

CETECOM ICT Services

consulting - testing - certification >>>

TEST REPORT

Test report no.: 1-4254/12-04-05

Testing laboratory

CETECOM ICT Services GmbH

Untertuerkheimer Strasse 6 - 10 66117 Saarbruecken / Germany

Phone:

+ 49 681 5 98 - 0

Fax:

+ 49 681 5 98 - 9075

Internet: http://www.cetecom.com e-mail:

ict@cetecom.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-01 Area of Testing: Radio/Satellite Communications

Applicant

Sony Ericsson Mobile Communications AB

Nya Vattentornet

22188 Lund / SWEDEN

Phone:

+46 46 19 30 00

Fax:

+46 46 19 32 95

Contact:

Håkan Sjöberg

e-mail: Phone: hakan.sjoberg@sonyericsson.com +46 46 19 35 59

Manufacturer

Sony Ericsson Mobile Communications AB

Nya Vattentornet

22188 Lund / SWEDEN

Test standard/s

47 CFR Part 27

Title 47 of the Code of Federal Regulations; Chapter I

Part 27 - Miscellaneous Wireless Communications Service

RSS - 139 Issue 2

Advanced Wireless Services Equipment Operating in the Bands 1710-1755 MHz

and 2110-2155 MHz

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item:

GSM Mobile Phone 850/900/1800/1900; GPRS/EGPRS; UMTS FDDI/FDDII/FDDV; HSPA;

LTE Band 4/17; BT EDR; WLAN b/g/n; ANT+; GPS; HDMI; RFID

Model name:

AAL-8880001-BV

FCC ID:

PY7A8880001

IC:

4170B-A8880001

Frequency [MHz]:

LTE: 706.50 MHz - 713.50 MHz

Technology tested:

LTE

Antenna:

Integrated antenna

Power Supply:

3.70 V DC by Li-Ion Battery and Power Supply

Temperature Range:

-30°C to +60 °C

Test report authorised:

2012-01-26

Stefan Bös

Senior Testing Manager

Test performed

2012-01-26

Jakob Reschke **Testing Manager**

Table of contents

1	Tab	le of	contents	2
2	Ger	neral	information	3
	2.1	N	otes and disclaimer	3
	2.2		pplication details	
_	T		•	
3	ıes	st sta	ndard/s	3
4	Tes	t env	rironment	4
5	Tes	t iter	n	4
6	Tes	t lab	oratories sub-contracted	4
7	Add	ditior	nal comments	4
8	Sun	nmaı	ry of measurement results	5
	8.1	, .	тЕ – Band 17	5
	8.2		eceiver	
_				
9	RF	mea	surements	6
	9.1	D	escription of test setup	6
		9.1.	Radiated measurements	6
		9.1.		
	9.2		SP100 test report cover sheet / performance test data	
	9.3		TE technologies supported by EUT	
	9.4		esults LTE – Band 17	
		9.4.		
		9.4.	- 1 7	
		9.4.		
		9.4.		
		9.4.	0 1	
		9.4.		
	9.5		esults receiver mode	
		9.5.	- P	
10		Tes	t equipment and ancillaries used for tests	50
11		Obs	ervations	51
Anr	nex A	4	Document history	52
Anr	nex E	3	Further information	52
Δnr	nov (~	Accreditation Certificate	53

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM ICT Services GmbH.

The testing service provided by CETECOM ICT Services GmbH has been rendered under the current "General Terms and Conditions for CETECOM ICT Services GmbH".

CETECOM ICT Services GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM ICT Services GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM ICT Services GmbH test report include or imply any product or service warranties from CETECOM ICT Services GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM ICT Services GmbH.

All rights and remedies regarding vendor's products and services for which CETECOM ICT Services GmbH has prepared this test report shall be provided by the party offering such products or services and not by CETECOM ICT Services GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronical signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order: 2012-01-10
Date of receipt of test item: 2012-01-02
Start of test: 2012-01-02
End of test: 2012-01-19

Person(s) present during the test: -/-

3 Test standard/s

Test standard	Date	Test standard description
47 CFR Part 27	2010-10	Title 47 of the Code of Federal Regulations; Chapter I Part 27 - Miscellaneous Wireless Communications Service
RSS - 139 Issue 2	2009-02	Advanced Wireless Services Equipment Operating in the Bands 1710-1755 MHz and 2110-2155 MHz

2012-01-26 Page 3 of 53

4 Test environment

T_{nom} +22 °C during room temperature tests

Temperature: +60 °C during high temperature tests

T_{min} -30 °C during low temperature tests

Relative humidity content: 49 %

Barometric pressure: not relevant for this kind of testing

V_{nom} 3.70 V DC by Li-Ion Battery and Power Supply

Power supply: V_{max} 4.40 V

V_{min} 3.30 V

5 Test item

Kind of test item :		GSM Mobile Phone 850/900/1800/1900; GPRS/EGPRS; UMTS FDDI/FDDI/FDDV; HSPA; LTE Band 4/17; BT EDR; WLAN b/g/n; ANT+; GPS; HDMI; RFID
Type identification	:	AAL-8880001-BV
0/N	_	Rad. CB5A1JE2R3
S/N serial number	:	Cond. CB5A1JE2S3
HW hardware status	:	AP2
CIM a officer a status	_	6.0.C.0.257, 6.0.C.0.243
SW software status	:	s_atp_aoba_0_0_22
Frequency band [MHz]	:	LTE: 706.50 MHz – 713.50 MHz
Type of modulation	:	QPSK; 16-QAM
Antenna	:	Integrated antenna
Power supply	:	3.70 V DC by Li-lon Battery and Power Supply
Temperature range	:	-30°C to +60 °C

6 Test laboratories sub-contracted

None

7 Additional comments

Conducted tests performed by Jakob Reschke Radiated tests performed by Andreas Luckenbill

2012-01-26 Page 4 of 53

8 Summa	Summary of measurement results									
\boxtimes										
	There were deviations from the technical specifications ascertained									
TC identifier	Description	verdict	date	Remark						
RF-Testing	CFR Part 27 RSS 139	passed	2012-01-26	-/-						

8.1 LTE - Band 17

Test Case	temperature conditions	power source voltages	Pass	Fail	NA	NP	Remark
RF Output Power	Nominal	Nominal					Not rated
Frequency Stability	Nominal	Nominal					Not rated
Spurious Emissions Radiated	Nominal	Nominal					Not rated
Spurious Emissions Conducted	Nominal	Nominal					Not rated
Block Edge Compliance	Nominal	Nominal					Not rated
Occupied Bandwidth	Nominal	Nominal					Not rated

Note:

 $\overline{NA} = Not \text{ applicable}; NP = Not \text{ performed}$

8.2 Receiver

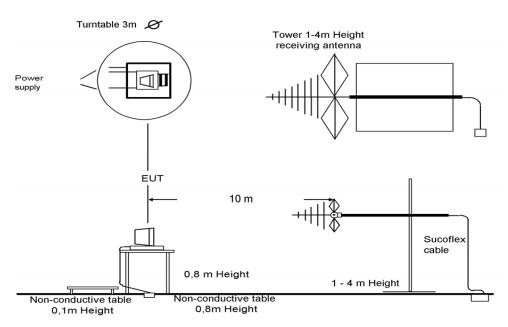
Test Case	temperature conditions	power source voltages	Pass	Fail	NA	NP	Remark
Spurious Emissions Radiated	Nominal	Nominal	\boxtimes				

Note:

 \overline{NA} = Not applicable; NP = Not performed

2012-01-26 Page 5 of 53

9 RF measurements


9.1 Description of test setup

For the spurious measurements we use the substitution method according TIA/EIA 603.

9.1.1 Radiated measurements

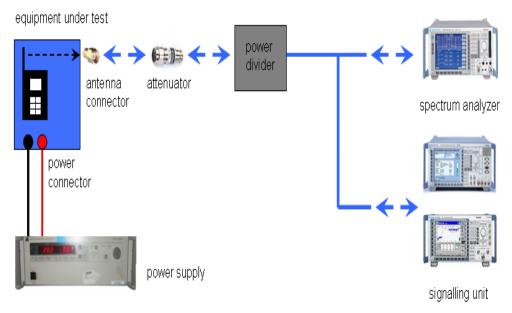
The radiated emissions from the EUT are performed in a semi anechoic chamber. The EUT is placed on a conductive turntable and powered with nominal voltage. The signalling is performed either from outside the chamber with a signalling unit (AP or other) by air link using a signalling antenna or directly by special test software from the customer.

