No.2010SAR00034 Page 1 of 36

Appendix to test report no. 2010SAR00034

Calibration certificate and Test positions

No. DGA-PL-114/01-02

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of TMC Beijing.

Test Laboratory:

TMC Beijing, Telecommunication Metrology Center of MIIT

No. 52, Huayuan Bei Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2079, Fax:+86(0)10-62304793 Email:welcome@emcite.com. www.emcite.com

©Copyright. All rights reserved by TMC Beijing.

TABLE OF CONTENT

ANNEX E	PROBE CALIBRATION CERTIFICATE	3
ANNEX F	DIPOLE CALIBRATION CERTIFICATE	12
835 MHz I	DIPOLE CALIBRATION CERTIFICATE	12
1900 MHz	2 DIPOLE CALIBRATION CERTIFICATE	21
ANNEX G	EUT APPEARANCE AND TEST POSITIONS	30

ANNEX E PROBE CALIBRATION CERTIFICATE

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura Suiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service Is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

CALIBRATION CERT	IFICATE				
Object	ES	3DV3-SN: 3149			
Calibration procedure(s)		QA CAL-01.v6 Calibration procedure for dosimetric E-field probes			
Calibration date:	Se	ptember 25, 2009			
Condition of the calibrated i	tem In	Tolerance			
Calibration Equipment used (N Primary Standards	A&TE critical for ca │ID#	libration) Cal Data (Calibrated by, Certification NO.)	Scheduled Calibration		
Power meter E4419B	GB41293874	5-May-09 (METAS, NO. 251-00388)	May-10		
Power sensor E4412A	MY41495277	5-May-09 (METAS, NO. 251-00388)	May-10		
Reference 3 dB Attenuator	SN:S5054 (3c)	10-Aug-09 (METAS, NO. 251-00403)	Aug-10		
Reference 20 dB Attenuator	SN:S5086 (20b)	3-May-09 (METAS, NO. 251-00389)	May-10		
Reference 30 dB Attenuator	SN:S5129 (30b)	10-Aug-09 (METAS, NO. 251-00404)	Aug-10		
DAE4	SN:617	10-Jun-09 (SPEAG, NO.DAE4-907_Jun09)	Jun-10		
Reference Probe ES3DV2	SN: 3013	12-Jan-09 (SPEAG, NO. ES3-3013_Jan09)	Jan-10		
Secondary Standards	ID#	Check Data (in house)	Scheduled Calibration		
RF generator HP8648C	US3642U01700	4-Aug-99(SPEAG, in house check Oct-07)	In house check: Oct-09		
Network Analyzer HP 8753E	US37390585	18-Oct-01(SPEAG, in house check Nov-07)	In house check: Nov-09		
	Name	Function	Signature		
Calibrated by:	Katja Pokovic	Technical Manager	Later Mater		
	Mildo Martin	Quality Manager	111		
Approved by:	Niels Kuster		JAN.		
			Issued: September 25, 2009		
This calibration certificate sha	I not be reported e	xcept in full without written approval of the laborate	ory.		

Certificate No: ES3DV3-3149_Sep09

Page 1 of 9

No. 2010SAR00034 Page 4 of 36

Calibration Laboratory of Schmid & Partner Engineering AG eughausstrasse 43, 8004 Zurich, Switzerland

CHUBRA

Schweizerischer Kalibrierdiens S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSI NORMx,y,z ConF DCP Polarization φ Polarization 9

tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point φ rotation around probe axis 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Page 2 of 9

September 25, 2009

Probe ES3DV3

SN: 3149

Manufactured:

June 12, 2007

Calibrated:

September 25, 2009

Calibrated for DASY4 System

Certificate No: ES3DV3-3149_ Sep09

Page 3 of 9

ES3DV3 SN: 3149 September 25, 2009 DASY - Parameters of Probe: ES3DV3 SN:3149

Sensitivity in Free Space^A

Diode Compression^B

NormX	1.14±10.1%	$\mu V/(V/m)^2$	DCP X	94mV	
NormY	1.23±10.1%	$\mu V/(V/m)^2$	DCP Y	95mV	
NormZ	1.29±10.1%	$\mu V/(V/m)^2$	DCP Z	91mV	

Sensitivity in Tissue Simulating Liquid (Conversion Factors) Please see Page 8

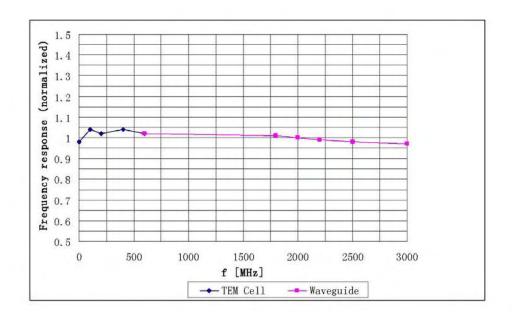
Boundary Effect

TSL	900MHz	Typical SAR gradient: 5% pe	er mm	
Sensor Cent SARbe[%]		n Surface Distance out Correction Algorithm	3.0 mm 3.8	4.0 mm 1.6
SARbe[%]		Correction Algorithm	0.8	0.7
TSL	1810MHz	Typical SAR gradient: 10% p	oer mm	
Sensor Cent	er to Phanton	n Surface Distance	3.0 mm	4.0 mm
SARbe[%]	With	out Correction Algorithm	6.8	3.6
SARbe[%]	With	Correction Algorithm	0.4	0.2
Sensor Offse	et			

Sensor Onser

Probe Tip to Sensor Center 2.0 mm

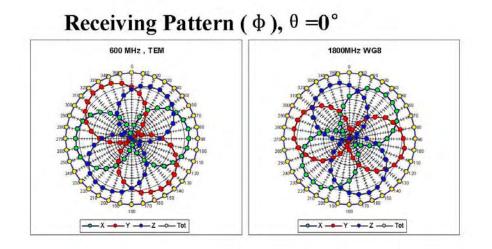
The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distributio Corresponds to a coverage probability of approximately 95%.

