

No

Prepared (also subject responsible if other)

LD/SEMC/BGGI/NM Hamid Kami Shirazi

Approved LD/SEMC/BGGI/NMC Mats hansson

BGGIN06:291
Checked Date

060713 060712

File

Reference

Has J

Rev

Α

Report issued by Accredited SAR Laboratory

For

PY7AF022011 (K790i)

Date of test: 28 to 26, June, 2006

Laboratory: Sony Ericsson SAR Test Laboratory

Sonyericsson Mobile Communications AB

Nya Vattentornet

SE-221 82 LUND, Sweden

Testing Engineer: Hamid Kami Shirazi

Kami.shirazi@sonyericsson.com

+46 46232644

Testing Approval Mats Hansson

Mats.Hansson@sonyericsson.com

+46 4619 33 57

Statement of Compliance

Sony Ericsson Mobile Communications AB declares under its sole responsibility that the product

Sony Ericsson Type AAF-1022011-BV; FCC ID: PY7AF022011; IC:4170B-AF022011

to which this declaration relates, is in conformity with the appropriate RF exposure standards recommendations and guidelines. It also declares that the product was tested in accordance with the appropriate measurement standards, guidelines and recommended practices. Any deviations from these standards, guidelines and recommended practices are noted below:

(None)

This laboratory is accredited to ISO/IEC 17025 (SWEDAC accreditation no. 1847).

Laboratories are accredited by the Swedish Board for Accreditation and Conformity Assessment (SWEDAC) under the terms of Swedish legislation. The accredited laboratory activities meet the requirements in SS-EN ISO/IEC 17025 (2000). This report may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report.

Sony Ericsson encourages all feedback, both positive and negative, on this report. © Sony Ericsson Mobile Communication AB, 2007

No

Checked

060713

BGGIN06:291

ate Rev

060712 A

Reference

File

Prepared (also subject responsible if other)

Approved

LD/SEMC/BGGI/NMC Mats Hansson

LD/SEMC/BGGI/NM Hamid Kami Shirazi

1 Table of contents

2 INTRODUCTION	3
3 DEVICE UNDER TEST	3
3.1 Antenna Description	3
4 TEST EQUIPMENT	4
4.1 Dosimetric system	4 4
5 ELECTRICAL PARAMETERS ON THE TISSUE SIMULATING LIQUID	4
6 SYSTEM ACCURACY VERIFICATION	5
7 SAR MEASUREMENT UNCERTAINTY	6
8 TEST RESULTS	
9 REFERENCES	8
10 APPENDIX	
10.1 Photographs of the device under test	9
10.2 DEVICE POSITION ON SAM TWINS PHANTOM	
3 4 5 6 7 8 9	DEVICE UNDER TEST 3.1 ANTENNA DESCRIPTION 3.2 DEVICE DESCRIPTION TEST EQUIPMENT 4.1 DOSIMETRIC SYSTEM 4.2 ADDITIONAL EQUIPMENT ELECTRICAL PARAMETERS ON THE TISSUE SIMULATING LIQUID SYSTEM ACCURACY VERIFICATION SAR MEASUREMENT UNCERTAINTY TEST RESULTS REFERENCES APPENDIX

Nο

Prepared (also subject responsible if other)

LD/SEMC/BGGI/NM Hamid Kami Shirazi
Approved

LD/SEMC/BGGI/NMC Mats Hansson

BGGIN06:291

Date Rev Reference
060712 A File

2 Introduction

In this test report, compliance of the Sony Ericsson PY7AF022011 (K790i) portable telephone with RF safety guidelines is demonstrated. The applicable RF safety guidelines and the SAR measurement specifications used for the test are described in the SAR Measurement Specifications of Wireless Handsets [1].

