

Prepared (also subject responsible if other) LD/SEMC/BGGI/NM Ramadan Plicanic Approved LD/SEMC/BGGI/NMC Mats Hansson Company Internal REPORT No. BGGIN05:180 Date Rev 2005-06-15 A

Reference

Report issued by Accredited SAR Laboratory

Checked

for

PY7AD021023 (K608i)

Date of test:	7 and 8 June 2005
Laboratory:	Sony Ericsson SAR Test Laboratory Sonyericsson Mobile Communications AB Nya Vattentornet SE-221 82 LUND, Sweden
Testing Engineer:	Ramadan Plicanic Ramadan.Plicanic@sonyericsson.com?uuodau?Uucauc +46 46 19 38 62
Testing Approval	Mats Hansson Mats.Hansson@sonyericsson.com +46 46 19 33 57

Statement of Compliance

Sony Ericsson Mobile Communications AB declares under its sole responsibility that the product

Sony Ericsson Type: AAD-3021023-BV; FCC ID: PY7AD021023; IC: 4170B-AD021023

to which this declaration relates, is in conformity with the appropriate RF exposure standards recommendations and guidelines. It also declares that the product was tested in accordance with the appropriate measurement standards, guidelines and recommended practices. Any deviations from these standards, guidelines and recommended practices are noted below: (None)

This laboratory is accredited to ISO/IEC 17025 (SWEDAC accreditation no. 1847).

Swedish legislation. The accredited laboratory activities meet the requirements in SS-EN ISO/IEC 17025 (2000). This report may not be reproduced other than in full, except with the prior written approval of the issuing laboratory. The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report.

Laboratories are accredited by the Swedish Board for Accreditation and Conformity Assessment (SWEDAC) under the terms of

Sony Ericsson encourages all feedback, both positive and negative, on this report. © Sony Ericsson Mobile Communication AB, 2005

Joing Chicsson		Company Interr REPORT	nal	
Prepared (also subject responsible if other)		No.		
LD/SEMC/BGGI/NM Ramadan Plicanic		BGGIN 05:180		
Approved	Checked	Date	Rev	Reference
LD/SEMC/BGGI/NMC Mats Hansson	050615	050615	А	File

1 Table of contents

2	2 INTRODUCTION	3
3	B DEVICE UNDER TEST	3
	 3.1 ANTENNA DESCRIPTION	3
4	I TEST EQUIPMENT	4
	4.1 DOSIMETRIC SYSTEM4.2 ADDITIONAL EQUIPMENT	4
5	5 ELECTRICAL PARAMETERS ON THE TISSUE SIMULATING LIQUID	5
6	5 SYSTEM ACCURACY VERIFICATION	5
7	7 SAR MEASUREMENT UNCERTAINTY	6
8		
9	P REFERENCES	8
1	lo APPENDIX	
	 10.1 PHOTOGRAPHS OF THE DEVICE UNDER TEST 10.2 PHOTOGRAPHS OF THE DUT ON SAM TWINS PHANTOM	9 11
	10.3 ATTACHMENT	13

6	Sony Ericsson
---	---------------

		Company Interr REPORT	al	
Prepared (also subject responsible if other)		No.		
LD/SEMC/BGGI/NM Ramadan Plicanic		BGGIN 05:180		
Approved	Checked	Date	Rev	Reference
LD/SEMC/BGGI/NMC Mats Hansson	050615	050615	А	File

2 Introduction

In this test report, compliance of the Sony Ericsson PY7AD021023 (K608i) portable telephone with RF safety guidelines is demonstrated. The applicable RF safety guidelines and the SAR measurement specifications used for the test are described in the SAR Measurement Specifications of Wireless Handsets [1].

