

Accredited testing-laboratory

DAR registration number: DGA-PL-176/94-D1

Federal Motor Transport Authority (KBA) DAR registration number: KBA-P 00070-97

Recognized by the Federal Communications Commission Anechoic chamber registration no.: 90462 (FCC) Anechoic chamber registration no.: 3462C-1 (IC) Certification ID: DE 0001 Accreditation ID: DE 0002

> Accredited Bluetooth[®] Test Facility (BQTF) The Bluetooth word mark and logos are owned by the Bluetooth SIG, Inc. and any use of such marks by Cetecom ICT is under license

Test report no. :	1-1954-06-05/10
Type identification :	AAD-3880070-BV
Applicant :	Sony Ericsson Mobile Communications AB
FCC ID :	PY7A3880070
IC Certification No :	4170B-A3880070
Test standards :	47 CFR Part 22
	47 CFR Part 24
	RSS - 132 Issue 2
	RSS - 133 Issue 5

Table of contents

1	Gener	al information	3
	1.1 No	tes	3
		sting laboratory	
		tails of applicant	
		plication details	
2		andard/s	
4	Test st	anual u/ 5	•••••••••••••••••••••••••••••••••••••••
3	Techni	ical tests	6
	3.1 De	tails of manufacturer	
	3.1.1	Test item	
	3.2 Tes	st Setup	8
4	Staten	nent of Compliance	9
	4.1 Su	nmary of Measurement Results	9
	4.1.1	PCS 1900	9
	4.1.2	GSM 850	9
	4.1.3	UMTS Band II	
	4.1.4	UMTS Band V	
	4.1.5	Receiver	
5	Measu	rements and results	11
	5.1 PA	RT PCS 1900	11
	5.1.1	RF Power Output	
	5.1.2	Frequency Stability	
	5.1.3	Radiated Emissions	
	5.1.4	Conducted Spurious Emissions	
	5.1.5	Block Edge Compliance	
	5.1.6	Occupied Bandwidth	
		RT GSM 850	
	5.2.1	RF Power Output	
	5.2.2	Frequency Stability	
	5.2.3	Radiated Emissions	
	5.2.4	Conducted Spurious Emissions	
	5.2.5	Block Edge Compliance	
	5.2.6	Occupied Bandwidth	
	5.3 PA	RT UMTS Band II	
	5.3.1	RF Power Output	
	5.3.2	Frequency Stability	
	5.3.3	Radiated Emissions	
	5.3.4	Conducted Spurious Emissions	
	5.3.5	Block Edge Compliance	
	5.3.6	Occupied Bandwidth	75
	5.4 PA	RT UMTS Band V	
	5.4.1	RF Power Output	
	5.4.2	Frequency Stability	
	5.4.3	Radiated Emissions	
	5.4.4	Conducted Spurious Emissions	
	5.4.5	Block Edge Compliance	
	5.4.6	Occupied Bandwidth	
		ceiver	
	5.5.1	Receiver Radiated Emissions	
6	Test e	quipment and ancillaries used for tests	

1 General information

1.1 Notes

The test results of this test report relate exclusively to the test item specified in 3.1.1. The CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the CETECOM ICT Services GmbH.

Test laboratory manager:

2010-03-05 **Jakob Reschke** Date Name

Signature

Technical responsibility for area of testing:

2010-03-05 **Michael Berg** Date

Name

Signature

1.2 Testing laboratory

CETECOM ICT Services GmbH

Untertürkheimer Straße 6 - 10 66117 Saarbrücken Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 e-mail: info@ICT.cetecom.de Internet: http://www.cetecom-ict.de

State of accreditation:	The test laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 DAR registration number: DGA-PL-176/94-D1
Accredited by:	Federal Motor Transport Authority (KBA) DAR registration number: KBA-P 00070-97

Testing location, if different from CETECOM ICT Services GmbH:

Name:Street:Town:Country:Phone:Fax:

1.3 Details of applicant

Name:	Sony Ericsson Mobile Communications AB	
Street:	Nya Vattentornet	
Town:	22188 Lund	
Country:	Sweden	
Telephone:	+46-46-19-3000	
Fax:	+46 (0) 46 19 32 95	
Contact:	Johan Wedin	
E-mail:	johan.wedin@sonyericsson.com	
Telephone:	+46 (0) 707 19 57 36	

1.4 Application details

Date of receipt of order:	2010-02-10
Date of receipt of test item:	2010-03-03
Date of start test:	2010-03-03
Date of end test	2010-03-05
Persons(s) who have been	
present during the test:	-/-

2 Test standard/s

47 CFR Part 22	2006-10	Title 47 of the Code of Federal Regulations; Chapter I- Federal Communications Commission subchapter B - common carrier services, Part 22-Public mobile services
47 CFR Part 24	2006-10	Title 47 of the Code of Federal Regulations; Chapter I- Federal Communications Commission subchapter B - common carrier services, Part 24-Personal communications services
RSS - 132 Issue 2	2005-09	Spectrum Management and Telecommunications Policy - Radio Standards Specifications Cellular Telephones Employing New Technologies Operating in the Bands 824-849 MHz and 869-894 MHz
RSS - 133 Issue 5	2009-02	Spectrum Management and Telecommunications Policy - Radio Standards Specifications 2 GHz Personal Communication Services