3 Device under Test

3.1 Antenna Description

Туре	Internal antenna		
Location	Inside, Back, at the Top		
Dimensions	Max length	38mm	
Dillensions	Max width	16mm	
Configuration	PIFA		

Checked

060713

3.2 Device description

Device model	PY7AF0220	11(K790i)	
Serial number	CB5108M7E	EL .	
Mode		GSM1900	
Crest Factor		8.3	
Multiple Access Scheme		TDMA	
Maximum Output Power Setting	Ch512	Ch661	Ch810
(dBm)	30.0	30.0	30.0
Factory Tolerance in Power Setting		±0.5dB	
Maximum Peak Output Power (dBm)	30.5	30.5	30.5
Mode	GPRS2TX and EGPRS2TX		
Crest Factor	4.15		
Maximum Output Power Setting	Ch512	Ch661	Ch810
dBm	28.0	28.0	28.0
Factory Tolerance in Power Setting		±0.5dB	
Maximum Peak Output Power (dBm)	28.5	28.5	28.5
Transmitting Frequency Range(MHz)	1850.2 - 1909.8		
Prototype or Production Unit	Preproduction		
Device Category	Portable		
RF exposure environment	General po	pulation / unc	ontrolled

No.

Prepared (also subject responsible if other)

LD/SEMC/BGGI/NM Hamid Kami Shirazi
Approved

LD/SEMC/BGGI/NMC Mats Hansson

BGGIN06:291
Checked Date

Date Rev Reference
060712 A File

4 Test equipment

4.1 Dosimetric system

SAR measurements were made using the DASY4 professional system (software version 4.6, Build 23/7) with SAM twin phantom, manufactured by Schmid & Partner Engineering AG (SPEAG). The list of calibrated equipment is given below.

Description	Serial Number	Due Date
DAE3	419	March 2007
E-field probe ETDV6	1585	March 2007
Dipole Validation Kit, D1900V2	5d002	March 2007

060713

4.2 Additional equipment

Description	Inventory Number	Due Date
Signal generator R&S SML03	INV 20007667	Dec. 2007
Power meter R&S NRVZ	INV 20007669	Dec. 2007
Power sensor R&S NRV-Z5	INV 20007672	Dec. 2007
Power sensor R&S NRV-Z5	INV 20007673	Dec. 2007
Network analyzer HP8753C	INV421671	March 2007
S-parameter test set HP85047A	INV 421670	March 2007
Dielectric probe kit HP8507D	INV 200 000 53	Self calibrated
CMU200	INV 20002149	March 2007

Company Internal **REPORT**

Checked

060713

LD/SEMC/BGGI/NM Hamid Kami Shirazi

LD/SEMC/BGGI/NMC Mats Hansson

BGGIN06:291

Rev Reference 060712 Α File

5 Electrical parameters on the tissue simulating liquid

Prior to conducting SAR measurements, the relative permittivity, \mathcal{E}_r , and the conductivity, \mathcal{O}_r , of the tissue simulating liquids were measured with the dielectric probe kit. These values are shown in the table below. The mass density, ρ , entered into the DASY4 software is also given.

Recommended limits for permittivity $\mathbf{\mathcal{E}}_{r}$, conductivity $\mathbf{\mathcal{O}}$ and mass density $\mathbf{\mathcal{O}}$ are also shown.

f	Tissue	Limits / Measured	Diel	ectric Parame	eters
(MHz)	type	Littits / Measured	ε _r	σ (S/m)	ρ (g/cm³)
	Head	Measured, 28/June/2006	40.4	1.43	1.00
1900	пеац	Recommended	40.0	1.40	1.00
	Body	Measured, 29/June/2006	51.3	1.53	1.00
		Body	Recommended	53.3	1.52

System accuracy verification 6

A system accuracy verification of the DASY4 was performed using the dipole validation kit listed in section 3.1. Measurement made in ambient temperature (22-23) °C and humidity (22-23) %. The obtained results are displayed in the table below.

