

CETECOM ICT Services

consulting - testing - certification >>>

TEST REPORT

Test report no.: 1-4254/12-04-02-A

Testing laboratory

CETECOM ICT Services GmbH

Untertuerkheimer Strasse 6 - 10 66117 Saarbruecken / Germany Phone:

Fax:

+ 49 681 5 98 - 0

+ 49 681 5 98 - 9075 Internet: http://www.cetecom.com

e-mail:

ict@cetecom.com

Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-01

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the

Area of Testing: Radio/Satellite Communications

Applicant

Sony Ericsson Mobile Communications AB

Nya Vattentornet

22188 Lund / SWEDEN

Phone:

+46 46 19 30 00

Fax:

+46 46 19 32 95 Håkan Sjöberg

Contact: e-mail:

hakan.sjoberg@sonyericsson.com

Phone:

+46 46 19 35 59

Manufacturer

Sony Ericsson Mobile Communications AB

Nya Vattentornet

22188 Lund / SWEDEN

Test standard/s

47 CFR Part 22

Title 47 of the Code of Federal Regulations; Chapter I

Part 22 - Public mobile services

47 CFR Part 24

Title 47 of the Code of Federal Regulations; Chapter I

Part 24 - Personal communications services

RSS - 132 Issue 2

Spectrum Management and Telecommunications Policy - Radio Standards

Specifications

Cellular Telephones Employing New Technologies Operating in the Bands 824-849

MHz and 869-894 MHz

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item:

GSM Mobile Phone 850/900/1800/1900; GPRS/EGPRS; UMTS FDDI/FDDII/FDDV; HSPA;

LTE Band 4/17; BT EDR; WLAN b/g/n; ANT+; GPS; HDM; RFID

Model name:

AAL-8880001-BV

FCC ID:

IC:

PY7A8880001 4170B-A8880001

Frequency [MHz]:

GSM: 824.2 - 848.8 MHz, 1850.2 - 1909.8 MHz UMTS: 826.4 - 846.6 MHz, 1852.4 - 1907.6 MHz

Technology tested:

GSM, UMTS

Antenna:

Integrated antenna

Power Supply:

3.70 V DC by Li-Ion Battery and Power Supply

Temperature Range:

-30°C to +60 °C

Test report authorised:

2012-01-18

Stefan Bös

Senior Testing Manager

Test performed:

2012-01-18

Jakob Reschke **Testing Manager**

Table of contents

1	Table of co	ontents	2
2	General inf	formation	4
	2.1 Note	es and disclaimer	
		lication details	
	1.1.		
3	Test stand	ard/s	4
4	Test enviro	onment	5
5	Test item		5
_	_		_
6	Test labora	atories sub-contracted	5
_			_
7	Summary of	of measurement results	6
	7.1 GSN	1 850	6
	7.2 PCS	1900	6
		S band II	
		S band V	
	7.5 Rece	eiver	7
В	RF measur	rements	ş
		cription of test setup	
	8.1.1	Radiated measurements	
	8.1.2	Conducted measurements	
		100 test report cover sheet / performance test dataults GSM 850	
	8.3.1	RF output power	
	8.3.2	Frequency stability	
	8.3.3	Spurious emissions radiated	
	8.3.4	Spurious emissions conducted	
	8.3.5	Block edge compliance	
	8.3.6	Occupied bandwidth	
		ults PCS 1900	
	8.4.1	RF output power	
	8.4.2	Frequency stability	
	8.4.3	Spurious emissions radiated	
	8.4.4	Spurious emissions conducted	
	8.4.5	Block edge compliance	
	8.4.6	Occupied bandwidth	
		ults UMTS band II	
	8.5.1	RF output power	
	8.5.2	Frequency stability	
	8.5.3	Spurious emissions radiated	
	8.5.4	Spurious emissions conducted	
	8.5.5	Block edge compliance	
	8.5.6 8.6 Res i	Occupied bandwidthults UMTS band V	
	8.6.1	RF output power	
	8.6.2	Frequency stability	
	8.6.3	Spurious emissions radiated	
	8.6.4	Spurious emissions conducted	
	8.6.5	Block edge compliance	
	8.6.6	Occupied bandwidth	
	3.0.0	1	

	8.7	Results receiver mode	99
	8.7	7.1 Spurious emissions radiated – receiver mode	99
9	Test ed	quipment and ancillaries used for tests	104
10	Ob	oservations	105
An	nex A	Document history	106
An	nex B	Further information	106
An	nex C	Accreditation Certificate	107

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM ICT Services GmbH.

The testing service provided by CETECOM ICT Services GmbH has been rendered under the current "General Terms and Conditions for CETECOM ICT Services GmbH".

CETECOM ICT Services GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM ICT Services GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM ICT Services GmbH test report include or imply any product or service warranties from CETECOM ICT Services GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM ICT Services GmbH.

All rights and remedies regarding vendor's products and services for which CETECOM ICT Services GmbH has prepared this test report shall be provided by the party offering such products or services and not by CETECOM ICT Services GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronical signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order: 2012-01-10
Date of receipt of test item: 2012-01-02
Start of test: 2012-01-02
End of test: 2012-01-17

Person(s) present during the test: -/-

3 Test standard/s

Test standard	Date	Test standard description
47 CFR Part 22	2010-10	Title 47 of the Code of Federal Regulations; Chapter I Part 22 - Public mobile services
47 CFR Part 24	2010-10	Title 47 of the Code of Federal Regulations; Chapter I Part 24 - Personal communications services
RSS - 132 Issue 2	2005-09	Spectrum Management and Telecommunications Policy - Radio Standards Specifications Cellular Telephones Employing New Technologies Operating in the Bands 824-849 MHz and 869-894 MHz
RSS - 133 Issue 5	2009-02	Spectrum Management and Telecommunications Policy - Radio Standards Specifications 2 GHz Personal Communication Services

2012-01-18 Page 4 of 107

4 Test environment

Temperature:

T_{nom} +22 °C during room temperature tests T_{max} +60 °C during high temperature tests

T_{min} -30 °C during low temperature tests

Relative humidity content: 49 %

Barometric pressure: not relevant for this kind of testing

 V_{nom} 3.70 V DC by Li-Ion Battery and Power Supply

Power supply: V_{max} 4.40 V

 V_{min} 3.30 V

5 Test item

Kind of test item	:	GSM Mobile Phone 850/900/1800/1900; GPRS/EGPRS; UMTS FDDI/FDDII/FDDV; HSPA; LTE Band 4/17; BT EDR; WLAN b/g/n; ANT+; GPS; HDM; RFID
Type identification	:	AAL-8880001-BV
O/N a said a sambar		Rad. CB5A1JE2R3
S/N serial number	i	Cond. CB5A1JE2S3
HW hardware status	:	AP2
CIM a officiona atatua	_	6.0.C.0.257, 6.0.C.0.243
SW software status	:	s_atp_aoba_0_0_22
Eroguanay band [MUz]		GSM: 824.2 – 848.8 MHz, 1850.2 – 1909.8 MHz
Frequency band [MHz]	•	UMTS: 826.4 – 846.6 MHz, 1852.4 – 1907.6 MHz
Type of modulation	:	GMSK; 8-PSK; QPSK; 16-QAM
Antenna	:	Integrated antenna
Power supply	:	3.70 V DC by Li-lon Battery and Power Supply
Temperature range	:	-30°C to +60 °C

6 Test laboratories sub-contracted

None

2012-01-18 Page 5 of 107

7 Summa	ry of measurement results						
\boxtimes	There were deviations from the technical specifications ascertained tifier Description verdict date Remark CFR Part 22, 24 passed 2012-01-18						
TC identifier	Description	verdict	date	Remark			
RF-Testing	CFR Part 22, 24 RSS 132, 133	passed	2012-01-18	-/-			

7.1 GSM 850

Test Case	temperature conditions	power source voltages	Pass	Fail	NA	NP	Remark
RF Output Power	Nominal	Nominal	\boxtimes				
Frequency Stability	Nominal	Nominal					
Spurious Emissions Radiated	Nominal	Nominal					
Spurious Emissions Conducted	Nominal	Nominal					
Block Edge Compliance	Nominal	Nominal					
Occupied Bandwidth	Nominal	Nominal					

Note:

 $\overline{NA} = Not \text{ applicable}; NP = Not \text{ performed}$

7.2 PCS 1900

Test Case	temperature conditions	power source voltages	Pass	Fail	NA	NP	Remark
RF Output Power	Nominal	Nominal	\boxtimes				
Frequency Stability	Nominal	Nominal					
Spurious Emissions Radiated	Nominal	Nominal					
Spurious Emissions Conducted	Nominal	Nominal					
Block Edge Compliance	Nominal	Nominal					
Occupied Bandwidth	Nominal	Nominal					

Note:

NA = Not applicable; NP = Not performed

2012-01-18 Page 6 of 107

7.3 UMTS band II

Test Case	temperature conditions	power source voltages	Pass	Fail	NA	NP	Remark
RF Output Power	Nominal	Nominal	\boxtimes				
Frequency Stability	Nominal	Nominal					
Spurious Emissions Radiated	Nominal	Nominal					
Spurious Emissions Conducted	Nominal	Nominal					
Block Edge Compliance	Nominal	Nominal					
Occupied Bandwidth	Nominal	Nominal					

Note:

 $\overline{NA} = Not \text{ applicable}$; NP = Not performed

7.4 UMTS band V

Test Case	temperature conditions	power source voltages	Pass	Fail	NA	NP	Remark
RF Output Power	Nominal	Nominal	\boxtimes				
Frequency Stability	Nominal	Nominal	\boxtimes				
Spurious Emissions Radiated	Nominal	Nominal					
Spurious Emissions Conducted	Nominal	Nominal					
Block Edge Compliance	Nominal	Nominal					
Occupied Bandwidth	Nominal	Nominal					

Note:

 $\overline{NA} = Not \text{ applicable}$; NP = Not performed

7.5 Receiver

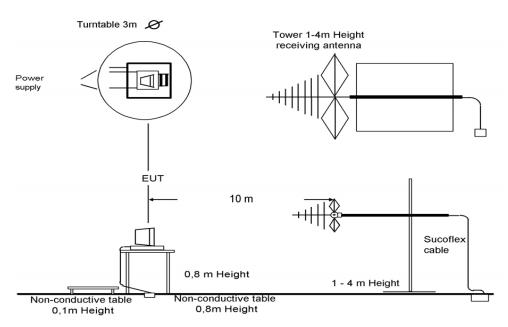
Test Case	temperature conditions	power source voltages	Pass	Fail	NA	NP	Remark
Spurious Emissions Radiated	Nominal	Nominal	\boxtimes				

Note:

 $\overline{NA} = Not \text{ applicable}; NP = Not \text{ performed}$

2012-01-18 Page 7 of 107

8 RF measurements


8.1 Description of test setup

For the spurious measurements we use the substitution method according TIA/EIA 603.

8.1.1 Radiated measurements

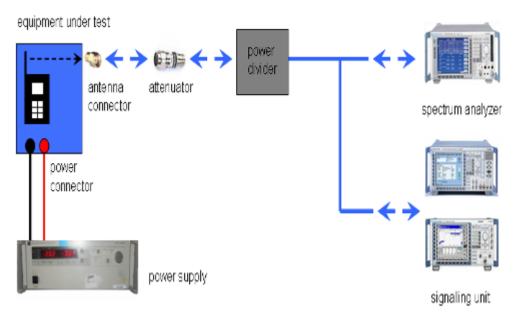
The radiated emissions from the EUT are performed in a semi anechoic chamber. The EUT is placed on a conductive turntable and powered with nominal voltage. The signalling is performed either from outside the chamber with a signalling unit (AP or other) by air link using a signalling antenna or directly by special test software from the customer.

Semi anechoic chamber

Picture 1: Diagram radiated measurements

9 kHz - 30 MHz: active loop antenna

30 MHz – 1 GHz: tri-log antenna


> 1 GHz: horn antenna

2012-01-18 Page 8 of 107

8.1.2 Conducted measurements

The EUT's RF signal is coupled out by the antenna connector which is supplied by the manufacturer. The signal is first 10dB attenuated before it is power divided (~6dB loss per branch). One of the signal paths is connected to the signalling unit (AP or other), the other one is connected to the spectrum analyzer. The specific losses for both signal paths are first checked within a calibration. The measurement readings on the signalling unit/spectrum analyzer are corrected by the specific test set-up loss. The attenuator, power divider, signalling unit and the spectrum analyzer are impedance matched on 50 Ohm. If special software is used, there is no power divider necessary.

Picture 2: Diagram conducted measurements

The term measuring receiver refers to either a selective voltmeter or a spectrum analyser.

Frequency being measured f	Measuring receiver bandwidth 6 dB	Spectrum analyser bandwidth 3dB
f < 150 kHz	200 Hz or	300 Hz
150 kHz ≤ f < 25 MHz	9 kHz or	10 kHz
25 MHz ≤ f < 1000 MHz	120 kHz or	100 kHz
1000 MHz ≤ f		1 MHz
NOTE: Specific requirements in	CEPT/ERC/Recommendation 70-03 [2]	shall be applied where applicable.

2012-01-18 Page 9 of 107

8.2 RSP100 test report cover sheet / performance test data

Test Report Number		1-4254/12-04-02-A						
Equipment Model Number	:	AAL-8880001-BV						
Certification Number	:	4170B-A8880001						
Manufacturer (complete Address)	•	Sony Ericsson Mobile Communications AB Nya Vattentornet 22188 Lund / SWEDEN						
Tested to radio standards specification no.		RSS - 132 Issue 2	2, RSS - 133 Issue	5				
Open Area Test Site IC No.		IC 3462C-1						
Frequency Range :		ONLY CONTRACTOR OF THE PROPERTY OF THE PROPERT	8.8 MHz, 1850.2 – 1 16.6 MHz, 1852.4 –					
GPS receiver turned	:	On						
		Band	Conducted	ERP / EIRP	Mode			
		GSM850	32.49 dBm	31.89 dBm	GMSK			
		GSWIGSU	26.18 dBm	25.74 dBm	8-PSK			
RF-power [dBm] (max.)	:	GSM1900	29.79 dBm	32.60 dBm	GMSK			
			24.37 dBm	27.36 dBm	8-PSK			
		WDCMA 850	24.72 dBm	24.17 dBm	QPSK			
		WDCMA 1900	24.58 dBm	26.97 dBm	QPSK			
		GSM850		35	GMSK			
			281		8-PSK			
Occupied bandwidth (99%-BW) [kHz]		GSM1900	273		GMSK			
				79	8-PSK			
		WDCMA 850		93	QPSK			
是是否是在1000mm,1000mm,1000mm,1000mm,1000mm,1000mm,1000mm,1000mm,1000mm,1000mm,1000mm,1000mm,1000mm,1000mm,1000mm		WDCMA 1900	45	69	QPSK			
Type of modulation		GMSK; 8-PSK; Q	PSK; 16-QAM					
STATE OF THE STATE		GSM850	285K	GXW	GMSK			
		33W030	281KG7W		8-PSK			
Emission Designator (TRC-43)		GSM1900	273KGXW		GMSK			
	•	V	279KG7W		8-PSK			
		WDCMA 850		F9W	QPSK			
		WDCMA 1900	4M57	F9W	QPSK			
Antenna Information	:	integrated antenr	na					
Transmitter Spurious (worst case) [dBm]	:	-41.56 dBm @ 1648.40 MHz						
Receiver Spurious (worst case) [µV/m (@ 10m]:	25.4 µV/m @ 265.	51 MHz					

ATTESTATION: DECLARATION OF COMPLIANCE:

I attest that the testing was performed or supervised by me; that the test measurements were made in accordance with the above-mentioned Industry Canada standard(s); and that the equipment identified in this application has been subjected to all the applicable test conditions specified in the Industry Canada standards and all of the requirements of the standard have been met.