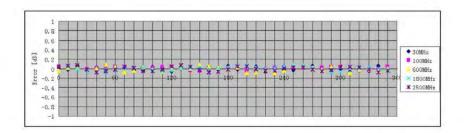

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8). ^B Numerical linearization parameter: uncertainty not required.

Certificate No: ES3DV3-3149_ Sep09

Page 4 of 9

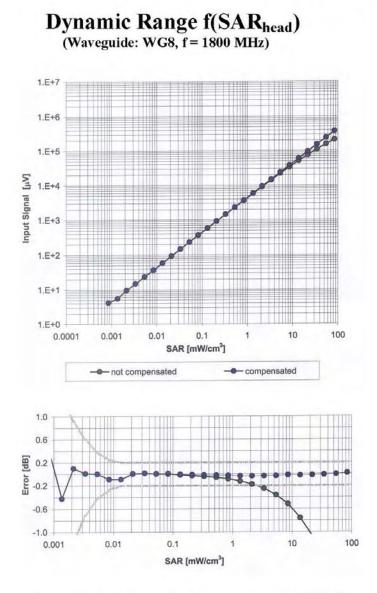
September 25, 2009


Frequency Response of E-Field


Uncertainty of Frequency Response of E-field: ±5.0% (k=2)

Page 5 of 9

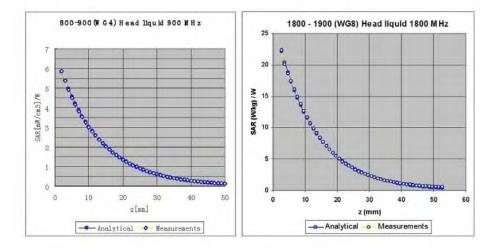
September 25, 2009


Uncertainty of Axial Isotropy Assessment: ±0.5% (k=2)

Certificate No: ES3DV3-3149_ Sep09

Page 6 of 9

September 25, 2009



Uncertainty of Linearity Assessment: $\pm 0.5\%$ (k=2)

Page 7 of 9

September 25, 2009

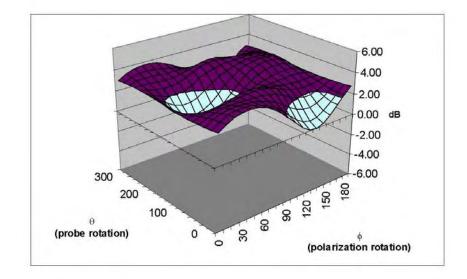
Conversion Factor Assessment

f[MHz]	Validity[MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF	Uncertainty
850	±50 /±100	Head	41.5±5%	0.90±5%	0.91	1.13	6.56	±11.0% (k=2)
900	±50 /±100	Head	41.5±5%	0.97±5%	0.83	1.26	6.34	±11.0% (k=2)
1800	±50 /±100	Head	40.0±5%	1.40±5%	0.69	1.47	5.18	±11.0% (k=2)
1900	±50 /±100	Head	40.0±5%	1.40±5%	0.72	1.38	5.03	±11.0% (k=2)
2100	±50 /±100	Head	39.8±5%	1.49±5%	0.66	1.34	4.58	±11.0% (k=2)
850	±50 /±100	Body	55.2±5%	0.97±5%	0.76	1.26	6.22	±11.0% (k=2)
900	±50 /±100	Body	55.0±5%	1.05±5%	0.99	1.06	6.02	±11.0% (k=2)
1800	±50 /±100	Body	53.3±5%	1.52±5%	0.75	1.34	4.97	±11.0% (k=2)
1900	±50 /±100	Body	53.3±5%	1.52±5%	0.62	1.33	4.68	±11.0% (k=2)
2100	±50 /±100	Body	53.5±5%	1.57±5%	0.68	1.34	4.35	±11.0% (k=2)

^c The validity of ±100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: ES3DV3-3149_ Sep09

Page 8 of 9



No. 2010SAR00034 Page 11 of 36

ES3DV3 SN: 3149

September 25, 2009

Deviation from Isotropy Error (Φ, θ) , f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ±2.5% (k=2)