Semi anechoic chamber

Picture 1: Diagram radiated measurements

9 kHz - 30 MHz: active loop antenna

30 MHz – 1 GHz: tri-log antenna


> 1 GHz: horn antenna

2012-01-26 Page 6 of 53

9.1.2 Conducted measurements

The EUT's RF signal is coupled out by the antenna connector which is supplied by the manufacturer. The signal is first 10dB attenuated before it is power divided (~6dB loss per branch). One of the signal paths is connected to the signalling unit (AP or other), the other one is connected to the spectrum analyzer. The specific losses for both signal paths are first checked within a calibration. The measurement readings on the signalling unit/spectrum analyzer are corrected by the specific test set-up loss. The attenuator, power divider, signalling unit and the spectrum analyzer are impedance matched on 50 Ohm. If special software is used, there is no power divider necessary.

Picture 2: Diagram conducted measurements

The term measuring receiver refers to either a selective voltmeter or a spectrum analyser.

Frequency being measured f	Measuring receiver bandwidth 6 dB	Spectrum analyser bandwidth 3dB					
f < 150 kHz	200 Hz or	300 Hz					
150 kHz ≤ f < 25 MHz	9 kHz or	10 kHz					
25 MHz ≤ f < 1000 MHz	120 kHz or	100 kHz					
1000 MHz ≤ f		1 MHz					
NOTE: Specific requirements in CEPT/ERC/Recommendation 70-03 [2] shall be applied where applicable.							

2012-01-26 Page 7 of 53

9.2 RSP100 test report cover sheet / performance test data

Test Report Number	:	1-4254/12-04-05						
Equipment Model Number		AAL-8880001-BV						
Certification Number	:	4170B-A8880001						
Manufacturer (complete Address)	ŧ	Sony Ericsson Mobile Communications AB Nya Vattentornet 22188 Lund / SWEDEN						
Tested to radio standards specification no.	:	RSS - 139 Issue	2					
Open Area Test Site IC No.	:	IC 3462C-1						
Frequency Range :		LTE: 706.50 MH	z – 713.50 MH:	Z				
GPS receiver turned	:	On						
		Band	Channel bandwidth	Conducted [dBm]	ERP / EIRP [dBm]	Mode		
	: LTE – Band 17	-	24.0		QPSK			
RF-power [dBm] (max.)		LTE - Band 17	5	23.0		16-QAM		
			10	22.9		QPSK		
				23.1		16-QAM		
			5	4489		QPSK		
0		LTE - Band 17		4489		16-QAM		
Occupied bandwidth (99%-BW) [kHz]		LIE - Band II	10	89	QPSK			
			10	8928		16-QAM		
Type of modulation	:	QPSK; 16-QAM						
		W.	_	4M49G7D		QPSK		
		LTE Bond 47	5	4M49W7D		16-QAM		
Emission Designator (TRC-43)		LTE – Band 17	40	8M96G7D		QPSK		
			10 8M93W7D		3W7D	16-QAM		
Antenna Information		integrated anter	nna					
Transmitter Spurious (worst case) [dBm]	:	: -45 dBm (noise floor)						
Receiver Spurious (worst case) [µV/m @ 10m]	1:	25.4 µV/m @ 26	5.51 MHz					

ATTESTATION: DECLARATION OF COMPLIANCE:

I attest that the testing was performed or supervised by me; that the test measurements were made in accordance with the above-mentioned Industry Canada standard(s); and that the equipment identified in this application has been subjected to all the applicable test conditions specified in the Industry Canada standards and all of the requirements of the standard have been met.

Laboratory Manager:

2012-01-26 Jakob Reschke

Date Name Signature

9.3 LTE technologies supported by EUT

Channel bandwidth

	Band 17
[MHz]	
1.4	
3	
5	
10	
15	
20	

<u>Antenna</u>

SISO	
SIMO	
MISO	
MIMO	

2012-01-26 Page 9 of 53

9.4 Results LTE - Band 17

The EUT was set to transmit the maximum power.

9.4.1 RF output power

Description:

This paragraph contains average power, peak output power and EIRP measurements for the mobile station. In all cases, the peak output power is within the required mask (this mask is specified in the JTC standards, TIA PN3389 Vol. 1 Chap 7, and is no FCC requirement).

Measurement:

The mobile was set up for the maximum output power with pseudo random data modulation.

To determine the Peak-To-Average Power Ratio (PAPR) the measurement was performed with the Power Complementary Cumulative Distribution Function (CCDF).

Measurement parameters						
Detector:	Peak and RMS (Power in Burst)					
Sweep time:	Auto					
Video bandwidth:	Depends on Channel Bandwidth					
Resolution bandwidth:	Depends on Channel Bandwidth					
Span:	Zero Span					
Trace-Mode:	Max Hold					

Limits:

FCC	IC						
CFR Part 27.53 CFR Part 2.1046	RSS 139, Issue 2, Section 6.4						
Nominal Peak	Nominal Peak Output Power						
+33.00 dBm In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.							

2012-01-26 Page 10 of 53

Results:

Output Power (conducted)							
Bandwidth (MHz)	Frequency (MHz)	Ressource block allocation	Average Output Power (dBm) QPSK	Peak to Average Ratio (dB)	Average Output Power (dBm) 16-QAM	Peak to Average Ratio (dB)	
		1 RB low	23.9	4.6	22.9	5.7	
	706.5	1 RB high	24.0	4.0	22.9	5.1	
	700.5	50% RB mid	22.8	5.3	21.8	6.6	
		100% RB	22.9	5.6	22.4	6.3	
		1 RB low	24.0	4.1	23.0	5.1	
5	710.0	1 RB high	24.0	4.4	22.9	5.5	
3	710.0	50% RB mid	22.9	5.1	21.8	6.4	
		100% RB	22.9	5.8	22.4	6.5	
		1 RB low	22.4	5.1	22.6	5.6	
	713.5	1 RB high	22.8	5.0	22.5	5.7	
	713.5	50% RB mid	22.8	5.9	21.6	7.0	
		100% RB	22.7	6.0	22.2	7.1	
		1 RB low	22.8	4.7	22.6	6.0	
	709.0	1 RB high	22.9	4.6	22.5	5.9	
	709.0	50% RB mid	22.8	5.3	22.1	6.2	
		100% RB	22.8	6.0	22.1	6.8	
		1 RB low	22.4	3.6	22.5	5.8	
10	710.0	1 RB high	22.6	4.7	22.6	5.9	
10	710.0	50% RB mid	22.8	5.4	22.1	6.3	
		100% RB	22.7	6.1	22.0	6.8	
		1 RB low	23.0	2.3	23.1	5.0	
	711.0	1 RB high	22.5	5.2	23.0	5.4	
	711.0	50% RB mid	22.8	5.5	21.9	6.4	
		100% RB	22.8	6.0	21.9	6.9	
Measuremen	t uncertainty			± 0.	5 dB		

2012-01-26 Page 11 of 53

The output power was measured with the lowest supported channel bandwidth and with the number of resource blocks where the highest output power conducted was found.

All other bandwidths were calculated with the corresponding antenna gain (with full resource blocks).

Output Power (radiated)						
Bandwidth	Frequency (MHz)	Average Output Power (dBm)	Average Output Power (dBm)			
(MHz)		QPSK	16-QAM			
	706.5	21.82	20.72			
5	710.0	21.60	20.60			
	713.5	20.62	20.52			
	709.0	20.72*	20.42*			
10	710.0	20.40*	20.20*			
	711.0	20.92*	21.02*			
Measurement uncertainty		± 3.0	0 dB			

^{*)} calculated with antenna gain

Result: The result of the measurement is passed.

2012-01-26 Page 12 of 53

9.4.2 Frequency stability

Description:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the mobile station in a "call mode". This is accomplished with the use of a R&S CMU200 DIGITAL RADIOCOMMUNICATION TESTER.