ıa	hΛ	rat	ory	NA:	an	201	or.
Lu	\sim	ıaı	OI Y	IAIG	an	ay	CI.

2012-01-18

Jakob Reschke

Date

Name

Signature

8.3 Results GSM 850

All GSM-band measurements are done in GSM mode only (circuit switched).

All relevant tests have been repeated using 8-PSK modulation if EDGE mode is supported. All tests were performed with one timeslot in uplink activated and one timeslot in downlink activated. For each mode the highest output power was determined and used.

8.3.1 RF output power

Description:

This paragraph contains average power, peak output power and ERP measurements for the mobile station. In all cases, the peak output power is within the required mask (this mask is specified in the JTC standards, TIA PN3389 Vol. 1 Chap 7, and is no FCC requirement).

Measurement:

The mobile was set up for the maximum output power with pseudo random data modulation.

Measurement parameters				
Detector:	Peak and RMS (Power in Burst)			
Sweep time:	Auto			
Video bandwidth:	1 MHz			
Resolution bandwidth:	1 MHz			
Span:	Zero Span			
Trace-Mode:	Max Hold			

Limits:

FCC	IC	
CFR Part 22.913 CFR Part 2.1046	RSS 132, Issue 2, Section 4.4 and 6.4	
Nominal Peak Output Power		
+38.45 dBm In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the		

transmission may not exceed 13 dB.

2012-01-18 Page 11 of 107

Results:

Output Power (conducted) GMSK mode				
Frequency (MHz)	Average Output Power (dBm)	Peak to Average Ratio (dB)		
824.2	32.45	0.25		
836.4	32.49	0.25		
848.8	32.33	0.22		
Measurement uncertainty	± 0.9	5 dB		

Output Power (conducted) 8-PSK mode				
Frequency (MHz)	Average Output Power (dBm)	Peak to Average Ratio (dB)		
824.2	25.81	3.42		
836.4	26.09	3.28		
848.8	26.18	3.16		
Measurement uncertainty	± 0.9	5 dB		

Output Power (radiated) GMSK mode			
Frequency (MHz)	Average Output Power (dBm) - ERP		
824.2	28.00		
836.4	29.14		
848.8	31.89		
Measurement uncertainty	± 2.0 dB		

Output Power (radiated) 8-PSK mode			
Frequency (MHz)	Average Output Power (dBm) - ERP		
824.2	21.36		
836.4	22.74		
848.8	25.74		
Measurement uncertainty	± 2.0 dB		

Result: The result of the measurement is passed.

2012-01-18 Page 12 of 107

8.3.2 Frequency stability

Description:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the mobile station in a "call mode". This is accomplished with the use of a R&S CMU200 DIGITAL RADIOCOMMUNICATION TESTER.

- 1. Measure the carrier frequency at room temperature.
- 2. Subject the mobile station to overnight soak at -30 C.
- 3. With the mobile station, powered with V_{nom} , connected to the CMU200 and in a simulated call on channel 189 (centre channel), measure the carrier frequency. These measurements should be made within two minutes of powering up the mobile station, to prevent significant self warming.
- 4. Repeat the above measurements at 10°C increments from -30°C to +60°C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements.
- 5. Remeasure carrier frequency at room temperature with V_{nom} . Vary supply voltage from V_{min} to V_{max} , in 0.1 Volt steps remeasuring carrier frequency at each voltage. Pause at V_{nom} for 1.5 hours unpowered, to allow any self heating to stabilize, before continuing.
- 6. At all temperature levels hold the temperature to +/- 0.5°C during the measurement procedure.

Measurement:

Measurement parameters		
Detector:		
Sweep time:		
Video bandwidth:	Measured with CMU200	
Resolution bandwidth:	wieasured with CiviO200	
Span:		
Trace-Mode:		

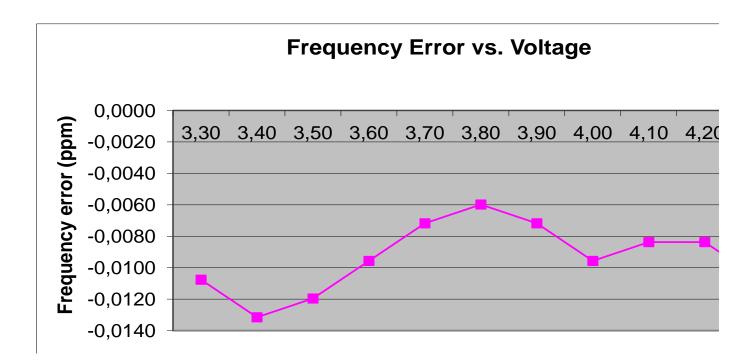
Limits:

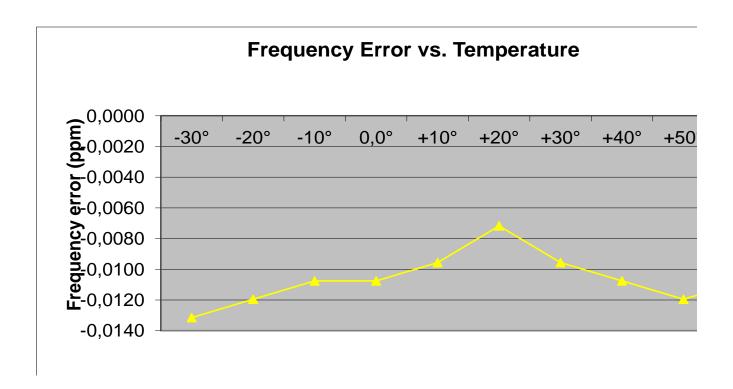
FCC	IC		
CFR Part 22.355 CFR Part 2.1055	RSS 132, Issue 2, Section 4.3 and 6.3		
Frequency Stability			
± 2.5 ppm			

2012-01-18 Page 13 of 107

Results:

AFC FREQ ERROR versus VOLTAGE


Voltage (V)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)
3.3	-9	-0.00000108	-0.0108
3.4	-11	-0.00000132	-0.0132
3.5	-10	-0.00000120	-0.0120
3.6	-8	-0.00000096	-0.0096
3.7	-6	-0.00000072	-0.0072
3.8	-5	-0.00000060	-0.0060
3.9	-6	-0.00000072	-0.0072
4.0	-8	-0.00000096	-0.0096
4.1	-7	-0.00000084	-0.0084
4.2	-7	-0.00000084	-0.0084
4.3	-9	-0.00000108	-0.0108
4.4	-8	-0.0000096	-0.0096


AFC FREQ ERROR versus TEMPERATURE

Temperature (°C)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)
-30	-11	-0.00000132	-0.0132
-20	-10	-0.00000120	-0.0120
-10	-9	-0.00000108	-0.0108
± 0	-9	-0.00000108	-0.0108
10	-8	-0.00000096	-0.0096
20	-6	-0.00000072	-0.0072
30	-8	-0.00000096	-0.0096
40	-9	-0.00000108	-0.0108
50	-10	-0.00000120	-0.0120
60	-9	-0.0000108	-0.0108

2012-01-18 Page 14 of 107

Result: The result of the measurement is passed.

2012-01-18 Page 15 of 107

8.3.3 Spurious emissions radiated

Description:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2009 requirements and is recognized by the FCC to be in compliance for a 3 and a 10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 848.8 MHz. This was rounded up to 12 GHz. The resolution bandwidth is set as outlined in Part 22.917. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the GSM-850 band.

The final open field emission (here 10m semi-anechoic chamber listed by FCC) test procedure is as follows:

- a) The test item was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna.
- b) The antenna output was terminated in a 50 ohm load (if possible).
- c) A double ridged wave guide antenna was placed on an adjustable height antenna mast 3 meters from the test item for emission measurements.
- d) Detected emissions were maximized at each frequency by rotating the test item and adjusting the receive antenna height and polarization. The maximum meter reading was recorded. The radiated emission measurements of the harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and 1 MHz bandwidth. If the harmonic could not be detected above the noise floor, the ambient level was recorded. The equivalent power into a dipole antenna was calculated from the field intensity levels measured at 3 meters.
- e) Now each detected emissions were substituted by the substitution method, in accordance with the TIA/EIA 603.

Measurement:

Measurement parameters		
Detector:	Peak	
Sweep time:	2 sec.	
Video bandwidth:	Below 1 GHz: 100 kHz Above 1 GHz: 1 MHz	
Resolution bandwidth:	Below 1 GHz: 100 kHz Above 1 GHz: 1 MHz	
Span:	100 MHz Steps	
Trace-Mode:	Max Hold	

Limits:

FCC	IC			
CFR Part 22.917 CFR Part 2.1053	RSS 132, Issue 2, Section 4.5 and 6.5			
Spurious Emissions Radiated				
Attenuation ≥ 43 + 10log(P) (P, Power in Watts)				
-13 dBm				

2012-01-18 Page 16 of 107

Results:

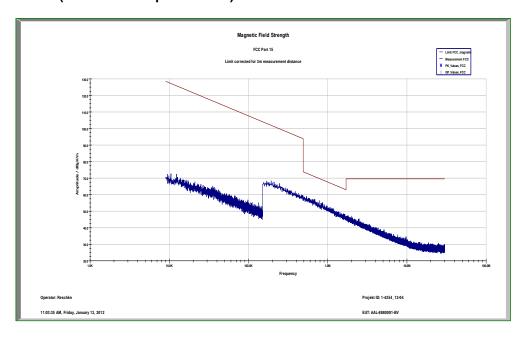
Radiated emissions measurements were made only at the upper, center, and lower carrier frequencies of the GSM-850 band (824.2 MHz, 836.4 MHz and 848.8 MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the GSM-850 band into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

The final open field radiated levels are presented on the next pages.

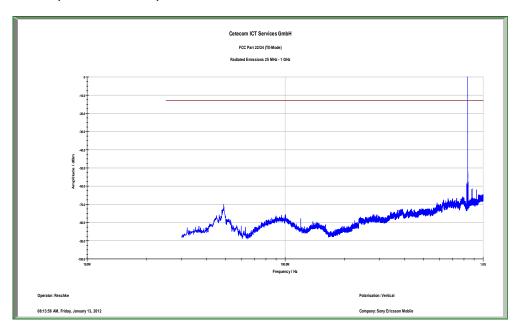
All measurements were done in horizontal and vertical polarization; the plots show the worst case.

The plots show only the middle channel. If spurious were detected, the lowest and highest channel were checked too. The found values are stated in the table below.

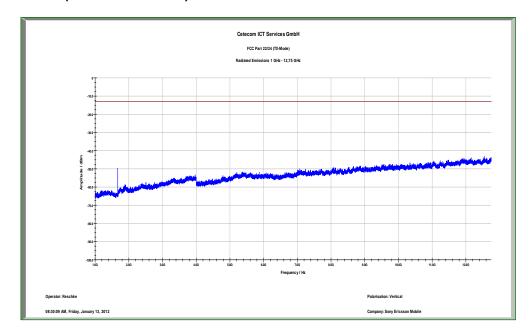
As can be seen from this data, the emissions from the test item were within the specification limit.


	Spurious Emission Level (dBm)							
Harmonic	Ch. 128 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 189 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 251 Freq. (MHz)	Level [dBm]
2	1648.4	-41.56	2	1672.8	-43.45	2	1697.6	-42.58
3	2472.6	-48.95	3	2509.2	1	3	2546.4	-48.99
4	3296.8	-	4	3345.6	-	4	3395.2	-
5	4121.0	ı	5	4182.0	1	5	4244.0	ı
6	4945.2	1	6	5018.4	-	6	5092.8	ı
7	5769.4	-	7	5854.8	-	7	5941.6	-
8	6593.6	-	8	6691.2	-	8	6790.4	-
9	7417.8	-	9	7527.6	-	9	7639.2	-
10	8242.0	-	10	8364.0	-	10	8488.0	-
	Measurement uncertainty					± 3dB		

Result: The result of the measurement is passed.


2012-01-18 Page 17 of 107

Plot 1: Channel 189 (Traffic mode up to 30 MHz)


Plot 2: Channel 189 (30 MHz - 1 GHz)

2012-01-18 Page 18 of 107

Plot 3: Channel 189 (1 GHz - 12.75 GHz)

2012-01-18 Page 19 of 107

8.3.4 Spurious emissions conducted

Description:

The following steps outline the procedure used to measure the conducted emissions from the mobile station.

- 1. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 9 GHz, data taken from 10 MHz to 12 GHz.
- 2. Determine mobile station transmits frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

GSM-850 Transmitter Channel Frequency 128 824.2 MHz 189 836.4 MHz 251 848.8 MHz

Measurement:

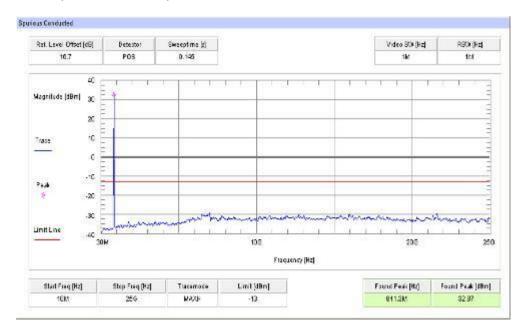
Measurement parameters			
Detector:	Peak		
Sweep time:	Auto		
Video bandwidth:	Pre-measurement with 1 MHz On spurious detection re-measurement below 1 GHz with 100 kHz Above 1 GHz with 1 MHz		
Resolution bandwidth:	Pre-measurement with 1 MHz On spurious detection re-measurement below 1 GHz with 100 kHz Above 1 GHz with 1 MHz		
Span:	30 MHz – 25 GHz		
Trace-Mode:	Max Hold		

Limits:

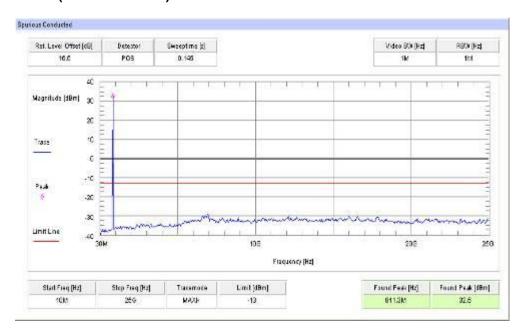
FCC	IC			
CFR Part 22.917 CFR Part 2.1051	RSS 132, Issue 2, Section 4.5 and 6.5			
Spurious Emissions Conducted				
Attenuation ≥ 43 + 10log(P) (P, Power in Watts)				
-13 dBm				

2012-01-18 Page 20 of 107

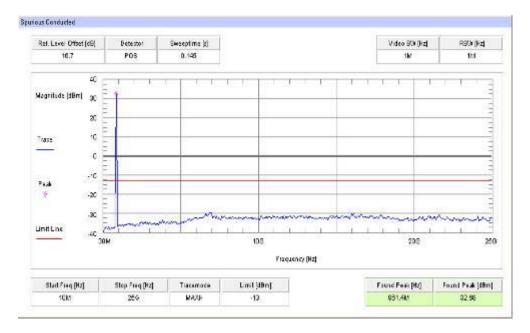
Results:


	Spurious Emission Level (dBm)								
Harmonic	Ch. 128 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 18 Freq. (M		Level [dBm]	Harmonic	Ch. 251 Freq. (MHz)	Level [dBm]
2	1648.4	-	2	1672.	.8	-	2	1697.6	-
3	2472.6	-	3	2509.	.2	-	3	2546.4	-
4	3296.8	-	4	3345.	.6	-	4	3395.2	-
5	4121.0	-	5	4182.	.0	-	5	4244.0	-
6	4945.2	-	6	5018.	.4	-	6	5092.8	-
7	5769.4	-	7	5854.	.8	-	7	5941.6	-
8	6593.6	-	8	6691.	.2	-	8	6790.4	-
9	7417.8	-	9	7527.	.6	-	9	7639.2	-
10	8242.0	-	10	8364.	.0	-	10	8488.0	-
	Measurement uncertainty						± 3dB		

Result: The result of the measurement is passed.