Certificate No: ES3DV3-3149_Sep09

Page 9 of 9

ANNEX F DIPOLE CALIBRATION CERTIFICATE

835 MHz Dipole Calibration Certificate

Client TMC	1201	Certificate No: D835V2-	-443_Feb10
CALIBRATION	N CERTI	FICATE	
Object		D835V2 - SN: 443	
Calibration Procedure(s)		TMC-XZ-01-027 Calibration procedure for dipole validation kits	
Calibration date:		February 26, 2010	
Condition of the calibrate	ed item	In Tolerance	
following pages and are p All calibrations have be humidity<70%.	part of the cert	in the closed laboratory facility: environment tem	
following pages and are p All calibrations have be	part of the cert	ificate. in the closed laboratory facility: environment tem itical for calibration)	nperature(22±3)°C ar Scheduled Calibratio
following pages and are p All calibrations have be humidity<70%. Calibration Equipment us Primary Standards Power Meter NRVD	part of the cert en conducted sed (M&TE cr ID # 101253	ificate. in the closed laboratory facility: environment tem ritical for calibration) <u>Cal Date(Calibrated by, Certificate No.)</u> 04-Sep-09 (TMC, No.JZ09-248)	aperature(22±3)°C ar Scheduled Calibratio Jun-10
following pages and are p All calibrations have be humidity<70%. Calibration Equipment us Primary Standards Power Meter NRVD Power sensor NRV-Z5	part of the cert en conducted sed (M&TE cr ID # 101253 100333	ificate. in the closed laboratory facility: environment tem ritical for calibration) <u>Cal Date(Calibrated by, Certificate No.)</u> 04-Sep-09 (TMC, No.JZ09-248) 04-Sep-09 (TMC, No.JZ09-248)	nperature(22±3)°C ar Scheduled Calibratio
following pages and are p All calibrations have be humidity<70%. Calibration Equipment us Primary Standards Power Meter NRVD	part of the cert en conducted sed (M&TE cr ID # 101253 100333	ificate. in the closed laboratory facility: environment tem ritical for calibration) Cal Date(Calibrated by, Certificate No.) 5 04-Sep-09 (TMC, No.JZ09-248) 04-Sep-09 (TMC, No. JZ09-248) 19 25-Sep-09(SPEAG, No.ES3-3149_Sep09)	scheduled Calibration Jun-10 Sep-10
following pages and are p All calibrations have be humidity<70%. Calibration Equipment us Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe ES3D	en conducted sed (M&TE cr ID # 101253 100333 VV3 SN 314 SN 771 MY450	ificate. in the closed laboratory facility: environment tem ritical for calibration) Cal Date(Calibrated by, Certificate No.) S 04-Sep-09 (TMC, No.JZ09-248) 04-Sep-09 (TMC, No.JZ09-248) 04-Sep-09 (SPEAG, No.ES3-3149_Sep09) 19-Nov-09(SPEAG, No.DAE4-771_Nov09) 92879 18-Jun-09(TMC, No.JZ09-302)	scheduled Calibratio Jun-10 Sep-10
following pages and are p All calibrations have be humidity<70%. Calibration Equipment us Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe ES3D DAE4 RF generator E4438C	en conducted sed (M&TE cr ID # 101253 100333 VV3 SN 314 SN 771 MY450	ificate. in the closed laboratory facility: environment tem itical for calibration) Cal Date(Calibrated by, Certificate No.) S 04-Sep-09 (TMC, No.JZ09-248) 04-Sep-09 (TMC, No.JZ09-248) 19 25-Sep-09(SPEAG, No.ES3-3149_Sep09) 19-Nov-09(SPEAG, No.DAE4-771_Nov09) 92879 18-Jun-09(TMC, No.JZ09-302)	Scheduled Calibratio Jun-10 Sep-10 Nov-10 Jun-10
following pages and are p All calibrations have be humidity<70%. Calibration Equipment us Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe ES3D DAE4 RF generator E4438C	en conducted sed (M&TE cr 101253 100333 vV3 SN 314 SN 771 MY450 3E US3843	ificate. in the closed laboratory facility: environment tem itical for calibration) Cal Date(Calibrated by, Certificate No.) S 04-Sep-09 (TMC, No.JZ09-248) 04-Sep-09 (TMC, No.JZ09-248) 04-Sep-09 (TMC, No.JZ09-248) 19 25-Sep-09(SPEAG, No.ES3-3149_Sep09) 19-Nov-09(SPEAG, No.DAE4-771_Nov09) 192879 18-Jun-09(TMC, No.JZ09-302) 13212 29-Aug-09(TMC, No.JZ09-056)	Scheduled Calibratio Jun-10 Jun-10 Sep-10 Nov-10 Jun-10 Aug-10
following pages and are p All calibrations have be humidity<70%. Calibration Equipment us Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe ES3D DAE4 RF generator E4438C Network Analyzer 875	en conducted sed (M&TE cr ID # 101253 100333 iV3 SN 314 SN 771 MY450 3E US3843 Name	ificate. in the closed laboratory facility: environment tem itical for calibration) Cal Date(Calibrated by, Certificate No.) S 04-Sep-09 (TMC, No.JZ09-248) 04-Sep-09 (TMC, No.JZ09-248) 09 25-Sep-09(SPEAG, No.ES3-3149_Sep09) 19-Nov-09(SPEAG, No.DAE4-771_Nov09) 92879 18-Jun-09(TMC, No.JZ09-302) 32212 29-Aug-09(TMC, No.JZ09-056) Function SAR Test Engincer	Scheduled Calibration Jun-10 Jun-10 Sep-10 Nov-10 Jun-10 Aug-10

Glossary:

TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point
 exactly below the center marking of the flat phantom section, with the arms oriented parallel to
 the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low reflected
 power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No
 uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-443_Feb10

Page 2 of 9

Measurement Conditions

DASY Version	DASY5	V5.0
Extrapolation	Advanced Extrapolation	and the set is to
Phantom	2mm Oval Phantom ELI4	STO ALSON
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.6 ± 6 %	0.92mho/m ± 6 %
Head TSL temperature during test	(21.7 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
SAR measured	250 mW input power	2.38 mW / g
SAR normalized	normalized to 1W	9.52 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	9.41 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	1. 8. 1. 10
SAR measured	250 mW input power	1.54 mW / g
SAR normalized	normalized to 1W	6.16 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	6.12 mW /g ± 16.5 % (k=2)

