

Revision PA7

CM52 Integrator's Manual

Revision PA7

Table of Contents

1	Introduction to the Integrator's Manual	5
	1.1 OVERVIEW	5
	1.2 HOW TO READ THE MANUAL	5
	1.3 SERVICE AND SUPPORT 1.3.1 WEB PAGES	5 5
	1.4 RELATED DOCUMENTS	6
	1.5 ABBREVIATIONS	6
2		7
2	Integrating the CM52 Module 2.1 OVERVIEW	7
	2.2 MECHANICAL DESCRIPTION	7
	2.2.1 MECHANICAL DIMENSIONS	8
	2.2.2 HEAT-SINK REQUIREMENTS	10
	2.2.3 MOUNTING HOLES	10
	2.3 SYSTEM CONNECTOR INTERFACE	11
	2.3.1 MECHANICAL OVERVIEW	11
	2.3.2 PINOUT	12
	2.3.3 LOGIC LEVELS 2.4 POWER SUPPLY	13 13
	2.4.1 POWER SUPPLY AND GROUND SIGNALS	13
	2.4.1.1 POWER SUPPLY SIGNAL PINS	13
	2.4.1.2 GROUND SIGNAL PINS	14
	2.4.2 POWER CONSUMPTION	14
	2.4.2.1 WAKEUP-INRUSH CURRENT 2.4.2.2 CONTACT-INRUSH CURRENT	17 17
	2.4.2.3 POWER DOWN MODE (MINIMUM DC POWER CONSUMPTION)	17
	2.4.3 VREF REQUIREMENTS	17
	2.4.4 REAL TIME CLOCK (RTC) CIRCUIT	18
	2.5 AUDIO INTERFACE	18
	2.5.1 DIGITAL AUDIO	19
	2.5.1.1 DATA FORMAT	19
	2.5.1.2 TIMING 2.5.2 ANALOG AUDIO	19 21
	2.6 SERIAL DATA INTERFACE	24
	2.7 ANTENNA INTERFACE	25
	2.7.1 ANTENNA CONNECTOR	25
	2.7.2 RF OUTPUT POWER	27
	2.7.3 CARRIER APPROVAL	27
	2.7.4 ANTENNA DIAGNOSTICS	27
3	· · · · · · · · · · · · · · · · · · ·	29
	3.1 STATUS GROUP RECOMMENDED CIRCUITRY	29
	3.1.1 MODULE_PWR_EN_B	30
	3.1.2 VREF 3.1.3 HW SD	30 30
	3.2 DATA GROUP RECOMMENDED CIRCUITRY	31
	3.2.1 VPPFLASH/DCD	32
	3.3 PCM GROUP RECOMMENDED CIRCUITRY	33
	3.4 ANALOG AUDIO GROUP RECOMMENDED CIRCUITRY	34
	3.4.1 CREATING AN ANALOG GROUND	34
	3.4.2 CREATING AN ANALOG REFERENCE VOLTAGE (BIAS)	34
	3.4.3 ANALOG GROUND VS. AGND	35
	3.4.4 MICROPHONE PATH 3.4.5 LOUDSPEAKER PATH	35 36
	3.5 SYSTEM CONNECTOR IO FUNCTIONALITY	37
	5.5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	٠,

Confidential USERS MANUAL

Document number 4/198 17-LXE 108 566 Uen

Revision PA7

4 Functional Description	40
5 Hints for Integrating the Module	40
5.1 PRECAUTIONS	40
5.2 WHERE TO INSTALL THE MODULE	40
5.3 SAFETY STANDARDS	40
5.4 ANTENNA	41
5.4.1 ANTENNA TYPE	41
5.4.2 ANTENNA PLACEMENT	41
5.5 POSSIBLE COMMUNICATION DISTURBANCES	41
6 Technical Data	42

