

TEST REPORT FROM RFI GLOBAL SERVICES LTD

Test of: LT30at

To: OET Bulletin 65 Supplement C: (2001-01) and RSS-102 Issue 4 March 2010

FCC ID: PY7PM-0140; IC ID: 4170B-PM0140

Test Report Serial No: RFI-SAR-RP88281JD02A V2.0

Version 2.0 Supersedes All Previous Versions

This Test Report Is Issued Under The Authority Of Chris Guy, Head of Global Approvals:

0.0

(APPROVED SIGNATORY)

Checked By: Richelieu Quoi

X. Augi

(APPROVED SIGNATORY)

Issue Date:

21 August 2012

Test Dates:

18 June 2012 to 13 August 2012

This report is issued in portable document format (PDF). It is only a valid copy of the report if it is being viewed in PDF format with the following security options not allowed: Changing the document, Selecting text and graphics, Adding or changing notes and form fields.

This report may not be reproduced other than in full, except with the prior written approval of RFI Global Services Ltd. The results in this report apply only to the sample(s) tested.

The Bluetooth® word mark and logos are owned by the *Bluetooth* SIG, Inc. and any use of such marks by RFI Global Services Ltd. is under license. Other trademarks and trade names are those of their respective owners.

RFI Global Services Ltd.

Pavilion A, Ashwood Park, Ashwood Way, Basingstoke, Hampshire, RG23 8BG, UK
Tel. +44 (0) 1256 312000 Fax +44 (0) 1256 312001
web: www.rfi-global.com email: contactus@rfi-global.com

Test Report Serial No: RFI-SAR-RP88281JD02A V2.0

Version 2.0 Issue Date: 21 August 2012

This page has been left intentionally blank.

Page: 2 of 472 RFI Global Services Ltd.

Issue Date: 21 August 2012

TABLE OF CONTENTS

1. Customer Information	4
2. Equipment Under Test (EUT)	5
3. Test Specification, Methods and Procedures	
4. Deviations from the Test Specification	21
5. Operation and Configuration of the EUT during Testing	
6. Summary of Test Results	
7. Measurements, Examinations and Derived Results	
8. Measurement Uncertainty	
Appendix 1. Test Equipment Used	
Appendix 2. Measurement Methods	
Appendix 3. SAR Distribution Scans	
Appendix 4. System Check	
Appendix 5. Simulated Tissues	

Test Report Serial No: RFI-SAR-RP88281JD02A V2.0
Version 2.0 Issue Date: 21 August 2012

1. Customer Information	
Company Name: Sony Mobile Communications AB	
Address:	Nya Vattentornet 22188 Lund Sweden

Page: 4 of 472 RFI Global Services Ltd.

Issue Date: 21 August 2012

2. Equipment Under Test (EUT)		
2.1. Identification of Equipment Under	2.1. Identification of Equipment Under Test (EUT)	
Description:	Mobile Handset	
Brand Name:	Sony	
Model Name or Number:	LT30at	
Type Number:	PM-0140-BV	
Serial Number:	CB511Z7M5R	
IMEI Number:	00440245-023988-8	
Hardware Version Number:	AP1.2	
Software Version Number:	7.0.A.1.68	
Hardware Revision of GSM Module:	Not Specified	
Software Revision of GSM Module:	Not Specified	
FCC ID Number:	PY7PM-0140	
Industry Canada Number:	4170B-PM0140	
Country of Manufacture:	China	

Note(s):

Date of Receipt:

This sample was used to perform WWAN SAR evaluation measurements on bands GSM850 and PCS1900. The sample supports simultaneous transmission with the WWAN and WLAN antenna > 5 cm apart. Wireless Personal Hotspot is also supported and was evaluated as per KDB 941225 D06 "Hot Spot SAR v01"

14 June 2012

Mobile Handset
Sony
LT30at
PM-0140-BV
CB511Z7M8D
00440245-023936-7
AP1.2
7.0.A.1.68
Not Specified
Not Specified
PY7PM-0140
4170B-PM0140
China
14 June 2012

Note(s):

This sample was used to perform WWAN SAR evaluation measurements on bands UMTS FDD IV, LTE Band II, LTE Band V. The sample supports simultaneous transmission with the WWAN and WLAN antenna > 5 cm apart. Wireless Personal Hotspot is also supported and was evaluated as per KDB 941225 D06 "Hot Spot SAR v01"

Page: 5 of 472 RFI Global Services Ltd.

Issue Date: 21 August 2012

Identification of Equipment Under Test (EUT) (Continued);	
Description:	Mobile Handset
Brand Name:	Sony
Model Name or Number:	LT30at
Type Number:	PM-0140-BV
Serial Number:	CB511Z7M8G
IMEI Number:	00440245-023919-3
Hardware Version Number:	AP1.2
Software Version Number:	7.0.A.1.68
Hardware Revision of GSM Module:	Not Specified
Software Revision of GSM Module:	Not Specified
FCC ID Number:	PY7PM-0140
Industry Canada Number:	4170B-PM0140
Country of Manufacture:	China
Date of Receipt:	14 June 2012
Note/o).	

Note(s):

This sample was used to perform WWAN SAR evaluation measurements on bands LTE Band IV and LTE Band XVII. The sample supports simultaneous transmission with the WWAN and WLAN antenna > 5 cm apart. Wireless Personal Hotspot is also supported and was evaluated as per KDB 941225 D06 "Hot Spot SAR v01"

Description:	Mobile Handset
Brand Name:	Sony
Model Name or Number:	LT30at
Type Number:	PM-0140-BV
Serial Number:	CB511Z7MAY
IMEI Number:	00440245-023917-7
Hardware Version Number:	AP1.2
Software Version Number:	7.0.A.1.68
Hardware Revision of GSM Module:	Not Specified
Software Revision of GSM Module:	Not Specified
FCC ID Number:	PY7PM-0140
Industry Canada Number:	4170B-PM0140
Country of Manufacture:	China
Date of Receipt:	14 June 2012

Note(s):

This sample was used to perform WWAN SAR measurements on bands UMTS FDD II and UMTS FDD V. The sample supports simultaneous transmission with the WWAN and WLAN antenna > 5 cm apart. Wireless Personal Hotspot is also supported and was evaluated as per KDB 941225 D06 "Hot Spot SAR v01"

Page: 6 of 472 RFI Global Services Ltd.

Version 2.0 Issue Date: 21 August 2012

Identification of Equipment Under Test (EUT) (Continued):

Description:	Mobile Handset
Brand Name:	Sony
Model Name or Number:	LT30at
Type Number:	PM-0140-BV
Serial Number:	CB511Z7M35
IMEI Number:	00440245-023984-7
Hardware Version Number:	AP1.2
Software Version Number:	7.0.A.1.68
Hardware Revision of GSM Module:	Not Specified
Software Revision of GSM Module:	Not Specified
FCC ID Number:	PY7PM-0140
Industry Canada Number:	4170B-PM0140
Country of Manufacture:	China
Date of Receipt:	14 June 2012

Note(s):

This sample was used to perform WWAN 2G bands conducted power measurements only. The sample supports simultaneous transmission with the WWAN and WLAN antenna > 5 cm apart. Wireless Personal Hotspot is also supported and was evaluated as per KDB 941225 D06 "Hot Spot **SAR v01**"

Identification of Equipment Under Test (EUT) (Continued):	
Description:	Mobile Handset
Brand Name:	Sony
Model Name or Number:	LT30at
Type Number:	PM-0140-BV
Serial Number:	CB511Z7M69
IMEI Number:	00440245-023920-1
Hardware Version Number:	AP1.2
Software Version Number:	7.0.A.1.68
Hardware Revision of GSM Module:	Not Specified
Software Revision of GSM Module:	Not Specified
FCC ID Number:	PY7PM-0140
Industry Canada Number:	4170B-PM0140
Country of Manufacture:	China
Date of Receipt:	14 June 2012
Mata/a\.	

Note(s):

This sample was used to perform WWAN 3G and LTE Bands conducted power measurements only. The sample supports simultaneous transmission with the WWAN and WLAN antenna > 5 cm apart. Wireless Personal Hotspot is also supported and was evaluated as per KDB 941225 D06 "Hot Spot **SAR v01**"

Page: 7 of 472 RFI Global Services Ltd.

Issue Date: 21 August 2012

Identification of Equipment Under Test (EUT) (Continued):	
Description:	Mobile Handset
Brand Name:	Sony
Model Name or Number:	LT30at
Type Number:	PM-0140-BV
Serial Number:	CB511Z7M8U
IMEI Number:	00440245-023914-4
Hardware Version Number:	AP1.2
Software Version Number:	ETS Sw
Hardware Revision of GSM Module:	Not Specified
Software Revision of GSM Module:	Not Specified
FCC ID Number:	PY7PM-0140
Industry Canada Number:	4170B-PM0140
Country of Manufacture:	China
Date of Receipt:	14 June 2012
Note(s):	

This sample was used to perform WLAN SAR measurements only. The sample supports simultaneous transmission with the WWAN and WLAN antenna > 5 cm apart. Wireless Personal Hotspot is also supported and was evaluated as per KDB 941225 D06 "Hot Spot SAR v01"

Description:	Mobile Handset
Description:	Wobile Hallaset
Brand Name:	Sony
Model Name or Number:	LT30at
Type Number:	PM-0140-BV
Serial Number:	CB511Z7MJL
IMEI Number:	00440245-023927-6
Hardware Version Number:	AP1.2
Software Version Number:	ETS Sw
Hardware Revision of GSM Module:	Not Specified
Software Revision of GSM Module:	Not Specified
FCC ID Number:	PY7PM-0140
Industry Canada Number:	4170B-PM0140
Country of Manufacture:	China
Date of Receipt:	14 June 2012
Noto/o\-	

Note(s):

This sample was used to perform WLAN conducted power measurements only. The sample supports simultaneous transmission with the WWAN and WLAN antenna > 5 cm apart. Wireless Personal Hotspot is also supported and was evaluated as per KDB 941225 D06 "Hot Spot SAR v01"

Page: 8 of 472 RFI Global Services Ltd.

Test Report
Version 2.0

Serial No: RFI-SAR-RP88281JD02A V2.0

Issue Date: 21 August 2012

2.2. Description of EUT

The Equipment Under Test is a Smart Phone with GSM 2G Quad Band, 3G Quad band, LTE Quad Band and Wi-Fi bands. The EUT has GPRS Class 12 / EDGE Class 12, UMTS FDD I, II, IV, V With HSPA, LTE Band 2, 4, 5, 17, WLAN 802.11 a/b/g/n, *Bluetooth Class 1*, Personal hotspot mode and Auto RF Power Reduction' mode capabilities.

2.3. Modifications Incorporated in the EUT

EUT (IMEI: 00440245-023988-8) is used for WWAN GSM850 and PCS1900 SAR measurements.

EUT (IMEI: 00440245-023936-7) is used for WWAN UMTS FDD IV and LTE Band II, V SAR measurements only.

EUT (IMEI: 00440245-023919-3) is used for WWAN LTE Band IV, XVII SAR measurements only.

EUT (IMEI: 00440245-023917-7) is used for WWAN UMTS FDD II, V measurements only.

EUT (IMEI: 00440245-023984-7) is used for WWAN 2G bands conducted power measurements only

EUT (IMEI: 00440245-023920-1) is used for WWAN 3G and LTE Bands conducted power measurements only

EUT (IMEI: 00440245-023914-4) is used for WLAN SAR measurements only.

EUT (IMEI: 00440245-023927-6) is used for WLAN Conducted Power measurements only.

Page: 9 of 472 RFI Global Services Ltd.

Issue Date: 21 August 2012

2.4. Accessories	
Description:	Personal Hands-Free Kit (PHF)
Brand Name:	Sony
Model Name or Number:	MH10
Serial Number:	11480C1E0004D6E
Cable Length and Type:	~1.2 m
Country of Manufacture:	None Stated
Connected to Port	3.5mm Audio jack and custom type

Description:	Memory Card
Brand Name:	None Stated (Generic)
Model Name or Number:	None Stated
Serial Number:	None Stated
Cable Length and Type:	Not Applicable
Country of Manufacture:	China
Connected to Port	Dedicated Micro SD Slot

2.5. Support Equipment

The following support equipment was used to exercise the EUT during testing:

The following support equipment was used to exercise the EOT during testing.			
Description:	Wireless Communication Test Set		
Brand Name:	Agilent		
Model Name or Number: 8960 Series 10			
Serial Number:	GB46311280		
Cable Length and Type:	~4.0m Utiflex Cable		
Connected to Port: RF (Input / Output) Air Link			

Description:	Wireless Communication Test Set
Brand Name:	Agilent
Model Name or Number:	8960 Series 10
Serial Number:	GB462000666
Cable Length and Type:	~4.0m Utiflex Cable
Connected to Port: RF (Input / Output) Air Link	

Description:	Radio Communication Analyzer
Brand Name:	Anritsu
Model Name or Number:	MT8820C
Serial Number:	6200938937
Cable Length and Type:	~4.0m Utiflex Cable
Connected to Port:	RF (Input / Output) Air Link

Page: 10 of 472 RFI Global Services Ltd.

Serial No: RFI-SAR-RP88281JD02A V2.0 **Test Report** Version 2.0 Issue Date: 21 August 2012

2.6. Additional Information Related	to Testing			
Equipment Category	GSM/GPRS/EDGE850, EGSM/GPRS/EDGE900, DCS/GPRS/EDGE1800, PCS/GPRS/EDGE1900, UMTS/HSPA FDD I, II, IV, V, LTE Band II, IV, V, XVII WiFi802.11a/b/g/n, <i>Bluetooth</i> .			
Type of Unit	Portable Transceiver			
Intended Operating Environment:	Within GSM, UMTS	S, LTE, Wi-Fi and <i>Bluetooth</i> Coverage		
Transmitter Maximum Output Power Characteristics:	GSM850	Communication Test Set was configured to allow the EUT to transmit at a maximum power using Power Control Level (PCL) setting of 5.		
	PCS1900	Communication Test Set was configured to allow the EUT to transmit at a maximum power using Power Control Level (PCL) setting of 0.		
	UMTS Band II	Communication Test Set configured to allow to EUT to transmit at a maximum power as per KDB 941225 D01.		
	UMTS Band IV	Communication Test Set configured to allow to EUT to transmit at a maximum power as per KDB 941225 D01.		
	UMTS Band V	Communication Test Set configured to allow to EUT to transmit at a maximum power as per KDB 941225 D01.		
	LTE Band II	Communication Test Set configured to allow to EUT to transmit at a maximum power as per KDB 941225 D01.		
	LTE Band IV	Communication Test Set configured to allow to EUT to transmit at a maximum power as per KDB 941225 D01.		
	LTE Band V	Communication Test Set configured to allow to EUT to transmit at a maximum power as per KDB 941225 D01.		
	LTE Band XVII	Communication Test Set configured to allow to EUT to transmit at a maximum power as per KDB 941225 D01.		
	WiFi802.11b/g/n	Test Software was used to configure the EUT to transmit at a maximum power of up to 18.1dBm.		
	5.0 GHz Wi-Fi 802.11a/n (HT20 / HT40)	Test Software was used to configure the EUT to transmit at a maximum power of up to 16.4 dBm.		
	Bluetooth	:=7.4 mW		

Page: 11 of 472 **RFI Global Services Ltd.**

n 2.0 Issue Date: 21 August 2012

Additional Information Related to Testing (Continued):					
Transmitter Frequency Range:	GSM850	SSM850 824 to 849 MHz			
	PCS1900	1850 to 1910 MHz			
	UMTS Band II	1852 to 1908 MHz			
	UMTS Band IV	1712 to 1753 MHz			
	UMTS Band V	826 to 847 MHz			
	LTE Band II	1860 to 1900 MHz			
	LTE Band IV	1720 to 1745 MHz			
	LTE Band V	829 to 844 MHz			
	LTE Band XVII	709 to 711 MHz			
	Wi-Fi802.11b/g/n	2412 to 2462 MHz			
	5.0 GHz Wi-Fi 802.11a/n (HT20 / HT40)	5180 to 5825 MHz			
Transmitter Frequency Allocation of EUT When Under Test:	Channel Number	Channel Description	Frequency (MHz)		
	128	Low	824.2		
	190	Middle	836.6		
	251	High	848.8		
	512	Low	1850.2		
	661	Middle	1880.0		
	810	High	1909.8		
	9262	Low	1852.4		
	9400	Middle	1880.0		
	9538	High	1907.6		
	1312	Low	1712.4		
	1412	Middle	1732.4		
	1513	High	1752.6		
	4132	Low	826.4		
	4183	Middle	836.6		
	4233	High	846.6		
	18700	Low	1860.0		
	18900	Middle	1880.0		
	19100	High	1900.0		
	20050	Low	1720.0		
	20175	Middle	1732.5		
	20300	High	1745.0		
	20450	Low	829.0		
	20525	Middle	836.5		
	20600	High	844.0		

Page: 12 of 472 RFI Global Services Ltd.

Version 2.0 Issue Date: 21 August 2012

Additional Information	Related to Testing	(Continued):

Additional Information Related to Testing (Continued):					
Transmitter Frequency Allocation of EUT When Under Test:12	Channel Number	Channel Description	Frequency (MHz)		
	23780	Low	709.0		
	23790	Middle	710.0		
	23800	High	711.0		
	1	Low	2412.0		
	6	Middle	2437.0		
	11	High	2462.0		
	36	Low	5180.0		
	40	Middle	5200.0		
	44	Middle	5220.0		
	48	High	5240.0		
	52	Low	5260.0		
	54	Middle	5280.0		
	60	Middle	5300.0		
	64	High	5320.0		
	100	Low	5500.0		
	104	Middle	5520.0		
	108	Middle	5540.0		
	112	Middle	5560.0		
	116	Middle	5580.0		
	120	Middle	5600.0		
	124	Middle	5620.0		
	128	Middle	5640.0		
	132	Middle	5660.0		
	136	Middle	5680.0		
	140	High	5700.0		
	149	Low	5745.0		
	157	Middle	5785.0		
	165	High	5825.0		

Page: 13 of 472 **RFI Global Services Ltd.** **Test Report** Serial No: RFI-SAR-RP88281JD02A V2.0 Version 2.0

Battery Type(s):

Additional Information Related to Testing (Continued): Modulation(s): GMSK (GSM/ GPRS): 217 Hz QPSK(UMTS / HSDPA/HSPA):0Hz DBPSK, CCK (Wi-Fi): 0 Hz **Modulation Scheme (Crest Factor):** GSMK (GSM): 8.3 GMSK (GPRS): 4 DBPSK, CCK (Wi-Fi): 1 QPSK(UMTS FDD / HSDPA): 1 Antenna Type: Internal integral **Antenna Length:** Unknown **Number of Antenna Positions:** 2 fixed (WWAN and WLAN/Bluetooth) **Power Supply Requirement:** 3.7V

Li-ion

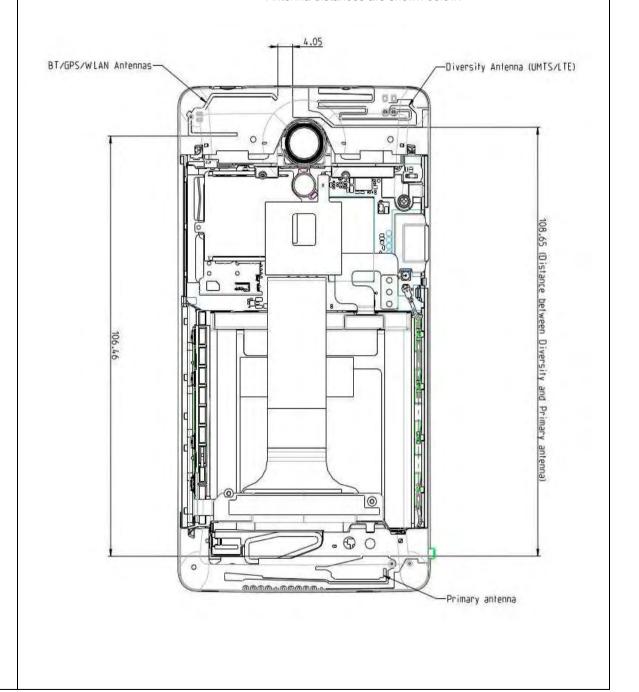
Issue Date: 21 August 2012

Ad	Additional Information Related to LTE Test parameter				
#	# Description Parameter				
1	Identify the operating frequency range of each LTE transmission band used by the device	Band 2: frequency range – 1850 MHz – 1910 MHz Band4: frequency range – 1710 MHz – 1755 MHz Band5: frequency range – 824 MHz– 849 MHz Band17: frequency range – 704 MHz– 716 MHz			
2	Identify the channel bandwidths used in each frequency band; 1.4, 3, 5, 10, 15, 20 MHz etc	Channel Bandwidths used are: B2 (1.4, 3, 5, 10, 15, 20) MHz B4 (1.4, 3, 5, 10, 15, 20) MHz B5 (1.4, 3, 5, 10) MHz B17(5, 10) MHz			
3	Identify the high, middle and low (H, M, L) channel numbers and frequencies in each LTE frequency band	B2 -1.4 MHz (H,M,L)= (19193,18900,18607) (1909.3,1880,1850.7) MHz B4 -1.4 MHz (H,M,L)= (20393, 20175, 19957) (1754.3, 1732.5, 1710.7) MHz B5 -1.4 MHz (H,M,L)= (20643, 20525, 20407) (848.3, 836.5, 824.7) MHz B17 -5 MHz (H,M,L)= (23825, 23790, 23755) (713.5, 710, 706.5) MHz			
4	Specify the UE category and uplink modulations used	The UE Category is 3 and the Uplink modulations used are QPSK, 16QAM.			

Page: 14 of 472 RFI Global Services Ltd.

Version 2.0 Issue Date: 21 August 2012

Additional Information Related to LTE Test parameter (Continued):


Description

Parameter

Descriptions of the LTE transmitter and antenna implementation & identify whether it is a standalone transmitter operating independently of other wireless transmitters in the device or sharing hardware components and/or antenna(s) with other transmitters etc.

This model (LT30at) shares hardware for LTE and UMTS for bands 2, 4, 5 while standalone hardware for LTE B17. However, there is only one main antenna for LTE/UMTS/GSM bands (as pictured below).

Antenna distances are shown below:

Page: 15 of 472 RFI Global Services Ltd.

Version 2.0 Issue Date: 21 August 2012

Additional Information Related to LTE Test parameter (Continued):

Description Parameter The following exposure condition with respect to head Identify the LTE Band 5oice/data 6 and body test are required for both voice and data modes requirements in each operating due to EUT functionality and antenna locations. mode and exposure condition with 1) Body-worn SAR is required at 15 mm separation respect to head and body test distance configurations, antenna locations, Mobile Hot Spot Mode will be tested by handset flip-cover or slide positions. positioning the smart phone with 10 mm antenna diversity conditions, etc. separation distance. Wireless Personal Hotspot mode with consideration for the Front Display of EUT, Rear of EUT, Left Hand side of EUT, Right Hand side of EUT, Top Edge of EUT and Bottom Edge of EUT with respect to the antenna location. The test separation distance between the EUT edge and phantom flat surface for this mode will be 10mm as the dimensions of the device is > 9cm x 5cm. 3) Head SAR is required in LTE mode as this model supports SVLTE operation. Front Right hand side Left hand side Bottom Identify if Maximum Power The EUT incorporates MPR as per 36.101 as shown in Reduction (MPR) is optional or the table below. MPR cannot be disabled after the phone mandatory, i.e. built-in by design: a) is manufactured, MPR is mandatory. only mandatory MPR may be * Target MPR considered during SAR testing, - QPSK 1RB 0offset: 0dB, QPSK 1RB 49offset: 0dB when the maximum output power is - 16QAM 1RB 0offset: 1dB, 16QAM 1RB 49offset: 1dB permanently limited by the MPR - QPSK 25RB 13offset: 1dB, 16QAM 25RB 13offset: 2dB implemented within the UE; and only - QPSK 50RB 0offset: 1dB, 16QAM 50RB 0offset: 2dB for the applicable RB (resource block) configurations specified in A-MPR is always disabled during the SAR testing. LTE standards b) A-MPR (additional MPR) must be disabled.

Test Report Serial No: RFI-SAR-RP88281JD02A V2.0

Issue Date: 21 August 2012

Additional Information Related to LTE Test parameter (Continued):

#	Description		ameter	ietei (Coi	itiliueu).		
8	Include the maximum average conducted output power measured on the required test channels for each channel bandwidth and UL modulation used in each frequency band: a) with 1 RB allocated at the upper edge of a channel b) with 1 RB allocated at the lower edge of a channel c) using 50% RB allocation centered within a channel d) using 100% RB allocation	This is indicated in section 7 of the SAR report.					
9	Identify all other U.S. wireless operating modes (3G, Wi-Fi, WiMax, Bluetooth etc), device/exposure configurations (head and body, antenna and handset flip-cover or slide positions, antenna diversity conditions etc.) and frequency bands used for these modes	The following bands are supported for the exposure conditions 1) GSM (850/1900) and WCDMA (850/1700/1900) - Exposure conditions: Head/Body worn SAR required for GSM / WCDMA and wireless personal hotspot. DTM is not supported. 2) Bluetooth 2.4GHz (Basic Rate & EDR) - Exposure conditions: BT SAR is not required as maximum output power < 12mW or 2*Pref & antenna separation distance > 5cm. 3) WiFi 2.4GHz - Exposure conditions: Head/Body SAR required for wireless personal hotspot. No power reduction. 4) WiFi 5 GHz			red for M is not		
10	Include the maximum average conducted output power measured for the other wireless mode and frequency bands	This is indicated in section 7 of the SAR report.					
11	Identify the simultaneous		Si	multaneous	transmissi	on conditions	
	transmission conditions for the voice and data configurations supported by all wireless modes, device configurations and frequency bands, for the head and			WWAN		WLAN	Sum of WWAN & WLAN
	body exposure conditions and device operating configurations (handset flip or cover positions,	#	LTE BAND 5oice/Data	GSM Voice/Data	UMTS Voice/Data	Wi-Fi 802.11a/b/g/n	
	antenna diversity conditions etc.)	1	X			Х	Х
		2		Х		X	Х
		3			X	Х	Х
12	When power reduction is applied to certain wireless modes to satisfy SAR compliance for simultaneous transmission conditions, other equipment certification or operating requirements, include the maximum average conducted output power measured in each power reduction mode applicable to the simultaneous voice/data transmission configurations for such wireless configurations and frequency bands; and also include details of the power reduction implementation and measurement setup	red		t required fo	or SAR com	wer reduction npliance. No p lemented.	

Page: 17 of 472 RFI Global Services Ltd.

Test Report Ser Version 2.0

Serial No: RFI-SAR-RP88281JD02A V2.0
Issue Date: 21 August 2012

Additional Information Related to LTE Test parameter (Continued):

#	Description	Parameter
13	Include descriptions of the test equipment, test software, built-in test firmware etc. required to support testing the device when power reduction is applied to one or more transmitters/antennas for simultaneous voice/data transmission	An Anritsu MT8820C communication simulator which supports LTE modes (voice/data) was used for testing

Page: 18 of 472 RFI Global Services Ltd.

Issue Date: 21 August 2012

3. Test Specification, Methods and Procedures				
3.1. Test Specification				
Reference:	OET Bulletin 65 Supplement C: (2001-01)			
Title:	Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields.			
Purpose of Test: To determine whether the equipment met the basic restrictions as defined in OET Bulletin 65 Supplement C: (2001-01) using the SAR averaging method as described in the test specification above.				
Reference:	RSS-102 Issue 4 March 2010			
Title:	Radio Frequency (RF) Exposure Compliance of Radio communication Apparatus (All Frequency Bands)			
Purpose of Test:	To determine whether the equipment met the basic restrictions as defined in RSS-102 Issue 4 March 2010 using the SAR averaging method as described in the test specification above.			

3.2. Methods and Procedures Reference Documentation

The methods and procedures used were as detailed in:

Federal Communications Commission, "Evaluating compliance with FCC Guidelines for human exposure to radio frequency electromagnetic fields", OET Bulletin 65 Supplement C, FCC, Washington, D.C, 20554, 2001.

Thomas Schmid, Oliver Egger and Neils Kuster, "Automated E-field scanning system for dosimetric assessments", IEEE Transaction on microwave theory and techniques, Vol. 44, pp. 105-113, January 1996.

Neils Kuster, Ralph Kastle and Thomas Schmid, "Dosimetric evaluation of mobile communications equipment with know precision", IEICE Transactions of communications, Vol. E80-B, No.5, pp. 645-652, May 1997.

EN 62209-1: 2006

Title: Basic standard for the measurement of specific absorption rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz).

EN 62209-2:2010

Human exposure to radio frequency fields from handheld and body mounted wireless communication devices — Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz) (IEC 62209-2:2010)

KDB 248227 D01 "SAR measurements for 802.11a/b/g v01r02"

KDB 447498 D01 "Mobile Portable RF Exposure v04"

KDB 648474 D01 SAR Handsets Multi Xmiter and Ant v01r05"

KDB 648474 D02 SAR Polcy Handsts Multi Xmiter Ant v01r01

KDB 941225 D01 SAR test for 3G devices v02

KDB 941225 D03 "SAR Test Reduction GSM/GPRS/EDGE v01"

KDB 941225 D05 SAR for LTE Devices v01

KDB 941225 D06 "Hot Spot SAR v01"

Page: 19 of 472 RFI Global Services Ltd.

Version 2.0 Issue Date: 21 August 2012

Methods and Procedures Reference Documentation (Continued)

The version of DASY system used by RFI for SAR measurements is v4.7.

The SAR probe for the DASY v4.4 and higher has a validity of +/- 100 MHz from the spot frequency at which the system is calibrated.

The system validation performed at 900 MHz is valid for 800 MHz to 1000 MHz which covers the 850 MHz band. The probe calibration for SN3814 was performed at the spot frequencies of 750 MHz and 900 MHz. The SAR software selects the conversion factor based on the following attributes; 1. The operating frequency 2. The measured permittivity imported to the software and 3. The measured conductivity imported to the software.

The 900 MHz system check is applicable for the 850 band as this is within 100 MHz of the 650 MHz spot frequency.

As per FCC KDB pub 450824 for SAR probe calibration; The following procedures are recommended for DUT measurements at 150 MHz to 3 GHz to minimize probe calibration and tissue dielectric parameter discrepancies. Measurements exceeding 50 % of these intervals, in this case +/- 50 MHz, EUT frequency greater than or equal to 300 MHz, shall apply method 1 of the steps.

1) When the actual tissue dielectric parameters used for probe calibration are available the differences for relative permittivity and conductivity between probe calibration and routine measurements should each be less than or equal to 5 % while also satisfying the required +/- 5 % tolerances in target dielectric parameters.

The simulation liquid used satisfies both 835 MHz and 900 MHz target values for all channels in the GSM850 band. The SAR probe coverage and conversion factor has been calibrated to ensure this condition is met and the appropriate conversion factor is used in the frequency range for up to +/- 100 MHz.

3.3. Definition of Measurement Equipment

The measurement equipment used complied with the requirements of the standards referenced in the methods & procedures section above. Appendix 1 contains a list of the test equipment used.

Page: 20 of 472 RFI Global Services Ltd.

ersion 2.0 Issue Date: 21 August 2012

4. Deviations from the Test Specification

Test was performed as per KDB 648474 D01 "SAR Handsets Multi Xmiter and Ant v01r05", KDB 941225 D01/D03 " SAR Test Reduction GSM/GPRS/EDGE v01", KDB 941225 D01 "SAR test for 3G v02", KDB 248227 D01 "SAR measurements for 802.11a/b/g v01r02" and KDB 941225 D06 "Hot Spot SAR v01" according to the handset procedures in IEEE Std 1528-2003 and OET Bulletin 65 Supplement C 01-01. The assessment for Personal Wireless Hotspot was also evaluated as per the FCC KDB 941225 D06 "Hot Spot SAR v01". Prior to testing the FCC was contacted for LTE evaluation under FCC Tracking Number 715407.

For technologies bands supporting personal hotspot mode, SAR was evaluated on all the sides and surfaces within 25mm of the transmitting antenna (WWAN or WLAN) as per FCC KDB 941225 D06 "Hot Spot SAR v01".

SAR test was performed in the middle channels for WWAN and WLAN. The worst case configuration for both Head and Body test was evaluated in the low and high channels.

GPRS class12 / uplink setup of 1-uplink, 2-uplink, 3-uplink and 4-uplink were all evaluated to find the setting with the highest power reference point (unit v/m) as per the DASY4 system. 2-uplink was found to give the highest power reference point measurement on the DASY4 system (unit v/m). All settings were performed with the device in a fixed position Back facing phantom at 0mm separation to ensure there were no positioning errors. The following values were measured relative to the uplink settings:

GPRS Mode	GPRS850 Power (v/m)	GPRS1900 Power (v/m)
1 uplink	11.49	5.27
2 uplink	12.67	5.63
3 uplink	11.69	4.96
4 uplink	11.78	4.99

Note: Power reference point measurements are from the DASY4 system and used to check the device power drift although the units are v/m. For informational purpose to ensure the worst case uplink time slot is also verified by the DASY4 SAR system, this was use as per above comment at a fixed point.

Page: 21 of 472 RFI Global Services Ltd.

Issue Date: 21 August 2012

5. Operation and Configuration of the EUT during Testing

5.1. Operating Modes

The EUT was tested in the following operating mode(s) unless otherwise stated:

- GSM850 Voice allocated mode with Communication Test Set configured to allow the EUT to transmit at a maximum power using Power Control Level (PCL) setting of 5.
- GPRS850 Data allocated mode with Communication Test Set configured to allow the EUT to transmit at a maximum power using Power Control Level (PCL) setting of 5. Tested using 2 Uplink time slots with CS1 for GPRS.
- PCS1900 Voice allocated mode with Communication Test Set configured to allow the EUT to transmit at a maximum power using Power Control Level (PCL) setting of 0.
- GPRS1900 Data allocated mode with Communication Test Set configured to allow the EUT to transmit at a maximum power using Power Control Level (PCL) setting of 0. Tested using 2 Uplink time slots with CS1 for GPRS.

GSM850 – Power Table S Set	ettings used for Test
Power Control Level PCL	Nominal Power (dBm)
0 2	39
3	37
4	35
5	33
6	31
7	29
8	27
9	25
10	23
11	21
12	19
13	17
14	15
15	13
16	11
17	9
18	7
19 31	5

PCS1900 – Power Table S	Settings used for Test
Power Control Level PCL	Nominal Power (dBm)
22 29	Reserved
30	33
31	32
0	30
1	28
2	26
3	24
4	22
5	20
6	18
7	16
8	14
9	12
10	10
11	8
12	6
13	4
14	2
15	0
16 21	Reserved

- UMTS FDD II, IV, V Call allocated mode with Communication Test Set configured to allow the EUT to transmit at a maximum as per KDB 941225 D01.
- UMTS FDD II, IV, V RMC 12.2kbps + HSUPA With Test loop mode 1 and TPC bits configured to all "1's", Sub-test 5, AG Index set to 21 and E-TFCI set to 81 with Communication Test Set configured to allow to EUT to transmit at a maximum power as per KDB 941225 D01.
- UMTS FDD II, IV, V RMC 12.2kbps + HSDPA With Test loop mode 1 and TPC bits configured to all "1's", Sub-test 1 with Communication Test Set configured to allow to EUT to transmit at a maximum power as per KDB 941225 D01.
- LTE Band II, IV, data allocated mode at QPSK & 16 QAM on the 20 MHz channel only, using a Communication Test Set configured to allow to EUT to transmit at a maximum power as per KDB 941225 D05.

Page: 22 of 472 RFI Global Services Ltd.

Test Report Serial No: RFI-SAR-RP88281JD02A V2.0
Version 2.0 Issue Date: 21 August 2012

Operating Modes (Continued)

 LTE Band V, XVII data allocated mode at QPSK & 16 QAM on the 10 MHz channel only, using a Communication Test Set configured to allow to EUT to transmit at a maximum power as per KDB 941225 D05.

- 2.4 GHz WiFi802.11b/g/n Data allocated mode using 'HyperTerminal' software to excise mode 'b', 'g' and 'n', with maximum power of up to 18.1 dBm for 'b' mode and 16.5 dBm for 'g' and 15.4 dBm for 'n' modes.
- 5.0 GHz WiFi802.11a/n Data allocated mode using 'HyperTerminal' software to excise mode 'a' and 'n', with maximum power of up to 16.4 dBm for 'a' mode and 15.5 dBm for 'n' modes

• Activating the 'Portable Wi-Fi hotspot' mode

Go to the home screen of the EUT:

- 1. Press the 'Applications' icon on the screen of the device and then tap "Settings".
- 2. On the Settings screen, tap the "Wireless & networks" option, followed by "Portable Wi-Fi hotspot".
- 3. Click the check mark beside it to turn on the hotspot and the EUT starts acting like a wireless access point. (It should also see a message in the notification bar when it's activated.).
- 4. Once 'Portable Wi-Fi Hotspot' mode is activated, it is active until it is deactivated by the user.

'Auto RF Power Reduction' mode facility is available on 'Hotspot Mode Configuration of UMTS FDD Band II, IV and LTE Band II and IV' only.

Once the 'Portable Wi-Fi hotspot' mode is activated, the 'Auto RF Power Reduction' mode is active. This enables 'Power Back-Off' and the RF power gets reduced on the specific band on which it is supported. This option is available in the device to 'Reduce the RF Power' and to comply with the *Standard* for the measured SAR and conducted power level. Once 'Auto RF Power Reduction' mode is activated, power reduction applies until it is deactivated by the user.

Page: 23 of 472 RFI Global Services Ltd.

Test Report Version 2.0

Serial No: RFI-SAR-RP88281JD02A V2.0 Issue Date: 21 August 2012

5.2. Configuration and Peripherals

The EUT was tested in the following configuration(s) unless otherwise stated:

- Standalone fully charged battery powered.
- Head and Body-worn configurations were evaluated.
- The applied FCC body-worn Personal Hotspot orientations where the corresponding edge(s) closest to the user with the most conservative exposure condition were all evaluated at 10 mm from the body. For configuration that did not overlap with Personal hotspot, SAR evaluation was performed at 15mm separation.
- GPRS class 12uplink setup of 1-uplink, 2-uplink, 3-uplink and 4-uplink were evaluated to find the setting with the highest power reference measurements. 2-uplink was found to give the highest power reference measurement on the DASY4 system. All settings were performed with the device in a fixed position 'Back facing phantom' at 0mm separation to ensure there were no positioning errors.
- GSM, GPRS and EDGE power measurement were all measured as per FCC pubs. 941225 D03 and 941225 D04. Although power reduction was allowed SAR test was performed on GPRS using GMSK. Test reduction was applied to EDGE using GMSK and 8PSK modulation scheme.