- 1. Measure the carrier frequency at room temperature.
- 2. Subject the mobile station to overnight soak at -30 C.
- 3. With the mobile station, powered with V_{nom} , connected to the CMU200 and in a simulated call on channel 1412 (centre channel), measure the carrier frequency. These measurements should be made within two minutes of powering up the mobile station, to prevent significant self warming.
- 4. Repeat the above measurements at 10°C increments from -30°C to +60°C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements.
- 5. Remeasure carrier frequency at room temperature with V_{nom} . Vary supply voltage from V_{min} to V_{max} , in 0.1 Volt steps remeasuring carrier frequency at each voltage. Pause at V_{nom} for 1.5 hours unpowered, to allow any self heating to stabilize, before continuing.
- 6. At all temperature levels hold the temperature to +/- 0.5°C during the measurement procedure.

This measurement was performed with the highest channel bandwidth supported from the EUT on the middle channel

Measurement:

Measurement parameters					
Detector:					
Sweep time:					
Video bandwidth:	Measured with CMU200				
Resolution bandwidth:	Measured with CMO200				
Span:					
Trace-Mode:					

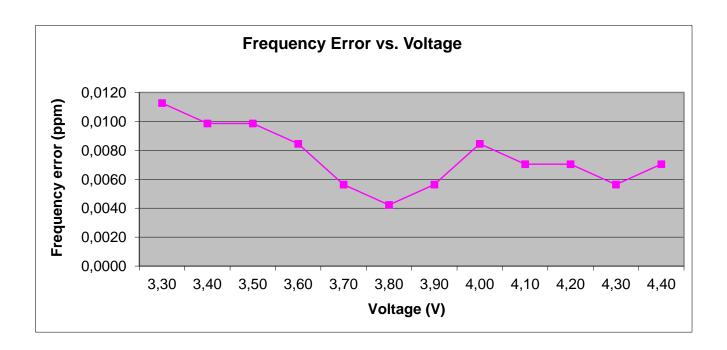
Limits:

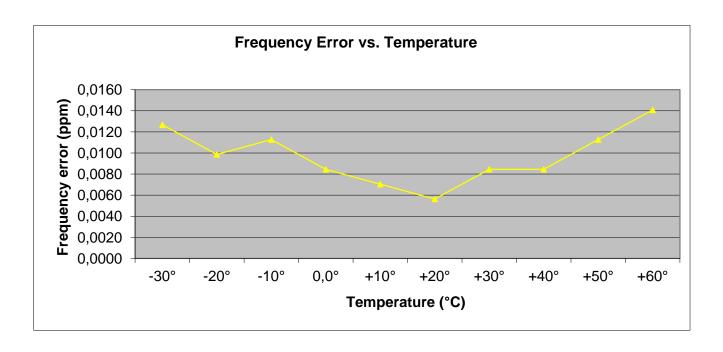
FCC	IC				
CFR Part 27.54 CFR Part 2.1055	RSS 139, Issue 2, Section 6.3				
Frequency Stability					
< 2.5 ppm					

2012-01-26 Page 13 of 53

Results:

FREQ ERROR versus VOLTAGE


Voltage (V)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)
3.3	8	0.00000113	0.0113
3.4	7	0.0000099	0.0099
3.5	7	0.0000099	0.0099
3.6	6	0.00000085	0.0085
3.7	4	0.00000056	0.0056
3.8	3	0.00000042	0.0042
3.9	4	0.0000056	0.0056
4.0	6	0.0000085	0.0085
4.1	5	0.0000070	0.0070
4.2	5	0.0000070	0.0070
4.3	4	0.00000056	0.0056
4.4	5	0.0000070	0.0070


FREQ ERROR versus TEMPERATURE

Temperature (°C)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)
-30	9	0.00000127	0.0127
-20	7	0.0000099	0.0099
-10	8	0.00000113	0.0113
± 0	6	0.00000085	0.0085
10	5	0.0000070	0.0070
20	4	0.00000056	0.0056
30	6	0.00000085	0.0085
40	6	0.00000085	0.0085
50	8	0.00000113	0.0113
60	10	0.00000141	0.0141

2012-01-26 Page 14 of 53

Result: The result of the measurement is passed.

2012-01-26 Page 15 of 53

9.4.3 Spurious emissions radiated

Description:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2009 requirements and is recognized by the FCC to be in compliance for a 3 and a 10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 746 MHz. This was rounded up to 12 GHz. The resolution bandwidth is set as outlined in Part 27.53. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the LTE band 4.

The final open field emission (here 10m semi-anechoic chamber listed by FCC) test procedure is as follows:

- a) The test item was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna.
- b) The antenna output was terminated in a 50 ohm load (if possible).
- c) A double ridged wave guide antenna was placed on an adjustable height antenna mast 3 meters from the test item for emission measurements.
- d) Detected emissions were maximized at each frequency by rotating the test item and adjusting the receive antenna height and polarization. The maximum meter reading was recorded. The radiated emission measurements of the harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and 1 MHz bandwidth. If the harmonic could not be detected above the noise floor, the ambient level was recorded. The equivalent power into a dipole antenna was calculated from the field intensity levels measured at 3 meters.
- e) Now each detected emissions were substituted by the substitution method, in accordance with the TIA/EIA 603.

Measurement:

Measurement parameters				
Detector:	Peak			
Sweep time:	2 sec.			
Video bandwidth:	Below 1 GHz: 100 kHz Above 1 GHz: 1 MHz			
Resolution bandwidth:	Below 1 GHz: 100 kHz Above 1 GHz: 1 MHz			
Span:	100 MHz Steps			
Trace-Mode:	Max Hold			

Limits:

FCC	IC				
CFR Part 27.53(g) CFR Part 2.1053	RSS 139, Issue 2, Section 6.5				
Spurious Emissions Radiated					
Attenuation ≥ 43 + 10log(P) (P, Power in Watts)					
-13 dBm					

2012-01-26 Page 16 of 53

Results:

Radiated emissions measurements were made only at the upper, center, and lower carrier frequencies of the LTE band 17 (706.5 MHz, 710.0 MHz and 713.5 MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the LTE band 17 into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

The final open field radiated levels are presented on the next pages.

All measurements were done in horizontal and vertical polarization; the plots show the worst case.

The plots show only the middle channel at the channel bandwidth and resource blocks with the highest output power. If spurious were detected, the lowest and highest channel and all supported channel bandwidths were checked, too.

As can be seen from this data, the emissions from the test item were within the specification limit.

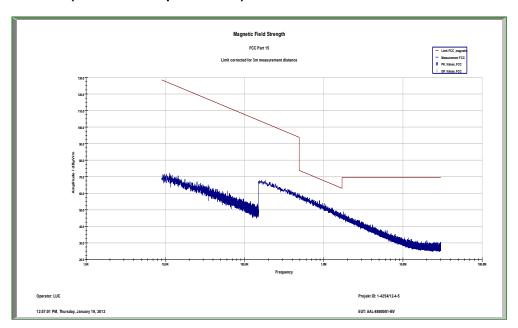
2012-01-26 Page 17 of 53

QPSK

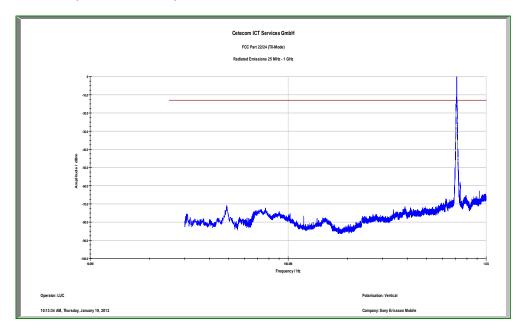
	SPURIOUS EMISSION LEVEL [dBm]							
Harmonic	Lowest channel Freq. (MHz)	Level [dBm]	Harmonic	Middle channel Freq. (MHz)	Level [dBm]	Harmonic	Highest channel Freq. (MHz)	Level [dBm]
2	1413.0	-	2	1420.0	-	2	1427.0	-
3	2119.5	-	3	2130.0	-	3	2140.5	-
4	2826.0	-	4	2840.0	-	4	2854.0	-
5	3532.5	ı	5	3550.0	-	5	3567.5	-
6	4239.0	ı	6	4260.0	-	6	4281.0	-
7	4945.5	ı	7	4970.0	-	7	4994.5	-
8	5652.0	ı	8	5680.0	-	8	5708.0	-
9	6358.5	-	9	6390.0	-	9	6421.5	-
10	7065.0	-	10	7100.0	-	10	7135.0	-
	Measurement uncertainty					± 3dB		

