	0.160	0.160	normal (k=1)	1.0000	1.0000	0.160	0.160	×
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	×
В	Integration Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	∞
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	∞
В	Extrapolation and integration / Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	œ
Α	Test Sample Positioning	2.000	2.000	normal (k=1)	1.0000	1.0000	2.000	2.000	10
Α	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	∞
Α	Liquid Conductivity (measured value)	4.410	4.410	normal (k=1)	1.0000	0.6400	2.822	2.822	5
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	∞
Α	Liquid Permittivity (measured value)	4.930	4.930	normal (k=1)	1.0000	0.6000	2.958	2.958	5
	Combined standard uncertainty			t-distribution			9.93	9.93	>300
	Expanded uncertainty			k = 1.96			19.47	19.47	>300

Page: 73 of 285

Issue Date: 25 January 2013

8.6. 8	Specific Absorption Rate	-Wi-Fi 2	450 MH	z Body Confi	guration	1g			
Туре	Source of uncertainty	+ Value	- Value	Probability Distribution	Divisor	C _{i (1g)}	Stan Uncer		სi or
		value	value	Distribution			+ u (%)	- u (%)	veff
В	Probe calibration	6.000	6.000	normal (k=1)	1.0000	1.0000	6.000	6.000	∞
В	Axial Isotropy	0.250	0.250	normal (k=1)	1.0000	1.0000	0.250	0.250	∞
В	Hemispherical Isotropy	1.300	1.300	normal (k=1)	1.0000	1.0000	1.300	1.300	∞
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	∞
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	∞
В	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	oc
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	oc
В	Readout Electronics	0.160	0.160	normal (k=1)	1.0000	1.0000	0.160	0.160	oc
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞
В	Integration Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	œ
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	∞
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	∞
В	Extrapolation and integration / Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	œ
Α	Test Sample Positioning	2.570	2.570	normal (k=1)	1.0000	1.0000	2.570	2.570	10
Α	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	∞
Α	Liquid Conductivity (measured value)	4.900	4.900	normal (k=1)	1.0000	0.6400	3.136	3.136	5
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	∞
Α	Liquid Permittivity (measured value)	4.920	4.920	normal (k=1)	1.0000	0.6000	2.952	2.952	5
	Combined standard uncertainty			t-distribution			10.15	10.15	>250
	Expanded uncertainty			k = 1.96			19.90	19.90	>250

Page: 74 of 285

Issue Date: 25 January 2013

8.7. 8	Specific Absorption Rate	-Wi-Fi 5	GHz He	ad Configura	tion 1g				
Туре	Source of uncertainty	+ Value	- Value	Probability Distribution	Divisor	Ci (1g)	Stan Uncer		სi or
		value	value	Distribution		, -,	+ u (%)	- u (%)	Veff
В	Probe calibration	6.550	6.550	normal (k=1)	1.0000	1.0000	6.550	6.550	œ
В	Axial Isotropy	0.250	0.250	normal (k=1)	1.0000	1.0000	0.250	0.250	∞
В	Hemispherical Isotropy	1.300	1.300	normal (k=1)	1.0000	1.0000	1.300	1.300	∞
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	∞
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	∞
В	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	∞
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	∞
В	Readout Electronics	0.160	0.160	normal (k=1)	1.0000	1.0000	0.160	0.160	∞
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	œ
В	Integration Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	∞
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	×
В	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	∞
В	Extrapolation and integration / Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	∞
Α	Test Sample Positioning	2.540	2.540	normal (k=1)	1.0000	1.0000	2.540	2.540	10
Α	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	∞
Α	Liquid Conductivity (measured value)	4.690	4.690	normal (k=1)	1.0000	0.6400	3.002	3.002	5
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	∞
Α	Liquid Permittivity (measured value)	3.830	3.830	normal (k=1)	1.0000	0.6000	2.298	2.298	5
	Combined standard uncertainty			t-distribution			10.28	10.28	>400
	Expanded uncertainty			k = 1.96			20.14	20.14	>400

Page: 75 of 285

Issue Date: 25 January 2013

UL No.	Instrument	Manufacturer	Type No.	Serial No.	Date Last Calibrated	Cal. Interval (Months
A034	Narda 20W Termination	Narda	374BNM	8706	Calibrated as part of system	-
A1097	SMA Directional Coupler	MiDISCO	MDC6223- 30	None	Calibrated as part of system	-
A1137	3dB Attenuator	Narda	779	04690	Calibrated as part of system	-
A1174	Dielectric Probe Kit	Agilent Technologies	85070C	Us99360072	Calibrated before use	-
A1328	Handset Positioner	Schmid & Partner Engineering AG	Modification	SD 000 H01 DA	-	-
A1182	Handset Positioner	Schmid & Partner Engineering AG	V3.0	None	-	-
A1184	Data Acquisition Electronics	Schmid & Partner Engineering AG	DAE3	394	26 Jan 2012	12
A2111	Data Acquisition Electronics	Schmid & Partner Engineering AG	DAE3	432	02 May 2012	12
A2110	Data Acquisition Electronics	Schmid & Partner Engineering AG	DAE3	431	20 Sept 2012	12
A2077	Probe	Schmid & Partner Engineering AG	EX3 DV4	3814	24 Sep 2012	12
A2113	Probe	Schmid & Partner Engineering AG	ET3 DV6	1587	11 May 2012	12
A1185	Probe	Schmid & Partner Engineering AG	ET3 DV6	1528	26 Jul 2012	12
A2243	Probe	Schmid & Partner Engineering AG	ES3DV3	3304	31 Aug 2012	12
A2201	900 MHz Dipole Kit	Schmid & Partner Engineering AG	D900V2	035	16 Aug 2012	12
A1237	1900 MHz Dipole Kit	Schmid & Partner Engineering AG	D1900V2	540	08 Feb 2011	24
A1322	2450 MHz Dipole Kit	Schmid & Partner Engineering AG	D2450V2	725	08 Feb 2011	24
A1377	5.0 GHz Dipole Kit (Head)	Schmid & Partner Engineering AG	D5GHzV2	1016	23 Mar 2012	12
A1497	Amplifier	Mini-Circuits	zhl-42w (sma)	e020105	Calibrated as part of system	-

Page: 76 of 285

UL No.	Instrument	Manufacturer	Type No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
A1566	SAM Phantom	Schmid & Partner Engineering AG	SAM a (Site 56)	002	Calibrated before use	-
A1238	SAM Phantom	Schmid & Partner Engineering AG	SAM b (Site 56)	001	Calibrated before use	-
A2125	SAM Phantom	Schmid & Partner Engineering AG	SAM b (Site 57)	TP-1031	Calibrated before use	-
A2124	SAM Phantom	Schmid & Partner Engineering AG	SAM a (Site 57)	TP-1030	Calibrated before use	-
A215	20 dB Attenuator	Narda	766-20	9402	Calibrated as part of system	-
A1531	Antenna	AARONIA AG	7025	02458	-	-
M1015	Network Analyser	Agilent Technologies	8753ES	US39172406	09 Oct 2012	12
C1145	Cable	Rosenberger MICRO- COAX	FA147A F003003030	41843-1	Calibrated as part of system	-
C1146	Cable	Rosenberger MICRO-COAX	FA147A F030003030	41752-1	Calibrated as part of system	-
G0528	Robot Power Supply	Schmid & Partner Engineering AG	DASY4	None	Calibrated before use	-
GO591	Robot Power Supply	Schmid & Partner Engineering AG	DASY4	None	Calibrated before use	-
G0592	Robot Power Supply	Schmid & Partner Engineering AG	DASY53	None	Calibrated before use	-
G087	PSU	Thurlby Thandar	CPX200	100701	Calibrated before use	-
M1047	Robot Arm	Staubli	RX908 L	F00/SD8 9A1/A/01	Calibrated before use	-
M1653	Robot Arm	Staubli	RX908 L	F01/5J8 6A1/C/01	Calibrated before use	-
M1680	Robot Arm	Staubli	TX60 L	F12/5MZ7 A1/A/01	Calibrated before use	-
M1159	Signal Generator	Agilent Technologies	E8241A	US42110332	Internal Checked 10 Aug 2012 10 Dec 2012	4
M1647	Signal Generator	Hewlett Packward	8648C	3537A01598	01 Jun 2012	12
M1071	Spectrum Analyzer	Agilent	HP8590E	3647U00514	(Monitoring use only)	-
M1270	Digital Thermometer	RS	N/A	N/A	Internal Checked 13 May 2012	12
M1023	Dual Channel Power Meter	R&S	NRVD	863715/030	18 July 2012	12
S256	SAR Lab	UL	Site 56	N/A	Calibrated before use	-

Page: 77 of 285

Issue Date: 25 January 2013

UL No.	Instrument	Manufacturer	Type No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
S512	SAR Lab	UL	Site 57	N/A	Calibrated before use	-
S513	SAR Lab	UL	Site 58	N/A	Calibrated before use	-
Note:						

All the assets were in calibration during the course of testing.

Page: 78 of 285

Issue Date: 25 January 2013

A.1.1. Calibration Certificates

This section contains the calibration certificates and data for the Probe(s) and Dipole(s) used, which are not included in the total number of pages for this report.