2012-01-18 Page 21 of 107

Plot 1: Channel 128 (10 MHz - 25 GHz)


Plot 2: Channel 189 (10 MHz - 25 GHz)

2012-01-18 Page 22 of 107

Plot 3: Channel 251 (10 MHz - 25 GHz)

2012-01-18 Page 23 of 107

8.3.5 Block edge compliance

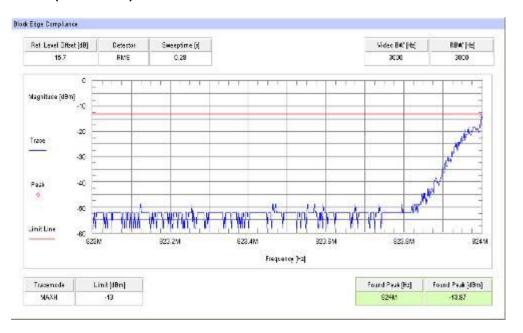
Description:

The spectrum at the band edges must comply with the spurious emissions limits.

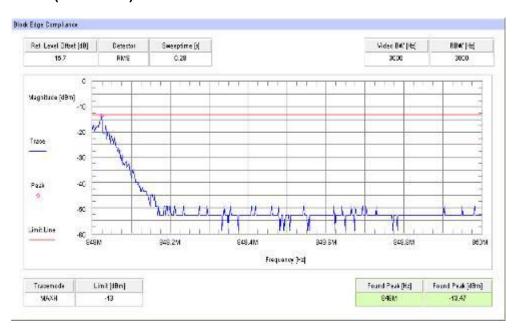
Measurement:

Measurement parameters			
Detector:	RMS		
Sweep time:	Auto		
Video bandwidth:	3 kHz		
Resolution bandwidth:	3 kHz		
Span:	1 MHz		
Trace-Mode:	Max Hold		

Limits:

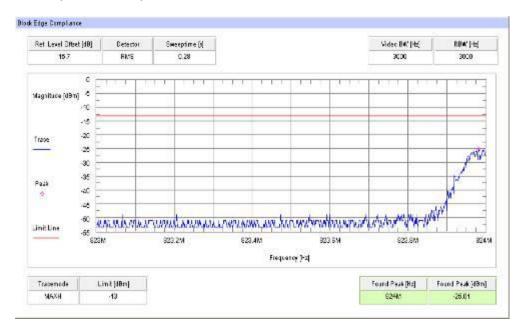

FCC	IC			
CFR Part 22.917 CFR Part 2.1051	RSS 132, Issue 2, Section 6.5			
Block Edge Compliance				
Attenuation ≥ 43 + 10log(P) (P, Power in Watts)				
-13 dBm				

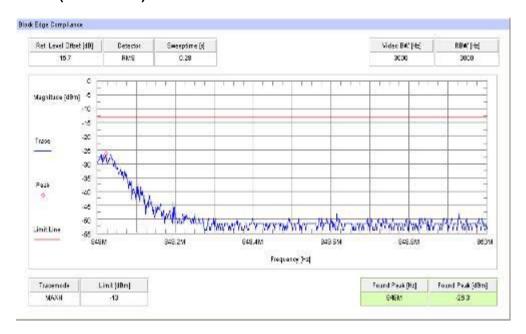
2012-01-18 Page 24 of 107



Results:

Plot 1: Channel 128 (GSM-mode)


Plot 2: Channel 251 (GSM-mode)


2012-01-18 Page 25 of 107

Plot 3: Channel 128 (EDGE-mode)

Plot 4: Channel 251 (EDGE-mode)

Result: The result of the measurement is passed.

2012-01-18 Page 26 of 107

8.3.6 Occupied bandwidth

Description:

Measurement of the occupied bandwidth of the transmitted signal.

Measurement:

Similar to conducted emissions, occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the GSM-850 frequency band. The table below lists the measured 99% power and -26dBc occupied bandwidths. Spectrum analyzer plots are included on the following pages.

Part 22.917 requires a measurement bandwidth of at least 1% of the occupied bandwidth. For ca. 300 kHz, this equates to a resolution bandwidth of at least 3 kHz. For this testing, a resolution bandwidth 3.0 kHz was used.

Measurement parameters				
Detector:	Peak			
Sweep time:	Auto			
Video bandwidth:	3 kHz			
Resolution bandwidth:	3 kHz			
Span:	1 MHz			
Trace-Mode:	Max Hold			

Limits:

FCC	IC			
CFR Part 22.917 CFR Part 2.1049	RSS 132, Issue 2, Section 4.5.1			
Occupied Bandwidth				
Spectrum must fall completely in the specified band				

2012-01-18 Page 27 of 107

Results:

Occupied Bandwidth - GMSK mode					
Frequency (MHz)	99% OBW (kHz) -26 dBc BW (kHz)				
824.2	285	317			
836.4	275 313				
848.8	273 311				
Measurement uncertainty	± 3 kHz				


Occupied Bandwidth - EDGE mode					
Frequency (MHz)	99% OBW (kHz) -26 dBc BW (kHz)				
824.2	273	309			
836.4	281 307				
848.8	279 309				
Measurement uncertainty	± 3 kHz				

Result: The result of the measurement is passed.

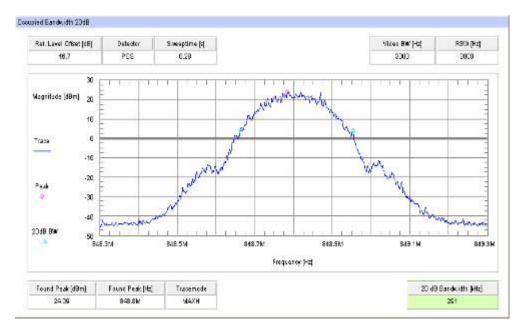
2012-01-18 Page 28 of 107

Plot 1: Channel 128 (99% - OBW)

Plot 2: Channel 128 (-26 dBc BW)

2012-01-18 Page 29 of 107

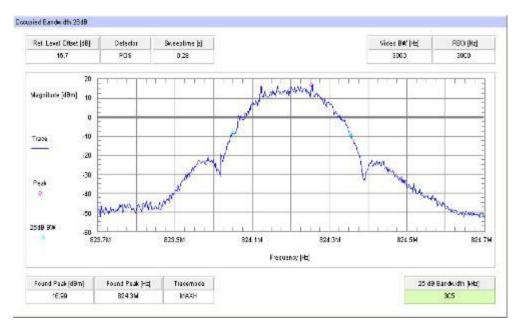
Plot 3: Channel 189 (99% - OBW)


Plot 4: Channel 189 (-26 dBc BW)


2012-01-18 Page 30 of 107

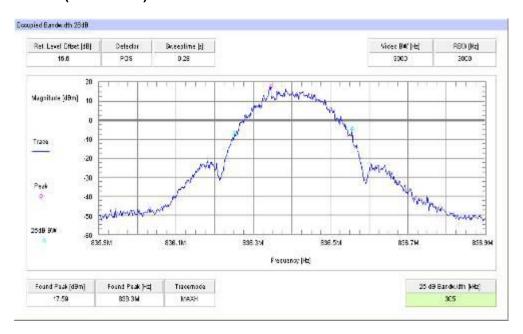
Plot 5: Channel 251 (99% - OBW)

Plot 6: Channel 251 (-26 dBc BW)


2012-01-18 Page 31 of 107

Plot 7: Channel 128 (99% - OBW) - EDGE


Plot 8: Channel 128 (-26 dBc BW) - EDGE


2012-01-18 Page 32 of 107

Plot 9: Channel 189 (99% - OBW) - EDGE

Plot 10: Channel 189 (-26 dBc BW) - EDGE

2012-01-18 Page 33 of 107

Plot 11: Channel 251 (99% - OBW) - EDGE

Plot 12: Channel 251 (-26 dBc BW) - EDGE

2012-01-18 Page 34 of 107

8.4 Results PCS 1900

All GSM-band measurements are done in GSM mode only (circuit switched).

All relevant tests have been repeated using 8-PSK modulation if EDGE mode is supported. All tests were performed with one timeslot in uplink activated and one timeslot in downlink activated. For each mode the highest output power was determined and used.

8.4.1 RF output power

Description:

This paragraph contains average power, peak output power and EIRP measurements for the mobile station. In all cases, the peak output power is within the required mask (this mask is specified in the JTC standards, TIA PN3389 Vol. 1 Chap 7, and is no FCC requirement).

Measurement:

The mobile was set up for the maximum output power with pseudo random data modulation.

Measurement parameters			
Detector: Peak and RMS (Power in Burst)			
Sweep time:	Auto		
Video bandwidth:	1 MHz		
Resolution bandwidth: 1 MHz			
Span:	Zero Span		
Trace-Mode:	Max Hold		

Limits:

FCC	IC
CFR Part 24.232 CFR Part 2.1046	RSS 133, Issue 5, Section 6.4
Nominal Peak Output Power	

+33.00 dBm

In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

2012-01-18 Page 35 of 107

Results:

Output Power (conducted) GMSK mode		
Frequency (MHz)	Average Output Power (dBm)	Peak to Average Ratio (dB)
1850.2	29.61	0.22
1880.0	29.53	0.17
1909.8	29.79	0.24
Measurement uncertainty	± 0.5 dB	

Output Power (conducted) 8-PSK mode		
Frequency (MHz)	Average Output Power (dBm)	Peak to Average Ratio (dB)
1850.2	24.37	3.32
1880.0	24.29	3.43
1909.8	24.31	3.23
Measurement uncertainty	± 0.5 dB	

Output Power (radiated) GMSK mode		
Frequency (MHz)	Average Output Power (dBm) - EIRP	
1850.2	32.60	
1880.0	32.00	
1909.8	32.27	
Measurement uncertainty	± 2.0 dB	

Output Power (radiated) 8-PSK mode		
Frequency (MHz)	Average Output Power (dBm) - EIRP	
1850.2	27.36	
1880.0	26.76	
1909.8	26.79	
Measurement uncertainty	± 2.0 dB	

Result: The result of the measurement is passed.

2012-01-18 Page 36 of 107

8.4.2 Frequency stability

Description:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the mobile station in a "call mode". This is accomplished with the use of a R&S CMU200 DIGITAL RADIOCOMMUNICATION TESTER.

- 1. Measure the carrier frequency at room temperature.
- 2. Subject the mobile station to overnight soak at -30 C.
- 3. With the mobile station, powered with V_{nom} , connected to the CMU200 and in a simulated call on channel 661 (centre channel), measure the carrier frequency. These measurements should be made within two minutes of powering up the mobile station, to prevent significant self warming.
- 4. Repeat the above measurements at 10°C increments from -30°C to +60°C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements.
- 5. Remeasure carrier frequency at room temperature with V_{nom} . Vary supply voltage from V_{min} to V_{max} , in 0.1 Volt steps remeasuring carrier frequency at each voltage. Pause at V_{nom} for 1.5 hours unpowered, to allow any self heating to stabilize, before continuing.
- 6. At all temperature levels hold the temperature to +/- 0.5°C during the measurement procedure.

Measurement:

Measurement parameters					
Detector:					
Sweep time:					
Video bandwidth:	Measured with CMU200				
Resolution bandwidth:	Measured with CMO200				
Span:					
Trace-Mode:					

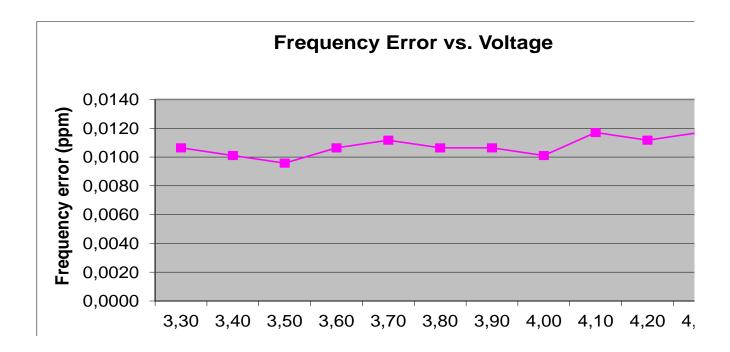
Limits:

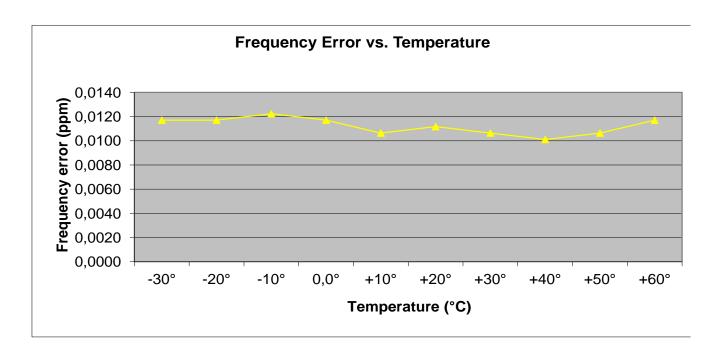
FCC	IC				
CFR Part 24.235 CFR Part 2.1055	RSS 133, Issue 5, Section 6.3				
Frequency Stability					
	cient to ensure that the fundamental authorized frequency block.				

2012-01-18 Page 37 of 107

Results:

AFC FREQ ERROR versus VOLTAGE


Voltage (V)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)	
3.3	20	0.00000106	0.0106	
3.4	19	0.00000101	0.0101	
3.5	18	0.00000096	0.0096	
3.6	20	0.00000106	0.0106	
3.7	21	0.00000112	0.0112	
3.8	20	0.00000106	0.0106	
3.9	20	0.00000106	0.0106	
4.0	.0 19 0.00000101		0.0101	
4.1	4.1 22		0.0117	
4.2	21	0.00000112	0.0112	
4.3	22	0.00000117	0.0117	
4.4	23	23 0.00000122 0.		