16-QAM

	SPURIOUS EMISSION LEVEL [dBm]							
Harmonic	Lowest channel Freq. (MHz)	Level [dBm]	Harmonic	Middle channel Freq. (MHz)	Level [dBm]	Harmonic	Highest channel Freq. (MHz)	Level [dBm]
2	1413.0	-	2	1420.0	-	2	1427.0	-
3	2119.5	-	3	2130.0	-	3	2140.5	-
4	2826.0	-	4	2840.0	-	4	2854.0	-
5	3532.5	-	5	3550.0	-	5	3567.5	-
6	4239.0	ı	6	4260.0	-	6	4281.0	1
7	4945.5	-	7	4970.0	-	7	4994.5	-
8	5652.0	-	8	5680.0	-	8	5708.0	-
9	6358.5	-	9	6390.0	-	9	6421.5	-
10	7065.0	-	10	7100.0	-	10	7135.0	-
	Measurement uncertainty					± 3dB		

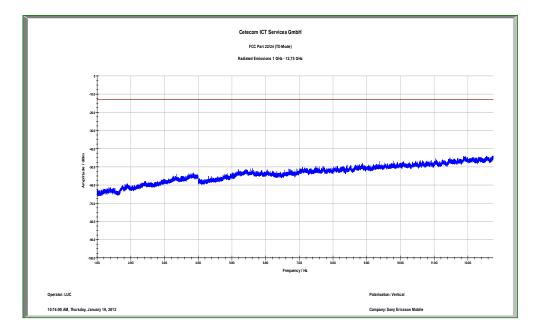

Result: The result of the measurement is passed.

2012-01-26 Page 18 of 53



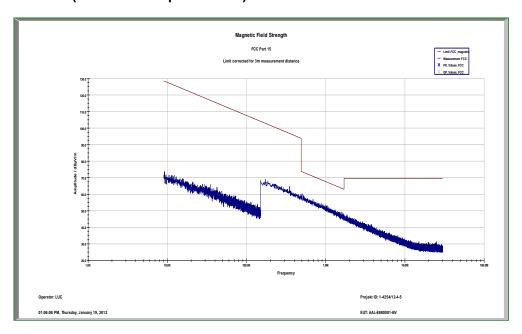
QPSK with 5 MHz channel bandwidth

Plot 1: Channel 23790 (Traffic mode up to 30 MHz)

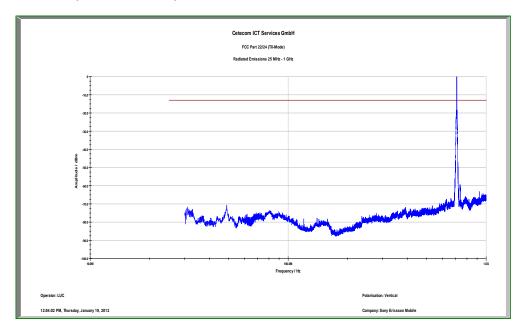

Plot 2: Channel 23790 (30 MHz - 1 GHz)

2012-01-26 Page 19 of 53

Plot 3: Channel 23790 (1 GHz - 12.75 GHz)

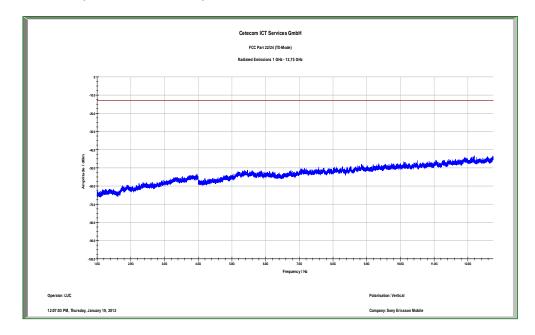


2012-01-26 Page 20 of 53



16-QAM with 5 MHz channel bandwidth

Plot 4: Channel 23790 (Traffic mode up to 30 MHz)


Plot 5: Channel 23790 (30 MHz - 1 GHz)

2012-01-26 Page 21 of 53

Plot 6: Channel 23790 (1 GHz - 12.75 GHz)

2012-01-26 Page 22 of 53

9.4.4 Spurious emissions conducted

Description:

The following steps outline the procedure used to measure the conducted emissions from the mobile station.

- 1. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 7460 MHz, data taken from 10 MHz to 12 GHz.
- 2. Determine mobile station transmits frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

Measurement:

Measurement parameters					
Detector:	Peak				
Sweep time:	Auto				
Video bandwidth:	Pre-measurement with 1 MHz On spurious detection re-measurement below 1 GHz with 100 kHz Above 1 GHz with 1 MHz				
Resolution bandwidth:	Pre-measurement with 1 MHz On spurious detection re-measurement below 1 GHz with 100 kHz Above 1 GHz with 1 MHz				
Span:	10 MHz – 12 GHz				
Trace-Mode:	Max Hold				

Limits:

FCC	IC				
CFR Part 27.53(g) CFR Part 2.1053	RSS 139, Issue 2, Section 6.5				
Spurious Emissions Conducted					
Attenuation ≥ 43 + 10log(P) (P, Power in Watts)					
-13 dBm					

2012-01-26 Page 23 of 53

Results: for 5 MHz channel bandwidth

QPSK

	SPURIOUS EMISSION LEVEL [dBm]							
Harmonic	Lowest channel Freq. (MHz)	Level [dBm]	Harmonic	Middle channel Freq. (MHz)	Level [dBm]	Harmonic	Highest channel Freq. (MHz)	Level [dBm]
2	1413.0	-	2	1420.0	-	2	1427.0	-
3	2119.5	-	3	2130.0	-	3	2140.5	-
4	2826.0	ı	4	2840.0	ı	4	2854.0	-
5	3532.5	ı	5	3550.0	ı	5	3567.5	-
6	4239.0	-	6	4260.0	-	6	4281.0	-
7	4945.5	-	7	4970.0	-	7	4994.5	-
8	5652.0	-	8	5680.0	-	8	5708.0	-
9	6358.5	-	9	6390.0	-	9	6421.5	-
10	7065.0	-	10	7100.0	-	10	7135.0	-
	Measurement uncertainty					± 0.5dl	3	

<u>16-QAM</u>

	SPURIOUS EMISSION LEVEL [dBm]							
Harmonic	Ch. 23755 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 23790 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 23825 Freq. (MHz)	Level [dBm]
2	1413.0	ı	2	1420.0	-	2	1427.0	
3	2119.5	ı	3	2130.0	-	3	2140.5	
4	2826.0	ı	4	2840.0	-	4	2854.0	
5	3532.5	ı	5	3550.0	-	5	3567.5	ı
6	4239.0	ı	6	4260.0	-	6	4281.0	ı
7	4945.5	ı	7	4970.0	-	7	4994.5	ı
8	5652.0	ı	8	5680.0	-	8	5708.0	ı
9	6358.5	-	9	6390.0	-	9	6421.5	-
10	7065.0	-	10	7100.0	-	10	7135.0	-
	Measurement uncertainty					± 0.5dl	3	

2012-01-26 Page 24 of 53

Results: for 10 MHz channel bandwidth

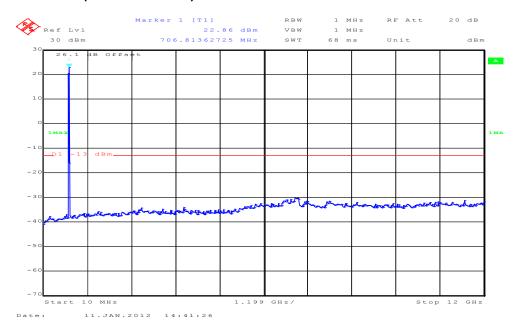
QPSK

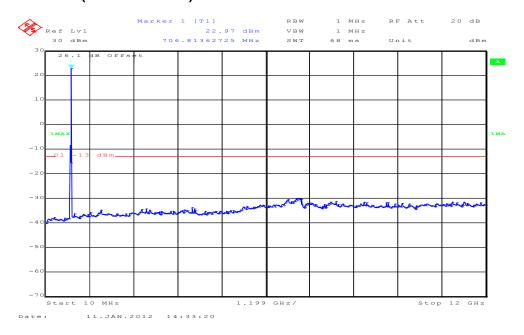
	SPURIOUS EMISSION LEVEL [dBm]							
Harmonic	Lowest channel Freq. (MHz)	Level [dBm]	Harmonic	Middle channel Freq. (MHz)	Level [dBm]	Harmonic	Highest channel Freq. (MHz)	Level [dBm]
2	1418.0	-	2	1420.0	-	2	1422.0	-
3	2127.0	-	3	2130.0	-	3	2133.0	-
4	2836.0	ı	4	2840.0	ı	4	2844.0	-
5	3545.0	1	5	3550.0	1	5	3555.0	-
6	4254.0	1	6	4260.0	1	6	4266.0	-
7	4963.0	-	7	4970.0	-	7	4977.0	-
8	5672.0	ı	8	5680.0	ı	8	5688.0	-
9	6381.0	-	9	6390.0	-	6	6399.0	-
10	7090.0	-	10	7100.0	-	10	7110	-
	Measurement uncertainty					± 0.5dl	3	