RF noise had been measured in liquid when all RF equipment in lab was set off. Measured value was 0.0002mW/g in 1g mass

f	Tissue	issue Measured / Reference SAR (W/kg) Dielectric Parameters					Liquid	
(MHz)	type	weasured / Reference	1g/10g	ε _r	σ (S/m)	ρ (g/cm³)	t(°C)	
	Head	Head	Measured, 28/June/2006	39.8/20.8	40.4	1.43	1.00	22±0.2
1900 Head	пеац	Reference	39.2/20.6	39.6	1.45	1.00	22±0.2	
1900		Measured, 29/June/2006	40.3/21.4	51.3	1.53	1.00	22±0.2	
Body	Бойу	Reference	39.6/20.9	51.6	1.58	1.00	22±0.2	

BGGIN06:291

Reference

File

Prepared (also subject responsible if other) LD/SEMC/BGGI/NM Hamid Kami Shirazi

Checked Rev LD/SEMC/BGGI/NMC Mats Hansson 060713 060712 Α

SAR measurement uncertainty 7

SAR measurement uncertainty evaluation for Sonyericsson PY7AF022011 (K790i) phone

Uncertainty Component	Uncer. (%)	Prob Dist.	Div.	Ci	GSM 1900- Head	GSM 1900- Body
Measurement System						
Probe Calibration	±4.8	N	1	1	±4.8	±4.8
Axial Isotropy	±4.7	R	√3	0.7	±1.9	±1.9
Spherical Isotropy	±9.6	R	√3	0.7	±3.9	±3.9
Boundary effect	±1.0	R	√3	1	±1.0	±1.0
Probe linearity	±4.7	R	√3	1	±2.7	±2.7
Detection limit	±1.0	R	√3	1	±0.6	±0.6
Readout electronics	±1.0	N	1	1	±1.0	±1.0
Response time	±0.8	R	√3	1	±0.5	±0.5
Integration time	±1.4	R	√3	1	±0.8	±0.8
RF Ambient Conditions	±3.0	R	√3	1	±1.7	±1.7
Mech. Constraints of robot	±0.4	R	√3	1	±0.2	±0.2
Probe positioning	±2.9	R	√3	1	±1.7	±1.7
Extrap, interpolation and integration	±3.9	R	√3	1	±2.3	±2.3
Measurement System Uncertainty					±8.0	±8.0
Test Sample Related						
Device positioning	±3.5	N	1	1	±3.5	±3.5
Device holder uncertainty	±3.5	N	1	1	±3.5	±3.5
Power drift	±(0.6/0.2)	R	√3	1	±0.3	±0.1
Test Sample Related Uncertainty					±5.0	±5.0
Phantom and Tissue Parameters						
Phantom uncertainty	±4.0	R	√3	1	±2.3	±2.3
Liquid conductivity (measurement)	±(2.1/0.7)	N	1	0.64	±1.3	±0.5
Liquid conductivity (target)	±5.0	R	√3	0.64	±1.8	±1.8
Liquid Permittivity (measurement)	±(1.0/3.8)	N	1	0.6	±0.6	±2.4
Liquid Permittivity (target)	±5.0	R	√3	0.6	±1.7	±1.7
Phantom and Tissue Parameters Uncertainty					±3.7	±4.2
Combined standard uncertainty						±10.3
Extended standard uncertainty (k=	±20.4	±20.6				

Checked

060713

Prepared (also subject responsible if other)

LD/SEMC/BGGI/NM Hamid Kami Shirazi Approved

LD/SEMC/BGGI/NMC Mats Hansson

BGGIN06:291

060712

Rev

File

Α

Reference

8 Test results

The measured 1-gram averaged SAR values of the device against head and body are provided in tables1 and 2. The ambient temperature and humidity of test facility were 22°C-23°C and 22%-23% respectively. The depth of tissue simulating liquid for head and body are 15.1cm and 15cm. A base station simulator was used to control the device during the SAR measurement. The phone was supplied with full-charged battery for each measurement.

For head measurement, the device was tested on the right-hand phantom (corresponding to the right side of the head) and the left-hand phantom in two phone position, cheek (touch) and tilt (cheek + 15deg).

For body measurement phone was tested on the antenna (back) and Front against flat section of phantom with 15mm distance in both speech and Data (EGPRS and GPRS) mode. For all modes, the device was tested at the lowest, middle and highest frequencies in the transmit band. For Hands free used Sony Ericsson head set (HPB-60) and for Blue Tooth phone was pared with Sony Ericsson HBH-60 Blue Tooth accessory and measured on worst case speech mode and for body.