AFC FREQ ERROR versus TEMPERATURE

Temperature (°C)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)	
-30	22	0.00000117	0.0117	
-20	22	0.00000117	0.0117	
-10	23	0.00000122	0.0122	
± 0	22	0.00000117	0.0117	
10	20	0.0000106	0.0106	
20	21	0.00000112	0.0112	
30	20	0.0000106	0.0106	
40	19	0.0000101	0.0101	
50	20	0.0000106	0.0106	
60	22	0.00000117	0.0117	

2012-01-18 Page 38 of 107

Result: The result of the measurement is passed.

2012-01-18 Page 39 of 107

8.4.3 Spurious emissions radiated

Description:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2009 requirements and is recognized by the FCC to be in compliance for a 3 and a 10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 1910 MHz. This was rounded up to 20 GHz. The resolution bandwidth is set as outlined in Part 24.238. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the PCS1900 band.

The final open field emission (here 10m semi-anechoic chamber listed by FCC) test procedure is as follows:

- a) The test item was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna.
- b) The antenna output was terminated in a 50 ohm load (if possible).
- c) A double ridged wave guide antenna was placed on an adjustable height antenna mast 3 meters from the test item for emission measurements.
- d) Detected emissions were maximized at each frequency by rotating the test item and adjusting the receive antenna height and polarization. The maximum meter reading was recorded. The radiated emission measurements of the harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and 1 MHz bandwidth. If the harmonic could not be detected above the noise floor, the ambient level was recorded. The equivalent power into a dipole antenna was calculated from the field intensity levels measured at 3 meters.
- e) Now each detected emissions were substituted by the substitution method, in accordance with the TIA/EIA 603.

Measurement:

Measurement parameters				
Detector:	Peak			
Sweep time:	2 sec.			
Video bandwidth:	Below 1 GHz: 100 kHz Above 1 GHz: 1 MHz			
Resolution bandwidth:	Below 1 GHz: 100 kHz Above 1 GHz: 1 MHz			
Span:	100 MHz Steps			
Trace-Mode:	Max Hold			

Limits:

FCC	IC			
CFR Part 24.238 CFR Part 2.1053	RSS 133, Issue 5, Section 6.5			
Spurious Emissions Radiated				
Attenuation ≥ 43 + 10log(P) (P, Power in Watts)				
-13 dBm				

2012-01-18 Page 40 of 107

Results:

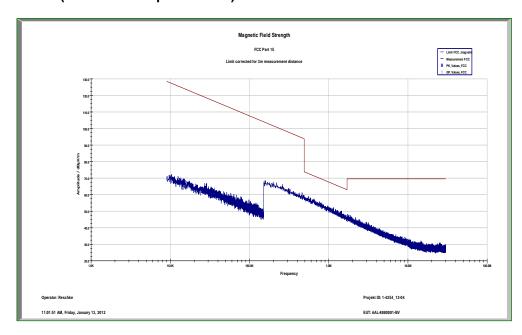
Radiated emissions measurements were made only at the upper, center, and lower carrier frequencies of the PCS1900 band (1850.2 MHz, 1880.0 MHz and 1909.8 MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the PCS1900 band into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

The final open field radiated levels are presented on the next pages.

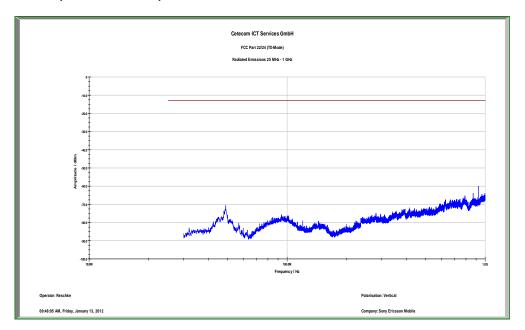
All measurements were done in horizontal and vertical polarization; the plots show the worst case.

The plots show only the middle channel. If spurious were detected, the lowest and highest channel were checked too. The found values are stated in the table below.

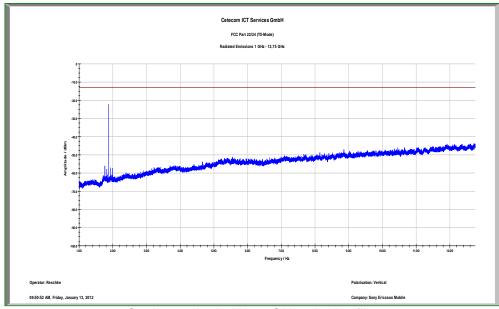
As can be seen from this data, the emissions from the test item were within the specification limit.


	Spurious Emission Level (dBm)							
Harmonic	Ch. 512 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 661 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 810 Freq. (MHz)	Level [dBm]
2	3700.4	-	2	3760.0	-	2	3819.6	-
3	5550.6	ı	3	5640.0	-	3	5729.4	-
4	7400.8	-	4	7520.0	-	4	7639.2	-
5	9251.0	ı	5	9400.0	-	5	9549.0	-
6	11101.2	1	6	11280.0	-	6	11458.8	-
7	12951.4	ı	7	13160.0	-	7	13368.6	-
8	14801.6	-	8	15040.0	-	8	15278.4	-
9	16651.8	ı	9	16920.0	-	9	17188.2	ı
10	18502.0	-	10	18800.0	-	10	19098.0	-
	Measuren	nent uncerta	inty			± 3dB		

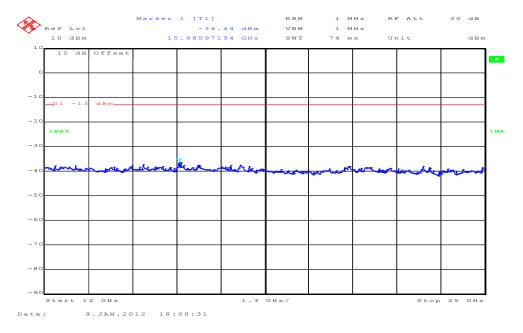
Result: The result of the measurement is passed.


2012-01-18 Page 41 of 107

Plot 1: Channel 661 (Traffic mode up to 30 MHz)


Plot 2: Channel 661 (30 MHz - 1 GHz)

2012-01-18 Page 42 of 107



Plot 3: Channel 661 (1 GHz - 12.75 GHz)

Carrier notched with 1.9 GHz rejection filter

Plot 4: Channel 661 (12 GHz - 25 GHz)

2012-01-18 Page 43 of 107

8.4.4 Spurious emissions conducted

Description:

The following steps outline the procedure used to measure the conducted emissions from the mobile station.

- 1. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 19.1 GHz, data taken from 10 MHz to 20 GHz.
- 2. Determine mobile station transmits frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

PCS1900 Transmitter Channel Frequency 512 1850.2 MHz 661 1880.0 MHz

810 1909.8 MHz

Measurement:

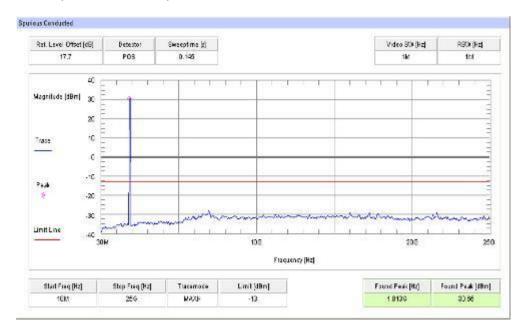
Measurement parameters				
Detector:	Peak			
Sweep time:	Auto			
Video bandwidth:	Pre-measurement with 1 MHz On spurious detection re-measurement below 1 GHz with 100 kHz Above 1 GHz with 1 MHz			
Resolution bandwidth:	Pre-measurement with 1 MHz On spurious detection re-measurement below 1 GHz with 100 kHz Above 1 GHz with 1 MHz			
Span:	30 MHz – 25 GHz			
Trace-Mode:	Max Hold			

Limits:

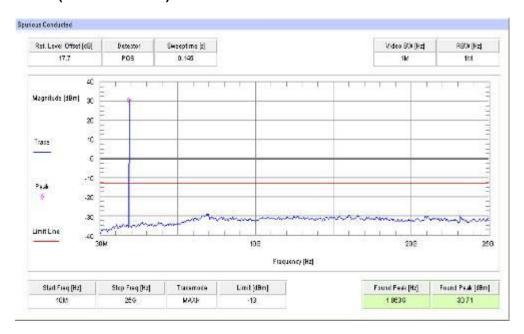
FCC	IC			
CFR Part 24.238 CFR Part 2.1051	RSS 133, Issue 5, Section 6.5			
Spurious Emiss	ions Conducted			
Attenuation ≥ 43 + 10log(P) (P, Power in Watts)				
-13 dBm				

2012-01-18 Page 44 of 107

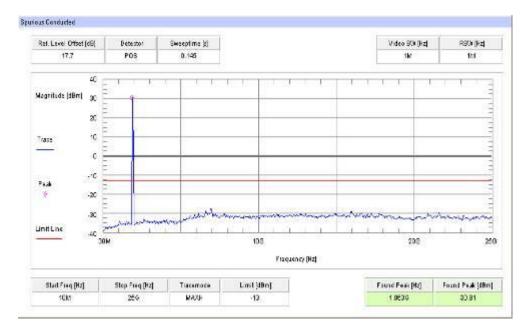
Results:


	Spurious Emission Level (dBm)								
Harmonic	Ch. 512 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 6 Freq. (N		Level [dBm]	Harmonic	Ch. 810 Freq. (MHz)	Level [dBm]
2	3700.4	-	2	3760	0.0	-	2	3819.6	-
3	5550.6	-	3	5640	0.0	-	3	5729.4	-
4	7400.8	-	4	7520	0.0	-	4	7639.2	-
5	9251.0	-	5	9400	0.0	-	5	9549.0	-
6	11101.2	-	6	11280	0.0	-	6	11458.8	-
7	12951.4	-	7	13160	0.0	-	7	13368.6	-
8	14801.6	-	8	15040	0.0	-	8	15278.4	-
9	16651.8	-	9	16920	0.0	-	9	17188.2	-
10	18502.0	-	10	18800	0.0	-	10	19098.0	-
	Measuren	nent uncerta	inty				± 3dB		

Result: The result of the measurement is passed.


2012-01-18 Page 45 of 107

Plot 1: Channel 512 (10 MHz - 25 GHz)


Plot 2: Channel 661 (10 MHz - 25 GHz)

2012-01-18 Page 46 of 107

Plot 3: Channel 810 (10 MHz - 25 GHz)

2012-01-18 Page 47 of 107

8.4.5 Block edge compliance

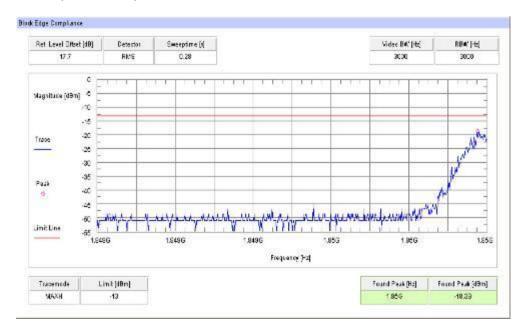
Description:

The spectrum at the band edges must comply with the spurious emissions limits.

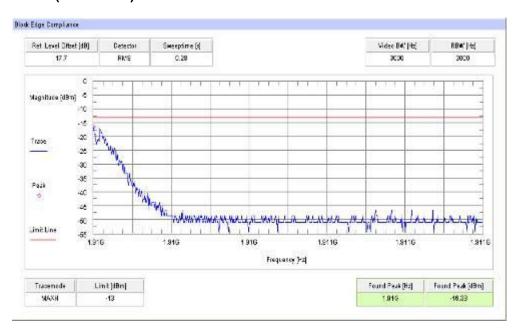
Measurement:

Measurement parameters				
Detector:	RMS			
Sweep time:	Auto			
Video bandwidth:	3 kHz			
Resolution bandwidth:	3 kHz			
Span:	1 MHz			
Trace-Mode:	Max Hold			

Limits:

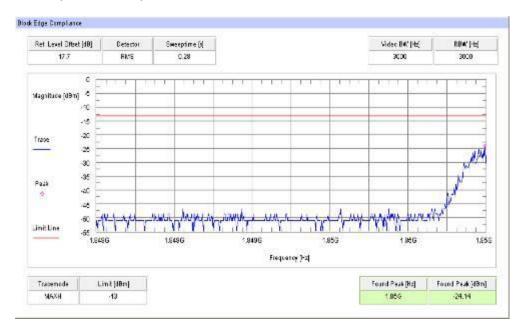

FCC	IC				
CFR Part 24.238 CFR Part 2.1051	RSS 133, Issue 5, Section 6.5				
Block Edge	Compliance				
Attenuation ≥ 43 + 10log(P) (P, Power in Watts)					
-13	dBm				

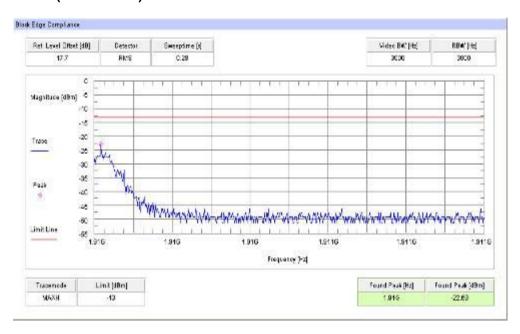
2012-01-18 Page 48 of 107



Results:

Plot 1: Channel 512 (GSM-mode)


Plot 2: Channel 810 (GSM-mode)


2012-01-18 Page 49 of 107

Plot 3: Channel 512 (EDGE-mode)

Plot 4: Channel 810 (EDGE-mode)

Result: The result of the measurement is passed.

2012-01-18 Page 50 of 107

8.4.6 Occupied bandwidth

Description:

Measurement of the occupied bandwidth of the transmitted signal.

Measurement:

Similar to conducted emissions, occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the PCS1900 frequency band. The table below lists the measured 99% power and -26dBc occupied bandwidths. Spectrum analyzer plots are included on the following pages.

Part 24.238 requires a measurement bandwidth of at least 1% of the occupied bandwidth. For ca. 300 kHz, this equates to a resolution bandwidth of at least 3.0 kHz. For this testing, a resolution bandwidth 3.0 kHz was used.

Measurement parameters		
Detector:	Peak	
Sweep time:	Auto	
Video bandwidth:	3 kHz	
Resolution bandwidth:	3 kHz	
Span:	1 MHz	
Trace-Mode:	Max Hold	

Limits:

FCC	IC	
CFR Part 24.238 CFR Part 2.1049 RSS 133, Issue 5, Section 6.5		
Occupied Bandwidth		
Spectrum must fall completely in the specified band		

2012-01-18 Page 51 of 107

Results:

Occupied Bandwidth - GMSK mode				
Frequency (MHz)	99% OBW (kHz) -26 dBc BW (kHz)			
1850.2	271	313		
1880.0	273	311		
1909.8	265	309		
Measurement uncertainty	± 3 kHz			


Occupied Bandwidth - EDGE mode				
Frequency (MHz)	99% OBW (kHz) -26 dBc BW (kHz)			
1850.2	259 283			
1880.0	279 301			
1909.8	273 295			
Measurement uncertainty	± 3 kHz			

Result: The result of the measurement is passed.

