PCTEST ENGINEERING LABORATORY, INC.

6660-B Dobbin Road, Columbia, MD 21045 USA Tel. 410.290.6652 / Fax 410.290.6554 http://www.pctestlab.com

CERTIFICATE OF COMPLIANCE **FCC Part 22 Certification**

Applicant Name: SONY ERICSSON MOBILE COMMUNICATION INC. 7001 Development Drive

Research Triangle Park, NC 27709

USA

Date of Testing: October 22, 2009 **Test Site/Location:** PCTEST Lab., Columbia, MD, USA

Test Report Serial No.:

0910191919.PY7

FCC ID: PY7A6880003

APPLICANT: SONY ERICSSON MOBILE COMMUNICATION INC.

Certification Application Type:

FCC Classification: Licensed Non-Broadcast Transmitter Held to Ear (TNE)

FCC Rule Part(s): §2; §22(H)

EUT Type: Cellular CDMA Phone with Bluetooth

CDMA SOY03 Model(s):

824.70 - 848.31MHz (Cell. CDMA) Tx Frequency Range:

Max. RF Output Power: 0.195 W ERP Cell. CDMA (22.9 dBm)

Emission Designator(s): 1M28F9W (CDMA)


Test Device Serial No.: identical prototype [S/N: 0999]

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Grant Conditions: Power output listed is ERP for Part 22.

PCTEST certifies that no party to this application has been denied the FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 862.

FCC ID: PY7A6880003	6880003 FCC Pt. 22 CDMA MEASUREMENT REPORT (CERTIFICATION)		Song Ericoper	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 1 of 24
0910191919.PY7	October 22, 2009	Cellular CDMA Phone with Bluetooth		

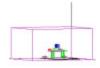


TABLE OF CONTENTS

FCC P	ART 22	2 MEASUREMENT REPORT	3
1.0	INTR	ODUCTION	4
	1.1	SCOPE	2
	1.2	TESTING FACILITY	2
2.0	PROI	DUCT INFORMATION	5
	2.1	EQUIPMENT DESCRIPTION	5
	2.2	EMI SUPPRESSION DEVICE(S)/MODIFICATIONS	5
	2.3	LABELING REQUIREMENTS	5
3.0	DESC	CRIPTION OF TESTS	6
	3.1	MEASUREMENT PROCEDURE	6
	3.2	OCCUPIED BANDWIDTH EMISSION LIMITS	6
	3.3	CELLULAR - BASE FREQUENCY BLOCKS	6
	3.4	CELLULAR - MOBILE FREQUENCY BLOCKS	7
	3.5	\SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINA	7
	3.6	RADIATED SPURIOUS AND HARMONIC EMISSIONS	7
	3.7	FREQUENCY STABILITY / TEMPERATURE VARIATION	8
4.0	TEST	EQUIPMENT CALIB RATION DATA	9
5.0	SAME	PLE CALCULATIONS	10
6.0	TEST	RESULTS	11
	6.1	SUMMARY	11
	6.2	EFFECTIVE RADIATED POWER OUTPUT DATA	12
	6.3	CELLULAR CDMA RADIATED MEASUREMENTS	13
	6.4	CELLULAR CDMA FREQUENCY STABILITY MEASUREMENTS	16
7.0	PLOT	(S) OF EMISSIONS	18
8.0	CON	CLUSION	24

FCC ID: PY7A6880003	PCTEST	FCC Pt. 22 CDMA MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 2 of 24
0910191919.PY7	October 22, 2009	Cellular CDMA Phone with Bluetooth		1 490 2 01 21

MEASUREMENT REPORT FCC Part 22

§2.1033 General Information

APPLICANT: SONY ERICSSON MOBILE COMMUNICATION INC.

APPLICANT ADDRESS: 7001 Development Drive

Research Triangle Park, NC 27709

TEST SITE: PCTEST ENGINEERING LABORATORY, INC. **TEST SITE ADDRESS:** 6660-B Dobbin Road, Columbia, MD 21045 USA

 FCC RULE PART(S):
 §2; §22(H)

 BASE MODEL:
 CDMA SOY03

 FCC ID:
 PY7A6880003

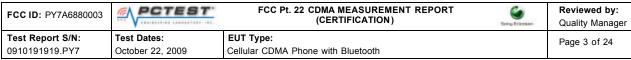
FCC CLASSIFICATION: Licensed Non-Broadcast Transmitter Held to Ear (TNE)

EMISSION DESIGNATOR(S): 1M28F9W (CDMA)

MODE: CDMA

FREQUENCY TOLERANCE: ±0.00025 % (2.5 ppm)

Test Device Serial No.: 0999 ☐ Production ☐ Pre-Production ☐ Engineering


DATE(S) OF TEST: October 22, 2009 **TEST REPORT S/N:** 0910191919.PY7

Test Facility / Accreditations

Measurements were performed at PCTEST Engineering Lab. located in Columbia, MD 21045, U.S.A.