3 Technical tests

3.1 Details of manufacturer

Name:	Sony Ericsson Mobile Communications AB
Street:	Nya Vattentornet
Town:	22188 Lund
Country:	Sweden

3.1.1 Test item

Kind of test item	:	Mobile Phone GSM 850/900/1800/1900, UMTS FDD1/FDD2/FDD5 / HSDPA / WLAN / BT EDR / A-GPS / FM-Rx
Type identification	:	AAD-3880070-BV
Serial Number	:	Rad.BX901AZ6E3Cond.BX901AZ6BV
Frequency	:	1850.2 – 1909.8 MHz and 824.2 – 848.8 MHz
Type of modulation	:	GMSK; 8-PSK; QPSK; 16QAM
Emission Designator for GSM 1900	:	GMSK: 273KGXW 8-PSK: 281KG7W
Emission Designator for GSM 850	:	GMSK: 273KGXW 8-PSK: 283KG7W
Emission Designator for WCDMA 1	900 ·	QPSK: 4M65F9W
Emission Designator for WCDMA 1 Emission Designator for WCDMA 8		QPSK: 4M68F9W
Number of channels	:	300 (PCS1900) and 125 (PCS850) 103 (FDD V) / 278 (FDD II)
Antenna Type	•	Integrated antenna
Power supply (normal)	:	DC by Li-Polymer Battery (EP500) and Power Supply
Output power GSM 850 / GMSK	:	cond.: 32.79 dBm ERP: 33.30 dBm
Output power GSM 1900 / GMSK	:	cond : 30.34 dBm EIRP: 29.55 dBm
Output power GSM 850 / 8-PSK	:	cond.: 27.82 dBm ERP: 27.58 dBm
Output power GSM 1900 / 8-PSK	:	cond : 26.65 dBm EIRP: 26.16 dBm
Output power UMTS 850 / WCDMA	A :	cond.: 24.41 dBm ERP: 25.10 dBm
Output power UMTS 1900 / WCDM	A:	cond : 24.61 dBm EIRP: 25.21 dBm
Transmitter Spurious (worst case)	:	-28.47 dBm
Receiver Spurious (worst case)	:	177 μV/m @ 3 m
FCC ID		PY7A3880070
Certification No. IC	• :	4170B-A3880070
Open Area Test Site IC No.	•	IC 3462C-1
IC Standards	•	RSS132, Issue 2, RSS133, Issue 5

ATTESTATION: DECLARATION OF COMPLIANCE:

I declare that the testing was performed or supervised by me; that the test measurements were made in accordance with the above-mentioned Industry Canada standard(s); and that the equipment identified in this application has been subjected to all the applicable test conditions specified in the Industry Canada standards and all of the requirements of the standard have been met.

Laboratory Manager:

2010-03-05 Date

Jakob Reschke Name

ten the

Signature

3.2 Test Setup

Hardware	:	AP2.1
Software	:	R2BA026V ATP
Mobile; (cond. measurements)	:	BX901AZ6BV
Mobile; (rad. measurements)	:	BX901AZ6E3

The radiated measurements were performed with Standard world wide charger.

4 Statement of Compliance

No deviations from the technical specification(s) were ascertained in the course of the tests performed.

4.1 Summary of Measurement Results

No deviations from the technical specifications were ascertained

There were deviations from the technical specifications ascertained

4.1.1 PCS 1900

Section in this Report	Test Name	Verdict
5.1.1	RF Power Output	pass
5.1.2	Frequency Stability	pass
5.1.3	Radiated Emissions	pass
5.1.4	Conducted Spurious Emissions	pass
5.1.5	Block Edge Compliance	pass
5.1.6	Occupied Bandwidth	pass

4.1.2 GSM 850

Section in this Report	Test Name	Verdict
5.2.1	RF Power Output	pass
5.2.2	Frequency Stability	pass
5.2.3	Radiated Emissions	pass
5.2.4	Conducted Spurious Emissions	pass
5.2.5	Block Edge Compliance	pass
5.2.6	Occupied Bandwidth	pass

4.1.3 UMTS Band II

Section in this Report	Test Name	Verdict
5.3.1	RF Power Output	pass
5.3.2	Frequency Stability	pass
5.3.3	Radiated Emissions	pass
5.3.4	Conducted Spurious Emissions	pass
5.3.5	Block Edge Compliance	pass
5.3.6	Occupied Bandwidth	pass

4.1.4 UMTS Band V

Section in This Report	Test Name	Verdict
5.4.1	RF Power Output	pass
5.4.2	Frequency Stability	pass
5.4.3	Radiated Emissions	pass
5.4.4	Conducted Spurious Emissions	pass
5.4.5	Block Edge Compliance	pass
5.4.6	Occupied Bandwidth	pass

4.1.5 Receiver

Section in this Report	Test Name	Verdict
5.5.1	Receiver Radiated emissions	pass

5 Measurements and results

5.1 **PART PCS 1900**

For Part 24/22 we use the substitution method (TIA/EIA 603).

All measurements in this report are done in GSM mode. The device is able to transmit data in GPRS mode also. But because the current measurements are performed in PEAK mode no other results from GPRS mode are possible. The only different is the modulation average power, which is 3 dB higher (by using 2 timeslots in the Up-link). All relevant tests have been repeated in 8-PSK Modulation if EDGE Mode is supported.