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Certificate No: D835V2-443_Feb10

Page 3 of 9

TME

Body TSL parameters

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.5 ± 6%	0.97mho/m ± 6 %
Body TSL temperature during test	(21.9 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
SAR measured	250 mW input power	2.41 mW/g
SAR normalized	normalized to 1W	9.64 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	9.57 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	the second second
SAR measured	250 mW input power	1.57 mW / g
SAR normalized	normalized to 1W	6.28 mW / g
SAR for nominal Body TSL parameters 2	normalized to 1W	6.24 mW /g ± 16.5 % (k=2)

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Certificate No: D835V2-443_Feb10

Page 4 of 9

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.7Ω -3.7 jΩ	
Return Loss	- 25.9dB	- 15

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.4Ω - 5.1 jΩ	
Return Loss	-25.6dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.387 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 3, 2001

Certificate No: D835V2-443_Feb10

Page 5 of 9

No. 2010SAR00034 Page 17 of 36

工业和信息化部通信计量中心 Telecommunication Metrology Center of MIIT

TME

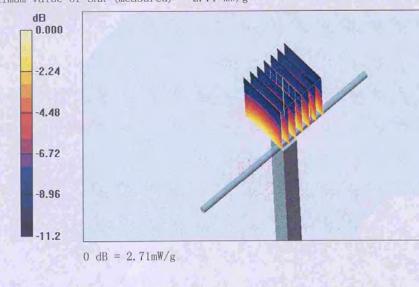
DASY5 Validation Report for Head TSL

Test Laboratory: TMC, Beijing, China

Date/Time: 2010-2-26 14:31:40

DUT: Dipole 835 MHz; Type: D835V2; Serial: SN: 443

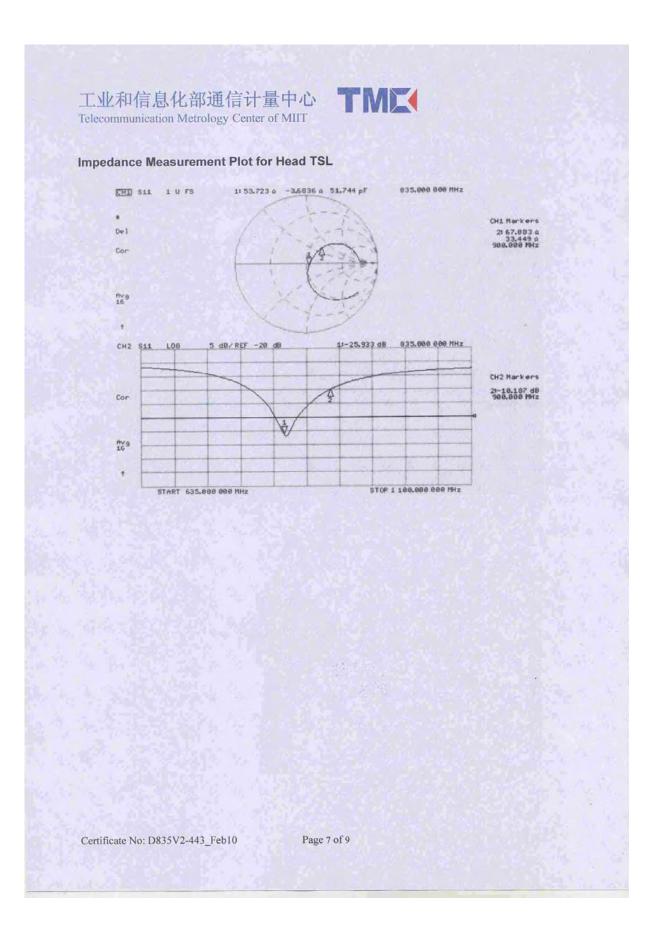
Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1 Medium: Head 835MHz


Medium parameters used: f = 835 MHz; σ = 0.92 mho/m; ϵ_r = 41.6; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: ES3DV3 SN3149; ConvF(6.56, 6.56, 6.56); Calibrated: 25.09.09
- Electronics: DAE4 Sn771; Calibration: 19.11.09
- Phantom: 2mm Oval Phantom EL14; Type: QDOVA001BB
- Measurement SW: DASY5, V5.0 Build 119.9; Postprocessing SW: SEMCAD, V13.2 Build 87

Pin=250mW; d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.8 V/m; Power Drift = -0.037 dB Peak SAR (extrapolated) = 3.11 W/kgSAR(1 g) = 2.38 mW/g; SAR(10 g) = 1.54 mW/gMaximum value of SAR (measured) = 2.71 mW/g

Certificate No: D835V2-443_Feb10

Page 6 of 9

No. 2010SAR00034 Page 19 of 36

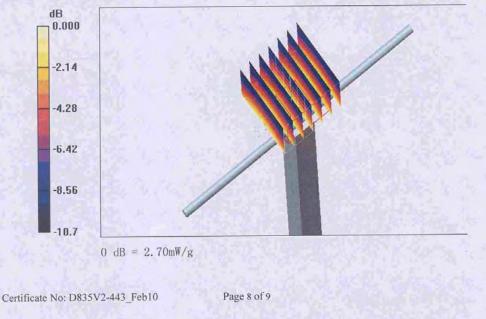
工业和信息化部通信计量中心 Telecommunication Metrology Center of MIIT