PA7

Tables

TABLE 2: PIN-OUT OF THE SYSTEM CONNECTOR HEADER 12 TABLE 3: CMOS OUTPUT / INPUT ELECTRICAL CHARACTERISTICS 13 TABLE 4: CM52 POWER SUPPLY REQUIREMENTS. 13 TABLE 5: CM52 POWER SUPPLY SIGNALS. 14 TABLE 6: CM52 GROUND SIGNALS. 14 TABLE 7: VCC_AUX SUPPLY POWER CONSUMPTION 15 TABLE 8: VCC_MAIN SUPPLY POWER CONSUMPTION 16 TABLE 9: VREF SUPPLY DETAILS 17 TABLE 10: CM52 AUDIO SIGNALS. 18 TABLE 11: CM52 DIGITAL AUDIO SIGNALS. 19 TABLE 12: PCM TIMING PARAMETERS. 20 TABLE 13: CM52 ANALOG AUDIO SIGNALS. 21 TABLE 14: AUDIO CHARACTERISTICS 21 TABLE 15: SERIAL DATA CHANNELS. 24 TABLE 15: MOBILE STATION NOMINAL ANALOG POWER LEVELS 24 TABLE 17: MOBILE STATION CDMA MAXIMUM OUTPUT POWER 27 TABLE 18: PIN DIRECTION FOR GENERAL PURPOSE SIGNALS. 39 Figure 2: CM52 SECONDARY SIDE 7 FIGURE 3: MCCHANICAL DIMENSIONS DRAWING. 8 FIGURE 5: 40-PIN SYSTEM CONNECTOR 11 FIGURE 6: 40-PIN SYSTEM CONNECTOR PIN NUMBERING. 11 FIGURE 6: 40-PIN SYSTEM CONNECTOR PIN NUMBERING. 11	TABLE 1: SYSTEM CONNECTOR AND MATING PART NUMBERS	11
TABLE 4: CM52 POWER SUPPLY REQUIREMENTS. 13 TABLE 5: CM52 POWER SUPPLY SIGNALS 14 TABLE 6: CM52 GROUND SIGNALS 14 TABLE 7: VCC_AUX SUPPLY POWER CONSUMPTION 15 TABLE 8: VCC_MAIN SUPPLY POWER CONSUMPTION 16 TABLE 9: VREF SUPPLY DETAILS. 17 TABLE 10: CM52 AUDIO SIGNALS. 18 TABLE 11: CM52 DIGITAL AUDIO SIGNALS. 19 TABLE 12: PCM TIMING PARAMETERS. 20 TABLE 13: CM52 ANALOG AUDIO SIGNALS. 21 TABLE 14: AUDIO CHARACTERISTICS 21 TABLE 15: SERIAL DATA CHANNELS 24 TABLE 16: MOBILE STATION NOMINAL ANALOG POWER LEVELS 24 TABLE 17: MOBILE STATION OFM MAXIMUM OUTPUT POWER 27 TABLE 18: PIN DIRECTION FOR GENERAL PURPOSE SIGNALS 39 FIGURE 2: CM52 SECONDARY SIDE 7 FIGURE 3: MECHANICAL DIMENSIONS DRAWING 8 FIGURE 4: KEEP-OUT DRAWING OF CM52 9 FIGURE 5: 40-PIN SYSTEM CONNECTOR 11 FIGURE 6: 40-PIN SYSTEM CONNECTOR PIN NUMBERING 11 FIGURE 7: RTC FUNCTIONAL BLOCK DIAGRAM 18 FIGURE 9: COLOR AND KEYING FOR VARIOUS FAKRA CONNECTORS 25	TABLE 2: PIN-OUT OF THE SYSTEM CONNECTOR HEADER	12
TABLE 5: CM52 POWER SUPPLY SIGNALS 14 TABLE 6: CM52 GROUND SIGNALS 14 TABLE 7: VCC_AUX SUPPLY POWER CONSUMPTION 15 TABLE 8: VCC_MAIN SUPPLY POWER CONSUMPTION 16 TABLE 9: VREF SUPPLY DETAILS. 17 TABLE 10: CM52 AUDIO SIGNALS. 18 TABLE 11: CM52 DIGITAL AUDIO SIGNALS. 19 TABLE 12: PCM TIMING PARAMETERS. 20 TABLE 13: CM52 ANALOG AUDIO SIGNALS. 21 TABLE 14: AUDIO CHARACTERISTICS 21 TABLE 15: SERIAL DATA CHANNELS 24 TABLE 16: MOBILE STATION NOMINAL ANALOG POWER LEVELS 27 TABLE 17: MOBILE STATION CDMA MAXIMUM OUTPUT POWER 27 TABLE 18: PIN DIRECTION FOR GENERAL PURPOSE SIGNALS 39 Figures Figure 2: CM52 SECONDARY SIDE 7 FIGURE 3: MECHANICAL DIMENSIONS DRAWING 8 FIGURE 4: KEEP-OUT DRAWING OF CM52 9 FIGURE 5: 40-PIN SYSTEM CONNECTOR PIN NUMBERING 11 FIGURE 7: RTC FUNCTIONAL BLOCK DIAGRAM 18 FIGURE 9: COLOR AND KEYING FOR VARIOUS FAKRA CONNECTORS 25	TABLE 3: CMOS OUTPUT / INPUT ELECTRICAL CHARACTERISTICS	13
TABLE 6: CM52 GROUND SIGNALS 14 TABLE 7: VCC_AUX SUPPLY POWER CONSUMPTION 15 TABLE 8: VCC_MAIN SUPPLY POWER CONSUMPTION 16 TABLE 9: VREF SUPPLY DETAILS 17 TABLE 10: CM52 AUDIO SIGNALS 18 TABLE 11: CM52 DIGITAL AUDIO SIGNALS 18 TABLE 12: PCM TIMING PARAMETERS 20 TABLE 13: CM52 ANALOG AUDIO SIGNALS 21 TABLE 14: AUDIO CHARACTERISTICS 21 TABLE 15: SERIAL DATA CHANNELS 24 TABLE 15: SERIAL DATA CHANNELS 24 TABLE 17: MOBILE STATION NOMINAL ANALOG POWER LEVELS 27 TABLE 17: MOBILE STATION CDMA MAXIMUM OUTPUT POWER 27 TABLE 18: PIN DIRECTION FOR GENERAL PURPOSE SIGNALS 39 Figures Figure 2: CM52 SECONDARY SIDE 7 FIGURE 3: MECHANICAL DIMENSIONS DRAWING 8 FIGURE 4: KEEP-OUT DRAWING OF CM52 9 FIGURE 5: 40-PIN SYSTEM CONNECTOR 11 FIGURE 6: 40-PIN SYSTEM CONNECTOR PIN NUMBERING 11 FIGURE 7: RTC FUNCTIONAL BLOCK DIAGRAM 18 FIGURE 9: COLOR AND KEYING FOR VARIOUS FAKRA CONNECTORS 25	TABLE 4: CM52 POWER SUPPLY REQUIREMENTS	13
TABLE 7: VCC_AUX SUPPLY POWER CONSUMPTION 15 TABLE 8: VCC_MAIN SUPPLY POWER CONSUMPTION 16 TABLE 9: VREF SUPPLY DETAILS 17 TABLE 10: CM52 AUDIO SIGNALS 18 TABLE 11: CM52 DIGITAL AUDIO SIGNALS 19 TABLE 12: PCM TIMING PARAMETERS 20 TABLE 13: CM52 ANALOG AUDIO SIGNALS 21 TABLE 13: SERIAL DATA CHANNELS 21 TABLE 15: SERIAL DATA CHANNELS 24 TABLE 16: MOBILE STATION NOMINAL ANALOG POWER LEVELS 27 TABLE 17: MOBILE STATION CDMA MAXIMUM OUTPUT POWER 27 TABLE 18: PIN DIRECTION FOR GENERAL PURPOSE SIGNALS 39 Figures Figure 2: CM52 SECONDARY SIDE 7 FIGURE 2: CM52 SECONDARY SIDE 7 FIGURE 3: MECHANICAL DIMENSIONS DRAWING 8 FIGURE 4: KEEP-OUT DRAWING OF CM52 9 FIGURE 5: 40-PIN SYSTEM CONNECTOR 11 FIGURE 6: 40-PIN SYSTEM CONNECTOR PIN NUMBERING 11 FIGURE 7: RTC FUNCTIONAL BLOCK DIAGRAM 18 FIGURE 9: COLOR AND KEYING FOR VARIOUS FAKRA CONNECTORS 25	TABLE 5: CM52 POWER SUPPLY SIGNALS	14
TABLE 8: VCC_MAIN SUPPLY POWER CONSUMPTION. 16 TABLE 9: VREF SUPPLY DETAILS. 17 TABLE 10: CM52 AUDIO SIGNALS. 18 TABLE 11: CM52 DIGITAL AUDIO SIGNALS. 19 TABLE 12: PCM TIMING PARAMETERS. 20 TABLE 13: CM52 ANALOG AUDIO SIGNALS. 21 TABLE 14: AUDIO CHARACTERISTICS 21 TABLE 15: SERIAL DATA CHANNELS. 24 TABLE 17: MOBILE STATION NOMINAL ANALOG POWER LEVELS. 27 TABLE 17: MOBILE STATION CDMA MAXIMUM OUTPUT POWER 27 TABLE 18: PIN DIRECTION FOR GENERAL PURPOSE SIGNALS. 39 FIGURE 2: CM52 SECONDARY SIDE 7 FIGURE 3: MECHANICAL DIMENSIONS DRAWING. 8 FIGURE 4: KEEP-OUT DRAWING OF CM52. 9 FIGURE 5: 40-PIN SYSTEM CONNECTOR. 11 FIGURE 6: 40-PIN SYSTEM CONNECTOR 11 FIGURE 7: RTC FUNCTIONAL BLOCK DIAGRAM 18 FIGURE 9: COLOR AND KEYING FOR VARIOUS FAKRA CONNECTORS 25	TABLE 6: CM52 GROUND SIGNALS	14
TABLE 8: VCC_MAIN SUPPLY POWER CONSUMPTION. 16 TABLE 9: VREF SUPPLY DETAILS. 17 TABLE 10: CM52 AUDIO SIGNALS. 18 TABLE 11: CM52 DIGITAL AUDIO SIGNALS. 19 TABLE 12: PCM TIMING PARAMETERS. 20 TABLE 13: CM52 ANALOG AUDIO SIGNALS. 21 TABLE 14: AUDIO CHARACTERISTICS 21 TABLE 15: SERIAL DATA CHANNELS. 24 TABLE 17: MOBILE STATION NOMINAL ANALOG POWER LEVELS. 27 TABLE 17: MOBILE STATION CDMA MAXIMUM OUTPUT POWER 27 TABLE 18: PIN DIRECTION FOR GENERAL PURPOSE SIGNALS. 39 FIGURE 2: CM52 SECONDARY SIDE 7 FIGURE 3: MECHANICAL DIMENSIONS DRAWING. 8 FIGURE 4: KEEP-OUT DRAWING OF CM52. 9 FIGURE 5: 40-PIN SYSTEM CONNECTOR. 11 FIGURE 6: 40-PIN SYSTEM CONNECTOR 11 FIGURE 7: RTC FUNCTIONAL BLOCK DIAGRAM 18 FIGURE 9: COLOR AND KEYING FOR VARIOUS FAKRA CONNECTORS 25		
TABLE 9: VREF SUPPLY DETAILS 17 TABLE 10: CM52 AUDIO SIGNALS 18 TABLE 11: CM52 DIGITAL AUDIO SIGNALS 19 TABLE 12: PCM TIMING PARAMETERS 20 TABLE 13: CM52 ANALOG AUDIO SIGNALS 21 TABLE 14: AUDIO CHARACTERISTICS 21 TABLE 15: SERIAL DATA CHANNELS 24 TABLE 16: MOBILE STATION NOMINAL ANALOG POWER LEVELS 27 TABLE 17: MOBILE STATION CDMA MAXIMUM OUTPUT POWER 27 TABLE 18: PIN DIRECTION FOR GENERAL PURPOSE SIGNALS 39 FIGURE 2: CM52 SECONDARY SIDE 7 FIGURE 3: MECHANICAL DIMENSIONS DRAWING 8 FIGURE 4: KEEP-OUT DRAWING OF CM52 9 FIGURE 5: 40-PIN SYSTEM CONNECTOR 11 FIGURE 6: 40-PIN SYSTEM CONNECTOR PIN NUMBERING 11 FIGURE 7: RTC FUNCTIONAL BLOCK DIAGRAM 18 FIGURE 8: PCM TIMING DIAGRAM 20 FIGURE 9: COLOR AND KEYING FOR VARIOUS FAKRA CONNECTORS 25	TABLE 8: VCC MAIN SUPPLY POWER CONSUMPTION	16
TABLE 10: CM52 AUDIO SIGNALS. 18 TABLE 11: CM52 DIGITAL AUDIO SIGNALS. 19 TABLE 12: PCM TIMING PARAMETERS 20 TABLE 13: CM52 ANALOG AUDIO SIGNALS. 21 TABLE 14: AUDIO CHARACTERISTICS 21 TABLE 15: SERIAL DATA CHANNELS 24 TABLE 16: MOBILE STATION NOMINAL ANALOG POWER LEVELS. 27 TABLE 17: MOBILE STATION CDMA MAXIMUM OUTPUT POWER 27 TABLE 18: PIN DIRECTION FOR GENERAL PURPOSE SIGNALS. 39 Figures Figure 1: CM52 PRIMARY SIDE 7 FIGURE 2: CM52 SECONDARY SIDE 7 FIGURE 3: MECHANICAL DIMENSIONS DRAWING 8 FIGURE 4: KEEP-OUT DRAWING OF CM52 9 FIGURE 5: 40-PIN SYSTEM CONNECTOR 11 FIGURE 6: 40-PIN SYSTEM CONNECTOR PIN NUMBERING 11 FIGURE 7: RTC FUNCTIONAL BLOCK DIAGRAM 18 FIGURE 8: PCM TIMING DIAGRAM 18 FIGURE 9: COLOR AND KEYING FOR VARIOUS FAKRA CONNECTORS 25	TABLE 9: VREF SUPPLY DETAILS	17
TABLE 12: PCM TIMING PARAMETERS 20 TABLE 13: CM52 ANALOG AUDIO SIGNALS 21 TABLE 14: AUDIO CHARACTERISTICS 21 TABLE 15: SERIAL DATA CHANNELS 24 TABLE 16: MOBILE STATION NOMINAL ANALOG POWER LEVELS 27 TABLE 17: MOBILE STATION CDMA MAXIMUM OUTPUT POWER 27 TABLE 18: PIN DIRECTION FOR GENERAL PURPOSE SIGNALS 39 Figures Figure 2: CM52 SECONDARY SIDE 7 FIGURE 3: MECHANICAL DIMENSIONS DRAWING 8 FIGURE 4: KEEP-OUT DRAWING OF CM52 9 FIGURE 5: 40-PIN SYSTEM CONNECTOR 11 FIGURE 6: 40-PIN SYSTEM CONNECTOR PIN NUMBERING 11 FIGURE 7: RTC FUNCTIONAL BLOCK DIAGRAM 18 FIGURE 8: PCM TIMING DIAGRAM 20 FIGURE 9: COLOR AND KEYING FOR VARIOUS FAKRA CONNECTORS 25		
TABLE 12: PCM TIMING PARAMETERS 20 TABLE 13: CM52 ANALOG AUDIO SIGNALS 21 TABLE 14: AUDIO CHARACTERISTICS 21 TABLE 15: SERIAL DATA CHANNELS 24 TABLE 16: MOBILE STATION NOMINAL ANALOG POWER LEVELS 27 TABLE 17: MOBILE STATION CDMA MAXIMUM OUTPUT POWER 27 TABLE 18: PIN DIRECTION FOR GENERAL PURPOSE SIGNALS 39 Figures Figure 2: CM52 SECONDARY SIDE 7 FIGURE 3: MECHANICAL DIMENSIONS DRAWING 8 FIGURE 4: KEEP-OUT DRAWING OF CM52 9 FIGURE 5: 40-PIN SYSTEM CONNECTOR 11 FIGURE 6: 40-PIN SYSTEM CONNECTOR PIN NUMBERING 11 FIGURE 7: RTC FUNCTIONAL BLOCK DIAGRAM 18 FIGURE 8: PCM TIMING DIAGRAM 20 FIGURE 9: COLOR AND KEYING FOR VARIOUS FAKRA CONNECTORS 25	TABLE 11: CM52 DIGITAL AUDIO SIGNALS	19
TABLE 13: CM52 ANALOG AUDIO SIGNALS 21 TABLE 14: AUDIO CHARACTERISTICS 21 TABLE 15: SERIAL DATA CHANNELS 24 TABLE 16: MOBILE STATION NOMINAL ANALOG POWER LEVELS 27 TABLE 17: MOBILE STATION CDMA MAXIMUM OUTPUT POWER 27 TABLE 18: PIN DIRECTION FOR GENERAL PURPOSE SIGNALS 39 FIGURE 2: CM52 PRIMARY SIDE 7 FIGURE 2: CM52 SECONDARY SIDE 7 FIGURE 3: MECHANICAL DIMENSIONS DRAWING 8 FIGURE 4: KEEP-OUT DRAWING OF CM52 9 FIGURE 5: 40-PIN SYSTEM CONNECTOR 11 FIGURE 6: 40-PIN SYSTEM CONNECTOR PIN NUMBERING 11 FIGURE 7: RTC FUNCTIONAL BLOCK DIAGRAM 18 FIGURE 8: PCM TIMING DIAGRAM 18 FIGURE 9: COLOR AND KEYING FOR VARIOUS FAKRA CONNECTORS 25		
TABLE 14: AUDIO CHARACTERISTICS 21 TABLE 15: SERIAL DATA CHANNELS 24 TABLE 16: MOBILE STATION NOMINAL ANALOG POWER LEVELS 27 TABLE 17: MOBILE STATION CDMA MAXIMUM OUTPUT POWER 27 TABLE 18: PIN DIRECTION FOR GENERAL PURPOSE SIGNALS 39 FIGURE 1: CM52 PRIMARY SIDE 7 FIGURE 2: CM52 SECONDARY SIDE 7 FIGURE 3: MECHANICAL DIMENSIONS DRAWING 8 FIGURE 4: KEEP-OUT DRAWING OF CM52 9 FIGURE 5: 40-PIN SYSTEM CONNECTOR 11 FIGURE 6: 40-PIN SYSTEM CONNECTOR PIN NUMBERING 11 FIGURE 6: 40-PIN SYSTEM CONNECTOR PIN NUMBERING 11 FIGURE 7: RTC FUNCTIONAL BLOCK DIAGRAM 18 FIGURE 8: PCM TIMING DIAGRAM 18 FIGURE 9: COLOR AND KEYING FOR VARIOUS FAKRA CONNECTORS 25		
TABLE 15: SERIAL DATA CHANNELS 24 TABLE 16: MOBILE STATION NOMINAL ANALOG POWER LEVELS 27 TABLE 17: MOBILE STATION CDMA MAXIMUM OUTPUT POWER 27 TABLE 18: PIN DIRECTION FOR GENERAL PURPOSE SIGNALS 39 FIGURE 1: CM52 PRIMARY SIDE 7 FIGURE 2: CM52 SECONDARY SIDE 7 FIGURE 3: MECHANICAL DIMENSIONS DRAWING 8 FIGURE 4: KEEP-OUT DRAWING OF CM52 9 FIGURE 5: 40-PIN SYSTEM CONNECTOR 11 FIGURE 6: 40-PIN SYSTEM CONNECTOR PIN NUMBERING 11 FIGURE 7: RTC FUNCTIONAL BLOCK DIAGRAM 18 FIGURE 8: PCM TIMING DIAGRAM 20 FIGURE 9: COLOR AND KEYING FOR VARIOUS FAKRA CONNECTORS 25		
TABLE 17: MOBILE STATION CDMA MAXIMUM OUTPUT POWER		
TABLE 17: MOBILE STATION CDMA MAXIMUM OUTPUT POWER	TABLE 16: MOBILE STATION NOMINAL ANALOG POWER LEVELS	27
FIGURE 1: CM52 PRIMARY SIDE FIGURE 2: CM52 SECONDARY SIDE FIGURE 3: MECHANICAL DIMENSIONS DRAWING FIGURE 4: KEEP-OUT DRAWING OF CM52 FIGURE 5: 40-PIN SYSTEM CONNECTOR FIGURE 6: 40-PIN SYSTEM CONNECTOR FIGURE 7: RTC FUNCTIONAL BLOCK DIAGRAM FIGURE 8: PCM TIMING DIAGRAM FIGURE 9: COLOR AND KEYING FOR VARIOUS FAKRA CONNECTORS 23 24 25 25		
FIGURE 1: CM52 PRIMARY SIDE 7 FIGURE 2: CM52 SECONDARY SIDE 7 FIGURE 3: MECHANICAL DIMENSIONS DRAWING 8 FIGURE 4: KEEP-OUT DRAWING OF CM52 9 FIGURE 5: 40-PIN SYSTEM CONNECTOR 11 FIGURE 6: 40-PIN SYSTEM CONNECTOR PIN NUMBERING 11 FIGURE 7: RTC FUNCTIONAL BLOCK DIAGRAM 18 FIGURE 8: PCM TIMING DIAGRAM 20 FIGURE 9: COLOR AND KEYING FOR VARIOUS FAKRA CONNECTORS 25		
FIGURE 1: CM52 PRIMARY SIDE 7 FIGURE 2: CM52 SECONDARY SIDE 7 FIGURE 3: MECHANICAL DIMENSIONS DRAWING 8 FIGURE 4: KEEP-OUT DRAWING OF CM52 9 FIGURE 5: 40-PIN SYSTEM CONNECTOR 11 FIGURE 6: 40-PIN SYSTEM CONNECTOR PIN NUMBERING 11 FIGURE 7: RTC FUNCTIONAL BLOCK DIAGRAM 18 FIGURE 8: PCM TIMING DIAGRAM 20 FIGURE 9: COLOR AND KEYING FOR VARIOUS FAKRA CONNECTORS 25		
FIGURE 1: CM52 PRIMARY SIDE 7 FIGURE 2: CM52 SECONDARY SIDE 7 FIGURE 3: MECHANICAL DIMENSIONS DRAWING 8 FIGURE 4: KEEP-OUT DRAWING OF CM52 9 FIGURE 5: 40-PIN SYSTEM CONNECTOR 11 FIGURE 6: 40-PIN SYSTEM CONNECTOR PIN NUMBERING 11 FIGURE 7: RTC FUNCTIONAL BLOCK DIAGRAM 18 FIGURE 8: PCM TIMING DIAGRAM 20 FIGURE 9: COLOR AND KEYING FOR VARIOUS FAKRA CONNECTORS 25	Figures	
FIGURE 2: CM52 SECONDARY SIDE 7 FIGURE 3: MECHANICAL DIMENSIONS DRAWING 8 FIGURE 4: KEEP-OUT DRAWING OF CM52 9 FIGURE 5: 40-PIN SYSTEM CONNECTOR 11 FIGURE 6: 40-PIN SYSTEM CONNECTOR PIN NUMBERING 11 FIGURE 7: RTC FUNCTIONAL BLOCK DIAGRAM 18 FIGURE 8: PCM TIMING DIAGRAM 20 FIGURE 9: COLOR AND KEYING FOR VARIOUS FAKRA CONNECTORS 25	i igaroo	
FIGURE 2: CM52 SECONDARY SIDE 7 FIGURE 3: MECHANICAL DIMENSIONS DRAWING 8 FIGURE 4: KEEP-OUT DRAWING OF CM52 9 FIGURE 5: 40-PIN SYSTEM CONNECTOR 11 FIGURE 6: 40-PIN SYSTEM CONNECTOR PIN NUMBERING 11 FIGURE 7: RTC FUNCTIONAL BLOCK DIAGRAM 18 FIGURE 8: PCM TIMING DIAGRAM 20 FIGURE 9: COLOR AND KEYING FOR VARIOUS FAKRA CONNECTORS 25	FIGURE 1: CM52 PRIMARY SIDE	7
FIGURE 3: MECHANICAL DIMENSIONS DRAWING		
FIGURE 4: KEEP-OUT DRAWING OF CM52 9 FIGURE 5: 40-PIN SYSTEM CONNECTOR 11 FIGURE 6: 40-PIN SYSTEM CONNECTOR PIN NUMBERING 11 FIGURE 7: RTC FUNCTIONAL BLOCK DIAGRAM 18 FIGURE 8: PCM TIMING DIAGRAM 20 FIGURE 9: COLOR AND KEYING FOR VARIOUS FAKRA CONNECTORS 25		
FIGURE 5: 40-PIN SYSTEM CONNECTOR		
FIGURE 6: 40-PIN SYSTEM CONNECTOR PIN NUMBERING		
FIGURE 7: RTC FUNCTIONAL BLOCK DIAGRAM		
FIGURE 8: PCM TIMING DIAGRAM		
FIGURE 9: COLOR AND KEYING FOR VARIOUS FAKRA CONNECTORS		