5.1.1 RF Power Output

Reference

FCC:	CFR Part 24.232, 2.1046
IC:	RSS 133, Issue 5, Section 6.4

Summary:

This paragraph contains both average/peak output power and EIRP measurements for the mobile station. In all cases, the peak output power is within the required mask (this mask is specified in the JTC standards, TIA PN3389 Vol. 1 Chap 7, and is no FCC requirement).

Method of Measurements:

The mobile was set up for the max. output power with pseudo random data modulation.

The power was measured with R&S Signal Analyzer FSIQ 26 (peak and average)

These measurements were done at 3 frequencies, 1850.2 MHz, 1880.0 MHz and 1909.8 MHz (bottom, middle and top of operational frequency range).

Limits:

Nominal Peak Output Power (dBm) +33

In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

Test Results: Output Power (conducted) GMSK Mode

Frequency	Average	Peak-to-Average
(MHz)	Output Power	Ratio
	(dBm)	(dB)
1850.2	30.04	0.10
1880.0	30.02	0.10
1909.8	30.34	0.10
Measurement uncertainty	±0.5 dB	

Test Results: Output Power (conducted) 8-PSK Mode

Frequency	Average	Peak-to-Average
(MHz)	Output Power	Ratio
	(dBm)	(dB)
1850.2	26.65	3.20
1880.0	26.39	3.40
1909.8	26.46	3.20
Measurement uncertainty	±0.5 dB	

EIRP Measurements

Description:

This is the test for the maximum radiated power from the phone.

Rule Part 24.232(b) specifies that "Mobile/portable stations are limited to 2 watts e.i.r.p. peak power..." and 24.232(c) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage."

Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method

(a) The measurements were performed with full rf output power and modulation.

(b) Test was performed at listed 3m test site (listed with FCC, IC).

(c) The transmitter under test was placed at the specified height on a non-conducting turntable (80 cm height)

(d) The BICONILOG antenna (20 MHz to 1 GHz) or HORN antenna (1 GHz to 18 GHz) was used for measuring.

(e) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor

E (dBuV/m) = Reading (dBuV) + Total Correction Factor (dB/m)

(f) Set the EMI Receiver and #2 as follows:

Center Frequency: test frequency

Resolution BW: 100 kHz

Video BW: same

Detector Mode: positive

Average: off

Span: 3 x the signal bandwidth

(g) The test antenna was lowered or raised from 1 to 4 meters until the maximum signal level was detected.

(h) The transmitter was rotated through 360 o about a vertical axis until a higher maximum signal was received.

(i) The test antenna was lowered or raised again from 1 to 4 meters until a maximum was obtained. This level was recorded.

(j) The recorded reading was corrected to the true field strength level by adding the antenna factor, cable loss and subtracting the pre-amplifier gain.

(k) The above steps were repeated with both transmitters' antenna and test receiving antenna placed in vertical and horizontal polarization. Both readings with the antennas placed in vertical and horizontal polarization shall be recorded. (1) Repeat for all different test signal frequencies

Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method

(a) Set the EMI Receiver (for measuring E-Field) and Receiver #2 (for measuring EIRP) as follows:

Center Frequency	: equal to the signal source
Resolution BW	: 10 kHz
Video BW	: same
Detector Mode	: positive
Average	: off
Span	: 3 x the signal bandwidth
(b) Load an appropriate c	correction factors file in EMI Receiver for correcting the field strength reading level
Total Correction Factor r	ecorded in the EMI Receiver = Cable Loss + Antenna Factor
E (dBuV/m) = Reading (dBuV/m)	dBuV) + Total Correction Factor (dB/m)
(c) Select the frequency a	and E-field levels for ERP/EIRP measurements.

(c) Select the frequency and E-field levels for ERP/EIRP measurements.

(d) Substitute the EUT by a signal generator and one of the following transmitting antennas (substitution antenna): DIPOLE antenna for frequency from 30-1000 MHz or .HORN antenna for frequency above 1 GHz}.

(e) Mount the transmitting antenna at 1.5 meter high from the ground plane.

(f) Use one of the following antenna as a receiving antenna: .DIPOLE antenna for frequency from 30-1000 MHz or .HORN antenna for frequency above 1 GHz }.

(g) If the DIPOLE antenna is used, tune its elements to the frequency as specified in the calibration manual.

(h) Adjust both transmitting and receiving antenna in a VERTICAL polarization.

(i) Tune the EMI Receivers to the test frequency.

(j) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.

(k) The transmitter was rotated through 360 o about a vertical axis until a higher maximum signal was received.

(l) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.

(m) Adjust input signal to the substitution antenna until an equal or a known related level to that detected from the transmitter was obtained in the test receiver.

(n) Record the power level read from the Average Power Meter and calculate the ERP/EIRP as follows:

P = P1 - L1 = (P2 + L2) - L1 = P3 + A + L2 - L1

EIRP = P + G1 = P3 + L2 - L1 + A + G1

ERP = EIRP - 2.15 dB

Total Correction factor in EMI Receiver # 2 = L2 - L1 + G1

Where: P: Actual RF Power fed into the substitution antenna port after corrected.