3 Device Under Test

3.1 Antenna Description

Туре	Internal	
Location	On top on the back side	
Dimensions	Max length	40 mm
	Max width	18 mm
Configuration	PIFA	

3.2 Device description

Device model	PY7AD021023 (k	(608i)
Serial number	CB501456SA	
Mode	GSM1900	GSM1900 (GPRS 2 Slots)
Multiple Access Scheme	TDMA	TDMA
Maximum Output Power Setting	30.0 dBm	30.0 dBm
Factory Tolerance in Power Setting	±0.5 dB	±0.5 dB
Maximum Peak Output Power	30.5 dBm	30.5 dBm
Crest Factor	8	4
Transmitting Frequency Range(MHz)	1850.2 - 1909.8	
Prototype or Production Unit	Preproduction	
Device Category	Portable	
RF exposure environment	General population	on / uncontrolled

6	Sony Ericsson
---	---------------

Joing Chicsson		Company Interr REPORT	nal	
Prepared (also subject responsible if other)		No.		
LD/SEMC/BGGI/NM Ramadan Plicanic		BGGIN 05:180		
Approved	Checked	Date	Rev	Reference
LD/SEMC/BGGI/NMC Mats Hansson	050615	050615	А	File

4 Test equipment

4.1 Dosimetric system

SAR measurements were made using the DASY4 professional system (software version 4.4, B 3) with SAM twin phantom, manufactured by Schmid & Partner Engineering AG (SPEAG). The list of calibrated equipment is given below.

Description	Serial Number	Due Date
DASY4 DAE V1	640	October, 2005
E-field probe ETDV6	1815	January, 2006
Dipole Validation Kit, D1900V2	5d002	March, 2007

4.2 Additional equipment

Description	Inventory Number	Due Date
Signal generator ESG-D4000A	INV 462935	08, 2005
Directional coupler HP778D	INV 39656	01, 2006
Power meter R&S NRVD	INV 483920	01, 2006
Power sensor R&S NRV-Z5	INV 2333	11, 2005
Power sensor R&S NRV-Z5	INV 2334	01, 2006
Termination 65N50-0-11	INV 2903	02, 2006
Network analyzer HP8753C	INV421671	09, 2005
S-parameter test set HP85047A	INV 421670	09, 2005
Dielectric probe kit HP8507D	INV 2000053	Self cal

6	Sony Ericsson	
---	---------------	--

		Company Interi REPORT	nal	
Prepared (also subject responsible if other)		No.		
LD/SEMC/BGGI/NM Ramadan Plicanic		BGGIN 05:180		
Approved	Checked	Date	Rev	Reference
LD/SEMC/BGGI/NMC Mats Hansson	050615	050615	А	File

Electrical parameters on the tissue simulating liquid 5

Prior to conducting SAR measurements, the relative permittivity, O, and the conductivity, S, of the tissue simulating liquids were measured with the dielectric probe kit. These values are shown in the table below. The mass density, ?, entered into the DASY3 software is also given. Recommended limits for permittivity Θ , conductivity S and mass density ? are also shown.

....

f	Tissue	Limits / Measured	Dielectric Parameters				
(MHz)	type	Linits / Measured	e,	s (S/m)	? (g/cm ³)		
1900	Head	Measured, 07/06/2005	39.5	1.47	1.00		
1900	neau	Recommended	40.0	1.4	1.00		
1900	Body	Measured, 08/06/2005	50.8	1.48	1.00		
1900 Body		Recommended	53.3	1.52	1.00		

System accuracy verification 6

A system accuracy verification of the DASY4 was performed using the dipole validation kit listed in section 3.1. The system verification test was conducted on the same day as the measurement of the DUT. Measurement made in ambient temperature 21.7-22.3 °C and humanity 30.2-33.8%. The obtained results are displayed in the table below.