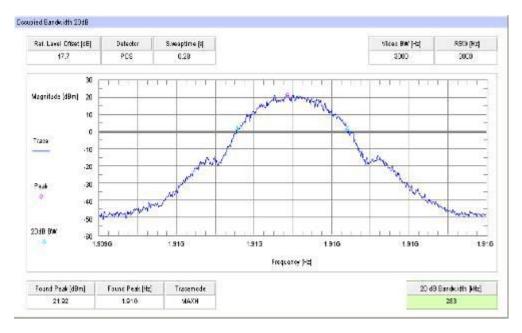
2012-01-18 Page 52 of 107

Plot 1: Channel 512 (99% - OBW)

Plot 2: Channel 512 (-26 dBc BW)

2012-01-18 Page 53 of 107

Plot 3: Channel 661 (99% - OBW)


Plot 4: Channel 661 (-26 dBc BW)

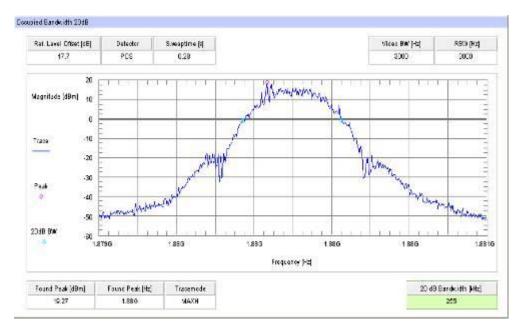
2012-01-18 Page 54 of 107

Plot 5: Channel 810 (99% - OBW)

Plot 6: Channel 810 (-26 dBc BW)

2012-01-18 Page 55 of 107

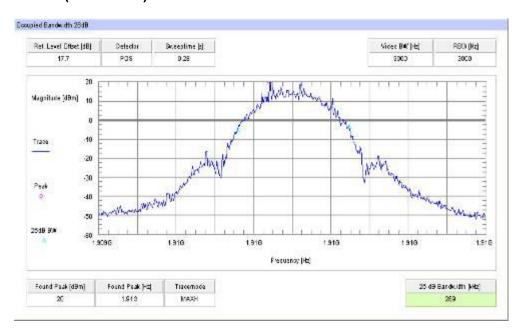
Plot 7: Channel 512 (99% - OBW) - EDGE


Plot 8: Channel 512 (-26 dBc BW) - EDGE


2012-01-18 Page 56 of 107

Plot 9: Channel 661 (99% - OBW) - EDGE

Plot 10: Channel 661 (-26 dBc BW) - EDGE


2012-01-18 Page 57 of 107

Plot 11: Channel 810 (99% - OBW) - EDGE

Plot 12: Channel 810 (-26 dBc BW) - EDGE

2012-01-18 Page 58 of 107

8.5 Results UMTS band II

All UMTS-band measurements are done in WCDMA mode only.

The connection was established with the following setup: WCDMA CS-RMC, Max Power (All Bit up)

8.5.1 RF output power

Description:

This paragraph contains average power, peak output power and EIRP measurements for the mobile station. In all cases, the peak output power is within the required mask (this mask is specified in the JTC standards, TIA PN3389 Vol. 1 Chap 7, and is no FCC requirement).

Measurement:

The mobile was set up for the maximum output power with pseudo random data modulation.

To determine the Peak-To-Average Power Ratio (PAPR) the measurement was performed with the Power Complementary Cumulative Distribution Function (CCDF).

Measurement parameters		
Detector:	Peak and RMS (Power in Burst)	
Sweep time: Auto		
Video bandwidth: 10 MHz		
Resolution bandwidth: 10 MHz		
Span:	Zero Span	
Trace-Mode:	Max Hold	

Limits:

FCC	IC	
CFR Part 24.232 CFR Part 2.1046	RSS 133, Issue 5, Section 6.4	
Nominal Peak Output Power		

+33.00 dBm

In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

2012-01-18 Page 59 of 107

Results:

Output Power (conducted) WCDMA mode				
Frequency (MHz)	Average Output Power (dBm) Peak to Average Ratio (dB)			
1852.4	24.22 2.85			
1880.0	24.58 2.94			
1907.6	24.49	2.39		
Measurement uncertainty	± 0.5 dB			

Output Power (radiated) WCDMA mode		
Frequency (MHz) Average Output Power (dBm) - EIRP		
1852.4	27.21	
1880.0	27.05	
1907.6	26.97	
Measurement uncertainty	± 2.0 dB	

Result: The result of the measurement is passed.

2012-01-18 Page 60 of 107

8.5.2 Frequency stability

Description:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the mobile station in a "call mode". This is accomplished with the use of a R&S CMU200 DIGITAL RADIOCOMMUNICATION TESTER.

- 1. Measure the carrier frequency at room temperature.
- 2. Subject the mobile station to overnight soak at -30 C.
- 3. With the mobile station, powered with V_{nom} , connected to the CMU200 and in a simulated call on channel 9400 (centre channel), measure the carrier frequency. These measurements should be made within two minutes of powering up the mobile station, to prevent significant self warming.
- 4. Repeat the above measurements at 10°C increments from -30°C to +60°C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements.
- 5. Remeasure carrier frequency at room temperature with V_{nom} . Vary supply voltage from V_{min} to V_{max} , in 0.1 Volt steps remeasuring carrier frequency at each voltage. Pause at V_{nom} for 1.5 hours unpowered, to allow any self heating to stabilize, before continuing.
- 6. At all temperature levels hold the temperature to +/- 0.5°C during the measurement procedure.

Measurement:

Measurement parameters			
Detector:			
Sweep time:			
Video bandwidth:	Magazirad with CMI I200		
Resolution bandwidth:	Measured with CMU200		
Span:			
Trace-Mode:			

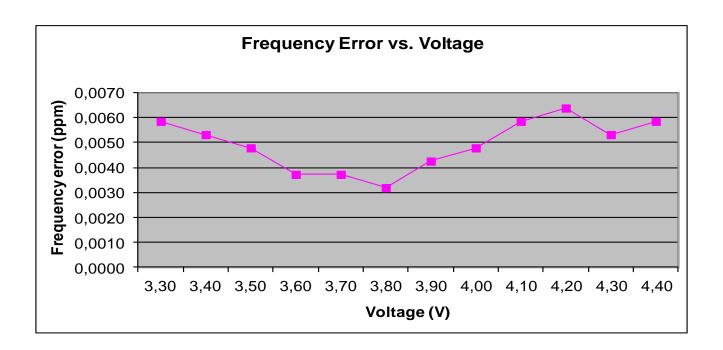
Limits:

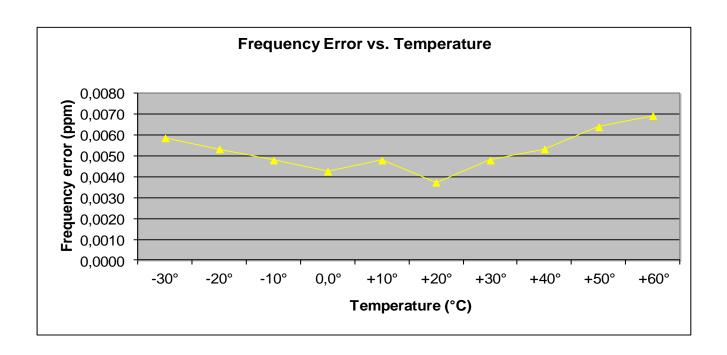
FCC	IC	
CFR Part 24.235 CFR Part 2.1055 RSS 133, Issue 5, Section 6.3		
Frequency Stability		
The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.		

2012-01-18 Page 61 of 107

Results:

AFC FREQ ERROR versus VOLTAGE


Voltage (V)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)
3.3	11	0.00000059	0.0059
3.4	10	0.0000053	0.0053
3.5	9	0.00000048	0.0048
3.6	7	0.0000037	0.0037
3.7	7	0.0000037	0.0037
3.8	6	0.00000032	0.0032
3.9	8	0.00000043	0.0043
4.0	9	0.00000048	0.0048
4.1	11	0.00000059	0.0059
4.2	12	0.00000064	0.0064
4.3	10	0.0000053	0.0053
4.4	11	0.0000059	0.0059


AFC FREQ ERROR versus TEMPERATURE

Temperature (°C)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)
-30	11	0.0000059	0.0059
-20	10	0.0000053	0.0053
-10	9	0.00000048	0.0048
± 0	8	0.00000043	0.0043
10	9	0.00000048	0.0048
20	7	0.0000037	0.0037
30	9	0.0000048	0.0048
40	10	0.0000053	0.0053
50	12	0.0000064	0.0064
60	13	0.0000069	0.0069

2012-01-18 Page 62 of 107

Result: The result of the measurement is passed.

2012-01-18 Page 63 of 107

8.5.3 Spurious emissions radiated

Description:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2009 requirements and is recognized by the FCC to be in compliance for a 3 and a 10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 1910 MHz. This was rounded up to 20 GHz. The resolution bandwidth is set as outlined in Part 24.238. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the UMTS band II.

The final open field emission (here 10m semi-anechoic chamber listed by FCC) test procedure is as follows:

- a) The test item was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna.
- b) The antenna output was terminated in a 50 ohm load (if possible).
- c) A double ridged wave guide antenna was placed on an adjustable height antenna mast 3 meters from the test item for emission measurements.
- d) Detected emissions were maximized at each frequency by rotating the test item and adjusting the receive antenna height and polarization. The maximum meter reading was recorded. The radiated emission measurements of the harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and 1 MHz bandwidth. If the harmonic could not be detected above the noise floor, the ambient level was recorded. The equivalent power into a dipole antenna was calculated from the field intensity levels measured at 3 meters.
- e) Now each detected emissions were substituted by the substitution method, in accordance with the TIA/EIA 603.

Measurement:

Measurement parameters				
Detector:	Peak			
Sweep time:	2 sec.			
Video bandwidth:	Below 1 GHz: 100 kHz Above 1 GHz: 1 MHz			
Resolution bandwidth:	Below 1 GHz: 100 kHz Above 1 GHz: 1 MHz			
Span:	100 MHz Steps			
Trace-Mode:	Max Hold			

Limits:

FCC	IC			
CFR Part 24.238 CFR Part 2.1053	RSS 133, Issue 5, Section 6.5			
Spurious Emissions Radiated				
Attenuation ≥ 43 + 10log(P) (P, Power in Watts)				
-13 dBm				

2012-01-18 Page 64 of 107

Results:

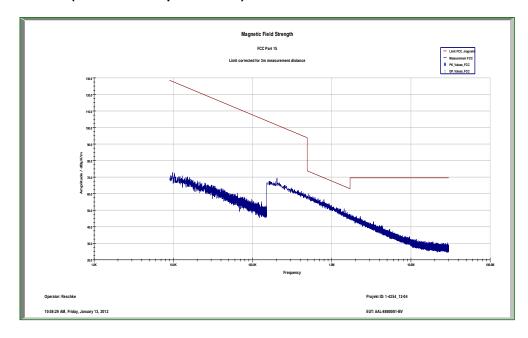
Radiated emissions measurements were made only at the upper, center, and lower carrier frequencies of the UMTS band II (1852.4 MHz, 1880.0 MHz and 1907.6 MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the UMTS band II into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

The final open field radiated levels are presented on the next pages.

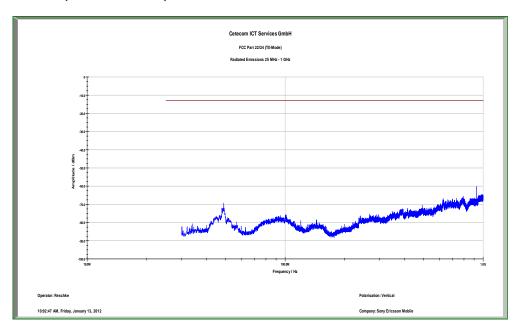
All measurements were done in horizontal and vertical polarization; the plots show the worst case.

The plots show only the middle channel. If spurious were detected, the lowest and highest channel were checked too. The found values are stated in the table below.

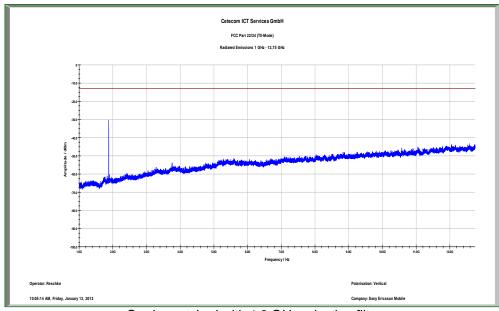
As can be seen from this data, the emissions from the test item were within the specification limit.


Spurious Emission Level (dBm)								
Harmonic	Ch. 9262 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 9400 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 9538 Freq. (MHz)	Level [dBm]
2	3704.8	-	2	3760.0	-	2	3815.2	-
3	5557.2	ı	3	5640.0	-	3	5722.8	-
4	7409.6	-	4	7520.0	-	4	7630.4	-
5	9262.0	ı	5	9400.0	-	5	9538.0	-
6	11114.4	1	6	11280.0	-	6	11445.6	-
7	12966.8	ı	7	13160.0	-	7	13353.2	-
8	14819.2	-	8	15040.0	-	8	15260.8	-
9	16671.6	ı	9	16920.0	-	9	17168.4	ı
10	18524.0	-	10	18800.0	-	10	19076.0	-
	Measurement uncertainty					± 3dB	-	

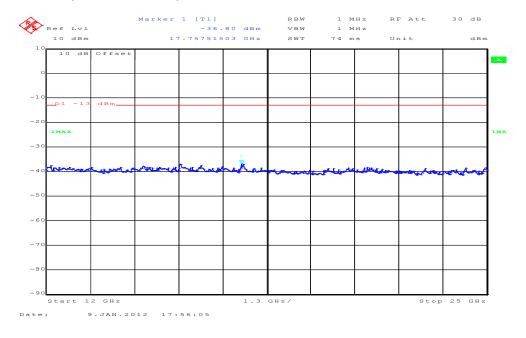
Result: The result of the measurement is passed.


2012-01-18 Page 65 of 107

Plot 1: Channel 9400 (Traffic mode up to 30 MHz)


Plot 2: Channel 9400 (30 MHz - 1 GHz)

2012-01-18 Page 66 of 107



Plot 3: Channel 9400 (1 GHz - 12.75 GHz)

Carrier notched with 1.9 GHz rejection filter

Plot 4: Channel 9400 (12 GHz - 25 GHz)

2012-01-18 Page 67 of 107

8.5.4 Spurious emissions conducted

Description:

The following steps outline the procedure used to measure the conducted emissions from the mobile station.