Revision History

Release	Date	Summary of Changes
PA1	05/07/2004	Initial Draft
PA2	09/01/2004	Formatting
PA3	11/17/2004	Updated Chapters 1 & 2
PA4	11/29/2004	Updated with review feedback
PA5	12/1/2004	Updated the List of Tables and Figures
PA6	06/16/2005	Current Consumption Table, RTC Block Diagram, Mechanical Drawing

Revision PA7

1 Introduction to the Integrator's Manual

1.1 Overview

This manual is for use as a guide to the setup, installation, and use of the CM52 module into your application. The module may be tested using the developer's board, which is supplied together with all the necessary tools in the Developer's Kit.

1.2 How to read the manual

This manual is divided into six chapters:

Chapter 1 gives a general view of the integrator's manual. A list of related documents as well as a list of abbreviations, used throughout the manual, is also included. Information concerning service and support is also presented.

Chapter 2 focuses on helping the hardware developer to integrate the CM52 hardware into their application. An overview of the mechanical and electrical information is provided. Also, interface specifications, RF output power, and power supply issues are included in this chapter.

Chapter 3 contains information on recommended circuitry needed to ensure proper performance from the CM52 module.

Chapter 4 describes several of the common cellular functions available with the CM52.

Chapter 5 provides some hints for integrating the module.

Chapter 6 provides a summary of the technical data for the CM52 module.