<u> 16-QAM</u>

	SPURIOUS EMISSION LEVEL [dBm]								
Harmonic	Lowest channel Freq. (MHz)	Level [dBm]	Harmonic	Middle channel Freq. (MHz)	Level [dBm]	Harmonic	Highest channel Freq. (MHz)	Level [dBm]	
2	1418.0	-	2	1420.0	-	2	1422.0	-	
3	2127.0	-	3	2130.0	-	3	2133.0	-	
4	2836.0	-	4	2840.0	-	4	2844.0	-	
5	3545.0	-	5	3550.0	-	5	3555.0	-	
6	4254.0	-	6	4260.0	-	6	4266.0	-	
7	4963.0	-	7	4970.0	-	7	4977.0	-	
8	5672.0	-	8	5680.0	-	8	5688.0	-	
9	6381.0	-	9	6390.0	-	6	6399.0	-	
10	7090.0	-	10	7100.0	-	10	7110	-	
	Measurement uncertainty					± 0.5dB			

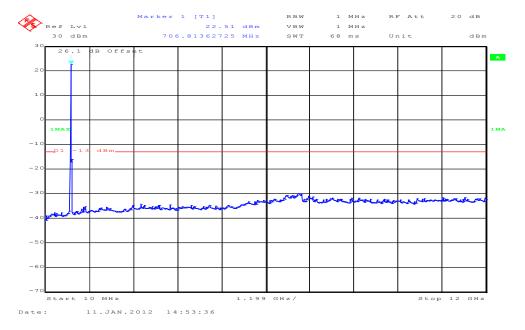
Result: The result of the measurement is passed.


2012-01-26 Page 25 of 53


Results: for 5 MHz channel bandwidth

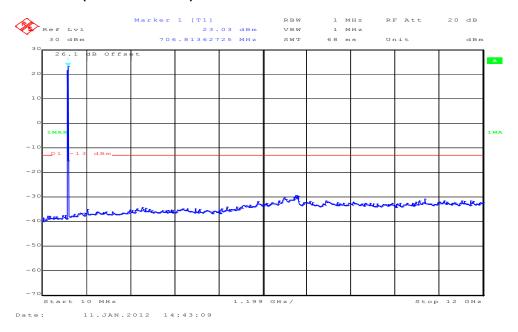
QPSK

Plot 1: Lowest Channel (10 MHz - 12 GHz)

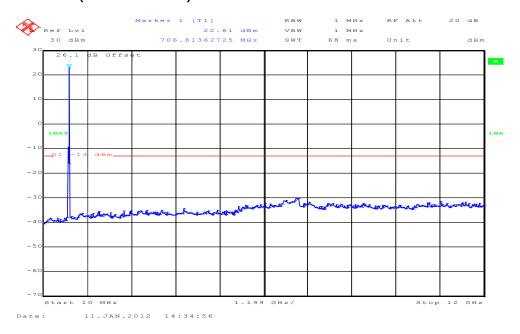

Plot 2: Middle Channel (10 MHz - 12 GHz)

2012-01-26 Page 26 of 53

Plot 3: Highest Channel (10 MHz - 12 GHz)

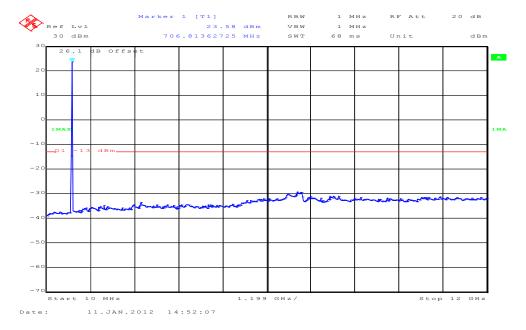


2012-01-26 Page 27 of 53



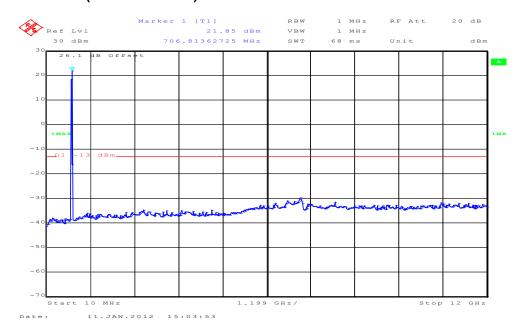
<u>16-QAM</u>

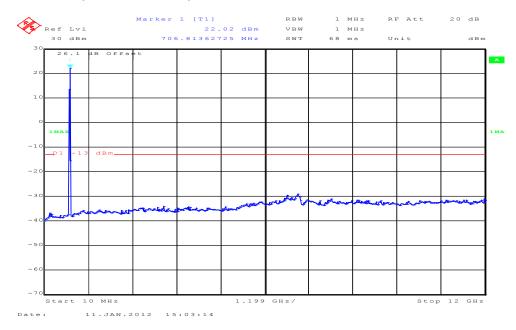
Plot 4: Lowest Channel (10 MHz - 12 GHz)


Plot 5: Middle Channel (10 MHz - 12 GHz)

2012-01-26 Page 28 of 53

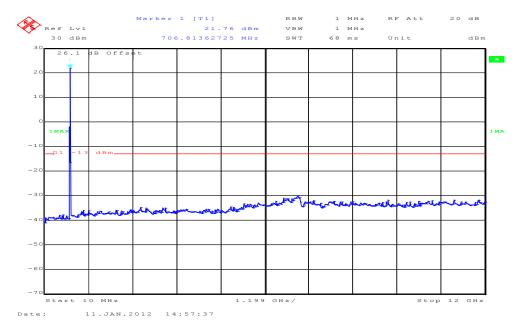
Plot 6: Highest Channel (10 MHz - 12 GHz)


2012-01-26 Page 29 of 53


Results: for 10 MHz channel bandwidth

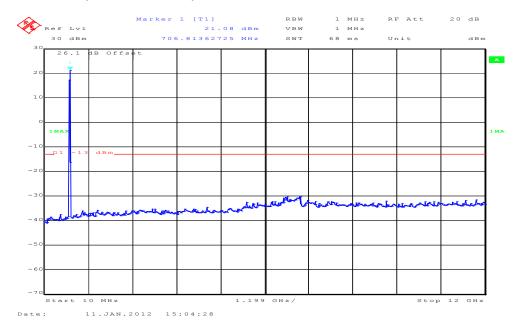
QPSK

Plot 1: Lowest Channel (10 MHz - 12 GHz)

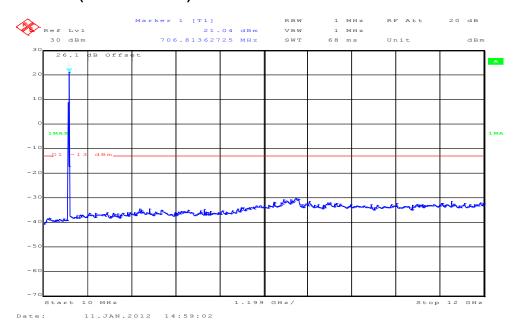

Plot 2: Middle Channel (10 MHz - 12 GHz)

2012-01-26 Page 30 of 53

Plot 3: Highest Channel (10 MHz - 12 GHz)

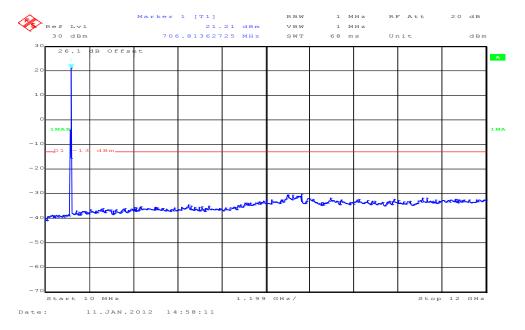


2012-01-26 Page 31 of 53



<u>16-QAM</u>

Plot 4: Lowest Channel (10 MHz - 12 GHz)


Plot 5: Middle Channel (10 MHz - 12 GHz)

2012-01-26 Page 32 of 53

Plot 6: Highest Channel (10 MHz - 12 GHz)

2012-01-26 Page 33 of 53

9.4.5 Block edge compliance

Description:

The spectrum at the band edges must comply with the spurious emissions limits.