RF noise had been measured in liquid when all RF equipment in lab was set off. Measured value was 0.0015 mW/g in 1g mass.

f	Tissue	Tissue Measured / Reference SAR (W/kg) Dielectric Parameters					Liquid
(MHz)	type	Measured / Reference	1g/10g	er	s (S/m)	? (g/cm³)	t(°C)
1900	Head	Measured, 07/06/2005	39.6/20.5	39.5	1.47	1.00	21.5
1300	1900 Head	Reference	39.2 /20.6	39.6	1.45	1.00	-
1900	Body	Measured, 08/06/2005	37.9/20.3	50.8	1.48	1.00	22.0
1900 Body	Reference	39.6/20.9	51.6	1.58	1.00	-	

7

Song chesson		Company Interr REPORT	nal	
Prepared (also subject responsible if other)		No.		
LD/SEMC/BGGI/NM Ramadan Plicanic		BGGIN 05:180		
Approved	Checked	Date	Rev	Reference
LD/SEMC/BGGI/NMC Mats Hansson	050615	050615	А	File

SAR measurement uncertainty

Uncer. Prob 1900 1900 Div. **Uncertainty Component** Ci Head (%) Dist. Body Measurement System **Probe Calibration** ±4.4 Ν ±4.4 ±4.4 1 1 Axial Isotropy ±4.7 R v3 0.5 ±1.4 ±1.4 Spherical Isotropy ±9.6 R v3 0.5 ±2.8 ±2.8 Spatial resolution ±0.0 R v3 1 ±0.0 ±0.0 Boundary effect ±5.5 R v3 1 ±3.2 ±3.2 Probe linearity ±4.7 R v3 1 ±2.7 ±2.7 R v3 1 ±0.6 **Detection limit** ±1.0 ±0.6 1 1 Ν ±1.0 ±1.0 Readout electronics ±1.0 ±0.8 R v3 1 ±0.5 ±0.5 Response time ±1.4 R v3 1 ±0.8 ±0.8 Integration time ±3.0 R v3 1 ±1.7 ±1.7 **RF** Ambient Conditions Mech. Constraints of robot ±0.4 R v3 1 ±0.2 ±0.2 Probe positioning ±2.9 R v3 1 ±1.7 ±1.7 R Extrap, interpolation and integration ±3.9 v3 1 ±2.3 +2.3±7.7 ±7.7 Measurement System Uncertainty Test Sample Related 0.89 Ν ±6.7 ±6.7 Device positioning ±6.0 1 Ν 0.84 Device holder uncertainty ±5.0 1 ±5.9 ±5.9 Power drift ±1.8/±4.7 R v3 1 ±1.0 ±2.7 Test Sample Related Uncertainty ±9.0 ±9.3 Phantom and Tissue Parameters Phantom uncertainty ±4.0 R v3 1 ±2.3 ±2.3 ±5.0 R 0.6 ±1.7 ±1.7 Liquid conductivity (meas) v3 ±5.0/±2.6 R v3 0.6 ±1.7 ±0.9 Liquid conductivity (target) Liquid Permittivity (meas) ±5.0 R v3 0.6 ±1.7 ±1.7 ±1.25/±4.7 R v3 0.6 ±0.4 Liquid Permittivity (target) ±1.6 Phantom and Tissue Parameters ±3.8 ±3.8 Uncertainty Combined standard uncertainty ±12.4 ±12.7 Extended standard uncertainty (k=2) <u>+24.8</u> <u>+25.4</u>

SAR measurement uncertainty evaluation for Sonyericsson K608i phone

Prepared (also subject responsible if other)

LD/SEMC/BGGI/NM Ramadan Plicanic Approved

LD/SEMC/BGGI/NMC Mats Hansson

Company Internal REPORT No **BGGIN 05:180** Reference Date Rev 050615 А

File

8 Test results

Checked

050615

The measured 1-gram and averaged SAR values of the device against the head are provided in Tables 1 and body are provided in Tables 2. The ambient humidity and temperature of test facility were 33.8% - 30.2% and 21.7 °C - 22.3 °C respectively. The depth of the head tissue simulating liquid was 15.5cm and for body tissue simulating liquid 16.4cm. A base station simulator was used to control the device during the SAR measurement. The phone was supplied with fullcharged battery for each measurement.