- PCTEST facility is an FCC registered (PCTEST Reg. No. 90864) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules and Industry Canada (2451A-1).
- PCTEST Lab is accredited to ISO 17025 by U.S. National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP Lab code: 100431-0) in EMC, FCC and Telecommunications.
- PCTEST Lab is accredited to ISO 17025-2005 by the American Association for Laboratory Accreditation (A2LA) in Specific Absorption Rate (SAR) testing, Hearing Aid Compatibility (HAC) testing, CTIA Test Plans, and wireless testing for FCC and Industry Canada Rules.
- PCTEST Lab is a recognized U.S. Conformity Assessment Body (CAB) in EMC and R&TTE (n.b. 0982) under the U.S.-EU Mutual Recognition Agreement (MRA).
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC Guide 65 by the American National Standards Institute (ANSI) in all scopes of FCC Rules and Industry Canada Standards (RSS).
- PCTEST facility is an IC registered (2451A-1) test laboratory with the site description on file at Industry Canada.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for AMPS, CDMA, and EvDO wireless devices and for Over-the-Air (OTA) Antenna Performance testing for AMPS, CDMA, GSM, GPRS, EGPRS, UMTS (W-CDMA), CDMA 1xEVDO, and CDMA 1xRTT.

(a) desident

INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission.

1.2 Testing Facility

The map below shows the location of the PCTEST LABORATORY, its proximity to the FCC Laboratory, the Columbia vicinity are, the Baltimore-Washington Internt'l (BWI) airport, the city of Baltimore and the Washington, DC area. (See Figure 1-1).

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility in New Concept Business Park, Guilford Industrial Park, Columbia, Maryland. The site address is 6660-B Dobbin Road, Columbia, MD 21045. The test site is one of the highest points in the Columbia area with an elevation of 390 feet above mean sea level. The site coordinates are 39° 11'15" N latitude and 76° 49'38" W longitude. The facility is 1.5 miles North of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. There are no FM or TV transmitters within 15 miles of the site. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4-2003 on January 27, 2006.

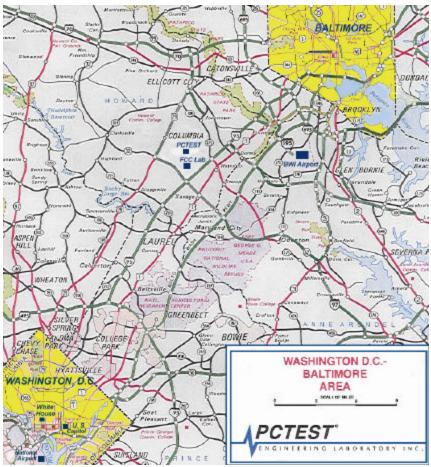


Figure 1-1. Map of the Greater Baltimore and Metropolitan Washington, D.C. area

FCC ID: PY7A6880003	PCTEST	FCC Pt. 22 CDMA MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 4 of 24
0910191919.PY7	October 22, 2009	Cellular CDMA Phone with Bluetooth		. 390 . 0. 1

PRODUCT INFORMATION

2.1 **Equipment Description**

The Equipment Under Test (EUT) is the Sony Ericsson Cellular CDMA Phone with Bluetooth FCC ID: PY7A6880003. The EUT consisted of the following component(s):

Trade Name / Base Model	FCC ID	Description
Sony Ericsson / Model: CDMA SOY03	PY7A6880003	Cellular CDMA Phone with Bluetooth

Table 2-1. EUT Equipment Description

2.2 **EMI Suppression Device(s)/Modifications**

No EMI suppression device(s) were added and no modifications were made during testing.

2.3 **Labeling Requirements**

Per 2.925

The FCC identifier shall be permanently affixed to the equipment and shall be readily visible to the purchaser at the time of purchase.

Per 15.19; Docket 95-19

In addition to this requirement, a device subject to certification shall be labeled as follows:

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the trade name and FCC ID must be displayed on the device per Section 15.19(b)(2).

Please see attachment for FCC ID label and label location.

FCC ID: PY7A6880003	7A6880003 FCC Pt. 22 CDMA MEASUREMENT REPORT (CERTIFICATION)		Sorg Ericoson	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 5 of 24
0910191919.PY7	October 22, 2009	Cellular CDMA Phone with Bluetooth		

DESCRIPTION OF TESTS

3.1 Measurement Procedure

The radiated spurious measurements were made outdoors at a 3-meter test range (See Figure 3-1). The equipment under test is placed on a wooden turntable 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer. This power level was recorded using a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This level is recorded with the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic antenna are taken into consideration.