Head Configuration

- a) The EUT was placed in a normal operating position with the centre of the ear-piece aligned with the ear canal on the phantom.
- b) With the ear-piece touching the phantom the centre line of the EUT was aligned with an imaginary plane (X and Y axis) consisting of three lines connecting both ears and the mouth.
- c) For the cheek position the EUT was gradually moved towards the cheek until any point of the mouth-piece or keypad touched the cheek.
- d) For the tilted position the EUT was positioned as for the cheek position, and then the horizontal angle was increased by fifteen degrees (the phone keypad was moved away from the cheek by fifteen degrees).
- e) SAR measurements were evaluated at maximum power and the unit was operated for an appropriate period prior to the evaluation in order to minimise the drift.
- The device was keyed to operate continuously in the transmit mode for the duration of the test.
- g) The location of the maximum spatial SAR distribution (hot spot) was determined relative to the EUT and its antenna.
- h) The EUT was transmitting at full power throughout the duration of the test powered by a fully charged battery.

Body Configuration

- a) The EUT was placed in a normal operating position where the centre of EUT was aligned with the centre reference point on the flat section of the 'SAM' phantom.
- b) With the EUT touching the phantom at an imaginary centre line. The EUT was aligned with a marked plane (X and Y axis) consisting of two lines.
- c) For the touch-safe position the EUT was gradually moved towards the flat section of the 'SAM' phantom until any point of the EUT touched the phantom.
- d) For position(s) greater then 0mm separation the EUT was positioned as per the touch-safe position, and then the vertical height was decreased/adjusted as required.
- e) SAR measurements were evaluated at maximum power and the unit was operated for an appropriate period prior to the evaluation in order to minimise the drift.
- The device was keyed to operate continuously in the transmit mode for the duration of the test.
- g) The location of the maximum spatial SAR distribution (hot spot) was determined relative to the EUT and its antenna.
- h) The EUT was transmitting at full power throughout the duration of the test powered by a fully charged battery.

RFI Global Services Ltd. Page: 24 of 472

Serial No: RFI-SAR-RP88281JD02A V2.0
Issue Date: 21 August 2012

Test Name	Specification Reference	Result
Specific Absorption Rate-GSM 850 Head Configuration 1g Power Back- Off Disabled	OET Bulletin 65 Supplement C: (2001-01) RSS-102 Issue 4 March 2010	Complied
Specific Absorption Rate-GPRS 850 Hotspot Mode Configuration 1g Power Back-Off Disabled	OET Bulletin 65 Supplement C: (2001-01) RSS-102 Issue 4 March 2010	Complied
Specific Absorption Rate-GSM 850 Body-Worn Configuration 1g Power Back-Off Disabled	OET Bulletin 65 Supplement C: (2001-01) RSS-102 Issue 4 March 2010	Complied
Specific Absorption Rate-PCS 1900 Head Configuration 1g Power Back- Off Disabled	OET Bulletin 65 Supplement C: (2001-01) RSS-102 Issue 4 March 2010	Complied
Specific Absorption Rate-GPRS 1900 Hotspot Mode Configuration 1g Power Back-Off Disabled	OET Bulletin 65 Supplement C: (2001-01) RSS-102 Issue 4 March 2010	Complied
Specific Absorption Rate-PCS 1900 Body-Worn Configuration 1g Power Back-Off Disabled	OET Bulletin 65 Supplement C: (2001-01) RSS-102 Issue 4 March 2010	Complied
Specific Absorption Rate-UMTS-FDD II Head Configuration 1g Power Back-Off Disabled	OET Bulletin 65 Supplement C: (2001-01) RSS-102 Issue 4 March 2010	Complied
Specific Absorption Rate-UMTS-FDD II Hotspot Mode Configuration 1g Power Back-off Enabled	OET Bulletin 65 Supplement C: (2001-01) RSS-102 Issue 4 March 2010	Complied
Specific Absorption Rate-UMTS-FDD II Body-worn Configuration 1gPower Back-off Disabled	OET Bulletin 65 Supplement C: (2001-01) RSS-102 Issue 4 March 2010	Complied
Specific Absorption Rate-UMTS-FDD IV Head Configuration 1g Power Back-Off Disabled	OET Bulletin 65 Supplement C: (2001-01) RSS-102 Issue 4 March 2010	Complied
Specific Absorption Rate-UMTS-FDD IV Hotspot Mode Configuration 1g Power Back-off Enabled	OET Bulletin 65 Supplement C: (2001-01) RSS-102 Issue 4 March 2010	Complied
Specific Absorption Rate-UMTS-FDD IV Body-Worn Configuration 1g Power Back-off Disabled	OET Bulletin 65 Supplement C: (2001-01) RSS-102 Issue 4 March 2010	Complied
Specific Absorption Rate-UMTS-FDD V Head Configuration 1g Power Back-Off Disabled	OET Bulletin 65 Supplement C: (2001-01) RSS-102 Issue 4 March 2010	Complied
Specific Absorption Rate-UMTS-FDD V Hotspot Mode Configuration 1g Power Back-Off Disabled	OET Bulletin 65 Supplement C: (2001-01) RSS-102 Issue 4 March 2010	Complied
Specific Absorption Rate-UMTS-FDD V Body-Worn Configuration 1g Power Back-Off Disabled	OET Bulletin 65 Supplement C: (2001-01) RSS-102 Issue 4 March 2010	Complied

Page: 25 of 472 RFI Global Services Ltd.

Serial No: RFI-SAR-RP88281JD02A V2.0 Issue Date: 21 August 2012

Summary of Test Results (Continu	ued)	
Test Name	Specification Reference	Result
Specific Absorption Rate LTE BAND 2 Head Configuration 1g Power Back- Off Disabled	OET Bulletin 65 Supplement C: (2001-01) RSS-102 Issue 4 March 2010	Complied
Specific Absorption Rate-LTE BAND 2 Hotspot Mode Configuration 1g Power Back-off Enabled	OET Bulletin 65 Supplement C: (2001-01) RSS-102 Issue 4 March 2010	Complied
Specific Absorption Rate-LTE BAND 2 Body-worn Configuration 1gPower Back-off Disabled	OET Bulletin 65 Supplement C: (2001-01) RSS-102 Issue 4 March 2010	Complied
Specific Absorption Rate-LTE BAND 4 Head Configuration 1g Power Back- Off Disabled	OET Bulletin 65 Supplement C: (2001-01) RSS-102 Issue 4 March 2010	Complied
Specific Absorption Rate-LTE BAND 4 Hotspot Mode Configuration 1g Power Back-off Enabled	OET Bulletin 65 Supplement C: (2001-01) RSS-102 Issue 4 March 2010	Complied
Specific Absorption Rate LTE BAND 4 Body-Worn Configuration 1g Power Back-off Disabled	OET Bulletin 65 Supplement C: (2001-01) RSS-102 Issue 4 March 2010	Complied
Specific Absorption Rate-LTE BAND 5 Head Configuration 1g Power Back- Off Disabled	OET Bulletin 65 Supplement C: (2001-01) RSS-102 Issue 4 March 2010	Complied
Specific Absorption Rate-LTE BAND 5 Hotspot Mode Configuration 1g Power Back-Off Disabled	OET Bulletin 65 Supplement C: (2001-01) RSS-102 Issue 4 March 2010	Complied
Specific Absorption Rate-LTE BAND 5 Body-Worn Configuration 1g Power Back-Off Disabled	OET Bulletin 65 Supplement C: (2001-01) RSS-102 Issue 4 March 2010	Complied
Specific Absorption Rate-LTE BAND 17 Head Configuration 1g Power Back-Off Disabled	OET Bulletin 65 Supplement C: (2001-01) RSS-102 Issue 4 March 2010	Complied
Specific Absorption Rate-LTE BAND 17 Hotspot Mode Configuration 1g Power Back-Off Disabled	OET Bulletin 65 Supplement C: (2001-01) RSS-102 Issue 4 March 2010	Complied
Specific Absorption Rate-LTE BAND 17 Body-Worn Configuration 1g Power Back-Off Disabled	OET Bulletin 65 Supplement C: (2001-01) RSS-102 Issue 4 March 2010	Complied
Specific Absorption Rate-Wi-Fi 2450 MHz Head Configuration 1g Power Back-Off Disabled	OET Bulletin 65 Supplement C: (2001-01) RSS-102 Issue 4 March 2010	Complied
Specific Absorption Rate-Wi-Fi 2450 MHz Hotspot Mode Configuration 1g Power Back-Off Disabled	OET Bulletin 65 Supplement C: (2001-01) RSS-102 Issue 4 March 2010	Complied
Specific Absorption Rate-Wi-Fi 2450 MHz Body-Worn Configuration 1g Power Back-Off Disabled	OET Bulletin 65 Supplement C: (2001-01) RSS-102 Issue 4 March 2010	Complied
Specific Absorption Rate-Wi-Fi 5GHz Head Configuration 1g Power Back- Off Disabled	OET Bulletin 65 Supplement C: (2001-01) RSS-102 Issue 4 March 2010	Complied
Specific Absorption Rate-Wi-Fi 5GHz Hotspot Mode Configuration 1g Power Back-Off Disabled	OET Bulletin 65 Supplement C: (2001-01) RSS-102 Issue 4 March 2010	Complied
Specific Absorption Rate-Wi-Fi 5GHz Body Worn Configuration 1g Power Back-Off Disabled	OET Bulletin 65 Supplement C: (2001-01) RSS-102 Issue 4 March 2010	Complied

Page: 26 of 472 RFI Global Services Ltd.

Issue Date: 21 August 2012

Summary of Test Results (Continued) SAR Individual Transmitter Evaluation

device, mode	Frequenc y, (MHz)	Phantom Configuration	P _x (mW)	P _{REF} (mW)	single SAR, W/kg	Remarks
WWAN, GSM	850	Right Hand Side	347	60/f	1.060	Routine Evaluation
WWAN, GSM	1900	Rear	120	60/f	0.729	Routine Evaluation
WWAN, UMTS	850	Rear	331	60/f	0.979	Routine Evaluation
WWAN, UMTS	1800	Bottom	245	60/f	1.220	Routine Evaluation
WWAN, UMTS	1900	Rear	302	60/f	1.260	Routine Evaluation
WWAN, LTE	750	Rear	263	60/f	0.488	Routine Evaluation
WWAN, LTE	850	Right Hand Side	257	60/f	1.140	Routine Evaluation
WWAN, LTE	1800	Bottom	195	60/f	1.320	Routine Evaluation
WWAN, LTE	1900	Rear	186	60/f	1.040	Routine Evaluation
WLAN, WiFi802.11b	2450	Rear	63	60/f	0.459	Routine Evaluation
WLAN, WiFi802.11a	5000	Touch Left	28	60/f	0.793	Routine Evaluation
BT, Bluetooth	2400	N/A	~ 7.5	12	:=0	{PBT ≤ 2PREF} {dWWAN, BT > 5cm}

Note(s):

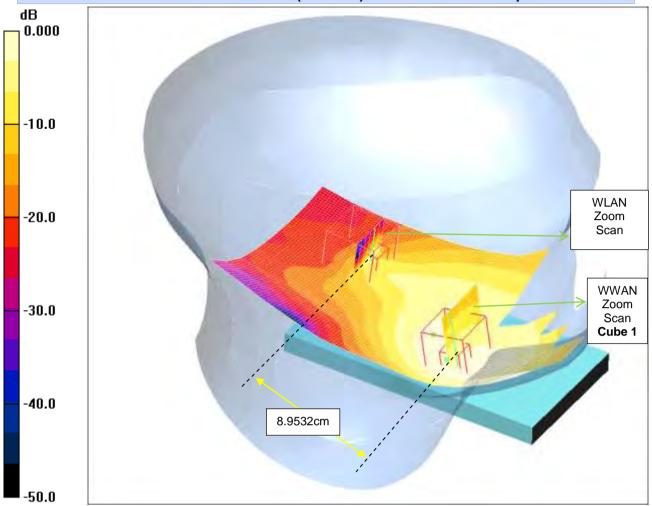
- Simultaneous transmission was not evaluated as though the sum of the individual SAR for WWAN and WLAN was > 1.6 W/kg. The SAR to peak location separation ratio distance was < 0.3
- 2. Bluetooth transmitter thresholds output power "P_{Ref} = 12 mW as listed in KDB 648474.
- 3. Px: power level measured by RFI.
- 4. Single SAR value measured by RFI.
- 5. The "Antenna-to-Antenna distance and Antenna-to-User distance were provided by the customer.

Page: 27 of 472 RFI Global Services Ltd.

Issue Date: 21 August 2012

Summary of Test Results (Continued) SAR Individual Transmitter Evaluation SAR Simultaneous Transmitter Evaluation					
(x,y)	D(x,y) cm	L(x,y,z) cm	SPLSR _{xyz}	∑Sim- Tx SAR	Remarks
(WWAN _{LTE,UMTS} , BT)	>5	N/A	N/A	N/A	{no stand-alone SAR for BT}
	>5	8.95	0.20	1.751	Cube1: {SAR to peak location separation ratio ≤ 0.3}
(WWAN _{LTE} , Wi-Fi _{5GHz})	>5	7.89	0.20	1.612	Cube2: Secondary peak SAR which is within 2dB of maximum primary peak level {SAR to peak location separation ratio ≤ 0.3}
	>5	8.98	0.18	1.611	Cube1: {SAR to peak location separation ratio ≤ 0.3}
(WWAN _{LTE} , Wi-Fi _{5GHz})	>5	7.97	N/A	1.472	Cube2: Secondary peak SAR which is within 2dB of maximum primary peak level {SUM of SAR < 1.6w/kg} {SAR to peak location separation ratio ≤ 0.3}
(WWAN _{UMTS} , Wi-Fi _{5GHz})	>5	8.33	0.21	1.722	{SAR to peak location separation ratio ≤ 0.3}
(WWAN _{UMTS} , Wi-Fi _{2.45GHz})	>5	12.08	0.14	1.719	{SAR to peak location separation ratio ≤ 0.3}
Note(s):					

Note(s):


- 1. SPLSR threshold = 0.3
- 2. For WWAN LTE measurement, the worst case and most conservative configuration peak location measured more than one maximum cube as the secondary peak was within 2 dB of the maximum peak SAR level. Therefore SAR SPLSR had to be calculated for both cube to ensure they both had a SPLSR less than 0.3 as the sume of the SAR for each cube was greater >1.6 w/kg.

Page: 28 of 472 **RFI Global Services Ltd.** **Test Report** Version 2.0

Serial No: RFI-SAR-RP88281JD02A V2.0 Issue Date: 21 August 2012

6.1. SAR to peak location separation ratio distance (SPLSR) plots calculations

6.1.1. Touch Left LTE Band 2 CH18900 (CUBE: 1) + WLAN 802.11a 6Mbps CH52 SPLSR

0 dB = 1.50 mW/g

SPLSR Calculation:

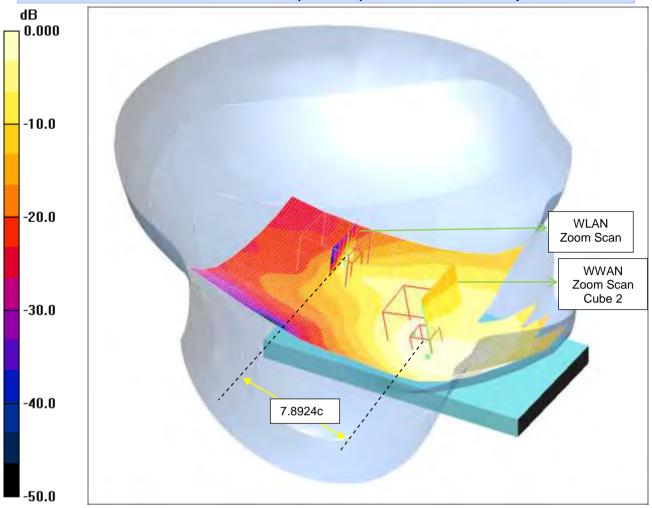
or Loik Calculation	<u>///.</u>				
WWAN (LTE BAND 2 CH18900 Cube 1) Peak Co- ordinates			WLAN802.11a	6.5Mbps CH52 Pea	k Co-ordinates
X ₁	Y ₁	Z ₁	X ₂	Y ₂	Z_2
(m)	(m)	(m)	(m)	(m)	(m)
0.0703	0.249	-0.168	0.0303	0.329	-0.172

x=(X2- X1)^2	y=(Y2- Y1)^2	z=(Z2- Z1)^2	Square Root of Sum of x, y, z (m)
0.0016	0.0064	0.0000	0.0895

	Sum of PEAK WWAN and WLAN SAR (w/Kg) / Distance between Peak's Calculated (cm)
SPLSR =	(0.96+0.793)/8.9532 = 0.1956 < 0.3
	As per KDB 648474 D01 v01r05, Simultaneous Transmission not Required

CONCLUSION:

Simultaneous transmission SAR evaluation is not required as the SAR to peak location separation ratio is lesser than 0.3.


Note:

There are 2 cubes for LTE BAND 2 bands as the SAR system is setup to measure any secondary peaks that are within 2dB of the maximum SAR level as per FCC OET Bulletin 65 Supplement C:2001. Therefore to SPLSR calculation was performed for both cubes. The above calculation is with consideration for cube1 only for the specified configuration on the LTE BAND 2 (WWAN) band combined with WLAN maximum cube.

Page: 29 of 472 RFI Global Services Ltd.

Version 2.0 Issue Date: 21 August 2012

6.1.2. Touch Left LTE Band 2 CH18900 (CUBE: 2) + WLAN 802.11a 6Mbps CH52 SPLSR

0 dB = 1.50 mW/g

SPLSR Calculation:

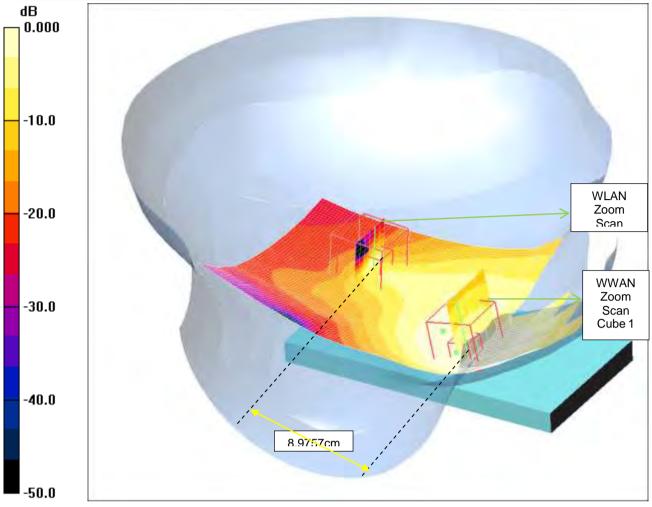
SPLSR Calculation	<u>on:</u>				
WWAN (LTE BAND 2 CH18900 Cube 2) Peak Co- ordinates			WLAN802.11a	6.5Mbps CH52 Pea	k Co-ordinates
X ₁	Y ₁	Z ₁	X ₂	Y ₂	Z_2
(m)	(m)	(m)	(m)	(m)	(m)
0.0667	0.259	-0.17	0.0303	0.329	-0.172

x=(X2- X1)^2	y=(Y2- Y1)^2	z=(Z2- Z1)^2	Square Root of Sum of x, y, z (m)
0.0013	0.0049	0.0000	0.0789

	Sum of PEAK WWAN and WLAN SAR (w/Kg) / Distance between Peak's Calculated (cm)
SPLSR =	(0.821+0.793)/7.8924 = 0.2042 < 0.3
	As per KDB 648474 D01 v01r05, Simultaneous Transmission not Required

CONCLUSION:

Simultaneous transmission SAR evaluation is not required as the SAR to peak location separation ratio is lesser than 0.3.


Note:

There are 2 cubes for LTE BAND 2 bands as the SAR system is setup to measure any secondary peaks that are within 2dB of the maximum SAR level as per FCC OET Bulletin 65 Supplement C:2001. Therefore to SPLSR calculation was performed for both cubes. The above calculation is with consideration for cube2 only for the specified configuration on the LTE BAND 2 (WWAN) band combined with WLAN maximum cube.

Page: 30 of 472 RFI Global Services Ltd.

Version 2.0 Issue Date: 21 August 2012

0 dB = 1.21 mW/g

SPLSR Calculation:

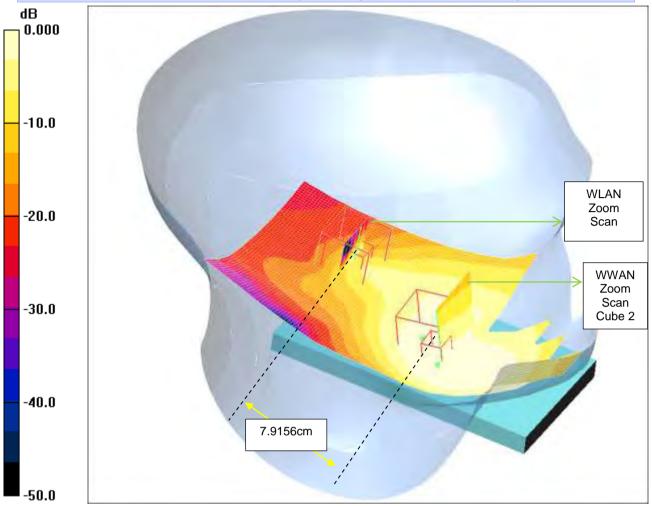
SPESK Calculation	SELSK Calculation.						
WWAN (LTE BAND 2 CH18900 Cube 1) Peak Co- ordinates			WLAN802.11a	6.5Mbps CH36 Pea	k Co-ordinates		
X ₁	Y ₁	Z ₁	X ₂	Y ₂	Z_2		
(m)	(m)	(m)	(m)	(m)	(m)		
0.0703	0.249	-0.168	0.0298	0.329	-0.172		

I	x=(X2- X1)^2	y=(Y2- Y1)^2	z=(Z2- Z1)^2	Square Root of Sum of x, y, z (m)
	0.0016	0.0064	0.0000	0.0898

SPLSR =	Sum of PEAK WWAN and WLAN SAR (w/Kg) / Distance between Peak's Calculated (cm)
	(0.96+0.652)/8.9757 = 0.1795 < 0.3
	As per KDB 648474 D01 v01r05, Simultaneous Transmission not Required

CONCLUSION:

Simultaneous transmission SAR evaluation is not required as the SAR to peak location separation ratio is lesser than 0.3.


Note:

There are 2 cubes for LTE BAND 2 bands as the SAR system is setup to measure any secondary peaks that are within 2dB of the maximum SAR level as per FCC OET Bulletin 65 Supplement C:2001. Therefore to SPLSR calculation was performed for both cubes. The above calculation is with consideration for cube1 only for the specified configuration on the LTE BAND 2 (WWAN) band combined with WLAN maximum cube.

Page: 31 of 472 RFI Global Services Ltd.

Version 2.0 Issue Date: 21 August 2012

0 dB = 1.21 mW/g

SPLSR Calculation:

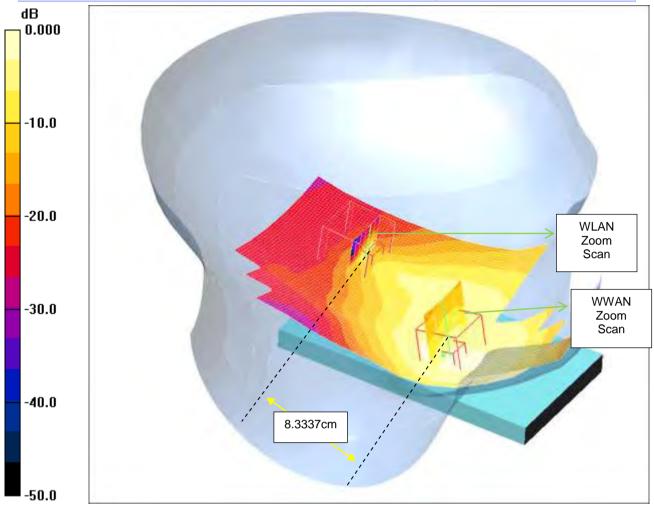
SPLSK Calculation	<u> </u>				
WWAN (LTE BAND 2 CH18900 Cube 2) Peak Co- ordinates			WLAN802.11a 6.5Mbps CH36 Peak Co-ordinates		
X ₁	Y ₁	Z ₁	X ₂	Y ₂	Z_2
(m)	(m)	(m)	(m)	(m)	(m)
0.0667	0.259	-0.17	0.0298	0.329	-0.172

x=(X2- X1)^2	y=(Y2- Y1)^2	z=(Z2- Z1)^2	Square Root of Sum of x, y, z (m)
0.0014	0.0049	0.0000	0.0792

	Sum of PEAK WWAN and WLAN SAR (w/Kg) / Distance between Peak's Calculated (cm)
SPLSR =	(0.821+0.652)/7.9156 = 0.1860 < 0.3
	As per KDB 648474 D01 v01r05, Simultaneous Transmission not Required

CONCLUSION:

Simultaneous transmission SAR evaluation is not required as the SAR to peak location separation ratio is lesser than 0.3.


Note:

There are 2 cubes for LTE BAND 2 bands as the SAR system is setup to measure any secondary peaks that are within 2dB of the maximum SAR level as per FCC OET Bulletin 65 Supplement C:2001. Therefore to SPLSR calculation was performed for both cubes. The above calculation is with consideration for cube2 only for the specified configuration on the LTE BAND 2 (WWAN) band combined with WLAN maximum cube.

Page: 32 of 472 RFI Global Services Ltd.

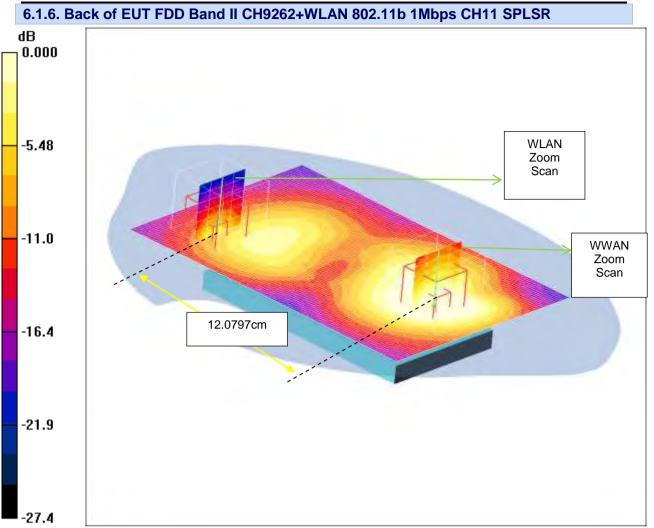
Version 2.0 Issue Date: 21 August 2012

6.1.5. Touch Left FDD Band II CH9262+WLAN 802.11a 6Mbps CH52 SPLSR

0 dB = 1.50 mW/g

SPLSR Calculation:

WWAN (FDDII CH9538) Peak Co-ordinates			WLAN802.11a 6.5Mbps CH52 Peak Co-ordinates		
X ₁	Y ₁	Z ₁	X ₂	Y ₂	Z_2
(m)	(m)	(m)	(m)	(m)	(m)
0.0705	0.256	-0.172	0.0303	0.329	-0.172


x=(X2- X1)^2	y=(Y2- Y1)^2	z=(Z2- Z1)^2	Square Root of Sum of x, y, z (m)
0.0016	0.0053	0.0000	0.0833

	Sum of PEAK WWAN and WLAN SAR (w/Kg) / Distance between Peak's Calculated (cm)
SPLSR =	(0.931+0.793)/8.3337 = 0.2066 < 0.3
	As per KDB 648474 D01 v01r05, Simultaneous Transmission not Required

<u>CONCLUSION:</u>
Simultaneous transmission SAR evaluation is not required as the SAR to peak location separation ratio is less 0.3.

Page: 33 of 472 RFI Global Services Ltd.

Version 2.0 Issue Date: 21 August 2012

0 dB = 1.00 mW/g

SPLSR Calculation:

WWAN (FDDII CH9262) Peak Co-ordinates			WLAN802.11b 1Mbps CH11 Peak Co-ordinates		
X ₁	Y ₁	Z_1	X ₂	Y ₂	Z_2
(m)	(m)	(m)	(m)	(m)	(m)
-0.0169	0.0570	-0.2010	0.0130	-0.0600	-0.2040

$x=(X_{2-}X_1)^2$	y=(Y ₂₋ Y ₁)^2	$z=(Z_{2}-Z_{1})^{2}$	Square Root of Sum of x, y, z (m)
0.0009	0.0137	0.0000	0.1208

	Sum of PEAK WWAN and WLAN SAR (w/Kg) / Distance between Peak's Calculated (cm)
SPLSR =	(1.26+0.459)/12.0797392 = 0.1423 < 0.3
	As per KDB 648474 D01 v01r05, Simultaneous Transmission not Required

<u>CONCLUSION:</u>
Simultaneous transmission SAR evaluation is not required as the SAR to peak location separation ratio is lesser than 0.3.

Page: 34 of 472 **RFI Global Services Ltd.**

Serial No: RFI-SAR-RP88281JD02A V2.0 Issue Date: 21 August 2012

6.2. Simultaneous Transmission SAR Analysis								
Head Configuration 1g – Worst cases measurements								
	Measured SAR 1g (W/Kg)							
	WWAN				WLAN	Sum of		
EUT Position	GSM850	PCS1900	UMTS FDD II	UMTS FDD IV	UMTS FDD V	Wi-Fi	WWAN & WLAN	
Touch Left	0.571					0.791	1.362	
Touch Right	0.544					0.244	0.788	
Touch Left		0.368				0.791	1.159	
Touch Right		0.253				0.244	0.497	
Touch Left			0.931			0.793	1.724	
Touch Right			0.769			0.244	1.013	
Touch Left				0.715		0.791	1.506	
Touch Right				0.437		0.244	0.681	
Touch Left					0.444	0.791	1.235	
Touch Right					0.535	0.244	0.779	

Head Configuration 1g (Continued) – Worst cases measurements								
	Measured SAR 1g (W/Kg)							
		ww	WLAN	Sum of				
EUT Position	LTE Band 2	LTE Band 4	LTE Band 5	LTE Band 17	Wi-Fi	WWAN & WLAN		
Touch Left {Cube 1}	0.960				0.793	1.753		
Touch Left {Cube 2 } Seconday Peak	0.821				0.793	1.614		
Touch Left {Cube 1}	0.960				0.652	1.612		
Touch Left {Cube 2 } Secondary Peak	0.821				0.652	1.473		
Touch Right	0.650				0.244	0.894		
Touch Left		0.592			0.791	1.383		
Touch Right		0.401			0.244	0.645		
Touch Left			0.367		0.791	1.158		
Touch Right			0.505		0.244	0.749		
Touch Left				0.260	0.791	1.021		
Touch Right				0.341	0.244	0.585		
Note(s):								

^{1.} For cases, where sum of WWAN and WLAN exceed 1.6W/kg, the SAR to peak location separation ratio distance was calculated. Simultaneous transmission was not evaluated as this value was lesser than 0.3. SPLSR calculations are shown in SAR distribution scans SCN/88281JD02/247 to SCN/88281JD02/252.

Page: 35 of 472 RFI Global Services Ltd.

Serial No: RFI-SAR-RP88281JD02A V2.0
Issue Date: 21 August 2012

Simultaneous Transmission SAD Analysis (Centinued)

Simultaneous Transmission SAR Analysis (Continued)										
Hotspot Mode Configuration 1g – Worst cases measurements										
	Measured SAR 1g (W/Kg)									
				Sum of						
EUT Position	GSM850	PCS1900	UMTS FDD II	UMTS FDD IV	UMTS FDD V	Wi-Fi	WWAN & WLAN			
Front	0.629					0.081	0.71			
Back	0.993					0.459	1.452			
Left Hand Side	0.665					0.016	0.681			
Right Hand Side	1.060					0.145	1.205			
Bottom	0.413						0.413			
Тор						0.172	0.172			
Front		0.500				0.081	0.581			
Back		0.729				0.459	1.188			
Left Hand Side		0.707				0.016	0.723			
Right Hand Side		0.105				0.145	0.25			
Bottom		0.606					0.606			
Тор						0.172	0.172			
Front			1.050			0.081	1.131			
Back			1.260			0.459	1.719			
Left Hand Side			0.661			0.016	0.677			
Right Hand Side			0.186			0.145	0.331			
Bottom			1.190				1.190			
Тор						0.172	0.172			
Front				0.690		0.081	0.771			
Back				1.110		0.459	1.569			
Left Hand Side				0.380		0.016	0.396			
Right Hand Side				0.072		0.145	0.217			
Bottom				1.220			1.220			
Тор						0.172	0.172			
Front					0.607	0.081	0.688			
Back					0.979	0.459	1.438			
Left Hand Side					0.705	0.016	0.721			
Right Hand Side					0.973	0.145	1.118			
Bottom					0.405		0.688			
Тор						0.172	0.172			

Page: 36 of 472 RFI Global Services Ltd.

Issue Date: 21 August 2012

Simultaneous Transmission SAR Analysis (Continued) Hotspot Mode Configuration 1g (Continued): – Worst cases measurements

	Measured SAR 1g (W/Kg)									
		WV	WAN		WLAN	Sum of				
EUT Position	LTE Band 2	LTE Band 4	LTE Band 5	LTE Band 17	Wi-Fi	WWAN & WLAN				
Front	0.788				0.081	0.869				
Back	1.040				0.459	1.499				
Left Hand Side	0.624				0.016	0.640				
Right Hand Side	0.177				0.145	0.322				
Bottom	1.030					1.030				
Тор					0.172	0.172				
Front		0.695			0.081	0.776				
Back		0.976			0.459	1.435				
Left Hand Side		0.355			0.016	0.371				
Right Hand Side		0.083			0.145	0.228				
Bottom		1.320				1.320				
Тор					0.172	0.172				
Front			0.464		0.081	0.545				
Back			0.728		0.459	1.187				
Left Hand Side			0.643		0.016	0.659				
Right Hand Side			1.140		0.145	1.285				
Bottom			0.301			0.301				
Тор					0.172	0.172				
Front				0.410	0.081	0.491				
Back				0.488	0.459	0.947				
Left Hand Side				0.284	0.016	0.300				
Right Hand Side				0.402	0.145	0.547				
Bottom				0.211		0.211				
Тор					0.172	0.172				
Note(s):						1				

Note(s):

Page: 37 of 472 RFI Global Services Ltd.

^{1.} For cases, where sum of WWAN and WLAN exceed 1.6W/kg, the SAR to peak location separation ratio distance was calculated. Simultaneous transmission was not evaluated as this value was lesser than 0.3. SPLSR calculations are shown in SAR distribution scans SCN/88281JD02/247 to SCN/88281JD02/252.

Test Report Serial No: RFI-SAR-RP88281JD02A V2.0
Version 2.0 Issue Date: 21 August 2012

7. Measurements, Examinations and Derived Results

7.1. General Comments

This section contains test results only.

Measurement uncertainties are evaluated in accordance with current best practice. Our reported expanded uncertainties are based on standard uncertainties, which are multiplied by an appropriate coverage factor to provide a statistical confidence level of approximately 95%. Please refer to section 8 for details of measurement uncertainties.

Page: 38 of 472 RFI Global Services Ltd.

Version 2.0 Issue Date: 21 August 2012

7.2. Test Results

For All SAR measurement in this report the SAR limit tested to is 1.6 W/kg

7.2.1. Specific Absorption Rate - GSM 850 Head Configuration 1g Power Back-off Disabled

Test Summary:

Tissue Volume: 1g

Maximum Level (W/kg): 0.571

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0 Temperature Variation in Liquid (°C): 24.0 to 24.0

Results:

EUT Position	Phantom Configuration	Channel Number	Uplink Meas. Burst Avg. Power (dBm)	Power Back-off (dB)	Meas. Level (W/Kg)	Note(s)	Mod.
Touch	Left	190	25.0	N/A	0.545	1	GMSK
Tilt	Left	190	25.0	N/A	0.374	1	GMSK
Touch	Right	190	25.0	N/A	0.544	1	GMSK
Tilt	Right	190	25.0	N/A	0.257	1	GMSK
Touch	Left	128	24.9	N/A	0.571	1	GMSK
Touch	Left	251	25.1	N/A	0.449	1	GMSK
NI 4 / X							

Note(s):

1. Voice

Page: 39 of 472 RFI Global Services Ltd.

Version 2.0 Issue Date: 21 August 2012

7.2.2. Specific Absorption Rate - GPRS 850 Hotspot Mode Configuration 1g Power Back-off Disabled

Test Summary:

Tissue Volume: 1g

Maximum Level (W/kg): 1.060

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0

Temperature Variation in Liquid (°C): 22.6 to 22.6

Results:

EUT Position	Phantom Configuration	Channel Number	Uplink Meas. Burst Avg. Power (dBm)	Power Back-off (dB)	Meas. Level (W/Kg)	Note(s)	Mod.
Front of EUT Facing Phantom	Flat (SAM)	190	25.4	N/A	0.629	1, 2	GMSK
Back of EUT Facing Phantom	Flat (SAM)	190	25.4	N/A	0.993	1, 2	GMSK
Back of EUT Facing Phantom	Flat (SAM)	128	25.5	N/A	0.903	1, 2	GMSK
Back of EUT Facing Phantom	Flat (SAM)	251	25.4	N/A	0.926	1, 2	GMSK
Left Hand Side of EUT Facing Phantom	Flat (SAM)	190	25.4	N/A	0.665	1, 2	GMSK
Right Hand Side of EUT Facing Phantom	Flat (SAM)	190	25.4	N/A	0.909	1, 2	GMSK
Right Hand Side of EUT Facing Phantom	Flat (SAM)	128	25.5	N/A	0.760	1, 2	GMSK
Right Hand Side of EUT Facing Phantom	Flat (SAM)	251	25.4	N/A	1.060	1, 2	GMSK
Bottom of EUT Facing Phantom	Flat (SAM)	190	25.4	N/A	0.413	1, 2	GMSK

Note(s):

- 1. Data SAR measurements were performed using 2 uplink timeslots.
- 2. EUT supports Hotspot: As per FCC KDB procedure SAR measurements were performed with the EUT at a separation distance of 10mm from the 'SAM' phantom flat section.

*KDB 941225 - SAR is not required for EDGE technology when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding GPRS channels.

rage: 40 01 4/2 KFI Global Services Ltd.