The following information is justification to why the listed dipoles calibration period has been extended. This address FCC KDB 450824 D02

				D	ipole Calibi	ration Hi	story				
				Dipole	SN: 540, Fr	equency 1900 MHz					
Cal Date	Head Parameters						Вос	dy Param	eters		
	1g (W/Kg)	10g (W/Kg)	Return loss (dB)	Real (Ω)	Imaginary (Ω)	1g (W/Kg)	10g (W/Kg)	Return loss (dB)	Real (Ω)	Imaginary (Ω)	
27-Jun-12		nnual of dipole	-30.57	49.54	1.41		nnual of dipole	-29.80	50.34	2.37	
08-Feb-11	40.30	21.00	-27.60	50.50	4.20	40.70	21.60	-23.10	45.60	5.00	
26-Jun-09	40.30	21.10	-30.00	48.50	2.70	40.90	21.50	-24.30	44.90	2.80	
11-Jun-07	36.10	19.30	-25.40	51.90	5.10	38.00	20.70	-25.30	47.70	4.80	
14-Jun-05	38.10	19.90	-25.40	51.90	5.20	39.10	20.70	-24.00	48.10	5.90	
04-Jun-03	41.20	21.20	-28.50	50.30	3.80		Dipole ca	librated fo	r Head o	nly	
Standard Deviation	2.08	0.85	2.21	1.33	1.46	1.38	0.49	2.64	2.16	1.52	
Mean Value	39.20	20.50	27.91			39.68	21.13	25.30			
Relative standard deviation %	5.30%	4.15%	7.93%			3.47%	2.33%	10.42%			

Page: 79 of 285 UL

Issue Date: 25 January 2013

Calibration	Calibration Certificates (Continued)													
				D	ipole Calibr	ation His	story							
		Dipole SN: 725, Frequency 2450 MHz												
Cal Date	Head Parameters					Вос	dy Param	eters						
	1g (W/Kg)	10g (W/Kg)	Return loss (dB)	Real (Ω)	lmaginary (Ω)	1g (W/Kg)	10g (W/Kg)	Return loss (dB)	Real (Ω)	lmaginary (Ω)				
02-July-12		nnual of dipole	-20.37	47.27	8.65		nnual of dipole	-21.04	48.52	8.72				
08-Feb-11	52.90	24.70	-20.50	45.60	7.90	51.90	24.10	-20.20	49.50	9.70				
08-Jan-09	52.10	24.30	-23.70	54.40	5.30	52.20	24.70	-23.40	49.00	6.70				
17-Jan-07	53.30	24.80	-22.10	52.40	7.70	53.30	24.50	-21.80	47.80	7.70				
04-Jan-05	54.50	24.70	-22.30	53.50	7.20	52.90	24.50	-22.20	48.50	7.50				
17-Jan-03	54.70	24.50	-22.60	53.00	7.00	52.10	24.10	-21.70	49.00	8.10				
Standard Deviation	1.10	0.20	1.28	3.66	1.14	0.59	0.27	1.08	0.58	1.04				
Mean Value	53.50	24.60	21.93			52.48	24.38	21.72						
Relative standard deviation %	2.05%	0.81%	5.85%			1.13%	1.10%	4.97%						
Note:														

1. The dipole history shows that the measured SAR relative standard deviation was all less than 10 % for the calibration period. The return loss relative standard deviation was all less than 10.42 %. And the real and imaginary impedance standard deviation is within 5 (Ω) .

Page: 80 of 285

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

DATE , 7-August 2012

S Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) ASSET: A 220/
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

RFI

Certificate No: D900V2-035_Aug12

CALIBRATION CERTIFICATE

Object

D900V2 - SN: 035

Calibration procedure(s)

QA CAL-05.v8

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

August 16, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	05-Oct-11 (No. 217-01451)	Oct-12
Power sensor HP 8481A	US37292783	05-Oct-11 (No. 217-01451)	Oct-12
Reference 20 dB Attenuator	SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
Type-N mismatch combination	SN: 5047.2 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
Reference Probe ES3DV3	SN: 3205	30-Dec-11 (No. ES3-3205_Dec11)	Dec-12
DAE4	SN: 601	27-Jun-12 (No. DAE4-601_Jun12)	Jun-13
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-11)	In house check: Oct-12
	Name	Function	Signature
Calibrated by:	Israe El-Naouq	Laboratory Technician	Men El Daoue
Approved by:	Katja Pokovic	Technical Manager	20 m

Issued: August 16, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D900V2-035_Aug12

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D900V2-035_Aug12 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.97 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.6 ± 6 %	0.96 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.62 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	10.5 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.68 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.74 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.0	1.05 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.6 ± 6 %	1.06 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.74 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	10.8 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.76 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	6.96 mW / g ± 16.5 % (k=2)

Certificate No: D900V2-035_Aug12 Page 3 of 8

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.8 Ω - 5.8 jΩ
Return Loss	- 24.4 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.5 Ω - 5.5 jΩ
Return Loss	- 24.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.404 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	February 26, 1998

Certificate No: D900V2-035_Aug12 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 16.08.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN: 035

Communication System: CW; Frequency: 900 MHz

Medium parameters used: f = 900 MHz; $\sigma = 0.96 \text{ mho/m}$; $\varepsilon_r = 40.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(5.97, 5.97, 5.97); Calibrated: 30.12.2011;

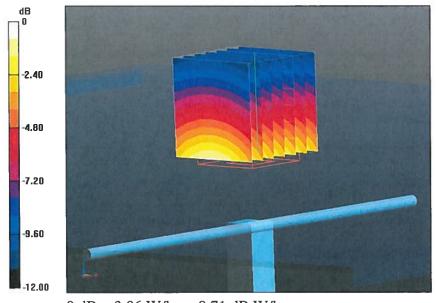
• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 27.06.2012

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

DASY52 52.8.2(969); SEMCAD X 14.6.6(6824)

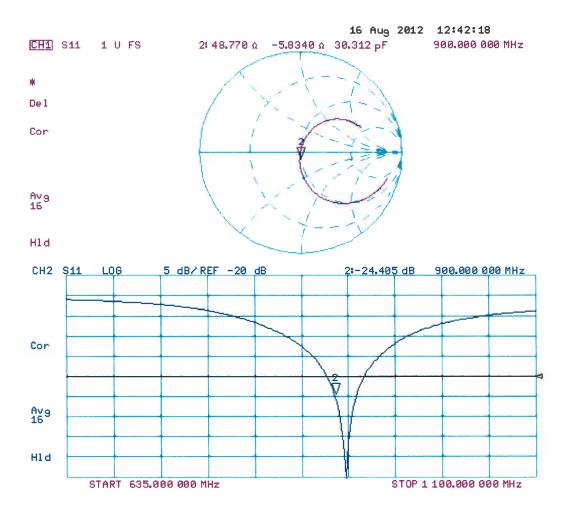
Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.325 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.926 mW/g

SAR(1 g) = 2.62 mW/g; SAR(10 g) = 1.68 mW/g


Maximum value of SAR (measured) = 3.06 W/kg

0 dB = 3.06 W/kg = 9.71 dB W/kg

Certificate No: D900V2-035_Aug12

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 16.08.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN: 035

Communication System: CW; Frequency: 900 MHz

Medium parameters used: f = 900 MHz; $\sigma = 1.06 \text{ mho/m}$; $\varepsilon_r = 52.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.94, 5.94, 5.94); Calibrated: 30.12.2011;

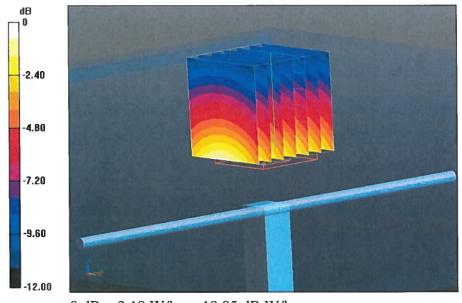
• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 27.06.2012

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

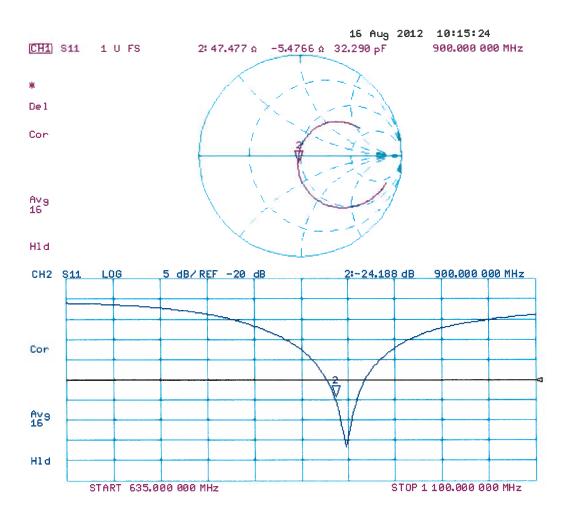
• DASY52 52.8.2(969); SEMCAD X 14.6.6(6824)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.325 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 4.184 mW/g


SAR(1 g) = 2.74 mW/g; SAR(10 g) = 1.76 mW/g

Maximum value of SAR (measured) = 3.18 W/kg

0 dB = 3.18 W/kg = 10.05 dB W/kg

Impedance Measurement Plot for Body TSL

ASSET: 16/237 - Acked by Kt

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Service suisse d etaionnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

D1900V2 - SN: 540

CALIBRATION CERTIFICATE

Accreditation No.: SCS 108

S

Client

Object

RFI

Certificate No: D1900V2-540_Feb11

Calibration procedure(s) QA CAL-05.v8 Calibration procedure for dipole validation kits Calibration date: February 08, 2011 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) **Primary Standards** ID# Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 06-Oct-10 (No. 217-01266) Oct-11 Power sensor HP 8481A US37292783 06-Oct-10 (No. 217-01266) Oct-11 Reference 20 dB Attenuator SN: 5086 (20g) 30-Mar-10 (No. 217-01158) Mar-11 Type-N mismatch combination SN: 5047.2 / 06327 30-Mar-10 (No. 217-01162) Mar-11 Reference Probe ES3DV3 SN: 3205 30-Apr-10 (No. ES3-3205_Apr10) Apr-11 DAE4 SN: 601 10-Jun-10 (No. DAE4-601_Jun10) Jun-11 Secondary Standards ID# Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 4-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-10) In house check: Oct-11 Name **Function** Signature Calibrated by: Dimce Iliev Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: February 8, 2011 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-540_Feb11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z not applicable or not measured

N/A n

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	·
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.8 ± 6 %	1.41 mho/m ± 6 %
Head TSL temperature during test	(21.0 ± 0.2) °C	***	••••