		Power Phone Li		Liquid	SAR (W/kg)						
Mode	Channel	hannel Power Phor (dB) Positi		t (°C)	Right-hand	Left-hand					
			(ub) Position		1g mass	1g mass					
	512	30.3	Cheek	22±0.2	0.43	0.40					
4000	312		30.3	50.5	30.3	50.5	50.5	50.5	Tilt	22±0.2	0.61
1900 GSM	661	30.3	Cheek	22±0.2	0.31	0.27					
Head		001	30.3	Tilt	22±0.2	0.42	0.42				
пеац	810	30.4	Cheek	22±0.2	0.21	0.18					
		810	30.4	Tilt	22±0.2	0.29	0.30				

Table1: SAR measurement result for Sony Ericsson PY7AF022011 (K790i) telephone at highest possible output power. The phone has measured against head.

Mode	Channel	Power (dBm)	Phone Position	Liquid t (°C)	SAR (W/kg) in 1 g mass					
		30.3	Antenna to phantom Hands Free	22±0.2	0.15					
		30.3	Antenna to phantom Blue Tooth	22±0.2	0.19					
	512		Antenna to phantom GPRS2TX	22±0.2	0.28					
GSM						М	28.5	Antenna to phantom EGPRS2TX	22±0.2	0.28
1900			Front to phantom EGPRS2TX	22±0.2	0.25					
Body	661	30.3	Antenna to phantom Blue Tooth	22±0.2	0.12					
<u> </u>	001	001	28.5	Antenna to phantom GPRS2TX	22±0.2	0.19				
	810	30.4	Antenna to phantom Blue Tooth	22±0.2	0.11					
	010	28.5	Antenna to phantom GPRS2TX	22±0.2	0.16					

Table2: SAR measurement result for Sony Ericsson PY7AF022011 (790i) telephone at highest possible output power. The phone has measured against the Body.

Nο

Prepared (also subject responsible if other)

LD/SEMC/BGGI/NM Hamid Kami Shirazi
Approved

LD/SEMC/BGGI/NMC Mats Hansson

BGGIN06:291
Checked Date

060713

Date Rev Reference
060712 A File

9 References

[1] R.Plicanic, "SAR Measurement Specification of Wireless Handsets", Sony Ericsson SAR Test Laboratory internal document GUG/N 03:141

[2] Basic standard for the Measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300MHz-3GHz), European Standard EN 50361, July 2001

[3] FCC, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields: Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radio Frequency Emissions," Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01).

[4] IEEE, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques," STD 1528-2003, June, 2003.

Company Internal REPORT

No.

LD/SEMC/BGGI/NM Hamid Kami Shirazi

Checked

BGGIN06:291

LD/SEMC/BGGI/NMC Mats Hansson 060713 060712 A

10 Appendix

10.1 Photographs of the device under test

Rev

Front & Back side

Back with Battery

Reference

File

Down Connector

Sides

LD/SEMC/BGGI/NM Hamid Kami Shirazi

LD/SEMC/BGGI/NMC Mats Hansson

Company Internal REPORT

No.

BGGIN06:291

060712

Date Rev

Α

Reference

File

10.2 Device position on SAM Twins Phantom

Checked

060713

Device position against the head: Cheek (touch) phone position

Device position against the head: Tilt (cheek+15deg) phone position

Device position against the body: Phone on 15mm distance against Phantom

Company Internal REPORT

Nο

BGGIN06:291

Date Rev

LD/SEMC/BGGI/NMC Mats Hansson

LD/SEMC/BGGI/NM Hamid Kami Shirazi

Checked **060713**

060712 A File

Reference

10.3 Attachment

- Probe & Dipole Calibration
- Measurement plots and system validation
- Annex

Date/Time: 2006-06-29 13:51:13

Test Laboratory: Sony Ericsson Mobile Communications AB

DUT: #4993; Type: PY7AF022011; Serial: CB5108M7EL

Communication System: GSM1900 Data; Frequency: 1850.2 MHz; Duty Cycle: 1:4.15 Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.46$ mho/m; $\epsilon_r = 51.1$; $\rho = 1000$