P1: Power output from the signal generator

P2: Power measured at attenuator A input

P3: Power reading on the Average Power Meter

EIRP: EIRP after correction

ERP: ERP after correction

(o) Adjust both transmitting and receiving antenna in a HORIZONTAL polarization, then repeat step (k) to (o)

(p) Repeat step (d) to (o) for different test frequency

(q) Repeat steps (c) to (j) with the substitution antenna oriented in horizontal polarization.

(r) Actual gain of the EUT's antenna is the difference of the measured EIRP and measured RF power at the RF port. Correct the antenna gain if necessary.

Limits:

Nominal Peak Output Power (dBm)
+33

Test Results: Output Power (radiated) GMSK Mode

Frequency (MHz)	Average EIRP (dBm)		
1850.2	29.55		
1880.0	29.32		
1909.8	29.39		
Measurement uncertainty	±0.5 dB		

Test Results: Output Power (radiated) 8-PSK Mode

Frequency (MHz)	Average EIRP (dBm)		
1850.2	26.16		
1880.0	25.69		
1909.8	25.51		
Measurement uncertainty	±0.5 dB		

Sample Calculation:

Freq	SA	SG	Ant.	Dipol	Cable	EIRP		
	Reading	Setting	gain	gain	loss	Result		
MHz	dBµV	dBm	dBi	dBd	dB	dBm		
1909.8	132.3	24.6	8.4	0.0	3.3	29.7		

EIRP = SG (dBm) - Cable Loss (dB) + Ant. gain (dBi)

5.1.2 Frequency Stability

Reference

FCC:	CFR Part 24.235, 2.1055
IC:	RSS 133, Issue 5, Section 6.3

Method of Measurement:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the mobile station in a "call mode". This is accomplished with the use of a R&S CMU 200 DIGITAL RADIOCOMMUNICATION TESTER..

1. Measure the carrier frequency at room temperature.

2. Subject the mobile station to overnight soak at -30 C.

3. With the mobile station, powered with Vnom, connected to the CMU 200 and in a simulated call on channel 661 (center channel), measure the carrier frequency. These measurements should be made within 2 minutes of

powering up the mobile station, to prevent significant self warming.

4. Repeat the above measurements at 10 C increments from -30 C to +60 C. Allow at least 1 1/2 hours at each temperature, un-powered, before making measurements.

5. Re-measure carrier frequency at room temperature with Vnom. Vary supply voltage from Vmin to Vmax, in 12 steps re-measuring carrier frequency at each voltage. Pause at Vnom for 1 1/2 hours un-powered, to allow any self heating to stabilize, before continuing.

6. Subject the mobile station to overnight soak at +60 C.

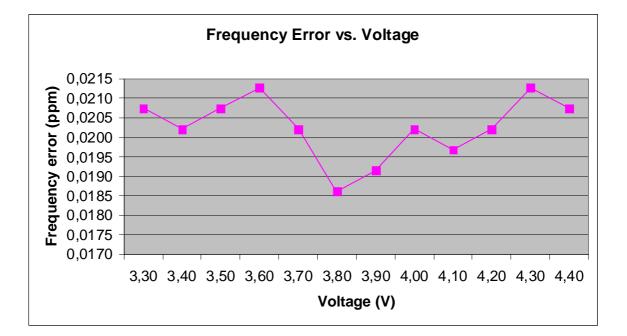
7. With the mobile station, powered with Vnom, connected to the CMU 200 and in a simulated call on channel 661(center channel), measure the carrier frequency. These measurements should be made within 2 minutes of powering up the mobile station, to prevent significant self warming.

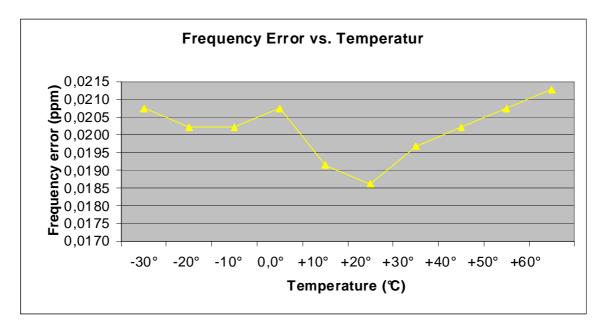
8. Repeat the above measurements at 10 C increments from +60 C to -30 C. Allow at least 1 1/2 hours at each temperature, un-powered, before making measurements.

9. At all temperature levels hold the temperature to ± -0.5 C during the measurement procedure.

Measurement Limit:

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.