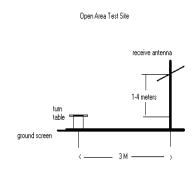


Figure 3-1. Diagram of 3-meter outdoor test range

Deviation from Measurement Procedure......None

3.2 Occupied Bandwidth Emission Limits §2.1049, 22.917(a)

- On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log(P) dB.
- b. Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.
- When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the C. licensee's frequency block edges, both upper and lower, as the design permits.
- The measurement of emission power can be expressed in peak or average values, provided they d. are expressed in the same parameters as the transmitter power.

3.3 Cellular - Base Frequency Blocks

BLOCK 1: 869 - 880 MHz (A* Low + A) BLOCK 3: 890 - 891.5 MHz (A* High)

BLOCK 2: 880 - 890 MHz (B) BLOCK 4: 891.5 - 894 MHz (B*)

FCC ID: PY7A6880003	PCTEST	FCC Pt. 22 CDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 6 of 24
0910191919.PY7	October 22, 2009	Cellular CDMA Phone with Bluetooth		. 390 0 0: 1

3.4 Cellular - Mobile Frequency Blocks

BLOCK 1: 824 – 835 MHz (A* Low + A) BLOCK 3: 845 – 846.5 MHz (A* High)

BLOCK 2: 835 – 845 MHz (B) BLOCK 4: 846.5 – 849 MHz (B*)

3.5 Spurious and Harmonic Emissions at Antenna Terminal §2.1051, 22.917(a)

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic.

3.6 Radiated Spurious and Harmonic Emissions §2.1053, 22.917(a)

Spurious and harmonic radiated emissions are measured outdoors at our 3-meter test range. The equipment under test is placed on a wooden turntable 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer. This level is then measured with a broadband average power meter. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive average power meter reading. This spurious level is recorded with the power meter. For readings above 1 GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration. This device was tested under all R.C.s and S.O.s and the worst case is reported with RC3/SO55 with "All Up" power control bits.

FCC ID: PY7A6880003	PCTEST	FCC Pt. 22 CDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager	
Test Report S/N: 0910191919.PY7	Test Dates: October 22, 2009	EUT Type: Cellular CDMA Phone with Bluetooth		Page 7 of 24

3.7 Frequency Stability / Temperature Variation §2.1055, 22.355

The frequency stability of the transmitter is measured by:

- Temperature: The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.
- b.) Primary Supply Voltage: The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

Specification - The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within ±0.00025% (±2.5 ppm) of the center frequency.

Time Period and Procedure:

- 1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A sufficient stabilization period at each temperature shall be used prior to each frequency requirement.

FCC ID: PY7A6880003	PCTEST	FCC Pt. 22 CDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager	
Test Report S/N: 091019191919.PY7	Test Dates: October 22, 2009	EUT Type: Cellular CDMA Phone with Bluetooth		Page 8 of 24

4.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST).