For head measurement, the device was tested on the right-hand phantom (corresponding to the right side of the head) and the left-hand phantom in two phone position, cheek (touch) and tilt (cheek + 15deg).

For body measurement phone was tested on the antenna to the phantom and back to the phantom in GPRS 2 Slots mode on 15mm distance between phone and phantom. For speech mode phone was antenna to phantom in position with 15mm distance and with connected portable hands free accessory HPM-20. For all modes, the device was tested at the lowest, middle and highest frequencies in the transmit band. For Blue Tooth mode, phone was pared with Sony Ericsson HBH-200 Blue Tooth head sets and measured on worst case speech mode body position.

		Peak Output	Phone	Liguid	SAR (W/kg)	in 1g mass
Mode	Channel	Power(dBm)	Position	temp(°C)	Right-hand	Left-hand
	512	30.2	Cheek	21.0/21.0	0.64	0.7
GSM	512	30.2	Tilt	21.5/21.5	0.43	0.52
1900	661	30.3	Cheek	21.0/21.0	0.55	0.6
Head	001	30.3	Tilt	21.5/21.5	0.4	0.47
neau	810 30.4	Cheek	21.0/21.0	0.46	0.48	
	510	50.4	Tilt	21.5/21.5	0.32	0.37

Table1: SAR measurement result for Sony Ericsson PY7AD021023 (K608i) telephone at highest possible output power. Measured against the head.

Mode	Channel	Power (dBm)	Phone Position	Liquid t (°C)	SAR (W/kg) in 1 g mass
			Antenna to phantom, GPRS 2 Slots	21.0	0.68
	512	30.2	Front to phantom, GPRS 2 Slots	21.5	0.33
GSM	512	30.2	Antenna to phantom, Speech	21.0	0.36
1900			Antenna to phantom +BT, Speech	21.5	0.32
Body	661	30.3	Antenna to phantom, GPRS 2 Slots	21.0	0.56
Douy	001	30.3	Antenna to phantom, Speech	21.0	0.3
	810	30.4	Antenna to phantom, GPRS 2 Slots	21.0	0.46
	010	50.4	Antenna to phantom, Speech	21.0	0.21

Table2: SAR measurement result for Sony Ericsson PY7AD021023 (K608i) telephone at highest possible output power. Measured against the body.

Prepared (also subject responsible if other) LD/SEMC/BGGI/NM Ramadan Plicanic Checked Approved LD/SEMC/BGGI/NMC Mats Hansson 050615

Company Internal REPORT No. **BGGIN 05:180** Date Rev Reference 050615 А File

9

References

[1] R.Plicanic, "SAR Measurement Specification of Wireless Handsets", Sony Ericsson SAR Test Laboratory internal document GUG/N 03:141

[2] Basic standard for the Measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300MHz-3GHz), European Standard EN 50361, July 2001

[3] FCC, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields: Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radio Frequency Emissions," Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01).

[4] IEEE, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques," Std 1528-2003, June, 2003.

Song chesson		Company Interr REPORT	nal	
Prepared (also subject responsible if other)		No.		
LD/SEMC/BGGI/NM Ramadan Plicanic		BGGIN 05:180		
Approved	Checked	Date	Rev	Reference
LD/SEMC/BGGI/NMC Mats Hansson	050615	050615	А	File

10 Appendix

10.1 Photographs of Device Under Test

Phone Front

Phone back and battery

Phone System Contact

6	Sony Ericsson
---	---------------

Song chesson		Company Intern REPORT	al	
Prepared (also subject responsible if other)		No.		
LD/SEMC/BGGI/NM Ramadan Plicanic		BGGIN 05:180		
Approved	Checked	Date	Rev	Reference
LD/SEMC/BGGI/NMC Mats Hansson	050615	050615	А	File