1.3 Service and Support

1.3.1 Web Pages

Please look at our web page for more information about where you can buy our modules or for recommendations of accessories and components. The address is:

http://www.sonyericsson.com/m2m

To register for product news and announcements or for product questions, contact the Sony Ericsson modules technical support group:

• **Telephone**: 919-472-1122

• Email: M2Msupport.Americas@sonyericsson.com

PA7

4/190 17-LXL 100

1.4 Related Documents

CM52 AT Command Manual – Details the AT command interface for the CM52

The CM52 is based upon the following mobile standards:

- IS-2000 Release 0 (1XRTT), MOB_P_REV CDMA protocol
- TIA/EIA/IS-91 Mobile Station Base Station Compatibility Standard for 800 MHz Analog Cellular
- TIA/EIA-98-D Recommended Minimum Performance Standards for Dual-Mode Spread Spectrum Mobile Stations

1.5 Abbreviations

Abbicviations		
AGND	Analog Reference	
AMPS	Advanced Mobile Phone System	
AT Attention Command		
CDMA	Code Division Multiple Access	
CTS	Clear to Send	
DCD	Data Carrier Detect	
DFMS	Data from Mobile Station	
DTMS	Data to Mobile Station	
DTR	Data Terminal Ready	
EMI	Electromagnetic Interference	
ESD	Electrostatic Discharge	
GND	Chassis GrouND	
IRA	International Reference Alphabet	
LSB	Least Significant Bit	
ME	Mobile Equipment	
MO	Mobile Originated	
MS	Mobile Station	
MT	Mobile Terminated	
OEM	Original Equipment Manufacturer	
PCB	Printed Circuit Board	
PCM	Pulse Code Modulation	
PIN	Personal Identification Number	
RD	Receive Data, also known as DFMS	
RF	Radio Frequency	
RTS	Request to Send	
SMS	Short Message Service	
TD	Transmit Data, also know as DTMS	

2 Integrating the CM52 Module

2.1 Overview

The CM52 is a dual band, dual mode CDMA transceiver module. It operates in the 800 MHz band for CDMA and AMPS and in the 1900 MHz band for CDMA. It is designed for consumer and OEM industrial voice and data applications.

The CM52 module is intended for mounting into an application developer's chassis to provide wireless communication capability for the product. The target chassis could be in a wide variety of forms such as a residential electric meter, a point of sale terminal, an alarm panel, or an automobile console. All initial configuration, mode control, and operational commands are issued to the module over an RS-232 serial port using a flexible AT command format. The module circuitry has been designed to meet the environmental requirements of a large range of commercial and industrial users.

2.2 Mechanical Description

The CM52 has no mechanical elements other than the main PCB assembly. All critical electronic components are shielded using six cans to prevent internal and external electromagnetic interference from degrading the module's performance and to prevent the module from interfering with other nearby devices. The module is plugged into the fixed mating connector and secured with four screws.

The antenna interface is provided via a board mounted RF connector at the opposite end of the board from the system connector. See Section 2.8 for more information on antenna connector options.

The module has no keypad, display, microphone, speaker, or battery. The following figures show a mechanical drawing and physical dimensions of the module.

Note! All the measurements are in millimeters.

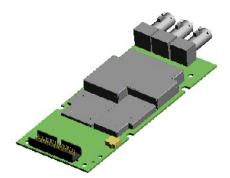


Figure 1: CM52 Primary Side

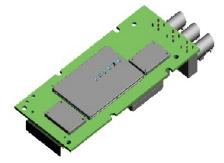
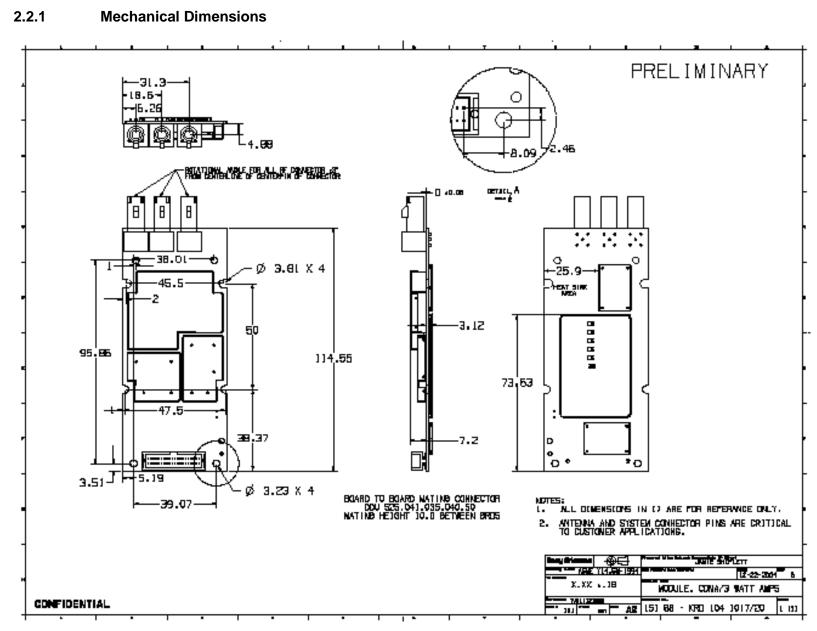



Figure 2: CM52 Secondary Side

Figure 3: Mechanical Dimensions Drawing

Revision PA7

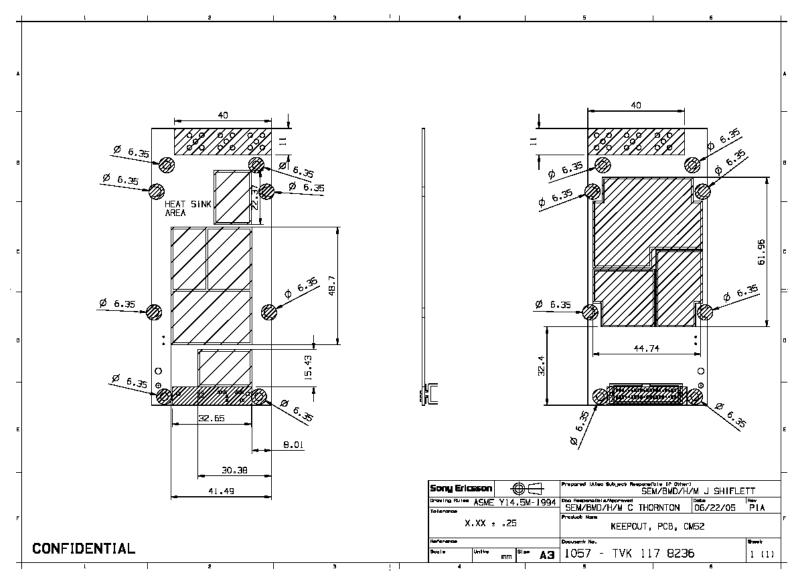


Figure 4: Keep-out Drawing of CM52

Revision PA7

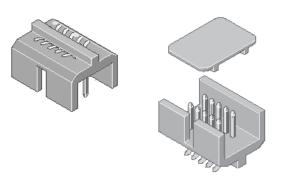
2.2.2 Heat-Sink Requirements

The application is required to provide a heat-sink for the 3W AMPS capabilities of the CM52.

The application should be designed to provide a heat sink with a thermal resistance of 4.0 °C/W.

For applications that disable the 3W mode (Class I) and only operate in 0.6W mode (Class III) a heat-sink is not required.

2.2.3 Mounting Holes


Mounting holes and tabs are provided for proper mechanical support of the CM52 module in the customer's application. OEM application must provide sufficient mechanical retention using the mounting holes and/or tabs or some other means. The system connector and RF connector connections should not be used as a means of mechanical support. Also, please note that the mounting holes may not substitute for the actual grounding pins provided via the system connector.

PA7

2.3 System Connector Interface

2.3.1 Mechanical Overview

External interfaces to the module are made primarily through a 40 pin, standard 0.050-inch pitch, ODU header show below.

Features

- Vacuum adapter plate
- SMT version
- pin cross-section 0.38 x 0.38 mm
- 10-20-30-40-50 positions available
- · without guide pins

Figure 5: 40-Pin System Connector

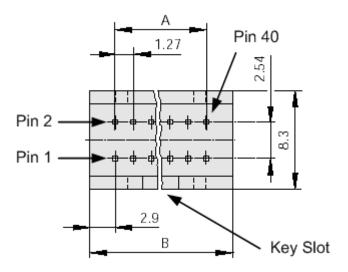


Figure 6: 40-Pin System Connector Pin Numbering

Description	ODU Part Number	Dimension A	Dimension B
System Connector	515.569.035.140.xxx	24.13 mm	22.86 mm
Mating Ribbon Connector	525.060.035.040.xxx		
SMT Mating Header	525.041.035.040.xxx		
Ribbon cable, AWG 30	921.659.031.040.000		

Table 1: System Connector and Mating Part Numbers

Please consult the ODU site for more information on mating options: http://www.odu.de

4/198 17-LXE 108 566 Uen

PA7

2.3.2 **Pinout**

PIHOU			
_ Pin	Signal	Description	
1	I/O_1 / Timemark	Reserved	
		1 PPS output from GPS chip ¹	
2	VREF	Logic Voltage Reference	
3	I/O_3 / GPS_FIX	Reserved	
		Logic HIGH signal to indicate active GPS Fix 1	
4	I/O_4 / VRTC	Reserved	
		Supply pin for RTC ² and GPS regulators ¹	
5	GND	Chassis Ground	
6	GND	Chassis Ground	
7	AFMS	Analog Audio from module	
8	GND	Chassis Ground	
9	AGND	Analog Reference	
10	ATMS	Analog Audio to module	
11	INPUT1 / UART3_RX	Reserved	
		Receive Data for UART3 ¹	
12	MODULE_PWR_EN_B	Switches the module on/off (hardware-wise), active low	
13	OUTPUT1 / UART3 TX	Reserved	
10		Transmit Data for UART3 ¹	
14	OUTPUT2	Reserved	
15	HW_SD	Hardware shutdown	
16	INPUT2	Reserved	
17	PCMCLK	PCM Clock output from Module to Application	
18	PCMSYNC	PCM Frame sync from Module to Application	
19	PCMULD	PCM Voice input to Module from Application	
20	PCMDLD	PCM Voice output from Module to Application	
21	GND	Chassis Ground	
22	GND	Chassis Ground	
23	DCD / VPPFLASH	Data Carrier Detect & Flash programming voltage input	
24	RINGER	Ringer output	
25	CTS	Clear to send	
26	DTR	Data Terminal Ready	
27	TD	Transmit data, also known as DTMS	
28	RTS	Request to Send	
29	VCC_AUX	13.8 VDC supply input	
30	RD	Receive data, also known as DFMS	
31	VCC_AUX	13.8 VDC supply input	
32	VCC_AUX	13.8 VDC supply input	
33	VCC_MAIN	5 VDC regulated supply input	
34	VCC_MAIN	5 VDC regulated supply input	
35	SDA_SPI_IN	Reserved	
36	SCL_SPI_CLK	Reserved	
37	SYS_DTM_2	Transmit Data for UART2	
5,	0.0_D.m_2	Transmit Data for GPS 1	
38	SPI_OUT	Reserved	
		Receive Data for UART2	
		Receive Data for GPS ¹	
40	DI		
40	RI	Ring Indicator	

Table 2: Pin-out of the System Connector Header

¹ Default function if GPS option on board. ² Default function if RTC option on board

2.3.3 Logic Levels

Many of the signals present in the interface are CMOS signals where the following levels apply. The nominal voltage level for the CMOS signals is 2.9 V.