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	263-10dB	(DC-18GHz) 10 dB Attenuator	N/A		N/A	N/A
-	No.165	(30MHz - 1000MHz) RG58 Coax Cable	N/A		N/A	N/A
-	No.166	(1000-26500MHz) Microwave RF Cable	N/A		N/A	N/A
-	No.167	(100kHz - 100MHz) RG58 Coax Cable	N/A		N/A	N/A
Agilent	11713A	Attenuation/Switch Driver	12/4/2008	Annual	12/4/2009	3439A02645
Agilent	8449B	(1-26.5GHz) Pre-Amplifier	12/4/2008	Annual	12/4/2009	3008A00985
Agilent	8495A	(0-70dB) DC-4GHz Attenuator	N/A		N/A	N/A
Agilent	85650A	Quasi-Peak Adapter	12/4/2008	Annual	12/4/2009	3303A01872
Agilent	85650A	Quasi-Peak Adapter	3/24/2009	Annual	3/24/2010	2043A00301
Agilent	8566B	(100Hz-22GHz) Spectrum Analyzer	12/5/2008	Annual	12/5/2009	3638A08713
Agilent	8648D	(9kHz-4GHz) Signal Generator	9/19/2009	Biennial	9/19/2011	3613A00315
Agilent	E4407B	ESA Spectrum Analyzer	9/28/2009	Annual	9/28/2010	US39210313
Agilent	E4432B	ESG-D Series Signal Generator	9/10/2009	Annual	9/10/2010	US40053896
Agilent	E4448A	PSA (3Hz-50GHz) Spectrum Analyzer	10/1/2009	Annual	10/1/2010	US42510244
Agilent	E5515C	Wireless Communications Test Set	9/10/2009	Annual	9/10/2010	GB46110872
Agilent	E5515C	Wireless Communications Test Set	9/11/2009	Annual	9/11/2010	GB46310798
Agilent	E5515C	Wireless Communications Test Set	8/25/2009	Annual	8/25/2010	GB41450275
Agilent	E8257D	(250kHz-20GHz) Signal Generator	3/25/2009	Biennial	3/25/2011	MY45470194
Agilent	E8267C	Vector Signal Generator	9/29/2009	Biennial	9/29/2011	US42340152
Compliance Design	Roberts	Dipole Set	11/9/2007	Biennial	11/9/2009	146
Compliance Design	Roberts	Dipole Set	11/9/2007	Biennial	11/9/2009	147
Emco	3115	Horn Antenna (1-18GHz)	10/14/2009	Biennial	10/14/2011	9704-5182
Emco	3115	Horn Antenna (1-18GHz)	11/4/2007	Biennial	11/4/2009	9205-3874
Espec	ESX-2CA	Environmental Chamber	3/30/2009	Annual	3/30/2010	17620
Gigatronics	80701A	(0.05-18GHz) Power Sensor	9/9/2009	Annual	9/9/2010	1833460
Gigatronics	8651A	Universal Power Meter	9/9/2009	Annual	9/9/2010	8650319
K&L	11SH10	Band Pass Filter	N/A	Annual	N/A	1300/4000
K&L	11SH10	Band Pass Filter	N/A	Annual	N/A	4000/12000
MiniCircuits	VHF-1300+	High Pass Filter	N/A		N/A	30716
MiniCircuits	VHF-3100+	High Pass Filter	N/A		N/A	30721
Pasternack	PE2208-6	Bidirectional Coupler	N/A		N/A	N/A
Rohde & Schwarz	CMU200	Base Station Simulator	9/11/2009	Annual	9/11/2010	836371/0079
Rohde & Schwarz	CMU200	Base Station Simulator	9/4/2009	Annual	9/4/2010	109892
Rohde & Schwarz	NRVD	Dual Channel Power Meter	8/20/2008	Biennial	8/20/2010	101695
Rohde & Schwarz	NRV-Z32	Peak Power Sensor (100uW-2W)	12/5/2008	Biennial	12/5/2010	100155
Rohde & Schwarz	NRV-Z33	Peak Power Sensor (1mW-20W)	12/5/2008	Biennial	12/5/2010	100004
Schwarzbeck	UHA9105	Dipole Antenna (400 - 1GHz) Rx	7/17/2009	Biennial	7/17/2011	9105-2404
Schwarzbeck	UHA9105	Dipole Antenna (400 - 1GHz) Tx	7/17/2009	Biennial	7/17/2011	9105-2403
Sunol	DRH-118	Horn Antenna (1 - 18GHz)	5/14/2009	Biennial	5/14/2011	A050307
Rohde & Schwarz	CMU200	Base Station Simulator	6/12/2009	Annual	6/12/2010	836536/0005
Rohde & Schwarz	FSQ 26	Spectrum Analyzer	9/19/2009	Annual	9/19/2010	200452
Rohde & Schwarz	CMW500	LTE Base Station Simulator	8/25/2009	Annual	8/25/2010	100976
Anritsu	ML2495A	Power Meter	10/12/2009	Annual	10/12/2010	941001

Table 4-1. Test Equipment

FCC ID: PY7A6880003	PCTEST	FCC Pt. 22 CDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 9 of 24
0910191919.PY7	October 22, 2009	Cellular CDMA Phone with Bluetooth		. ago o o. 1.

SAMPLE CALCULATIONS

Emission Designator

Emission Designator = 1M25F9W

CDMA BW = 1.25 MHz F = Frequency Modulation 9 = Composite Digital Info

W = Combination (Audio/Data) (Measured at the 99.75% power bandwidth)

Spurious Radiated Emission - PCS Band

Example: Channel 25 PCS Mode 2nd Harmonic (3702.50 MHz)

The average receive power meter reading at 3 meters with the EUT on the turntable was -81.0 dBm. The gain of the substituted antenna is 8.1 dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of -81.0 dBm on the power meter. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 3702.50 MHz. So 6.1 dB is added to the power meter reading of -30.9 dBm yielding -24.80 dBm. The fundamental EIRP was 25.501 dBm so this harmonic was 25.501 dBm - (-24.80) = 50.3 dBc.

FCC ID: PY7A6880003	PCTEST	FCC Pt. 22 CDMA MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 10 of 24
0910191919.PY7	October 22, 2009	Cellular CDMA Phone with Bluetooth		-

TEST RESULTS

6.1 **Summary**

Company Name: SONY ERICSSON MOBILE COMMUNICATION INC.