7.2.3. Specific Absorption Rate - GSM 850 Body-Worn Configuration 1g **Power Back-off Disabled**

Test Summary:

Tissue Volume: 1g

Maximum Level (W/kg): 0.632

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0

Temperature Variation in Liquid (°C): 22.6 to 22.6

Results:

EUT Position	Phantom Configuration	Channel Number	Uplink Meas. Burst Avg. Power (dBm)	Power Back-off (dB)	Meas. Level (W/Kg)	Note(s)	Mod.
Back of EUT Facing Phantom	Flat (SAM)	190	25.0	N/A	0.632	1, 2	GMSK
Back of EUT Facing Phantom With PHF	Flat (SAM)	190	25.0	N/A	0.564	1, 2, 3	GMSK

Note(s):

- 1. Voice Back of EUT is worst case and most conservative configuration of GPRS hotspot mode and is applied to GSM Body-worn.
- 2. SAR measurements were performed with the closest edge of the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.
- 3. Personal Hands-Free Kit attached, using the worst-case configuration acquired.

Page: 41 of 472 RFI Global Services Ltd.

Issue Date: 21 August 2012

7.2.4. Specific Absorption Rate - PCS 1900 Head Configuration 1g Power Back-off Disabled

Test Summary:

Tissue Volume: 1g

Maximum Level (W/kg): 0.368

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0

Temperature Variation in Liquid (°C): 23.6 to 23.6

Results:

EUT Position	Phantom Configuration	Channel Number	Uplink Meas. Burst Avg. Power (dBm)	Power Back-off (dB)	Meas. Level (W/Kg)	Note(s)	Mod.
Touch	Left	661	20.5	N/A	0.365	1	GMSK
Tilt	Left	661	20.5	N/A	0.166	1	GMSK
Touch	Right	661	20.5	N/A	0.253	1	GMSK
Tilt	Right	661	20.5	N/A	0.092	1	GMSK
Touch	Left	512	20.5	N/A	0.362	1	GMSK
Touch	Left	810	20.6	N/A	0.368	1	GMSK
Note(s):							

1. Voice

Page: 42 of 472 RFI Global Services Ltd.

7.2.5. Specific Absorption Rate - GPRS 1900 Hotspot Mode Configuration 1g **Power Back-off Disabled Test Summary:**

Tissue Volume: 1g

Maximum Level (W/kg): 0.729

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0

Temperature Variation in Liquid (°C): 23.6 to 23.6

Results:

EUT Position	Phantom Configuration	Channel Number	Uplink Meas. Burst Avg. Power (dBm)	Power Back-off (dB)	Meas. Level (W/Kg)	Note(s)	Mod.
Front of EUT Facing Phantom	Flat (SAM)	661	20.8	N/A	0.500	1, 2	GMSK
Back of EUT Facing Phantom	Flat (SAM)	661	20.8	N/A	0.729	1, 2	GMSK
Left Hand Side of EUT Facing Phantom	Flat (SAM)	661	20.8	N/A	0.449	1, 2	GMSK
Right Hand Side of EUT Facing Phantom	Flat (SAM)	661	20.8	N/A	0.105	1, 2	GMSK
Bottom of EUT Facing Phantom	Flat (SAM)	661	20.8	N/A	0.606	1, 2	GMSK
Back of EUT Facing Phantom	Flat (SAM)	512	20.9	N/A	0.707	1, 2	GMSK
Back of EUT Facing Phantom	Flat (SAM)	810	21.1	N/A	0.593	1, 2	GMSK

Note(s):

- 1. Data SAR measurements were performed using 2 uplink timeslots.
- 2. EUT supports Hotspot: As per FCC KDB procedure SAR measurements were performed with the EUT at a separation distance of 10mm from the 'SAM' phantom flat section.

*KDB 941225 - SAR is not required for EDGE technology when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding GPRS channels.

Page: 43 of 472 RFI Global Services Ltd.

7.2.6.Specific Absorption Rate - PCS 1900 Body-Worn Configuration 1g Power Back-off Disabled Test Summary:							
Tissue Volume:	1g						
Maximum Level (W/kg): 0.321							
Environmental Conditions:							
Temperature Variation in Lab (°C):	24.0 to 24.0						
Temperature Variation in Liquid (°C):	23.6 to 23.6						

Results:

EUT Position	Phantom Configuration	Channel Number	Uplink Meas. Burst Avg. Power (dBm)	Power Back-off (dB)	Meas. Level (W/Kg)	Note(s)	Mod.
Back of EUT Facing Phantom	Flat (SAM)	661	20.5	N/A	0.261	1, 2	GMSK
Back of EUT Facing Phantom With PHF	Flat (SAM)	661	20.5	N/A	0.321	1, 2, 3	GMSK

Note(s):

- 1. Voice Back of EUT is worst case and most conservative configuration of GPRS hotspot mode and is applied to GSM Body-worn.
- 2. SAR measurements were performed with the closest edge of the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.
- 3. Personal Hands-Free Kit attached, using the worst-case configuration acquired.

Page: 44 of 472 RFI Global Services Ltd.

Issue Date: 21 August 2012

7.2.7. Specific Absorption Rate - UMTS-FDD II Head Configuration 1g Power Back-off Disabled

Test Summary:

Tissue Volume: 1g

Maximum Level (W/kg): 0.931

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0

Temperature Variation in Liquid (°C): 23.1 to 23.1

Results:

EUT Position	Phantom Configuration	Channel Number	Meas. Avg. Power (dBm)	Power Back-off (dB)	Meas. Level (W/Kg)	Note(s)	Mod.
Touch	Left	9400	24.7	N/A	0.794	1	QPSK
Tilt	Left	9400	24.7	N/A	0.389	1	QPSK
Touch	Right	9400	24.7	N/A	0.769	1	QPSK
Tilt	Right	9400	24.7	N/A	0.303	1	QPSK
Touch	Left	9262	24.8	N/A	0.833	1	QPSK
Touch	Left	9538	25.0	N/A	0.931	1	QPSK
Note(s):							

1. Circuit Switch (CS) - RMC 12.2kbps with Test loop mode 1 and TPC bits configured to All "1's"

Page: 45 of 472 RFI Global Services Ltd.

7.2.8. Specific Absorption Rate - UMTS-FDD II Hotspot Mode Configuration 1g Power Back-off Enabled Test Summary:

Tissue Volume: 1g

Maximum Level (W/kg): 1.260

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0 Temperature Variation in Liquid (°C): 23.6 to 23.6

Results:

EUT Position	Phantom Configuration	Channel Number	Meas. Avg. Power (dBm)	Power Back-off (dB)	Meas. Level (W/Kg)	Note(s)	Mod.
Front of EUT Facing Phantom	Flat (SAM)	9400	23.3	1.4	0.929	1, 2	QPSK
Front of EUT Facing Phantom	Flat (SAM)	9262	23.4	1.4	1.050	1, 2	QPSK
Front of EUT Facing Phantom	Flat (SAM)	9538	23.6	1.4	0.922	1, 2	QPSK
Back of EUT Facing Phantom	Flat (SAM)	9400	23.3	1.4	1.120	1, 2	QPSK
Back of EUT Facing Phantom	Flat (SAM)	9262	23.4	1.4	1.260	1, 2	QPSK
Back of EUT Facing Phantom	Flat (SAM)	9538	23.6	1.4	1.040	1, 2	QPSK
Left Hand Side of EUT Facing Phantom	Flat (SAM)	9400	23.3	1.4	0.661	1, 2	QPSK
Right Hand Side of EUT Facing Phantom	Flat (SAM)	9400	23.3	1.4	0.186	1, 2	QPSK
Bottom of EUT Facing Phantom	Flat (SAM)	9400	23.3	1.4	1.190	1, 2	QPSK

Note(s):

- 1. Packet Switch (PS) RMC 12.2kbps with Test loop mode 1 and TPC bits configured to All "1's"
- 2. SAR measurements were performed with the closest edge of the EUT at a separation distance of 10mm from the 'SAM' phantom flat section.

Page: 46 of 472 RFI Global Services Ltd.

^{*}KDB 941225 - SAR is not required for RMC+HSPA (HSDPA/HSUPA) channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding RMC channels.

7.2.9. Specific Absorption Rate - UMTS-FDD II Body-Worn Configuration 1g **Power Back-off Disabled**

Test Summary:

Tissue Volume: 1g

Maximum Level (W/kg): 0.851

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0

Temperature Variation in Liquid (°C): 23.6 to 23.6

Results:

EUT Position	Phantom Configuration	Channel Number	Meas. Avg. Power (dBm)	Power Back-off (dB)	Meas. Level (W/Kg)	Note(s)	Mod.
Back of EUT Facing Phantom	Flat (SAM)	9400	24.7	N/A	0.655	1, 2, 3, 5	QPSK
Back of EUT Facing Phantom	Flat (SAM)	9262	24.8	N/A	0.749	1, 2, 3, 5	QPSK
Back of EUT Facing Phantom	Flat (SAM)	9538	25.0	N/A	0.599	1, 2, 3, 5	QPSK
Back of EUT Facing Phantom With PHF	Flat (SAM)	9262	24.8	N/A	0.851	1, 2, 3, 4	QPSK

Note(s):

- 1. Circuit Switch (CS) RMC 12.2kbps with Test loop mode 1 and TPC bits configured to All "1's"
- 2. Back of EUT, is worst case and most conservative configuration from Hotspot mode and used for Body-worn Configuration.
- 3. SAR measurements were performed with the closest edge of the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.
- 4. Personal Hands-Free Kit attached, using the worst-case configuration acquired.
- 5. Although the above configuration for body-worn overlapped in hotspot mode at the customer request, assessment was performed at 15mm for body-worn configuration. This result can be considered as extra information.

*KDB 941225 - SAR is not required for RMC+HSPA (HSDPA/HSUPA) channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding RMC channels.

Page: 47 of 472 RFI Global Services Ltd.

7.2.10.Specific Absorption Rate - UMTS-FDD IV Head Configuration 1g **Power Back-off Disabled**

Test Summary:

Tissue Volume: 1g

Maximum Level (W/kg): 0.715

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0

Temperature Variation in Liquid (°C): 23.6 to 23.6

Results:

EUT Position	Phantom Configuration	Channel Number	Meas. Avg. Power (dBm))	Power Back-off (dB)	Meas. Level (W/Kg)	Note(s)	Mod.
Touch	Left	1412	25.3	N/A	0.540	1	QPSK
Tilt	Left	1412	25.3	N/A	0.219	1	QPSK
Touch	Right	1412	25.3	N/A	0.437	1	QPSK
Tilt	Right	1412	25.3	N/A	0.140	1	QPSK
Touch	Left	1312	25.3	N/A	0.494	1	QPSK
Touch	Left	1523	25.3	N/A	0.715	1	QPSK
Note(s):							

1. Circuit Switch (CS) - RMC 12.2kbps with Test loop mode 1 and TPC bits configured to All "1's"

Page: 48 of 472 **RFI Global Services Ltd.**

Issue Date: 21 August 2012

7.2.11.Specific Absorption Rate - UMTS-FDD IV Hotspot Mode Configuration 1g Power Back-off Enabled Test Summary:

Tissue Volume: 1g

Maximum Level (W/kg): 1.220

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0

Temperature Variation in Liquid (°C): 23.5 to 23.5

Results:

Results.							
EUT Position	Phantom Configuration	Channel Number	Meas. Avg. Power (dBm)	Power Back-off (dB)	Meas. Level (W/Kg)	Note(s)	Mod.
Front of EUT Facing Phantom	Flat (SAM)	1412	21.8	3.5	0.690	1, 2	QPSK
Back of EUT Facing Phantom	Flat (SAM)	1412	21.8	3.5	0.908	1, 2	QPSK
Back of EUT Facing Phantom	Flat (SAM)	1312	21.8	3.5	0.761	1, 2	QPSK
Back of EUT Facing Phantom	Flat (SAM)	1513	21.8	3.5	1.110	1, 2	QPSK
Left Hand Side of EUT Facing Phantom	Flat (SAM)	1412	21.8	3.5	0.380	1, 2	QPSK
Right Hand Side of EUT Facing Phantom	Flat (SAM)	1412	21.8	3.5	0.072	1, 2	QPSK
Bottom of EUT Facing Phantom	Flat (SAM)	1412	21.8	3.5	1.120	1, 2	QPSK
Bottom of EUT Facing Phantom	Flat (SAM)	1312	21.8	3.5	1.100	1, 2	QPSK
Bottom of EUT Facing Phantom	Flat (SAM)	1513	21.8	3.5	1.220	1, 2	QPSK

Note(s):

- 1. Packet Switch (PS) RMC 12.2kbps with Test loop mode 1 and TPC bits configured to All "1's"
- 2. SAR measurements were performed with the closest edge of the EUT at a separation distance of 10mm from the 'SAM' phantom flat section.

Page: 49 of 472 RFI Global Services Ltd.

^{*}KDB 941225 - SAR is not required for RMC+HSPA (HSDPA/HSUPA) channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding RMC channels.

Test Report Serial No: RFI-SAR-RP88281JD02A V2.0

Issue Date: 21 August 2012

7.2.12.Specific Absorption Rate - UMTS-FDD IV Body-Worn Configuration 1g Power Back-off Disabled

Test Summary:

Tissue Volume: 1g

Maximum Level (W/kg): 1.130

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0

Temperature Variation in Liquid (°C): 23.5 to 23.5

Results:

EUT Position	Phantom Configuration	Channel Number	Meas. Avg. Power (dBm)	Power Back- off (dB)	Meas. Level (W/Kg)	Note(s)	Mod.
Back of EUT Facing Phantom	Flat (SAM)	1412	25.3	N/A	0.943	1, 2, 3, 5	QPSK
Back of EUT Facing Phantom	Flat (SAM)	1312	25.3	N/A	0.802	1, 2, 3, 5	QPSK
Back of EUT Facing Phantom	Flat (SAM)	1513	25.3	N/A	1.050	1, 2, 3, 5	QPSK
Back of EUT Facing Phantom With PHF	Flat (SAM)	1513	25.3	N/A	1.130	1, 2, 3, 4	QPSK

Note(s):

- 1. Circuit Switch (CS) RMC 12.2kbps with Test loop mode 1 and TPC bits configured to All "1's"
- 2. Back of EUT, is worst case and most conservative configuration from Hotspot mode and used for Body-worn Configuration.
- 3. SAR measurements were performed with the closest edge of the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.
- 4. Personal Hands-Free Kit attached, using the worst-case configuration acquired.
- 5. Although the above configuration for body-worn overlapped in hotspot mode at the customer request, assessment was performed at 15mm for body-worn configuration. This result can be considered as extra information.

*KDB 941225 - SAR is not required for RMC+HSPA (HSDPA/HSUPA) channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding RMC channels.

Page: 50 of 472 RFI Global Services Ltd.

Issue Date: 21 August 2012

7.2.13. Specific Absorption Rate - UMTS-FDD V Head Configuration 1g Power Back-off Disabled

Test Summary:

Tissue Volume: 1g

Maximum Level (W/kg): 0.535

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0

Temperature Variation in Liquid (°C): 24.0 to 24.0

Results:

EUT Position	Phantom Configuration	Channel Number	Meas. Avg. Power (dBm)	Power Back-off (dB)	Meas. Level (W/Kg)	Note(s)	Mod.
Touch	Left	4183	25.2	N/A	0.444	1	QPSK
Tilt	Left	4183	25.2	N/A	0.332	1	QPSK
Touch	Right	4183	25.2	N/A	0.535	1	QPSK
Tilt	Right	4183	25.2	N/A	0.316	1	QPSK
Touch	Right	4132	25.3	N/A	0.535	1	QPSK
Touch	Right	4233	25.4	N/A	0.531	1	QPSK
Note(s):							

1. Circuit Switch (CS) - RMC 12.2kbps with Test loop mode 1 and TPC bits configured to All "1's"

Page: 51 of 472 RFI Global Services Ltd.

Issue Date: 21 August 2012

7.2.14.Specific Absorption Rate - UMTS-FDD V Hotspot Mode Configuration 1g Power Back-off Disabled Test Summary:

Tissue Volume: 1g

Maximum Level (W/kg): 0.979

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0

Temperature Variation in Liquid (°C): 22.6 to 22.6

Results:

EUT Position	Phantom Configuration	Channel Number	Meas. Avg. Power (dBm)	Power Back-off (dB)	Meas. Level (W/Kg)	Note(s)	Mod.
Front of EUT Facing Phantom	Flat (SAM)	4183	25.2	N/A	0.607	1, 2	QPSK
Back of EUT Facing Phantom	Flat (SAM)	4183	25.2	N/A	0.979	1, 2	QPSK
Back of EUT Facing Phantom	Flat (SAM)	4132	25.3	N/A	0.894	1, 2	QPSK
Back of EUT Facing Phantom	Flat (SAM)	4233	25.4	N/A	0.861	1, 2	QPSK
Left Hand Side of EUT Facing Phantom	Flat (SAM)	4183	25.2	N/A	0.705	1, 2	QPSK
Right Hand Side of EUT Facing Phantom	Flat (SAM)	4183	25.2	N/A	0.961	1, 2	QPSK
Right Hand Side of EUT Facing Phantom	Flat (SAM)	4132	25.3	N/A	0.824	1, 2	QPSK
Right Hand Side of EUT Facing Phantom	Flat (SAM)	4233	25.4	N/A	0.973	1, 2	QPSK
Bottom of EUT Facing Phantom	Flat (SAM)	4183	25.2	N/A	0.405	1, 2	QPSK

Note(s):

- 1. Packet Switch (PS) RMC 12.2kbps with Test loop mode 1 and TPC bits configured to All "1's"
- 2. SAR measurements were performed with the closest edge of the EUT at a separation distance of 10mm from the 'SAM' phantom flat section.

*KDB 941225 - SAR is not required for RMC+HSPA (HSDPA/HSUPA) channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding RMC channels.

Page: 52 of 472 RFI Global Services Ltd.

7.2.15. Specific Absorption Rate - UMTS-FDD V Body-Worn Configuration 1g **Power Back-off Disabled Test Summary:**

1g

Tissue Volume:

Maximum Level (W/kg): 0.700

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0

Temperature Variation in Liquid (°C): 22.6 to 22.6

Results:

EUT Position	Phantom Configuration	Channel Number	Meas. Avg. Power (dBm)	Power Back-off (dB)	Meas. Level (W/Kg)	Note(s)	Mod.
Back of EUT Facing Phantom	Flat (SAM)	4183	25.2	N/A	0.700	1, 2, 3, 5	QPSK
Back of EUT Facing Phantom	Flat (SAM)	4132	25.3	N/A	0.641	1, 2, 3, 5	QPSK
Back of EUT Facing Phantom	Flat (SAM)	4233	25.4	N/A	0.638	1, 2, 3, 5	QPSK
Back of EUT Facing Phantom With PHF	Flat (SAM)	4183	25.2	N/A	0.511	1, 2, 3, 4	QPSK

Note(s):

- 1. Circuit Switch (CS) RMC 12.2kbps with Test loop mode 1 and TPC bits configured to All "1's"
- 2. Back of EUT, is worst case and most conservative configuration from Hotspot mode and used for Body-worn Configuration.
- 3. SAR measurements were performed with the closest edge of the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.
- 4. Personal Hands-Free Kit attached, using the worst-case configuration acquired.
- 5. Although the above configuration for body-worn overlapped in hotspot mode at the customer request, assessment was performed at 15mm for body-worn configuration. This result can be considered as extra information.

*KDB 941225 - SAR is not required for RMC+HSPA (HSDPA/HSUPA) channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding RMC channels.

Page: 53 of 472 RFI Global Services Ltd.

Issue Date: 21 August 2012

7.2.16.Specific Absorption Rate - LTE Band 2; 20 MHz Channel BW Head

Configuration 1g
Power Back-off Disabled

Test Summary:

Tissue Volume: 1g

Maximum Level (W/kg): 0.960

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0

Temperature Variation in Liquid (°C): 22.0 to 22.0

Results:

Tilt Left 18900 23.4 N/A 0.380 1 QPSK Touch Right 18900 23.4 N/A 0.650 1 QPSK Tilt Right 18900 23.4 N/A 0.213 1 QPSK Touch Left 18900 24.3 N/A 0.960 2 QPSK Touch Left 18900 24.1 N/A 0.955 3 QPSK Touch Left 18900 22.2 N/A 0.712 1 16QAN Touch Left 18900 23.2 N/A 0.805 2 16QAN Touch Left 18900 22.9 N/A 0.803 3 16QAN	EUT Position	Phantom Configuration	Channel Number	Meas. Avg. Power (dBm)	Power Back-off (dB)	Meas. Level (W/Kg)	Note(s)	Mod.
Touch Right 18900 23.4 N/A 0.650 1 QPSK Tilt Right 18900 23.4 N/A 0.213 1 QPSK Touch Left 18900 24.3 N/A 0.960 2 QPSK Touch Left 18900 24.1 N/A 0.955 3 QPSK Touch Left 18900 22.2 N/A 0.712 1 16QAN Touch Left 18900 23.2 N/A 0.805 2 16QAN Touch Left 18900 22.9 N/A 0.803 3 16QAN	Touch	Left	18900	23.4	N/A	0.765	1	QPSK
Tilt Right 18900 23.4 N/A 0.213 1 QPSK Touch Left 18900 24.3 N/A 0.960 2 QPSK Touch Left 18900 24.1 N/A 0.955 3 QPSK Touch Left 18900 22.2 N/A 0.712 1 16QAN Touch Left 18900 23.2 N/A 0.805 2 16QAN Touch Left 18900 22.9 N/A 0.803 3 16QAN	Tilt	Left	18900	23.4	N/A	0.380	1	QPSK
Touch Left 18900 24.3 N/A 0.960 2 QPSK Touch Left 18900 24.1 N/A 0.955 3 QPSK Touch Left 18900 22.2 N/A 0.712 1 16QAN Touch Left 18900 23.2 N/A 0.805 2 16QAN Touch Left 18900 22.9 N/A 0.803 3 16QAN	Touch	Right	18900	23.4	N/A	0.650	1	QPSK
Touch Left 18900 24.1 N/A 0.955 3 QPSK Touch Left 18900 22.2 N/A 0.712 1 16QAN Touch Left 18900 23.2 N/A 0.805 2 16QAN Touch Left 18900 22.9 N/A 0.803 3 16QAN	Tilt	Right	18900	23.4	N/A	0.213	1	QPSK
Touch Left 18900 22.2 N/A 0.712 1 16QAN Touch Left 18900 23.2 N/A 0.805 2 16QAN Touch Left 18900 22.9 N/A 0.803 3 16QAN	Touch	Left	18900	24.3	N/A	0.960	2	QPSK
Touch Left 18900 23.2 N/A 0.805 2 16QAN Touch Left 18900 22.9 N/A 0.803 3 16QAN	Touch	Left	18900	24.1	N/A	0.955	3	QPSK
Touch Left 18900 22.9 N/A 0.803 3 16QAN	Touch	Left	18900	22.2	N/A	0.712	1	16QAM
	Touch	Left	18900	23.2	N/A	0.805	2	16QAM
Touch Left 18700 24.2 N/A 0.891 2 OPSK	Touch	Left	18900	22.9	N/A	0.803	3	16QAM
10100 24.2 19/1 0.001 2 Q1010	Touch	Left	18700	24.2	N/A	0.891	2	QPSK
Touch Left 19100 24.2 N/A 0.937 2 QPSK	Touch	Left	19100	24.2	N/A	0.937	2	QPSK

Note(s):

- 1. 50% RB Allocation cantered within the channel Bandwidth.
- 2. 1 RB Allocation Low End of the Channel Edge.
- 3. 1 RB Allocation High End of the Channel Edge.

According to 941225 D05 SAR for LTE Devices v01

- A) Begin by measuring SAR on the high, middle and low (H, M, L) channels using the largest channel bandwidth3, in QPSK with 50% RB allocation centered within the channel bandwidth.
 - When the SAR of a channel measured in A) is > 1.45 W/kg, also measure SAR for that channel using QPSK with 100% RB allocation.
 - a) If the highest SAR measured in I) is > 1.45 W/kg, measure SAR on all channels (H, M, L).
- B) Measure SAR in QPSK with 1 RB allocated at the high end of the channel edge using the highest SAR channel measured in A); and then repeat the measurement at the low end of the channel edge.
 - I) If the SAR measured for a 1 RB configuration in B) is > 1.45 W/kg, test that 1 RB configuration on all channels (H, M, L).

Page: 54 of 472 RFI Global Services Ltd.

Version 2.0 Issue Date: 21 August 2012

7.2.17.Specific Absorption Rate - LTE Band 2; 20 MHz Channel BW Hotspot Mode Configuration 1g Power Back-off Enabled Test Summary:

Tissue Volume: 1g

Maximum Level (W/kg): 1.040

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0 Temperature Variation in Liquid (°C): 22.7 to 22.7

Results:

EUT Position	Phantom Configuration	Channel Number	Meas. Avg. Power (dBm)	Power Back-off (dB)	Meas. Level (W/Kg)	Note(s)	Mod.
Front of EUT Facing Phantom	Flat (SAM)	18900	22.6	0.8	0.788	1, 2	QPSK
Back of EUT Facing Phantom	Flat (SAM)	18900	22.6	0.8	1.010	1, 2	QPSK
Back of EUT Facing Phantom	Flat (SAM)	18700	22.7	0.6	1.040	1, 2	QPSK
Back of EUT Facing Phantom	Flat (SAM)	19100	23.0	0.6	0.901	1, 2	QPSK
Left Hand Side of EUT Facing Phantom	Flat (SAM)	18900	22.6	0.8	0.624	1, 2	QPSK
Right Hand Side of EUT Facing Phantom	Flat (SAM)	18900	22.6	0.8	0.177	1, 2	QPSK
Bottom of EUT Facing Phantom	Flat (SAM)	18900	22.6	0.8	0.983	1, 2	QPSK
Bottom of EUT Facing Phantom	Flat (SAM)	18700	22.7	0.6	1.030	1, 2	QPSK
Bottom of EUT Facing Phantom	Flat (SAM)	19100	23.0	0.6	0.891	1, 2	QPSK

Page: 55 of 472 RFI Global Services Ltd.

Issue Date: 21 August 2012

Specific Absorption Rate - LTE Band 2; 20 MHz Channel BW Hotspot Mode Configuration 1g

Power Back-off Enabled (Continued):

Phantom Configuration	Channel Number	Meas. Avg. Power (dBm)	Power Back-off (dB)	Meas. Level (W/Kg)	Note(s)	Mod.
Flat (SAM)	18700	22.5	1.8	0.987	1, 3	QPSK
Flat (SAM)	18700	22.5	1.6	1.020	1, 4	QPSK
Flat (SAM)	18700	22.1	0.1	0.779	1, 2	16QAM
Flat (SAM)	18700	22.7	0.5	1.010	1, 3	16QAM
Flat (SAM)	18700	22.6	0.3	0.900	1, 4	16QAM
	Flat (SAM) Flat (SAM) Flat (SAM) Flat (SAM)	Flat (SAM) 18700 Flat (SAM) 18700 Flat (SAM) 18700 Flat (SAM) 18700	Phantom ConfigurationChannel NumberAvg. Power (dBm)Flat (SAM)1870022.5Flat (SAM)1870022.5Flat (SAM)1870022.1Flat (SAM)1870022.7	Phantom Configuration Channel Number Avg. Power (dBm) Power (dBm) Flat (SAM) 18700 22.5 1.8 Flat (SAM) 18700 22.5 1.6 Flat (SAM) 18700 22.1 0.1 Flat (SAM) 18700 22.7 0.5	Phantom Configuration Channel Number Avg. Power (dBm) Power Back-off (dB) Meas. Level (W/Kg) Flat (SAM) 18700 22.5 1.8 0.987 Flat (SAM) 18700 22.5 1.6 1.020 Flat (SAM) 18700 22.1 0.1 0.779 Flat (SAM) 18700 22.7 0.5 1.010	Phantom Configuration Channel Number Avg. Power (dBm) Power Back-off (dB) Meas. Level (W/Kg) Note(s) Flat (SAM) 18700 22.5 1.8 0.987 1,3 Flat (SAM) 18700 22.5 1.6 1.020 1,4 Flat (SAM) 18700 22.1 0.1 0.779 1,2 Flat (SAM) 18700 22.7 0.5 1.010 1,3

Note(s):

- 1. SAR measurements were performed with the closest edge of the EUT at a separation distance of 10mm from the 'SAM' phantom flat section.
- 2. 50% RB Allocation cantered within the channel Bandwidth.
- 3. 1 RB Allocation Low End of the Channel Edge.
- 4. 1 RB Allocation High End of the Channel Edge.

According to 941225 D05 SAR for LTE Devices v01

- A) Begin by measuring SAR on the high, middle and low (H, M, L) channels using the largest channel bandwidth3, in QPSK with 50% RB allocation centered within the channel bandwidth.
 - I) When the SAR of a channel measured in A) is > 1.45 W/kg, also measure SAR for that channel using QPSK with 100% RB allocation.
 - a) If the highest SAR measured in I) is > 1.45 W/kg, measure SAR on all channels (H, M, L).
- B) Measure SAR in QPSK with 1 RB allocated at the high end of the channel edge using the highest SAR channel measured in A); and then repeat the measurement at the low end of the channel edge.
 - II) If the SAR measured for a 1 RB configuration in B) is > 1.45 W/kg, test that 1 RB configuration on all channels (H, M, L).

Page: 56 of 472 RFI Global Services Ltd.

Test Report Ser Version 2.0

Serial No: RFI-SAR-RP88281JD02A V2.0
Issue Date: 21 August 2012

7.2.18.Specific Absorption Rate - LTE Band 2; 20 MHz Channel BW Body-Worn Configuration 1g

Power Back-off Disabled Test Summary:

Tissue Volume: 1g

Maximum Level (W/kg): 0.589

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0

Temperature Variation in Liquid (°C):

22.7 to 22.7

Results:

EUT Position	Phantom Configuration	Channel Number	Meas. Avg. Power (dBm)	Power Back-off (dB)	Meas. Level (W/Kg)	Note(s)	Mod.
Back of EUT Facing Phantom	Flat (SAM)	18900	23.4	N/A	0.479	1, 2, 3, 5	QPSK
Back of EUT Facing Phantom	Flat (SAM)	18700	23.3	N/A	0.482	1, 2, 3, 5	QPSK
Back of EUT Facing Phantom	Flat (SAM)	19100	23.6	N/A	0.438	1, 2, 3, 5	QPSK
Back of EUT Facing Phantom With PHF	Flat (SAM)	18700	23.3	N/A	0.589	1, 2, 3, 4	QPSK

Note(s):

- 1. Back of EUT (QPSK 50 % RB Allocation centred within the channel Bandwidth), is the worst case configuration from Hotspot Mode and used for Body-Worn Configuration.
- 2. SAR measurements were performed with the closest edge of the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.
- 3. 50% RB Allocation centred within the channel Bandwidth.
- 4. Personal Hands-Free Kit attached, using the worst-case configuration acquired.
- 5. Although the above configuration for body-worn overlapped in hotspot mode at the customer request, assessment was performed at 15mm for body-worn configuration. This result can be considered as extra information.

Page: 57 of 472 RFI Global Services Ltd.

7.2.19. Specific Absorption Rate - LTE Band 4; 20 MHz Channel BW Head

Configuration 1g Power Back-off Disabled

Test Summary:

Tissue Volume: 1g

Maximum Level (W/kg): 0.592

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0

Temperature Variation in Liquid (°C): 21.0 to 21.0

Results:

Phantom Configuration	Channel Number	Meas. Avg. Power (dBm)	Power Back-off (dB)	Meas. Level (W/Kg)	Note(s)	Mod.
Left	20175	23.3	N/A	0.478	1	QPSK
Left	20175	23.3	N/A	0.212	1	QPSK
Right	20175	23.3	N/A	0.401	1	QPSK
Right	20175	23.3	N/A	0.129	1	QPSK
Left	20175	24.5	N/A	0.592	2	QPSK
Left	20175	24.3	N/A	0.589	3	QPSK
Left	20175	22.3	N/A	0.393	1	16 QAM
Left	20175	23.5	N/A	0.494	2	16 QAM
Left	20175	23.5	N/A	0.502	3	16 QAM
Left	20050	24.5	N/A	0.463	2	QPSK
Left	20300	24.3	N/A	0.579	2	QPSK
	Left Left Right Right Left Left Left Left Left Left Left Lef	Configuration Number Left 20175 Left 20175 Right 20175 Right 20175 Left 20050	Configuration Number Power (dBm) Left 20175 23.3 Left 20175 23.3 Right 20175 23.3 Right 20175 23.3 Left 20175 24.5 Left 20175 24.3 Left 20175 22.3 Left 20175 23.5 Left 20175 23.5 Left 20175 23.5 Left 20050 24.5	Configuration Number (dBm) Rower (dBm) Back-off (dB) Left 20175 23.3 N/A Left 20175 23.3 N/A Right 20175 23.3 N/A Right 20175 23.3 N/A Left 20175 24.5 N/A Left 20175 24.3 N/A Left 20175 22.3 N/A Left 20175 23.5 N/A Left 20175 23.5 N/A Left 20175 23.5 N/A Left 20050 24.5 N/A	Configuration Number (dBm) Rower (dBm) Back-off (dB) Level (W/Kg) Left 20175 23.3 N/A 0.478 Left 20175 23.3 N/A 0.212 Right 20175 23.3 N/A 0.401 Right 20175 23.3 N/A 0.129 Left 20175 24.5 N/A 0.592 Left 20175 24.3 N/A 0.589 Left 20175 22.3 N/A 0.393 Left 20175 23.5 N/A 0.494 Left 20175 23.5 N/A 0.502 Left 20050 24.5 N/A 0.463	Configuration Number (dBm) Rower (dBm) Back-off (dB) Level (W/Kg) Note(s) Left 20175 23.3 N/A 0.478 1 Left 20175 23.3 N/A 0.212 1 Right 20175 23.3 N/A 0.401 1 Right 20175 23.3 N/A 0.129 1 Left 20175 24.5 N/A 0.592 2 Left 20175 24.3 N/A 0.589 3 Left 20175 22.3 N/A 0.393 1 Left 20175 23.5 N/A 0.494 2 Left 20175 23.5 N/A 0.502 3 Left 20050 24.5 N/A 0.463 2

Note(s):

- 1. 50% RB Allocation centred within the channel Bandwidth.
- 2. 1 RB Allocation Low End of the Channel Edge.
- 3. 1 RB Allocation High End of the Channel Edge.

According to 941225 D05 SAR for LTE Devices v01

- A) Begin by measuring SAR on the high, middle and low (H, M, L) channels using the largest channel bandwidth3. in QPSK with 50% RB allocation centered within the channel bandwidth.
 - When the SAR of a channel measured in A) is > 1.45 W/kg, also measure SAR for that channel using QPSK with 100% RB allocation.
 - If the highest SAR measured in I) is > 1.45 W/kg, measure SAR on all channels a) (H, M, L).
- B) Measure SAR in QPSK with 1 RB allocated at the high end of the channel edge using the highest SAR channel measured in A); and then repeat the measurement at the low end of the channel edge.
 - If the SAR measured for a 1 RB configuration in B) is > 1.45 W/kg, test that 1 RB configuration on all channels (H, M, L).

RFI Global Services Ltd. Page: 58 of 472

Test Report Version 2.0

Serial No: RFI-SAR-RP88281JD02A V2.0 Issue Date: 21 August 2012

7.2.20. Specific Absorption Rate - LTE Band 4; 20 MHz Channel BW Hotspot Mode **Configuration 1g Power Back-off Enabled Test Summary:**

Tissue Volume: 1g

1.320 Maximum Level (W/kg):

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0 Temperature Variation in Liquid (°C): 22.7 to 22.7

Results:

EUT Position	Phantom Configuration	Channel Number	Meas. Avg. Power (dBm)	Power Back-off (dB)	Meas. Level (W/Kg)	Note(s)	Mod.
Front of EUT Facing Phantom	Flat (SAM)	20175	22.7	0.6	0.695	1, 2	QPSK
Back of EUT Facing Phantom	Flat (SAM)	20175	22.7	0.6	0.935	1, 2	QPSK
Back of EUT Facing Phantom	Flat (SAM)	20050	22.9	0.6	0.925	1, 2	QPSK
Back of EUT Facing Phantom	Flat (SAM)	20300	22.7	0.8	0.976	1, 2	QPSK
Left Hand Side of EUT Facing Phantom	Flat (SAM)	20175	22.7	0.6	0.355	1, 2	QPSK
Right Hand Side of EUT Facing Phantom	Flat (SAM)	20175	22.7	0.6	0.083	1, 2	QPSK
Bottom of EUT Facing Phantom	Flat (SAM)	20175	22.7	0.6	1.200	1, 2	QPSK
Bottom of EUT Facing Phantom	Flat (SAM)	20050	22.9	0.6	1.320	1, 2	QPSK
Bottom of EUT Facing Phantom	Flat (SAM)	20300	22.7	0.8	1.190	1, 2	QPSK

Page: 59 of 472 RFI Global Services Ltd.

Issue Date: 21 August 2012

Specific Absorption Rate - LTE Band 4; 20 MHz Channel BW Hotspot Mode Configuration 1g

Power Back-off Enabled (Continued):

EUT Position	Phantom Configuration	Channel Number	Meas. Avg. Power (dBm)	Power Back-off (dB)	Meas. Level (W/Kg)	Note(s)	Mod.
Bottom of EUT Facing Phantom	Flat (SAM)	20050	22.7	1.8	1.110	1, 3	QPSK
Bottom of EUT Facing Phantom	Flat (SAM)	20050	22.9	1.5	1.290	1, 4	QPSK
Bottom of EUT Facing Phantom	Flat (SAM)	20050	22.4	0.0	1.200	1, 2	16QAM
Bottom of EUT Facing Phantom	Flat (SAM)	20050	23.1	0.3	1.090	1, 3	16QAM
Bottom of EUT Facing Phantom	Flat (SAM)	20050	23.2	0.4	1.300	1, 4	16QAM

Note(s):

- 1. SAR measurements were performed with the closest edge of the EUT at a separation distance of 10mm from the 'SAM' phantom flat section.
- 2. 50% RB Allocation centred within the channel Bandwidth.
- 3. 1 RB Allocation Low End of the Channel Edge.
- 4. 1 RB Allocation High End of the Channel Edge.

According to 941225 D05 SAR for LTE Devices v01

- A) Begin by measuring SAR on the high, middle and low (H, M, L) channels using the largest channel bandwidth3, in QPSK with 50% RB allocation centered within the channel bandwidth.
 - I) When the SAR of a channel measured in A) is > 1.45 W/kg, also measure SAR for that channel using QPSK with 100% RB allocation.
 - a) If the highest SAR measured in I) is > 1.45 W/kg, measure SAR on all channels (H, M, L).
- B) Measure SAR in QPSK with 1 RB allocated at the high end of the channel edge using the highest SAR channel measured in A); and then repeat the measurement at the low end of the channel edge.
 - II) If the SAR measured for a 1 RB configuration in B) is > 1.45 W/kg, test that 1 RB configuration on all channels (H, M, L).

Page: 60 of 472 RFI Global Services Ltd.