- 1. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 19.1 GHz, data taken from 10 MHz to 20 GHz.
- 2. Determine mobile station transmits frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

UMTS band II Transmitter Channel Frequency 9262 1852.4 MHz 9400 1880.0 MHz 9538 1907.6 MHz

Measurement:

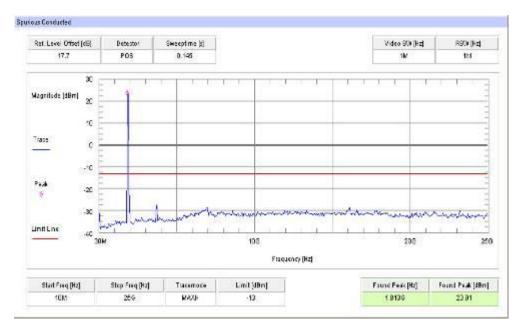
Measurement parameters				
Detector:	Peak			
Sweep time:	Auto			
Video bandwidth:	Pre-measurement with 1 MHz On spurious detection re-measurement below 1 GHz with 100 kHz Above 1 GHz with 1 MHz			
Resolution bandwidth:	Pre-measurement with 1 MHz On spurious detection re-measurement below 1 GHz with 100 kHz Above 1 GHz with 1 MHz			
Span:	30 MHz – 25 GHz			
Trace-Mode:	Max Hold			

Limits:

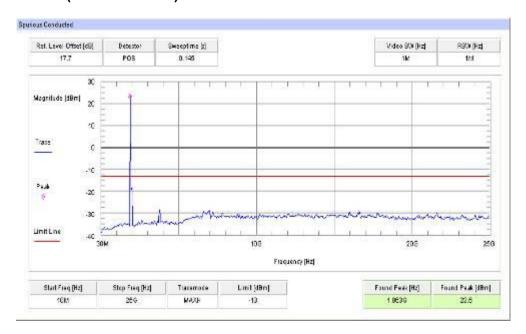
FCC	IC				
CFR Part 24.238 CFR Part 2.1051	RSS 133, Issue 5, Section 6.5				
Spurious Emissions Conducted					
Attenuation ≥ 43 + 10log(P) (P, Power in Watts)					
-13 dBm					

2012-01-18 Page 68 of 107

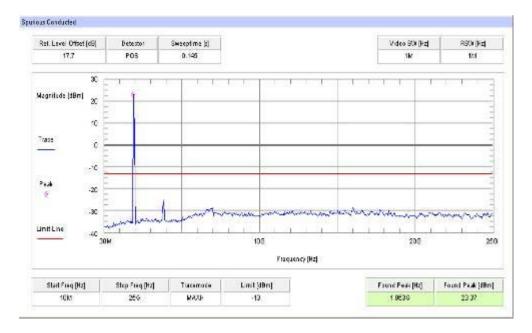
Results:


Spurious Emission Level (dBm)									
Harmonic	Ch. 9262 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 9 Freq. (I		Level [dBm]	Harmonic	Ch. 9538 Freq. (MHz)	Level [dBm]
2	3704.8	-	2	3760	0.0	-	2	3815.2	-
3	5557.2	-	3	5640	0.0	-	3	5722.8	-
4	7409.6	-	4	7520	0.0	-	4	7630.4	-
5	9262.0	-	5	9400.0		-	5	9538.0	-
6	11114.4	-	6	1128	0.0	-	6	11445.6	-
7	12966.8	-	7	1316	0.0	-	7	13353.2	-
8	14819.2	-	8	15040.0		-	8	15260.8	-
9	16671.6	-	9	16920.0		-	9	17168.4	-
10	18524.0	-	10	1880	0.0	-	10	19076.0	-
	Measurement uncertainty						± 3dB		

Result: The result of the measurement is passed.


2012-01-18 Page 69 of 107

Plot 1: Channel 9262 (10 MHz - 25 GHz)


Plot 2: Channel 9400 (10 MHz - 25 GHz)

2012-01-18 Page 70 of 107

Plot 3: Channel 9538 (10 MHz - 25 GHz)

2012-01-18 Page 71 of 107

8.5.5 Block edge compliance

Description:

The spectrum at the band edges must comply with the spurious emissions limits.

Measurement:

Measurement parameters				
Detector:	RMS			
Sweep time:	20 sec.			
Video bandwidth:	30 kHz			
Resolution bandwidth:	30 kHz			
Span:	1 MHz			
Trace-Mode:	Max Hold			

Limits:

FCC	IC
CFR Part 24.238 CFR Part 2.1051	RSS 133, Issue 5, Section 6.5

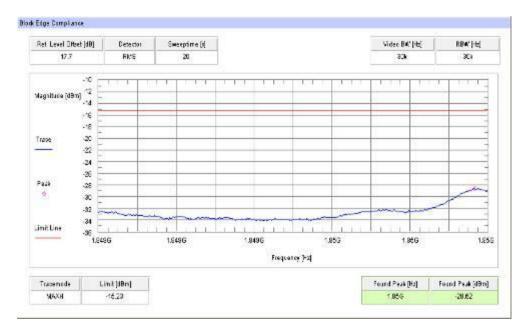
Block Edge Compliance

Part 24.238 specifies that "the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB."

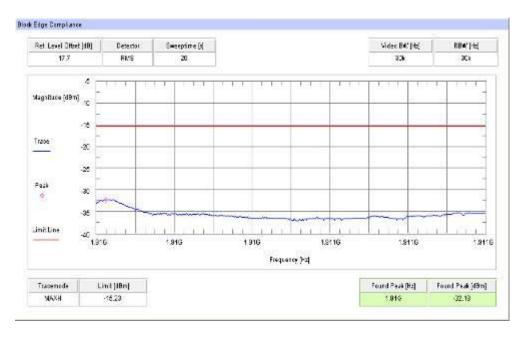
However, in publication number 890810, The FCC Office of Engineering and Technology specified the following correction to the limits when a resolution bandwidth smaller than 1% of the emission bandwidth is used:

"An alternative is to add an additional correction factor of 10 Log (RBW1/ RBW2) to the 43 +10 Log (P) limit. RBW1 is the narrower measurement resolution bandwidth and RBW2 is either the 1% emissions bandwidth or 1 MHz."

When using a 30 kHz bandwidth, this yields a -2.2185 adjustment to the limit [10log(30kHz/50kHz) = -2.2185]. When this adjustment is applied to the limit, the limit becomes -15.2185.


-15.22 dBm

2012-01-18 Page 72 of 107



Results:

Plot 1: Channel 9262

Plot 2: Channel 9538

Result: The result of the measurement is passed.

2012-01-18 Page 73 of 107

8.5.6 Occupied bandwidth

Description:

Measurement of the occupied bandwidth of the transmitted signal.

Measurement:

Similar to conducted emissions, occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the UMTS band II frequency band. The table below lists the measured 99% power and -26dBc occupied bandwidths. Spectrum analyzer plots are included on the following pages.

Part 24.238 requires a measurement bandwidth of at least 1% of the occupied bandwidth. For ca. 4700 kHz, this equates to a resolution bandwidth of at least 50 kHz. For this testing, a resolution bandwidth 100 kHz was used.

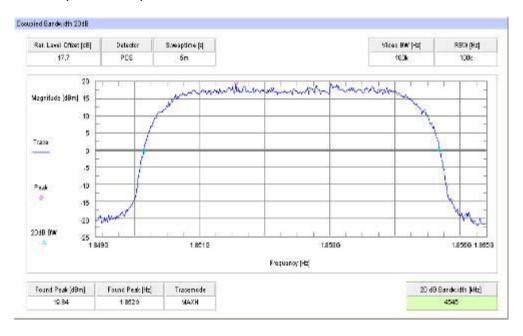
Measurement parameters		
Detector:	Peak	
Sweep time:	Auto	
Video bandwidth:	100 kHz	
Resolution bandwidth:	100 kHz	
Span:	6 MHz	
Trace-Mode:	Max Hold	

Limits:

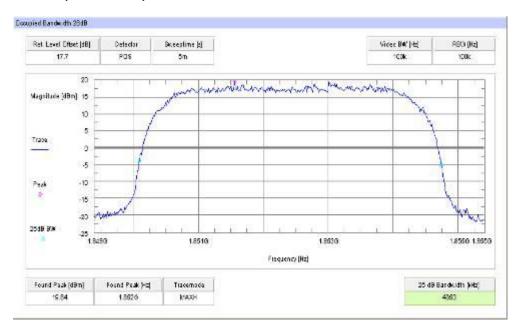
FCC	IC	
CFR Part 24.238 CFR Part 2.1049	RSS 133, Issue 5, Section 6.5	
Occupied Bandwidth		
Spectrum must fall completely in the specified band		

2012-01-18 Page 74 of 107

Results:

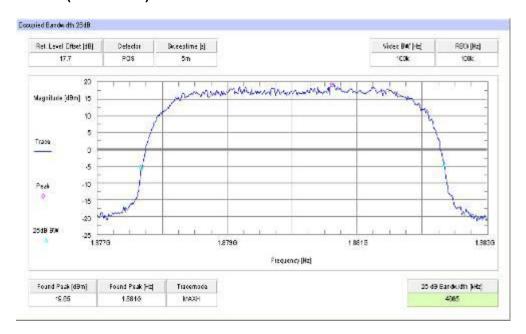

Occupied Bandwidth			
Frequency (MHz)	99% OBW (kHz) -26 dBc BW (kHz)		
1852.4	4569	4677	
1880.0	4557	4677	
1907.6	4569	4701	
Measurement uncertainty	± 100 kHz		

Result: The result of the measurement is passed.

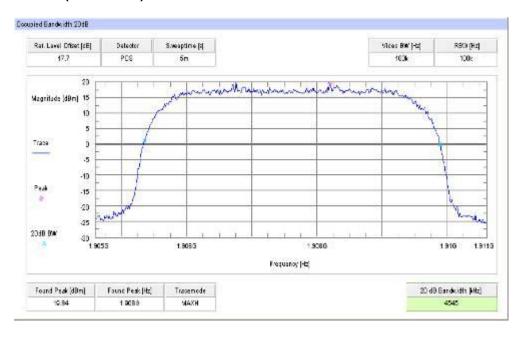

2012-01-18 Page 75 of 107

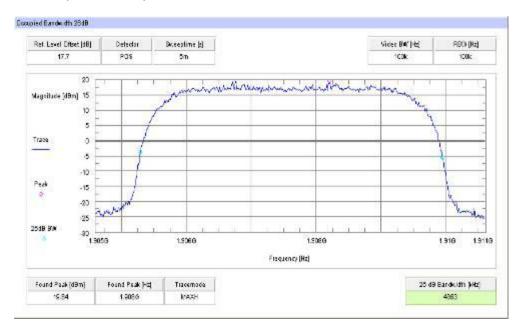
Plot 1: Channel 9262 (99% - OBW)

Plot 2: Channel 9262 (-26 dBc BW)


2012-01-18 Page 76 of 107

Plot 3: Channel 9400 (99% - OBW)


Plot 4: Channel 9400 (-26 dBc BW)


2012-01-18 Page 77 of 107

Plot 5: Channel 9538 (99% - OBW)

Plot 6: Channel 9538 (-26 dBc BW)

2012-01-18 Page 78 of 107

8.6 Results UMTS band V

All UMTS-band measurements are done in WCDMA mode only.
The connection was established with the following setup: WCDMA CS-RMC, Max Power (All Bit up)

8.6.1 RF output power

Description:

This paragraph contains average power, peak output power and ERP measurements for the mobile station. In all cases, the peak output power is within the required mask (this mask is specified in the JTC standards, TIA PN3389 Vol. 1 Chap 7, and is no FCC requirement).

Measurement:

The mobile was set up for the maximum output power with pseudo random data modulation.

To determine the Peak-To-Average Power Ratio (PAPR) the measurement was performed with the Power Complementary Cumulative Distribution Function (CCDF).

Measurement parameters		
Detector:	Peak and RMS (Power in Burst)	
Sweep time:	Auto	
Video bandwidth:	10 MHz	
Resolution bandwidth:	10 MHz	
Span:	Zero Span	
Trace-Mode:	Max Hold	

Limits:

FCC	IC	
CFR Part 22.913 CFR Part 2.1046	RSS 132, Issue 2, Section 4.4 and 6.4	
Nominal Peak Output Power		

+38.45 dBm

In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

2012-01-18 Page 79 of 107

Results:

Output Power (conducted) WCDMA mode			
Frequency (MHz) Average Output Power (dBm) Peak to Average Ration			
826.4	24.70	2.83	
836.0	24.72	2.74	
846.6	24.61	2.48	
Measurement uncertainty	± 0.5 dB		

Output Power (radiated) WCDMA mode		
Frequency (MHz) Average Output Power (dBm) - ERP		
826.4	20.25	
836.0	21.37	
846.6	24.17	
Measurement uncertainty	± 2.0 dB	

Result: The result of the measurement is passed.

2012-01-18 Page 80 of 107

8.6.2 Frequency stability

Description:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the mobile station in a "call mode". This is accomplished with the use of a R&S CMU200 DIGITAL RADIOCOMMUNICATION TESTER.

- 1. Measure the carrier frequency at room temperature.
- 2. Subject the mobile station to overnight soak at -30 C.
- 3. With the mobile station, powered with V_{nom} , connected to the CMU200 and in a simulated call on channel 4180 (centre channel), measure the carrier frequency. These measurements should be made within two minutes of powering up the mobile station, to prevent significant self warming.
- 4. Repeat the above measurements at 10°C increments from -30°C to +60°C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements.
- 5. Remeasure carrier frequency at room temperature with V_{nom} . Vary supply voltage from V_{min} to V_{max} , in 0.1 Volt steps remeasuring carrier frequency at each voltage. Pause at V_{nom} for 1.5 hours unpowered, to allow any self heating to stabilize, before continuing.
- 6. At all temperature levels hold the temperature to +/- 0.5°C during the measurement procedure.