FCC ID: PY7A6880003

Licensed Non-Broadcast Transmitter Held to Ear (TNE) FCC Classification:

Mode(s): **CDMA**

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference				
TRANSMITTER MODE	TRANSMITTER MODE (TX)								
2.1049, 22.917(a)	Occupied Bandwidth	N/A		PASS	Section 7.0				
2.1051, 22.917(a)	Band Edge / Conducted Spurious Emissions	< 43 + 10log ₁₀ (P[Watts]) at Band Edge and for all out-of-band emissions	CONDUCTED	PASS	Section 7.0				
2.1046	Transmitter Conducted Output Power	N/A		PASS	RF Exposure Report				
22.913(a)(2)	Effective Radiated Power	< 7 Watts max. ERP		PASS	Section 6.2				
2.1053, 22.917(a)	Undesirable Emissions	< 43 + 10log ₁₀ (P[Watts]) for all out-of-band emissions	RADIATED	PASS	Sections 6.3				
2.1055, 22.355	Frequency Stability	< 2.5 ppm		PASS	Sections 6.4				

Table 6-1. Summary of Test Results

FCC ID: PY7A6880003	PCTEST	FCC Pt. 22 CDMA MEASUREMENT REPORT (CERTIFICATION)	Goog Ericoson	Reviewed by: Quality Manager
Test Report S/N: 0910191919.PY7	Test Dates: October 22, 2009	EUT Type: Cellular CDMA Phone with Bluetooth		Page 11 of 24

6.2 Effective Radiated Power Output Data §22.913(a)(2)

POWER: "All Up" Bits (Cellular CDMA Mode)

Frequency [MHz]	Mode	Measured Level [dBm]	Substitute Level [dBm]	Antenna Gain [dBd]	Pol [H/V]	ERP [dBm]	ERP [Watts]	Battery Type
824.70	CDMA850	-16.300	22.90	0.00	Н	22.90	0.195	Standard
836.52	CDMA850	-16.450	22.75	0.00	Н	22.75	0.188	Standard
848.31	CDMA850	-17.400	21.80	0.00	Н	21.80	0.151	Standard

Table 6-2. Effective Radiated Power Output Data

NOTES:

Effective Radiated Power Output Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This level is recorded using the power meter. The conducted power at the terminals of the dipole is measured. The ERP is recorded.

FCC ID: PY7A6880003	PCTEST	FCC Pt. 22 CDMA MEASUREMENT REPORT (CERTIFICATION)	Garage Entragen	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 12 of 24
0910191919.PY7	October 22, 2009	Cellular CDMA Phone with Bluetooth		•

6.3 Cellular CDMA Radiated Measurements §2.1053, 22.917(a)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 824.70 MHz

CHANNEL: 1013

MEASURED OUTPUT POWER: 22.900 dBm = 0.195 W

MODULATION SIGNAL: CDMA (Internal)

DISTANCE: _____ meters

LIMIT: $43 + 10 \log_{10} (W) = _____ 35.90$ dBd

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
1649.40	-58.60	6.08	-52.52	Н	75.4
2474.10	-61.20	6.08	-55.12	Н	78.0
3298.80	-60.46	6.53	-53.93	Н	76.8
4123.50	-93.87	6.87	-87.00	Н	109.9
4948.20	-91.54	7.21	-84.33	Н	107.2

Table 6-3. Radiated Spurious Data (Cellular CDMA Mode – Ch. 1013)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA -603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: PY7A6880003	PCTEST	FCC Pt. 22 CDMA MEASUREMENT REPORT (CERTIFICATION)	Sory Ericoson	Reviewed by: Quality Manager
Test Report S/N: 0910191919.PY7	Test Dates: October 22, 2009	EUT Type: Cellular CDMA Phone with Bluetooth		Page 13 of 24

Cellular CDMA Radiated Measurements (Cont'd) §2.1053, 22.917(a)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 836.52 MHz

CHANNEL: <u>384</u>

MEASURED OUTPUT POWER: <u>22.900</u> dBm = <u>0.195</u> W

MODULATION SIGNAL: CDMA (Internal)

DISTANCE: _____ meters

LIMIT: $43 + 10 \log_{10} (W) = 35.90$ dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
1673.04	-57.57	6.09	-51.49	Н	74.4
2509.56	-50.72	6.55	-44.16	Н	67.1
3346.08	-93.73	6.89	-86.84	Н	109.7
4182.60	-91.73	7.43	-84.30	Н	107.2
5019.12	-89.99	8.35	-81.65	Н	104.5

Table 6-4. Radiated Spurious Data (Cellular CDMA Mode - Ch. 384)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: PY7A6880003	PCTEST	FCC Pt. 22 CDMA MEASUREMENT REPORT (CERTIFICATION)	Sory Ericoson	Reviewed by: Quality Manager
Test Report S/N: 0910191919.PY7	Test Dates: October 22, 2009	EUT Type: Cellular CDMA Phone with Bluetooth		Page 14 of 24

Cellular CDMA Radiated Measurements (Cont'd) §2.1053, 22.917(a)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 848.31 MHz

MEASURED OUTPUT POWER: 22.900 dBm = 0.195 W

MODULATION SIGNAL: CDMA (Internal)