Doromotoro	Test	Limits		llu:to
Parameters	Conditions	Min	Max	Units
High level output voltage ($I_{OH} = 800 \mu A$)	V _{OH}	2.45	3.1	Volts
Low level output voltage ($I_{OL} = 800 \mu A$)	V _{OL}	0	0.45	Volts
High level input voltage (V _{IH} = 800 μA)	V _{IH}	1.9	3.1	Volts
Low level input voltage (V _{IL} = 800 μA)	V_{IL}	0	0.9	Volts

Table 3: CMOS Output / Input Electrical Characteristics

2.4 Power Supply

The CM52 requires a dual DC power supply implementation in the application. VCC_MAIN provides power to the entire radio while VCC_AUX provides power for the 3-Watt functionality and biasing for the RF switches. VCC_AUX must be present if the 3W option is provided even if it is not used. If the 3W circuitry is not populated then VCC_AUX is not required.

The following table summarizes the power supply requirements from the application.

Input Supply	Voltage	Max. Current (Amps)	Max. Ripple (mVpp)		
	(Volts DC)	Operation	0- 4KHz	4 KHz-10MHz	
VCC_MAIN	5.00 ± 10%	1.0	100mVpp	50mVpp	
VCC_AUX	13.8 ± 20%	1.3	600mVpp	240mVpp	
VRTC(no GPS)	1.8 to 3.9	1.2 µ			
VRTC(with GPS)	3.4 to 3.9	500 μ			

Table 4: CM52 Power Supply Requirements

2.4.1 Power Supply and Ground Signals

2.4.1.1 Power Supply Signal Pins

Following is a list of the power supply pins:

Pin	Signal	Description
4	VRTC ³	1.8 V to 3.9V (3.4V to 3.9V if GPS mounted)
29	VCC_AUX	13.8 volt ± 20%
31	VCC_AUX	13.8 volt ± 20%
32 VCC_AUX 13.8 volt ± 20%		13.8 volt ± 20%
33	VCC_MAIN	5 volt ± 10% regulated
34	VCC_MAIN	5 volt ± 10% regulated

Table 5: CM52 Power Supply Signals

2.4.1.2 Ground Signal Pins³

The ground signal in the CM52 is Digital Ground, **GND**, connected to the system connector interface through pin numbers 5, 6, 8, 21 and 22.

Following is a list of the ground pins:

Pin	Signal	Description
5	GND	Digital Ground
6	GND	Digital Ground
8	GND	Digital Ground
21	GND	Digital Ground
22	GND	Digital Ground

Table 6: CM52 Ground Signals

Digital Ground (GND) is the logical reference of all digital signals in the System Interface as well as the DC return of the power supply signal, VCC_MAIN and VCC_AUX (used for AMPS Class I operation). All 5 ground pins in the module need to be connected to the application ground. The PCB mounting holes will not substitute the regular ground connections.

2.4.2 Power Consumption

The following tables show typical and maximum currents that can be expected from the module for various conditions.

³ Only applicable to units with GPS or RTC functions

[VCC_AUX power supply supports the 3W mode AMPS circuitry]				
Parameter	Minimum Value	Typical Value	Maximum Value	Units
Input Voltage	11	13.8	16.6	V
In a Call on Power Level 0 (Power Class I)		0.88	1.3	А
In a Call on Power Level 2		3.5	4.5	mA
AMPS Burst Duration for network update		0.16		S
Stand-by/Idle mode (RX ON)		0.5	1	μA
Powered Down Current Draw		1		μA
Inrush Current (Entering PL0)		16		Α
Duration of Inrush (Entering PL0)		40		μs
Inrush Current (contact)		28		Α
Duration of Inrush (contact)		40		μs

Table 7: VCC_AUX Supply Power Consumption

Note: The typical values observed in AMPS call are made with voice channel set at 358.

4/198 17-LXE 108 566 Uen

PA7 IVCC MAIN supply is the primary CM52 power supply

Revision

[VCC_INIAIN Supply is the primary Civisz power supply]									
Parameter	Minimum Value	Typical Value	Maximum Value	Units					
Input Voltage	4.5	5	5.5	V					
In AMPS Call on Power Level 0 (Power Class I)		0.62	0.82	A					
In AMPS Call on Power Level 2		0.94	1.4	Α					
In CDMA call-Cellular Mode		0.77	1.2	Α					
In CDMA call-PCS Mode		0.84	1.3	Α					
CDMA burst duration for Network update		1.2		S					
Standby/Idle Current Draw in Slotted Mode (CDMA)									
1.28 sec slot		9.6		mA					
2.56 sec slot		7.2		mA					
5.12 sec slot		4.5		mA					
Stand-by/Idle mode (AMPS)		45		mA					
Powered Down Current Draw		1	5	μA					
Inrush Current (on wake up)		2.2	3.3	Α					
Duration of Inrush (on wake-up)		200		μs					
Inrush Current (contact)		9.1	15	Α					
Duration of Inrush (contact)		150		μs					

Table 8: VCC MAIN Supply Power Consumption

Notes

- 1. The typical current measurements noted in CDMA mode are with the following settings:
 - a. CDMA-Cellular (800MHz): Band = IS-2000, Cell-Power = -104dBm, Channel Number 358
 - b. CDMA-PCS (1900MHz): Band = IS-2000, Cell-Power = -104dBm, Channel Number 563 Maximum Slot Cycle Index for both 800MHz and 1900MHz modes = 1
- 2. The inrush current measurements noted here are with respect to the stand alone CM52 module at room temperature, the results might vary when the CM52 is used in the Customer Application.
- 3. Measurements are based on worst case scenario—CM52 with 3W option. Values for CM52 with no 3W option could be marginally lower.
- 4. A +20% tolerance is considered for the listed maximum values.

PA7

....

2.4.2.1 Wakeup-Inrush Current

The wakeup inrush current occurs when the MODULE_PWR_EN_B signal transitions from High to Low. The wakeup-inrush event occurs on the VCC_MAIN supply input and not the VCC_AUX supply. The magnitude of the inrush is dependent on power supply output impedance.

2.4.2.2 Contact-Inrush Current

The contact inrush current simulates application of power to the VCC_MAIN input lines and measures the impact of the input impedance of the module.

While holding the MODULE_PWR_EN_B signal HIGH, a direct contact of VCC_MAIN input pins to the output of the corresponding VCC_MAIN power supply is made and the peak current measured. Similarly the contact inrush current of the VCC_AUX lines was measured by making a direct contact of VCC_AUX pins to the output of the corresponding VCC_AUX power supply.

2.4.2.3 Power Down Mode (Minimum DC Power Consumption)

In power down mode the module is placed in a low power consumption state under control of the host application. In this mode, the unit consumes approximately 1 uA of current as measured from the VCC_MAIN supply input and 1 uA of current as measured from the VCC_AUX supply input. To activate this mode, the Module_PWR_EN_B signal on pin 12 of the system connector is pulled to a logic level 1, which puts the module into the low power state. The module will stay in the low power state until the Module_PWR_EN_B signal is driven low by an external open collector transistor in the application circuitry. Turning the external open collector transistor off will cause the Module_PWR_EN_B signal to float high and turn the module off. The Module_PWR_EN_B line is tied to VCC_MAIN through a $220k\Omega$ pull-up resistor so the sink current in the external open collector transistor is minimal.

2.4.3 VREF Signal Details

The following table defines the current sourcing capabilities and behavior of the VREF signal.

Parameter	Min	Typical	Max	Units
Supply Voltage Reference	2.45	2.9	3.1	V
Output Current			1000	μΑ
Application Load	10	100		ΚΩ
Rise Time			3300	μs
Fall Time			0.8	ms

Table 9: VREF Supply Details

2.5 Real Time Clock (RTC) Circuit

The purpose of this section is to detail the design of incorporating the Real Time Clock feature into the CM52.

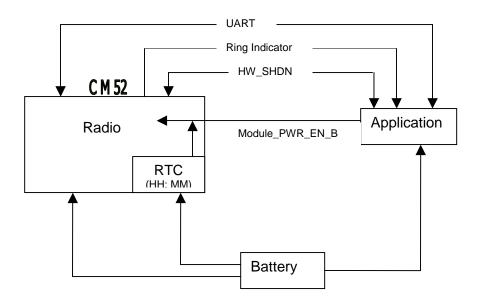


Figure 7: RTC Functional Block Diagram

2.6 Audio Interface

The audio-related signals are: the analog audio signals

- ATMS (Audio to Mobile Station),
- **AFMS** (Audio from Mobile Station),
- PCM (Pulse Code Modulation) signals (PCMULD, PCMDLD, PCMCLK, and PCMSYNC).

Pin	Signal	Description
7	AFMS	Audio Output From Module.
10	ATMS	Audio Input to Module.
9	AGND	Analog Reference
17	PCMCLK	PCM Clock Output from module.
18	PCMSYNC	PCM Frame Sync Output from module.
19	PCMULD	PCM Voice Input to module
20	PCMDLD	PCM Voice Output from module.

Table 10: CM52 Audio Signals

PA7

2.6.1 Digital Audio

The CM52 provides digital audio capability over the system connector. The digital audio signals enable the connection of a digital audio source. The receiver is bypassing the analog audio processing functions performed within the module. The digital audio interface includes the following PCM signals:

Pin	CM52	Description
17	PCMCLK	PCM Clock Output from module.
18	PCMSYNC	PCM Frame Sync from module
19	PCMULD	PCM Voice Input to module.
20	PCMDLD	PCM Voice Output from module.

Table 11: CM52 Digital Audio Signals

Already defined CMOS output/input electrical characteristics apply (see Section 2.3.3).

The PCM format (for **PCMULD** and **PCMDLD**) follows a linear PCM data format with 13-bit data embedded in a 16-bit word. The data bits in **PCMULD** (input) and **PCMDLD** (output) are aligned so that the MSB in each word occurs on the same clock edge. See timing diagram in 2.6.1.2.

2.6.1.1 Data Format

The CM-52 module implements a 13-bit PCM with the 13-bit data embedded in a 16-bit word as follows.