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.1 mW / g
SAR normalized	normalized to 1W	40.4 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	40.3 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.25 mW / g
SAR normalized	normalized to 1W	21.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	21.0 mW /g ± 16.5 % (k=2)

Certificate No: D1900V2-540_Feb11

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.8 ± 6 %	1.55 mho/m ± 6 %
Body TSL temperature during test	(21.2 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.3 mW / g
SAR normalized	normalized to 1W	41.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	40.7 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.43 mW / g
SAR normalized	normalized to 1W	21.7 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.6 mW / g ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.5 Ω + 4.2 jΩ
Return Loss	- 27.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.6 Ω + 5.0 jΩ
Return Loss	- 23.1 dB

General Antenna Parameters and Design

	1
Electrical Delay (one direction)	1.195 ns
i Electrical Delay tone directioni	1.195 NS
The state of the s	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 26, 2001

Certificate No: D1900V2-540_Feb11

DASY5 Validation Report for Head TSL

Date/Time: 07.02.2011 15:18:47

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:540

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL U12 BB

Medium parameters used: f = 1900 MHz; $\sigma = 1.41 \text{ mho/m}$; $\varepsilon_r = 39.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.09, 5.09, 5.09); Calibrated: 30.04.2010

Sensor-Surface: 3mm (Mechanical Surface Detection)

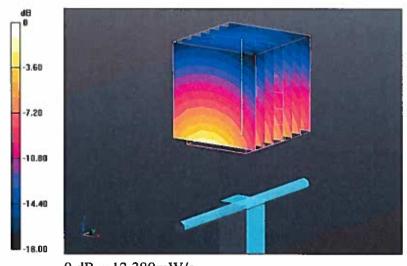
Electronics: DAE4 Sn601; Calibrated: 10.06.2010

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

Measurement SW: DASY52, V52.6.1 Build (408)

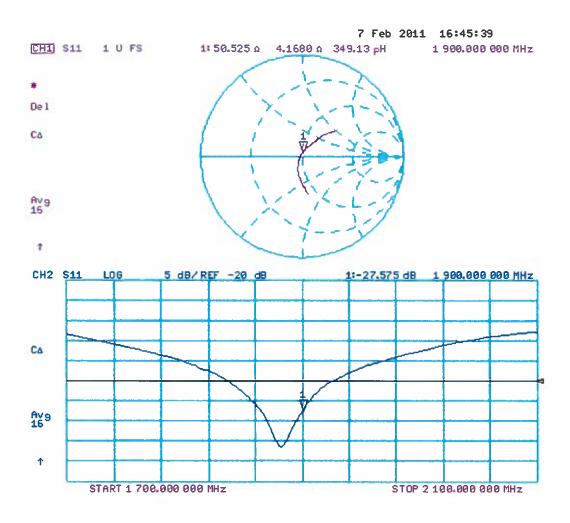
Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.936 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 18.544 W/kg


SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.25 mW/g

Maximum value of SAR (measured) = 12.384 mW/g

0 dB = 12.380 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date/Time: 08.02.2011 12:04:35

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:540

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL U12 BB

Medium parameters used: f = 1900 MHz; $\sigma = 1.55 \text{ mho/m}$; $\varepsilon_r = 52.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.59, 4.59, 4.59); Calibrated: 30.04.2010

Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 10.06.2010

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

Measurement SW: DASY52, V52.6.1 Build (408)

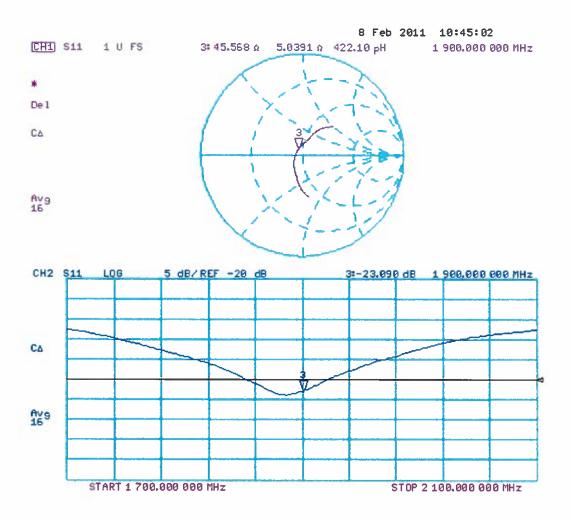
• Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.899 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 17.597 W/kg


SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.43 mW/g

Maximum value of SAR (measured) = 13.038 mW/g

0 dB = 13.040 mW/g

Impedance Measurement Plot for Body TSL

ASSET! A 1322 - Checked by RAS

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

RFI

Certificate No: D2450V2-725_Feb11

CALIBRATION CERTIFICATE

Object D2450V2 - SN: 725

Calibration procedure(s) QA CAL-05.v8

Calibration procedure for dipole validation kits

Calibration date:

February 08, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11
Reference 20 dB Attenuator	SN: 5086 (20g)	30-Mar-10 (No. 217-01158)	Mar-11
Type-N mismatch combination	SN: 5047.2 / 06327	30-Mar-10 (No. 217-01162)	Mar-11
Reference Probe ES3DV3	SN: 3205	30-Apr-10 (No. ES3-3205_Apr10)	Apr-11
DAE4	SN: 601	10-Jun-10 (No. DAE4-601_Jun10)	Jun-11
Secondary Standards	1D #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-10)	In house check; Oct-11
	Name	Function	Signature
Calibrated by:	Dimce lilev	Laboratory Technician	D. Kiev
Approved by:	Katja Pokovic	Technical Manager	2010

Issued: February 8, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D2450V2-725_Feb11 Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.1 ± 6 %	1.73 mho/m ± 6 %
Head TSL temperature during test	(21.0 ± 0.2) °C	****	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR normalized	normalized to 1W	52.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	52.9 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.13 mW / g
SAR normalized	normalized to 1W	24.5 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.7 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.2 ± 6 %	1.94 mho/m ± 6 %
Body TSL temperature during test	(21.0 ± 0.2) °C	****	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR normalized	normalized to 1W	52.0 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	51.9 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.04 mW / g
SAR normalized	normalized to 1W	24.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	24.1 mW / g ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	45.6 Ω + 7.9 jΩ		
Return Loss	- 20.5 dB		

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.5 Ω + 9.7 jΩ		
Return Loss	- 20.2 dB		

General Antenna Parameters and Design

Electrical Delay (one direction)	1.152 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	October 16, 2002	

DASY5 Validation Report for Head TSL

Date/Time: 07.02.2011 14:34:55

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:725

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL U12 BB

Medium parameters used: f = 2450 MHz; $\sigma = 1.74 \text{ mho/m}$; $\varepsilon_r = 39.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 30.04.2010

Sensor-Surface: 3mm (Mechanical Surface Detection)

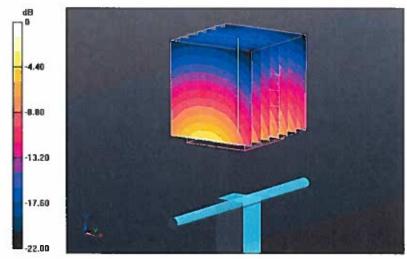
Electronics: DAE4 Sn601; Calibrated: 10.06.2010

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

Measurement SW: DASY52, V52.6.1 Build (408)

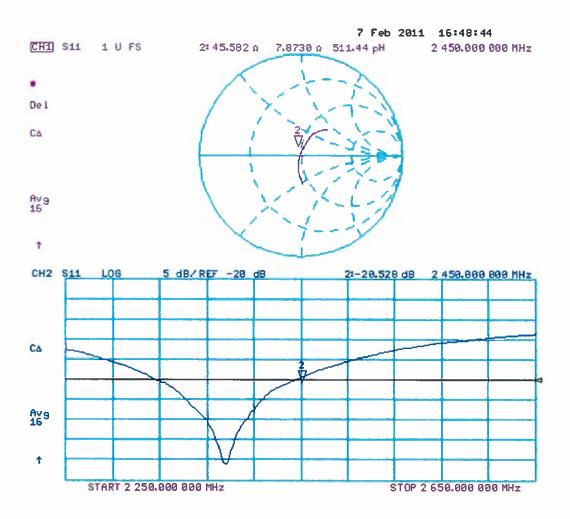
Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 101.3 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 26.701 W/kg


SAR(1 g) = 13 mW/g; SAR(10 g) = 6.13 mW/g

Maximum value of SAR (measured) = 16.608 mW/g

0 dB = 16.610 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date/Time: 08.02.2011 12:48:13

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:725

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL U12 BB

Medium parameters used: f = 2450 MHz; $\sigma = 1.95 \text{ mho/m}$; $\varepsilon_r = 52.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.31, 4.31, 4.31); Calibrated: 30.04.2010

Sensor-Surface: 3mm (Mechanical Surface Detection)

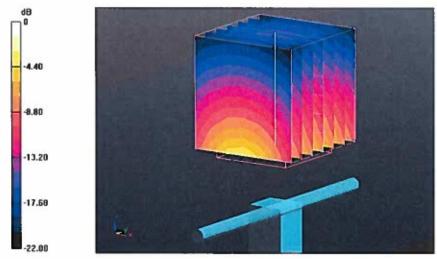
• Electronics: DAE4 Sn601; Calibrated: 10.06.2010

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

Measurement SW: DASY52, V52.6.1 Build (408)

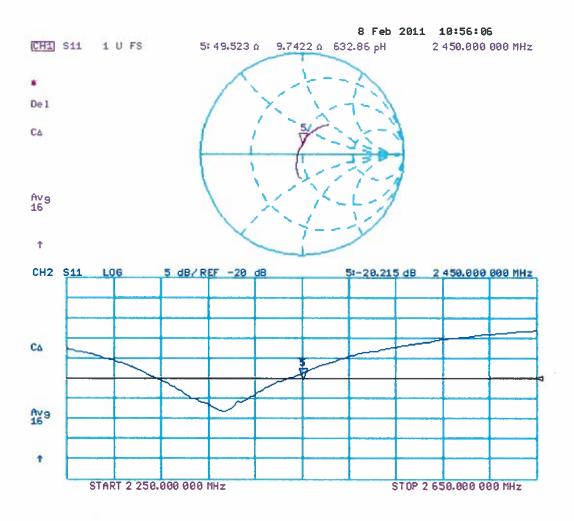
• Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.406 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 27.401 W/kg