Accessories used for measurement



Song Encsson		Company Interr REPORT	nal	
Prepared (also subject responsible if other)		No.		
LD/SEMC/BGGI/NM Ramadan Plicanic		BGGIN 05:180		
Approved	Checked	Date	Rev	Reference
LD/SEMC/BGGI/NMC Mats Hansson	050615	050615	А	File

10.2 Photographs of DUT on SAM Twins Phantom

Cheek Phone Position

Tilt Phone Position

🍯 s	ony Ericsson
-----	--------------

LD/SEMC/BGGI/NM Ramadan Plicanic

LD/SEMC/BGGI/NMC Mats Hansson

Prepared (also subject responsible if other)

Approved

Company Internal REPORT		
No.		
BGGIN 05:18	0	
Date	Rev	Reference
050615	А	File

Checked

050615

Speech Body Position

GPRS Body Position

Song chesson	Company Internal REPORT			
Prepared (also subject responsible if other)		No.		
LD/SEMC/BGGI/NM Ramadan Plicanic		BGGIN 05:180		
Approved	Checked	Date	Rev	Reference
LD/SEMC/BGGI/NMC Mats Hansson	050615	050615	А	File

10.3 Attachment

- Verification measurement (SAR lab, Reference)
- SAR Measurements Plots
- Probe Calibration Report

Date/Time: 06/08/05 08:02:48

Test Laboratory: Sony Ericsson Mobile Communications File Name: <u>Verification1900MHz_Body_050608.da4</u>

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d002

Program Name: Verification 1900MHz Body

Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.48$ mho/m; $\varepsilon_r = 50.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

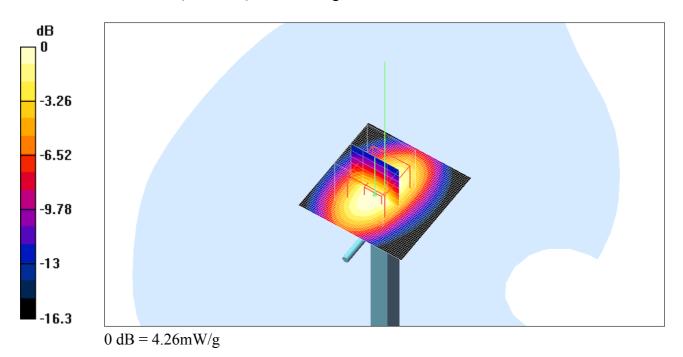
DASY4 Configuration:

- Probe: ET3DV6 - SN1815; ConvF(4.69, 4.69, 4.69); Calibrated: 2005-01-20

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)Sensor-Surface: 0mm (Fix Surface)

- Electronics: DAE4 Sn640; Calibrated: 2004-10-12

- Phantom: SAM 5; Type: SAM; Serial: 1352


- Measurement SW: DASY4, V4.4 Build 3; Postprocessing SW: SEMCAD, V1.8 Build 130

Pin = 100mW, distance = 10mm

Flat,15mm/Area Scan (61x61x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 4.44 mW/g

Flat,15mm/Z Scan (1x1x6): Measurement grid: dx=20mm, dy=20mm, dz=20mm Maximum value of SAR (measured) = 2.95 mW/g

Flat,15mm/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7mm, dy=7mm, dz=5mm Reference Value = 57.4 V/m; Power Drift = 0.007 dB Peak SAR (extrapolated) = 6.2 W/kg SAR(1 g) = 3.79 mW/g; SAR(10 g) = 2.03 mW/g Maximum value of SAR (measured) = 4.26 mW/g

Date/Time: 06/07/05 10:58:04

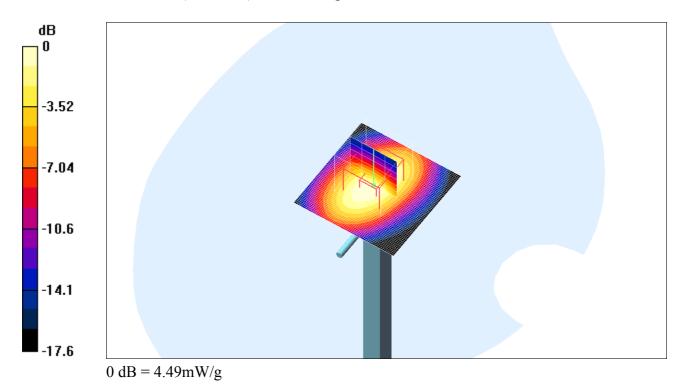
Test Laboratory: Sony Ericsson Mobile Communications File Name: <u>Verification1900MHz_Head_050607.da4</u>