Test Report Serversion 2.0

Serial No: RFI-SAR-RP88281JD02A V2.0

Issue Date: 21 August 2012

7.2.21. Specific Absorption Rate - LTE Band 4; 20 MHz Channel BW Body-Worn Configuration 1g

Power Back-off Disabled Test Summary:

Tissue Volume: 1g

Maximum Level (W/kg): 0.640

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0

Temperature Variation in Liquid (°C): 22.3 to 22.3

Results:

EUT Position	Phantom Configuration	Channel Number	Meas. Avg. Power (dBm)	Power Back-off (dB)	Meas. Level (W/Kg)	Note(s)	Mod.
Back of EUT Facing Phantom	Flat (SAM)	20175	23.3	N/A	0.636	1, 2, 3, 5	QPSK
Back of EUT Facing Phantom	Flat (SAM)	20050	23.5	N/A	0.640	1, 2, 3, 5	QPSK
Back of EUT Facing Phantom	Flat (SAM)	20300	23.5	N/A	0.608	1, 2, 3, 5	QPSK
Back of EUT Facing Phantom With PHF	Flat (SAM)	20050	23.5	N/A	0.636	1, 2, 3, 4	QPSK

Note(s):

- 1. Back of EUT (QPSK 50 % RB Allocation centered within the channel Bandwidth), is the worst case configuration from Hotspot Mode and used for Body-Worn Configuration.
- 2. SAR measurements were performed with the closest edge of the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.
- 3. 50% RB Allocation centred within the channel Bandwidth.
- 4. Personal Hands-Free Kit attached, using the worst-case configuration acquired.
- 5. Although the above configuration for body-worn overlapped in hotspot mode at the customer request, assessment was performed at 15mm for body-worn configuration. This result can be considered as extra information.

Page: 61 of 472 RFI Global Services Ltd.

Issue Date: 21 August 2012

7.2.22.Specific Absorption Rate - LTE Band 5; 10 MHz Channel BW Head Configuration 1g

Power Back-off Disabled

Test Summary:

Tissue Volume: 1g

Maximum Level (W/kg): 0.505

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0

Temperature Variation in Liquid (°C): 22.3 to 22.3

Results:

EUT Position	Phantom Configuration	Channel Number	Meas. Avg. Power (dBm)	Power Back-off (dB)	Meas. Level (W/Kg)	Note(s)	Mod.
Touch	Left	20525	23.5	N/A	0.367	1	QPSK
Tilt	Left	20525	23.5	N/A	0.256	1	QPSK
Touch	Right	20525	23.5	N/A	0.406	1	QPSK
Tilt	Right	20525	23.5	N/A	0.251	1	QPSK
Touch	Right	20525	24.1	N/A	0.411	2	QPSK
Touch	Right	20525	24.0	N/A	0.505	3	QPSK
Touch	Right	20525	22.4	N/A	0.328	1	16QAM
Touch	Right	20525	23.4	N/A	0.367	2	16QAM
Touch	Right	20525	23.3	N/A	0.449	3	16QAM
Touch	Right	20450	24.0	N/A	0.451	3	QPSK
Touch	Right	20600	24.1	N/A	0.447	3	QPSK

Note(s):

- 1. 50% RB Allocation centred within the channel Bandwidth.
- 2. 1 RB Allocation Low End of the Channel Edge.
- 3. 1 RB Allocation High End of the Channel Edge.

According to 941225 D05 SAR for LTE Devices v01

- A) Begin by measuring SAR on the high, middle and low (H, M, L) channels using the largest channel bandwidth3, in QPSK with 50% RB allocation centered within the channel bandwidth.
 - I) When the SAR of a channel measured in A) is > 1.45 W/kg, also measure SAR for that channel using QPSK with 100% RB allocation.
 - a) If the highest SAR measured in I) is > 1.45 W/kg, measure SAR on all channels (H, M, L).
- B) Measure SAR in QPSK with 1 RB allocated at the high end of the channel edge using the highest SAR channel measured in A); and then repeat the measurement at the low end of the channel edge.
 - II) If the SAR measured for a 1 RB configuration in B) is > 1.45 W/kg, test that 1 RB configuration on all channels (H, M, L).

Page: 62 of 472 RFI Global Services Ltd.

7.2.23. Specific Absorption Rate - LTE Band 5; 10 MHz Channel BW Hotspot Mode Configuration 1g
Power Back-off Disabled
Test Summary:

Tissue Volume: 1g

Maximum Level (W/kg): 1.140

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0 Temperature Variation in Liquid (°C): 22.4 to 22.4

Results:

EUT Position	Phantom Configuration	Channel Number	Meas. Avg. Power (dBm)	Power Back-off (dB)	Meas. Level (W/Kg)	Note(s)	Mod.
Front of EUT Facing Phantom	Flat (SAM)	20525	23.5	N/A	0.464	1, 2	QPSK
Back of EUT Facing Phantom	Flat (SAM)	20525	23.5	N/A	0.728	1, 2	QPSK
Left Hand Side of EUT Facing Phantom	Flat (SAM)	20525	23.5	N/A	0.643	1, 2	QPSK
Right Hand Side of EUT Facing Phantom	Flat (SAM)	20525	23.5	N/A	0.908	1, 2	QPSK
Right Hand Side of EUT Facing Phantom	Flat (SAM)	20450	23.3	N/A	0.932	1, 2	QPSK
Right Hand Side of EUT Facing Phantom	Flat (SAM)	20600	23.4	N/A	0.866	1, 2	QPSK
Bottom of EUT Facing Phantom	Flat (SAM)	20525	23.5	N/A	0.301	1, 2	QPSK

Page: 63 of 472 RFI Global Services Ltd.

2.0 Issue Date: 21 August 2012

Specific Absorption Rate - LTE Band 5; 10 MHz Channel BW Hotspot Mode Configuration 1g (Continued):

EUT Position	Phantom Configuration	Channel Number	Meas. Avg. Power (dBm)	Power Back-off (dB)	Meas. Level (W/Kg)	Note(s)	Mod.
Right Hand Side of EUT Facing Phantom	Flat (SAM)	20525	24.1	N/A	1.140	1, 3	QPSK
Right Hand Side of EUT Facing Phantom	Flat (SAM)	20525	24.0	N/A	1.050	1, 4	QPSK
Right Hand Side of EUT Facing Phantom	Flat (SAM)	20525	22.4	N/A	0.726	1, 2	16QAM
Right Hand Side of EUT Facing Phantom	Flat (SAM)	20525	23.4	N/A	0.942	1, 3	16QAM
Right Hand Side of EUT Facing Phantom	Flat (SAM)	20525	23.3	N/A	0.886	1, 4	16QAM

Note(s):

- 1. SAR measurements were performed with the closest edge of the EUT at a separation distance of 10mm from the 'SAM' phantom flat section.
- 2. 50% RB Allocation centred within the channel Bandwidth.
- 3. 1 RB Allocation Low End of the Channel Edge.
- 4. 1 RB Allocation High End of the Channel Edge.

According to 941225 D05 SAR for LTE Devices v01

- A) Begin by measuring SAR on the high, middle and low (H, M, L) channels using the largest channel bandwidth3, in QPSK with 50% RB allocation centered within the channel bandwidth.
 - I) When the SAR of a channel measured in A) is > 1.45 W/kg, also measure SAR for that channel using QPSK with 100% RB allocation.
 - a) If the highest SAR measured in I) is > 1.45 W/kg, measure SAR on all channels (H, M, L).
- B) Measure SAR in QPSK with 1 RB allocated at the high end of the channel edge using the highest SAR channel measured in A); and then repeat the measurement at the low end of the channel edge.
 - II) If the SAR measured for a 1 RB configuration in B) is > 1.45 W/kg, test that 1 RB configuration on all channels (H, M, L).

Page: 64 of 472 RFI Global Services Ltd.

Test Report Se Version 2.0

Serial No: RFI-SAR-RP88281JD02A V2.0

Issue Date: 21 August 2012

7.2.24.Specific Absorption Rate - LTE Band 5; 10 MHz Channel BW Body-Worn Configuration 1g
Power Back-off Disabled
Test Summary:

Tissue Volume: 1g

Maximum Level (W/kg): 0.779

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0 Temperature Variation in Liquid (°C): 22.4 to 22.4

Results:

EUT Position	Phantom Configuration	Channel Number	Meas. Avg. Power (dBm)	Power Back-off (dB)	Meas. Level (W/Kg)	Note(s)	Mod.
Back of EUT Facing Phantom	Flat (SAM)	20525	23.5	N/A	0.779	1, 2, 3, 5	QPSK
Back of EUT Facing Phantom	Flat (SAM)	20450	23.3	N/A	0.734	1, 2, 3, 5	QPSK
Back of EUT Facing Phantom	Flat (SAM)	20600	23.4	N/A	0.708	1, 2, 3, 5	QPSK
Back of EUT Facing Phantom With PHF	Flat (SAM)	20525	23.5	N/A	0.571	1, 2, 3, 4	QPSK

Note(s):

- 1. 50% RB Allocation cantered within the channel Bandwidth.
- 2. Back of EUT (QPSK 50 % RB Allocation centred within the channel Bandwidth), is the worst case configuration from Hotspot Mode and used for Body-Worn Configuration.
- 3. SAR measurements were performed with the closest edge of the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.
- 4. Personal Hands-Free Kit attached, using the worst-case configuration acquired.
- 5. Although the above configuration for body-worn overlapped in hotspot mode at the customer request, assessment was performed at 15mm for body-worn configuration. This result can be considered as extra information.

Page: 65 of 472 RFI Global Services Ltd.

Issue Date: 21 August 2012

7.2.25. Specific Absorption Rate - LTE Band 17; 10 MHz Channel BW Head Configuration 1g

Power Back-off Disabled

Test Summary:

Tissue Volume: 1g

Maximum Level (W/kg): 0.341

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0 Temperature Variation in Liquid (°C): 23.0 to 23.0

Results:

Nesuits.							
EUT Position	Phantom Configuration	Channel Number	Meas. Avg. Power (dBm)	Power Back-off (dB)	Meas. Level (W/Kg)	Note(s)	Mod.
Touch	Left	23790	23.4	N/A	0.260	1	QPSK
Tilt	Left	23790	23.4	N/A	0.135	1	QPSK
Touch	Right	23790	23.4	N/A	0.265	1	QPSK
Tilt	Right	23790	23.4	N/A	0.140	1	QPSK
Touch	Right	23790	24.2	N/A	0.310	2	QPSK
Touch	Right	23790	24.1	N/A	0.320	3	QPSK
Touch	Right	23790	22.5	N/A	0.215	1	16QAM
Touch	Right	23790	23.9	N/A	0.276	2	16QAM
Touch	Right	23790	23.8	N/A	0.286	3	16QAM
Touch	Right	23780	24.2	N/A	0.341	3	QPSK
Touch	Right	23800	23.8	N/A	0.315	3	QPSK
Note(s):							

- 1. 50% RB Allocation centred within the channel Bandwidth.
- 2. 1 RB Allocation Low End of the Channel Edge.
- 3. 1 RB Allocation High End of the Channel Edge.

According to 941225 D05 SAR for LTE Devices v01

- A) Begin by measuring SAR on the high, middle and low (H, M, L) channels using the largest channel bandwidth3, in QPSK with 50% RB allocation centered within the channel bandwidth.
 - I) When the SAR of a channel measured in A) is > 1.45 W/kg, also measure SAR for that channel using QPSK with 100% RB allocation.
 - a) If the highest SAR measured in I) is > 1.45 W/kg, measure SAR on all channels (H, M, L).
- B) Measure SAR in QPSK with 1 RB allocated at the high end of the channel edge using the highest SAR channel measured in A); and then repeat the measurement at the low end of the channel edge.
 - II) If the SAR measured for a 1 RB configuration in B) is > 1.45 W/kg, test that 1 RB configuration on all channels (H, M, L).

Page: 66 of 472 RFI Global Services Ltd.

Test Report

Serial No: RFI-SAR-RP88281JD02A V2.0 Version 2.0 Issue Date: 21 August 2012

7.2.26. Specific Absorption Rate - LTE Band 17; 10 MHz Channel BW Hotspot Mode **Configuration 1g**

Power Back-off Disabled Test Summary:

Tissue Volume: 1g

Maximum Level (W/kg): 0.488

Environmental Conditions:

Temperature Variation in Lab (°C): 23.0 to 23.0 Temperature Variation in Liquid (°C): 21.0 to 21.0

Results:

EUT Position	Phantom Configuration	Channel Number	Meas. Avg. Power (dBm)	Power Back-off (dB)	Meas. Level (W/Kg)	Note(s)	Mod.
Front of EUT Facing Phantom	Flat (SAM)	23790	23.4	N/A	0.410	1, 2	QPSK
Back of EUT Facing Phantom	Flat (SAM)	23790	23.4	N/A	0.411	1, 2	QPSK
Left Hand Side of EUT Facing Phantom	Flat (SAM)	23790	23.4	N/A	0.284	1, 2	QPSK
Right Hand Side of EUT Facing Phantom	Flat (SAM)	23790	23.4	N/A	0.402	1, 2	QPSK
Bottom of EUT Facing Phantom	Flat (SAM)	23790	23.4	N/A	0.211	1, 2	QPSK

Page: 67 of 472 RFI Global Services Ltd.

Version 2.0 Issue Date: 21 August 2012

Specific Absorption Rate - LTE Band 17; 10 MHz Channel BW Hotspot Mode Configuration 1g (Continued):

EUT Position	Phantom Configuration	Channel Number	Meas. Avg. Power (dBm)	Power Back-off (dB)	Meas. Level (W/Kg)	Note(s)	Mod.
Back of EUT Facing Phantom	Flat (SAM)	23790	24.2	N/A	0.484	1, 3	QPSK
Back of EUT Facing Phantom	Flat (SAM)	23790	24.1	N/A	0.474	1, 4	QPSK
Back of EUT Facing Phantom	Flat (SAM)	23790	22.5	N/A	0.323	1, 2	16QAM
Back of EUT Facing Phantom	Flat (SAM)	23790	23.9	N/A	0.391	1, 3	16QAM
Back of EUT Facing Phantom	Flat (SAM)	23790	23.8	N/A	0.391	1, 4	16QAM
Back of EUT Facing Phantom	Flat (SAM)	23780	24.3	N/A	0.456	1, 3	QPSK
Back of EUT Facing Phantom	Flat (SAM)	23800	24.2	N/A	0.488	1, 3	QPSK

Note(s):

- 1. SAR measurements were performed with the closest edge of the EUT at a separation distance of 10mm from the 'SAM' phantom flat section.
- 2. 50% RB Allocation centred within the channel Bandwidth.
- 3. 1 RB Allocation Low End of the Channel Edge.
- 4. 1 RB Allocation High End of the Channel Edge.

According to 941225 D05 SAR for LTE Devices v01

- A) Begin by measuring SAR on the high, middle and low (H, M, L) channels using the largest channel bandwidth3, in QPSK with 50% RB allocation centered within the channel bandwidth.
 - I) When the SAR of a channel measured in A) is > 1.45 W/kg, also measure SAR for that channel using QPSK with 100% RB allocation.
 - a) If the highest SAR measured in I) is > 1.45 W/kg, measure SAR on all channels (H, M, L).
- B) Measure SAR in QPSK with 1 RB allocated at the high end of the channel edge using the highest SAR channel measured in A); and then repeat the measurement at the low end of the channel edge.
 - II) If the SAR measured for a 1 RB configuration in B) is > 1.45 W/kg, test that 1 RB configuration on all channels (H, M, L).

Page: 68 of 472 RFI Global Services Ltd.

Test Report

Serial No: RFI-SAR-RP88281JD02A V2.0 Version 2.0 Issue Date: 21 August 2012

7.2.27. Specific Absorption Rate - LTE Band 17; 10 MHz Channel BW Body-Worn **Configuration 1**q **Power Back-off Disabled**

Test Summary:

Tissue Volume: 1g

0.353 Maximum Level (W/kg):

Environmental Conditions:

Temperature Variation in Lab (°C): 23.0 to 23.0

Temperature Variation in Liquid (°C): 21.0 to 21.0

Results:

EUT Position	Phantom Configuration	Channel Number	Meas. Avg. Power (dBm)	Power Back-off (dB)	Meas. Level (W/Kg)	Note(s)	Mod.
Back of EUT Facing Phantom	Flat (SAM)	23790	24.2	N/A	0.353	1, 2, 3, 5	QPSK
Back of EUT Facing Phantom	Flat (SAM)	23780	24.3	N/A	0.349	1, 2, 3, 5	QPSK
Back of EUT Facing Phantom	Flat (SAM)	23800	24.2	N/A	0.345	1, 2, 3, 5	QPSK
Back of EUT Facing Phantom With PHF	Flat (SAM)	23790	24.2	N/A	0.273	1, 2, 3, 4	QPSK

Note(s):

- 1. 1 RB Allocation Low End of the Channel Edge.
- 2. Back of EUT (QPSK 1 RB Allocation Low End of the Channel Edge), is the worst case configuration from Hotspot Mode and used for Body-Worn Configuration.
- 3. SAR measurements were performed with the closest edge of the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.
- 4. Personal Hands-Free Kit attached, using the worst-case configuration acquired.
- 5. Although the above configuration for body-worn overlapped in hotspot mode at the customer request, assessment was performed at 15mm for body-worn configuration. This result can be considered as extra information.

Page: 69 of 472 RFI Global Services Ltd.

7.2.28. Specific Absorption Rate - Wi-Fi 2450 MHz Head Configuration 1g **Power Back-off Disabled**

Test Summary:

Tissue Volume: 1g

Maximum Level (W/kg): 0.431

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0

Temperature Variation in Liquid (°C): 23.1 to 23.1

Results:

EUT Position	Phantom Configuration	Channel Number	Meas. Avg. Power (dBm)	Power Back-off (dB)	Meas. Level (W/Kg)	Note(s)	Mod.
Touch	Left	6	18.0	N/A	0.321	1	DBPSK
Tilt	Left	6	18.0	N/A	0.317	1	DBPSK
Touch	Right	6	18.0	N/A	0.143	1	DBPSK
Tilt	Right	6	18.0	N/A	0.150	1	DBPSK
Touch	Left	1	18.1	N/A	0.431	1	DBPSK
Touch	Left	11	18.0	N/A	0.276	1	DBPSK
Note(s):							

1. WLAN 802.11b 1Mbps

Page: 70 of 472 RFI Global Services Ltd.

^{*}KDB 248227 - SAR is not required for 802.11g/n channels when the maximum average output power is less than ¼ dB higher than that measured on the corresponding 802.11b channels.

Issue Date: 21 August 2012

7.2.29.Specific Absorption Rate - Wi-Fi 2450 MHz Hotspot Mode Configuration 1g Power Back-off Disabled Test Summary:

Tissue Volume: 1g

Maximum Level (W/kg): 0.459

Environmental Conditions:

Temperature Variation in Lab (°C): 23.0 to 23.0

Temperature Variation in Liquid (°C): 22.2 to 22.2

Results:

EUT Position	Phantom Configuration	Channel Number	Meas. Avg. Power (dBm)	Power Back-off (dB)	Meas. Level (W/Kg)	Note(s)	Mod.
Front of EUT Facing Phantom	Flat (SAM)	6	18.0	N/A	0.081	1, 2	DBPSK
Back of EUT Facing Phantom	Flat (SAM)	6	18.0	N/A	0.380	1, 2	DBPSK
Left Hand Side of EUT Facing Phantom	Flat (SAM)	6	18.0	N/A	0.016	1, 2	DBPSK
Right Hand Side of EUT Facing Phantom	Flat (SAM)	6	18.0	N/A	0.145	1, 2	DBPSK
Top of EUT Facing Phantom	Flat (SAM)	6	18.0	N/A	0.172	1, 2	DBPSK
Back of EUT Facing Phantom	Flat (SAM)	1	18.1	N/A	0.403	1, 2	DBPSK
Back of EUT Facing Phantom	Flat (SAM)	11	18.0	N/A	0.459	1, 2	DBPSK

Note(s): 1. WLAN 802.11b 1Mbps

Page: 71 of 472 RFI Global Services Ltd.

^{2.} EUT Supports Hotspot; SAR measurements were performed with the closest edge of the EUT at a separation distance of 10mm from the 'SAM' phantom flat section.

7.2.30. Specific Absorption Rate - Wi-Fi 2450 MHz Body-Worn Configuration 1g **Power Back-off Disabled**

Test Summary:

Tissue Volume: 1g

Maximum Level (W/kg): 0.320

Environmental Conditions:

Temperature Variation in Lab (°C): 23.0 to 23.0

Temperature Variation in Liquid (°C): 22.2 to 22.2

Results:

EUT Position	Phantom Configuration	Channel Number	Meas. Avg. Power (dBm)	Power Back-off (dB)	Meas. Level (W/Kg)	Note(s)	Mod.
Back of EUT Facing Phantom	Flat (SAM)	11	18.0	N/A	0.174	1, 2, 3, 5	DBPSK
Back of EUT Facing Phantom With PHF	Flat (SAM)	11	18.0	N/A	0.320	1, 2, 3, 4	DBPSK

Note(s):

- 1. The Worst case configuration of Wi-Fi Hotspot Mode is applied on Body-Worn configuration.
- 2. WLAN 802.11b 1Mbps
- 3. EUT Supports Hotspot; SAR measurements were performed with the closest edge of the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.
- 4. Personal Hands-Free Kit attached, using the worst-case configuration acquired.
- 5. Although the above configuration for body-worn overlapped in hotspot mode at the customer request, assessment was performed at 15mm for body-worn configuration. This result can be considered as extra information.

RFI Global Services Ltd. Page: 72 of 472

Issue Date: 21 August 2012

7.2.31.Specific Absorption Rate- Wi-Fi 802.11a 5GHz Head Configuration 1g Power Back-off Disabled Test Summary:

Tissue Volume: 1g
Maximum Level (W/kg): 0.793

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0

Temperature Variation in Liquid (°C): 22.0 to 22.0

Results:

EUT Position	Phantom Configuration	Channel Number	Uplink Meas. Burst Avg. Power (dBm)	Power Back-off (dB)	Meas. Level (W/Kg)	Note(s)	Mod.
Touch	Left	36	15.1	N/A	0.652	1, 3	DBPSK
Tilt	Left	36	15.1	N/A	0.462	1, 3	DBPSK
Touch	Right	36	15.1	N/A	0.244	1, 3	DBPSK
Tilt	Right	36	15.1	N/A	0.248	1,3	DBPSK
Touch	Left	52	14.5	N/A	0.793	1, 3	DBPSK
Touch	Left	136	14.1	N/A	0.558	2, 3	DBPSK
Touch	Left	104	13.4	N/A	0.597	2, 3	DBPSK
Touch	Left	116	13.6	N/A	0.530	2, 3	DBPSK
Touch	Left	124	13.6	N/A	0.551	2, 3	DBPSK
Touch	Left	165	14.1	N/A	0.474	1, 3	DBPSK

Note(s):

- 1. For frequency bands with an operating range of < 100 MHz, when the SAR measured for the highest output power channel within is ≤ 0.8 W/kg, SAR for the remaining channels is not required. Per KDB 447498 1) e) i)
- 2. For frequency bands with an operating range of < 200 MHz, when the SAR for the highest output power channel within is ≤ 0.4 W/kg, SAR for the remaining channels is not required. Per KDB 447498 1) e) i)
- 3. WLAN 802.11a 6Mbps

Page: 73 of 472 RFI Global Services Ltd.

Specific Absorption Rate - Wi-Fi 802.11n HT40 5GHz Head Configuration 1g **Power Back-off Disabled Results:**

EUT Position	Phantom Configuration	Channel Number	Meas. Avg. Power (dBm)	Power Back-off (dB)	Meas. Level (W/Kg)	Note(s)	Mod.
Touch	Left	38	13.4	N/A	0.497	1, 2, 4	DBPSK
Touch	Left	54	12.8	N/A	0.602	1, 2, 4	DBPSK
Touch	Left	134	11.9	N/A	0.298	1, 3, 4	DBPSK
Touch	Left	159	12.5	N/A	0.195	1, 2, 4	DBPSK

Note(s):

- 1. The Worst case and most conservative configuration of Wi-Fi 802.11a Mode is applied to Wi-Fi 802.11n HT40 mode.
- 2. For frequency bands with an operating range of < 100 MHz, when the SAR measured for the highest output power channel within is ≤ 0.8 W/kg, SAR for the remaining channels is not required. Per KDB 447498 1) e) i)
- 3. For frequency bands with an operating range of < 200 MHz, when the SAR for the highest output power channel within is ≤ 0.4 W/kg, SAR for the remaining channels is not required. Per KDB 447498 1) e) i)
- 4. WLAN 802.11n 13.5Mbps

Page: 74 of 472 RFI Global Services Ltd.

Issue Date: 21 August 2012

7.2.32.Specific Absorption Rate - Wi-Fi 802.11a 5GHz Hotspot Mode Configuration 1g Power Back-off Disabled Test Summary:

Tissue Volume: 1g

Maximum Level (W/kg): 0.207

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0

Temperature Variation in Liquid (°C): 24.0 to 24.0

Results:

itesuits.							
EUT Position	Phantom Configuration	Channel Number	Meas. Avg. Power (dBm)	Power Back-off (dB)	Meas. Level (W/Kg)	Note(s)	Mod.
Front of EUT Facing Phantom	Flat (SAM)	36	15.1	N/A	0.100	1, 2, 4	DBPSK
Back of EUT Facing Phantom	Flat (SAM)	36	15.1	N/A	0.117	1, 2, 4	DBPSK
Left Hand Side of EUT Facing Phantom	Flat (SAM)	36	15.1	N/A	0.005	1, 2, 4	DBPSK
Right Hand Side of EUT Facing Phantom	Flat (SAM)	36	15.1	N/A	0.207	1, 2, 4	DBPSK
Top of EUT Facing Phantom	Flat (SAM)	36	15.1	N/A	0.127	1, 2, 4	DBPSK
Right Hand Side of EUT Facing Phantom	Flat (SAM)	52	14.5	N/A	0.188	1, 2, 4	DBPSK
Right Hand Side of EUT Facing Phantom	Flat (SAM)	136	14.1	N/A	0.064	1, 3, 4	DBPSK
Right Hand Side of EUT Facing Phantom	Flat (SAM)	165	16.4	N/A	0.119	1, 2, 4	DBPSK

Note(s):

- 1. EUT Supports Hotspot; SAR measurements were performed with the closest edge of the EUT at a separation distance of 10mm from the 'SAM' phantom flat section.
- 2. For frequency bands with an operating range of < 100 MHz, when the SAR measured for the highest output power channel within is ≤ 0.8 W/kg, SAR for the remaining channels is not required. Per KDB 447498 1) e) i)
- 3. For frequency bands with an operating range of < 200 MHz, when the SAR for the highest output power channel within is ≤ 0.4 W/kg, SAR for the remaining channels is not required. Per KDB 447498 1) e) i)
- 4. WLAN 802.11a 6Mbps

Page: 75 of 472 RFI Global Services Ltd.

Issue Date: 21 August 2012

Specific Absorption Rate - Wi-Fi 802.11n HT40 5GHz Hotspot Mode Configuration 1g Power Back-off Disabled Results:

EUT Position	Phantom Configuration	Channel Number	Meas. Avg. Power (dBm)	Power Back-off (dB)	Meas. Level (W/Kg)	Note(s)	Mod.
Right Hand Side of EUT Facing Phantom	Flat (SAM)	38	13.4	N/A	0.165	1, 2, 3	DBPSK
Right Hand Side of EUT Facing Phantom	Flat (SAM)	54	12.8	N/A	0.160	1, 2, 3	DBPSK
Right Hand Side of EUT Facing Phantom	Flat (SAM)	134	11.9	N/A	0.125	1, 2, 4	DBPSK
Right Hand Side of EUT Facing Phantom	Flat (SAM)	159	12.5	N/A	0.082	1, 2, 3	DBPSK
Note(s):							

- 1. The Worst case configuration and most conservative of Wi-Fi Hotspot Mode 802.11a is applied on Wi-Fi Hotspot Mode 802.11n HT40.
- 2. EUT Supports Hotspot; SAR measurements were performed with the closest edge of the EUT at a separation distance of 10mm from the 'SAM' phantom flat section.
- 3. For frequency bands with an operating range of < 100 MHz, when the SAR measured for the highest output power channel within is ≤ 0.8 W/kg, SAR for the remaining channels is not required. Per KDB 447498 1) e) i)
- 4. For frequency bands with an operating range of < 200 MHz, when the SAR for the highest output power channel within is ≤ 0.4 W/kg, SAR for the remaining channels is not required. Per KDB 447498 1) e) i)
- 5. WLAN 802.11n 13.5Mbps

Page: 76 of 472 RFI Global Services Ltd.

7.2.33. Specific Absorption Rate - Wi-Fi 5GHz Body-Worn Configuration 1g **Power Back-off Disabled**

Test Summary:

Tissue Volume: 1g

Maximum Level (W/kg): 0.170

Environmental Conditions:

Temperature Variation in Lab (°C): 24.0 to 24.0

Temperature Variation in Liquid (°C): 24.0 to 24.0

Results:

EUT Position	Phantom Configuration	Channel Number	Meas. Avg. Power (dBm)	Power Back-off (dB)	Meas. Level (W/Kg)	Note(s)	Mod.
Back of EUT Facing Phantom	Flat (SAM)	36	15.1	N/A	0.076	1, 2, 3, 5	DBPSK
Back of EUT Facing Phantom With PHF	Flat (SAM)	36	15.1	N/A	0.170	1, 2, 3, 4	DBPSK

Note(s):

- 1. The Worst case configuration of Wi-Fi Hotspot Mode is applied on Body-Worn configuration.
- 2. WLAN 802.11a 6Mbps
- 3. EUT Supports Hotspot; SAR measurements were performed with the closest edge of the EUT at a separation distance of 15mm from the 'SAM' phantom flat section.
- 4. Personal Hands-Free Kit attached, using the worst-case configuration acquired.
- 5. Although the above configuration for body-worn overlapped in hotspot mode at the customer request, assessment was performed at 15mm for body-worn configuration. This result can be considered as extra information.

Page: 77 of 472 RFI Global Services Ltd.

Issue Date: 21 August 2012

7.2.34.Conducted Average Power Measurement	nt 2G: GSM850
Power Back-Off Disabled	

Channel Number	Frequency (MHZ)	Power (dBm)	Avg. Burst Power with consideration for uplink time slot (dBm)	Note
128	824.2	33.9	24.9	Conducted, GMSK
190	836.6	34.0	25.0	Conducted, GMSK
251	848.8	34.1	25.1	Conducted, GMSK

GPRS850 - Measured Average Power without consideration for Uplink time slots:

Channel Number	Frequency (MHZ)	Power (dBm) 1Uplink	Power (dBm) 2Uplink	Power (dBm) 3Uplink	Power (dBm) 4Uplink	Note
128	824.2	33.9	31.5	29.2	27.7	Conducted, GMSK
190	836.6	34.0	31.4	28.9	27.5	Conducted, GMSK
251	848.8	34.1	31.4	28.8	27.4	Conducted, GMSK

GPRS850 - Calculated Value with consideration for Uplink time slots:

Channel Number	Frequency (MHZ)	Power (dBm) 1Uplink	Power (dBm) 2Uplink	Power (dBm) 3Uplink	Power (dBm) 4Uplink	Note
128	824.2	24.9	25.5	24.9	24.7	Conducted, GMSK
190	836.6	25.0	25.4	24.6	24.5	Conducted, GMSK
251	848.8	25.1	25.4	24.5	24.4	Conducted, GMSK

EDGE850 - Measured Average Power without consideration for Uplink time slots:

Channel Number	Frequency (MHZ)	Power (dBm) 1Uplink	Power (dBm) 2Uplink	Power (dBm) 3Uplink	Power (dBm) 4Uplink	Note
128	824.2	33.9	31.6	29.2	27.7	Conducted, GMSK
190	836.6	34.0	31.4	29.0	27.5	Conducted, GMSK
251	848.8	34.1	31.4	28.8	27.4	Conducted, GMSK

EDGE850 - Calculated Value with consideration for Uplink time slots:

Channe I Number	Frequency (MHZ)	Power (dBm) 1Uplink	Power (dBm) 2Uplink	Power (dBm) 3Uplink	Power (dBm) 4Uplink	Note
128	824.2	24.9	25.6	24.9	24.7	Conducted, GMSK
190	836.6	25.0	25.4	24.7	24.5	Conducted, GMSK
251	848.8	25.1	25.4	24.5	24.4	Conducted, GMSK

Note:

Scale factor for uplink time slot:

- 1. 1 Uplink: time slot ratio = $8:1 \Rightarrow 10*\log(8/1) = 9.03 \text{ dB}$
- 2. 2 Uplink: time slot ratio = $8:2 \Rightarrow 10 \log(8/2) = 6.02 \text{ dB}$
- 3. 3 Uplink: time slot ratio = $8:3 \Rightarrow 10*log(8/3) = 4.26 dB$
- 4. 4 Uplink: time slot ratio = $8:4 \Rightarrow 10*\log(8/4) = 3.01 \text{ dB}$

Page: 78 of 472 RFI Global Services Ltd.

Issue Date: 21 August 2012

EDGE (MCS9 ~ 8PSK) EDGE850 - Measured Average Power without consideration for Uplink time slots:

Channel Number	Frequency (MHZ)	Power (dBm) 1Uplink	Power (dBm) 2Uplink	Power (dBm) 3Uplink	Power (dBm) 4Uplink	Note
128	824.2	27.4	25.8	24.6	22.8	Conducted, 8PSK
190	836.6	27.4	25.7	24.5	22.7	Conducted, 8PSK
251	848.8	27.4	25.7	24.5	22.7	Conducted, 8PSK

EDGE850 - Calculated Value with consideration for Uplink time slots:

Channel Number	Frequency (MHZ)	Power (dBm) 1Uplink	(dBm) (dBm)		Power (dBm) 4Uplink	Note	
128	824.2	18.4	19.6	20.3	19.8	Conducted, 8PSK	
190	836.6	18.4	19.5	20.2	19.7	Conducted, 8PSK	
251	848.8	18.4	19.5	20.2	19.7	Conducted, 8PSK	

Note:

Scale factor for uplink time slot:

- 1. 1 Uplink: time slot ratio = $8:1 \Rightarrow 10*\log(8/1) = 9.03 \text{ dB}$
- 2. 2 Uplink: time slot ratio = $8:2 \Rightarrow 10*\log(8/2) = 6.02 \text{ dB}$
- 3. 3 Uplink: time slot ratio = $8:3 \Rightarrow 10*\log(8/3) = 4.26 \text{ dB}$
- 4. 4 Uplink: time slot ratio = $8:4 \Rightarrow 10*\log(8/4) = 3.01 \text{ dB}$

Page: 79 of 472 RFI Global Services Ltd.

Issue Date: 21 August 2012

7.2.35.Conducted Average Power Measurement 2G: Po	CS1900
Power Back-Off Disabled	

Channel Number	Frequency (MHZ)	GSM TX Power (dBm)	Avg. Burst Power with consideration for uplink time slot (dBm)	Note
512	1850.2	29.5	20.5	Conducted, GMSK
661	1880.0	29.5	20.5	Conducted, GMSK
810	1909.8	29.6	20.6	Conducted, GMSK

GPRS1900 - Measured Average Power without consideration for Uplink time slots:

Channel Number	Frequency (MHZ)	Power (dBm) 1Uplink	Power (dBm) 2Uplink	Power (dBm) 3Uplink	Power (dBm) 4Uplink	Note
512	1850.2	29.5	26.9	23.8	22.6	Conducted, GMSK
661	1880.0	29.5	26.8	23.7	22.5	Conducted, GMSK
810	1909.8	29.6	27.1	23.9	22.6	Conducted, GMSK

GPRS1900 - Calculated Value with consideration for Uplink time slots:

Channel Number	Frequency (MHZ)	Power (dBm) 1Uplink	Power (dBm) 2Uplink	Power (dBm) 3Uplink	Power (dBm) 4Uplink	Note
512	1850.2	20.5	20.9	19.5	19.6	Conducted, GMSK
661	1880.0	20.5	20.8	19.4	19.5	Conducted, GMSK
810	1909.8	20.6	21.1	19.6	19.6	Conducted, GMSK

EDGE1900 - Measured Average Power without consideration for Uplink time slots:

Channel Number	Frequency (MHZ)	Power (dBm) 1Uplink	Power (dBm) 2Uplink	Power (dBm) 3Uplink	Power (dBm) 4Uplink	Note
512	1850.2	29.3	26.7	23.6	22.6	Conducted, GMSK
661	1880.0	29.3	26.6	23.6	22.3	Conducted, GMSK
810	1909.8	29.4	26.9	23.7	22.5	Conducted, GMSK

EDGE1900 - Calculated Value with consideration for Uplink time slots:

Channel Number	Frequency (MHZ)	Power (dBm) 1Uplink	Power (dBm) 2Uplink	Power (dBm) 3Uplink	Power (dBm) 4Uplink	Note
512	1850.2	20.3	20.7	19.3	19.6	Conducted, GMSK
661	1880.0	20.3	20.6	19.3	19.3	Conducted, GMSK
810	1909.8	20.4	20.9	19.4	19.5	Conducted, GMSK

Note:

Scale factor for uplink time slot:

- 1. 1 Uplink: time slot ratio = $8:1 \Rightarrow 10*\log(8/1) = 9.03 \text{ dB}$
- 2. 2 Uplink: time slot ratio = $8:2 \Rightarrow 10 \log(8/2) = 6.02 \text{ dB}$
- 3. 3 Uplink: time slot ratio = $8:3 \Rightarrow 10*\log(8/3) = 4.26 \text{ dB}$
- 4. 4 Uplink: time slot ratio = $8:4 \Rightarrow 10*\log(8/4) = 3.01 \text{ dB}$

Page: 80 of 472 RFI Global Services Ltd.

sion 2.0 Issue Date: 21 August 2012

EDGE (MCS9 ~ 8PSK):

EDGE1900 - Measured Average Power without consideration for Uplink time slots:

Channel Number	Frequency (MHZ)	Power (dBm) 1Uplink	Power (dBm) 2Uplink	Power (dBm) 3Uplink	Power (dBm) 4Uplink	Note	
512	1850.2	27.0	25.2	24.0	22.7	Conducted, 8PSK	
661	1880.0	26.9	25.1	23.9	22.7	Conducted, 8PSK	
810	1909.8	26.9	25.2	23.9	22.7	Conducted, 8PSK	

EDGE1900 - Calculated Value with consideration for Uplink time slots:

Channel Number	Frequency (MHZ)	Power (dBm) 1Uplink	Power (dBm) 2Uplink	Power (dBm) 3Uplink	Power (dBm) 4Uplink	Note
512	1850.2	18.0	19.2	19.7	19.7	Conducted, 8PSK
661	1880.0	17.9	19.1	19.6	19.7	Conducted, 8PSK
810	1909.8	17.9	19.2	19.6	19.7	Conducted, 8PSK

Note:

Scale factor for uplink time slot:

- 1. 1 Uplink: time slot ratio = $8:1 \Rightarrow 10*\log(8/1) = 9.03 \text{ dB}$
- 2. 2 Uplink: time slot ratio = $8:2 \Rightarrow 10*\log(8/2) = 6.02 \text{ dB}$
- 3. 3 Uplink: time slot ratio = $8:3 \Rightarrow 10*\log(8/3) = 4.26 \text{ dB}$
- 4. 4 Uplink: time slot ratio = $8:4 \Rightarrow 10*\log(8/4) = 3.01 \text{ dB}$

Page: 81 of 472 RFI Global Services Ltd.