DASY5 Validation Report for Body TSL

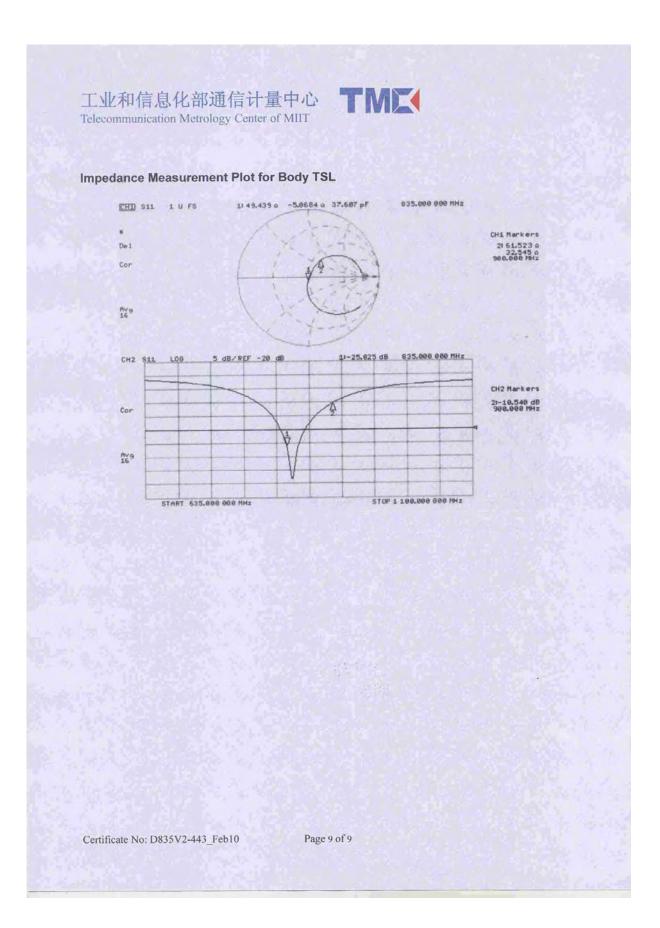
Date/Time: 2010-2-26 9:52:36

Test Laboratory: TMC, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: SN: 443


Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1 Medium: Body 835MHz Medium parameters used: f = 835 MHz; σ = 0.97 mho/m; ϵ , = 54.5; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:


- Probe: ES3DV3 SN3149; ConvF(6.22, 6.22, 6.22); Calibrated: 25.09.09
- Electronics: DAE4 Sn771; Calibration: 19.11.09
- Phantom: 2mm Oval Phantom EL14; Type: QDOVA001BB
- Measurement SW: DASY5, V5.0 Build 119.9; Postprocessing SW: SEMCAD, V13.2 Build 87

Pin=250mW; d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.0 V/m; Power Drift = -0.025 dB Peak SAR (extrapolated) = 3.78 W/kg SAR(1 g) = 2.41 mW/g; SAR(10 g) = 1.57 mW/g Maximum value of SAR (measured) = 2.70 mW/g

No. 2010SAR00034 Page 21 of 36

1900 MHz Dipole Calibration Certificate

Client IMC		Certificate No: D1900V	2-541_Feb10
CALIBRATION	CERT	IFICATE	No.
Object		D1900V2 - SN: 541	
Calibration Procedure(s)		TMC-XZ-01-027 Calibration procedure for dipole validation kits	
Calibration date:		February 26, 2010	
Condition of the calibrated item		In Tolerance	
humidity<70%. Calibration Equipment us	sed (M&TE c	critical for calibration)	
	1 ID # 101253 10033	Cal Date(Calibrated by, Certificate No.) 3 04-Sep-09 (TMC, No. JZ09-248) 3 04-Sep-09 (TMC, No. JZ09-248)	Scheduled Calibration Sep-10 Sep-10 Sep-10
Calibration Equipment us Primary Standards Power Meter NRVD Power sensor NRV-Z5	ID # 101253 10033 V3 SN 31 SN 77 MY450	Cal Date(Calibrated by, Certificate No.) 3 04-Sep-09 (TMC, No. JZ09-248) 3 04-Sep-09 (TMC, No. JZ09-248) 49 25-Sep-09 (SPEAG, No.ES3-3149_Sep09) 1 19-Nov-09 (SPEAG, No.DAE4-771_Nov09) 092879 18-Jun-09 (TMC, No.JZ09-302)	Sep-10 Sep-10
Calibration Equipment us Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe ES3D DAE4 RF generator E4438C	ID # 101253 10033 V3 SN 31 SN 771 MY450 3E US384	Cal Date(Calibrated by, Certificate No.) 3 04-Sep-09 (TMC, No. JZ09-248) 3 04-Sep-09 (TMC, No. JZ09-248) 49 25-Sep-09(SPEAG, No.ES3-3149_Sep09) 1 19-Nov-09(SPEAG, No.DAE4-771_Nov09) 092879 18-Jun-09(TMC, No.JZ09-302) 33212 29-Aug-09(TMC, No.JZ09-056)	Sep-10 Sep-10 Sep-10 Nov-10 Jun-10 Aug-10
Calibration Equipment us Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe ES3D DAE4 RF generator E4438C	ID # 101253 10033 V3 SN 31 SN 77 MY450	Cal Date(Calibrated by, Certificate No.) 3 04-Sep-09 (TMC, No. JZ09-248) 3 04-Sep-09 (TMC, No. JZ09-248) 49 25-Sep-09(SPEAG, No.ES3-3149_Sep09) 1 19-Nov-09(SPEAG, No.DAE4-771_Nov09) 092879 18-Jun-09(TMC, No.JZ09-302)	Sep-10 Sep-10 Sep-10 Nov-10 Jun-10
Calibration Equipment us Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe ES3D DAE4 RF generator E4438C Network Analyzer 8753	ID # 101253 10033 V3 SN 31 SN 771 MY450 3E US384 Name	Cal Date(Calibrated by, Certificate No.) 3 04-Sep-09 (TMC, No. JZ09-248) 3 04-Sep-09 (TMC, No. JZ09-248) 49 25-Sep-09(SPEAG, No.ES3-3149_Sep09) 1 19-Nov-09(SPEAG, No.DAE4-771_Nov09) 092879 18-Jun-09(TMC, No.JZ09-302) 33212 29-Aug-09(TMC, No.JZ09-056) Function SAR Test Engineer	Sep-10 Sep-10 Sep-10 Nov-10 Jun-10 Aug-10
Calibration Equipment us Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe ES3D DAE4 RF generator E4438C Network Analyzer 8753 Calibrated by:	ID # 101253 10033 V3 SN 31 SN 771 MY450 3E US384 Name Lin Hao	Cal Date(Calibrated by, Certificate No.) 3 04-Sep-09 (TMC, No. JZ09-248) 3 04-Sep-09 (TMC, No. JZ09-248) 49 25-Sep-09(SPEAG, No.ES3-3149_Sep09) 1 19-Nov-09(SPEAG, No.DAE4-771_Nov09) 092879 18-Jun-09(TMC, No.JZ09-302) 33212 29-Aug-09(TMC, No.JZ09-056) Function SAR Test Engineer an SAR Project Leader	Sep-10 Sep-10 Sep-10 Nov-10 Jun-10 Aug-10