DISTANCE: _____ meters

LIMIT: $43 + 10 \log_{10} (W) = ____ dBc$

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd) SPURIOUS EMISSION LEVEL (dBm)		POL (H/V)	(dBc)
1696.62	-60.45	6.09	-54.35	Н	77.3
2544.93	-49.90	6.57	-43.33	Н	66.2
3393.24	-58.55	6.91	-51.64	Н	74.5
4241.55	-91.92	7.65	-84.28	Н	107.2
5089.86	-89.73	8.33	-81.39	Н	104.3

Table 6-5. Radiated Spurious Data (Cellular CDMA Mode - Ch. 777)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

FCC ID: PY7A6880003	PCTEST	FCC Pt. 22 CDMA MEASUREMENT REPORT (CERTIFICATION)	Sory Ericoson	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 15 of 24
0910191919.PY7	October 22, 2009	Cellular CDMA Phone with Bluetooth		. 490 .0 0. 1

6.4 Cellular CDMA Frequency Stability Measurements §2.1055, 22.355

OPERATING FREQUENCY: 836,520,000 Hz

CHANNEL: <u>384</u>

REFERENCE VOLTAGE: 3.7 VDC

DEVIATION LIMIT: ± 0.00025 % or 2.5 ppm

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	3.70	+ 20 (Ref)	836,519,994	-6	-0.000001
100 %		- 30	836,520,007	7	0.000001
100 %		- 20	836,519,998	-2	0.000000
100 %		- 10	836,519,981	-19	-0.000002
100 %		0	836,520,007	7	0.000001
100 %		+ 10	836,520,017	17	0.000002
100 %		+ 20	836,519,989	-11	-0.000001
100 %		+ 30	836,519,983	-17	-0.000002
100 %		+ 40	836,519,994	-6	-0.000001
100 %		+ 50	836,520,012	12	0.000001
115 %	4.26	+ 20	836,519,996	-4	0.000000
BATT. ENDPOINT	3.40	+ 20	836,519,992	-8	-0.000001

Table 6-6. Frequency Stability Data (Cellular CDMA Mode - Ch. 384)

FCC ID: PY7A6880003	PCTEST	FCC Pt. 22 CDMA MEASUREMENT REPORT (CERTIFICATION)	Goog Erlesson	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 16 of 24
0910191919.PY7	October 22, 2009	Cellular CDMA Phone with Bluetooth		

Cellular CDMA Frequency Stability Measurements (Cont'd) §2.1055, 22.355

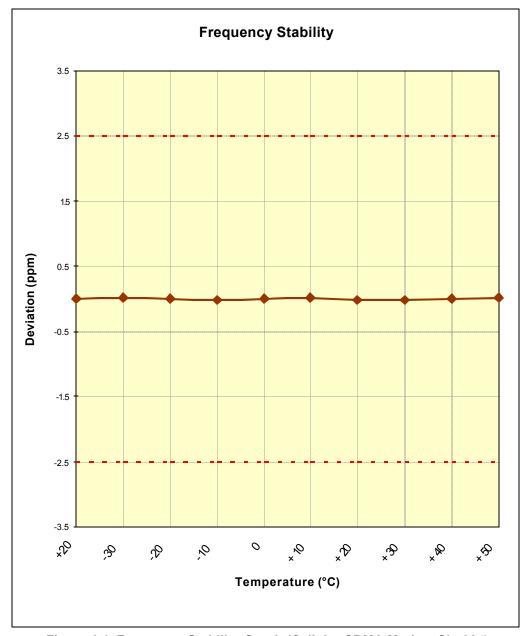
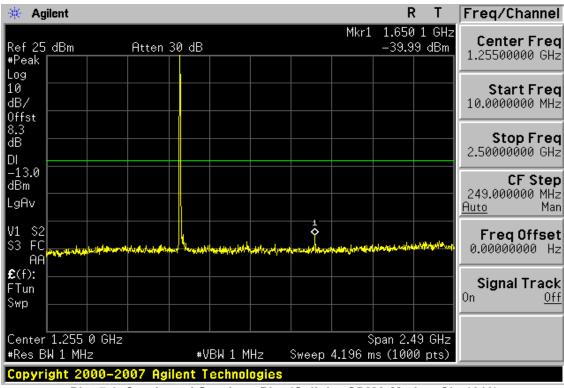
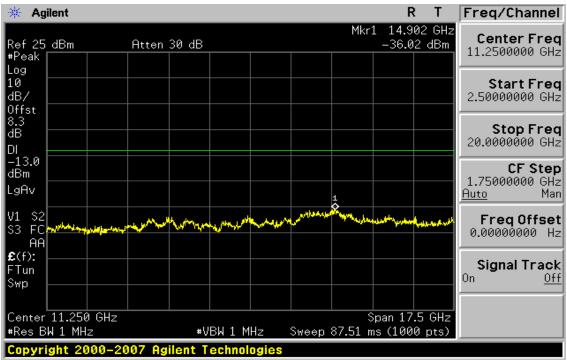
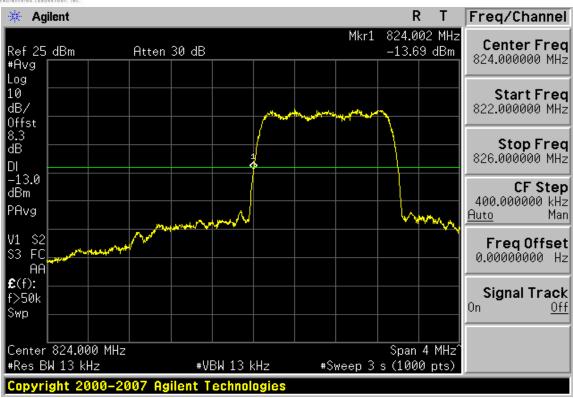