Conducte	d Averag	e Pow	er Mea	asurer	nent 3	G: Po	wer Bac	k-Off Di	sabled		
Mod	les		HSE	PA				HSPA			WCDMA
Sets		1	2	3	4	1	2	3	4	5	Voice / RMC 12.2kbps
Band	Channel					Power [dBm]	Power [dBm]				
1900 (Band II)	9262 9662	24.8	24.6	24.2	24.2	24.7	24.7	24.2	24.8	24.3	24.8
	9400 9800	24.7	24.6	24.2	24.2	24.7	24.7	24.2	24.7	24.3	24.7
	9538 9938	25.0	24.7	24.6	24.6	24.8	24.8	24.5	25.0	24.7	25.0
	1312 1537	25.2	24.8	24.6	24.6	24.8	25.1	24.7	25.3	24.6	25.3
1700 (Band IV)	1412 1637	25.2	24.7	24.4	24.4	24.6	24.9	24.5	25.1	24.5	25.3
	1513 1738	25.2	24.7	24.5	24.5	24.9	25.0	24.6	25.2	24.5	25.3
	4132 4357	25.2	24.7	24.2	24.4	24.7	25.2	24.7	25.3	24.5	25.3
850 (Band V)	4183 4408	25.0	24.7	24.2	24.2	24.7	24.9	24.3	25.1	24.3	25.2
	4233 4458	25.3	25.0	24.5	24.6	24.8	25.2	24.7	25.4	24.6	25.4

7.2.36.Conducted Average Power Measurement 3G: Power Back-Off Enabled

Mod	les		HSE	PA				HSPA			WCDMA
Sets	Sets		2	3	4	1	2	3	4	5	Voice / RMC 12.2kbps
Band	Channel						Power [dBm]	Power [dBm]	Power [dBm]		Power [dBm]
	9262 9662	23.4	23.2	22.6	22.6	23.1	23.1	22.6	23.4	22.6	23.4
1900 (Band II)	9400 9800	23.3	23.1	22.5	22.6	23.0	23.0	22.5	23.3	22.5	23.3
	9538 9938	23.6	23.4	23.0	23.0	23.4	23.5	22.9	23.6	22.8	23.6
	1312 1537	21.8	21.6	20.4	20.3	21.4	21.6	21.0	21.8	20.9	21.8
1700 (Band IV)	1412 1637	21.7	21.5	20.4	20.3	21.5	21.6	21.0	21.7	20.9	21.8
	1513 1738	21.8	21.6	20.4	20.4	21.5	21.6	21.0	21.7	21.0	21.8
ßc		2	12	15	15	11	6	15	2	15	
ßd		15	15	8	4	15	15	9	15	15	
ΔACK, ΔNACK, ΔCQI		8	8	8	8	8	8	8	8	8	
AG	ίV	-	-	-	-	20	12	15	17	21	

Test Report Serial No: RFI-SAR-RP88281JD02A V2.0

Version 2.0 Issue Date: 21 August 2012

The module power levels were measured in both HSPA and 3G RMC 12.2kbps modes and compared to ensure the correct mode of operation had been established.

The following tables taken from FCC 3G SAR procedures (KDB 941225 D01 SAR test for 3G devices v02) below were applied using an Agilent 8960 series 10 wireless communications test set which supports 3G / HSDPA release 5 / HSPA release 6.

Sub-test Set	Sub-test Setup for Release 5 HSDPA											
Sub-test	βς	β_d	B _d (SF)	$\beta_{c/}\beta_{d}$	${\beta_{hs}}^{(1)}$	SM (dB) ⁽²⁾						
1	2/15	15/15	64	2/15	4/15	0.0						
2	12/15 ⁽³⁾	15/15 ⁽³⁾	64	12/15 ⁽³⁾	24/15	1.0						
3	15/15	8/15	64	15/8	30/15	1.5						
4	15/15	4/15	64	15/4	30/15	1.5						

Note 1: $\Delta_{ACK, \ \Delta_{NACK}}$ and Δ_{CQI} = 8 \Leftrightarrow A_{hs} = β_{hs}/β_c = 30/15 \Leftrightarrow β_{hs} = 30/15 * β_c

Note 2: CM = 1 for $\beta_{c/}$ β_d = 12/15, $B_{hs}\!/\beta_c$ = 24/15

Note 3: For subtest 2 the $\beta_{c'}$ β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 11/15 and β_d = 15/15

Sub	Sub-test Setup for Release 6 HSPA												
Sub- test	βο	βd	B _d (SF)	β₀/βd	β _{hs} ⁽¹⁾	B _{oc}	B _{od}	B _{od} (SF)	B _{od} (codes)	CM ⁽²⁾ (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E- TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	31/15	B _{al1} : 47/15 B _{al2} : 47/15	4	1	2.0	1.0	15	92
4	2/15	15/15	64	2/15	2/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	24/15	24/15	134/15	4	1	1.0	0.0	21	81

Note 1: Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 8 \Leftrightarrow A_{hs} = $\beta_{\text{hs}}/\beta_{\text{c}}$ = 30/15 \Leftrightarrow β_{hs} = 30/15 * β_{c}

Note 2: CM = 1 for $\beta_{c'}$ β_d = 12/15, $B_{hs'}$ β_c = 24/15. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH AND E-DPCCH for the MPR is based on the relative CM difference.

Note 3: For subtest 1 the $\beta_{c'}$ β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 10/15 and β_d = 15/15.

Note 4: For subtest 5 the $\beta_{c'}$ β_{d} ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_{c} = 14/15 and β_{d} = 15/15.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Tavle 5.1g.

Note 6: Bod can not be set directly; it is set by Absolute Grant Value.

Page: 83 of 472 RFI Global Services Ltd.

Issue Date: 21 August 2012

7.2.37.Conducted Average Power Measurement: LTE Band 2 Power Back-off Disabled

Ch. BW Modulations RB config S are presented by the config. Name (dem) (dem	Power	Back-off Dis	abled							
Ch. BW Modulations Config Offset MPR (dBm) Frequency (dBm) Frequency (RB0.0 MHz (H)cm) Prequency (RB0.0 MHz (M)cm) Prequency (RB0.0 MHz (M)cm) Prequency (RB0.0 MHz (M)cm) Prequency (RB0.0 MHz (M)cm) Prequency (RB0.				-				Measur	ed Avg Power (d	Bm).
20 MHz Port	Ch. BW	Modulations				MPR	Power	1860.0 MHz	1880.0 MHz	1900.0
20 MHz			1	Low	0	(0)	23.0	24.2	24.3	24.2
Tequency Tequency	20 MH-	OBSK	1	High	99	(0)	23.0	24.1	24.1	24.0
The lange of th	20 IVITIZ	QFSN	50	Mid	25	(1)	22.0	23.3	23.4	23.6
1 High 99 (1) 22.0 23.4 22.9 23.2 22.3 22.4 100 22.2 22.2 22.3 22.4 100 22.2 22.2 22.3 22.4 100 22.2 22.2 22.3 22.4 100 22.2 22.2 22.3 22.4 100 22.2 22.2 22.3 22.4 100 22.2 22.2 22.3 22.4 100 22.2 22.2 22.3 22.4 100 22.2 22.2 22.3 22.4 100 22.2 22.2 22.3 22.4 100 22.2 22.2 22.3 22.4 100 100 100 100 100 100 100 100 100 10			100		0	(1)	22.0	23.3	23.3	23.5
The large of th			1	Low	0	(1)	22.0	23.6	23.2	23.4
The color of th	20 MH=	160AM	1	High	99	(1)	22.0	23.4	22.9	23.2
Ch. BW Modulations RB Config Start RB Offset MPR Actual Power (dBm) Frequency (18m) Frequency 1857.5 MHz (Low) Frequency 1880.0 MHz (High) Frequency 1902.5 MHz (High) 15 MHz Actual Power (dBm) Frequency 1857.5 MHz (Low) 24.2 24.2 23.8 1 High 71 (0) 23.0 24.2 24.2 23.8 2 Additions 1 High 71 (0) 23.0 24.2 24.3 24.1 36 Mid 18 (1) 22.0 23.4 23.3 23.4 2 Additions 1 Low 0 (1) 22.0 23.5 23.3 23.4 2 Additions 1 High 71 (1) 22.0 23.6 23.4 22.8 2 Additions	20 IVID2	IOQAW	50	Mid	25	(2)	21.0	22.2	22.2	22.3
Ch. BW Modulations RB Config Start RB Offset MPR Max Power (dBm) Frequency (1857.5 MHz (Low)) Frequency (1880.0 MHz (High)) Frequency (1902.5 MHz (100		0	(2)	21.0	22.2	22.3	22.4
Ch. BW Modulations Config Offset MPR (dBm) Frequency 1857.5 MHz (Low) Frequency 1880.0 MHz (Middle) Frequency 1880.0 MHz (Middle) Frequency 1880.0 MHz (Middle) Frequency 1880.0 MHz (Middle) Power (dBm) Frequency 1880.0 MHz (Middle) Frequency 1880.0 MHz (Middle) Frequency 1880.0 MHz (Middle) Power (dBm) Frequency 1880.0 MHz (Middle) Frequency 1880.0 MHz (Middle) Frequency 1880.0 MHz (Middle) Power (dBm)				Cto	DD			Measur	ed Avg Power (d	Bm).
15 MHz Popsk 1 High 71 (0) 23.0 24.2 24.3 24.1 36 Mid 18 (1) 22.0 23.4 23.3 23.4 75 0 (1) 22.0 23.3 23.4 23.3 1 Low 0 (1) 22.0 23.5 23.3 23.4 1 High 71 (1) 22.0 23.5 23.3 23.4 1 High 71 (1) 22.0 23.6 23.4 22.8 1 High 71 (1) 22.0 23.6 23.4 22.8 2 1 High 71 (1) 22.0 23.6 23.4 22.8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Ch. BW	Modulations				MPR	Power	1857.5 MHz	1880.0 MHz	1902.5
15 MHz		QPSK	1	Low	0	(0)	23.0	24.2	24.2	23.8
15 MHz 16QAM 18 (1) 22.0 23.4 23.3 23.4	45 MIL-		1	High	71	(0)	23.0	24.2	24.3	24.1
15 MHz 16QAM 1 High 71 (1) 22.0 23.6 23.4 22.8 1 High 71 (1) 22.0 23.6 23.4 22.8 36 Mid 18 (2) 21.0 22.3 22.2 22.3 75 0 (2) 21.0 22.3 22.3 22.2 22.3 22.3 22.2 22.3 22.2 22.3 22.2 22.3 22.2 22.3 22.3 22.2 22.3 22.2 22.3 22.2 22.3 22.2 22.3 22.2 22.3 22.2 22.3 22.3 22.2 22.3 22.2 22.3 22.2 22.3 22.2 22.3 22.2 22.3 22.3 22.2 22.3 22.3 22.2 22.3 22.2 22.3 22.3 22.3 22.2 22.3 22.3 22.3 22.3 22.3 22.2 22.3 22.3 22.3 22.3 22.3 22.2 22.3 22.3 22.3	15 IVIHZ		36	Mid	18	(1)	22.0	23.4	23.3	23.4
1			75		0	(1)	22.0	23.3	23.4	23.4
15 MHz			1	Low	0	(1)	22.0	23.5	23.3	23.4
The image should be considered with the image should be considered as a second considered as a	15 MH=	160AM	1	High	71	(1)	22.0	23.6	23.4	22.8
Ch. BW Modulations RB Config Start RB Offset MPR Actual Max Power (dBm) Frequency 1855.0 MHz (Low) Frequency 1800.0 MHz (Middle) Frequency 1905.0 MHz (High) 10 MHz 1 Low 0 (0) 23.0 24.3 24.2 24.1 1 High 49 (0) 23.0 24.2 24.2 24.0 25 Mid 12 (1) 22.0 23.6 23.4 23.4 50 0 (1) 22.0 23.6 23.5 23.3 1 Low 0 (1) 22.0 23.4 23.3 23.3 1 High 49 (1) 22.0 23.4 23.4 23.1 10 MHz High 49 (1) 22.0 23.4 23.4 23.1 10 MHz High 49 (1) 22.0 23.4 23.4 23.1 25 Mid 12 (2) 21.0 22.5 22.2 22.3 <td>13 MHZ</td> <td>16QAM</td> <td>36</td> <td>Mid</td> <td>18</td> <td>(2)</td> <td>21.0</td> <td>22.3</td> <td>22.2</td> <td>22.3</td>	13 MHZ	16QAM	36	Mid	18	(2)	21.0	22.3	22.2	22.3
Ch. BW Modulations RB Config Start RB Offset MPR Max Power (dBm) Frequency 1855.0 MHz (Low) Frequency 1880.0 MHz (Middle) Frequency 1905.0 MHz (High) 10 MHz 1 Low 0 (0) 23.0 24.3 24.2 24.1 25 Mid 12 (1) 22.0 23.6 23.4 23.4 50 0 (1) 22.0 23.6 23.5 23.3 1 Low 0 (1) 22.0 23.4 23.3 23.3 1 High 49 (1) 22.0 23.4 23.4 23.1 10 MHz 1 High 49 (1) 22.0 23.4 23.4 23.1 10 MHz 1 High 49 (1) 22.0 23.4 23.4 23.1 25 Mid 12 (2) 21.0 22.5 22.2 22.3			75		0	(2)	21.0	22.3	22.3	22.2
Ch. BW Modulations Config Offset MPR (dBm) Power (dBm) Frequency 1855.0 MHz (Low) Frequency 1905.0 MHz (High) 10 MHz 1 Low 0 (0) 23.0 24.3 24.2 24.1 1 High 49 (0) 23.0 24.2 24.2 24.0 25 Mid 12 (1) 22.0 23.6 23.4 23.4 50 0 (1) 22.0 23.6 23.5 23.3 1 Low 0 (1) 22.0 23.4 23.3 23.3 10 MHz High 49 (1) 22.0 23.4 23.4 23.1 10 MHz 16QAM 25 Mid 12 (2) 21.0 22.5 22.2 22.3							Actual	Measur	ed Avg Power (d	Bm).
10 MHz	Ch. BW	Modulations				MPR	Power	1855.0 MHz	1880.0 MHz	1905.0
10 MHz			1	Low	0	(0)	23.0	24.3	24.2	24.1
25 Mid 12 (1) 22.0 23.6 23.4 23.4 50 0 (1) 22.0 23.6 23.5 23.3 1 Low 0 (1) 22.0 23.4 23.3 23.3 1 High 49 (1) 22.0 23.4 23.4 23.1 25 Mid 12 (2) 21.0 22.5 22.2 22.3	40.5	OP311	1	High	49	(0)	23.0	24.2	24.2	24.0
1 Low 0 (1) 22.0 23.4 23.3 23.3 1 High 49 (1) 22.0 23.4 23.4 23.1 25 Mid 12 (2) 21.0 22.5 22.2 22.3	10 MHz	QPSK	25	Mid	12	(1)	22.0	23.6	23.4	23.4
10 MHz 16QAM 1 High 49 (1) 22.0 23.4 23.4 23.1 25 Mid 12 (2) 21.0 22.5 22.2 22.3			50		0	(1)	22.0	23.6	23.5	23.3
10 MHz 16QAM 25 Mid 12 (2) 21.0 22.5 22.2 22.3			1	Low	0	(1)	22.0	23.4	23.3	23.3
25 Mid 12 (2) 21.0 22.5 22.2 22.3	40.5	400	1	High	49	(1)	22.0	23.4	23.4	23.1
50 0 (2) 21.0 22.4 22.3 22.2	10 MHz	16QAM	25	Mid	12	(2)	21.0	22.5	22.2	22.3
			50		0	(2)	21.0	22.4	22.3	22.2

Page: 84 of 472 RFI Global Services Ltd.

Issue Date: 21 August 2012 **Conducted Average Power Measurement: LTE Band 2 Power Back-off Disabled (Continued)** Measured Avg Power (dBm). Actual Start RB RB Max Ch. BW Modulations **MPR** Frequency Frequency Frequency Config Offset Power 1852.5 MHz 1880.0 MHz 1907.5 (dBm) (Middle) (Low) MHz (High) 1 Low 0 (0)23.0 24.2 24.2 24.2 High 23.0 24.3 24.0 24.1 1 24 (0)**QPSK** 5 MHz 12 Mid 6 (1) 22.0 23.5 23.5 23.6 0 23.6 25 (1) 22.0 23.6 23.4 1 Low 0 (1) 22.0 23.6 23.4 23.4 1 High 24 (1) 22.0 23.6 23.3 23.5 5 MHz 16QAM 22.4 22.4 12 Mid 6 (2)21.0 22.3 25 0 (2)21.0 22.5 22.1 22.5 Measured Avg Power (dBm). Actual Start RB RR Max Ch. BW **Modulations MPR** Frequency Frequency Frequency Config Offset Power 1851.5 MHz 1880.0 MHz 1908.5 (dBm) MHz (High) (Middle) (Low) 1 0 23.0 24.2 Low (0)24.4 24.3 1 High 14 (0)23.0 24.3 24.1 24.0 3 MHz **QPSK** 8 Mid 4 22.0 23.6 23.2 (1) 23.3 15 0 (1) 22.0 23.6 23.4 23.3 22.0 1 Low 0 (1) 23.3 23.3 23.2 1 High 14 22.0 23.4 23.1 23.1 (1) 3 MHz **16QAM** 8 Mid 4 (2) 21.0 22.4 22.3 22.3 0 21.0 22.2 22.1 22.2 15 (2)Measured Avg Power (dBm). Actual Start RB **RB** Max MPR Ch. BW **Modulations** Frequency Frequency Frequency Config Power Offset 1880.0 MHz 1850.7 MHz 1909.3 (dBm) (Low) (Middle) MHz (High) 1 Low 0 (0)23.0 24.3 24.3 24.3 5 24.2 1 High (0)23.0 24.3 24.3 1.4 MHz **QPSK** 3 Mid 2 (1) 22.0 24.2 24.4 24.4 6 0 (1) 22.0 23.1 23.1 24.4 1 Low 0 (1) 22.0 23.2 23.5 23.2 1 High 5 (1) 22.0 23.2 23.4 23.2 1.4 MHz 16QAM

Page: 85 of 472 RFI Global Services Ltd.

(2)

(2)

21.0

21.0

23.3

22.1

23.3

22.1

23.4

22.2

3

6

2

0

Mid

Issue Date: 21 August 2012

7.2.38.Conducted Average Power Measurement: LTE Band 2 Power Back-off Enabled

Power Back-off Enabled										
						Actual	Measur	ed Avg Power (d	Bm).	
Ch. BW	Modulations	RB Config		rt RB ifset	MPR	Max Power (dBm)	Frequency 1860.0 MHz (Low)	Frequency 1880.0 MHz (Middle)	Frequency 1900.0 MHz (High)	
		1	Low	0	(0)	23.0	22.6	22.5	22.6	
00 MILE	ODOK	1	High	99	(0)	23.0	22.4	22.5	22.7	
20 MHz	QPSK	50	Mid	25	(1)	22.0	22.7	22.6	23.0	
		100		0	(1)	22.0	22.6	22.8	22.9	
		1	Low	0	(1)	22.0	22.7	22.7	22.7	
20 MILE	400044	1	High	99	(1)	22.0	22.6	22.6	22.7	
20 MHz	16QAM	50	Mid	25	(2)	21.0	22.2	22.1	22.3	
		100		0	(2)	21.0	22.2	22.3	22.4	
			۵.			Actual	Measur	ed Avg Power (d	Bm).	
Ch. BW	Modulations	RB Config		rt RB ifset	MPR	Max Power (dBm)	Frequency 1857.5 MHz (Low)	Frequency 1880.0 MHz (Middle)	Frequency 1902.5 MHz (High)	
		1	Low	0	(0)	23.0	22.5	22.7	22.3	
45.841	0.0014	1	High	71	(0)	23.0	22.5	22.5	22.7	
15 MHz	QPSK	36	Mid	18	(1)	22.0	22.8	22.8	22.8	
		75		0	(1)	22.0	22.8	22.8	22.8	
		1	Low	0	(1)	22.0	23.0	22.8	22.6	
45 MIL-	400044	1	High	71	(1)	22.0	22.9	22.6	22.9	
15 MHz	16QAM	36	Mid	18	(2)	21.0	22.3	22.2	22.2	
		75		0	(2)	21.0	22.3	22.3	22.3	
						Actual	Measured Avg Power (dBm).			
Ch. BW	Modulations	RB Config		rt RB fset	MPR	Max Power (dBm)	Frequency 1855.0 MHz (Low)	Frequency 1880.0 MHz (Middle)	Frequency 1905.0 MHz (High)	
		1	Low	0	(0)	23.0	22.5	22.5	22.5	
40.1411	0001	1	High	49	(0)	23.0	22.6	22.4	22.5	
10 MHz	QPSK	25	Mid	12	(1)	22.0	22.8	22.6	22.8	
		50		0	(1)	22.0	22.8	22.7	22.8	
		1	Low	0	(1)	22.0	22.9	23.0	22.7	
40 1411	4004**	1	High	49	(1)	22.0	22.9	22.7	22.8	
10 MHz	16QAM	25	Mid	12	(2)	21.0	22.4	22.2	22.2	
		50		0	(2)	21.0	22.4	22.2	22.2	

Page: 86 of 472 RFI Global Services Ltd.

Conducted Average Power Measurement: LTE Band 2 Power Back-off Enabled (Continued):									
			۵.			Actual	Measur	ed Avg Power (d	Bm).
Ch. BW	Modulations	RB Config		rt RB fset	MPR	Max Power (dBm)	Frequency 1852.5 MHz (Low)	Frequency 1880.0 MHz (Middle)	Frequency 1907.5 MHz (High)
		1	Low	0	(0)	23.0	22.5	22.5	22.7
5 MHz	QPSK	1	High	24	(0)	23.0	22.7	22.4	22.6
2 MILS	QFSN	12	Mid	6	(1)	22.0	22.9	22.7	22.9
		25		0	(1)	22.0	22.7	22.7	22.9
		1	Low	0	(1)	22.0	22.4	22.6	22.8
		1	High	24	(1)	22.0	22.6	22.5	22.7
5 MHz	16QAM	12	Mid	6	(2)	21.0	22.2	22.1	22.3
		25		0	(2)	21.0	22.4	22.2	22.4
				Actual	Measur	ed Avg Power (d	Bm).		
h. BW	Modulations	RB Config		rt RB ifset	MPR Po	Max Power (dBm)	Frequency 1851.5 MHz (Low)	Frequency 1880.0 MHz (Middle)	Frequency 1908.5 MHz (High)
	QPSK	1	Low	0	(0)	23.0	22.5	22.5	22.7
3 MHz		1	High	14	(0)	23.0	22.6	22.4	22.6
3 IVII IZ		8	Mid	4	(1)	22.0	22.8	22.7	23.0
		15		0	(1)	22.0	22.7	22.6	23
	16QAM	1	Low	0	(1)	22.0	22.6	22.9	22.7
3 MHz		1	High	14	(1)	22.0	23.0	22.5	22.6
3 IVII IZ	IOQAW	8	Mid	4	(2)	21.0	22.4	22.3	22.4
		15		0	(2)	21.0	22.0	22.1	22.3
			C4a	rt RB		Actual	Measur	ed Avg Power (d	Bm).
Ch. BW	Modulations	RB Config		fset	MPR	Max Power (dBm)	Frequency 1850.7 MHz (Low)	Frequency 1880.0 MHz (Middle)	Frequency 1909.3 MHz (High)
		1	Low	0	(0)	23.0	22.6	22.6	22.7
1 / MILL-	OBSN	1	High	5	(0)	23.0	22.5	22.7	22.6
1.4 MHz	QPSK	3	Mid	2	(1)	22.0	22.5	22.6	22.7
		6		0	(1)	22.0	22.5	22.6	22.7
		1	Low	0	(1)	22.0	22.6	22.5	23.0
1.4 MHz	160 ^ 1/4	1	High	5	(1)	22.0	22.7	22.5	22.9
1.4 IVI⊓Z	16QAM	3	Mid	2	(2)	21.0	22.6	22.6	22.9
		6		0	(2)	21.0	22.1	22.0	22.2

Page: 87 of 472 RFI Global Services Ltd.

7.2.39.Conducted Average Power Measurement: LTE Band 4 Power Back-off Disabled

Ch. BW Modulations Config Start RB Offset MPR MPR MPR MPR MPR MPR MPR Frequency (dBm) Frequency (1720.0 MHz (Low)) MPR	Power Back-off Disabled									
Ch. BW Modulations Config Offset MPR (dBm) Frequency (dBm) (Low) Frequency (High) Frequency (High) </th <th></th> <th></th> <th></th> <th>٥,</th> <th> DD</th> <th></th> <th></th> <th>Measu</th> <th>red Avg Power (</th> <th>dBm).</th>				٥,	DD			Measu	red Avg Power (dBm).
1	Ch. BW	Modulations				MPR	Power	1720.0 MHz	1732.5 MHz	1745.0 MHz
20 MHz Port Port			1	Low	0	(0)	23.0	24.5	24.5	24.3
160 100	20 M⊔-	OBSK	1	High	99	(0)	23.0	24.4	24.3	24.1
1	20 1011 12	QI SIX	50	Mid	25	(1)	22.0	23.5	23.3	23.5
1 High 99 (1) 22.0 23.4 23.5 23.1 22.6 20 MHz 25 (2) 21.0 22.5 22.3 22.3 22.6 22.3 22.6 22.3 22.6 22.3 22.6 22.3 22.6 22.3 22.3			100		0	(1)	22.0	23.4	23.4	23.6
The lead of the			1	Low	0	(1)	22.0	23.4	23.5	23.4
The color of the latter The color of th	20 MU-	160AM	1	High	99	(1)	22.0	23.4	23.5	23.1
Ch. BW Modulations RB Config Start RB Offset MPR Actual Max Power (dBm) Frequency (rdbm) Actual Max (rdbm) Max (rdbm) Max (rdbm) Max (rdbm) Max (rdbm) Max (rdbm) Frequency (rdbm) Frequen	20 IVITIZ	TOQAW	50	Mid	25	(2)	21.0	22.5	22.3	22.6
Ch. BW Modulations RB Config Start RB Offset MPR Offset Max Power (dBm) Frequency 1717.5 MHz (Low) Frequency 1732.5 MHz (High) Frequency 1747.5 MHz (High) Add 23.4 23.4 23.4 23.4 23.4 23.4 23.4 23.4 23.5 23.3 23.6 23.5 23.3 23.6 23.5 23.3 23.6 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.6 23.4 22.6 22.3 22.6 22.3 22.6 22.3 22.6 22.3 22.6 22.3 22.6 22.3 22.6 22.3 22.6 22.3 22.6 22.3 22.6 22.3 22.6 22.3 22.6 22.3 </td <td></td> <td></td> <td>100</td> <td></td> <td>0</td> <td>(2)</td> <td>21.0</td> <td>22.5</td> <td>22.3</td> <td>22.6</td>			100		0	(2)	21.0	22.5	22.3	22.6
Ch. BW Modulations Config Offset MPR (dBm) Frequency (rgbm) Frequency (1732.5 MHz (Low)) Frequency (1732.5 MHz (Low)) Frequency (High) 1732.5 MHz (Low) 1732.5 MHz (High) Frequency (High) 1732.5 MHz (Low) 1732.5 MHz (High) 23.4 23.4 23.4 23.4 23.4 23.4 23.4 23.4 23.4 23.6 23.5 23.3 23.6 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.6 23.4 23.4 24.2 24.2 24.2 24.1 24.2 24.2 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.6 23.4 24.2 24.2 24.2 24.2 22.6 22.3 22.6 22.3 22.6 22.3 22.6 22.3 22.6 22.3 22.6 22.3 22.6 22.3 <			55	C+n	-4 DD			Measu	red Avg Power (dBm).
15 MHz PASK 1	Ch. BW	Modulations				MPR	Power	1717.5 MHz	1732.5 MHz	1747.5 MHz
15 MHz		QPSK	1	Low	0	(0)	23.0	24.4	24.3	23.4
15 MHz 16QAM 18 (1) 22.0 23.5 23.3 23.6 75 0 0 (1) 22.0 23.5 23.3 23.6 1	45 MU		1	High	71	(0)	23.0	24.2	24.2	24.1
The color of the	15 MHz		36	Mid	18	(1)	22.0	23.5	23.3	23.6
1			75		0	(1)	22.0	23.5	23.3	23.6
15 MHz			1	Low	0	(1)	22.0	23.5	23.5	23.5
Modulations Mid 18 (2) 21.0 22.6 22.3 22.6	45 MU-	160AM	1	High	71	(1)	22.0	23.5	23.6	23.4
Ch. BW Modulations RB Config Start RB Offset MPR Actual Max Power (dBm) Frequency 1715.0 MHz (Low) Frequency 1732.5 MHz (Middle) Frequency 1750.0 MHz (High) 10 MHz 1 Low 0 (0) 23.0 24.4 24.1 24.3 25 Mid 12 (1) 22.0 23.5 23.4 23.3 50 0 (1) 22.0 23.5 23.4 23.6 10 MHz 1 High 49 (1) 22.0 23.5 23.4 23.6 1 Low 0 (1) 22.0 23.5 23.3 23.3 1 High 49 (1) 22.0 23.5 23.3 23.3 1 High 49 (1) 22.0 23.4 23.3 23.4 10 MHz 1 High 49 (1) 22.0 23.4 23.3 23.4 25 Mid 12 (2) 21.0 22.5 22.4 22.7	13 IVITZ	16QAM	36	Mid	18	(2)	21.0	22.6	22.3	22.6
Ch. BW Modulations RB Config Start RB Offset MPR Max Power (dBm) Frequency 1715.0 MHz (Low) Frequency 1732.5 MHz (Middle) Frequency 1750.0 MHz (High) 10 MHz 1 Low 0 (0) 23.0 24.4 24.1 24.3 25 Mid 12 (1) 22.0 23.5 23.4 23.3 50 0 (1) 22.0 23.5 23.4 23.6 10 MHz 16QAM 1 High 49 (1) 22.0 23.5 23.3 23.3 10 MHz 16QAM 1 High 49 (1) 22.0 23.5 23.4 23.3 23.4			75		0	(2)	21.0	22.6	22.3	22.6
Ch. BW Modulations Config Offset MPR Power (dBm) Frequency 1715.0 MHz (Low) Frequency 1732.5 MHz (Middle) Frequency 1750.0 MHz (High) 10 MHz 1 Low 0 (0) 23.0 24.4 24.1 24.3 25 Mid 12 (1) 22.0 23.5 23.4 23.3 50 0 (1) 22.0 23.5 23.4 23.6 1 Low 0 (1) 22.0 23.5 23.3 23.3 10 MHz 16QAM 1 High 49 (1) 22.0 23.4 23.3 23.4 25 Mid 12 (2) 21.0 22.5 22.4 22.7							Actual	Measu	red Avg Power (dBm).
10 MHz	Ch. BW	Modulations				MPR	Power	1715.0 MHz	1732.5 MHz	1750.0 MHz
10 MHz			1	Low	0	(0)	23.0	24.4	24.1	24.3
25 Mid 12 (1) 22.0 23.5 23.4 23.3 50 0 (1) 22.0 23.5 23.4 23.6 1 Low 0 (1) 22.0 23.5 23.4 23.6 1 High 49 (1) 22.0 23.5 23.3 23.3 1 High 49 (1) 22.0 23.4 23.3 23.4 25 Mid 12 (2) 21.0 22.5 22.4 22.7	40.541	opor.	1	High	49	(0)	23.0	24.4	24.3	24.2
1 Low 0 (1) 22.0 23.5 23.3 23.3 1 High 49 (1) 22.0 23.4 23.3 23.4 25 Mid 12 (2) 21.0 22.5 22.4 22.7	10 MHz	QPSK	25	Mid	12	(1)	22.0	23.5	23.4	23.3
10 MHz 16QAM 1 High 49 (1) 22.0 23.4 23.3 23.4 25 Mid 12 (2) 21.0 22.5 22.4 22.7			50		0	(1)	22.0	23.5	23.4	23.6
10 MHz 16QAM 25 Mid 12 (2) 21.0 22.5 22.4 22.7			1	Low	0	(1)	22.0	23.5	23.3	23.3
25 Mid 12 (2) 21.0 22.5 22.4 22.7	40 1411-	400 444	1	High	49	(1)	22.0	23.4	23.3	23.4
50 0 (2) 210 226 224 227	10 MHZ	16QAM	25	Mid	12	(2)	21.0	22.5	22.4	22.7
20 (2) 21.0 22.0 22.4 22.1			50		0	(2)	21.0	22.6	22.4	22.7

Page: 88 of 472 RFI Global Services Ltd.

Conducted Average Power Measurement: LTE Band 4 Power Back-off Disabled (Continued):									
			Cto	rt RB		Actual	Measu	red Avg Power (dBm).
Ch. BW	Modulations	RB Config		ifset	MPR	Max Power (dBm)	Frequency 1712.5 MHz (Low)	Frequency 1732.5 MHz (Middle)	Frequency 1752.5 MHz (High)
		1	Low	0	(0)	23.0	24.2	24.3	24.1
5 MHz	QPSK	1	High	24	(0)	23.0	24.4	23.9	24.1
3 IVITZ	QFSN	12	Mid	6	(1)	22.0	23.5	23.4	23.7
		25		0	(1)	22.0	23.8	23.2	23.6
		1	Low	0	(1)	22.0	23.4	23.2	23.1
5 MHz	16QAM	1	High	24	(1)	22.0	23.5	23.0	23.2
S IVITZ	TOQAW	12	Mid	6	(2)	21.0	22.4	22.3	22.5
		25		0	(2)	21.0	22.4	22.2	22.5
				Actual	Measu	red Avg Power (dBm).		
h. BW	Modulations	RB Config		rt RB ifset	MPR Pow	Max Power (dBm)	Frequency 1711.5 MHz (Low)	Frequency 1732.5 MHz (Middle)	Frequency 1753.5 MHz (High)
		1	Low	0	(0)	23.0	24.3	24.3	24.1
3 MHz	QPSK	1	High	14	(0)	23.0	24.4	24.0	24.0
3 1011 12	QI OIX	8	Mid	4	(1)	22.0	23.6	23.3	23.5
		15		0	(1)	22.0	23.6	23.3	23.5
		1	Low	0	(1)	22.0	23.4	23.4	23.5
3 MHz	16QAM	1	High	14	(1)	22.0	23.4	23.1	22.4
3 IVII IZ	IOQAW	8	Mid	4	(2)	21.0	22.6	22.4	22.6
		15		0	(2)	21.0	22.5	22.2	22.4
			C4-	DD		Actual	Measu	red Avg Power (dBm).
Ch. BW	Modulations	RB Config		rt RB fset	MPR	Max Power (dBm)	Frequency 1710.7 MHz (Low)	Frequency 1732.5 MHz (Middle)	Frequency 1754.3 MHz (High)
		1	Low	0	(0)	23.0	24.1	24.3	24.2
4	0.701	1	High	5	(0)	23.0	24.3	24.2	24.2
1.4 MHz	QPSK	3	Mid	2	(1)	22.0	24.3	24.2	24.1
		6		0	(1)	22.0	24.4	24.2	23.2
		1	Low	0	(1)	22.0	23.5	23.6	23.5
4 4 1 1 1 -	16QAM	1	High	5	(1)	22.0	23.4	23.4	23.3
1.4 MHz		3	Mid	2	(2)	21.0	23.3	23.3	23.3
		6		0	(2)	21.0	22.2	22.3	22.4

Page: 89 of 472 RFI Global Services Ltd.

7.2.40.Conducted Average Power Measurement: LTE Band 4 Power Back-off Enabled

Power Back-off Enabled										
			_			Actual	Measu	red Avg Power (dBm).	
Ch. BW	Modulations	RB Config		rt RB fset	MPR	Max Power (dBm)	Frequency 1720.0 MHz (Low)	Frequency 1732.5 MHz (Middle)	Frequency 1745.0 MHz (High)	
		1	Low	0	(0)	23.0	22.7	22.8	22.6	
20 MHz	QPSK	1	High	99	(0)	23.0	22.9	22.8	22.9	
20 IVII IZ	QF3N	50	Mid	25	(1)	22.0	22.9	22.7	22.7	
		100		0	(1)	22.0	23.2	22.4	22.4	
		1	Low	0	(1)	22.0	23.1	23.2	22.8	
00 MILL	400 414	1	High	99	(1)	22.0	23.2	23.1	22.3	
20 MHz	16QAM	50	Mid	25	(2)	21.0	22.4	22.3	22.6	
		100		0	(2)	21.0	22.4	22.3	22.7	
			Cto	DD		Actual	Measu	red Avg Power (dBm).	
Ch. BW	Modulations	RB Config		rt RB fset	MPR	Max Power (dBm)	Frequency 1717.5 MHz (Low)	Frequency 1732.5 MHz (Middle)	Frequency 1747.5 MHz (High)	
	QPSK	1	Low	0	(0)	23.0	22.8	22.7	22.5	
		1	High	71	(0)	23.0	22.9	22.9	22.9	
15 MHz		36	Mid	18	(1)	22.0	23.0	22.8	22.7	
		75		0	(1)	22.0	22.7	22.4	22.4	
		1	Low	0	(1)	22.0	22.9	23.0	22.8	
45.841	16QAM	1	High	71	(1)	22.0	22.4	22.3	22.2	
15 MHz		36	Mid	18	(2)	21.0	22.5	22.2	22.6	
		75		0	(2)	21.0	22.4	22.3	22.6	
						Actual	Measured Avg Power (dBm).			
Ch. BW	Modulations	RB Config		rt RB fset	MPR	Max Power (dBm)	Frequency 1715.0 MHz (Low)	Frequency 1732.5 MHz (Middle)	Frequency 1750.0 MHz (High)	
		1	Low	0	(0)	23.0	22.5	22.6	22.9	
		1	High	49	(0)	23.0	23.0	22.7	22.9	
10 MHz	QPSK	25	Mid	12	(1)	22.0	22.6	22.7	22.9	
		50		0	(1)	22.0	22.9	22.4	22.5	
		1	Low	0	(1)	22.0	23.1	22.7	23.1	
		1	High	49	(1)	22.0	22.3	22.8	22.7	
10 MHz	16QAM	25	Mid	12	(2)	21.0	22.5	22.3	22.6	
		50		0	(2)	21.0	22.5	22.3	22.7	
	ı	I	1		1					

Page: 90 of 472 RFI Global Services Ltd.