Glossary: TSL

TSL tis ConvF se: N/A no

tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005

c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point
 exactly below the center marking of the flat phantom section, with the arms oriented parallel to
 the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low reflected
 power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No
 uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1900V2-541_Feb10

Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.0
Extrapolation	Advanced Extrapolation	all and and
Phantom	2mm Oval Phantom ELI4	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.6 ± 6 %	1.40mho/m ± 6 %
Head TSL temperature during test	(21.9 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	1. 4. Mar. 82
SAR measured	250 mW input power	9.91 mW / g
SAR normalized	normalized to 1W	39.6 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	39.4 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	CALL BURN
SAR measured	250 mW input power	5.05 mW / g
SAR normalized	normalized to 1W	20.2 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	20.1 mW /g ± 16.5 % (k=2)

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Certificate No: D1900V2-541_Feb10

Page 3 of 9

TMX

Body TSL parameters The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.5 ± 6%	1.51 mho/m ± 6 %
Body TSL temperature during test	(21.8 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.4 mW / g
SAR normalized	normalized to 1W	41.6 mW / g
SAR for nominal Body TSL parameters 2	normalized to 1W	41.4 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.24 mW / g
SAR normalized	normalized to 1W	21.0 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	20.9 mW /g ± 16.5 % (k=2)

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Certificate No: D1900V2-541_Feb10

Page 4 of 9

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.8Ω + 4.0 jΩ	
Return Loss	- 23.7dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.9Ω + 7.1 jΩ	
Return Loss	- 22.6dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.201 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	October 4, 2001	

Page 5 of 9

No. 2010SAR00034 Page 26 of 36

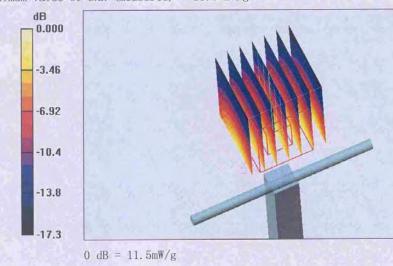
DASY5 Validation Report for Head TSL

Date/Time: 2010-2-26 15:20:47

Test Laboratory: TMC, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: SN: 541

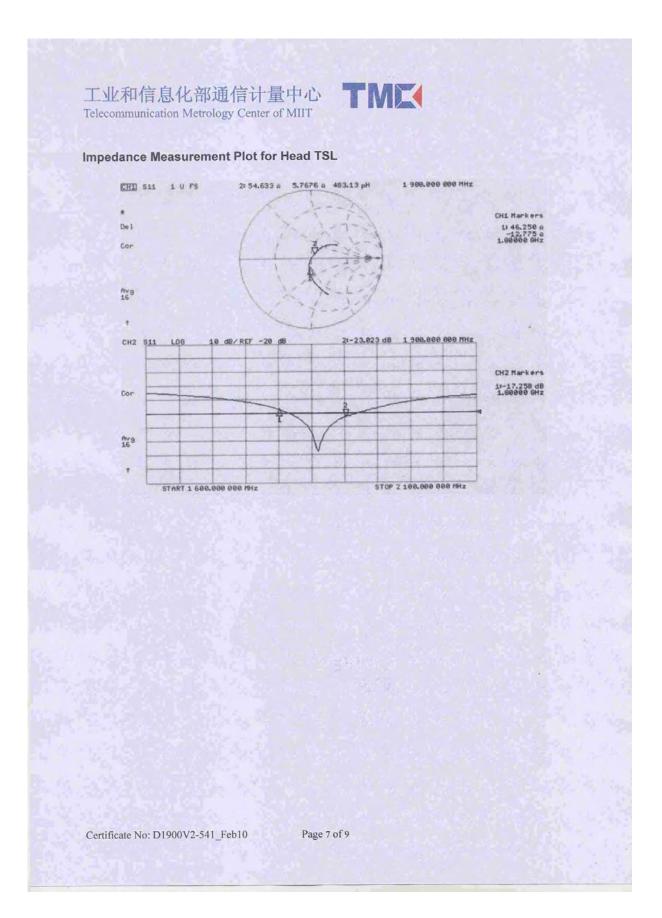
Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1 Medium: Head 1900MHz