Measurement:

Measurement parameters		
Detector:		
Sweep time:		
Video bandwidth:	Magazirad with CMI 1200	
Resolution bandwidth:	Measured with CMU200	
Span:		
Trace-Mode:		

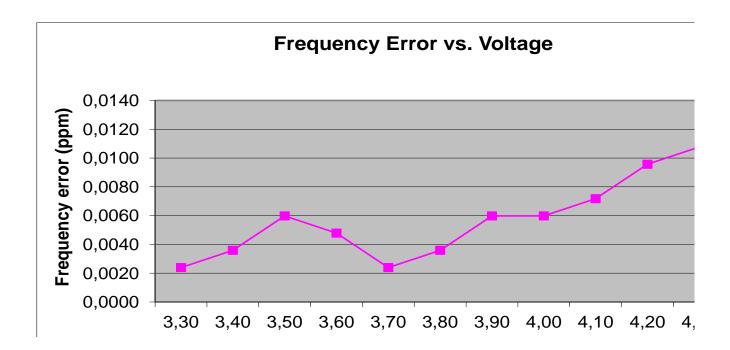
Limits:

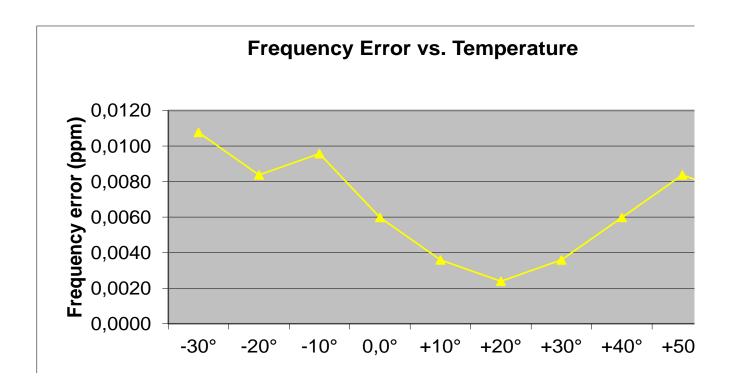
FCC	IC	
CFR Part 22.355 CFR Part 2.1055	RSS 132, Issue 2, Section 4.3 and 6.3	
Frequency Stability		
± 0.1 ppm		

2012-01-18 Page 81 of 107

Results:

AFC FREQ ERROR versus VOLTAGE


Voltage (V)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)
3.3	2	0.00000024	0.0024
3.4	3	0.0000036	0.0036
3.5	5	0.00000060	0.0060
3.6	4	0.00000048	0.0048
3.7	2	0.00000024	0.0024
3.8	3	0.0000036	0.0036
3.9	5	0.00000060	0.0060
4.0	5	0.00000060	0.0060
4.1	6	0.00000072	0.0072
4.2	8	0.0000096	0.0096
4.3	9	0.0000108	0.0108
4.4	10	0.00000120	0.0120


AFC FREQ ERROR versus TEMPERATURE

Temperature (°C)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)
-30	9	0.0000108	0.0108
-20	7	0.0000084	0.0084
-10	8	0.00000096	0.0096
± 0	5	0.00000060	0.0060
10	3	0.0000036	0.0036
20	2	0.00000024	0.0024
30	3	0.0000036	0.0036
40	5	0.00000060	0.0060
50	7	0.0000084	0.0084
60	6	0.0000072	0.0072

2012-01-18 Page 82 of 107

Result: The result of the measurement is passed.

2012-01-18 Page 83 of 107

8.6.3 Spurious emissions radiated

Description:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2009 requirements and is recognized by the FCC to be in compliance for a 3 and a 10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 846.6 MHz. This was rounded up to 12 GHz. The resolution bandwidth is set as outlined in Part 22.917. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the UMTS band V.

The final open field emission (here 10m semi-anechoic chamber listed by FCC) test procedure is as follows:

- a) The test item was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna.
- b) The antenna output was terminated in a 50 ohm load (if possible).
- c) A double ridged wave guide antenna was placed on an adjustable height antenna mast 3 meters from the test item for emission measurements.
- d) Detected emissions were maximized at each frequency by rotating the test item and adjusting the receive antenna height and polarization. The maximum meter reading was recorded. The radiated emission measurements of the harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and 1 MHz bandwidth. If the harmonic could not be detected above the noise floor, the ambient level was recorded. The equivalent power into a dipole antenna was calculated from the field intensity levels measured at 3 meters.
- e) Now each detected emissions were substituted by the substitution method, in accordance with the TIA/EIA 603.

Measurement:

Measurement parameters		
Detector:	Peak	
Sweep time:	2 sec.	
Video bandwidth:	Below 1 GHz: 100 kHz Above 1 GHz: 1 MHz	
Resolution bandwidth:	Below 1 GHz: 100 kHz Above 1 GHz: 1 MHz	
Span:	100 MHz Steps	
Trace-Mode:	Max Hold	

Limits:

FCC	IC				
CFR Part 22.917 CFR Part 2.1053 RSS 132, Issue 2, Section 4.5 an					
Spurious Emissions Radiated					
Attenuation ≥ 43 + 10log(P) (P, Power in Watts)					
-13 dBm					

2012-01-18 Page 84 of 107

Results:

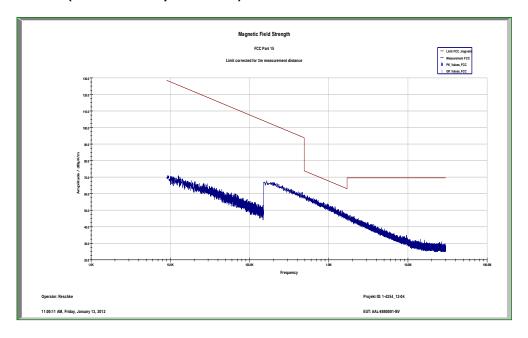
Radiated emissions measurements were made only at the upper, center, and lower carrier frequencies of the UMTS band V (826.4 MHz, 836.0 MHz and 846.6 MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the UMTS band V into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

The final open field radiated levels are presented on the next pages.

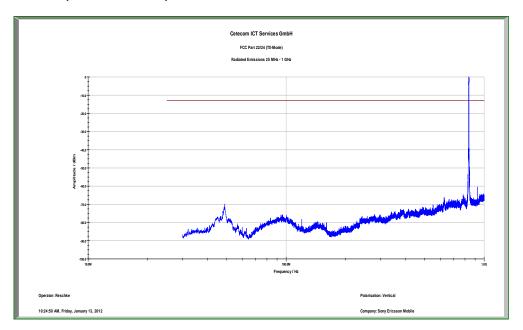
All measurements were done in horizontal and vertical polarization; the plots show the worst case.

The plots show only the middle channel. If spurious were detected, the lowest and highest channel were checked too. The found values are stated in the table below.

As can be seen from this data, the emissions from the test item were within the specification limit.


	Spurious Emission Level (dBm)							
Harmonic	Ch. 4132 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 4180 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 4233 Freq. (MHz)	Level [dBm]
2	1652.8	-	2	1672.0	-	2	1693.2	-
3	2479.2	-	3	2508.0	-	3	2539.8	-
4	3305.6	ı	4	3344.0	-	4	3386.4	-
5	4132.0	-	5	4180.0	-	5	4233.0	-
6	4958.4	1	6	5016.0	-	6	5079.6	-
7	5784.8	-	7	5852.0	-	7	5926.2	-
8	6611.2	-	8	6688.0	-	8	6772.8	-
9	7437.6	ı	9	7524.0	-	9	7619.4	-
10	8264.0	-	10	8360.0	-	10	8466.0	-
	Measurement uncertainty					± 3dB		

Result: The result of the measurement is passed.


2012-01-18 Page 85 of 107

Plot 1: Channel 4180 (Traffic mode up to 30 MHz)

Plot 2: Channel 4180 (30 MHz - 1 GHz)

2012-01-18 Page 86 of 107

Plot 3: Channel 4180 (1 GHz - 12.75 GHz)

2012-01-18 Page 87 of 107

8.6.4 Spurious emissions conducted

Description:

The following steps outline the procedure used to measure the conducted emissions from the mobile station.

- 1. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 9 GHz, data taken from 10 MHz to 12 GHz.
- 2. Determine mobile station transmits frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

UMTS band V Transmitter Channel Frequency 4132 826.4 MHz 4180 836.0 MHz 4233 846.6 MHz

Measurement:

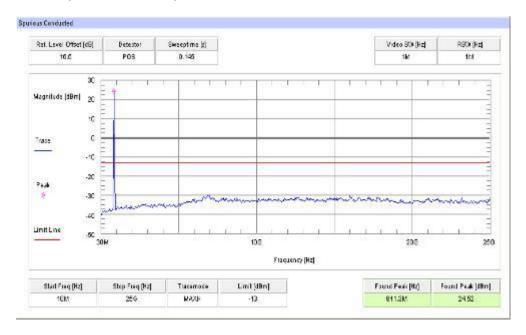
Measurement parameters				
Detector:	Peak			
Sweep time:	Auto			
Video bandwidth:	Pre-measurement with 1 MHz On spurious detection re-measurement below 1 GHz with 100 kHz Above 1 GHz with 1 MHz			
Resolution bandwidth:	Pre-measurement with 1 MHz On spurious detection re-measurement below 1 GHz with 100 kHz Above 1 GHz with 1 MHz			
Span:	30 MHz – 25 GHz			
Trace-Mode:	Max Hold			

Limits:

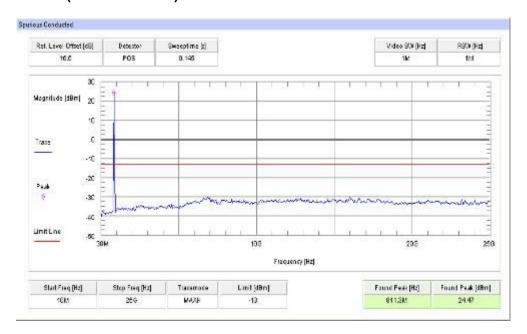
FCC	IC			
CFR Part 22.917 CFR Part 2.1051	RSS 132, Issue 2, Section 4.5 and 6.5			
Spurious Emissions Conducted				
Attenuation ≥ 43 + 10log(P) (P, Power in Watts)				
-13 dBm				

2012-01-18 Page 88 of 107

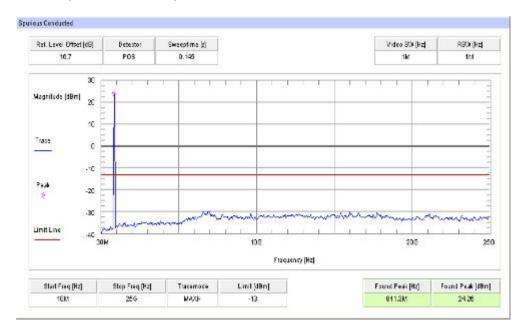
Results:


	Spurious Emission Level (dBm)								
Harmonic	Ch. 4132 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 41 Freq. (N		Level [dBm]	Harmonic	Ch. 4233 Freq. (MHz)	Level [dBm]
2	1652.8	-	2	1672	2.0	-	2	1693.2	-
3	2479.2	-	3	2508	3.0	-	3	2539.8	-
4	3305.6	-	4	3344	1.0	-	4	3386.4	-
5	4132.0	-	5	4180	0.0	-	5	4233.0	-
6	4958.4	-	6	5016	6.0	-	6	5079.6	-
7	5784.8	-	7	5852	2.0	-	7	5926.2	-
8	6611.2	-	8	6688	3.0	-	8	6772.8	-
9	7437.6	-	9	7524.0		-	9	7619.4	-
10	8264.0	-	10	8360.0		-	10	8466.0	-
	Measurement uncertainty						± 3dB		

Result: The result of the measurement is passed.


2012-01-18 Page 89 of 107

Plot 1: Channel 4132 (10 MHz - 12 GHz)


Plot 2: Channel 4180 (10 MHz - 12 GHz)

2012-01-18 Page 90 of 107

Plot 3: Channel 4233 (10 MHz - 12 GHz)

2012-01-18 Page 91 of 107

8.6.5 Block edge compliance

Description:

The spectrum at the band edges must comply with the spurious emissions limits.

Measurement:

Measurement parameters				
Detector:	RMS			
Sweep time:	20 sec.			
Video bandwidth:	30 kHz			
Resolution bandwidth:	30 kHz			
Span:	1 MHz			
Trace-Mode:	Max Hold			

Limits:

FCC	IC
CFR Part 22.917 CFR Part 2.1051	RSS 132, Issue 2, Section 6.5

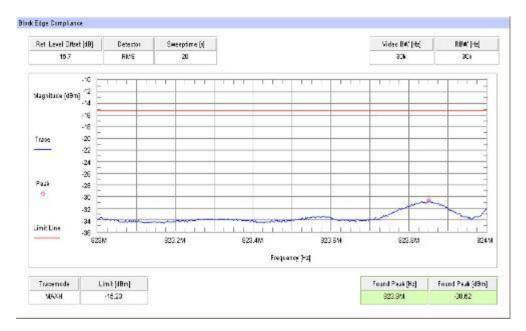
Block Edge Compliance

Part 22.917 specifies that "the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB."

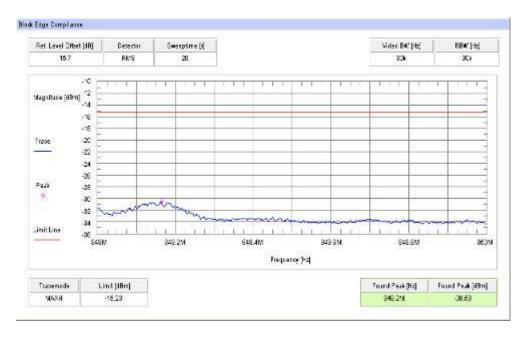
However, in publication number 890810, The FCC Office of Engineering and Technology specified the following correction to the limits when a resolution bandwidth smaller than 1% of the emission bandwidth is used:

"An alternative is to add an additional correction factor of 10 Log (RBW1/ RBW2) to the 43 +10 log(P) limit. RBW1 is the narrower measurement resolution bandwidth and RBW2 is either the 1% emissions bandwidth or 1 MHz."

When using a 30 kHz bandwidth, this yields a -2.2185 adjustment to the limit [10 log(30kHz/50kHz) = -2.2185]. When this adjustment is applied to the limit, the limit becomes -15.2185.


-15.22 dBm

2012-01-18 Page 92 of 107



Results:

Plot 1: Channel 4132

Plot 2: Channel 4233

Result: The result of the measurement is passed.

2012-01-18 Page 93 of 107

8.6.6 Occupied bandwidth

Description:

Measurement of the occupied bandwidth of the transmitted signal.

Measurement:

Similar to conducted emissions, occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the UMTS band V. The table below lists the measured 99% power and -26dBc occupied bandwidths. Spectrum analyzer plots are included on the following pages.

Part 22.917 requires a measurement bandwidth of at least 1% of the occupied bandwidth. For ca. 4700 kHz, this equates to a resolution bandwidth of at least 50 kHz. For this testing, a resolution bandwidth 100 kHz was used.