 kg/m^3

Phantom section: Flat Section

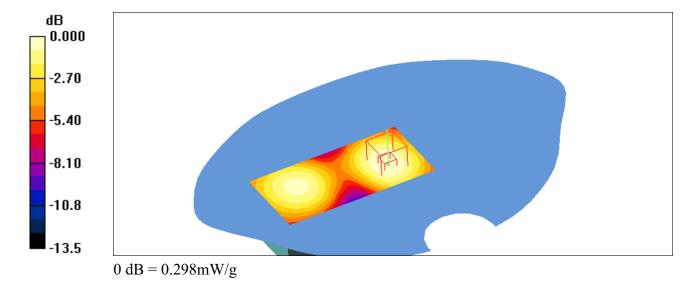
DASY4 Configuration:

- Probe: ET3DV6 SN1585; ConvF(4.56, 4.56, 4.56); Calibrated: 2006-03-16
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn419; Calibrated: 2006-03-08
- Phantom: SAM 4; Type: SAM; Serial: 1053
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161

d=15mm, Low,EDGE/Area Scan (61x121x1): Measurement grid: dx=10mm, dy=10mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.295 mW/g

d=15mm, Low,EDGE/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 14.7 V/m; Power Drift = 0.007 dB

Peak SAR (extrapolated) = 0.442 W/kg

SAR(1 g) = 0.280 mW/g; SAR(10 g) = 0.177 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.298 mW/g

Date/Time: 2006-06-29 08:36:42

Test Laboratory: Sony Ericsson Mobile Communications AB

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d002

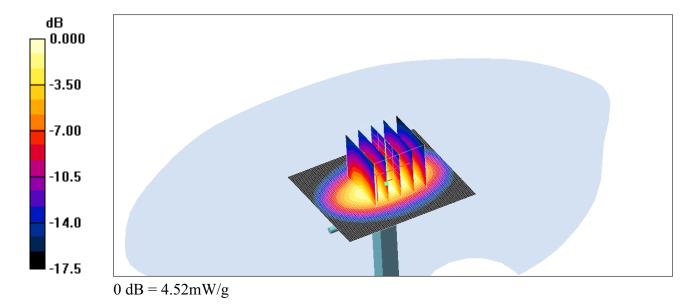
Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; $\sigma = 1.53 \text{ mho/m}$; $\varepsilon_r = 51.3$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ET3DV6 SN1585; ConvF(4.56, 4.56, 4.56); Calibrated: 2006-03-16
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn419; Calibrated: 2006-03-08
- Phantom: SAM 4; Type: SAM; Serial: 1053
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161

d=10mm, Pin=100mW/Area Scan (71x81x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 4.65 mW/g


d=10mm, Pin=100mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 57.7 V/m; Power Drift = -0.019 dB

Peak SAR (extrapolated) = 6.87 W/kg

SAR(1 g) = 4.03 mW/g; SAR(10 g) = 2.14 mW/g

Maximum value of SAR (measured) = 4.52 mW/g

Date/Time: 2006-06-28 13:17:20

Test Laboratory: Sony Ericsson Mobile Communications AB DUT: #4993; Type: PY7AF022011; Serial: CB5108M7EL

Communication System: DCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3 Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.34$ mho/m; $\epsilon_r = 40.9$; $\rho = 1000$

 kg/m^3

Phantom section: Right Section

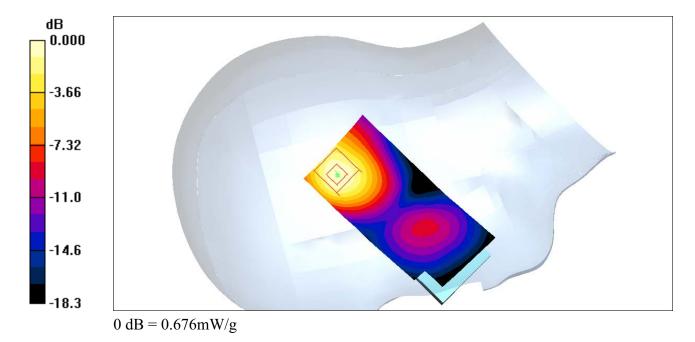
DASY4 Configuration:

- Probe: ET3DV6 SN1585; ConvF(5.11, 5.11, 5.11); Calibrated: 2006-03-16
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn419; Calibrated: 2006-03-08
- Phantom: SAM 4; Type: SAM; Serial: 1053
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161

Tilt position - Low/Area Scan (61x131x1): Measurement grid: dx=10mm, dy=10mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.693 mW/g

Tilt position - Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 18.4 V/m; Power Drift = -0.027 dB

Peak SAR (extrapolated) = 1.07 W/kg

SAR(1 g) = 0.611 mW/g; SAR(10 g) = 0.331 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.676 mW/g

Date/Time: 2006-06-28 11:54:54

Test Laboratory: Sony Ericsson Mobile Communications AB DUT: #4993; Type: PY7AF022011; Serial: CB5108M7EL

Communication System: DCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.34$ mho/m; $\varepsilon_r = 40.9$; $\rho = 1000$

 kg/m^3

Phantom section: Right Section

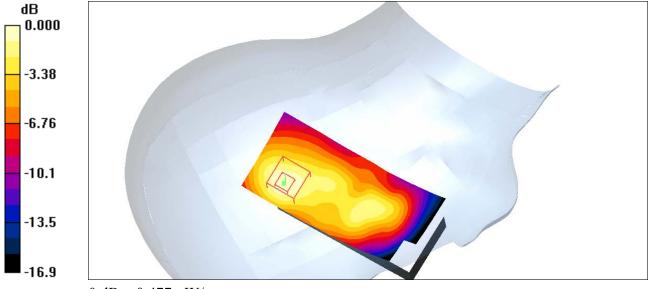
DASY4 Configuration:

- Probe: ET3DV6 SN1585; ConvF(5.11, 5.11, 5.11); Calibrated: 2006-03-16
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn419; Calibrated: 2006-03-08
- Phantom: SAM 4; Type: SAM; Serial: 1053
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 16

Touch position - Low/Area Scan (61x131x1): Measurement grid: dx=10mm, dy=10mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.479 mW/g

Touch position - Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 16.5 V/m; Power Drift = -0.041 dB

Peak SAR (extrapolated) = 0.730 W/kg

SAR(1 g) = 0.428 mW/g; SAR(10 g) = 0.239 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.477 mW/g

Date/Time: 2006-06-28 14:53:53

Test Laboratory: Sony Ericsson Mobile Communications AB

DUT: #4993; Type: PY7AF022011; Serial: CB5108M7EL

Communication System: DCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.34$ mho/m; $\epsilon_r = 40.9$; $\rho = 1000$

 kg/m^3

Phantom section: Left Section

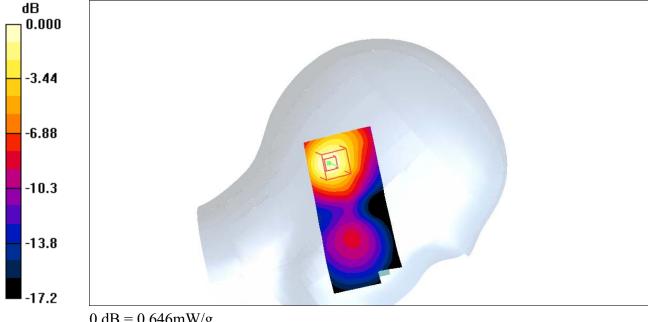
DASY4 Configuration:

- Probe: ET3DV6 SN1585; ConvF(5.11, 5.11, 5.11); Calibrated: 2006-03-16
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn419; Calibrated: 2006-03-08
- Phantom: SAM 4; Type: SAM; Serial: 1053
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161