SAR(1 g) = 13 mW/g; SAR(10 g) = 6.04 mW/g

Maximum value of SAR (measured) = 17.121 mW/g

0 dB = 17.120 mW/g

Impedance Measurement Plot for Body TSL

Checked by AD DATE CHECKED: 29-MARCH - 2012

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

RFI

Accreditation No.: SCS 108

Certificate No: D5GHzV2-1016_Mar12

CALIBRATION CERTIFICATE

Object

D5GHzV2 - SN: 1016

Calibration procedure(s)

QA CAL-22.v1

Calibration procedure for dipole validation kits between 3-6 GHz

Calibration date:

March 23, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	05-Oct-11 (No. 217-01451)	Oct-12
Power sensor HP 8481A	US37292783	05-Oct-11 (No. 217-01451)	Oct-12
Reference 20 dB Attenuator	SN: 5086 (20g)	29-Mar-11 (No. 217-01368)	Apr-12
Type-N mismatch combination	SN: 5047.2 / 06327	29-Mar-11 (No. 217-01371)	Apr-12
Reference Probe EX3DV4	SN: 3503	30-Dec-11 (No. EX3-3503_Dec11)	Dec-12
DAE4	SN: 601	04-Jul-11 (No. DAE4-601_Jul11)	Jul-12
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-11)	In house check: Oct-12
	Name	Function	Signature
Calibrated by:	Dimce Iliev	Laboratory Technician	D-View
			_

Issued: March 26, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D5GHzV2-1016_Mar12

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Wiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z not applicable or not measured

N/A not applicable or not mea

Calibration is Performed According to the Following Standards:

- a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010
- b) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1016_Mar12

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, $dy = 4.0$ mm, $dz = 1.4$ mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5500 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.7 ± 6 %	4.59 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.88 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	78.6 mW /g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.26 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	22.5 mW /g ± 19.5 % (k=2)

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.2 ± 6 %	4.89 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.48 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	84.5 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.43 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.2 mW / g ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.8 ± 6 %	5.19 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.84 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	78.1 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.24 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	22.3 mW / g ± 19.5 % (k=2)

Certificate No: D5GHzV2-1016_Mar12

Appendix

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	52.9 Ω - 9.6 jΩ
Return Loss	- 20.3 dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	48.7 Ω - 0.2 jΩ
Return Loss	- 37.8 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	57.5 Ω + 7.1 jΩ
Return Loss	- 20.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.199 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 14, 2003

Certificate No: D5GHzV2-1016_Mar12

DASY5 Validation Report for Head TSL

Date: 23.03.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1016

Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.59$ mho/m; $\epsilon_r = 35.7$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 4.89$ mho/m; $\epsilon_r = 35.2$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 5.19$ mho/m; $\epsilon_r = 34.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.41, 5.41, 5.41), ConvF(4.91, 4.91, 4.91), ConvF(4.81, 4.81, 4.81); Calibrated: 30.12.2011
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 60.845 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 29.2070

SAR(1 g) = 7.88 mW/g; SAR(10 g) = 2.26 mW/g

Maximum value of SAR (measured) = 18.432 mW/g

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

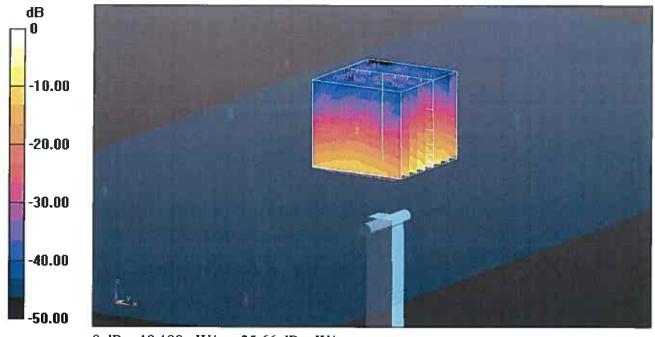
Reference Value = 62.039 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 33.1850

SAR(1 g) = 8.48 mW/g; SAR(10 g) = 2.43 mW/g

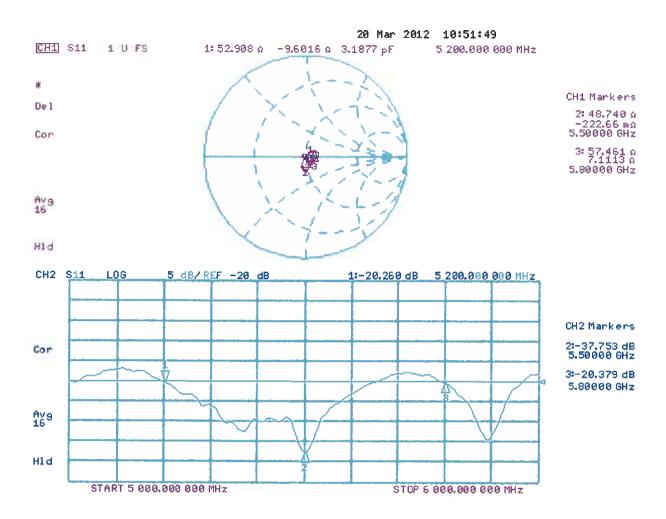
Maximum value of SAR (measured) = 20.139 mW/g

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,


dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 58.534 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 32.5190


SAR(1 g) = 7.84 mW/g; SAR(10 g) = 2.24 mW/g

Maximum value of SAR (measured) = 19.191 mW/g

0 dB = 19.190 mW/g = 25.66 dB mW/g

Impedance Measurement Plot for Head TSL

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

Certificate No: D5GHzV2-1016_Feb11

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object

D5GHzV2 - SN: 1016

Calibration procedure(s)

QA CAL-22.v1

Calibration procedure for dipole validation kits between 3-6 GHz

Calibration date:

February 10, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11
Reference 20 dB Attenuator	SN: 5086 (20g)	30-Mar-10 (No. 217-01158)	Mar-11
Type-N mismatch combination	SN: 5047.2 / 06327	30-Mar-10 (No. 217-01162)	Mar-11
Reference Probe EX3DV4	SN: 3503	05-Mar-10 (No. EX3-3503_Mar10)	Mar-11
DAE4	SN: 601	10-Jun-10 (No. DAE4-601_Jun10)	Jun-11
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11
	Name	Function	Signature
Calibrated by:	Dimce Iliev	Laboratory Technician	O Liev
			0-

Issued: February 11, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D5GHzV2-1016_Feb11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010
- b) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D5GHzV2-1016_Feb11 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6
Extrapolation	Advanced Extrapolation	· <u></u> -
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Area Scan resolution	dx, dy = 10 mm	
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 2.0 mm	
Frequency	5200 MHz ± 1 MHz 5500 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.2 ± 6 %	5.37 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C	****	

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	100 mW input power	7.73 mW / g
SAR normalized	normalized to 1W	77.3 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	76.7 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.14 mW / g
SAR normalized	normalized to 1W	21.4 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.2 mW / g ± 19.5 % (k=2)

Page 3 of 8

Certificate No: D5GHzV2-1016_Feb11

Body TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittlvity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.6 ± 6 %	5.75 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C	****	***-

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	100 mW input power	8.35 mW / g
SAR normalized	normalized to 1W	83.5 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	82.8 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.30 mW / g
SAR normalized	normalized to 1W	23.0 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	22.8 mW / g ± 19.5 % (k=2)

Body TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominai Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.2 ± 6 %	6.16 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C		Z

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	100 mW input power	7. 22 mW / g
SAR normalized	normalized to 1W	72.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	71.7 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	1.99 mW / g
SAR normalized	normalized to 1W	19.9 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	19.7 mW / g ± 19.5 % (k=2)

Certificate No: D5GHzV2-1016_Feb11 Page 4 of 8

Appendix

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	53.8 Ω - 8.9 jΩ		
Return Loss	-20.6 dB		

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	48.4 Ω - 0.9 jΩ			
Return Loss	-34.8 dB			

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	54.4 Ω + 8.3 jΩ		
Return Loss	-21.0 dB		

General Antenna Parameters and Design

- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
Electrical Delay (one direction)	1.200 ns

After long term use with 40 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 14, 2003

Certificate No: D5GHzV2-1016_Feb11 Page 5 of 8

DASY5 Validation Report for Body TSL

Date/Time: 10.02.2011 17:44:53

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHz; Serial: D5GHzV2 - SN:1016

Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz; Duty

Cycle: 1:1

Medium: MSL 5000 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 5.37$ mho/m; $\varepsilon_r = 47.2$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 5.75$ mho/m; $\varepsilon_r = 46.6$; $\rho = 1000$ kg/m³,

Medium parameters used: f = 5800 MHz; $\sigma = 6.16 \text{ mho/m}$; $\varepsilon_r = 46.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.88, 4.88, 4.88), ConvF(4.37, 4.37, 4.37), ConvF(4.57, 4.57, 4.57); Calibrated: 05.03.2010
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY52, V52.6.1 Build (408)
- Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

Pin=100mW, d=10mm, f=5200 MHz /Zoom Scan (4x4x2mm), dist=2mm (8x8x6)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 59.968 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 30.597 W/kg

SAR(1 g) = 7.73 mW/g; SAR(10 g) = 2.14 mW/g

Maximum value of SAR (measured) = 14.853 mW/g

Pin=100mW, d=10mm, f=5500 MHz/Zoom Scan (4x4x2mm), dist=2mm (8x8x6)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 60.866 V/m: Power Drift = -0.02 dB