Issue Date: 21 August 2012 **Conducted Average Power Measurement: LTE Band 4** Power Back-off Enabled (Continued): Measured Avg Power (dBm). Actual Start RB RB Max Ch. BW **Modulations MPR** Frequency Frequency Frequency Power Config Offset 1752.5 MHz 1712.5 MHz 1732.5 MHz (dBm) (Middle) (Low) (High) 1 Low 0 (0)23.0 22.7 22.8 22.8 High 24 (0)23.0 22.9 22.7 22.8 1 **QPSK** 5 MHz 12 Mid 6 (1) 22.0 22.9 22.7 22.7 22.0 22.7 22.4 25 0 (1) 22.7 1 Low 0 (1) 22.0 22.9 22.8 23.2 1 High 24 (1) 22.0 22.9 22.4 22.3 5 MHz 16QAM 6 (2)21.0 22.4 22.2 22.5 12 Mid 25 0 (2) 21.0 22.4 22.2 22.5 Measured Avg Power (dBm). Actual Start RB RR Max Ch. BW MPR **Modulations** Frequency Frequency Frequency Config Offset **Power** 1711.5 MHz 1732.5 MHz 1753.5 MHz (dBm) (Middle) (Low) (High) 1 Low 0 (0)23.0 22.6 22.6 22.6 High 14 (0)23.0 22.8 22.6 22.8 3 MHz **QPSK** 8 Mid 4 22.0 22.8 22.7 22.8 (1) 15 0 (1) 22.0 22.8 22.7 22.4 22.0 22.8 22.4 23.0 1 Low 0 (1) 14 22.0 22.4 1 High (1) 22.6 22.5 3 MHz 16QAM 8 Mid 4 (2) 21.0 22.6 22.3 22.6 15 0 21.0 22.5 22.2 22.4 (2)Measured Avg Power (dBm). Actual Start RB RB Max Ch. BW MPR **Modulations** Frequency Frequency Frequency Config Power Offset 1732.5 MHz 1754.3 MHz 1710.7 MHz (dBm) (Low) (Middle) (High) 1 Low 0 (0)23.0 22.4 22.8 22.6 High 23.0 22.7 22.6 22.6 1 5 (0)1.4 MHz **QPSK** 3 Mid 2 (1) 22.0 22.7 22.7 22.6 6 0 (1) 22.0 22.6 22.6 22.4 Low 1 0 (1) 22.0 22.9 22.6 22.9 1 High 5 (1) 22.0 22.7 22.7 22.2 1.4 MHz 16QAM 3 Mid 2 (2) 21.0 22.7 22.8 22.9

Page: 91 of 472 RFI Global Services Ltd.

6

0

(2)

21.0

22.2

22.2

22.4

Issue Date: 21 August 2012

7.2.41.Conducted Average Power Measurement: LTE Band 5 (850 MHz) Power Back-Off Disabled

Power Back-Off Disabled									
		55	Sta	rt RB		Actual	Measur	ed Avg Power (d	Bm).
Ch. BW	Modulations	RB Config		ffset	MPR	Max Power (dBm)	Frequency 829.0 MHz (Low)	Frequency 836.5 MHz (Middle)	Frequency 844.0 MHz (High)
		1	Low	0	(0)	23.0	23.8	24.1	24.1
10 MHz	QPSK	1	High	49	(0)	23.0	24.0	24.0	24.1
10 MHZ	QFSN	25	Mid	12	(1)	22.0	23.3	23.5	23.4
		50		0	(1)	22.0	23.1	23.3	23.4
		1	Low	0	(1)	22.0	23.3	23.4	23.1
10 MHz	16QAM	1	High	49	(1)	22.0	23.5	23.3	23.5
10 1011 12	IOQAW	25	Mid	12	(2)	21.0	22.2	22.4	22.3
		50		0	(2)	21.0	22.3	22.4	22.5
		RB	Sta	rt RB		Actual Max	Measur	ed Avg Power (d	Bm).
Ch. BW	Modulations	Config		ffset	MPR	Power (dBm)	Frequency 826.5 MHz (Low)	Frequency 836.5 MHz (Middle)	Frequency 846.5 MHz (High)
	QPSK 16QAM	1	Low	0	(1)	22.0	23.9	24.1	24.2
5MHz		1	High	24	(0)	22.0	24.1	24.0	24.2
SIVITZ		12	Mid	6	(1)	22.0	23.2	23.4	23.4
		25		0	(1)	22.0	23.2	23.3	23.4
		1	Low	0	(1)	22.0	23.2	23.3	23.2
5 MHz		1	High	24	(1)	22.0	23.7	23.3	23.4
O IVII IZ		12	Mid	6	(2)	21.0	22.0	22.3	22.4
		25		0	(2)	21.0	22.2	22.4	22.5
			C+a	rt RB		Actual	Measur	ed Avg Power (d	Bm).
Ch. BW	Modulations	RB Config		ffset	MPR	Max Power (dBm)	Frequency 825.5 MHz (Low)	Frequency 836.5 MHz (Middle)	Frequency 847.5 MHz (High)
		1	Low	0	(0)	23.0	24.0	24.2	24.3
2 MI I~	ODEN	1	High	14	(0)	23.0	24.1	24.2	24.1
3 MHz	QPSK	8	Mid	4	(1)	22.0	23.2	23.4	23.4
		15		0	(1)	22.0	23.1	23.4	23.3
		1	Low	0	(1)	22.0	22.8	23.0	23.5
3 MH→	160 / 1/4	1	High	14	(1)	22.0	22.8	23.1	23.3
3 MHz	16QAM	8	Mid	4	(2)	21.0	22.3	22.5	22.5
		15		0	(2)	21.0	22.1	22.2	22.3

Page: 92 of 472 RFI Global Services Ltd.

Conducted Average Power Measurement: LTE Band 5 (850 MHz) Power Back-Off Disabled (Continued): Measured Avg Power (dBm). Actual Start RB RB Max Ch. BW Modulations MPR Frequency 848.3 MHz Config Power Frequency Frequency Offset 824.7.0 MHz 836.5 MHz (dBm) (Middle) (Low) (High) 1 Low 0 (0) 23.0 24.1 24.3 24.1 1 High 5 (0) 23.0 24.2 24.1 24.2 1.4 MHz QPSK 3 Mid 2 22.0 23.9 24.1 24.1 (1) 6 0 22.0 23.1 (1) 23.4 23.1 1 Low 0 (1) 22.0 23.4 23.5 23.2 High 5 (1) 22.0 23.4 23.5 23.1 1 1.4 MHz 16QAM 3 2 21.0 23.4 Mid (2) 22.9 23.4 0 21.0 22.0 6 (2) 22.3 22.1

Page: 93 of 472 RFI Global Services Ltd.

1

12

25

5 MHz

16QAM

High

Mid

24

6

0

(1)

(2)

(2)

22.0

21.0

21.0

23.6

22.4

22.5

23.4

22.4

22.5

23.6

22.5

22.3

Serial No: RFI-SAR-RP88281JD02A V2.0 Issue Date: 21 August 2012

	Conducted <i>A</i> Back-Off Dis		Powe	r Meas	uremei	nt: LTE	Band 17 (Lo	wer 700 MH	z)	
						Actual	Measured Avg Power (dBm).			
Ch. BW	Modulations	RB Config	Start RB Offset		MPR	Max Power (dBm)	Frequency 709.0 MHz (Low)	Frequency 710.0 MHz (Middle)	Frequency 711.0 MHz (High)	
		1	Low	0	(0)	23.0	24.3	24.2	24.2	
10 MHz	QPSK	1	High	49	(0)	23.0	24.2	24.1	23.8	
10 IVID2	QF3N	25	Mid	12	(1)	22.0	23.5	23.4	23.2	
		50		0	(1)	22.0	23.5	23.5	23.1	
		1	Low	0	(1)	22.0	23.7	23.9	23.3	
10 MHz	16QAM	1	High	49	(1)	22.0	23.8	23.8	23.0	
10 IVID2	TOQAIVI	25	Mid	12	(2)	21.0	22.5	22.5	22.3	
		50		0	(2)	21.0	22.5	22.5	22.3	
			04-	rt RB		Actual	Measur	ed Avg Power (d	IBm).	
Ch. BW	Modulations	RB Config		fset	MPR	Max Power (dBm)	Frequency 706.5 MHz (Low)	Frequency 710.0 MHz (Middle)	Frequency 713.5 MHz (High)	
		1	Low	0	(0)	23.0	24.2	24.3	24.1	
5 MHz	QPSK	1	High	24	(0)	23.0	24.3	24.4	23.8	
o IVI⊓Z	Qr3N	12	Mid	6	(1)	22.0	23.5	23.4	23.4	
		25		0	(1)	22.0	23.4	23.4	23.2	
		1	Low	0	(1)	22.0	23.4	23.4	23.5	

Page: 94 of 472 **RFI Global Services Ltd.**

7.2.43.Conducted Power Measurements Wi-Fi802.11b/g/n 802.11b/g Power Back-Off Disabled

Channel Number	Frequency (MHZ)	TX Power (dBm)	Note
1	2412.0	18.1	
6	2437.0	18.0	2.4GHz 802.11b (1Mbps)
11	2462.0	18.0	(TIVIDPS)
1	2412.0	16.4	
6	2437.0	16.4	2.4GHz 802.11b (11Mbps)
11	2462.0	16.3	(**************************************
1	2412.0	16.5	
6	2437.0	16.5	2.4GHz 802.11g (6Mbps)
11	2462.0	16.3	(0.112)
1	2412.0	14.2	
6	2437.0	14.0	2.4GHz 802.11g (54Mbps)
11	2462.0	14.0	(5

802.11n Power Back-Off Disabled

Channel Number	Frequency (MHZ)	TX Power (dBm)	Note
1	2412.0	15.4	
6	2437.0	15.1	2.4GHz 802.11n (MCS0 6.5Mbps)
11	2462.0	15.0	(,
1	2412.0	9.5	2.4GHz 802.11n
6	2437.0	9.2	(MCS7 65Mbps)
11	2462.0	9.0	

Page: 95 of 472 RFI Global Services Ltd.

Issue Date: 21 August 2012

7.2.44.Conducted Power Measurements Wi-Fi802.11a/n (5.0 GHz) 802.11a (5.0 GHz) Power Back-Off Disabled

Channel Number	Frequency (MHZ)	TX Power (dBm) 6 Mbps	TX Power (dBm) 54 Mbps	Note
36	5180	15.1	10.5	
40	5200	15.3	10.5	5.2 GHz
48	5240	14.9	10.1	
52	5260	14.5	9.9	
60	5300	14.0	9.6	5.3 GHz
64	5320	13.7	9.3	
100	5500	13.4	8.8	
120	5600	13.6	9.1	5.6 GHz
136	5680	14.1	9.6	3.0 GHZ
140	5700	14.1	9.6	
149	5745	14.4	9.9	
157	5785	15.5	11.1	5.8 GHz
165	5825	16.4	12.4	

Page: 96 of 472 RFI Global Services Ltd.

Issue Date: 21 August 2012

802.11n	(5.0 GH	z) (HT20)
Power B	ack-off	Disabled

Channel Number	Frequency (MHZ)	TX Power (dBm) 6.5 Mbps	TX Power (dBm) 65 Mbps	Note
36	5180	14.0	8.7	
40	5200	13.8	8.8	5.2 GHz
48	5240	13.7	8.4	
52	5260	13.4	8.2	
60	5300	12.8	7.7	5.3 GHz
64	5320	12.6	7.2	
100	5500	12.0	6.8	
120	5600	12.5	7.3	5.6 GHz
136	5680	12.7	7.4	3.0 GHZ
140	5700	12.7	7.4	
149	5745	13.3	7.9	
157	5785	14.2	9.3	5.8 GHz
165	5825	15.5	10.6	

802.11n (5.0 GHz) (HT40) Power Back-off Disabled

Channel Number	Frequency (MHZ)	TX Power (dBm) 13.5 Mbps	TX Power (dBm) 135 Mbps	Note
38	5170	13.4	10.5	5.2 GHz
46	5230	13.0	10.5	5.2 GHZ
54	5270	12.8	10.2	5.3 GHz
62	5310	12.4	10.0	5.3 GHZ
102	5510	11.3	10.5	
110	5550	11.6	10.5	
118	5590	11.6	10.7	5.6 GHz
126	5630	11.8	10.8	
134	5670	11.9	10.8	
151	5755	12.2	10.2	E 0 CU-
159	5795	12.5	10.0	5.8 GHz

Page: 97 of 472 RFI Global Services Ltd.

Issue Date: 21 August 2012

8. Measurement Uncertainty

No measurement or test can ever be perfect and the imperfections give rise to error of measurement in the results. Consequently, the result of a measurement is only an approximation to the value of the measurand (the specific quantity subject to measurement) and is only complete when accompanied by a statement of the uncertainty of the approximation.

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

The uncertainty of the result may need to be taken into account when interpreting the measurement results.

The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor, such that a confidence level of approximately 95% is maintained. For the purposes of this document "approximately" is interpreted as meaning "effectively" or "for most practical purposes".

Test Name	Confidence Level	Calculated Uncertainty
Specific Absorption Rate-GSM 850/ UMTS FDD V Head Configuration 1g	95%	19.94
Specific Absorption Rate-GSM / GPRS / EDGE 850 / UMTS FDD V Body Configurations 1g	95%	20.07
Specific Absorption Rate-PCS 1900 / UMTS FDD II Head Configuration 1g	95%	20.72
Specific Absorption Rate-GSM / GPRS / EDGE 1900 / UMTS FDD II Body Configuration 1g	95%	20.00
Specific Absorption Rate-UMTS FDD IV Head Configuration 1g	95%	18.49
Specific Absorption Rate- UMTS FDD IV Body Configuration 1g	95%	18.27
Specific Absorption Rate-Wi-Fi 2450 MHz Head Configuration 1g	95%	19.47
Specific Absorption Rate-Wi-Fi 2450 MHz Body Configuration 1g	95%	19.90
Specific Absorption Rate-Wi-Fi 5GHz Head Configuration 1g	95%	20.14
Specific Absorption Rate-Wi-Fi 5GHz Body Configuration 1g	95%	20.14

The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty, the published guidance of the appropriate accreditation body is followed.

Page: 98 of 472 RFI Global Services Ltd.

Test Report S
Version 2.0

Serial No: RFI-SAR-RP88281JD02A V2.0
Issue Date: 21 August 2012

Туре	Source of uncertainty	+ Value	- Value	Probability	Divisor	C _{i (1g)}	Stan Uncer		სi or
	·	value	value	Distribution		```	+ u (%)	- u (%)	υ _{eff}
В	Probe calibration	6.000	6.000	normal (k=1)	1.0000	1.0000	6.000	6.000	∞
В	Axial Isotropy	0.250	0.250	normal (k=1)	1.0000	1.0000	0.250	0.250	∞
В	Hemispherical Isotropy	1.300	1.300	normal (k=1)	1.0000	1.0000	1.300	1.300	∞
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	∞
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	∞
В	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	∞
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	∞
В	Readout Electronics	0.160	0.160	normal (k=1)	1.0000	1.0000	0.160	0.160	∞
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	×
В	Integration Time	1.730	1.730	Rectangular	1.7321	1.0000	0.999	0.999	∞
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	∞
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	œ
В	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	∞
В	Extrapolation and integration / Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	∞
Α	Test Sample Positioning	2.400	2.400	normal (k=1)	1.0000	1.0000	2.400	2.400	10
Α	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	∞
Α	Liquid Conductivity (measured value)	4.920	4.920	normal (k=1)	1.0000	0.6400	3.149	3.149	5
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	∞
Α	Liquid Permittivity (measured value)	4.970	4.970	normal (k=1)	1.0000	0.6000	2.982	2.982	5
	Combined standard uncertainty			t-distribution			10.17	10.17	>25
	Expanded uncertainty			k = 1.96			19.94	19.94	>25

Page: 99 of 472 RFI Global Services Ltd.

Test Report
Version 2.0

Serial No: RFI-SAR-RP88281JD02A V2.0
Issue Date: 21 August 2012

Туре	Source of uncertainty	+	- \/-!	Probability	Divisor	C _{i (1g)}	Stan Uncer		ს _i or
,	,	Value	Value	Distribution		-1 (19)	+ u (%)	- u (%)	υef
В	Probe calibration	6.000	6.000	normal (k=1)	1.0000	1.0000	6.000	6.000	∞
В	Axial Isotropy	0.250	0.250	normal (k=1)	1.0000	1.0000	0.250	0.250	∞
В	Hemispherical Isotropy	1.300	1.300	normal (k=1)	1.0000	1.0000	1.300	1.300	∞
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	∞
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	∞
В	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	∞
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	∞
В	Readout Electronics	0.160	0.160	normal (k=1)	1.0000	1.0000	0.160	0.160	×
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	×
В	Integration Time	1.730	1.730	Rectangular	1.7321	1.0000	0.999	0.999	×
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	×
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	×
В	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	∞
В	Extrapolation and integration /Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	∞
Α	Test Sample Positioning	2.900	2.900	normal (k=1)	1.0000	1.0000	2.900	2.900	10
Α	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	œ
Α	Liquid Conductivity (measured value)	4.690	4.690	normal (k=1)	1.0000	0.6400	3.002	3.002	5
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	∞
Α	Liquid Permittivity (measured value)	4.860	4.860	normal (k=1)	1.0000	0.6000	2.916	2.916	5
	Combined standard uncertainty			t-distribution			10.24	10.24	>25
	Expanded uncertainty			k = 1.96			20.07	20.07	>2

Page: 100 of 472 RFI Global Services Ltd.

Test Report Service Se

Serial No: RFI-SAR-RP88281JD02A V2.0
Issue Date: 21 August 2012

8.3. 5	Specific Absorption Rate	-PCS 19	900 / UN	ITS FDD II He	ad Confi	guratio	n 1g		
Туре	Source of uncertainty	+ Value	- Value	Probability Distribution	Divisor	C _{i (1g)}	Stan Uncer		ບ _i or
		value	value	Distribution			+ u (%)	- u (%)	Veff
В	Probe calibration	6.000	6.000	normal (k=1)	1.0000	1.0000	6.000	6.000	∞
В	Axial Isotropy	0.250	0.250	normal (k=1)	1.0000	1.0000	0.250	0.250	∞
В	Hemispherical Isotropy	1.300	1.300	normal (k=1)	1.0000	1.0000	1.300	1.300	∞
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	∞
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	∞
В	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	∞
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	∞
В	Readout Electronics	0.160	0.160	normal (k=1)	1.0000	1.0000	0.160	0.160	∞
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞
В	Integration Time	1.730	1.730	Rectangular	1.7321	1.0000	0.999	0.999	∞
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	∞
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Probe Positioning with Regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	∞
В	Extrapolation and integration / Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	∞
Α	Test Sample Positioning	3.800	3.800	normal (k=1)	1.0000	1.0000	3.800	3.800	10
Α	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	∞
Α	Liquid Conductivity (measured value)	4.900	4.900	normal (k=1)	1.0000	0.6400	3.136	3.136	5
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	∞
А	Liquid Permittivity (measured value)	4.880	4.880	normal (k=1)	1.0000	0.6000	2.928	2.928	5
	Combined standard uncertainty			t-distribution			10.57	10.57	>200
	Expanded uncertainty			k = 1.96			20.72	20.72	>200

Page: 101 of 472 RFI Global Services Ltd.

Test Report Version 2.0

Serial No: RFI-SAR-RP88281JD02A V2.0
Issue Date: 21 August 2012

8.4. 5	Specific Absorption Rate	-PCS/	GPRS/	EDGE 1900 /	UMTS FC	D II Bo	dy Confi	guration	1g
Туре	Source of uncertainty	+ Value	- Value	Probability Distribution	Divisor	C _{i (1g)}	Stan Uncer		სi or
		value	value	Distribution			+ u (%)	- u (%)	Veff
В	Probe calibration	6.000	6.000	normal (k=1)	1.0000	1.0000	6.000	6.000	∞
В	Axial Isotropy	0.250	0.250	normal (k=1)	1.0000	1.0000	0.250	0.250	∞
В	Hemispherical Isotropy	1.300	1.300	normal (k=1)	1.0000	1.0000	1.300	1.300	∞
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	∞
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	×
В	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	× ×
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	× ×
В	Readout Electronics	0.160	0.160	normal (k=1)	1.0000	1.0000	0.160	0.160	×
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞
В	Integration Time	1.730	1.730	Rectangular	1.7321	1.0000	0.999	0.999	×
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	∞
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	∞
В	Extrapolation and integration / Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	∞
Α	Test Sample Positioning	2.500	2.500	normal (k=1)	1.0000	1.0000	2.500	2.500	10
Α	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	∞
Α	Liquid Conductivity (measured value)	4.940	4.940	normal (k=1)	1.0000	0.6400	3.162	3.162	5
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	∞
Α	Liquid Permittivity (measured value)	4.980	4.980	normal (k=1)	1.0000	0.6000	2.988	2.988	5
	Combined standard uncertainty			t-distribution			10.20	10.20	>250
	Expanded uncertainty			k = 1.96			20.00	20.00	>250

Page: 102 of 472 RFI Global Services Ltd.

Test Report
Version 2.0

Serial No: RFI-SAR-RP88281JD02A V2.0
Issue Date: 21 August 2012

Гуре	Source of uncertainty	+ Value	- Value	Probability Distribution	Divisor	C _{i (1g)}	Standard Uncertainty		ບ _i or
	·	value	value	Distribution		````	+ u (%)	- u (%)	υ _{ef}
В	Probe calibration	6.000	6.000	normal (k=1)	1.0000	1.0000	6.000	6.000	∞
В	Axial Isotropy	0.250	0.250	normal (k=1)	1.0000	1.0000	0.250	0.250	×
В	Hemispherical Isotropy	1.300	1.300	normal (k=1)	1.0000	1.0000	1.300	1.300	×
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	×
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	∞
В	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	∞
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	∞
В	Readout Electronics	0.160	0.160	normal (k=1)	1.0000	1.0000	0.160	0.160	∞
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	œ
В	Integration Time	1.730	1.730	Rectangular	1.7321	1.0000	0.999	0.999	œ
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	œ
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	œ
В	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	œ
В	Extrapolation and integration/ Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	œ
Α	Test Sample Positioning	1.700	1.700	normal (k=1)	1.0000	1.0000	1.700	1.700	10
Α	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	œ
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	œ
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.4300	1.241	1.241	œ
Α	Liquid Conductivity (measured value)	4.980	4.980	normal (k=1)	1.0000	0.4300	2.141	2.141	5
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.4900	1.415	1.415	œ
Α	Liquid Permittivity (measured value)	4.770	4.770	normal (k=1)	1.0000	0.4900	2.337	2.337	5
	Combined standard uncertainty			t-distribution			9.43	9.43	>5
	Expanded uncertainty			k = 1.96			18.49	18.49	>5

Page: 103 of 472 RFI Global Services Ltd.

Туре	Source of uncertainty	+ Value	- Value	Probability Distribution	Divisor	C _{i (1g)}	Stan Uncer		ບ _i or
	·	value	value	Distribution		````	+ u (%)	- u (%)	veff
В	Probe calibration	6.000	6.000	normal (k=1)	1.0000	1.0000	6.000	6.000	∞
В	Axial Isotropy	0.250	0.250	normal (k=1)	1.0000	1.0000	0.250	0.250	oc
В	Hemispherical Isotropy	1.300	1.300	normal (k=1)	1.0000	1.0000	1.300	1.300	∞
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	∞
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	∞
В	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	∞
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	∞
В	Readout Electronics	0.160	0.160	normal (k=1)	1.0000	1.0000	0.160	0.160	∞
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞
В	Integration Time	1.730	1.730	Rectangular	1.7321	1.0000	0.999	0.999	∞
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	∞
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	∞
В	Extrapolation and integration/ Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	∞
Α	Test Sample Positioning	1.000	1.000	normal (k=1)	1.0000	1.0000	1.000	1.000	10
Α	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.4300	1.241	1.241	∞
Α	Liquid Conductivity (measured value)	4.990	4.990	normal (k=1)	1.0000	0.4300	2.146	2.146	5
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.4900	1.415	1.415	∞
Α	Liquid Permittivity (measured value)	4.660	4.660	normal (k=1)	1.0000	0.4900	2.283	2.283	5
	Combined standard uncertainty			t-distribution			9.32	9.32	>50
	Expanded uncertainty			k = 1.96			18.27	18.27	>50

Page: 104 of 472 RFI Global Services Ltd.

Test Report Serial No: RFI-SAR-RP88281JD02A V2.0 Version 2.0

8.7. Specific Absorption Rate-Wi-Fi 2450 MHz Head Configuration 1g Standard υi **Probability** Uncertainty Source of uncertainty **Divisor** Type C_{i (1g)} or Value Value Distribution + u (%) - u (%) υeff R Probe calibration 6.000 6.000 1.0000 1.0000 normal (k=1) 6.000 6.000 ∞ В 0.250 0.250 0.250 Axial Isotropy normal (k=1) 1.0000 1.0000 0.250 ∞ В Hemispherical Isotropy 1.300 1.300 normal (k=1) 1.0000 1.0000 1.300 1.300 ∞ В **Spatial Resolution** 0.500 0.500 1.0000 0.289 0.289 Rectangular 1.7321 00 В **Boundary Effect** 0.769 0.769 Rectangular 1.7321 1.0000 0.444 0.444 00 Rectangular В Linearity 0.600 0.600 1.7321 1.0000 0.346 0.346 00 В **Detection Limits** 0.200 0.200 1.7321 1.0000 0.115 0.115 Rectangular ∞ В Readout Electronics 0.160 0.160 normal (k=1) 1.0000 1.0000 0.160 0.160 ∞ В Response Time 0.000 0.000 Rectangular 1.7321 1.0000 0.000 0.000 ∞ В Integration Time 0.000 0.000 Rectangular 1.7321 1.0000 0.000 0.000 В 3.000 3.000 1.0000 1.732 1.732 RF Ambient conditions Rectangular 1.7321 **Probe Positioner Mechanical** В 4.000 1.0000 2.309 2.309 4.000 Rectangular 1.7321 ∞ Restrictions Probe Positioning with R 2.850 2.850 Rectangular 1.7321 1.0000 1.645 1.645 00 regard to Phantom Shell Extrapolation and integration R 5.080 5.080 Rectangular 1.7321 1.0000 2.933 2.933 ∞ / Maximum SAR evaluation Α 2.000 2.000 normal (k=1) 1.0000 1.0000 2.000 2.000 **Test Sample Positioning** 10 Α **Device Holder uncertainty** 0.154 0.154 normal (k=1) 1.0000 1.0000 0.154 0.154 10 В 4.000 1.0000 Phantom Uncertainty 4.000 Rectangular 1.7321 2.309 2.309 ∞ В Drift of output power 5.000 5.000 Rectangular 1.7321 1.0000 2.887 2.887 ∞ Liquid Conductivity В 5.000 5.000 Rectangular 1.7321 0.6400 1.848 1.848 ∞ (target value) Liquid Conductivity Α 4.410 4.410 normal (k=1) 1.0000 0.6400 2.822 2.822 5 (measured value) Liquid Permittivity В 5.000 5.000 Rectangular 1.7321 0.6000 1.732 1.732 ∞ (target value) Liquid Permittivity Α 4.930 4.930 normal (k=1) 1.0000 0.6000 2.958 2.958 5 (measured value) Combined standard 9.93 >300 t-distribution 9.93 uncertainty 19.47 Expanded uncertainty k = 1.9619.47 >300

Issue Date: 21 August 2012

Page: 105 of 472 RFI Global Services Ltd.

8.8. 9	Specific Absorption Rate	-Wi-Fi 2	450 MH	z Body Confi	guration	1g			
Туре	Source of uncertainty	+ Value	- Value	Probability Distribution	Divisor	C i (1g)	Stan Uncer + u (%)	dard tainty - u (%)	სi or სeff
В	Probe calibration	6.000	6.000	normal (k=1)	1.0000	1.0000	6.000	6.000	oc .
В	Axial Isotropy	0.250	0.250	normal (k=1)	1.0000	1.0000	0.250	0.250	∞
В	Hemispherical Isotropy	1.300	1.300	normal (k=1)	1.0000	1.0000	1.300	1.300	∞
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	∞
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	∞
В	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	∞
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	∞
В	Readout Electronics	0.160	0.160	normal (k=1)	1.0000	1.0000	0.160	0.160	∞
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞
В	Integration Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	œ
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	∞
В	Extrapolation and integration / Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	∞
Α	Test Sample Positioning	2.570	2.570	normal (k=1)	1.0000	1.0000	2.570	2.570	10
Α	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	œ
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	∞
Α	Liquid Conductivity (measured value)	4.900	4.900	normal (k=1)	1.0000	0.6400	3.136	3.136	5
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	∞
Α	Liquid Permittivity (measured value)	4.920	4.920	normal (k=1)	1.0000	0.6000	2.952	2.952	5
	Combined standard uncertainty			t-distribution			10.15	10.15	>250
	Expanded uncertainty			k = 1.96			19.90	19.90	>250

Page: 106 of 472 RFI Global Services Ltd.

Гуре	Source of uncertainty	+ Value	- Value	Probability	Divisor	C _{i (1g)}	Stan Uncer		ນ _i or
	·	value	value	Distribution		```	+ u (%)	- u (%)	Veff
В	Probe calibration	6.550	6.550	normal (k=1)	1.0000	1.0000	6.550	6.550	×
В	Axial Isotropy	0.250	0.250	normal (k=1)	1.0000	1.0000	0.250	0.250	∞
В	Hemispherical Isotropy	1.300	1.300	normal (k=1)	1.0000	1.0000	1.300	1.300	∞
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	∞
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	∞
В	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	∞
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	œ
В	Readout Electronics	0.160	0.160	normal (k=1)	1.0000	1.0000	0.160	0.160	œ
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	œ
В	Integration Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	oc
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	α
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	οc
В	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	οc
В	Extrapolation and integration / Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	α
Α	Test Sample Positioning	2.540	2.540	normal (k=1)	1.0000	1.0000	2.540	2.540	10
Α	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	oc
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	oc
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	οc
Α	Liquid Conductivity (measured value)	4.690	4.690	normal (k=1)	1.0000	0.6400	3.002	3.002	5
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	οc
Α	Liquid Permittivity (measured value)	3.830	3.830	normal (k=1)	1.0000	0.6000	2.298	2.298	5
	Combined standard uncertainty			t-distribution			10.28	10.28	>40
	Expanded uncertainty			k = 1.96			20.14	20.14	>4

Page: 107 of 472 RFI Global Services Ltd.

8.10. Specific Absorption Rate-Wi-Fi 5GHz Body Configuration 1g									
Туре	Source of uncertainty	+ Value	- Value	Probability Distribution	Divisor	C i (1g)	Stan Uncer	tainty	υ _i or
В	Probe calibration	6.550	6.550	normal (k=1)	1.0000	1.0000	+ u (%)	- u (%) 6.550	Veff
				` '					∞
В	Axial Isotropy	0.250	0.250	normal (k=1)	1.0000	1.0000	0.250	0.250	∞
В	Hemispherical Isotropy	1.300	1.300	normal (k=1)	1.0000	1.0000	1.300	1.300	∞
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	∞
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	×
В	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	∞
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	∞
В	Readout Electronics	0.160	0.160	normal (k=1)	1.0000	1.0000	0.160	0.160	∞
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞
В	Integration Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	∞
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	œ
В	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	∞
В	Extrapolation and integration / Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	∞
Α	Test Sample Positioning	2.540	2.540	normal (k=1)	1.0000	1.0000	2.540	2.540	10
Α	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	∞
Α	Liquid Conductivity (measured value)	4.690	4.690	normal (k=1)	1.0000	0.6400	3.002	3.002	5
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	∞
Α	Liquid Permittivity (measured value)	3.830	3.830	normal (k=1)	1.0000	0.6000	2.298	2.298	5
	Combined standard uncertainty			t-distribution			10.28	10.28	>40
	Expanded uncertainty			k = 1.96			20.14	20.14	>40

Page: 108 of 472 RFI Global Services Ltd.

Serial No: RFI-SAR-RP88281JD02A V2.0
Issue Date: 21 August 2012

Appen	Appendix 1. Test Equipment Used								
RFI No.	Instrument	Manufacturer	Type No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)			
A034	Narda 20W Termination	Narda	374BNM	8706	Calibrated as part of system	-			
A1097	SMA Directional Coupler	MiDISCO	MDC6223- 30	None	Calibrated as part of system	-			
A1137	3dB Attenuator	Narda	779	04690	Calibrated as part of system	-			
A1174	Dielectric Probe Kit	Agilent Technologies	85070C	Us99360072	Calibrated before use	-			
A1328	Handset Positioner	Schmid & Partner Engineering AG	Modification	SD 000 H01 DA	-	-			
A1182	Handset Positioner	Schmid & Partner Engineering AG	V3.0	None	-	-			
A1184	Data Acquisition Electronics	Schmid & Partner Engineering AG	DAE3	394	26 Jan 2012	12			
A2111	Data Acquisition Electronics	Schmid & Partner Engineering AG	DAE3	432	02 May 2012	12			
A2077	Probe	Schmid & Partner Engineering AG	EX3 DV4	3814	22 Sep 2011	12			
A2077	Probe (Additional Conversion Factors)	Schmid & Partner Engineering AG	EX3 DV4	3814	12 Mar 2012	12			
A2113	Probe	Schmid & Partner Engineering AG	ET3 DV6	1587	11 May 2012	12			
A1985	750 Dipole Kit	Schmid & Partner Engineering AG	D750V3	1011	09 Feb 2012	12			
A1235	900 MHz Dipole Kit	Schmid & Partner Engineering AG	D900V2	124	09 Feb 2011	24			
A1190	1800 MHz Dipole Kit	Schmid & Partner Engineering AG	D1800V2	264	13 July 2010	24			
A1237	1900 MHz Dipole Kit	Schmid & Partner Engineering AG	D1900V2	540	08 Feb 2011	24			
A1322	2450 MHz Dipole Kit	Schmid & Partner Engineering AG	D2450V2	725	08 Feb 2011	24			
A1377	5.0 GHz Dipole Kit (Body)	Schmid & Partner Engineering AG	D5GHzV2	1016	10 Feb 2011	24			

Page: 109 of 472 RFI Global Services Ltd.

Serial No: RFI-SAR-RP88281JD02A V2.0

Issue Date: 21 August 2012

RFI No.	Instrument	Manufacturer	Type No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
A1377	5.0 GHz Dipole Kit (Head)	Schmid & Partner Engineering AG	D5GHzV2	1016	23 March 2012	12
A1497	Amplifier	Mini-Circuits	zhl-42w (sma)	e020105	Calibrated as part of system	-
A1566	SAM Phantom	Schmid & Partner Engineering AG	SAM a (Site 56)	002	Calibrated before use	-
A1238	SAM Phantom	Schmid & Partner Engineering AG	SAM b (Site 56)	001	Calibrated before use	-
A2125	SAM Phantom	Schmid & Partner Engineering AG	SAM b (Site 57)	TP-1031	Calibrated before use	-
A2124	SAM Phantom	Schmid & Partner Engineering AG	SAM a (Site 57)	TP-1030	Calibrated before use	-
A215	20 dB Attenuator	Narda	766-20	9402	Calibrated as part of system	-
A1531	Antenna	AARONIA AG	7025	02458	-	-
M1015	Network Analyser	Agilent Technologies	8753ES	US39172406	27 Sept 2011	12
C1145	Cable	Rosenberger MICRO- COAX	FA147A F003003030	41843-1	Calibrated as part of system	-
C1146	Cable	Rosenberger MICRO-COAX	FA147A F030003030	41752-1	Calibrated as part of system	-
G0528	Robot Power Supply	Schmid & Partner Engineering AG	DASY4	None	Calibrated before use	-
GO591	Robot Power Supply	Schmid & Partner Engineering AG	DASY4	None	Calibrated before use	-
G087	PSU	Thurlby Thandar	CPX200	100701	Calibrated before use	-
M1047	Robot Arm	Staubli	RX908 L	F00/SD8 9A1/A/01	Calibrated before use	-
M1653	Robot Arm	Staubli	RX908 L	F01/5J8 6A1/C/01	Calibrated before use	-
M1159	Signal Generator	Agilent Technologies	E8241A	US42110332	Internal Checked 14 Apr 2012	4
M1071	Spectrum Analyzer	Agilent	HP8590E	3647U00514	(Monitoring use only)	-
M1270	Digital Thermometer	RS	N/A	N/A	Internal Checked 13 May 2012	12
S256	SAR Lab	RFI	Site 56	N/A	Calibrated before use	-
S512	SAR Lab	RFI	Site 57	N/A	Calibrated before use	-

Note: All the assets were in calibration during the course of testing.

Page: 110 of 472 RFI Global Services Ltd.

Serial No: RFI-SAR-RP88281JD02A V2.0

Issue Date: 21 August 2012

A.1.1. Calibration Certificates

This section contains the calibration certificates and data for the Probe(s) and Dipole(s) used, which are not included in the total number of pages for this report.