Voltage (V)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)
3.3	39	0,0000207	0,0207
3.4	38	0,0000202	0,0202
3.5	39	0,0000207	0,0207
3.6	40	0,00000213	0,0213
3.7	38	0,0000202	0,0202
3.8	35	0,0000186	0,0186
3.9	36	0,00000191	0,0191
4.0	38	0,0000202	0,0202
4.1	37	0,00000197	0,0197
4.2	38	0,0000202	0,0202
4.3	40	0,00000213	0,0213
4.4	39	0,00000207	0,0207


Test Results: AFC FREQ ERROR vs. VOLTAGE

Test Results: AFC FREQ ERROR vs. TEMPERATURE

TEMPERATURE (°C)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)
-30	39	0,0000207	0,0207
-20	38	0,0000202	0,0202
-10	38	0,0000202	0,0202
±0.0	39	0,0000207	0,0207
+10	36	0,00000191	0,0191
+20	35	0,00000186	0,0186
+30	37	0,00000197	0,0197
+40	38	0,0000202	0,0202
+50	39	0,00000207	0,0207
+60	40	0,00000213	0,0213

5.1.3 Radiated Emissions

Reference

FCC:	CFR Part 24.238, 2.1053
IC:	RSS 133, Issue 5, Section 6.5

Measurement Procedure:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2003 requirements and is recognized by the FCC to be in compliance for a 3 and a 10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 1910 MHz. This was rounded up to 20 GHz. The resolution bandwidth is set as outlined in Part 24.238. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the USPCS band.

The final open field emission (here 10m semi-anechoic chamber listed by FCC) test procedure is as follows:

a) The test item was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna.

b) The antenna output was terminated in a 50 ohm load.

c) A double ridged waveguide antenna was placed on an adjustable height antenna mast 3 meters from the test item for emission measurements.

d) Detected emissions were maximized at each frequency by rotating the test item and adjusting the receive antenna height and polarization. The maximum meter reading was recorded. The radiated emission measurements of the harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and I MHz bandwidth. If the harmonic could not be detected above the noise floor, the ambient level was recorded.

e) Now each detected emissions were substituted by the Substitution method, in accordance with the TIA/EIA 603.

Measurement Limit:

Sec. 24.238 Emission Limits.

(a) On any frequency outside a licensee's frequency block (e.g. A, D, B, etc.) within the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least $43 + 10 \log (P) dB$, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

Measurement Results: Radiated Emissions

Radiated emissions measurements were made only at the upper, center, and lower carrier frequencies of the USPCS band (1850.2 MHz, 1880.0 MHz and 1909.8 MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the USPCS band into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

The final open field radiated levels are presented on the next table.

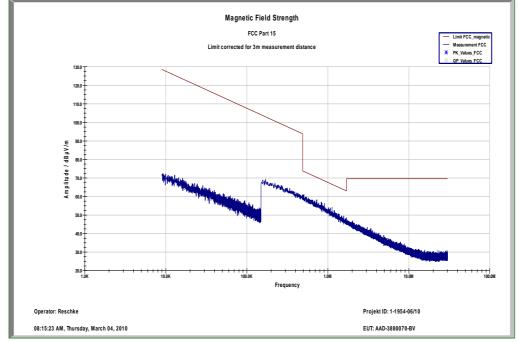
All measurements were done in horizontal and vertical polarization; the plots show the worst case.

The plots show only the middle channel. If spurious were detected, the lowest and highest channel were checked, too. The found values are stated in the table below.

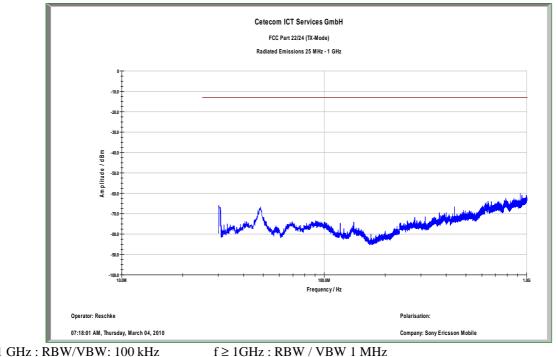
As can be seen from this data, the emissions from the test item were within the specification limit.

Harmonic	Tx ch512 Freq. (MHz)	Level (dBm)	Tx ch661 Freq. (MHz)	Level (dBm)	Tx ch810 Freq. (MHz)	Level (dBm)
2	3700.4	-	3760	-	3819.6	-
3	5550.6	-	5640	-	5729.4	-
4	7400.8	-	7520	-	7639.2	-
5	9251.0	-	9400	-	9549.0	-
6	11101.2	-	11280	-	11458.8	-
7	12951.4	-	13160	-	13368.6	-
8	14801.6	-	15040	-	15278.4	-
9	16651.8	-	16920	-	17188.2	-
10	18502.0	-	18800	-	19098.0	-

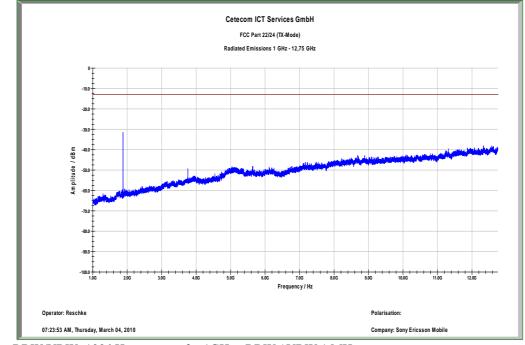
No peaks found > 20 dB below limit.