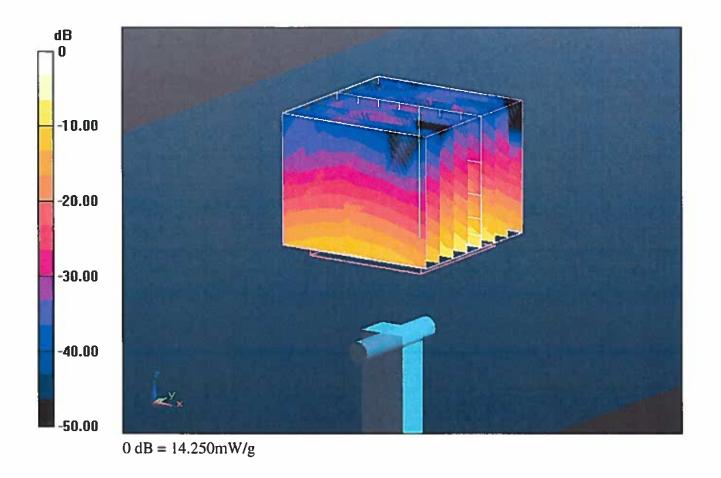
Peak SAR (extrapolated) = 35.356 W/kg

SAR(1 g) = 8.35 mW/g; SAR(10 g) = 2.3 mW/g

Maximum value of SAR (measured) = 16.244 mW/g

Pin=100mW, d=10mm, f=5800 MHz /Zoom Scan (4x4x2mm), dist=2mm (8x8x6)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm


Reference Value = 54.353 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 32.295 W/kg

SAR(1 g) = 7.22 mW/g; SAR(10 g) = 1.99 mW/g

Maximum value of SAR (measured) = 14.254 mW/g

Certificate No: D5GHzV2-1016_Feb11 Page 6 of 8

Impedance Measurement Plot for Body TSL

fiset: A1185

Calibration Laboratory of Schmid & Partner **Engineering AG**

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

RFI

Accreditation No.: SCS 108

Certificate No: ET3-1528_Jul12

CALIBRATION CERTIFICATE

Object

ET3DV6 - SN:1528

Calibration procedure(s)

QA CAL-01.v8, QA CAL-12.v7, QA CAL-23.v4, QA CAL-25.v4

Calibration procedure for dosimetric E-field probes

Calibration date:

July 26, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-12 (No. 217-01508)	Apr-13
Power sensor E4412A	MY41498087	29-Mar-12 (No. 217-01508)	Apr-13
Reference 3 dB Attenuator	SN: S5054 (3c)	27-Mar-12 (No. 217-01531)	Apr-13
Reference 20 dB Attenuator	SN: S5086 (20b)	27-Mar-12 (No. 217-01529)	Apr-13
Reference 30 dB Attenuator	SN: S5129 (30b)	27-Mar-12 (No. 217-01532)	Apr-13
Reference Probe ES3DV2	SN: 3013	29-Dec-11 (No. ES3-3013_Dec11)	Dec-12
DAE4	SN: 660	20-Jun-12 (No. DAE4-660_Jun12)	Jun-13
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-11)	In house check: Oct-12

Name Function Signature Laboratory Technician Calibrated by: Jeton Kastrati Katja Pokovic **Technical Manager** Approved by:

Issued: July 26, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ET3-1528_Jul12

Page 1 of 11

Calibration Laboratory of Schmid & Partner **Engineering AG**

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid TSL NORMx,y,z sensitivity in free space

sensitivity in TSL / NORMx,y,z ConvF DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters A. B. C

φ rotation around probe axis Polarization φ

9 rotation around an axis that is in the plane normal to probe axis (at measurement center), Polarization 9

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1. "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- *NORMx,y,z:* Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF).
- $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx.v.z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Page 2 of 11 Certificate No: ET3-1528_Jul12

Probe ET3DV6

SN:1528

Manufactured:

March 21, 2000

Calibrated:

July 26, 2012

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1528

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	1.45	1.86	1.61	± 10.1 %
DCP (mV) ^B	95.5	97.5	100.3	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
0	CW	0.00	Х	0.00	0.00	1.00	166.6	±1.9 %
			Υ	0.00	0.00	1.00	160.4	
			Z	0.00	0.00	1.00	170.5	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

ET3DV6- SN:1528 July 26, 2012

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1528

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	43.5	0.87	7.01	7.01	7.01	0.23	2.32	± 13.4 %
750	41.9	0.89	6.37	6.37	6.37	0.49	2.16	± 12.0 %
835	41.5	0.90	6.06	6.06	6.06	0.61	1.95	± 12.0 %
900	41.5	0.97	5.95	5.95	5.95	0.30	3.00	± 12.0 %
1450	40.5	1.20	5.22	5.22	5.22	0.49	2.80	± 12.0 %
1750	40.1	1.37	5.12	5.12	5.12	0.80	2.07	± 12.0 %
1900	40.0	1.40	4.92	4.92	4.92	0.80	2.10	± 12.0 %
2150	39.7	1.53	4.65	4.65	4.65	0.80	2.00	± 12.0 %
2450	39.2	1.80	4.31	4.31	4.31	0.80	1.74	± 12.0 %

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (s and g) can be relaxed to ± 10% if liquid compensation formula is applied to

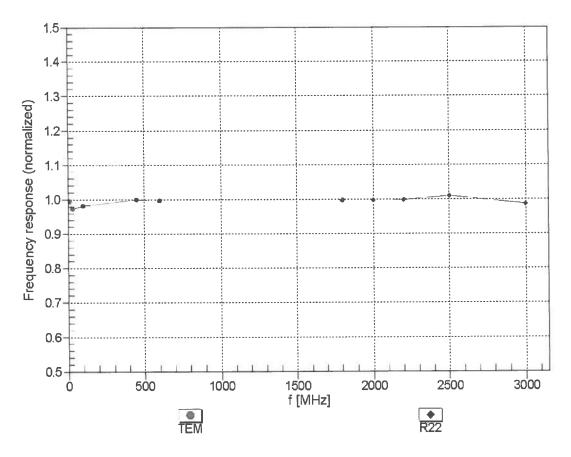
F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

ET3DV6- SN:1528 July 26, 2012

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1528

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	56.7	0.94	7.47	7.47	7.47	0.16	2.32	± 13.4 %
750	55.5	0.96	6.17	6.17	6.17	0.33	2.75	± 12.0 %
835	55.2	0.97	5.99	5.99	5.99	0.33	3.00	± 12.0 %
900	55.0	1.05	5.92	5.92	5.92	0.55	2.18	± 12.0 %
1450	54.0	1.30	5.11	5.11	5.11	0.76	2.07	± 12.0 %
1750	53.4	1.49	4.64	4.64	4.64	0.80	2.45	± 12.0 %
1900	53.3	1.52	4.42	4.42	4.42	0.80	2.33	± 12.0 %
2150	53.1	1.66	4.37	4.37	4.37	0.80	1.93	± 12.0 %
2450	52.7	1.95	3.99	3.99	3.99	0.56	0.98	± 12.0 %

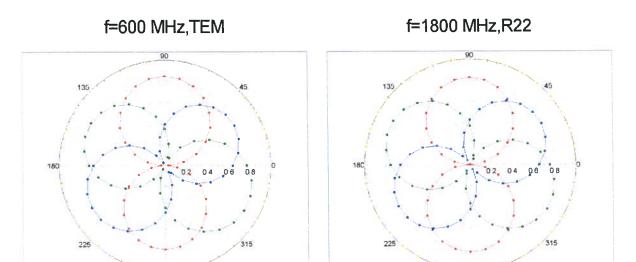

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

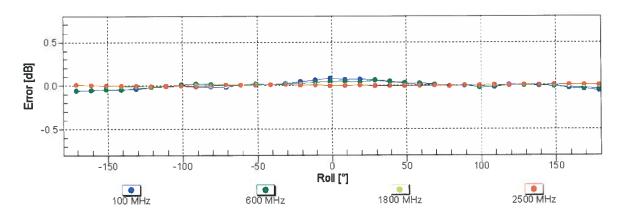
F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

July 26, 2012 ET3DV6-SN:1528

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)



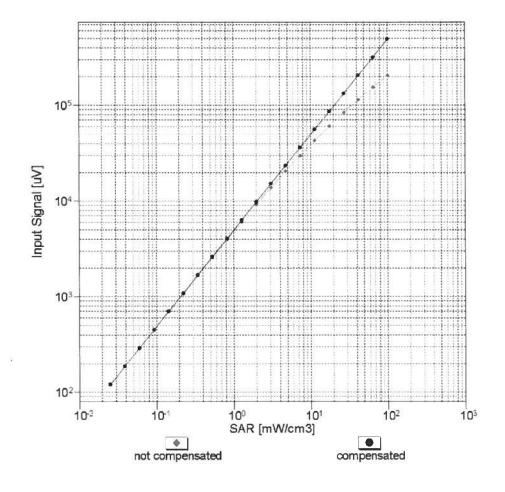
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