The following information is justification to why the listed dipoles calibration period has been extended. This address FCC KDB 450824 D02

				D	ipole Calibr	ation His	story				
		Dipole SN: 124, Frequency 900 MHz									
Cal Date		Hea	d Param	eters			Boo	ly Param	eters		
	1g (W/Kg)	10g (W/Kg)	Return loss (dB)	Real (Ω)	lmaginary (Ω)	1g (W/Kg)	10g (W/Kg)	Return loss (dB)	Real (Ω)	Imaginary (Ω)	
27-Jun-12		nnual of dipole	-24.73	49.56	-7.40		nnual of dipole	-21.92	48.18	-8.03	
09-Feb-11	11.00	7.01	-21.60	48.90	-8.20	11.10	7.14	-20.20	46.10	-8.60	
23-Aug-07	10.20	6.56	-21.20	48.60	-8.50	10.50	6.89	-20.20	45.40	-8.10	
31-Aug-05	10.60	6.78	-24.70	49.10	-5.70	10.50	6.77	-18.90	44.90	-8.90	
13-May-03	10.60	6.76	-24.00	50.30	-6.40	11.00	7.12	-20.60	46.20	-8.20	
03-Aug-01	11.28	7.16	-25.40	50.80	-5.60		Dipole ca	librated fo	r Head o	nly	
Standard Deviation	0.42	0.23	1.77	0.85	1.25	0.32	0.18	1.08	1.25	0.37	
Mean Value	10.74	6.85	23.61			10.78	6.98	20.36			
Relative standard deviation %	3.87%	3.41%	7.49%			2.97%	2.58%	5.31%			

				D	ipole Calibr	ation His	story			
		Dipole SN: 264, Frequency 1800 MHz								
Cal Date	Head Parameters						Вос	dy Param	eters	
	1g (W/Kg)	10g (W/Kg)	Return loss (dB)	Real (Ω)	Imaginary (Ω)	1g (W/Kg)	10g (W/Kg)	Return loss (dB)	Real (Ω)	Imaginary (Ω)
05-JuL-12		nnual of dipole	-22.97	46.16	-6.05		nnual of dipole	-21.40	45.46	-6.79
13-Jul-10	38.80	20.40	-22.50	45.80	-5.80	38.80	20.80	-20.30	43.00	-5.70
19-Jun-08	38.20	20.20	-25.00	46.50	-4.10	38.50	20.50	-20.10	42.00	-4.50
18-Apr-06	38.50	20.30	-23.50	46.00	-5.00	39.90	21.40	-19.70	41.70	-4.80
14-Apr-04	37.20	19.90	-23.50	46.90	-5.90	37.00	20.00	-21.30	44.30	-5.70
14-May-03	38.20	20.20	-22.60	46.70	-6.30	37.20	19.90	-19.70	42.30	-5.70
Standard Deviation	0.60	0.19	0.92	0.43	0.82	1.20	0.61	0.76	1.47	0.81
Mean Value	38.18	20.20	23.42			38.28	20.52	20.22		
Relative standard deviation %	1.58%	0.93%	3.91%			3.13%	2.99%	3.76%		

Page: 111 of 472 RFI Global Services Ltd.

Serial No: RFI-SAR-RP88281JD02A V2.0

Issue Date: 21 August 2012

Calibration	Calibration Certificates (Continued)										
		Dipole Calibration History									
				1900 MI	Ηz						
Cal Date	Head Parameters					Во	dy Param	eters			
	1g (W/Kg)	10g (W/Kg)	Return loss (dB)	Real (Ω)	lmaginary (Ω)	1g (W/Kg)	10g (W/Kg)	Return loss (dB)	Real (Ω)	lmaginary (Ω)	
27-Jun-12		nnual of dipole	-30.57	49.54	1.41		nnual of dipole	-29.80	50.34	2.37	
08-Feb-11	40.30	21.00	-27.60	50.50	4.20	40.70	21.60	-23.10	45.60	5.00	
26-Jun-09	40.30	21.10	-30.00	48.50	2.70	40.90	21.50	-24.30	44.90	2.80	
11-Jun-07	36.10	19.30	-25.40	51.90	5.10	38.00	20.70	-25.30	47.70	4.80	
14-Jun-05	38.1	19.90	-25.40	51.90	5.20	39.10	20.70	-24.00	48.10	5.90	
04-Jun-03	41.20	21.20	-28.50	50.30	3.80		Dipole ca	alibrated fo	r Head o	nly	
Standard Deviation	2.08	0.85	2.21	1.33	1.46	1.38	0.49	2.64	2.16	1.52	
Mean Value	39.20	20.50	27.91			39.68	21.13	25.30			
Relative standard deviation %	5.30%	4.15%	7.93%			3.47%	2.33%	10.42%			

				D	ipole Calibr	ation His	story			
		Dipole SN: 725, Frequency 2450 MHz								
Cal Date		Head Parameters					Вос	dy Param	eters	
	1g (W/Kg)	10g (W/Kg)	Return loss (dB)	Real (Ω)	Imaginary (Ω)	1g (W/Kg)	10g (W/Kg)	Return loss (dB)	Real (Ω)	Imaginary (Ω)
02-July-12		nnual of dipole	-20.37	47.27	8.65		nnual of dipole	-21.04	48.52	8.72
08-Feb-11	52.90	24.70	-20.50	45.60	7.90	51.90	24.10	-20.20	49.50	9.70
08-Jan-09	52.10	24.30	-23.70	54.40	5.30	52.20	24.70	-23.40	49.00	6.70
17-Jan-07	53.30	24.80	-22.10	52.40	7.70	53.30	24.50	-21.80	47.80	7.70
04-Jan-05	54.5	24.70	-22.30	53.50	7.20	52.90	24.50	-22.20	48.50	7.50
17-Jan-03	54.70	24.50	-22.60	53.00	7.00	52.10	24.10	-21.70	49.00	8.10
Standard Deviation	1.10	0.20	1.28	3.66	1.14	0.59	0.27	1.08	0.58	1.04
Mean Value	53.50	24.60	21.93			52.48	24.38	21.72		
Relative standard deviation %	2.05%	0.81%	5.85%			1.13%	1.10%	4.97%		

Note:

- 1. SAR lab has more than one dipole, the 900 MHz calibration gap is 24 months from 2007 and a second dipole was use after this period.
- 2. The dipole history shows that the measured SAR relative standard deviation was all less than 10% for the calibration period. The return loss relative standard deviation was all less than 10%. And the real and imaginary impedance standard deviation is within 5 (Ω).

Page: 112 of 472 RFI Global Services Ltd.

ASSET: A2077

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

RFI

Certificate No: EX3-3814_Sep11

CALIBRATION CERTIFICATE

EX3DV4 - SN:3814 Object

Calibration procedure(s) QA CAL-01.v8, QA CAL-12.v7, QA CAL-14.v3, QA CAL-23.v4,

QA CAL-25.v4

Calibration procedure for dosimetric E-field probes

Calibration date: September 22, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	31-Mar-11 (No. 217-01372)	Apr-12
Power sensor E4412A	MY41498087	31-Mar-11 (No. 217-01372)	Apr-12
Reference 3 dB Attenuator	SN: S5054 (3c)	29-Mar-11 (No. 217-01369)	Apr-12
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12
Reference 30 dB Attenuator	SN: S5129 (30b)	29-Mar-11 (No. 217-01370)	Apr-12
Reference Probe ES3DV2	SN: 3013	29-Dec-10 (No. ES3-3013_Dec10)	Dec-11
DAE4	SN: 654	3-May-11 (No. DAE4-654_May11)	May-12
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-10)	In house check: Oct-11

Name **Function** Signature Calibrated by: Katja Pokovic **Technical Manager** Approved by Fin Bomholt **R&D Director**

Issued: September 22, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3814_Sep11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurlch, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization φ σ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3814_Sep11 Page 2 of 11

EX3DV4 - SN:3814

Probe EX3DV4

SN:3814

Manufactured:

September 2, 2011 September 22, 2011

Calibrated:

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

EX3DV4-SN:3814

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3814

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.52	0.51	0.44	± 10.1 %
DCP (mV) ^B	100.8	96.5	101.1	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
10000	CW	0.00	X	0.00	0.00	1.00	121.7	±2.7 %
			Υ	0.00	0.00	1.00	115.0	
			Z	0.00	0.00	1.00	105.3	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter: uncertainty not required.

**Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the

EX3DV4- SN:3814 September 22, 2011

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3814

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	_ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	43.5	0.87	9.55	9.55	9.55	0.12	1.00	± 13.4 %
750	41.9	0.89	9.26	9.26	9.26	0.80	0.67	± 12.0 %
900	41.5	0.97	8.75	8.75	8.75	0.71	0.73	± 12.0 %
1750	40.1	1.37	8.13	8.13	8.13	0.80	0.62	± 12.0 %
1900	40.0	1.40	7.78	7.78	7.78	0.80	0.61	± 12.0 %
2450	39.2	1.80	7.02	7.02	7.02	0.80	0.60	± 12.0 %

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

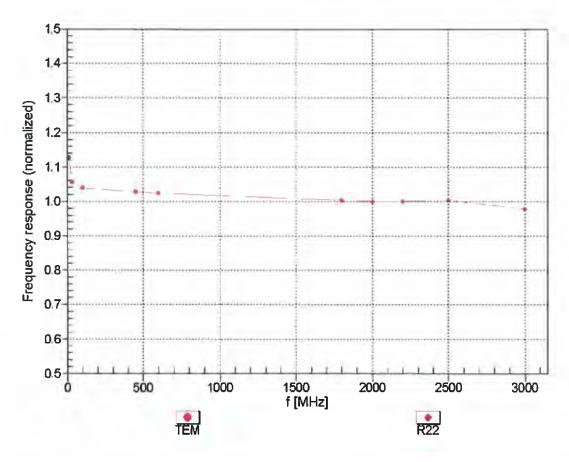
^f At frequencies below 3 GHz, the validity of tissue parameters (c. and c) can be relayed to ± 10% if liquid compensation formula is applied to

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3814

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	56.7	0.94	10.39	10.39	10.39	0.04	1.00	± 13.4 %
750	55.5	0.96	9.28	9.28	9.28	0.80	0.65	± 12.0 %
900	55.0	1.05	8.92	8.92	8.92	0.80	0.65	± 12.0 %
1750	53.4	1.49	7.58	7.58	7.58	0.80	0.67	± 12.0 %
1900	53.3	1.52	7.31	7.31	7.31	0.80	0.68	± 12.0 %
2150	53.1	1.66	7.38	7.38	7.38	0.80	0.65	± 12.0 %
2450	52.7	1.95	7.15	7.15	7.15	0.80	0.50	± 12.0 %
2600	52.5	2.16	7.02	7.02	7.02	0.80	0.50	± 12.0 %
3700	51.0	3.55	6.35	6.35	6.35	0.26	1.68	± 13.1 %
5200	49.0	5.30	4.19	4.19	4.19	0.60	1.95	± 13.1 %
5500	48.6	5.65	3.86	3.86	3.86	0.60	1.95	± 13.1 %
5800	48.2	6.00	3.94	3.94	3.94	0.60	1.95	± 13.1 %

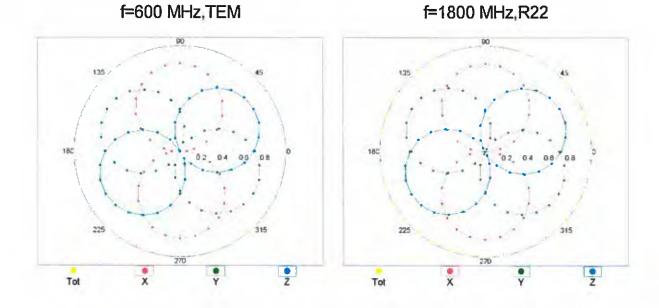

Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

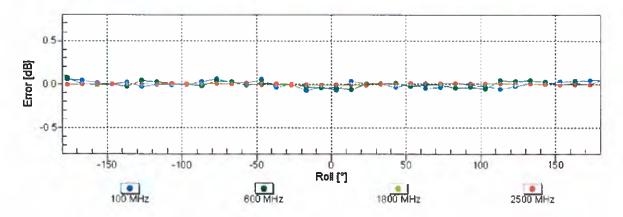
At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

EX3DV4-SN:3814 September 22, 2011

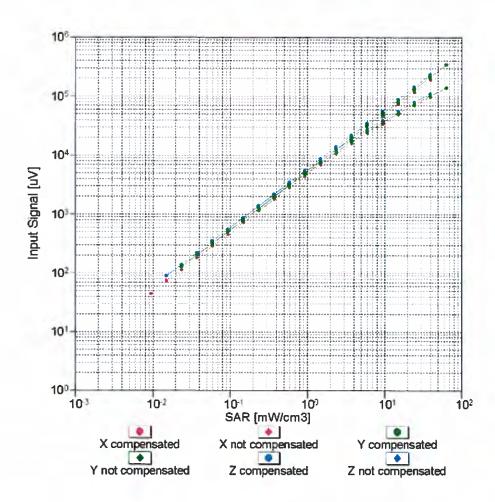
Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

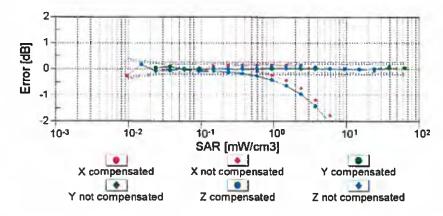



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

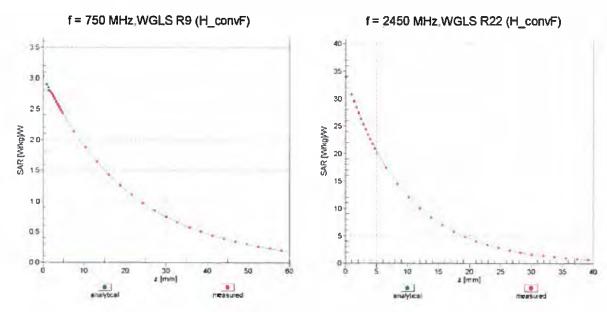
EX3DV4-SN:3814 September 22, 2011

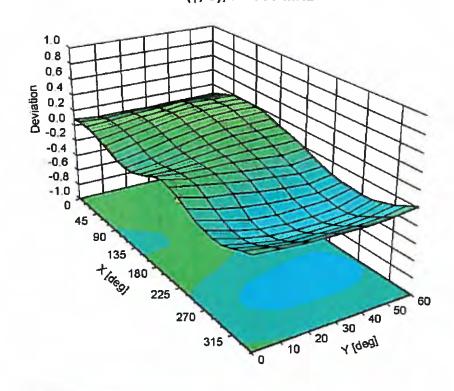
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

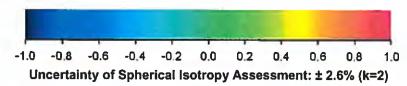




Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)




Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

EX3DV4-SN:3814

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3814

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Asset . A2077

Theched by At Danbe: 27-MARCH-2012

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

RFI

Certificate No: EX3-3814_Mar12

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3814

Calibration procedure(s)

QA CAL-01.v8, QA CAL-14.v3, QA CAL-23.v4, QA CAL-25.v4

Calibration procedure for dosimetric E-field probes

Calibration date:

March 12, 2012 (Additional Conversion Factors)

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate,

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	31-Mar-11 (No. 217-01372)	Apr-12
Power sensor E4412A	MY41498087	31-Mar-11 (No. 217-01372)	Apr-12
Reference 3 dB Attenuator	SN: S5054 (3c)	29-Mar-11 (No. 217-01369)	Apr-12
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12
Reference 30 dB Attenuator	SN: S5129 (30b)	29-Mar-11 (No. 217-01370)	Apr-12
Reference Probe ES3DV2	SN: 3013	29-Dec-11 (No. ES3-3013_Dec11)	Dec-12
DAE4	SN: 654	3-May-11 (No. DAE4-654_May11)	May-12
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11) In house check: A	
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-11)	In house check: Oct-12

Calibrated by:

Name
Function
Signature

Jeton Kastrati
Laboratory Technician

Approved by:

Katja Pokovic
Technical Manager

Issued: March 13, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z

DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3814_Mar12 Page 2 of 8

EX3DV4 - SN:3814 March 12, 2012

Probe EX3DV4

SN:3814

Additional Conversion Factors

Manufactured: Calibrated:

September 2, 2011 March 12, 2012

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3814

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	0.52	0.51	0.44	± 10.1 %
DCP (mV) ⁸	100.8	96.5	101.1	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
10000	CW	0.00	X	0.00	0.00	1.00	121.7	±2.7 %
			Y	0.00	0.00	1.00	115.0	
			Z	0.00	0.00	1.00	105.3	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

The uncertainties of NormX, Y, Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3814

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
5200	36.0	4.66	5.10	5.10	5.10	0.40	1.80	± 13.1 %
5300	35.9	4.76	4.80	4.80	4.80	0.40	1.80	± 13.1 %
5500	35.6	4.96	4.67	4.67	4.67	0.45	1.80	± 13.1 %
5600	35.5	5.07	4.54	4.54	4.54	0.45	1.80	± 13.1 %
5800	35.3	5.27	4.48	4.48	4.48	0.48	1.80	± 13.1 %

Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

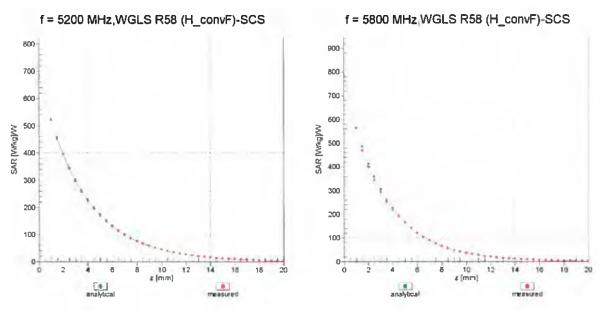
At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

EX3DV4- SN:3814 March 12, 2012

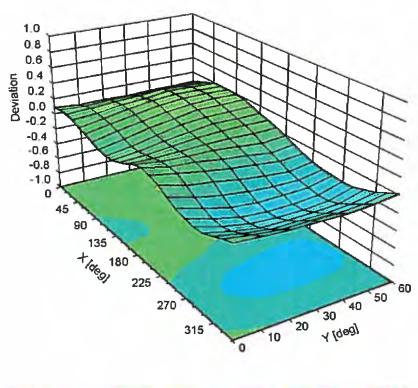
DASY/EASY - Parameters of Probe: EX3DV4- SN:3814

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
5300	48.9	5.42	4.37	4.37	4.37	0.50	1.90	± 13.1 %
5600	48.5	5.77	3.79	3.79	3.79	0.55	1.90	± 13.1 %


^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to


At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

EX3DV4- SN:3814 March 12, 2012

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

EX3DV4 - SN 3814 March 12, 2012

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3814

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm
	I

Checholby A.D

17-MAY-2012

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schwelzerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

RFI

ASSET A2113

Certificate No: ET3-1587_May12

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object ET3DV6 - SN:1587

Calibration procedure(s) QA CAL-01.v8, QA CAL-23.v4, QA CAL-25.v4

Calibration procedure for dosimetric E-field probes

Calibration date May 11, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration	
Power meter E4419B	GB41293874	29-Mar-12 (No. 217-01508)	Apr-13	
Power sensor E4412A	MY41498087	29-Mar-12 (No. 217-01508)	Apr-13	
Reference 3 dB Attenuator	SN: S5054 (3c)	27-Mar-12 (No. 217-01531)	Apr-13	
Reference 20 dB Attenuator	SN: S5086 (20b)	27-Mar-12 (No. 217-01529)	Apr-13	
Reference 30 dB Attenuator	SN: S5129 (30b)	27-Mar-12 (No. 217-01532)	Apr-13	
Reference Probe ES3DV2	SN: 3013	29-Dec-11 (No. ES3-3013_Dec11)	Dec-12	
DAE4	SN: 660	10-Jan-12 (No. DAE4-660_Jan12)	Jan-13	
Secondary Standards	ID	Check Date (in house)	Scheduled Check	
RF generator HP 8648C	U\$3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13	
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-11) In house check: Oct-13		

Name Function Signature
Calibrated by: Claudio Leubler Laboratory Technician

Approved by: Katja Pokovic Technical Manager

Issued: May 11, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: ET3-1587_May12

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizlo svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization ϕ ϕ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1587_May12 Page 2 of 11

ET3DV6 - SN:1587 May 11, 2012

Probe ET3DV6

SN:1587

Manufactured:

May 7, 2001

Calibrated:

May 11, 2012

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

ET3DV6- SN:1587 May 11, 2012

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1587

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	2.14	1.92	1.79	± 10.1 %
DCP (mV) ^B	99.0	97.5	99.1	

Modulation Calibration Parameters

UID	Communication System Name	PAR		Α	В	С	VR	Unc ^E
				dB	dB	dB	mV	(k=2)
0	cw	0.00	X	0.00	0.00	1.00	119.0	±2.7 %
			Υ	0.00	0.00	1.00	114.6	
			Z	0.00	0.00	1.00	111.6	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6)

^{**} In a uncertainties of Norma, 1,2 do not anset the Language anset and the uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

ET3DV6- SN:1587 May 11, 2012

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1587

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
835	41.5	0.90	6.33	6.33	6.33	0.24	3.00	± 12.0 %
900	41.5	0.97	6.18	6.18	6.18	0.28	3.00	± 12.0 %
1750	40.1	1.37	5.47	5.47	5.47	0.58	2.35	± 12.0 %
1900	40.0	1.40	5.18	5.18	5.18	0.80	1.68	± 12.0 %
2450	39.2	1.80	4.52	4.52	4.52	0.80	1.95	± 12.0 %

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (c and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

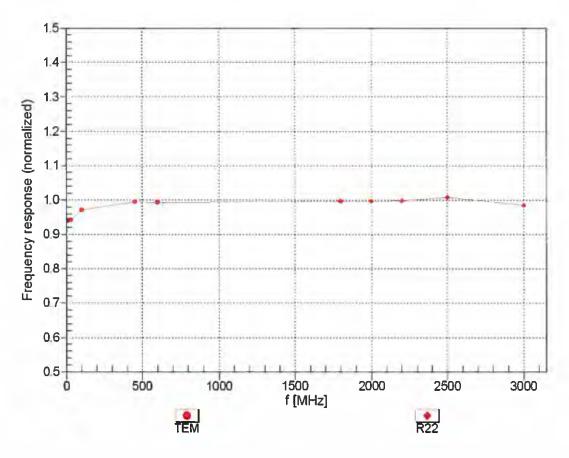
^{*} At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

ET3DV6- SN:1587 May 11, 2012

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1587

Calibration Parameter Determined in Body Tissue Simulating Media

			•					
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
835	55.2	0.97	6.28	6.28	6.28	0.30	3.00	± 12.0 %
900	55.0	1.05	6.26	6.26	6.26	0.37	2.56	± 12.0 %
1750	53.4	1.49	4.92	4.92	4.92	0.74	2.18	± 12.0 %
1900	53.3	1.52	4.69	4.69	4.69	0.77	2.38	± 12.0 %
2450	52.7	1.95	4.13	4.13	4.13	0.80	2.02	± 12.0 %

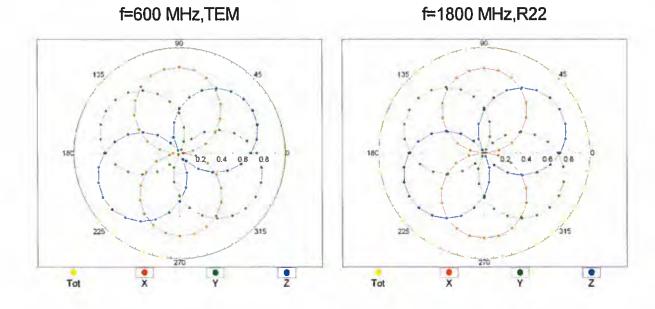

Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

At frequencies below 3 GHz, the validity of tissue parameters (c and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

ET3DV6-SN:1587 May 11, 2012

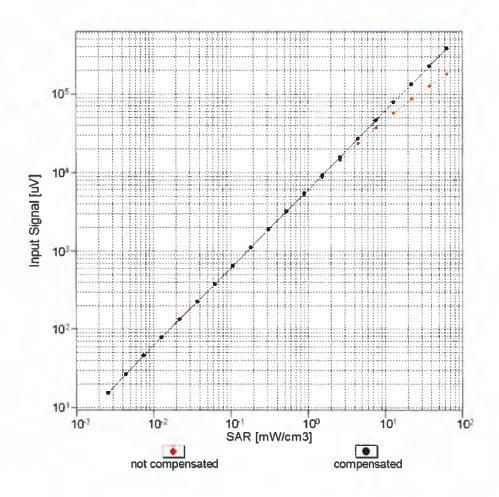
Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

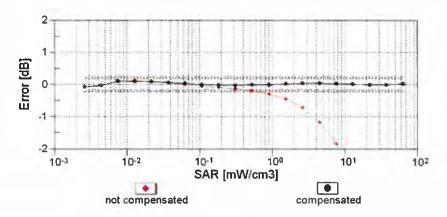



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

ET3DV6- SN:1587 May 11, 2012

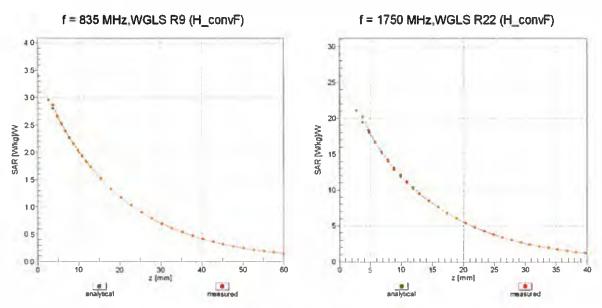
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

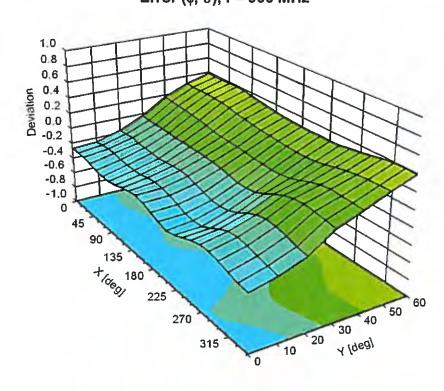

(17,

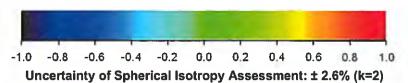


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)




Uncertainty of Linearity Assessment: ± 0.6% (k=2)


ET3DV6- SN:1587 May 11, 2012

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

ET3DV6- SN:1587 May 11, 2012

DASY/EASY - Parameters of Probe: ET3DV6 - SN:1587

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	72.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	enabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	6.8 mm
Probe Tip to Sensor X Calibration Point	2.7 mm
Probe Tip to Sensor Y Calibration Point	2.7 mm
Probe Tip to Sensor Z Calibration Point	2.7 mm
Recommended Measurement Distance from Surface	4 mm

Certificate No: ET3-1587_May12 Page 11 of 11

ASSET: A 1985

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio sylzzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

RF

Certificate No: D750V3-1011_Feb12

Object D750V3 - SN: 1011 Calibration procedure(s) QA CAL-05.V8 Calibration procedure for dipole validation kits above 700 MHz Calibration date: February 09, 2012 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 05-Oct-11 (No. 217-01451) Oct-12

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	05-Oct-11 (No. 217-01451)	Oct-12
Power sensor HP 8481A	US37292783	05-Oct-11 (No. 217-01451)	Oct-12
Reference 20 dB Attenuator	SN: 5086 (20g)	29-Mar-11 (No. 217-01368)	Apr-12
Type-N mismatch combination	SN: 5047.2 / 06327	29-Mar-11 (No. 217-01371)	Apr-12
Reference Probe ES3DV3	SN: 3205	30-Dec-11 (No. ES3-3205_Dec11)	Dec-12
DAE4	SN: 601	04-Jul-11 (No. DAE4-601_Jul11)	Jul-12
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-11)	In house check: Oct-12
	Name	Function	Signature
Calibrated by:	Israe El-Naouq	Laboratory Technician	Irrea CI-Daoug
Approved by:	Katja Pokovic	Technical Manager	The Marks

Issued: February 9, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.3 ± 6 %	0.92 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.17 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	8.48 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.42 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	5.57 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.6 ± 6 %	0.96 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.21 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	8.84 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.46 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	5.84 mW / g ± 16.5 % (k=2)

Certificate No: D750V3-1011_Feb12 Page 3 of 8

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$53.6 \Omega + 0.2 j\Omega$
Return Loss	- 29.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.9 Ω - 2.7 jΩ
Return Loss	- 30.5 dB

General Antenna Parameters and Design

	The state of the s
Electrical Delay (one direction)	1.039 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 29, 2009

Certificate No: D750V3-1011_Feb12

DASY5 Validation Report for Head TSL

Date: 09.02.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1011

Communication System: CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.92 \text{ mho/m}$; $\varepsilon_r = 42.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.33, 6.33, 6.33); Calibrated: 30.12.2011

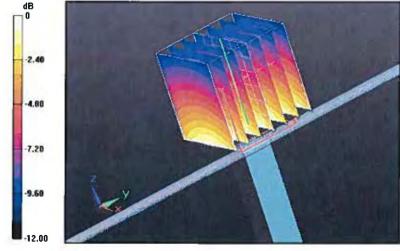
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.07.2011

• Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

• DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)

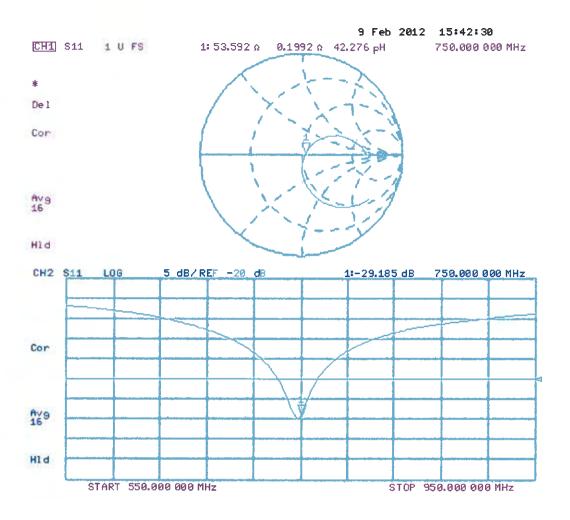
Dipole Calibration for Head Tissue/Pin=250mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 53.774 V/m; Power Drift = 0.003 dB

Peak SAR (extrapolated) = 3.3050

SAR(1 g) = 2.17 mW/g; SAR(10 g) = 1.42 mW/g


Maximum value of SAR (measured) = 2.549 mW/g

0 dB = 2.550 mW/g = 8.13 dB mW/g

Certificate No: D750V3-1011_Feb12

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 09.02.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1011

Communication System: CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.96 \text{ mho/m}$; $\varepsilon_r = 55.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.12, 6.12, 6.12); Calibrated: 30.12.2011

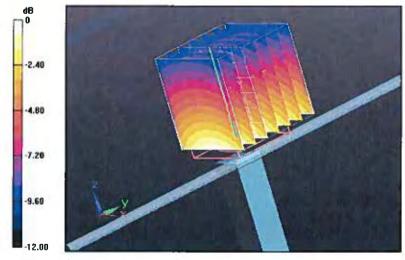
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.07.2011

• Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

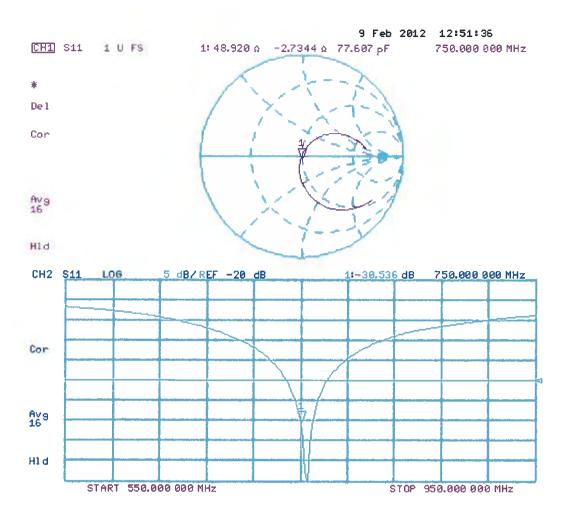
• DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)

Dipole Calibration for Body Tissue/Pin=250mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 52.902 V/m; Power Drift = 0.0098 dB

Peak SAR (extrapolated) = 3.2810


SAR(1 g) = 2.21 mW/g; SAR(10 g) = 1.46 mW/g

Maximum value of SAR (measured) = 2.573 mW/g

0 dB = 2.570 mW/g = 8.20 dB mW/g

Impedance Measurement Plot for Body TSL

ASSET: A1235 Checked by \$50 21/02/201

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service sulsse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

RFI

Certificate No: D900V2-124_Feb11

CALIBRATION CERTIFICATE

Object D900V2 - SN: 124

Calibration procedure(s) QA CAL-05.v8

Calibration procedure for dipole validation kits

Calibration date: February 09, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11
Reference 20 dB Attenuator	SN: 5086 (20g)	30-Mar-10 (No. 217-01158)	Mar-11
Type-N mismatch combination	SN: 5047.2 / 06327	30-Mar-10 (No. 217-01162)	Mar-11
Reference Probe ES3DV3	SN: 3205	30-Apr-10 (No. ES3-3205_Apr10)	Apr-11
DAE4	SN: 601	10-Jun-10 (No. DAE4-601_Jun10)	Jun-11
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11
	Name	Function	Signature
Calibrated by:	Dimce Iliev	Laboratory Technician	O. Kiev
Approved by:	Katja Pokovic	Technical Manager	120 110

Issued: February 9, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D900V2-124_Feb11 Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominai Head TSL parameters	22.2 °C	41.5	0.97 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.3 ± 6 %	0.95 mho/m ± 6 %
Head TSL temperature during test	(21.5 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.72 mW / g
SAR normalized	normalized to 1W	10.9 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	11.0 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.74 mW / g
SAR normalized	normalized to 1W	6.96 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	7.01 mW /g ± 16.5 % (k=2)

Certificate No: D900V2-124_Feb11

Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominai Body TSL parameters	22.0 °C	55.0	1.05 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.6 ± 6 %	1.05 mho/m ± 6 %
Body TSL temperature during test	(21.8 ± 0.2) °C	****	••••

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2. 7 9 mW / g
SAR normalized	normalized to 1W	11.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	11.1 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.79 mW / g
SAR normalized	normalized to 1W	7.16 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	7.14 mW / g ± 16.5 % (k=2)

Certificate No: D900V2-124_Feb11 Page 4 of 9

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.9 Ω - 8.2 jΩ
Return Loss	- 21.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.1 Ω - 8.6 jΩ
Return Loss	- 20.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.409 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 04, 2001

Certificate No: D900V2-124_Feb11

DASY5 Validation Report for Head TSL

Date/Time: 09.02.2011 11:44:15

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN:124

Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: HSL900

Medium parameters used: f = 900 MHz; $\sigma = 0.95 \text{ mho/m}$; $\varepsilon_r = 40.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.88, 5.88, 5.88); Calibrated: 30.04.2010

Sensor-Surface: 3mm (Mechanical Surface Detection)

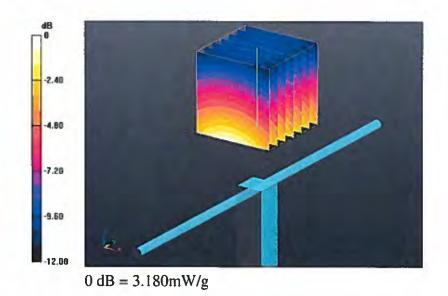
Electronics: DAE4 Sn601; Calibrated: 10.06.2010

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

Measurement SW: DASY52, V52.6.1 Build (408)

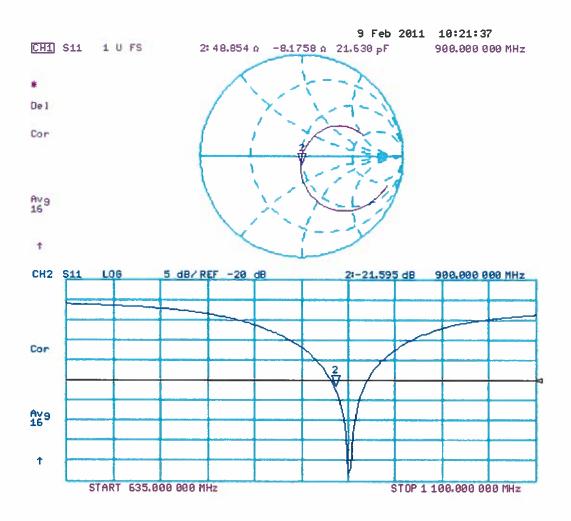
Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

Pin=250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 59.560 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 4.135 W/kg


SAR(1 g) = 2.72 mW/g; SAR(10 g) = 1.74 mW/g

Maximum value of SAR (measured) = 3.183 mW/g

Certificate No: D900V2-124_Feb11

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date/Time: 09.02.2011 14:54:48

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN:124

Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: M900

Medium parameters used: f = 900 MHz; $\sigma = 1.05 \text{ mho/m}$; $\varepsilon_r = 53.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.81, 5.81, 5.81); Calibrated: 30.04.2010

• Sensor-Surface: 3mm (Mechanical Surface Detection)

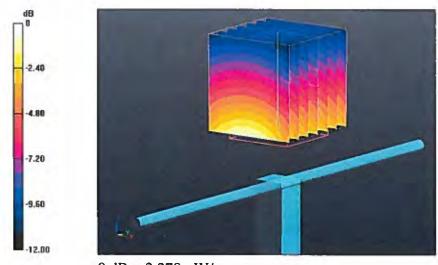
• Electronics: DAE4 Sn601; Calibrated: 10.06.2010

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

Measurement SW: DASY52, V52.6.1 Build (408)

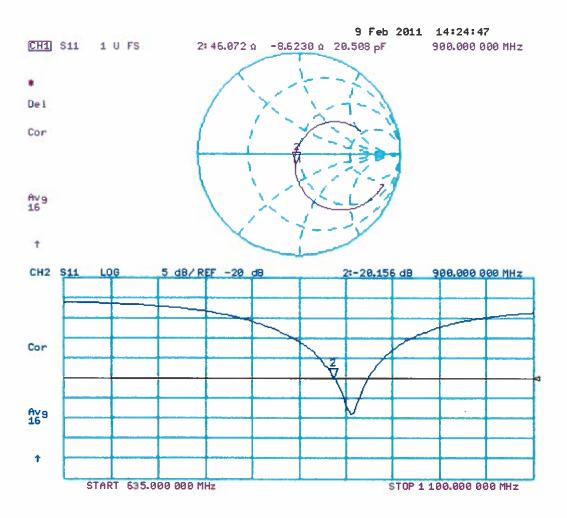
• Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

Pin=250 mW /d=15mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.520 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 4.203 W/kg


SAR(1 g) = 2.79 mW/g; SAR(10 g) = 1.79 mW/g

Maximum value of SAR (measured) = 3.271 mW/g

0 dB = 3.270 mW/g

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Checke I by # DATE: 19-07-2 Schweizerischer Kalibrierdienst

Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

RI-I ASSET A1190

Certificate No: D1800V2-264_Jul10

CALIBRATION CERTIFICATE

D1800V2 - SN: 264 Object

QA CAL-05.v7 Calibration procedure(s)

Calibration procedure for dipole validation kits

July 13, 2010 Calibration date:

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-09 (No. 217-01086)	Oct-10
Power sensor HP 8481A	US37292783	06-Oct-09 (No. 217-01086)	Oct-10
Reference 20 dB Attenuator	SN: 5086 (20g)	30-Mar-10 (No. 217-01158)	Mar-11
Type-N mismatch combination	SN: 5047.2 / 06327	30-Mar-10 (No. 217-01162)	Mar-11
Reference Probe ES3DV3	SN: 3205	30-Apr-10 (No. ES3-3205_Apr10)	Apr-11
DAE4	SN: 601	10-Jun-10 (No. DAE4-601_Jun10)	Jun-11
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-09)	In house check: Oct-10
	Name	Function	Signature
Calibrated by:	Dimce Hiev	Laboratory Technician	W. Kiew
Approved by:	Katja Pokovic	Technical Manager	20 100