Medium parameters used: f = 1900 MHz; σ = 1.40 mho/m; ϵ $_r$ = 39.6; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: ES3DV3 SN3149; ConvF(5.03, 5.03, 5.03); Calibrated: 25.09.09
- Electronics: DAE4 Sn771; Calibration: 19.11.09
- Phantom: 2mm Oval Phantom ELI4; Type: QDOVA001BB
- Measurement SW: DASY5, V5.0 Build 119.9; Postprocessing SW: SEMCAD, V13.2 Build 87

Pin=250mW; d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 85.1 V/m; Power Drift = -0.057 dB Peak SAR (extrapolated) = 18.8 W/kg SAR(1 g) = 9.91 mW/g; SAR(10 g) = 5.05 mW/g Maximum value of SAR (measured) = 11.5 mW/g

Certificate No: D1900V2-541 Feb10

Page 6 of 9

No. 2010SAR00034 Page 28 of 36

工业和信息化部通信计量中心 Telecommunication Metrology Center of MIIT

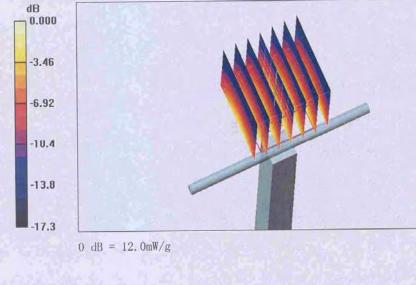
DASY5 Validation Report for Body TSL

Test Laboratory: TMC, Beijing, China

Date/Time: 2010-2-26 10:41:08

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: SN: 541

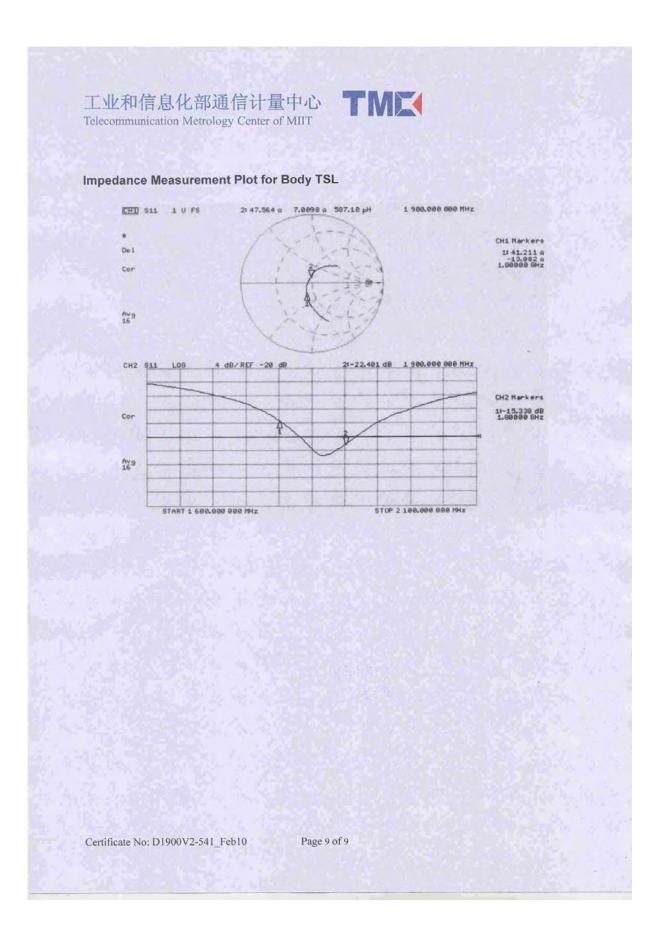
Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1 Medium: Body 1900MHz Medium parameters used: f = 1900 MHz; σ = 1.51 mho/m; ε_r = 52.5; ρ = 1000 kg/m³ Phantom section: Flat Section


TMX

DASY5 Configuration:

- Probe: ES3DV3 SN3149; ConvF(4.68, 4.68, 4.68); Calibrated: 25.09.09
- Electronics: DAE4 Sn771; Calibration: 19.11.09
- Phantom: 2mm Oval Phantom ELI4; Type: QDOVA001BB
- Measurement SW: DASY5, V5.0 Build 119.9; Postprocessing SW: SEMCAD, V13.2 Build 87

Pin=250mW; d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 80.2 V/m; Power Drift = -0.009 dB Peak SAR (extrapolated) = 19.1 W/kg SAR(1 g) = 10.4 mW/g; SAR(10 g) = 5.24 mW/g Maximum value of SAR (measured) = 12.0 mW/g