Sample calculation:

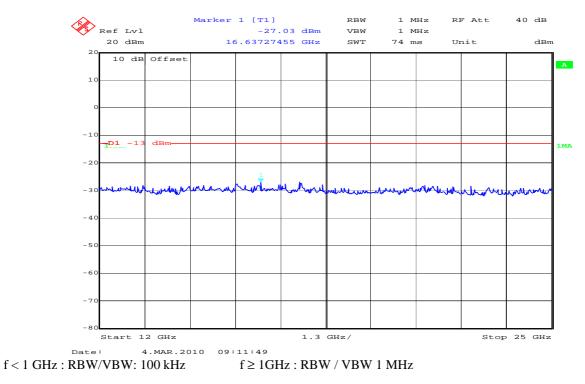
Freq	SA	SG	Ant.	Dipol	Cable	EIRP		
	Reading	Setting	gain	gain	loss	Result		
MHz	dBµV	dBm	dBi	dBd	dB	dBm		
1909.8	132.3	24.6	8.4	0.0	3.3	29.7		


EIRP = SG (dBm) - Cable Loss (dB) + Ant. gain (dBi)

Channel 661 (Traffic mode up to 30 MHz)


Channel 661 (30 MHz - 1 GHz)

f < 1 GHz : RBW/VBW: 100 kHz



Channel 661 (1 GHz – 12.5 GHz)

f < 1 GHz : RBW/VBW: 100 kHz Carrier suppressed with a rejection filter

 $f \ge 1GHz : RBW / VBW 1 MHz$

Channel 661 (12 GHz - 25 GHz) valid for all 3 channels

5.1.4 Conducted Spurious Emissions

Reference

FCC:	CFR Part 24.238, 2.10.51
IC:	RSS 133, Issue 5, Section 6.5

Measurement Procedure:

The following steps outline the procedure used to measure the conducted emissions from the mobile station.

1. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency.

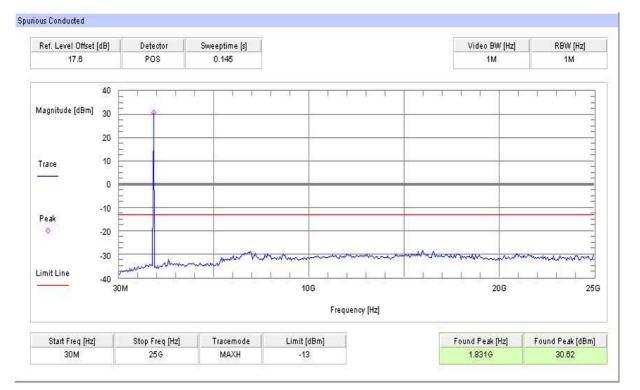
For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 19.1 GHz, data taken from 10 MHz to 20 GHz.

2. Determine mobile station transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

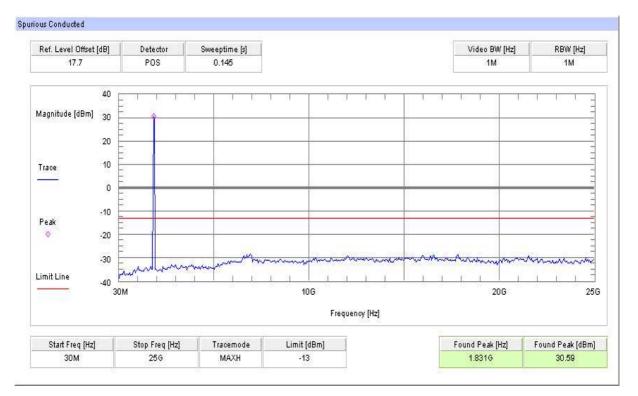
USPCS Transmitter Channel Frequency: 512 1850.2 MHz 661 1880.0 MHz 810 1909.8 MHz

Measurement Limit:

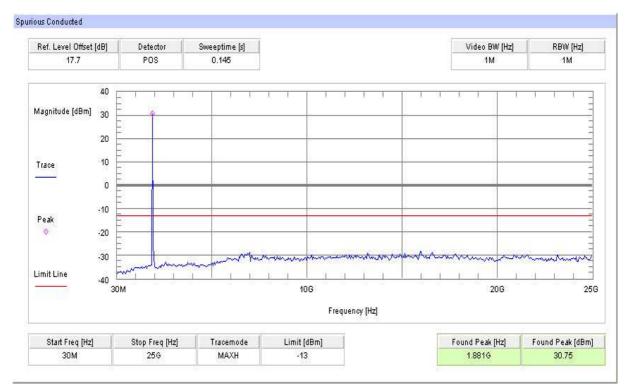
(a) On any frequency outside frequency band of the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.


Harmonic	Tx ch512 Freq. (MHz)	Level (dBm)	Tx ch661 Freq. (MHz)	Level (dBm)	Tx ch810 Freq. (MHz)	Level (dBm)
2	3700.4	-	3760	-	3819.6	-
3	5550.6	-	5640	-	5729.4	-
4	7400.8	-	7520	-	7639.2	-
5	9251.0	-	9400	-	9549.0	-
6	11101.2	-	11280	-	11458.8	-
7	12951.4	-	13160	-	13368.6	-
8	14801.6	-	15040	-	15278.4	-
9	16651.8	-	16920	-	17188.2	-
10	18502.0	-	18800	-	19098.0	-

Measurement Results:


CETECOM ICT Services GmbH Test report no.: 1-1954-06-05/10

Channel 512


Channel 661

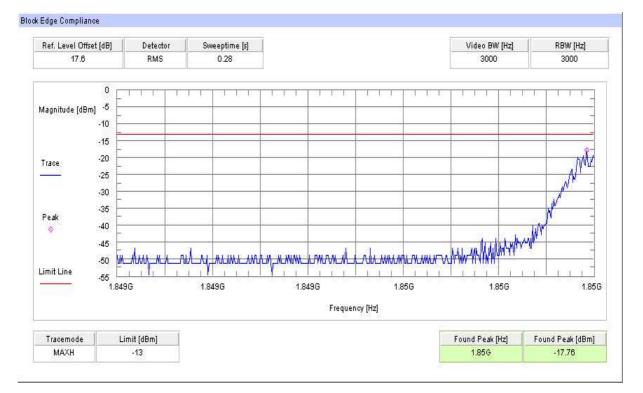
CETECOM ICT Services GmbH Test report no.: 1-1954-06-05/10

Channel 810

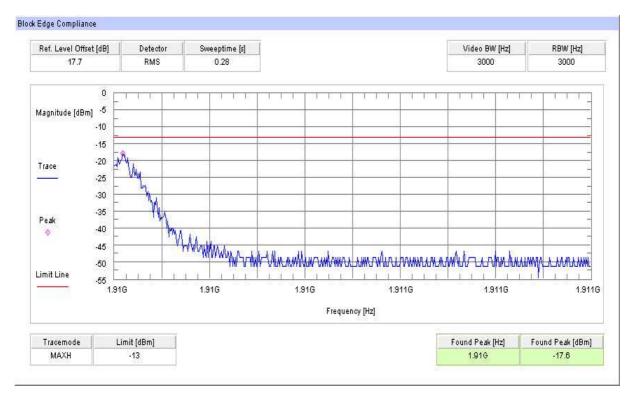
5.1.5 Block Edge Compliance

Reference

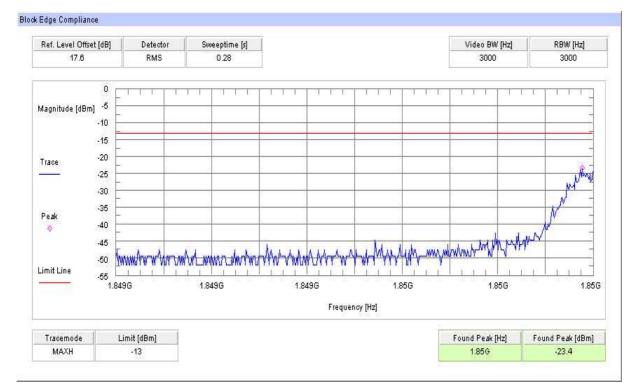
FCC:	CFR Part 24.238
IC:	RSS 133, Issue 5, Section 6.5

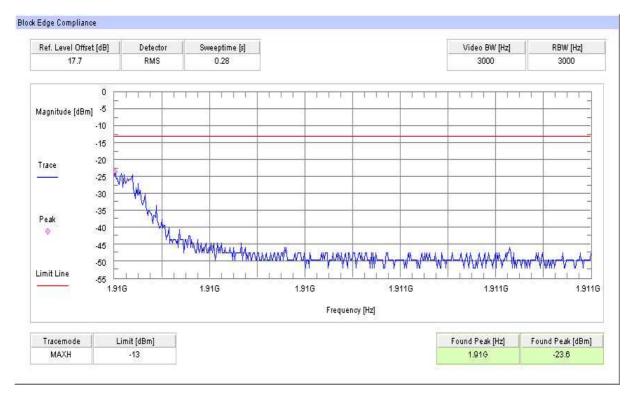

Measurement Limit:

(a) On any frequency outside frequency band of the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.


CETECOM ICT Services GmbH Test report no.: 1-1954-06-05/10

Block 1 Channel 512


Block 6 Channel 810


CETECOM ICT Services GmbH Test report no.: 1-1954-06-05/10

Block 1 Channel 512 (EDGE)

Block 6 Channel 810 (EDGE)

5.1.6 Occupied Bandwidth

Reference

FCC:	CFR Part 24.238, 2.1049
IC:	RSS 133, Issue 5, Section 6.5

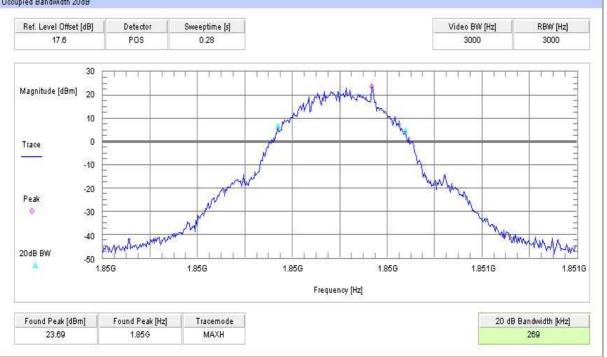
Occupied Bandwidth Results

Similar to conducted emissions, occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the USPCS frequency band. Table 8.2 below lists the measured 99% power and -26dBC occupied bandwidths. Spectrum analyzer plots are included on the following pages.