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d002

Program Name: Mirai GSM1800

Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.47$ mho/m; $\epsilon_r = 39.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY4 Configuration:


- Probe: ET3DV6 SN1815; ConvF(5.31, 5.31, 5.31); Calibrated: 2005-01-20
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn640; Calibrated: 2004-10-12
- Phantom: SAM 5; Type: SAM; Serial: 1352
- Measurement SW: DASY4, V4.4 Build 3; Postprocessing SW: SEMCAD, V1.8 Build 130

Power = 100mW, Distance =10mm

Flat,15mm, GPRS 2 Slots/Area Scan (61x61x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 4.51 mW/g

Flat,15mm, GPRS 2 Slots/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7mm,

dy=7mm, dz=5mm Reference Value = 56.5 V/m; Power Drift = -0.0 dB Peak SAR (extrapolated) = 6.99 W/kg SAR(1 g) = 3.96 mW/g; SAR(10 g) = 2.05 mW/gMaximum value of SAR (measured) = 4.49 mW/g

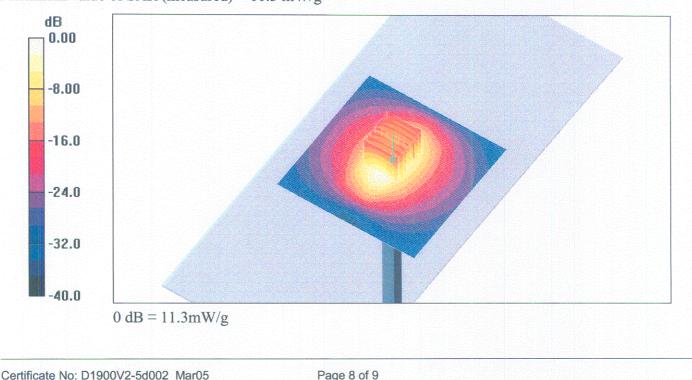
DASY4 Validation Report for Body TSL

Date/Time: 15.03.2005 15:20:32

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d002

Communication System: CW-1900; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: MSL 1900 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.57$ mho/m; $\epsilon_r = 52.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Probe: ET3DV6 SN1507; ConvF(4.43, 4.43, 4.43); Calibrated: 26.10.2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.01.2005
- Phantom: Flat Phantom 5.0; Type: QD000P50AA; Serial: 1001;
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 11.4 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 87.3 V/m; Power Drift = 0.061 dBPeak SAR (extrapolated) = 16.8 W/kgSAR(1 g) = 9.91 mW/g; SAR(10 g) = 5.23 mW/gMaximum value of SAR (measured) = 11.3 mW/g

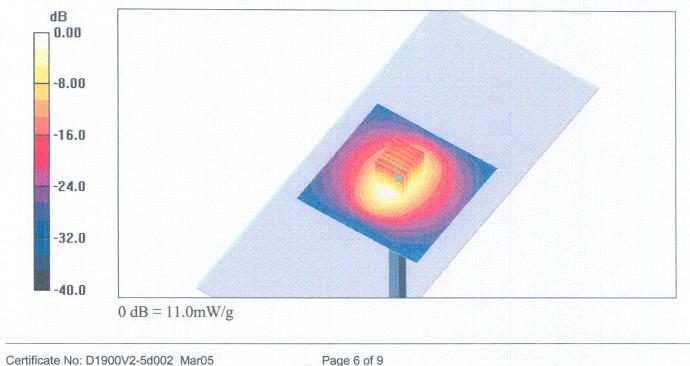
DASY4 Validation Report for Head TSL

Date/Time: 09.03.2005 15:20:45

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d002

Communication System: CW-1900; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: HSL 1900 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.46$ mho/m; $\epsilon_r = 39.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Probe: ET3DV6 SN1507; ConvF(4.96, 4.96, 4.96); Calibrated: 26.10.2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.01.2005
- Phantom: Flat Phantom 5.0; Type: QD000P50AA; Serial: 1001;
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 11.4 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