Tilt position - Low/Area Scan (61x131x1): Measurement grid: dx=10mm, dy=10mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.658 mW/g

Tilt position - Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 18.0 V/m; Power Drift = -0.051 dB

Peak SAR (extrapolated) = 0.965 W/kg

SAR(1 g) = 0.581 mW/g; SAR(10 g) = 0.319 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.646 mW/g

0 dB = 0.646 mW/g

Date/Time: 2006-06-28 14:36:15

Test Laboratory: Sony Ericsson Mobile Communications AB **DUT:** #4993; Type: PY7AF022011; Serial: CB5108M7EL

Communication System: DCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.34$ mho/m; $\varepsilon_r = 40.9$; $\rho = 1000$

 kg/m^3

Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 SN1585; ConvF(5.11, 5.11, 5.11); Calibrated: 2006-03-16
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn419; Calibrated: 2006-03-08
- Phantom: SAM 4; Type: SAM; Serial: 1053
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161

Touch position - Low/Area Scan (61x131x1): Measurement grid: dx=10mm, dy=10mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.457 mW/g

Touch position - Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.9 V/m; Power Drift = -0.045 dB

Peak SAR (extrapolated) = 0.579 W/kg

SAR(1 g) = 0.398 mW/g; SAR(10 g) = 0.228 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.442 mW/g

Date/Time: 2006-06-29 15:09:20

Test Laboratory: Sony Ericsson Mobile Communications AB DUT: #4993; Type: PY7AF022011; Serial: CB5108M7EL

Communication System: GSM1900 Data; Frequency: 1850.2 MHz; Duty Cycle: 1:4.15

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.46$ mho/m; $\varepsilon_r = 51.1$; $\rho = 1000$

 kg/m^3

Phantom section: Flat Section

DASY4 Configuration:

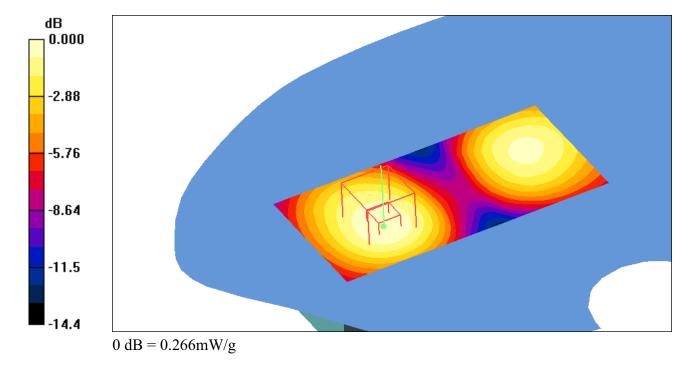
- Probe: ET3DV6 SN1585; ConvF(4.56, 4.56, 4.56); Calibrated: 2006-03-16
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn419; Calibrated: 2006-03-08
- Phantom: SAM 4; Type: SAM; Serial: 1053
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161

d=15mm, Low, EDGE, Front / Area Scan (61x121x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.263 mW/g

d=15mm, Low,EDGE,Front/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 13.0 V/m; Power Drift = 0.012 dB

Peak SAR (extrapolated) = 0.368 W/kg

SAR(1 g) = 0.245 mW/g; SAR(10 g) = 0.156 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.266 mW/g

Date/Time: 2006-06-28 11:08:18

Test Laboratory: Sony Ericsson Mobile Communications AB

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d002

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

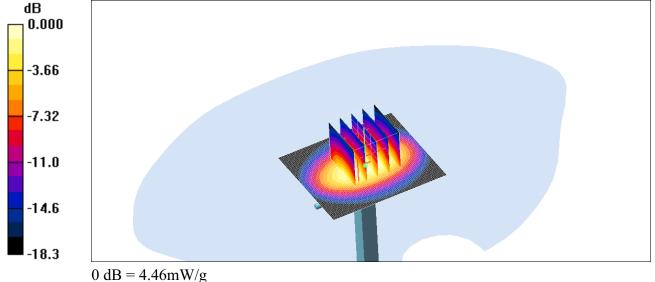
Medium parameters used: f = 1900 MHz; $\sigma = 1.43 \text{ mho/m}$; $\varepsilon_r = 40.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1585; ConvF(5.11, 5.11, 5.11); Calibrated: 2006-03-16
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn419; Calibrated: 2006-03-08
- Phantom: SAM 4; Type: SAM; Serial: 1053
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161