Issued: July 13, 2010

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1800V2-264_Jul10

Page 1 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S wiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1800V2-264_Jul10 Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1800 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.5 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C	****	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.58 mW / g
SAR normalized	normalized to 1W	38. 3 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	38.8 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.06 mW / g
SAR normalized	normalized to 1W	20.2 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	20.4 mW /g ± 16.5 % (k=2)

Certificate No: D1800V2-264_Jul10

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.5 ± 6 %	1.48 mho/m ± 6 %
Body TSL temperature during test	(23.0 ± 0.2) °C	****	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.56 mW / g
SAR normalized	normalized to 1W	38.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	38.8 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.17 mW / g
SAR normalized	normalized to 1W	20.7 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	20.8 mW / g ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	45.8 Ω5.8 jΩ	
Return Loss	- 22.5 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	43.0 Ω - 5.7 jΩ
Return Loss	- 20.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.202 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 05, 2000

Certificate No: D1800V2-264_Jul10 Page 5 of 9

DASY5 Validation Report for Head TSL

Date/Time: 06.07.2010 10:49:53

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:264

Communication System: CW; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: HSL U12 BB

Medium parameters used: f = 1800 MHz; $\sigma = 1.38 \text{ mho/m}$; $\varepsilon_r = 40.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.05, 5.05, 5.05); Calibrated: 30.04.2010

• Sensor-Surface: 3mm (Mechanical Surface Detection)

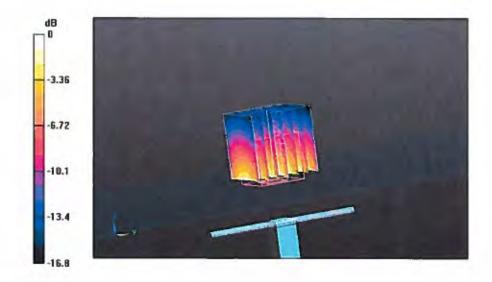
• Electronics: DAE4 Sn601; Calibrated: 10.06.2010

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163)

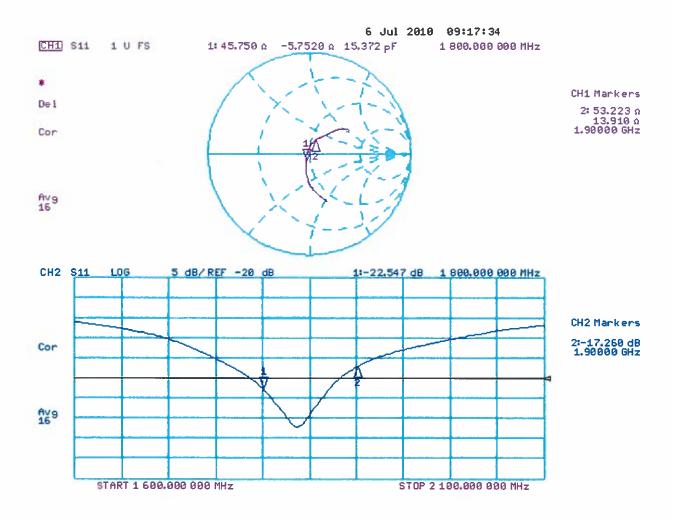
Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe) /Zoom Scan (7x7x7) /Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 97.5 V/m; Power Drift = -0.000637 dB

Peak SAR (extrapolated) = 17.3 W/kg


SAR(1 g) = 9.58 mW/g; SAR(10 g) = 5.06 mW/g

Maximum value of SAR (measured) = 12.2 mW/g

0 dB = 12.2 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body

Date/Time: 13.07.2010 11:05:37

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:264

Communication System: CW; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: MSL U11 BB

Medium parameters used: f = 1800 MHz; $\sigma = 1.48 \text{ mho/m}$; $\varepsilon_r = 53.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.74, 4.74, 4.74); Calibrated: 30.04.2010

• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 10.06.2010

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163)

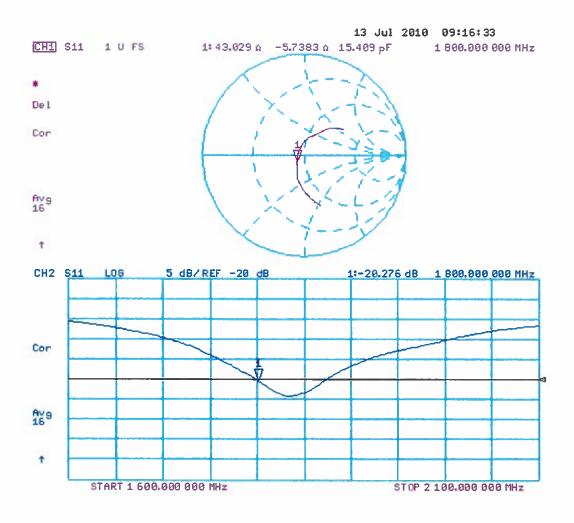
Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.5 V/m; Power Drift = 0.00823 dB

Peak SAR (extrapolated) = 16.1 W/kg


SAR(1 g) = 9.56 mW/g; SAR(10 g) = 5.17 mW/g

Maximum value of SAR (measured) = 11.9 mW/g

0 dB = 11.9 mW/g

Impedance Measurement Plot for Body TSL

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Consignee's Name:

RFI Global Services Ltd Pavilion A Ashwood Park Basingstoke Hampshire RG23 8BG United Kingdom

Contact Person:

Naseer Mirza / Rich Quoi (+44-12563-12000)

Forwarder:

UPS

Delivery terms:

EXW Zurich / Switzerland (Incoterms 2000)

Zurich, July 16, 2010

Proforma Invoice no. 1607/10/76

Your Purchase Order No.: 119145

HS-Code: 9030.90.90

Iten	m Description	Qty.	Unit Price USD	Total Value USD
ī	Probe EX3DV3 – SN: 3508	i	10.00	10.00
2	Dipole D1800V2 – SN: 264	1	10.00	10.00
Tot	al (w/o VAT)		USD	20.00

FREE OF CHARGE – VALUE FOR CUSTOMS PURPOSES ONLY! RETURN ITEMS FROM RECALIBRATION.

The exporter of the products covered by this document declares that, except where otherwise clearly indicated these products are of Swiss preferential origin.

Zurich, July 16, 2010

Schmid & Partner Engineering AG

Livia Mussato

ASSET: 16/237 - Checked by #15

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

CALIBRATION CERTIFICATE

Accreditation No.: SCS 108

Client

RFI

Certificate No: D1900V2-540_Feb11

Calibration procedure(s) QA CAL-05.v8 Calibration procedure for dipole validation kits Calibration date: February 08, 2011 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%.

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11
Reference 20 dB Attenuator	SN: 5086 (20g)	30-Mar-10 (No. 217-01158)	Mar-11
Type-N mismatch combination	SN: 5047.2 / 06327	30-Mar-10 (No. 217-01162)	Mar-11
Reference Probe ES3DV3	SN: 3205	30-Apr-10 (No. ES3-3205_Apr10)	Apr-11
DAE4	SN: 601	10-Jun-10 (No. DAE4-601_Jun10)	Jun-11
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11
	Name	Function	Signature
Calibrated by:	Dimce iliev	Laboratory Technician	O'Xier
Approved by:	Katja Pokovic	Technical Manager	20 m

Issued: February 8, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-540_Feb11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z not applicable or not measured

N/A n

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	·
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.8 ± 6 %	1.41 mho/m ± 6 %
Head TSL temperature during test	(21.0 ± 0.2) °C	***	••••

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.1 mW / g
SAR normalized	normalized to 1W	40.4 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	40.3 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.25 mW / g
SAR normalized	normalized to 1W	21.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	21.0 mW /g ± 16.5 % (k=2)

Certificate No: D1900V2-540_Feb11

Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.8 ± 6 %	1.55 mho/m ± 6 %
Body TSL temperature during test	(21.2 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.3 mW / g
SAR normalized	normalized to 1W	41.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	40.7 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.43 mW / g
SAR normalized	normalized to 1W	21.7 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.6 mW / g ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.5 Ω + 4.2 jΩ
Return Loss	- 27.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.6 Ω + 5.0 jΩ
Return Loss	- 23.1 dB

General Antenna Parameters and Design

	1
Electrical Delay (one direction)	1.195 ns
i Electrical Delay tone directioni	1.195 NS
The state of the s	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 26, 2001

Certificate No: D1900V2-540_Feb11

DASY5 Validation Report for Head TSL

Date/Time: 07.02.2011 15:18:47

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:540

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL U12 BB

Medium parameters used: f = 1900 MHz; $\sigma = 1.41 \text{ mho/m}$; $\varepsilon_r = 39.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.09, 5.09, 5.09); Calibrated: 30.04.2010

Sensor-Surface: 3mm (Mechanical Surface Detection)

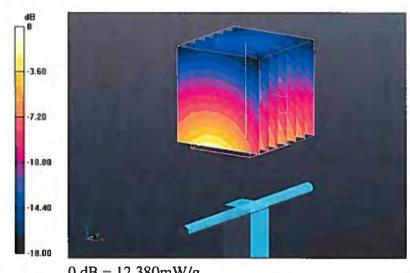
Electronics: DAE4 Sn601: Calibrated: 10.06.2010

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

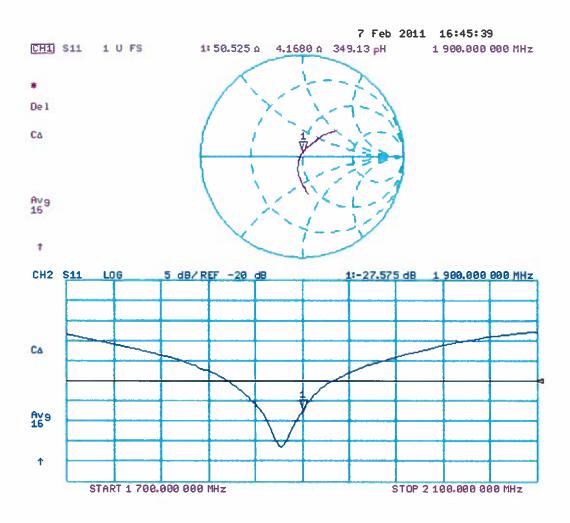
Measurement SW: DASY52, V52.6.1 Build (408)

Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.936 V/m; Power Drift = 0.04 dB


Peak SAR (extrapolated) = 18.544 W/kg

SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.25 mW/g

Maximum value of SAR (measured) = 12.384 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date/Time: 08.02.2011 12:04:35

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:540

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL U12 BB

Medium parameters used: f = 1900 MHz; $\sigma = 1.55 \text{ mho/m}$; $\varepsilon_r = 52.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.59, 4.59, 4.59); Calibrated: 30.04.2010

• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 10.06.2010

• Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

Measurement SW: DASY52, V52.6.1 Build (408)

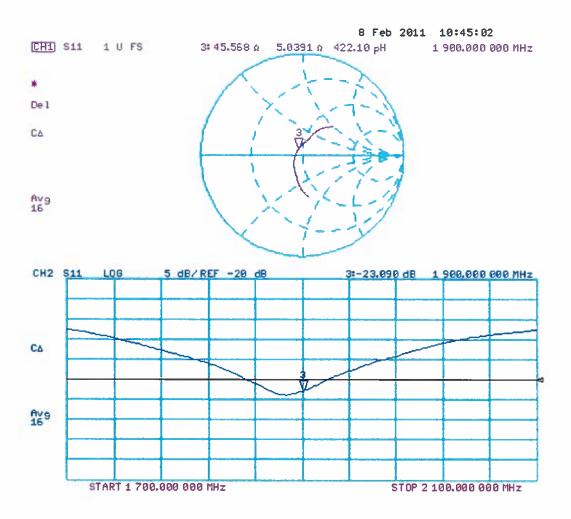
• Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.899 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 17.597 W/kg


SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.43 mW/g

Maximum value of SAR (measured) = 13.038 mW/g

0 dB = 13.040 mW/g

Impedance Measurement Plot for Body TSL

ASSET! A 1322 - Checked by AD

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

RFI

Certificate No: D2450V2-725_Feb11

CALIBRATION CERTIFICATE

Object D2450V2 - SN: 725

Calibration procedure(s) QA CAL-05.v8

Calibration procedure for dipole validation kits

Calibration date: February 08, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11
Reference 20 dB Attenuator	SN: 5086 (20g)	30-Mar-10 (No. 217-01158)	Mar-11
Type-N mismatch combination	SN: 5047.2 / 06327	30-Mar-10 (No. 217-01162)	Mar-11
Reference Probe ES3DV3	SN: 3205	30-Apr-10 (No. ES3-3205_Apr10)	Apr-11
DAE4	SN: 601	10-Jun-10 (No. DAE4-601_Jun10)	Jun-11
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11
	Name	Function	Signature
Calibrated by:	Dimce lilev	Laboratory Technician	D. Kiev
Approved by:	Katja Pokovic	Technical Manager	2010

Issued: February 8, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-725_Feb11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D2450V2-725_Feb11 Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) *C	39.1 ± 6 %	1.73 mho/m ± 6 %
Head TSL temperature during test	(21.0 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR normalized	normalized to 1W	52.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	52.9 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.13 mW / g
SAR normalized	normalized to 1W	24.5 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.7 mW /g ± 16.5 % (k=2)

Certificate No: D2450V2-725_Feb11

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.2 ± 6 %	1.94 mho/m ± 6 %
Body TSL temperature during test	(21.0 ± 0.2) °C	****	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR normalized	normalized to 1W	52.0 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	51.9 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.04 mW / g
SAR normalized	normalized to 1W	24.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	24.1 mW / g ± 16.5 % (k=2)

Certificate No: D2450V2-725_Feb11

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	45.6 Ω + 7.9 jΩ
Return Loss	- 20.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.5 Ω + 9.7 jΩ
Return Loss	- 20.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.152 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 16, 2002

Certificate No: D2450V2-725_Feb11

DASY5 Validation Report for Head TSL

Date/Time: 07.02.2011 14:34:55

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:725

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL U12 BB

Medium parameters used: f = 2450 MHz; $\sigma = 1.74 \text{ mho/m}$; $\varepsilon_r = 39.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 30.04.2010

• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 10.06.2010

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

Measurement SW: DASY52, V52.6.1 Build (408)

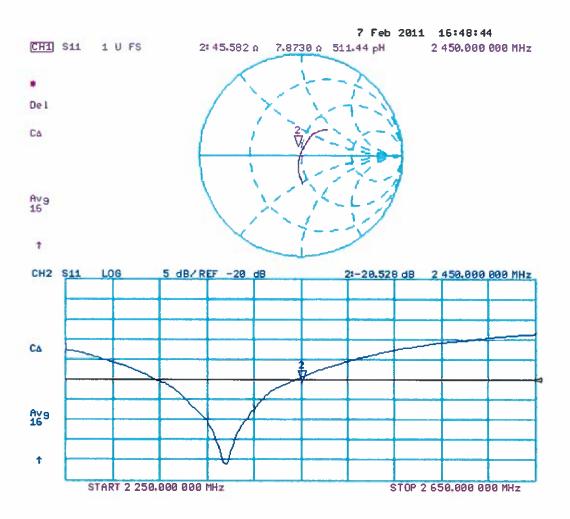
Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 101.3 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 26.701 W/kg


SAR(1 g) = 13 mW/g; SAR(10 g) = 6.13 mW/g

Maximum value of SAR (measured) = 16.608 mW/g

0 dB = 16.610 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date/Time: 08.02.2011 12:48:13

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:725

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL U12 BB

Medium parameters used: f = 2450 MHz; $\sigma = 1.95 \text{ mho/m}$; $\varepsilon_r = 52.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.31, 4.31, 4.31); Calibrated: 30.04.2010

Sensor-Surface: 3mm (Mechanical Surface Detection)

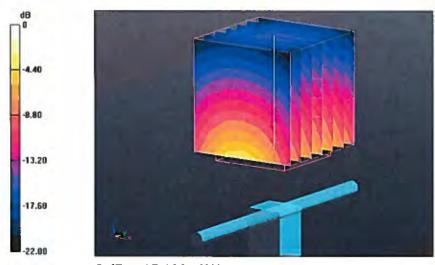
Electronics: DAE4 Sn601; Calibrated: 10.06,2010

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

Measurement SW: DASY52, V52.6.1 Build (408)

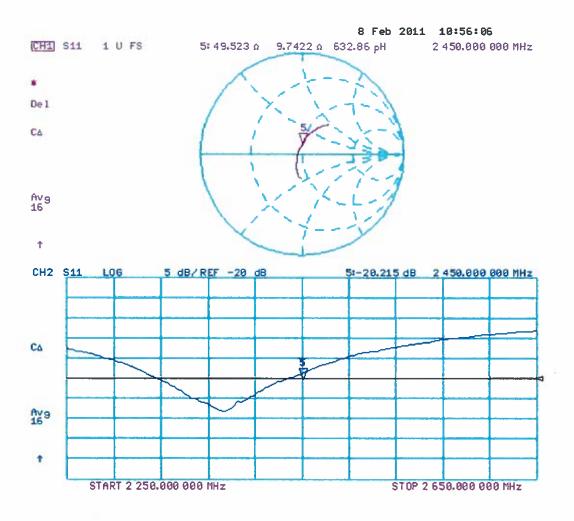
Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.406 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 27.401 W/kg


SAR(1 g) = 13 mW/g; SAR(10 g) = 6.04 mW/g

Maximum value of SAR (measured) = 17.121 mW/g

0 dB = 17.120 mW/g

Impedance Measurement Plot for Body TSL

BODY UNLY)

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

RF

Certificate No: D5GHzV2-1016_Feb11

CALIBRATION CERTIFICATE

Object

D5GHzV2 - SN: 1016

Calibration procedure(s)

QA CAL-22.v1

Calibration procedure for dipole validation kits between 3-6 GHz

Calibration date:

February 10, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11
Reference 20 dB Attenuator	SN: 5086 (20g)	30-Mar-10 (No. 217-01158)	Mar-11
Type-N mismatch combination	SN: 5047.2 / 06327	30-Mar-10 (No. 217-01162)	Mar-11
Reference Probe EX3DV4	SN: 3503	05-Mar-10 (No. EX3-3503_Mar10)	Mar-11
DAE4	SN: 601	10-Jun-10 (No. DAE4-601_Jun10)	Jun-11
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11
	Name	Function	Signature
Calibrated by:	Dimce Iliev	Laboratory Technician	O. Lieur
			00

Issued: February 11, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D5GHzV2-1016_Feb11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010
- b) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D5GHzV2-1016_Feb11 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6
Extrapolation	Advanced Extrapolation	· <u></u> -
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Area Scan resolution	dx, dy = 10 mm	
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 2.0 mm	
Frequency	5200 MHz ± 1 MHz 5500 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.2 ± 6 %	5.37 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C	****	

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	100 mW input power	7.73 mW / g
SAR normalized	normalized to 1W	77.3 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	76.7 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.14 mW / g
SAR normalized	normalized to 1W	21.4 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.2 mW / g ± 19.5 % (k=2)

Page 3 of 8

Certificate No: D5GHzV2-1016_Feb11

Body TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittlvity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.6 ± 6 %	5.75 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C	****	****

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	100 mW input power	8.35 mW / g
SAR normalized	normalized to 1W	83.5 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	82.8 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.30 mW / g
SAR normalized	normalized to 1W	23.0 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	22.8 mW / g ± 19.5 % (k=2)

Body TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominai Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.2 ± 6 %	6.16 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C		Z

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	100 mW input power	7. 22 mW / g
SAR normalized	normalized to 1W	72.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	71.7 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	1.99 mW / g
SAR normalized	normalized to 1W	19.9 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	19.7 mW / g ± 19.5 % (k=2)

Certificate No: D5GHzV2-1016_Feb11 Page 4 of 8

Appendix

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	53.8 Ω - 8.9 jΩ
Return Loss	-20.6 dB

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	48.4 Ω - 0.9 jΩ
Return Loss	-34.8 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	54.4 Ω + 8.3 jΩ
Return Loss	-21.0 dB

General Antenna Parameters and Design

- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
Electrical Delay (one direction)	1.200 ns

After long term use with 40 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 14, 2003

Certificate No: D5GHzV2-1016_Feb11 Page 5 of 8

DASY5 Validation Report for Body TSL

Date/Time: 10.02.2011 17:44:53

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHz; Serial: D5GHzV2 - SN:1016

Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz; Duty

Cycle: 1:1

Medium: MSL 5000 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 5.37$ mho/m; $\varepsilon_r = 47.2$; $\rho = 1000$ kg/m³,

Medium parameters used: f = 5500 MHz; $\sigma = 5.75 \text{ mho/m}$; $\varepsilon_r = 46.6$; $\rho = 1000 \text{ kg/m}^3$. Medium parameters used: f = 5800 MHz; $\sigma = 6.16 \text{ mho/m}$; $\varepsilon_r = 46.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.88, 4.88, 4.88), ConvF(4.37, 4.37, 4.37), ConvF(4.57, 4.57, 4.57); Calibrated: 05.03.2010
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY52, V52.6.1 Build (408)
- Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

Pin=100mW, d=10mm, f=5200 MHz /Zoom Scan (4x4x2mm), dist=2mm (8x8x6)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 59.968 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 30.597 W/kg

SAR(1 g) = 7.73 mW/g; SAR(10 g) = 2.14 mW/g

Maximum value of SAR (measured) = 14.853 mW/g

Pin=100mW, d=10mm, f=5500 MHz/Zoom Scan (4x4x2mm), dist=2mm (8x8x6)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 60.866 V/m; Power Drift = -0.02 dB

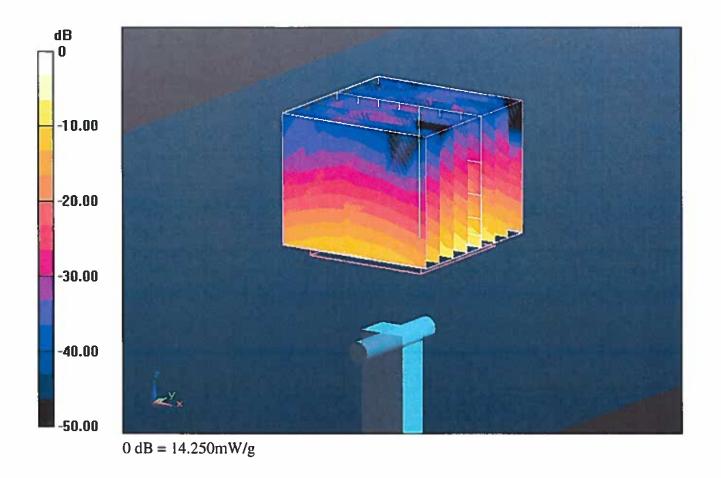
Peak SAR (extrapolated) = 35.356 W/kg

SAR(1 g) = 8.35 mW/g; SAR(10 g) = 2.3 mW/g

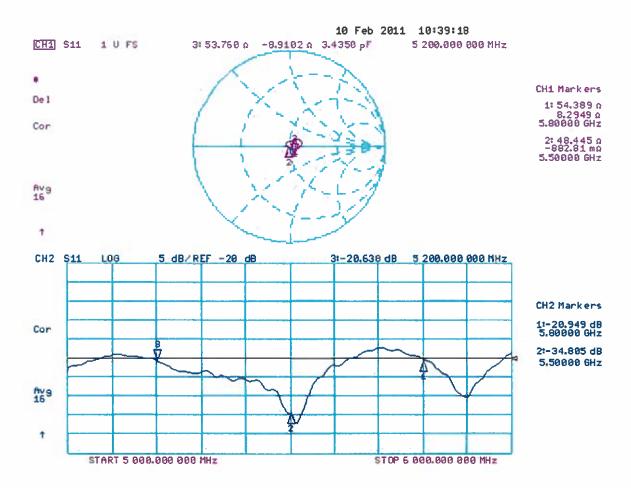
Maximum value of SAR (measured) = 16.244 mW/g

Pin=100mW, d=10mm, f=5800 MHz /Zoom Scan (4x4x2mm), dist=2mm (8x8x6)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm


Reference Value = 54.353 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 32.295 W/kg


SAR(1 g) = 7.22 mW/g; SAR(10 g) = 1.99 mW/g

Maximum value of SAR (measured) = 14.254 mW/g

Certificate No: D5GHzV2-1016_Feb11 Page 6 of 8

Impedance Measurement Plot for Body TSL

Checked by AD DATE CHECKED: 29-MARCH - 2012

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

RFI

Accreditation No.: SCS 108

Certificate No: D5GHzV2-1016_Mar12

CALIBRATION CERTIFICATE

Object

D5GHzV2 - SN: 1016

Calibration procedure(s)

QA CAL-22.v1

Calibration procedure for dipole validation kits between 3-6 GHz

Calibration date:

March 23, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	05-Oct-11 (No. 217-01451)	Oct-12
Power sensor HP 8481A	US37292783	05-Oct-11 (No. 217-01451)	Oct-12
Reference 20 dB Attenuator	SN: 5086 (20g)	29-Mar-11 (No. 217-01368)	Apr-12
Type-N mismatch combination	SN: 5047.2 / 06327	29-Mar-11 (No. 217-01371)	Apr-12
Reference Probe EX3DV4	SN: 3503	30-Dec-11 (No. EX3-3503_Dec11)	Dec-12
DAE4	SN: 601	04-Jul-11 (No. DAE4-601_Jul11)	Jul-12
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-11)	In house check: Oct-12
	Name	Function	Signature
Calibrated by:	Dimce Iliev	Laboratory Technician	D- View
		Technical Manager	

Issued: March 26, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D5GHzV2-1016_Mar12

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010
- b) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1016_Mar12

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, $dy = 4.0$ mm, $dz = 1.4$ mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5500 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.7 ± 6 %	4.59 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.88 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	78.6 mW /g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.26 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	22.5 mW /g ± 19.5 % (k=2)

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.2 ± 6 %	4.89 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.48 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	84.5 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.43 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.2 mW / g ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.8 ± 6 %	5.19 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.84 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	78.1 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.24 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	22.3 mW / g ± 19.5 % (k=2)

Certificate No: D5GHzV2-1016_Mar12

Appendix

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	52.9 Ω - 9.6 jΩ
Return Loss	- 20.3 dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	48.7 Ω - 0.2 jΩ
Return Loss	- 37.8 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	57.5 Ω + 7.1 jΩ
Return Loss	- 20.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.199 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 14, 2003

Certificate No: D5GHzV2-1016_Mar12

DASY5 Validation Report for Head TSL

Date: 23.03.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1016

Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.59$ mho/m; $\epsilon_r = 35.7$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 4.89$ mho/m; $\epsilon_r = 35.2$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 5.19$ mho/m; $\epsilon_r = 34.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.41, 5.41, 5.41), ConvF(4.91, 4.91, 4.91), ConvF(4.81, 4.81, 4.81); Calibrated: 30.12.2011
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 60.845 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 29.2070

SAR(1 g) = 7.88 mW/g; SAR(10 g) = 2.26 mW/g

Maximum value of SAR (measured) = 18.432 mW/g

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

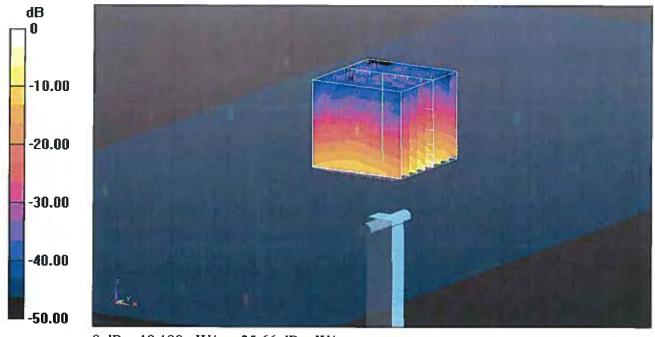
Reference Value = 62.039 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 33.1850

SAR(1 g) = 8.48 mW/g; SAR(10 g) = 2.43 mW/g

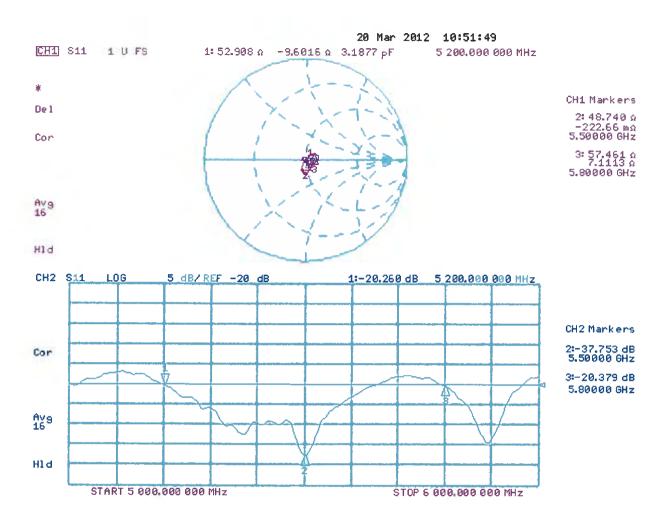
Maximum value of SAR (measured) = 20.139 mW/g

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,


dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 58.534 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 32.5190


SAR(1 g) = 7.84 mW/g; SAR(10 g) = 2.24 mW/g

Maximum value of SAR (measured) = 19.191 mW/g

0 dB = 19.190 mW/g = 25.66 dB mW/g

Impedance Measurement Plot for Head TSL

Test Report Version 2.0 Serial No: RFI-SAR-RP88281JD02A V2.0

rsion 2.0 Issue Date: 21 August 2012

Appendix 2. Measurement Methods

A.2.1. Evaluation Procedure

The Specific Absorption Rate (SAR) evaluation was performed in the following manner:

- a) (i) The evaluation was performed in an applicable area of the phantom depending on the type of device being tested. For devices worn about the ear during normal operation, both the left and right ear positions were evaluated at the centre frequency of the band at maximum power. The side, which produced the greatest SAR, determined which side of the phantom would be used for the entire evaluation. The positioning of the head worn device relative to the phantom was dictated by the test specification identified in section 3.1 of this report.
 - (ii) For body worn devices or devices which can be operated within 20 cm of the body, the flat section of the SAM phantom was used were the size of the device(s) is normal. for bigger devices and base station the 2mm Oval phantom is used for evaluation. The type of device being evaluated dictated the distance of the EUT to the outer surface of the phantom flat section.
- b) The SAR was determined by a pre-defined procedure within the DASY4 software. The exposed region of the phantom was scanned near the inner surface with a grid spacing of 20mm x 20mm or appropriate resolution.
- c) A 5x5x7 matrix for measurement < 4.5 GHz and 7x7x9 for > 4.5 GHz was performed around the greatest spatial SAR distribution found during the area scan of the applicable exposed region. SAR values were then calculated using a 3-D spline interpolation algorithm and averaged over spatial volumes of 1 and 10 grams.
- d) If the EUT had any appreciable drift over the course of the evaluation, then the EUT was reevaluated. Any unusual anomalies over the course of the test also warranted a re-evaluation.

Page: 113 of 472 RFI Global Services Ltd.

ASSET: 16/237 - Checked by #15

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

CALIBRATION CERTIFICATE

Accreditation No.: SCS 108

Client

RFI

Certificate No: D1900V2-540_Feb11

Calibration procedure(s) QA CAL-05.v8 Calibration procedure for dipole validation kits Calibration date: February 08, 2011 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%.

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11
Reference 20 dB Attenuator	SN: 5086 (20g)	30-Mar-10 (No. 217-01158)	Mar-11
Type-N mismatch combination	SN: 5047.2 / 06327	30-Mar-10 (No. 217-01162)	Mar-11
Reference Probe ES3DV3	SN: 3205	30-Apr-10 (No. ES3-3205_Apr10)	Apr-11
DAE4	SN: 601	10-Jun-10 (No. DAE4-601_Jun10)	Jun-11
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11
	Name	Function	Signature
Calibrated by:	Dimce iliev	Laboratory Technician	O'Xier
Approved by:	Katja Pokovic	Technical Manager	20 m

Issued: February 8, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-540_Feb11

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z not applicable or not measured

N/A n

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	·
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.8 ± 6 %	1.41 mho/m ± 6 %
Head TSL temperature during test	(21.0 ± 0.2) °C	***	••••

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.1 mW / g
SAR normalized	normalized to 1W	40.4 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	40.3 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.25 mW / g
SAR normalized	normalized to 1W	21.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	21.0 mW /g ± 16.5 % (k=2)

Certificate No: D1900V2-540_Feb11

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.8 ± 6 %	1.55 mho/m ± 6 %
Body TSL temperature during test	(21.2 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.3 mW / g
SAR normalized	normalized to 1W	41.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	40.7 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.43 mW / g
SAR normalized	normalized to 1W	21.7 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.6 mW / g ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.5 Ω + 4.2 jΩ
Return Loss	- 27.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.6 Ω + 5.0 jΩ
Return Loss	- 23.1 dB

General Antenna Parameters and Design

	1
Electrical Delay (one direction)	1.195 ns
i Electrical Delay tone directioni	1.195 NS
The state of the s	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 26, 2001

Certificate No: D1900V2-540_Feb11

DASY5 Validation Report for Head TSL

Date/Time: 07.02.2011 15:18:47

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:540

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL U12 BB

Medium parameters used: f = 1900 MHz; $\sigma = 1.41 \text{ mho/m}$; $\varepsilon_r = 39.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.09, 5.09, 5.09); Calibrated: 30.04.2010

Sensor-Surface: 3mm (Mechanical Surface Detection)

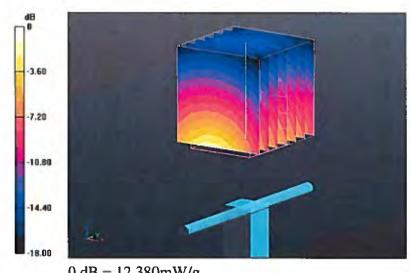
Electronics: DAE4 Sn601: Calibrated: 10.06.2010

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

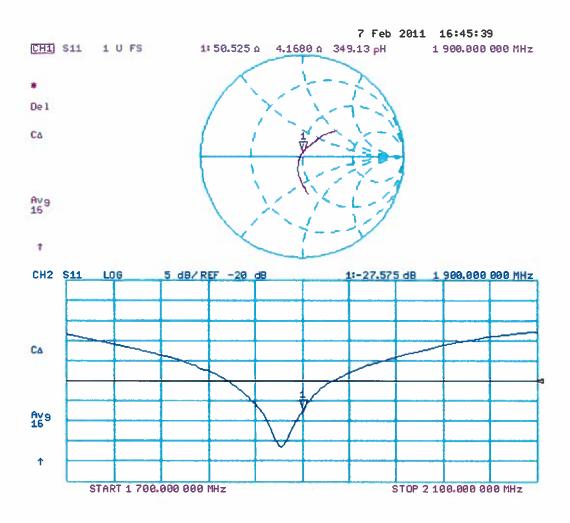
Measurement SW: DASY52, V52.6.1 Build (408)

Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.936 V/m; Power Drift = 0.04 dB


Peak SAR (extrapolated) = 18.544 W/kg

SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.25 mW/g

Maximum value of SAR (measured) = 12.384 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date/Time: 08.02.2011 12:04:35

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:540

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL U12 BB

Medium parameters used: f = 1900 MHz; $\sigma = 1.55 \text{ mho/m}$; $\varepsilon_r = 52.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.59, 4.59, 4.59); Calibrated: 30.04.2010

• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 10.06.2010

• Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

Measurement SW: DASY52, V52.6.1 Build (408)

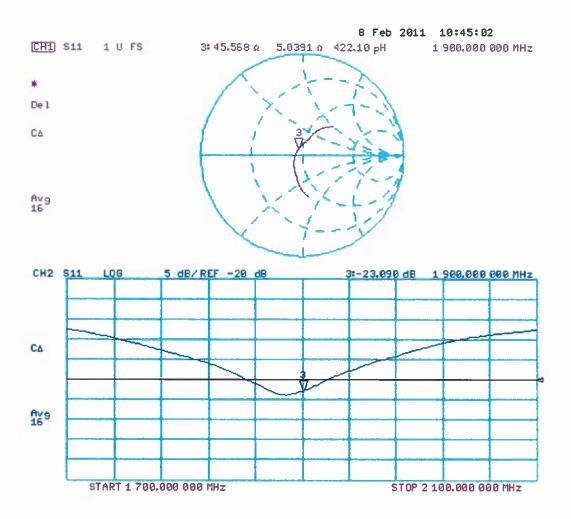
• Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.899 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 17.597 W/kg


SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.43 mW/g

Maximum value of SAR (measured) = 13.038 mW/g

0 dB = 13.040 mW/g

Impedance Measurement Plot for Body TSL

Serial No: RFI-SAR-RP88281JD02A V2.0

ersion 2.0 Issue Date: 21 August 2012

A.2.2. Specific Absorption Rate (SAR) Measurements to OET Bulletin 65 Supplement C: (2001-01)

Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields

SAR measurements were performed in accordance with Appendix D of the standard FCC OET Bulletin 65 Supplement C: 2001, IEEE 1528 and FCC KDB procedures, against appropriate limits for each measurement position in accordance with the standard. In some cases the FCC was contacted using a PBA or KDB process to ensure test is performed correctly.

The test was performed in a shielded enclosure with the temperature controlled to remain between +18.0°C and +25.0°C. The tissue equivalent material fluid temperature was controlled to give a maximum variation of ± 2.0°C

Prior to any SAR measurements on the EUT, system Check and material dielectric property measurements were conducted. In the absence of a detailed procedure within the specification, system Check and material dielectric property measurements were performed in accordance with Appendix C and Appendix D of FCC OET Bulletin 65 Supplement C: 2001 and FCC KDB publication 450824.

Following the successful system Check and material dielectric property measurements, a SAR versus time sweep shall be performed within 10 mm of the phantom inner surface. If the EUT power output is stable after three minutes then the measurement probe will perform a coarse surface level scan at each test position in order to ascertain the location of the maximum local SAR level. Once this area had been established, a 5x5x7 cube of 175 points below 4.5 GHz and above 4.5GHz 7x7x9 cube of 441 points (5 mm spacing in each axis \approx 27g) will be centred at the area of concern. Extrapolation and interpolation will then be carried out on the 27g of tissue and the highest averaged SAR over a 1g cube determined.

Once the maximum interpolated SAR measurement is complete; the coarse scan is visually assessed to check for secondary peaks within 50% of the maximum SAR level. If there are any further SAR measurements required, extra 5x5x7 or 7x7x9 cubes shall be centred on each of these extra local SAR maxima.

At the end of each position test case a second time sweep shall be performed to check whether the EUT has remained stable throughout the test.

Page: 114 of 472 RFI Global Services Ltd.