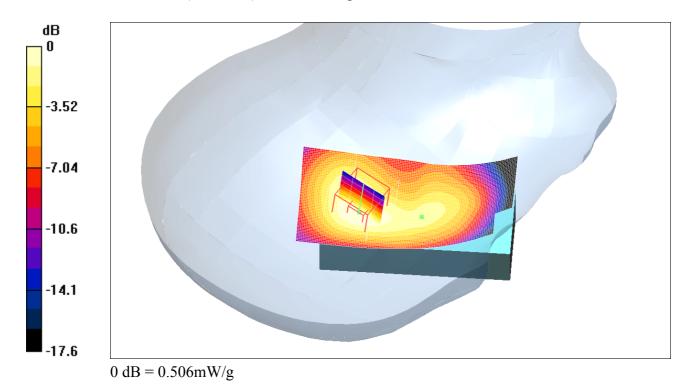
Reference Value = 91.4 V/m; Power Drift = 0.037 dBPeak SAR (extrapolated) = 16.9 W/kgSAR(1 g) = 9.81 mW/g; SAR(10 g) = 5.15 mW/gMaximum value of SAR (measured) = 11.0 mW/g

Date/Time: 06/07/05 13:29:40

Test Laboratory: Sony Ericsson Mobile Communications File Name: <u>ch810_Right_Cheek_050607_RP.da4</u>

DUT: PY7AD021023; Type: GSM and UMTS; Serial: CB501456SA Program Name: Mirai GSM1900

Communication System: GSM 1900; Frequency: 1909.8 MHz;Duty Cycle: 1:8.3 Medium parameters used (extrapolated): f = 1909.8 MHz; $\sigma = 1.48$ mho/m; $\varepsilon_r = 39.5$; $\rho = 1000$


kg/m³ Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 SN1815; ConvF(5.31, 5.31, 5.31); Calibrated: 2005-01-20
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn640; Calibrated: 2004-10-12
- Phantom: SAM 5; Type: SAM; Serial: 1352
- Measurement SW: DASY4, V4.4 Build 3; Postprocessing SW: SEMCAD, V1.8 Build 130

Right, Cheek/Area Scan (61x121x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.522 mW/g

Right, Cheek/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7mm, dy=7mm, dz=5mm Reference Value = 16.9 V/m; Power Drift = -0.0 dB Peak SAR (extrapolated) = 0.678 W/kg **SAR(1 g) = 0.462 mW/g; SAR(10 g) = 0.275 mW/g** Maximum value of SAR (measured) = 0.506 mW/g

Date/Time: 06/07/05 16:31:56

Test Laboratory: Sony Ericsson Mobile Communications File Name: <u>ch810_Left_Tilt_050607_RP.da4</u>

DUT: PY7AD021023; Type: GSM and UMTS; Serial: CB501456SA Program Name: Mirai GSM1900

Communication System: GSM 1900; Frequency: 1909.8 MHz;Duty Cycle: 1:8.3 Medium parameters used (extrapolated): f = 1909.8 MHz; $\sigma = 1.48$ mho/m; $\varepsilon_r = 39.5$; $\rho = 1000$