Figure 6-1. Frequency Stability Graph (Cellular CDMA Mode – Ch. 384)

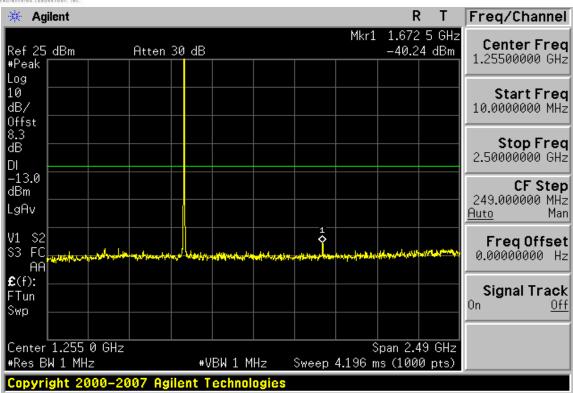

FCC ID: PY7A6880003	PCTEST	FCC Pt. 22 CDMA MEASUREMENT REPORT (CERTIFICATION)	Sony Ericson	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 17 of 24
0910191919.PY7	October 22, 2009	Cellular CDMA Phone with Bluetooth		3,

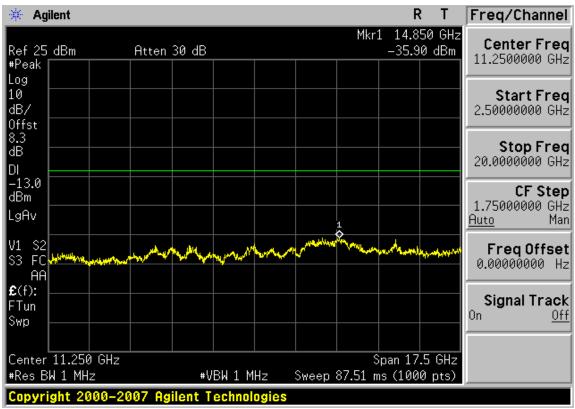
7.0 PLOT(S) OF EMISSIONS


Plot 7-1. Conducted Spurious Plot (Cellular CDMA Mode - Ch. 1013)

Plot 7-2. Conducted Spurious Plot (Cellular CDMA Mode – Ch. 1013)

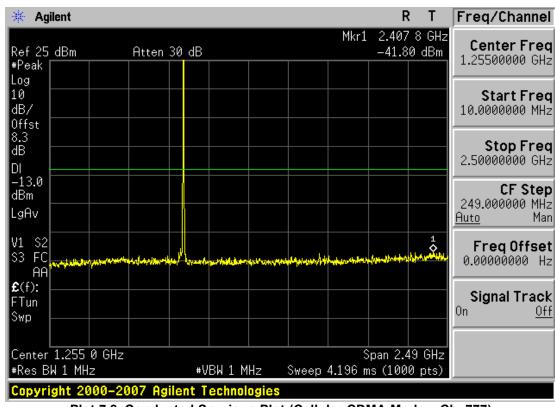
FCC ID: PY7A6880003	PCTEST	FCC Pt. 22 CDMA MEASUREMENT REPORT (CERTIFICATION)	Sorty Ericeson	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 18 of 24
0910191919.PY7	October 22, 2009	Cellular CDMA Phone with Bluetooth		. 390 .0 0. 1


Plot 7-3. Band Edge Plot (Cellular CDMA Mode – Ch. 1013)