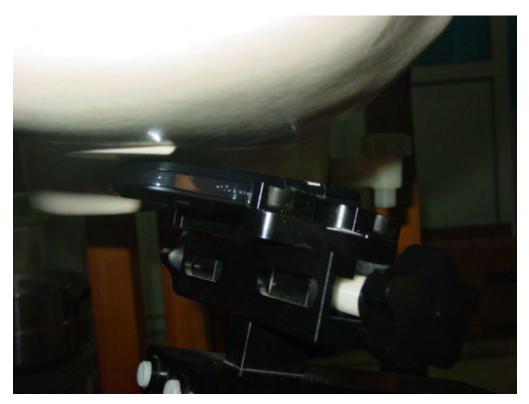
Certificate No: D1900V2-541_Feb10

Page 8 of 9

ANNEX G EUT APPEARANCE AND TEST POSITIONS

Picture G1: Constituents of the sample (Lithium Battery is in the Handset)

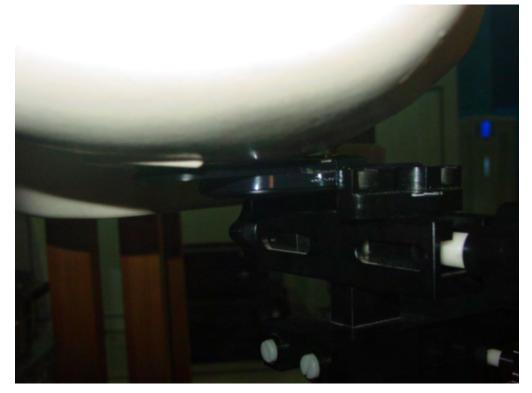
Picture G2: Left Hand Touch Cheek Position – Slide down



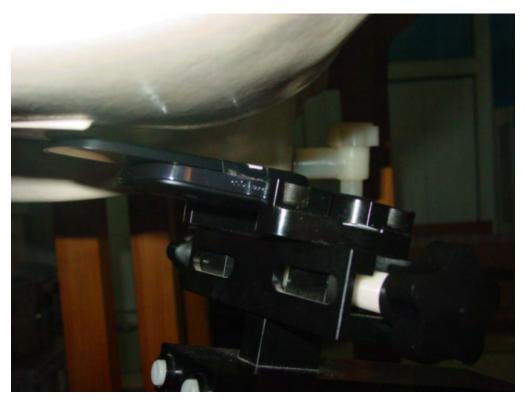
Picture G3: Left Hand Tilt 15° Position – Slide down

Picture G4: Right Hand Touch Cheek Position – Slide down

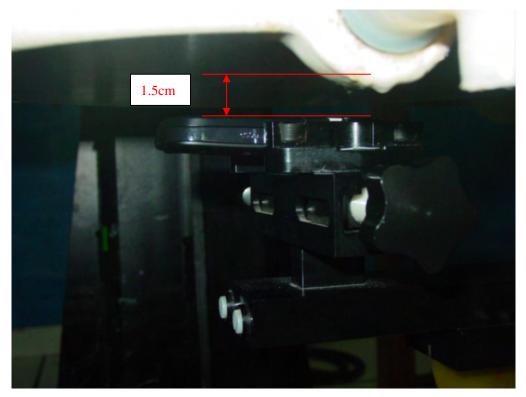
Picture G5: Right Hand Tilt 15° Position – Slide down



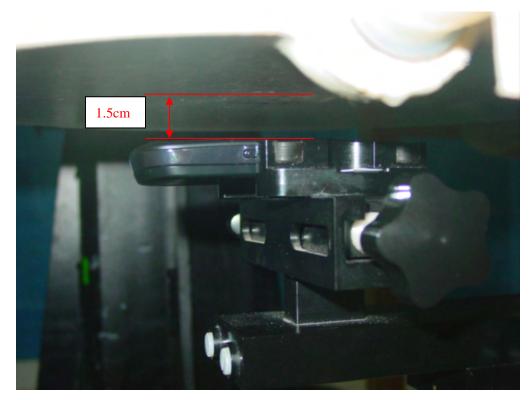
Picture G6: Left Hand Touch Cheek Position – Slide up



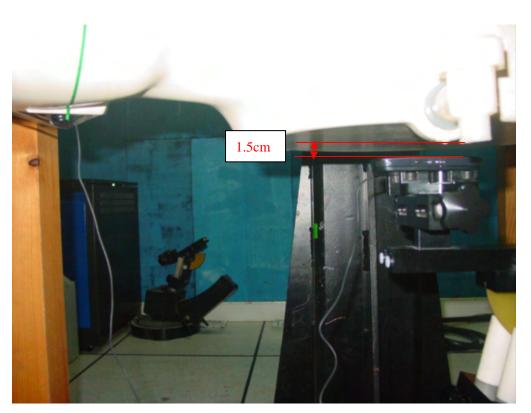
Picture G7: Left Hand Tilt 15° Position – Slide up



Picture G8: Right Hand Touch Cheek Position - Slide up



Picture G9: Right Hand Tilt 15° Position – Slide up



Picture G10: Body-worn Position (towards ground, the distance from handset to the bottom of the Phantom is 1.5cm) – Slide down

Picture G11: Body-worn Position (towards phantom, the distance from handset to the bottom of the Phantom is 1.5cm) – Slide down

Picture G12: Body-worn Position with headset (EUT towards ground, the distance from handset to the bottom of the Phantom is 1.5cm) – Slide down