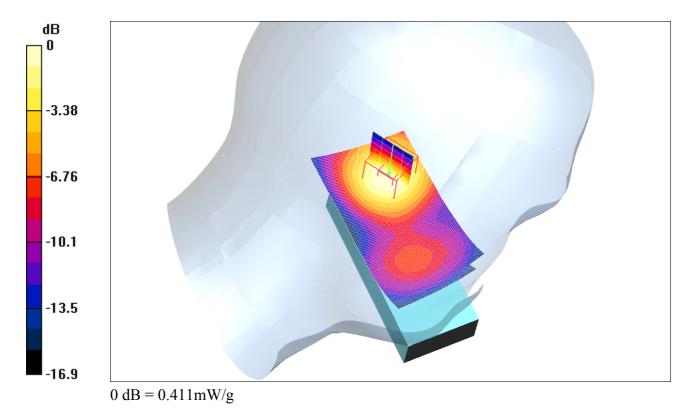
kg/m³ Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1815; ConvF(5.31, 5.31, 5.31); Calibrated: 2005-01-20

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

- Electronics: DAE4 Sn640; Calibrated: 2004-10-12


- Phantom: SAM 5; Type: SAM; Serial: 1352

- Measurement SW: DASY4, V4.4 Build 3; Postprocessing SW: SEMCAD, V1.8 Build 130

Left, Tilt/Area Scan (61x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.421 mW/g

Left, Tilt/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7mm, dy=7mm, dz=5mm Reference Value = 15.6 V/m; Power Drift = -0.0 dB Peak SAR (extrapolated) = 0.608 W/kg SAR(1 g) = 0.372 mW/g; SAR(10 g) = 0.209 mW/g Maximum value of SAR (measured) = 0.411 mW/g

Date/Time: 06/07/05 16:06:21

Test Laboratory: Sony Ericsson Mobile Communications File Name: <u>ch810_Left_Cheek_050607_RP.da4</u>

DUT: PY7AD021023; Type: GSM and UMTS; Serial: CB501456SA Program Name: Mirai GSM1900

Communication System: GSM 1900; Frequency: 1909.8 MHz;Duty Cycle: 1:8.3 Medium parameters used (extrapolated): f = 1909.8 MHz; $\sigma = 1.48$ mho/m; $\varepsilon_r = 39.5$; $\rho = 1000$

kg/m³ Phantom section: Left Section

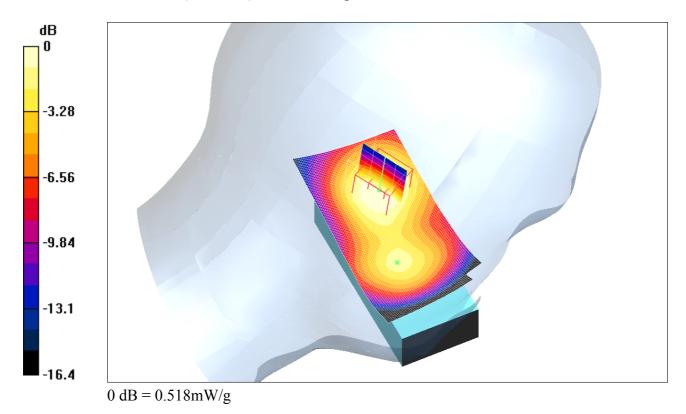
DASY4 Configuration:

- Probe: ET3DV6 - SN1815; ConvF(5.31, 5.31, 5.31); Calibrated: 2005-01-20

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

- Electronics: DAE4 Sn640; Calibrated: 2004-10-12

- Phantom: SAM 5; Type: SAM; Serial: 1352


- Measurement SW: DASY4, V4.4 Build 3; Postprocessing SW: SEMCAD, V1.8 Build 130

Left, Cheek/Area Scan (61x121x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 0.533 mW/g

Left, Cheek/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7mm, dy=7mm, dz=5mm Reference Value = 16.5 V/m; Power Drift = -0.0 dB Peak SAR (extrapolated) = 0.759 W/kg SAR(1 g) = 0.477 mW/g; SAR(10 g) = 0.281 mW/g

Maximum value of SAR (measured) = 0.518 mW/g