Each PCM word shall contain 16-bits D15 – D00. D15 – D03 is the 2's-complement value of the 13-bit PCM, with D15 as the sign bit. D15 is the MSB while D03 is the LSB. Note that the MSB is sent in first place. Ensure that the read data from PCMDLD is right shifted three times and sign extended before being used

	13-bit linear														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MSB												LSB	Х	Х	Х

Bit		Contents
D15 D03	-	Two complement of the 13-bit PCM.
D02 D00	-	Bits are undefined.

2.6.1.2 Timing

Timing shall be according to the following diagram (see **Figure 8: PCM Timing Diagram**). The signals in the diagram shall be interpreted according to the following relation.

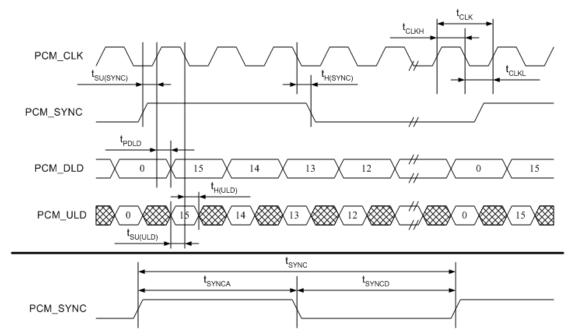


Figure 8: PCM Timing Diagram

The meaning and value of the timing parameters are described in **Table 12**.

Name	Description	Min	Typical	Max	Unit
1	PCM_SYNC cycle time.		125		μs
t _{SYNC}	PCM_SYNC frequency		8.0		kHz
t _{SYNCA}	PCM_SYNC asserted time.	62.4	62.5		μs
t _{SYNCD}	PCM_SYNC de-asserted time.	62.4	62.5		μs
t _{SU(SYN}	PCM_SYNC setup time to PCM_CLK rising.	1.95			μs
t _{H(SYNC)}	PCM_SYNC hold time after PCM_CLK falling.	1.95			μs
	PCM_CLK cycle time.		7.8		μs
t _{CLK}	PCM_CLK frequency		128		kHz
t _{CLKH}	PCM_CLK high time.	3.8	3.9		μs
t _{CLKL}	PCM_CLK low time.	3.8	3.9		μs
t _{PDLD}	Propagation delay from PCM_CLK rising to PCM_DLD valid.			50	ns
T _{SU(ULD}	PCM_ULD setup time to PCM_CLK falling.	70			ns
T _{H(ULD)}	PCM_ULD hold time after PCM_CLK falling.	20			ns

Table 12: PCM Timing Parameters

PA7

2.6.2 Analog Audio

ATMS is the analog audio input to the module. When it is active, it is connected to the radio via the audio processing stages in the module.

The AFMS is the analog audio output from the module. When it is active it is connected to the radio via the audio processing stages in the module.

The AGND is the analog reference signal. ATMS and AFMS are referenced to this signal, which is connected to GND in one place inside the module.

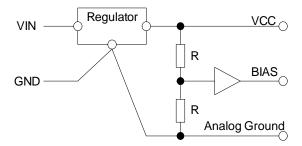
Pin	Signal	Description
7	AFMS	Audio Output From Module
10	ATMS	Audio Input To Module
9	AGND	Analog Reference

Table 13: CM52 Analog Audio Signals

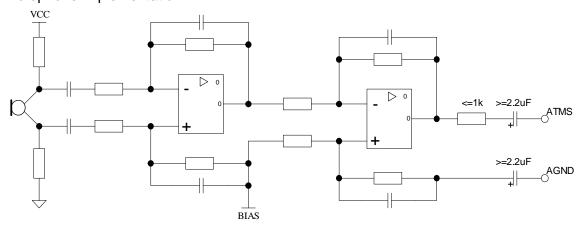
Signal	Parameter			
AFMS	Module audio output	300 – 3400 Hz		
	Output Impedance	Rout 100 Ω		
	Drive capacity into 10 kΩ	3.77 V _{P-P} max. or 2.5 dBV		
	External Device audio input impedance	Zin ≥ 10 kΩ		
	Volume control	-81 dB from maximum > - 81 dB (mute)		
	Sensitivity	1004 Hz tone at 8kHz deviation generates 900±100 mV _{rms} .		
ATMS	Sources are preferably AC coupled.	Cout ≥ 2.2uF		
	External Device audio source Output resistance	Rout $\leq 1.0 \text{ k}\Omega$		
	Module audio input impedance	Zin ≥ 10 kΩ		
	Levels from external audio source (maximum)	3.77 V _{P-P} max. or 2.5 dBV		
	Sensitivity	1004 Hz tone at 900±100 mV _{rms} generates 8kHz deviation.		

Table 14: Audio Characteristics

Analog Reference (AGND)


- The AGND lead is the analog audio reference ground. It is the return signal for *Audio To Mobile Station* (ATMS), *Audio From Mobile Station* (AFMS).
- <u>Electrical characteristics</u>: I_{max} < 40 mA (peak)
- The AGND is connected to the chassis Ground (GND) in the CM52 module, and only there. The application should be connected to GND and only use AGND as reference for the audio lines ATMS and AFMS.
- The PCM signals are referenced to digital ground.

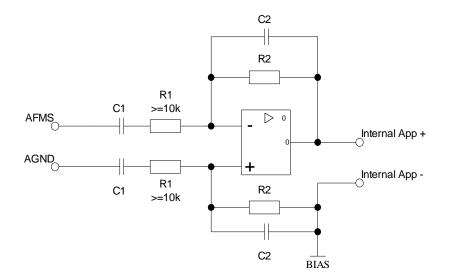
PA7



Application Implementation:

BIAS: An analog ground plane should be generated, which connects to GND in one point so that high frequency digital current is not floating through the analog ground. Connecting the analog ground in only one point also avoids ground currents from power supplies and other high current circuitry from creating noise in the analog circuitry. The voltage supply for the analog circuitry should connect its ground pin as close as possible to the point where the analog ground connects to GND. The BIAS reference is generated from this supply voltage and analog ground, and shall be used as a reference for all analog circuitry in the application. Note that *Analog Ground* and *AGND* are two different signals. *Analog Ground* is the ground plane used by the application. It should be connected to the application's GND in one point preferably at the regulator that generates the analog supply voltage. *AGND* is the analog audio reference received from the phone. This is a signal with the intent to be used together with *ATMS* and *AFMS* as a semi differential interface between the module and the application.

ATMS: An application using the analog audio interface must re-reference the signal from its own internal BIAS to AGND. The figure below shows an example of a microphone implementation.



The microphone should preferably be connected to its pre-amplifier differentially, which will minimize noise pickup from possible ground current.

AFMS: An application using the analog audio interface must re-reference the AFMS-signal from AGND to its own internal BIAS. The figure shows a differential implementation. C1 is chosen to create the correct HP frequency response. R1 and R2 determine the gain, and C2 and R2 determine the LP frequency response.

2.7 Serial Data Interface

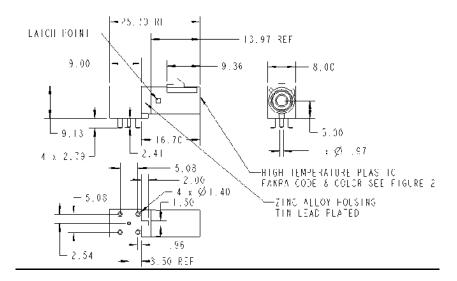
The serial channels are used as asynchronous communication links between the application system and the module. The following table shows the serial data channels related signals:

Pin	Signal	Description	Dir
23	DCD	Data Carrier Detect	0
		This signal is set default high. It goes low indicating that a data call is established (CONNECT received from the remote modem). The signal goes high when the data connection is disconnected.	
25	CTS	Clear To Send	0
		This signal is initially set high, indicating that the module is not ready to receive data. It is set low after the module is done performing its startup procedure indicating that it is ready to receive data.	
26	DTR	Data Terminal Ready	1
		This signal should be set low by the application during a data call. A low to high transition will terminate the data call.	
27	TD	Transmit Serial Data To Module (DTMS)	ı
		The application shall set this signal high at startup.	
28	RTS	Request To Send	ı
		The application shall set this pin low when it is ready to receive data.	
30	RD	Receive Serial Data From Module (DFMS)	0
		The module will set this signal high at startup.	

Table 15: Serial Data Channels

The common CMOS electrical specifications defined in Section 2.3.3 are valid for all these signals. The standard character format is 1 start bit, 8 data bits, non-parity and 1 stop bit. In all, there are 10 bits per character.

Note! The signal levels do not match the standard RS-232 (V.28). If the application signal levels are not compatible with the CMOS levels described in **Table 3: CMOS Output / Input Electrical Characteristics**, then electrical protection level limiters or level conversion hardware will be necessary between the CM-52 module and the application.

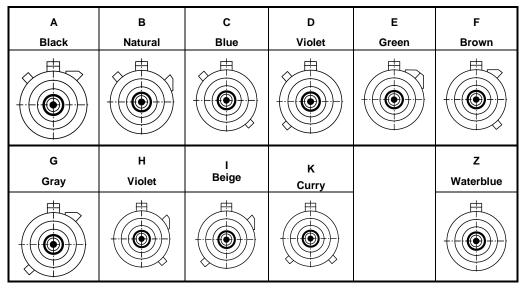

2.8 Antenna Interface

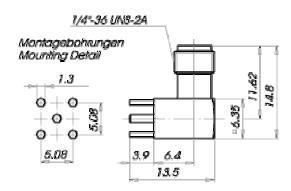
The antenna interface of the CM52 consists of a single or dual RF connector for the radio with optional antenna diagnostics, and a single RF connector for the optional GPS function.

2.8.1 Antenna Connector

A variety of antenna connectors are available for the CM-52 module including SMA, SMB, MCX, and BNC. A standard 5-pin, thru-hole pattern has been selected because of the wide variety of compatible connectors available and also for the maximum mechanical strength.

For automotive applications, a FAKRA-type connector is available which provides a double locking mechanism as well as a keyed, color-coded interface as shown below:




Figure 9: Color and Keying for various FAKRA connectors

PA7

The physical dimensions of a sample SMA connector and mounting hole are shown in

the drawing below.