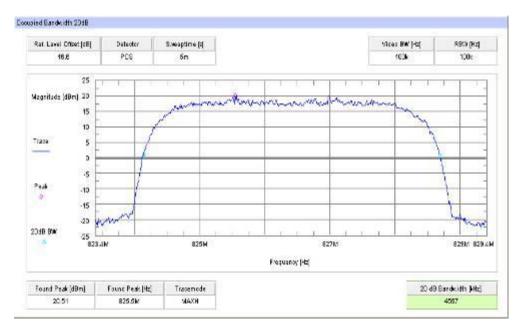
Measurement parameters				
Detector:	Peak			
Sweep time:	Auto			
Video bandwidth:	100 kHz			
Resolution bandwidth:	100 kHz			
Span:	6 MHz			
Trace-Mode:	Max Hold			

Limits:

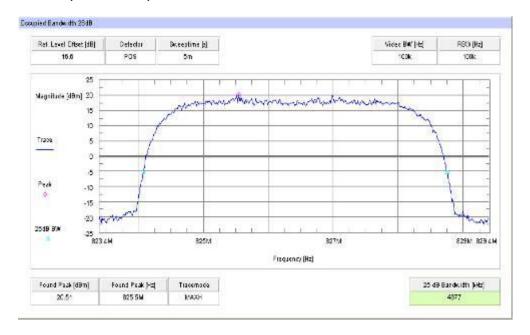
FCC	IC			
CFR Part 22.917 CFR Part 2.1049	RSS 132, Issue 2, Section 4.5.1			
Occupied Bandwidth				
Spectrum must fall completely in the specified band				

2012-01-18 Page 94 of 107

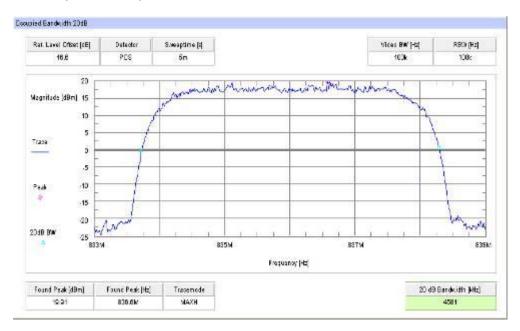
Results:

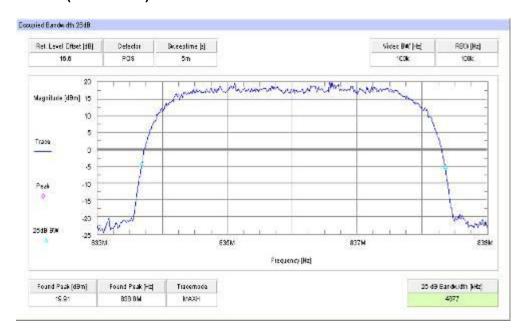

Occupied Bandwidth						
Frequency (MHz)	99% OBW (kHz) -26 dBc BW (kHz)					
826.4	4557	4665				
836.0	4569	4689				
846.6	4593	4737				
Measurement uncertainty	± 100 kHz					

Result: The result of the measurement is passed.

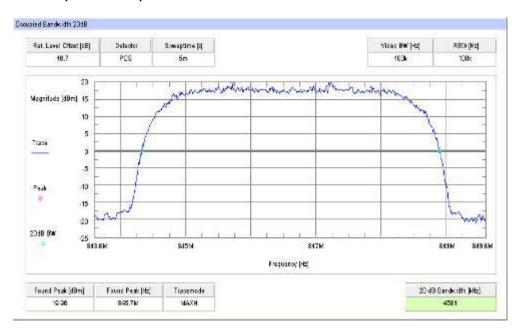

2012-01-18 Page 95 of 107

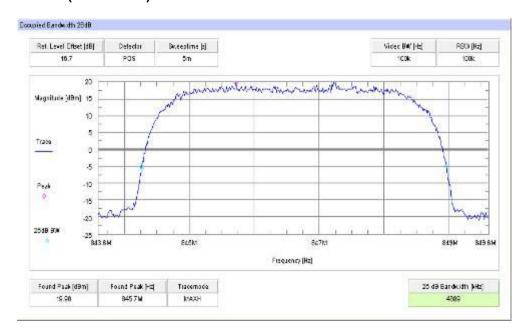
Plot 1: Channel 4132 (99% - OBW)


Plot 2: Channel 4132 (-26 dBc BW)


2012-01-18 Page 96 of 107

Plot 3: Channel 4180 (99% - OBW)


Plot 4: Channel 4180 (-26 dBc BW)


2012-01-18 Page 97 of 107

Plot 5: Channel 4233 (99% - OBW)

Plot 6: Channel 4233 (-26 dBc BW)

2012-01-18 Page 98 of 107

8.7 Results receiver mode

8.7.1 Spurious emissions radiated – receiver mode

Description:

The measurement was performed in worst case. The EUT was not connected to the CMU 200. So the EUT performs a network search. In this mode all oscillators are active.

Measurement:

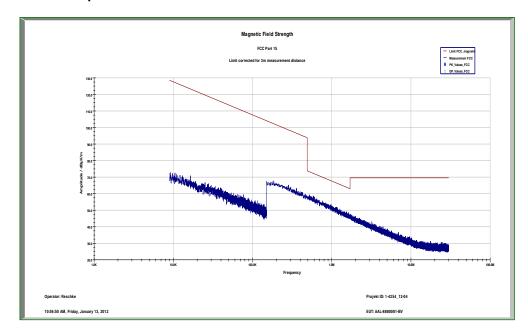
Measurement parameters				
Detector:	Below 1 GHz Peak / QuasiPeak Above 1 GHz Peak / Average			
Sweep time:	2 sec			
Video bandwidth:	Below 1 GHz 100 kHz Above 1 GHz 1 MHz			
Resolution bandwidth:	1 MHz			
Span:	100 MHz Steps			
Trace-Mode:	Max Hold			

Limits:

FCC			IC		
CFR Part 15.109 CFR Part 2.1053		RSS Gen, Issue 2, Section 4.10			
Spi	Spurious Emissions Radiated – Re		ode		
Frequency (MHz)	Field Strength (dBμV/m)		Measurement distance (m)		
30 – 88	30.0		10		
88 - 216	33.5		10		
216 – 960	36.0		36.0		10
Above 960	54	1.0	3		

2012-01-18 Page 99 of 107

Results:


Spurious Emission Level (dBµV/m)								
Frequency (MHz)	Dete	ector	Level (dBμV/m)					
No critical peaks found								
Measurement uncerta	inty		± 3dB					

Result: The result of the measurement is passed.

2012-01-18 Page 100 of 107

Plot 1: Receiver mode up to 30 MHz

2012-01-18 Page 101 of 107

Plot 2: Receiver mode (30 MHz - 1 GHz)

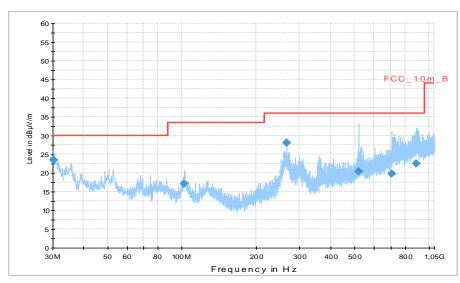
Common Information

EUT: AAL-8880001-BV Serial Number: CB5A1JE2PV

Test Description: FCC part 15 B class B @ 10 m

Operating Conditions: GSM idle, camera mode with HDMI out + charging

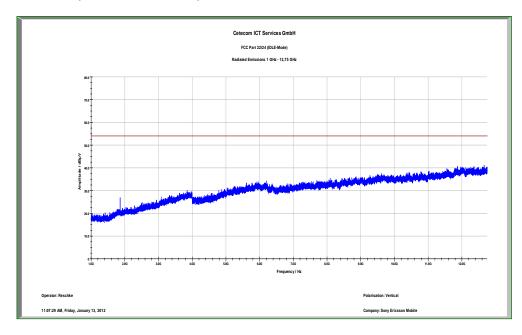
Operator Name: Wolsdorfer
Comment: AC: 115 V / 60 Hz


Scan Setup: STAN_Fin [EMI radiated]

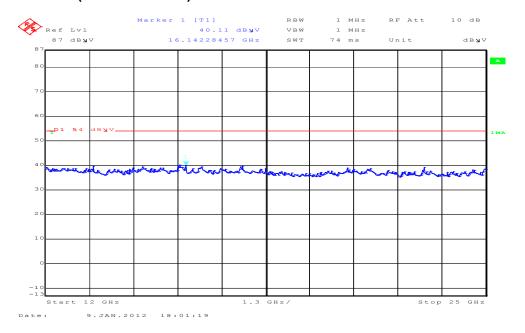
Hardware Setup: Electric Field (NOS)

Receiver: [ESCI 3] Level Unit: $dB\mu V/m$

SubrangeStep SizeDetectorsIF BWMeas. TimePreamp30 MHz - 2 GHz60 kHzQPK120 kHz1 s20 dB


Final Result 1

Frequency (MHz)	QuasiPeak (dBµV/m)	Meas. Time	Bandwidt h	Height (cm)	Polarizatio n	Azimut h	Corr. (dB)	Margi n	Limit (dBµV/m)	Comment
		(ms)	(kHz)			(deg)		(dB)		
30.261172	23.4	1000.0	120.000	98.0	V	11.0	12.5	6.6	30.0	
102.166200	17.1	1000.0	120.000	113.0	V	283.0	11.7	16.4	33.5	
265.510350	28.1	1000.0	120.000	98.0	V	283.0	13.7	7.9	36.0	
519.230250	20.4	1000.0	120.000	170.0	Н	-1.0	19.0	15.6	36.0	
709.742700	19.8	1000.0	120.000	98.0	Н	11.0	22.7	16.2	36.0	
892.880850	22.6	1000.0	120.000	170.0	Н	-2.0	25.1	13.4	36.0	


2012-01-18 Page 102 of 107

Plot 3: Receiver mode (1 GHz - 12.75 GHz)

Plot 4: Receiver mode (12 GHz - 25 GHz)

2012-01-18 Page 103 of 107

9 Test equipment and ancillaries used for tests

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, rf-generating and signalling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Labor/Item).

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	Universal Communication Tester	CMU200	R&S	106826	300003346	k	12.01.2011	12.01.2013
2	n. a.	Isolating Transformer	RT5A	Grundig	8041	300001626	g		
3	n. a.	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP Meßtechnik	2818A03450	300001040	Ve	12.01.2012	12.01.2015
4	n. a.	Coaxial Attenuator 30dB/500W	8325	Bird	1530	300001595	ev		
5	n. a.	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3088	300001032	vIKI!	11.05.2011	11.05.2013
6	n. a.	Active Loop Antenna	6502	EMCO	2210	300001015	ne		
7	n. a.	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996		23.03.2009	
8	Spec.A. 2_2e	System rack for EMI measurement solution	85900	HP I.V.	*	300000222	ne		
9	9	Artificial Mains 9 kHz to 30 MHz	ESH3-Z5	R&S	828576/020	300001210	Ve	06.01.2012	06.01.2014
10	n. a.	Relais Matrix	3488A	HP Meßtechnik	2719A15013	300001156	ne		
11	n. a.	Relais Matrix	PSU	R&S	890167/024	300001168	ne		
12	n. a.	Isolating Transformer	RT5A	Grundig	9242	300001263	ne		
13	n. a.	Three-Way Power Splitter, 50 Ohm	11850C	HP Meßtechnik		300000997	ne		
14	n. a.	Switch / Control Unit	3488A	HP	2605e08770	300001443	ne		
15	n. a.	Amplifier	js42-00502650- 28-5a	Parzich GMBH	928979	300003143	ne		
16	n. a.	Band Reject filter	WRCG1855/1910- 1835/1925- 40/8SS	Wainwright	7	300003350	ev		
17	n. a.	Band Reject filter	WRCG2400/2483- 2375/2505- 50/10SS	Wainwright	11	300003351	ev		
18	n. a.	TILE-Software Emission	Quantum Change, Modell TILE- ICS/FULL	EMCO	none	300003451	ne		
19	n. a.	Highpass Filter	WHKX2.9/18G- 12SS	Wainwright	1	300003492	ev		
20	n. a.	Highpass Filter	WHK1.1/15G- 10SS	Wainwright	3	300003255	ev		
21	n. a.	Highpass Filter	WHKX7.0/18G- 8SS	Wainwright	18	300003789	ne		
22	n. a.	PSA Spectrum Analyzer 3 Hz - 26.5 GHz	E4440A	Agilent Technologies	MY48250080	300003812	k	08.09.2010	08.09.2012
23	n. a.	MXG Microwave Analog Signal Generator	N5183A	Agilent Technologies	MY47420220	300003813	k	13.09.2010	13.09.2012
24	n. a.	RF Filter	N9039A	Agilent	MY48260003	300003825	vIKI!	08.09.2010	08.09.2012

2012-01-18 Page 104 of 107

		Section 9kHz -		Technologies					
		1GHz TRILOG							
25	n. a.	Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	371	300003854	vlKI!	14.10.2011	14.10.2014
26	19	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9107-3697	300001605	Ve	19.10.2010	19.10.2012
27	n. a.	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP Meßtechnik	2920A04590	300001041	Ve	12.01.2012	12.01.2015
28	n. a.	Temperature Test Chamber	VT 4002	Heraeus Voetsch	521/83761	300002326	Ve	20.09.2011	20.09.2013
29	n. a.	Signal Analyzer 20Hz-26,5GHz- 150 to + 30 DBM	FSiQ26	R&S	835111/0004	300002678	Ve	04.11.2010	04.11.2012
30	45	Switch-Unit	3488A	HP Meßtechnik	2719A14505	300000368	g		
31	50	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP Meßtechnik	2920A04466	300000580	ne		
32	n. a.	software	SPS_PHE 1.4f	Spitzberger & Spieß	B5981; 5D1081;B5979	300000210	ne		
33	n. a.	EMI Test Receiver	ESCI 1166.5950.03	R&S	100083	300003312	k	05.01.2011	05.01.2013
34	n. a.	Analyzer- Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	k	14.07.2011	14.07.2013
35	n. a.	Amplifier	JS42-00502650- 28-5A	MITEQ	1084532	300003379	ev		
36	n. a.	Antenna Tower	Model 2175	ETS- LINDGREN	64762	300003745	izw		
37	n. a.	Positioning Controller	Model 2090	ETS- LINDGREN	64672	300003746	izw		
38	n. a.	Turntable Interface-Box	Model 105637	ETS- LINDGREN	44583	300003747	izw		
39	n.a.	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	01.04.2010	01.04.2012
40	n. a.	Spectrum- Analyzer	FSU26	R&S	200809	300003874	k	10.01.2011	10.01.2013

Agenda: Kind of Calibration

k ΕK limited calibration calibration / calibrated

ne not required (k, ev, izw, zw not required) zw cyclical maintenance (external cyclical maintenance)

periodic self verification internal cyclical maintenance izw long-term stability recognized Ve blocked for accredited testing Attention: extended calibration interval

Attention: not calibrated *) next calibration ordered / currently in progress

10 **Observations**

vlkl!

No observations exceeding those reported with the single test cases have been made.

2012-01-18 Page 105 of 107

Annex A Document history

Version	Applied changes	Date of release
1.0	Initial release	2012-01-18
-A	Kind of test item: missing information about RFID interface	2012-01-18

Annex B Further information

Glossary

AVG - Average

DUT - Device under test

EMC - Electromagnetic Compatibility

EN - European Standard EUT - Equipment under test

ETSI - European Telecommunications Standard Institute

FCC - Federal Communication Commission

FCC ID - Company Identifier at FCC

HW - Hardware

IC - Industry Canada
Inv. No. - Inventory number
N/A - Not applicable
PP - Positive peak
QP - Quasi peak
S/N - Serial number
SW - Software

2012-01-18 Page 106 of 107

Annex C Accreditation Certificate

Front side of certificate

Back side of certificate

Note:

The current certificate including annex is published on our website (see link below) or may be received from CETECOM ICT Services on request.

http://www.cetecom.com/fileadmin/de/CETECOM_D_Saarbruecken/accreditations_Jan_2010/DAKKS_Akkredi_Urk_EN17025-En_incl_Annex.pdf

2012-01-18 Page 107 of 107