Measurement:

Measurement parameters					
Detector:	RMS				
Sweep time:	20 sec.				
Video bandwidth:	30 kHz				
Resolution bandwidth:	30 kHz				
Span:	1 MHz				
Trace-Mode:	Max Hold				

Limits:

FCC	IC
CFR Part 27.53(h) CFR Part 2.1053	RSS 139, Issue 2, Section 6.5

Block Edge Compliance

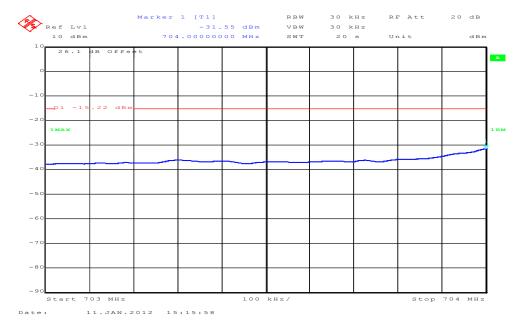
Part 27.53 specifies that "the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB."

However, in publication number 890810, The FCC Office of Engineering and Technology specified the following correction to the limits when a resolution bandwidth smaller than 1% of the emission bandwidth is used:

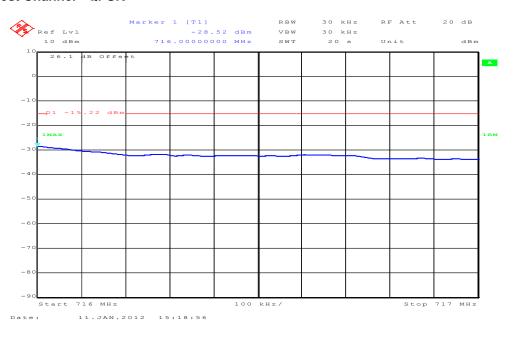
"An alternative is to add an additional correction factor of 10 Log (RBW1/ RBW2) to the 43 +10 log(P) limit. RBW1 is the narrower measurement resolution bandwidth and RBW2 is either the 1% emissions bandwidth or 1 MHz."

When using a 30 kHz bandwidth, this yields a -2.2185 adjustment to the limit [10 log(30kHz/50kHz) = -2.2185]. When this adjustment is applied to the limit, the limit becomes -15.2185.

-15.22 dBm

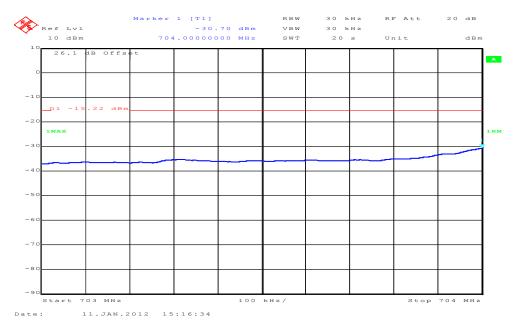

Result: The result of the measurement is passed.

2012-01-26 Page 34 of 53



Results: 5 MHz channel bandwidth

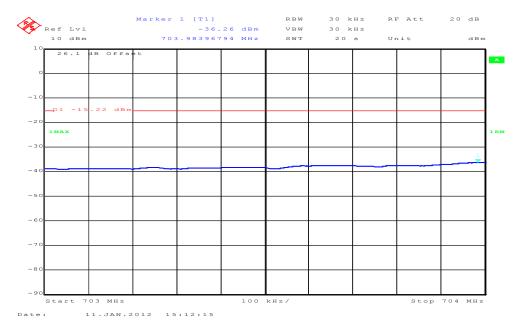
Plot 1: Lowest Channel- QPSK


Plot 2: Highest Channel- QPSK

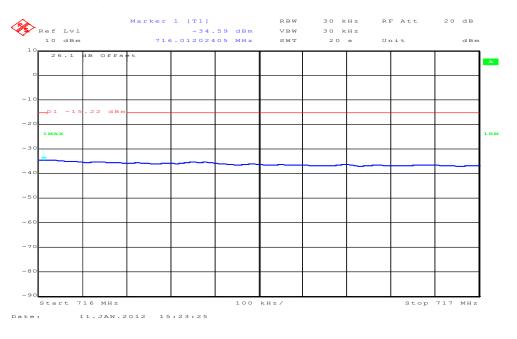

2012-01-26 Page 35 of 53

Plot 3: Lowest Channel- 16-QAM

Plot 4: Highest Channel- 16-QAM

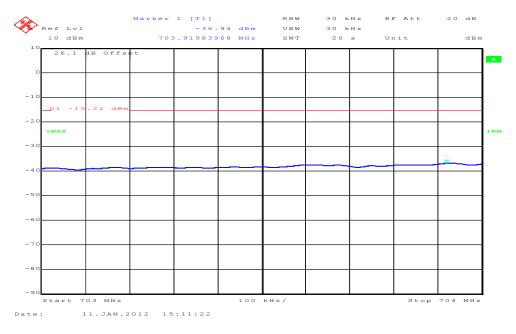


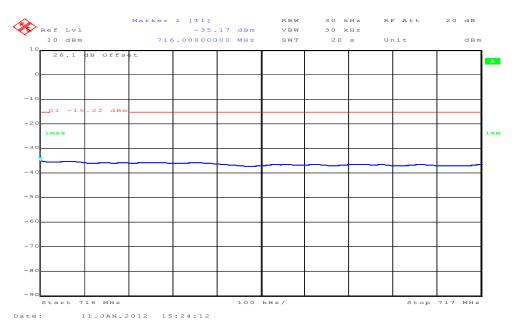
2012-01-26 Page 36 of 53



Results: 10 MHz channel bandwidth

Plot 1: Lowest Channel- QPSK


Plot 2: Highest Channel- QPSK


2012-01-26 Page 37 of 53

Plot 3: Lowest Channel- 16-QAM

Plot 4: Highest Channel- 16-QAM

2012-01-26 Page 38 of 53

9.4.6 Occupied bandwidth

Description:

Measurement of the occupied bandwidth of the transmitted signal.

Measurement:

Similar to conducted emissions, occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the mid frequencies of the LTE band 17 frequency band. The table below lists the measured 99% power and -26dBc occupied bandwidths. Spectrum analyzer plots are included on the following pages.

Part 27.53 requires a measurement bandwidth of at least 1% of the occupied bandwidth.

Measurement parameters					
Detector:	Peak				
Sweep time:	Auto				
Video bandwidth:	Depends on Channel Bandwidth				
Resolution bandwidth:	Depends on Channel Bandwidth				
Span:	Depends on Channel Bandwidth				
Trace-Mode:	Max Hold				

Limits:

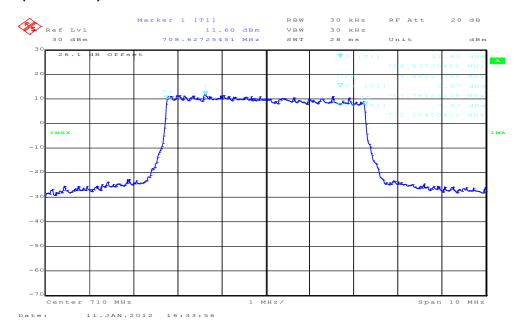
FCC	IC			
CFR Part 27.53(h) CFR Part 2.1049	RSS 139, Issue 2, Section 6.5			
Occupied Bandwidth				
Spectrum must fall completely in the specified band				

2012-01-26 Page 39 of 53

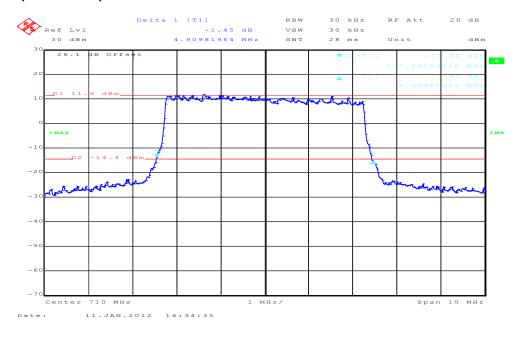
Results:

Occupied Bandwidth - QPSK							
Bandwidth [MHz] 99% OBW (kHz) -26 dBc BW (kHz)							
5	4489	4910					
10	8958	9439					
Measurement uncertainty	± 100 kHz						

Occupied Bandwidth – 16-QAM							
Bandwidth [MHz] 99% OBW (kHz) -26 dBc BW (kHz)							
5	4489	4890					
10	8928	9619					
Measurement uncertainty	± 100 kHz						

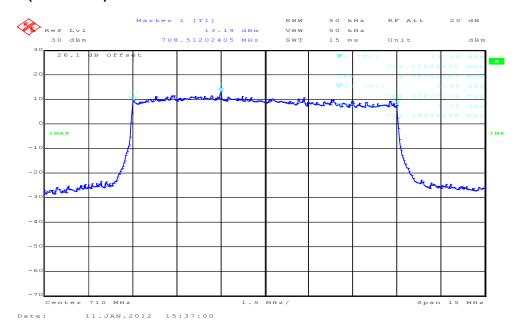

Result: The result of the measurement is passed.

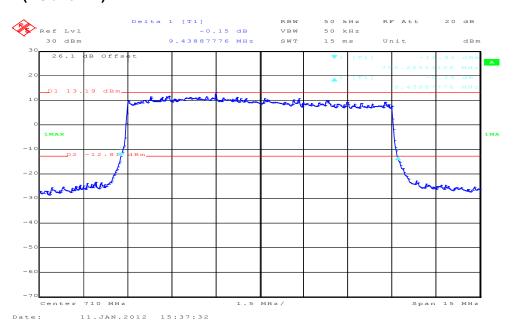
2012-01-26 Page 40 of 53



QPSK

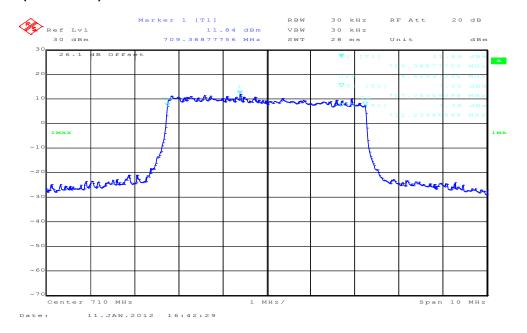
Plot 1: 5 MHz (99% - OBW)


Plot 2: 5 MHz (-26 dBc BW)

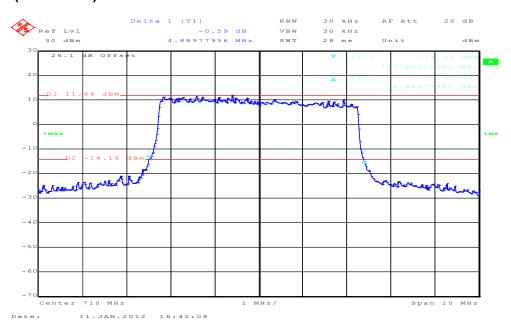

2012-01-26 Page 41 of 53

Plot 3: 10 MHz (99% - OBW)

Plot 4: 10 MHz (-26 dBc BW)

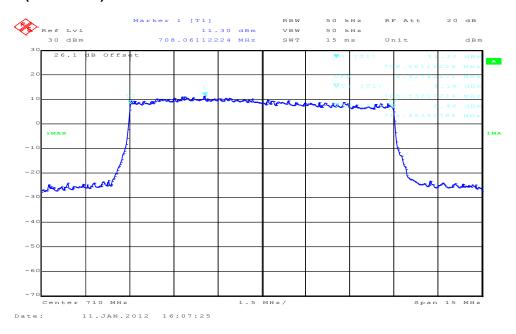


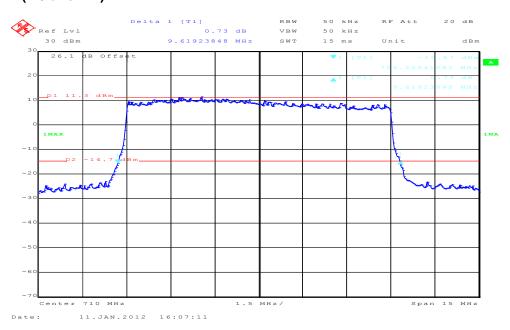
2012-01-26 Page 42 of 53



<u>16-QAM</u>

Plot 1: 5 MHz (99% - OBW)


Plot 2: 5 MHz (-26 dBc BW)


2012-01-26 Page 43 of 53

Plot 3: 10 MHz (99% - OBW)

Plot 4: 10 MHz (-26 dBc BW)

2012-01-26 Page 44 of 53

9.5 Results receiver mode

9.5.1 Spurious emissions radiated - receiver mode

Description:

The measurement was performed in worst case. The EUT was not connected to the CMU 200. So the EUT performs a network search. In this mode all oscillators are active.

Measurement:

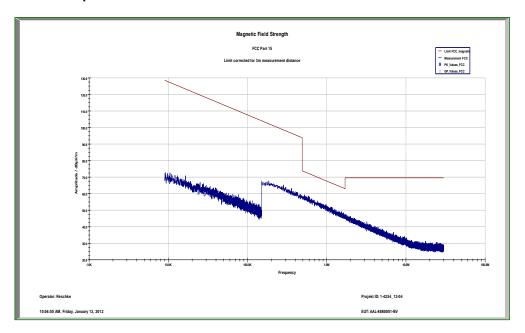
Measurement parameters					
Detector:	Below 1 GHz Peak / QuasiPeak Above 1 GHz Peak / Average				
Sweep time:	2 sec				
Video bandwidth:	Below 1 GHz 100 kHz Above 1 GHz 1 MHz				
Resolution bandwidth:	1 MHz				
Span:	100 MHz Steps				
Trace-Mode:	Max Hold				

Limits:

FCC			IC		
CFR Part 15.109 CFR Part 2.1053		RSS Gen, Issue 2, Section 4.10			
Sp	urious Emissions Ra	diated – Receiver Mo	ode		
Frequency (MHz)	Field Streng	th (dBµV/m)	Measurement distance (m)		
30 – 88	30.0		10		
88 - 216	33	3.5	10		
216 – 960	36.0		36.0		10
Above 960	54	1.0	3		

2012-01-26 Page 45 of 53

Results:


SPURIOUS EMISSION LEVEL (dBµV/m)								
Frequency (MHz)	Frequency (MHz) Detector Level (dBμV/m)							
No critical peaks found								
Measurement uncerta	inty		± 3dB					

Result: The result of the measurement is passed.

2012-01-26 Page 46 of 53

Plot 1: Receiver mode up to 30 MHz

2012-01-26 Page 47 of 53

Plot 2: Receiver mode (30 MHz - 1 GHz)

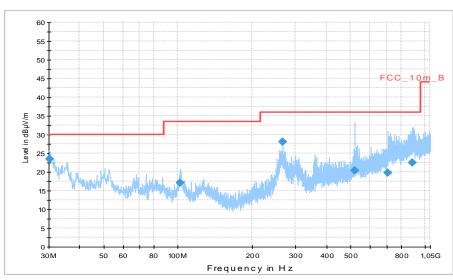
Common Information

EUT: AAL-8880001-BV Serial Number: CB5A1JE2PV

Test Description: FCC part 15 B class B @ 10 m

Operating Conditions: GSM idle, camera mode with HDMI out + charging

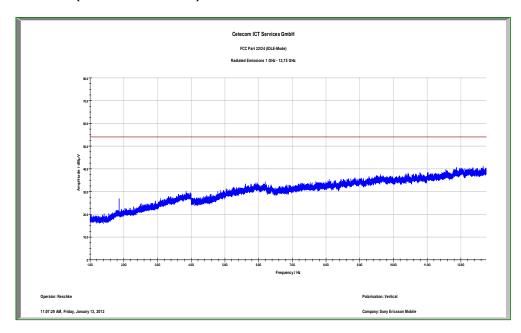
Operator Name: Wolsdorfer
Comment: AC: 115 V / 60 Hz