Electrical performance parameters are valid <u>only</u> when the terminating impedance at the output of the antenna connector exhibits a VSWR of less than 2:1 for all phase angles in the frequency band of operation. High VSWR loads at the antenna connector adversely affect current consumption, linearity, and power efficiency of the module and may degrade operation; however, internal protection circuitry has been added to the design to prevent damage.

The performance of the module as defined in Section 2.8.2 of this manual is referenced to the antenna connector. The antenna connectors must not negatively affect the performance of the CM52. For this reason, all options are discrete connectors and thus do not include cable assemblies.

The table below lists several suppliers of antenna connectors that are available.

Description	Vendor / Part #	Additional Information
RF Connectors and cabling	ITT Cannon / Various	http://www.ittcannon.com
RF Connectors and cabling	Amphenol RF / Various	http://www.amphenolrf.com
RF Connectors and cabling	Hirschmann / Various	http://portal.hirschmann.com

4/198 17-LXE 108 566 Uen

Revision PA7

RF Output Power 2.8.2

The CM52 is able to operate in several modes and different output power level. Applications may require output power levels similar to those in a handheld cellular phone or higher levels commonly required in rural areas. The following tables show the nominal power provided by the CM52.

	Mobile Station Power Level (dBm)							
	0 1 2 3 4 5 6 7							
Class I, AMPS	34.8	31	26.3	24	20	16	12	8
Class III, AMPS	26.3	26.3	26.3	24	20	16	12	8

Table 16: Mobile Station Nominal Analog Power Levels

Note: These numbers represent the Nominal Output Power⁴ in AMPS mode and are referenced to the antenna connector. Analog output power levels are as defined for a Power Class I device in Industry Specification EIA/TIA IS-91.

	Mobile Station Power Level (dBm)		
	Lower Limit	Upper Limit	
Class III, CDMA Band Class 0	23 dBm (0.2 Watts)	30 dBm (1.0 Watts)	
Class II, CDMA Band Class 1	23 dBm (0.2 Watts)	30 dBm (1.0 Watts)	

Table 17: Mobile Station CDMA Maximum Output Power

2.8.3 Carrier Approval

The CM52 will undergo carrier qualification. Approval of the CM52 is sought referenced to the antenna connector. Any applications intending to use the CM52 will likely be required to undergo similar testing with the CM52 integrated into the application. For this reason it is strongly recommended that the application is designed to accommodate exposing the antenna connector(s) of the CM52. This will help insure that the qualification of the application with the carrier will be successful.

2.8.4 **Antenna Diagnostics**

The antenna diagnostics function consists of one antenna detection circuit per RF connector. Each detection circuit can support antenna resistance (RL) values of 1 K Ω to 20 K Ω and 49.9 K Ω . Internal resistance (R) value is either 10 K Ω or 49.9 K Ω , as required by the customer's application.

AT commands are provided to query the status, query the limits and set the limits for the status; GOOD, OPEN, or SHORTED. These commands are detailed in the CM52 Software User's Guide and AT Command.

The drawing below is a high level description of the antenna diagnostics circuit.

⁴ PL0 and PL1 require VCC_AUX = 13.8V

Module

VCC

Application
Antenna

Transmitter

10K

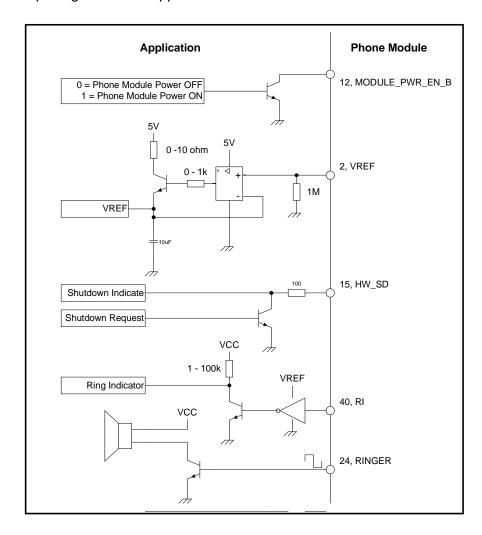
To ADC

Figure 10: Antenna Diagnostic Circuit

The current antenna status is based on a comparison between the voltage measured at the antenna connector and the limits set by the application for OPEN and SHORTED.

3 Recommended Circuitry

Abbreviations:


- VCC Represents the logic supply voltage used by the application.
- VREF Current amplified reference voltage used as supply voltage for all logic interface circuitry.

Component proposals:

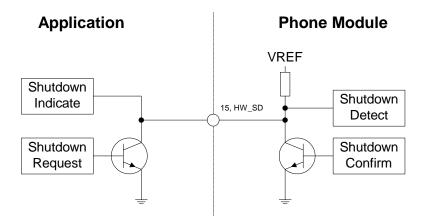
- Transistors not showing a base resistor should be interpreted as a BRT (Built in Resistor Transistor) i.e. Toshiba RN1308.
- The inverting buffers should preferably be Schmitt-Triggered, i.e. Toshiba TC7S14 or similar.

3.1 Status Group Recommended Circuitry

The status group contains four signals, one output signal from the application and three input signals to the application.

PA7

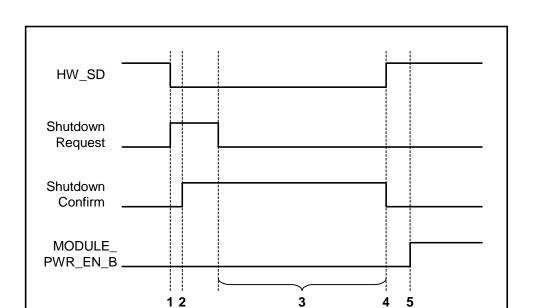
3.1.1 MODULE PWR EN B


This signal, located on pin 12 in the system connector, enables the main 5V supply in the phone module so that it powers on. This is an open collector input to the phone module. Its reference voltage is the main 5V supply.

3.1.2 VREF

This signal, located on pin 2 in the system connector, provides the application with its logic supply voltage. The application can current-amplify this signal and use it to supply its interface circuits.

3.1.3 HW SD


This signal, located on pin 15 in the system connector, provides the ability of performing a hardware shutdown of the module. It is a bi-directional signal that is pulled up inside the phone module.

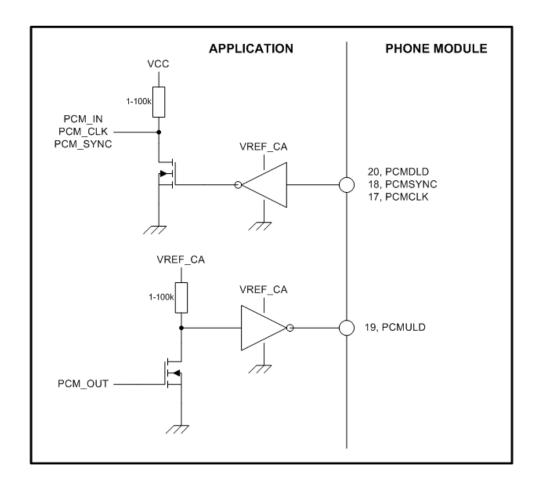
Shut down sequence:

- 1 To request a shutdown of the phone module, the application should provide an active low pulse of 100 ± 25 ms on the HW_SD pin through an open collector output.
- 2 This pulse is detected by the module, which confirms the request by enabling its HW SD output, setting it active low.
- 3 The application waits for the HW SD pin to become inactive high.
- 4 The module has performed its power down sequence and disables its output resulting in HW SD becoming inactive high.
- 5 The application shuts down, disabling MODULE_PWR_EN_B.


PA7

3.2 Data Group Recommended Circuitry

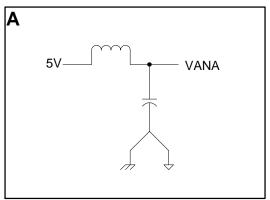
The data group contains six signals, three output signals from application, two input signals to application, and one I/O signal.

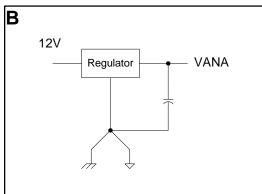

3.2.1 VPPFLASH/DCD

This signal, located on pin 23 in the system connector, can be used by the application to enable flashing of the phone module. To enter flash-mode, the application shall set VPPFLASH_EN active high, then enable the MODULE_PWR_EN_B pin.

3.3 PCM Group Recommended Circuitry

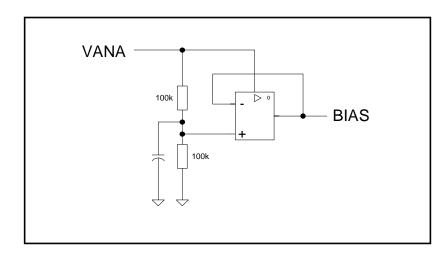
The PCM group contains four signals, three input signals to the application, and one output signal from the application.





3.4 Analog Audio Group Recommended Circuitry

3.4.1 Creating an analog ground

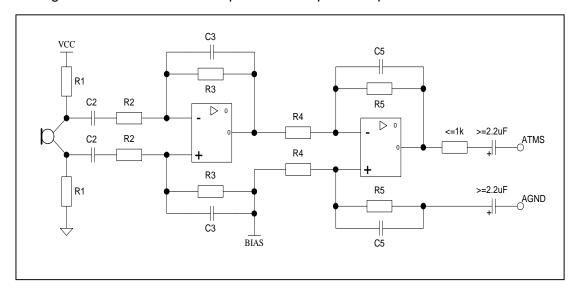

An analog ground plane should be generated, which connects to GND in one point so that high frequency digital current is not floating through the analog ground. Connecting the analog ground in only one point avoids ground currents from power supplies and other high current circuitry from creating noise in the analog circuitry. This common point should be located where the analog supply voltage (VANA) is generated (at filter (A), or regulator (B) depending on implementation).

3.4.2 Creating an analog reference voltage (BIAS)

The BIAS reference should be generated from the analog supply voltage (VANA) and be referenced to the analog ground. This reference shall be used to bias all analog circuitry in the application.

The bias can be tapped directly from the resistor voltage divider, but the amplifier will make the bias more stable and less susceptible to noise.