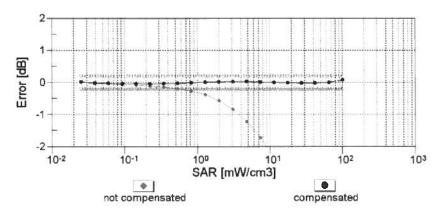

Certificate No: ET3-1528_Jul12

ET3DV6- SN:1528 July 26, 2012

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Tot

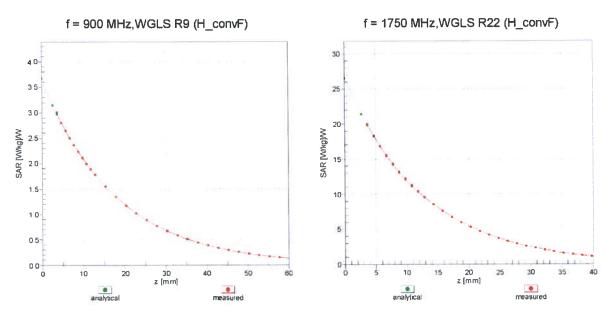


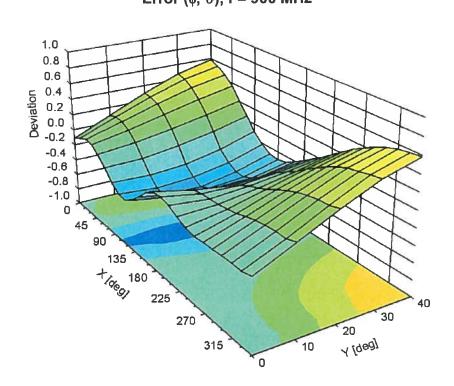

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

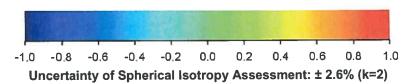
Tot

July 26, 2012 ET3DV6-SN:1528

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)




Uncertainty of Linearity Assessment: ± 0.6% (k=2)


ET3DV6- SN:1528 July 26, 2012

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

July 26, 2012

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1528

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	18.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	enabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	6.8 mm
Probe Tip to Sensor X Calibration Point	2.7 mm
Probe Tip to Sensor Y Calibration Point	2.7 mm
Probe Tip to Sensor Z Calibration Point	2.7 mm
Recommended Measurement Distance from Surface	4 mm

Checked by A Just DATE: 26-SEPT-2012

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

A2077

Accreditation No.: SCS 108

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

RFI

Certificate No: EX3-3814_Sep12

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3814

Calibration procedure(s)

QA CAL-01.v8, QA CAL-14.v3, QA CAL-23.v4, QA CAL-25.v4

Calibration procedure for dosimetric E-field probes

Calibration date:

September 24, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-12 (No. 217-01508)	Apr-13
Power sensor E4412A	MY41498087	29-Mar-12 (No. 217-01508)	Apr-13
Reference 3 dB Attenuator	SN: S5054 (3c)	27-Mar-12 (No. 217-01531)	Apr-13
Reference 20 dB Attenuator	SN: S5086 (20b)	27-Mar-12 (No. 217-01529)	Apr-13
Reference 30 dB Attenuator	SN: S5129 (30b)	27-Mar-12 (No. 217-01532)	Apr-13
Reference Probe ES3DV2	SN: 3013	29-Dec-11 (No. ES3-3013_Dec11)	Dec-12
DAE4	SN: 660	20-Jun-12 (No. DAE4-660_Jun12)	Jun-13
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753F	US37390585	18-Oct-01 (in house check Oct-11)	In house check: Oct-12

Calibrated by:

Signature

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: September 24, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3814_Sep12

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal

A. B. C modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3814_Sep12 Page 2 of 11

Probe EX3DV4

SN:3814

Manufactured:

September 2, 2011

Calibrated:

September 24, 2012

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3814

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	0.53	0.50	0.44	± 10.1 %
DCP (mV) ^B	99.9	93.7	98.7	

Modulation Calibration Parameters

UID	Communication System Name	PAR		Α	В	С	VR	Unc [⊦]
		1		dB	dB	dB	mV	(k=2)
0	CW	0.00	Х	0.00	0.00	1.00	172.6	±3.0 %
			Y	0.00	0.00	1.00	154.1	
			Z	0.00	0.00	1.00	144.1	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^B Numerical linearization parameter: uncertainty not required.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3814

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
1450	40.5	1.20	8.56	8.56	8.56	0.19	2.04	± 12.0 %
2450	39.2	1.80	6.89	6.89	6.89	0.33	0.97	± 12.0 %
2600	39.0	1.96	6.81	6.81	6.81	0.34	1.00	± 12.0 %
5200	36.0	4.66	5.06	5.06	5.06	0.42	1.80	± 13.1 %
5300	35.9	4.76	4.73	4.73	4.73	0.42	1.80	± 13.1 %
5500	35.6	4.96	4.54	4.54	4.54	0.45	1.80	± 13.1 %
5600	35.5	5.07	4.26	4.26	4.26	0.50	1.80	± 13.1 %
5800	35.3	5.27	4.50	4.50	4.50	0.45	1.80	± 13.1 %

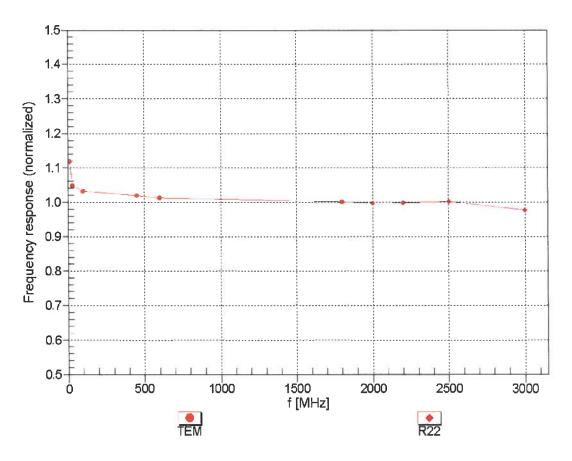
Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

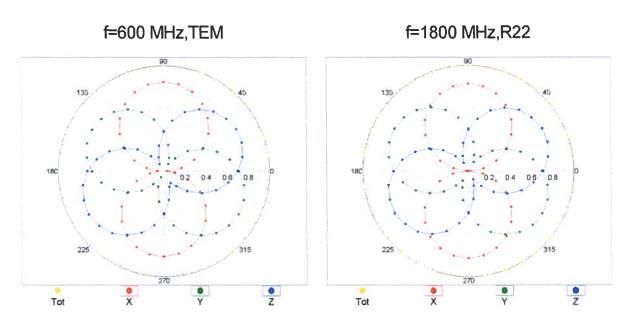
DASY/EASY - Parameters of Probe: EX3DV4 - SN:3814

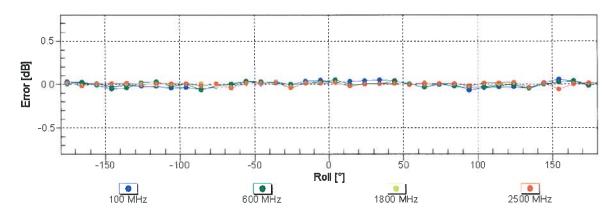
Calibration Parameter Determined in Body Tissue Simulating Media


			-		_			
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
1450	54.0	1.30	8.26	8.26	8.26	0.23	1.40	± 12.0 %
2450	52.7	1.95	7.41	7.41	7.41	0.80	0.66	± 12.0 %
2600	52.5	2.16	7.08	7.08	7.08	0.79	0.61	± 12.0 %
3700	51.0	3.55	6.27	6.27	6.27	0.22	2.24	± 13.1 %
5200	49.0	5.30	4.39	4.39	4.39	0.52	1.90	± 13.1 %
5300	48.9	5.42	4.11	4.11	4.11	0.55	1.90	± 13.1 %
5500	48.6	5.65	4.02	4.02	4.02	0.52	1.90	± 13.1 %
5600	48.5	5.77	3.71	3.71	3.71	0.60	1.90	± 13.1 %
5800	48.2	6.00	3.97	3.97	3.97	0.60	1.90	± 13.1 %

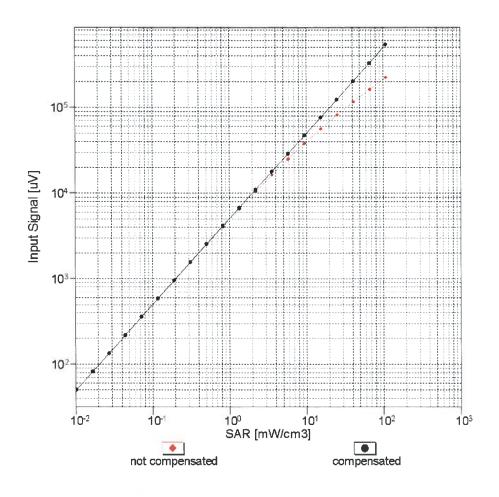
Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

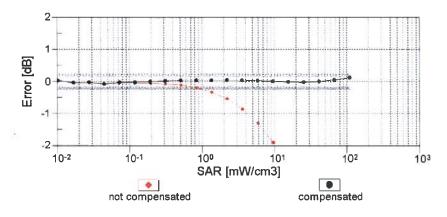
F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.


September 24, 2012 EX3DV4-SN:3814

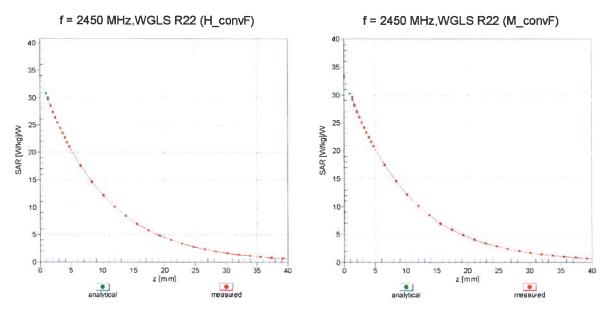

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

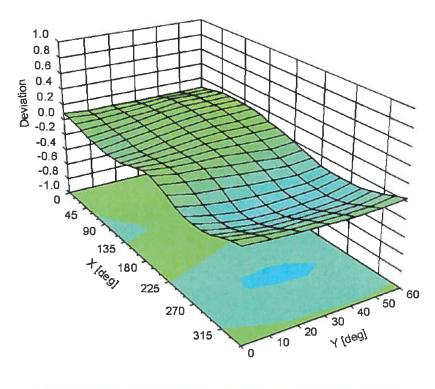
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

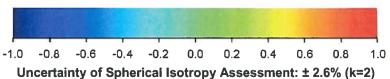

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)




Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

EX3DV4-SN:3814

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3814

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-65.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Chechol by A.D