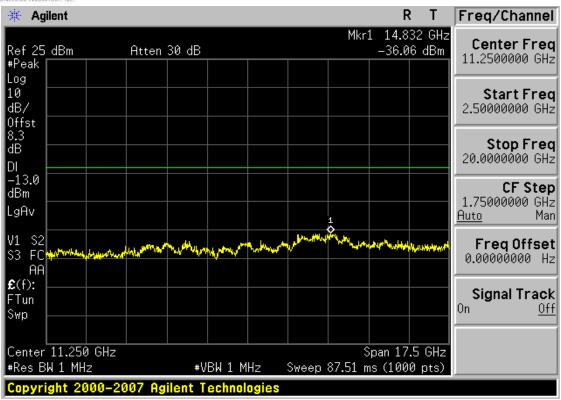

Plot 7-4. 4MHz Span Plot (Cellular CDMA Mode - Ch. 1013)

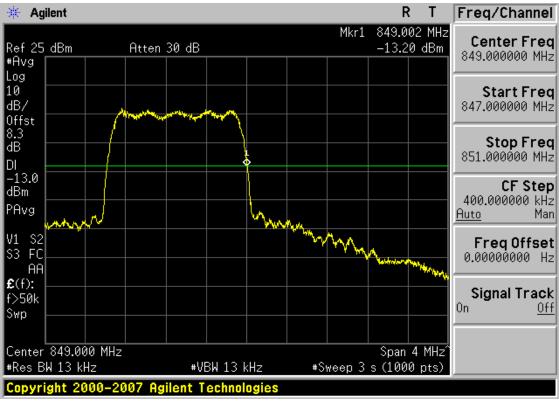
FCC ID: PY7A6880003	PCTEST	FCC Pt. 22 CDMA MEASUREMENT REPORT (CERTIFICATION)	Sory Ericoson	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 19 of 24
0910191919.PY7	October 22, 2009	Cellular CDMA Phone with Bluetooth		. ago .o o

Plot 7-5. Conducted Spurious Plot (Cellular CDMA Mode - Ch. 384)

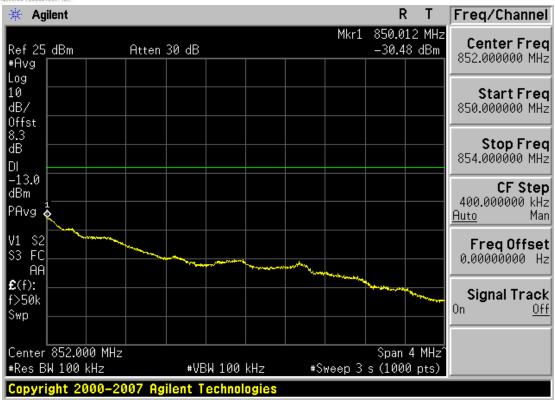

Plot 7-6. Conducted Spurious Plot (Cellular CDMA Mode - Ch. 384)

FCC ID: PY7A6880003	PCTEST	FCC Pt. 22 CDMA MEASUREMENT REPORT (CERTIFICATION)	Sorty Ericeson	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 20 of 24
0910191919.PY7	October 22, 2009	Cellular CDMA Phone with Bluetooth		. 390 10 0. 1


Plot 7-7. Occupied Bandwidth Plot (Cellular CDMA Mode – Ch. 384)


Plot 7-8. Conducted Spurious Plot (Cellular CDMA Mode - Ch. 777)

FCC ID: PY7A6880003	PCTEST	FCC Pt. 22 CDMA MEASUREMENT REPORT (CERTIFICATION)	Sorty Ericeson	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 21 of 24
0910191919.PY7	October 22, 2009	Cellular CDMA Phone with Bluetooth		. 390 1. 0. 1.


Plot 7-9. Conducted Spurious Plot (Cellular CDMA Mode – Ch. 777)

Plot 7-10. Band Edge Plot (Cellular CDMA Mode - Ch. 777)

FCC ID: PY7A6880003	PCTEST	FCC Pt. 22 CDMA MEASUREMENT REPORT (CERTIFICATION)	Sory Ericoson	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 22 of 24
0910191919.PY7	October 22, 2009	Cellular CDMA Phone with Bluetooth		. 490 11 0: 1:

Plot 7-11. 4MHz Span Plot (Cellular CDMA Mode - Ch. 777)

FCC ID: PY7A6880003	PCTEST	FCC Pt. 22 CDMA MEASUREMENT REPORT (CERTIFICATION)	Sory Ericoson	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 23 of 24
0910191919.PY7	October 22, 2009	Cellular CDMA Phone with Bluetooth		. ago 10 0. 1 .

8.0 CONCLUSION

The data collected relate only to the item(s) tested and show that the **Sony Ericsson Cellular CDMA Phone with Bluetooth FCC ID: PY7A6880003** complies with all the requirements of Parts 2 and 22 of the FCC rules.

FCC ID: PY7A6880003	PCTEST	FCC Pt. 22 CDMA MEASUREMENT REPORT (CERTIFICATION)	Sorg Ericoper	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 24 of 24
0910191919.PY7	October 22, 2009	Cellular CDMA Phone with Bluetooth		. ago o