3.4.3 Analog ground vs. AGND

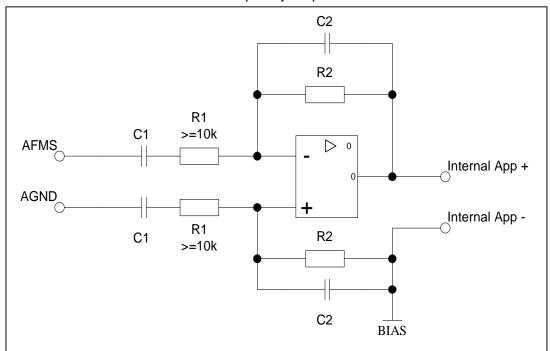

The AGND signal output from the module is not a ground. It is an analog reference, which is connected to the main ground used by the module in one place inside the module. It should not under any circumstances be used as a ground or connected to a ground in the application.

AGND must be treated as a signal. Together with ATMS and AFMS it creates a semi differential interface. The analog ground shall be used as ground plane for the analog circuitry of the application. It should not be connected to the AGND signal output from the phone module.

3.4.4 Microphone path

An application using the analog audio interface must re-reference the signal from its own internal BIAS to AGND received from the module.

The figure below shows an example of a microphone implementation.



The microphone should preferably be connected to its pre-amplifier differentially, which will minimize noise picked up along the way from the microphone to its amplifier. If the impedance is the same on both microphone lines, and the lines are run in parallel, the same amount of noise is picked up on both lines. This noise is then removed in the differential amplifier stage.

3.4.5 Loudspeaker path

An application using the analog audio interface must re-reference the AFMS-signal from AGND to its own internal BIAS. The figure shows a differential implementation. C1 is chosen to create the correct HP frequency response. R1 and R2 determine the gain, and C2 and R2 determine the LP frequency response.

3.5 System connector IO functionality

Note 1: The application IO can be one of the following listed types:

- I Logic input (no pull up or pull down resistors required).
- IOC Logic open-collector input.
- O Logic output (no pull up or pull down resistors required).
- OOC Logic open-collector output.
- I/O Logic I/O.

The pin direction in this table is referenced from the application's point of view.

Group	Pin No	Name	Application Requirements	App I/O	
	HW flow control is by default enabled in the phone module.				
	27	TD (DTMS)	Logic output to phone module. The application shall set this output high upon start-up.		
	30	RD (DFMS)	Logic input from phone module.	I	
	Logic output to phone module. Pulled down by the phone module (R > 20k). The application shall set this pin low wher ready to receive data.		0		
	25	стѕ	Logic input from phone module. This signal is initially set high, indicating that the phone module is not ready to receive data. It is set low when the phone module is ready to receive data.		
Data	26	DTR	Logic output to phone module. This signal is pulled up in the phone module ($R > 20k$).		
			This signal should be set low by the application during a data call. A low to high transition will terminate the data call.		
			This signal is asserted by the application when it wishes to open a communications channel. The phone module then prepares the modem to be connected to the telephone circuit, and, once connected, maintains the connection. When DTR is de-asserted, the phone module is switched to "on-hook" to terminate the connection.	0	
	23	23 VPPFLASH/DCD	DCD: Logic input from phone module. This signal is set default high. It goes low indicating that a data call is established, (CONNECT) received from remote modem. The signal goes high when data connection is disconnected.		
			Sent from the phone module (DCE) to the application (DTE) to indicate that it has received a basic carrier signal from a (remote) DCE.	I/O	
			VPPFLASH: The application shall not apply a voltage to this pin unless they intend to use it as VPPFLASH in which case it becomes a power output.		

PA7

Group	Pin No	Name	Application Requirements	App I/O
	19	PCMULD	Logic output to phone module.	0
PCM	20	PCMDLD	Logic input from phone module.	I
Civi	18	PCMSYNC	Logic input from phone module.	I
	17	PCMCLK	Logic input from phone module.	I
Analog Audio	9	AGND	Analog reference. This signal is an analog reference output by the phone module. This signal is connected to GND in one place in the phone module. Under no circumstances shall it be connected to any ground or be used as ground in the application.	
			See 2.4 for more detailed information.	
	10	AUX1(ATMS)	Single ended audio output to phone module.	
	7	AUX0(AFMS)	Single ended audio input from phone module.	I
	12	MODULE_PWR_EN_B	Logic open collector output that is set low by the application to enable power to the phone module. The pull-up resistor resides in the phone module.	
	2	VREF	Phone module logic voltage sense input to application. This signal provides the application with the logic system voltage level used by the phone module.	
Status	40	RI	This signal is used to indicate to the application of an incoming voice or data call or SMS. The event is indicated by the signals falling edge and remains low for 100 ms.	
	24	RINGER ⁵	Pulse Modulated logic input from phone module. The application must provide power amplification if the current draw is expected to exceed 1mA.	
	15	HW_SD	Bi-directional signal, default set to be an open collector output from the application.	00C I
	39	CFMS	No termination. Leave open.	I
	37	CTMS	No termination. Leave open.	0
	36	Reserved	No termination. Leave open.	IOC
Howasi	35	Reserved	No termination. Leave open.	IOC
Unused	38	Reserved	No termination. Leave open.	0
	4	IO_4_VRTC	No termination. Leave open.	I/O
	3	IO_3_GPS_FIX	No termination. Leave open.	I/O
	1	IO_1_TIMEMARK	No termination. Leave open.	I/O

 $^{\rm 5}$ Not currently Implemented in the CM52.

Document number 4/198 17-LXE 108 566 Uen

Revision PA7

Reserv	13	OUTPUT1	No termination. Leave open.	I
	16	INPUT2	No termination. Leave open.	
ed	11	INPUT1	No termination. Leave open.	0
	14	OUTPUT2	No termination. Leave open.	I

Table 18: Pin Direction for General Purpose Signals

PA7

Functional Description 4

The CM52 module performs a set of telecom services according to TIA/EIA-IS-2000. The functions of the display and keypad, usually used to make calls, are implemented by issuing AT Commands over the serial interface.

See the CM52 Software User's Guide and AT Command Manual for a complete functional description and user scenarios for the CM52.

5 Hints for Integrating the Module

This section, which gives you advice and helpful hints on how to integrate the CM-52 with the application, should be taken as a guide.

Note! The circuits on the test board are not shielded. Therefore, take proper precautions for avoiding ESD and EMI.

5.1 **Precautions**

Here is a list of preparations that you should make before beginning the integration work that is described in this section.

- Where to install the module.
- Safety standards
- Network and subscription
- Antenna

5.2 Where to Install the Module

Make sure that the module is installed so that the environmental conditions, such as temperature, humidity, vibration, etc., are not beyond the limits specified for it.

Make sure that the signal strength is sufficient. To improve signal strength, move the antenna to another position. Signal strength may depend on how close the module is to a radio base station. Degradation in signal strength could be a result of disturbance from another source, for example, an electronic device nearby.

You can verify signal strength by issuing the AT command AT+CSQ. See the CM52 Software User's Guide and AT Command for a description of this and other useful AT commands.

Tip! Before installing the module, use an ordinary mobile telephone to check a possible location for it. Consider signal strength as well as cable length in determining the location for the module and antenna. That way, you will find out if it is practical to install the module where you intended.

5.3 Safety Standards

You are responsible for observing your country's safety standards and the relevant wiring rules, where applicable.

PA7

4/198 17-LXE 108 566 Uen

5.4 **Antenna**

5.4.1 **Antenna Type**

When choosing an antenna for your application you must consider the following requirements:

- The antenna must be designed for the AMPS/CDMA 800 and CDMA 1900 MHz frequency band (dual band) for the CM-52.
- The impedance of the antenna and antenna cable must be 50 Ω .
- The VSWR value should be less than 2:1.

5.4.2 **Antenna Placement**

Always follow the instructions supplied by the antenna manufacturer.

You should place the antenna away from electronic devices or other antennas. The recommended minimum distance between adjacent antennas operating in a similar radio frequency band is at least 50 centimeters.

If the module is used in the Class I AMPS mode, a separation distance of at least 23 centimeters must be maintained between the radiating antenna and the user or nearby persons. In this mode of operation, the combined connection cable path loss and antenna gain must also be no greater than 1 dBi.

5.5 **Possible Communication Disturbances**

Noise can be caused by electronic devices and radio transmitters.

Free Space Path-loss occurs as the strength of the received signal steadily decreases with the distance from the transmitter.

Shadowing is a form of environmental attenuation of radio signals that is caused by hills, buildings, trees or even vehicles. Inside buildings this can cause problems, especially if the walls are thick and reinforced.

Multi-path fading is a sudden decrease or increase in the signal strength. This is the result of interference caused when direct and reflected signals reach the mobile phone simultaneously. Flat surfaces such as buildings, streets, vehicles, etc, can reflect signals.

USERS MANUAL Document number 4/198 17-LXE 108 566 Uen

Revision PA7

Technical Data 6

Mechanical specifications					
Maximum length:	114 mm				
Maximum width:	49.50 mm				
Maximum thickness:	18.97 mm				
Weight:	68.2 g		T		
Power supply voltage, normal operation	VCC_MAIN	VCC_MAIN VC		CC_AUX	
Nominal Voltage:	5.00 Volts	5.00 Volts 13.8		3.8 Volts	
Voltage range:	4.50 – 5.50 Volts		11.0 – 16	.0 – 16.5 Volts	
Radio specifications	AMPS	CDMA	(BC-0)	CDMA (BC-1)	
Frequency range:	TX: 824 – 849 RX: 869 – 894	TX: 824 - RX: 869		TX: 1850-1910 RX: 1930-1990	
Antenna impedance:	$50~\Omega$	50Ω		$50~\Omega$	
VSWR (Maximum):	2:1	2:1		2:1	
Environmental specifications					
Operating temperature range:		-30°C to +70°C: EIA/TIA/IS-2000 +70°C to +85°C: –3dB Degradation beyond +70°C Spec			
Storage temperature range:	-40 °C to +85 °C				
Maximum relative humidity:	95% ± 3% at +40 °C				
Stationary vibration, random	Acceleration spectral density (m ² /s ²): 0.96 2.88 0.96 Frequency range: 5-10 10-200 200-500 60 min per/axis				
Non-stationary vibration, including shock	Shock response spectrum I, peak acceleration: - 3 shocks in each axis and direction: 300 m/s ² , 11 ms			ration: 0 m/s², 11 ms	
	Shock response spectrum II, peak acceleration: - 3 shocks in each axis and direction: 1000 m/s ² , 6 ms				
Bump:	Acceleration 250 r	Acceleration 250 m/s ²			
Free fall transportation:	1.0 m				
Rolling pitching transportation:	Angle: 35 degrees, period: 8s				
Static load:	10 kPa				
Low air pressure/high air pressure:	70 kPa / 106 kPa				