17-May-2012

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schwelzerischer Kallbrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
Swiss Callbration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

RFI

ASSET A2113

Certificate No: ET3-1587_May12

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object

ET3DV6 - SN:1587

Calibration procedure(s)

QA CAL-01.v8, QA CAL-23.v4, QA CAL-25.v4
Calibration procedure for dosimetric E-field probes

Calibration date:

May 11, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-12 (No. 217-01508)	Apr-13
Power sensor E4412A	MY41498087	29-Mar-12 (No. 217-01508)	Apr-13
Reference 3 dB Attenuator	SN: S5054 (3c)	27-Mar-12 (No. 217-01531)	Apr-13
Reference 20 dB Attenuator	SN: S5086 (20b)	27-Mar-12 (No. 217-01529)	Apr-13
Reference 30 dB Attenuator	SN: S5129 (30b)	27-Mar-12 (No. 217-01532)	Apr-13
Reference Probe ES3DV2	SN: 3013	29-Dec-11 (No. ES3-3013_Dec11)	Dec-12
DAE4	SN: 660	10-Jan-12 (No. DAE4-660_Jan12)	Jan-13
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	U\$3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	U\$37390585	18-Oct-01 (in house check Oct-11)	In house check: Oct-12

Calibrated by:

Claudio Leubler

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: May 11, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizlo svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1587_May12 Page 2 of 11

Probe ET3DV6

SN:1587

Manufactured:

May 7, 2001

Calibrated:

May 11, 2012

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1587

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	2.14	1.92	1.79	± 10.1 %
DCP (mV) ^B	99.0	97.5	99.1	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
0	cw	0.00	X	0.00	0.00	1.00	119.0	±2.7 %
			Υ	0.00	0.00	1.00	114.6	
			Z	0.00	0.00	1.00	111.6	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

^{**} In a uncertainties of Norma, 1,2 do not anset the Language anset and the uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value,

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1587

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
835	41.5	0.90	6.33	6.33	6.33	0.24	3.00	± 12.0 %
900	41.5	0.97	6.18	6.18	6.18	0.28	3.00	± 12.0 %
1750	40.1	1.37	5.47	5.47	5.47	0.58	2.35	± 12.0 %
1900	40.0	1.40	5.18	5.18	5.18	0.80	1.68	± 12.0 %
2450	39.2	1.80	4.52	4.52	4.52	0.80	1.95	± 12.0 %

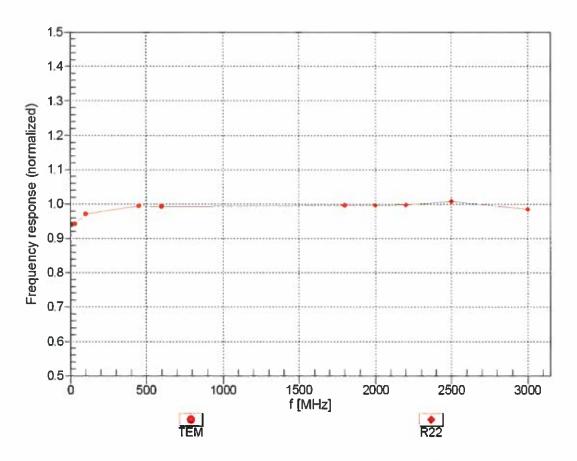
^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (c and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

^{*} At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

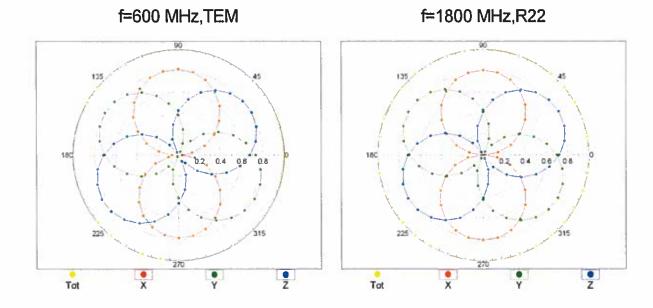
DASY/EASY - Parameters of Probe: ET3DV6 - SN:1587

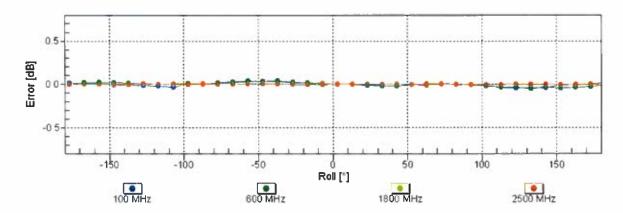
Calibration Parameter Determined in Body Tissue Simulating Media


f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
835	55.2	0.97	6.28	6.28	6.28	0.30	3.00	± 12.0 %
900	55.0	1.05	6.26	6.26	6.26	0.37	2.56	± 12.0 %
1750	53.4	1.49	4.92	4.92	4.92	0.74	2.18	± 12.0 %
1900	53.3	1.52	4.69	4.69	4.69	0.77	2.38	± 12.0 %
2450	52.7	1.95	4.13	4.13	4.13	0.80	2.02	± 12.0 %

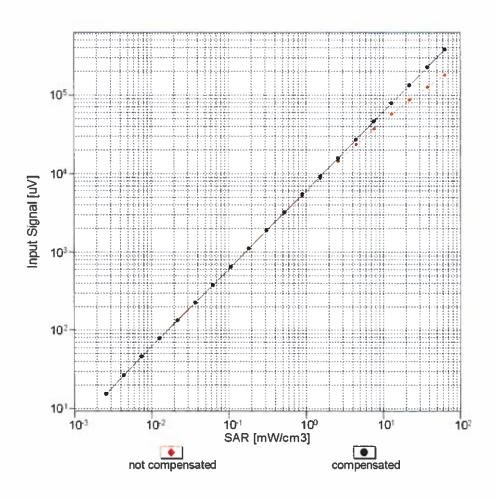
Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

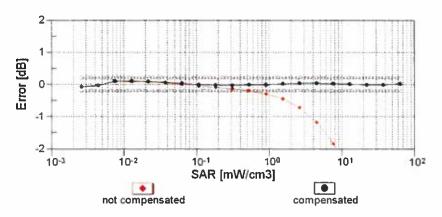
At frequencies below 3 GHz, the validity of tissue parameters (c and σ) can be relaxed to ± 10% if liquid compensation formula is applied to


F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

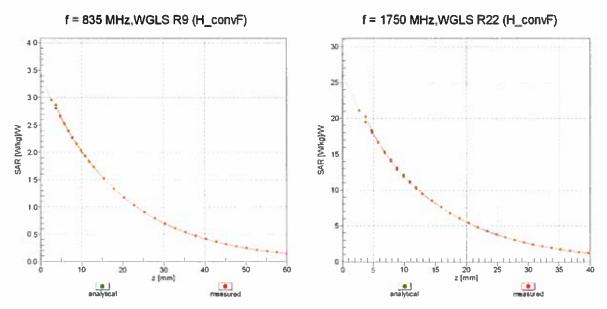

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

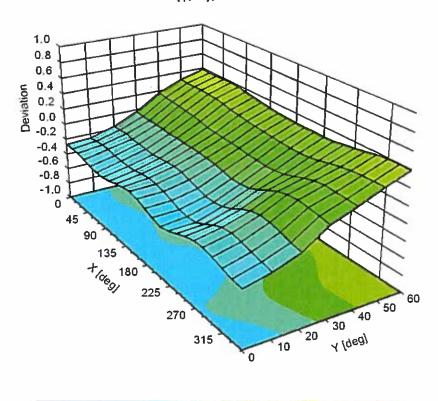
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1587

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	72.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	enabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	6.8 mm
Probe Tip to Sensor X Calibration Point	2.7 mm
Probe Tip to Sensor Y Calibration Point	2.7 mm
Probe Tip to Sensor Z Calibration Point	2.7 mm
Recommended Measurement Distance from Surface	4 mm

Certificate No: ET3-1587_May12 Page 11 of 11

Theehed by RB DATE: 18-09-2012

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

RFI

Accreditation No.: SCS 108

Certificate No: ES3-3304_Aug12

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3304

Calibration procedure(s)

QA CAL-01.v8, QA CAL-23.v4, QA CAL-25.v4 Calibration procedure for dosimetric E-field probes

Calibration date:

August 31, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-12 (No. 217-01508)	Apr-13
Power sensor E4412A	MY41498087	29-Mar-12 (No. 217-01508)	Apr-13
Reference 3 dB Attenuator	SN: S5054 (3c)	27-Mar-12 (No. 217-01531)	Apr-13
Reference 20 dB Attenuator	SN: S5086 (20b)	27-Mar-12 (No. 217-01529)	Apr-13
Reference 30 dB Attenuator	SN: S5129 (30b)	27-Mar-12 (No. 217-01532)	Apr-13
Reference Probe ES3DV2	SN: 3013	29-Dec-11 (No. ES3-3013_Dec11)	Dec-12
DAE4	SN: 660	20-Jun-12 (No. DAE4-660_Jun12)	Jun-13
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-11)	In house check: Oct-12

Calibrated by:

Name
Function
Signature
Laboratory Technician

Approved by:

Katja Pokovic
Technical Manager

Issued: September 3, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ES3-3304_Aug12

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3304_Aug12 Page 2 of 11

Probe ES3DV3

SN:3304

Manufactured: August 27, 2010

Calibrated:

August 31, 2012

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ES3-3304_Aug12 Page 3 of 11

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3304

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.14	1.33	1.33	± 10.1 %
DCP (mV) ^B	104.7	101.1	103.7	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc [±] (k=2)
0	CW	0.00	X	0.00	0.00	1.00	146.4	±3.8 %
			Υ	0.00	0.00	1.00	159.8	
			Z	0.00	0.00	1.00	158.8	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^B Numerical linearization parameter: uncertainty not required.