Scan Setup: STAN_Fin [EMI radiated]

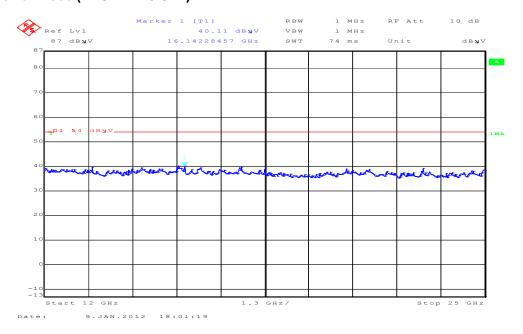
Hardware Setup: Electric Field (NOS)

Receiver: [ESCI 3] Level Unit: $dB\mu V/m$

SubrangeStep SizeDetectorsIF BWMeas. TimePreamp30 MHz - 2 GHz60 kHzQPK120 kHz1 s20 dB


Final Result 1

	. mai recall									
Frequency (MHz)	QuasiPeak (dBµV/m)	Meas. Time (ms)	Bandwidt h (kHz)	Height (cm)	Polarizatio n	Azimut h (deg)	Corr. (dB)	Margi n (dB)	Limit (dBµV/m)	Comment
30.261172	23.4	1000.0	120.000	98.0	V	11.0	12.5	6.6	30.0	
102.166200	17.1	1000.0	120.000	113.0	V	283.0	11.7	16.4	33.5	
265.510350	28.1	1000.0	120.000	98.0	V	283.0	13.7	7.9	36.0	
519.230250	20.4	1000.0	120.000	170.0	Н	-1.0	19.0	15.6	36.0	
709.742700	19.8	1000.0	120.000	98.0	Н	11.0	22.7	16.2	36.0	
892.880850	22.6	1000.0	120,000	170.0	Н	-2.0	25.1	13.4	36.0	


2012-01-26 Page 48 of 53

Plot 3: Receiver mode (1 GHz - 12.75 GHz)

Plot 4: Receiver mode (12 GHz - 25 GHz)

2012-01-26 Page 49 of 53

10 Test equipment and ancillaries used for tests

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, rf-generating and signalling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Labor/Item).

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	19	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9107-3697	300001605	Ve	19.10.2010	19.10.2012
2	n. a.	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP Meßtechnik	2920A04590	300001041	Ve	12.01.2012	12.01.2015
3	n. a.	Temperature Test Chamber	VT 4002	Heraeus Voetsch	521/83761	300002326	Ve	20.09.2011	20.09.2013
4	n. a.	Signal Analyzer 20Hz-26,5GHz- 150 to + 30 DBM	FSiQ26	R&S	835111/0004	300002678	Ve	04.11.2010	04.11.2012
5	n. a.	Wideband Radio Communication Tester	CMW500	R&S	102375	300004187_0		04.01.2011	
6	45	Switch-Unit	3488A	HP Meßtechnik	2719A14505	300000368	g		
7	50	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP Meßtechnik	2920A04466	300000580	ne		
8	n. a.	software	SPS_PHE 1.4f	Spitzberger & Spieß	B5981; 5D1081;B5979	300000210	ne		
9	n. a.	EMI Test Receiver	ESCI 1166.5950.03	R&S	100083	300003312	k	05.01.2011	05.01.2013
10	n. a.	Analyzer- Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	k	14.07.2011	14.07.2013
11	n. a.	Amplifier	JS42-00502650- 28-5A	MITEQ	1084532	300003379	ev		
12	n. a.	Antenna Tower	Model 2175	ETS- LINDGREN	64762	300003745	izw		
13	n. a.	Positioning Controller	Model 2090	ETS- LINDGREN	64672	300003746	izw		
14	n. a.	Turntable Interface-Box	Model 105637	ETS- LINDGREN	44583	300003747	izw		
15	n. a.	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	01.04.2010	01.04.2012
16	n. a.	Spectrum- Analyzer	FSU26	R&S	200809	300003874	k	10.01.2011	10.01.2013
17	n. a.	Isolating Transformer	RT5A	Grundig	8041	300001626	g		
18	n. a.	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP Meßtechnik	2818A03450	300001040	Ve	12.01.2012	12.01.2015
19	n. a.	Coaxial Attenuator 30dB/500W	8325	Bird	1530	300001595	ev		
20	n. a.	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3088	300001032	vlKI!	11.05.2011	11.05.2013
21	n. a.	Active Loop Antenna	6502	EMCO	2210	300001015	ne		
22	n. a.	Anechoic	FAC 3/5m	MWB / TDK	87400/02	300000996		23.03.2009	

2012-01-26 Page 50 of 53

		chamber			1		T		1
23	Spec.A. 2_2e	System rack for EMI measurement solution	85900	HP I.V.	*	300000222	ne		
24	9	Artificial Mains 9 kHz to 30 MHz	ESH3-Z5	R&S	828576/020	300001210	Ve	06.01.2012	06.01.2014
25	n. a.	Relais Matrix	3488A	HP Meßtechnik	2719A15013	300001156	ne		
26	n.a.	Relais Matrix	PSU	R&S	890167/024	300001168	ne		
27	n. a.	Isolating Transformer	RT5A	Grundig	9242	300001263	ne		
28	n. a.	Three-Way Power Splitter, 50 Ohm	11850C	HP Meßtechnik		300000997	ne		
29	n. a.	Switch / Control Unit	3488A	HP	2605e08770	300001443	ne		
30	n. a.	Amplifier	js42-00502650- 28-5a	Parzich GMBH	928979	300003143	ne		
31	n. a.	Band Reject filter	WRCG1855/1910- 1835/1925- 40/8SS	Wainwright	7	300003350	ev		
32	n. a.	Band Reject filter	WRCG2400/2483- 2375/2505- 50/10SS	Wainwright	11	300003351	ev		
33	n. a.	TILE-Software Emission	Quantum Change, Modell TILE- ICS/FULL	EMCO	none	300003451	ne		
34	n. a.	Highpass Filter	WHKX2.9/18G- 12SS	Wainwright	1	300003492	ev		
35	n. a.	Highpass Filter	WHK1.1/15G- 10SS	Wainwright	3	300003255	ev		
36	n. a.	Highpass Filter	WHKX7.0/18G- 8SS	Wainwright	18	300003789	ne		
37	n. a.	PSA Spectrum Analyzer 3 Hz - 26.5 GHz	E4440A	Agilent Technologies	MY48250080	300003812	k	08.09.2010	08.09.2012
38	n. a.	MXG Microwave Analog Signal Generator	N5183A	Agilent Technologies	MY47420220	300003813	k	13.09.2010	13.09.2012
39	n. a.	RF Filter Section 9kHz - 1GHz	N9039A	Agilent Technologies	MY48260003	300003825	vIKI!	08.09.2010	08.09.2012
40	n. a.	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	371	300003854	vIKI!	14.10.2011	14.10.2014

Agenda: Kind of Calibration

ΕK k calibration / calibrated limited calibration

not required (k, ev, izw, zw not required) cyclical maintenance (external cyclical maintenance) ne ZW

ev periodic self verification izw internal cyclical maintenance long-term stability recognized blocked for accredited testing Ve g

Attention: extended calibration interval Attention: not calibrated *) next calibration ordered / currently in progress

11 **Observations**

vlkl!

No observations exceeding those reported with the single test cases have been made.

2012-01-26 Page 51 of 53

Annex A Document history

Version	Applied changes	Date of release
1.0	Initial release	2012-01-26

Annex B Further information

Glossary

AVG - Average

DUT - Device under test

EMC - Electromagnetic Compatibility

EN - European Standard EUT - Equipment under test

ETSI - European Telecommunications Standard Institute

FCC - Federal Communication Commission

FCC ID - Company Identifier at FCC

HW - Hardware

IC - Industry Canada
Inv. No. - Inventory number
N/A - Not applicable
PP - Positive peak
QP - Quasi peak
S/N - Serial number
SW - Software

2012-01-26 Page 52 of 53

Annex C Accreditation Certificate

Note:

The current certificate including annex is published on our website (see link below) or may be received from CETECOM ICT Services on request.

http://www.cetecom.com/fileadmin/de/CETECOM_D_Saarbruecken/accreditations_Jan_2010/DAKKS_Akkredi_Urk_EN17025-En_incl_Annex.pdf

2012-01-26 Page 53 of 53