d=10mm, Pin=100mW/Area Scan (71x81x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 4.56 mW/g


d=10mm, Pin=100mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 58.7 V/m; Power Drift = -0.012 dB

Peak SAR (extrapolated) = 6.96 W/kg

SAR(1 g) = 3.98 mW/g; SAR(10 g) = 2.08 mW/g

Maximum value of SAR (measured) = 4.46 mW/g

DASY4 Validation Report for Body TSL

Date/Time: 15.03.2005 15:20:32

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d002

Communication System: CW-1900; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL 1900 MHz;

Medium parameters used: f = 1900 MHz; $\sigma = 1.57$ mho/m; $\varepsilon_r = 52.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ET3DV6 - SN1507; ConvF(4.43, 4.43, 4.43); Calibrated: 26.10.2004

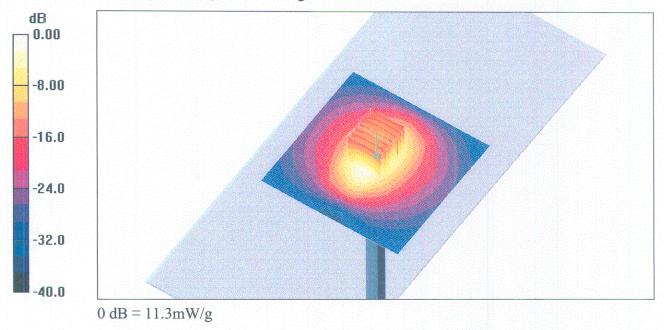
• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 07.01.2005

Phantom: Flat Phantom 5.0; Type: QD000P50AA; Serial: 1001;

Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 11.4 mW/g


Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 87.3 V/m; Power Drift = 0.061 dB

Peak SAR (extrapolated) = 16.8 W/kg

SAR(1 g) = 9.91 mW/g; SAR(10 g) = 5.23 mW/g

Maximum value of SAR (measured) = 11.3 mW/g

DASY4 Validation Report for Head TSL

Date/Time: 09.03.2005 15:20:45

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d002

Communication System: CW-1900; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL 1900 MHz;

Medium parameters used: f = 1900 MHz; $\sigma = 1.46$ mho/m; $\varepsilon_r = 39.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ET3DV6 - SN1507; ConvF(4.96, 4.96, 4.96); Calibrated: 26.10.2004

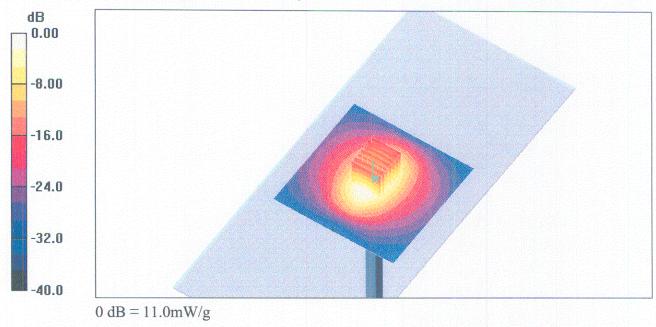
• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 07.01.2005

Phantom: Flat Phantom 5.0; Type: QD000P50AA; Serial: 1001;

Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 11.4 mW/g


Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 91.4 V/m; Power Drift = 0.037 dB

Peak SAR (extrapolated) = 16.9 W/kg

SAR(1 g) = 9.81 mW/g; SAR(10 g) = 5.15 mW/g

Maximum value of SAR (measured) = 11.0 mW/g

Certificate No: D1900V2-5d002_Mar05