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3304

Calibration Parameter Determined in Head Tissue Simulating Media

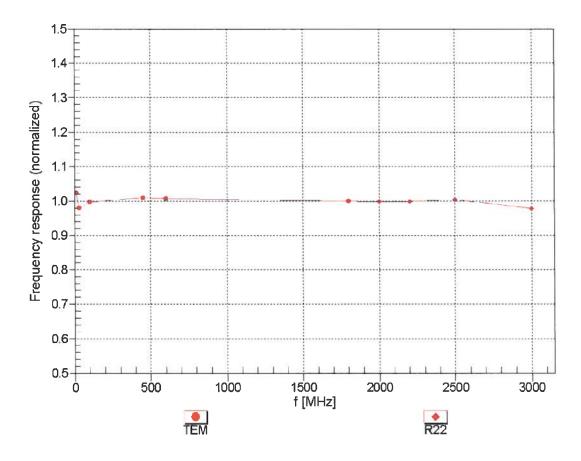
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	41.9	0.89	6.44	6.44	6.44	0.29	1.92	± 12.0 %
835	41.5	0.90	6.17	6.17	6.17	0.27	1.96	± 12.0 %
900	41.5	0.97	6.09	6.09	6.09	0.33	1.75	± 12.0 %
1750	40.1	1.37	5.47	5.47	5.47	0.61	1.36	± 12.0 %
1900	40.0	1.40	5.24	5.24	5.24	0.80	1.18	± 12.0 %
2100	39.8	1.49	5.24	5.24	5.24	0.80	1.16	± 12.0 %
2450	39.2	1.80	4.59	4.59	4.59	0.78	1.22	± 12.0 %
2600	39.0	1.96	4.40	4.40	4.40	0.75	1.28	± 12.0 %

^C Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

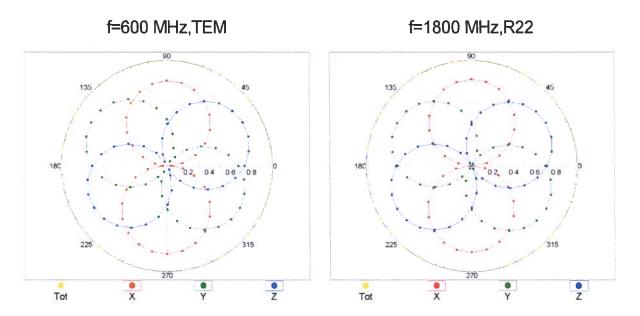
^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

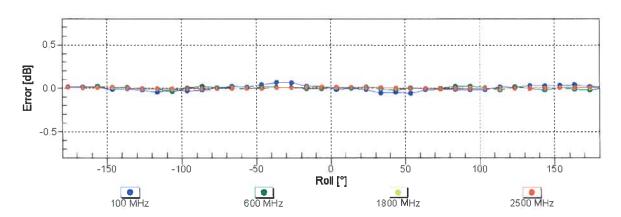
DASY/EASY - Parameters of Probe: ES3DV3 - SN:3304


Calibration Parameter Determined in Body Tissue Simulating Media

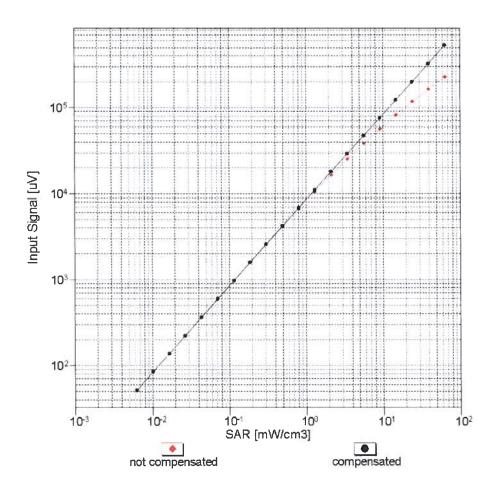
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	55.5	0.96	6.25	6.25	6.25	0.58	1.30	± 12.0 %
835	55.2	0.97	6.13	6.13	6.13	0.60	1.32	± 12.0 %
900	55.0	1.05	6.11	6.11	6.11	0.80	1.18	± 12.0 %
1750	53.4	1.49	5.15	5.15	5.15	0.45	1.78	± 12.0 %
1900	53.3	1.52	4.88	4.88	4.88	0.70	1.35	± 12.0 %
2100	53.2	1.62	4.94	4.94	4.94	0.64	1.43	± 12.0 %
2450	52.7	1.95	4.32	4.32	4.32	0.74	1.09	± 12.0 %
2600	52.5	2.16	4.16	4.16	4.16	0.68	0.99	± 12.0 %

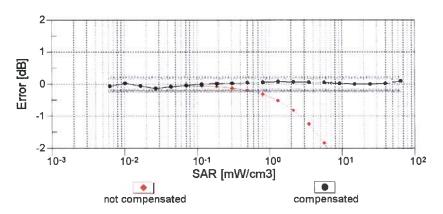
Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.


F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

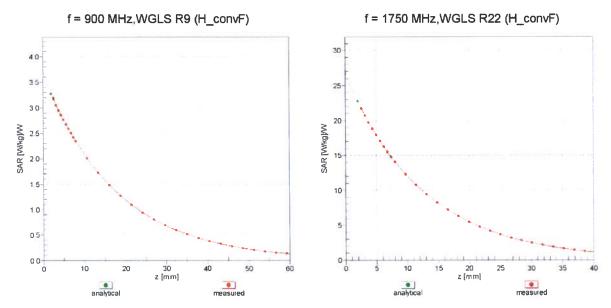

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

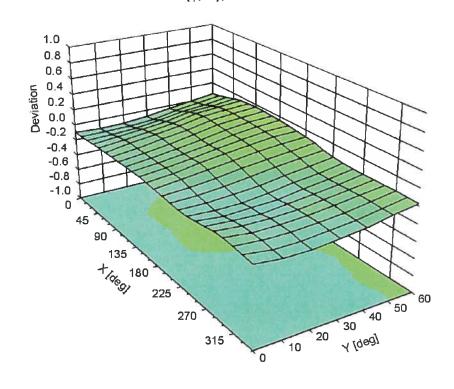
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

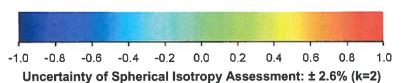

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)




Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (ϕ , ϑ), f = 900 MHz

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3304

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	33.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Serial No: UL-SAR-RP90579JD02A V4.0

Issue Date: 25 January 2013

Appendix 2. Measurement Methods

A.2.1. Evaluation Procedure

The Specific Absorption Rate (SAR) evaluation was performed in the following manner:

- a) (i) The evaluation was performed in an applicable area of the phantom depending on the type of device being tested. For devices worn about the ear during normal operation, both the left and right ear positions were evaluated at the centre frequency of the band at maximum power. The side, which produced the greatest SAR, determined which side of the phantom would be used for the entire evaluation. The positioning of the head worn device relative to the phantom was dictated by the test specification identified in section 3.1 of this report.
 - (ii) For body worn devices or devices which can be operated within 20 cm of the body, the flat section of the SAM phantom was used were the size of the device(s) is normal. For bigger devices and base station the 2mm Oval phantom is used for evaluation. The type of device being evaluated dictated the distance of the EUT to the outer surface of the phantom flat section.
- b) The SAR was determined by a pre-defined procedure within the DASY4 software. The exposed region of the phantom was scanned near the inner surface with a grid spacing of 20mm x 20mm or appropriate resolution.
- c) A 5x5x7 matrix for measurement < 4.5 GHz and 7x7x9 for > 4.5 GHz was performed around the greatest spatial SAR distribution found during the area scan of the applicable exposed region. SAR values were then calculated using a 3-D spline interpolation algorithm and averaged over spatial volumes of 1 and 10 grams.
- d) If the EUT had any appreciable drift over the course of the evaluation, then the EUT was reevaluated. Any unusual anomalies over the course of the test also warranted a re-evaluation.

Page: 81 of 285 UL

Serial No: UL-SAR-RP90579JD02A V4.0

Issue Date: 25 January 2013

A.2.2. Specific Absorption Rate (SAR) Measurements to OET Bulletin 65 Supplement C: (2001-01)

Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields

SAR measurements were performed in accordance with Appendix D of the standard FCC OET Bulletin 65 Supplement C: 2001, IEEE 1528 and FCC KDB procedures, against appropriate limits for each measurement position in accordance with the standard. In some cases the FCC was contacted using a PBA or KDB process to ensure test is performed correctly.

The test was performed in a shielded enclosure with the temperature controlled to remain between $+18.0^{\circ}$ C and $+25.0^{\circ}$ C. The tissue equivalent material fluid temperature was controlled to give a maximum variation of $\pm 2.0^{\circ}$ C

Prior to any SAR measurements on the EUT, system Check and material dielectric property measurements were conducted. In the absence of a detailed procedure within the specification, system Check and material dielectric property measurements were performed in accordance with Appendix C and Appendix D of FCC OET Bulletin 65 Supplement C: 2001 and FCC KDB publication 450824.

Following the successful system Check and material dielectric property measurements, a SAR versus time sweep shall be performed within 10 mm of the phantom inner surface. If the EUT power output is stable after three minutes then the measurement probe will perform a coarse surface level scan at each test position in order to ascertain the location of the maximum local SAR level. Once this area had been established, a 5x5x7 cube of 175 points below 4.5 GHz and above 4.5GHz 7x7x9 cube of 441 points (5 mm spacing in each axis \approx 27g) will be centred at the area of concern. Extrapolation and interpolation will then be carried out on the 27g of tissue and the highest averaged SAR over a 1g cube determined.

Once the maximum interpolated SAR measurement is complete; the coarse scan is visually assessed to check for secondary peaks within 50% of the maximum SAR level. If there are any further SAR measurements required, extra 5x5x7 or 7x7x9 cubes shall be centred on each of these extra local SAR maxima.

At the end of each position test case a second time sweep shall be performed to check whether the EUT has remained stable throughout the test.

Page: 82 of 285