Normal mode

Frequency	99% Occupied Bandwidth kHz	-26 dBc Bandwidth kHz
1850.2 MHz	269	305
1880.0 MHz	267	303
1909.8 MHz	273	313

EDGE mode

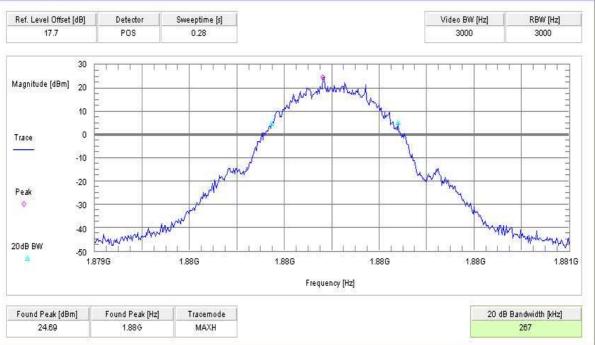

Frequency	99% Occupied Bandwidth kHz	-26 dBc Bandwidth kHz
1850.2 MHz	281	305
1880.0 MHz	277	307
1909.8 MHz	246	313

Part 24.238 (a) requires a measurement bandwidth of at least 1% of the occupied bandwidth. For ca. 300.0 kHz, this equates to a resolution bandwidth of at least 3.0 kHz. For this testing, a resolution bandwidth 3.0 kHz was used.

Channel 512

99% (-20 dB) Occupied Bandwidth Occupied Bandwidth 20dB

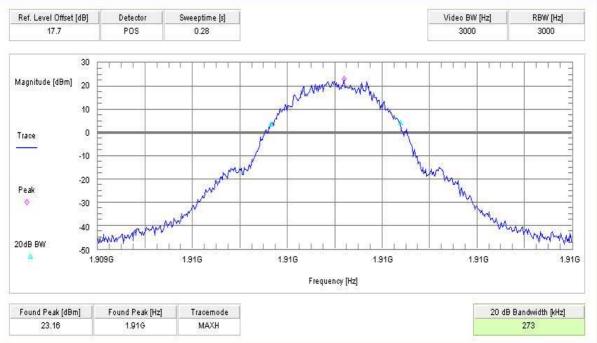
Channel 512 -26 dBc Bandwidth

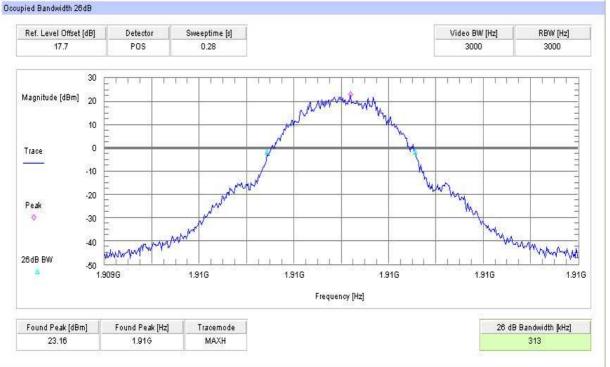



Channel 661

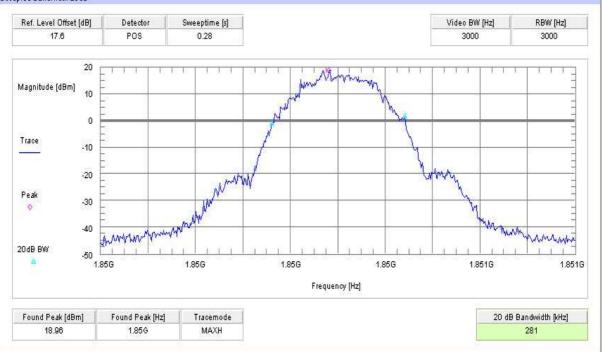
99% (-20 dB) Occupied Bandwidth

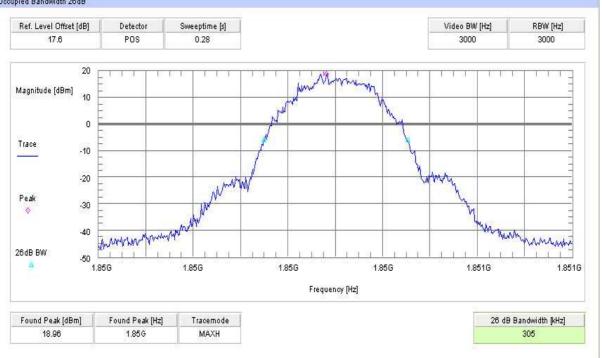
Channel 661


2010-06-24


Channel 810

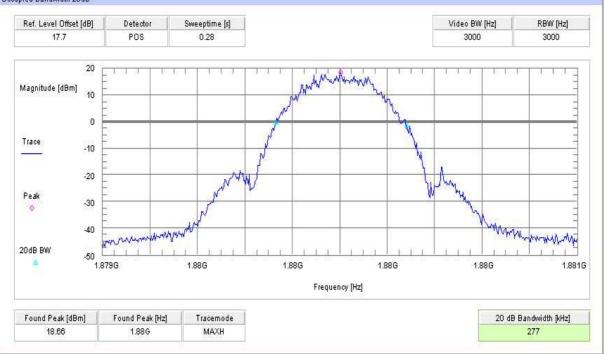
Occupied Bandwidth 20dB

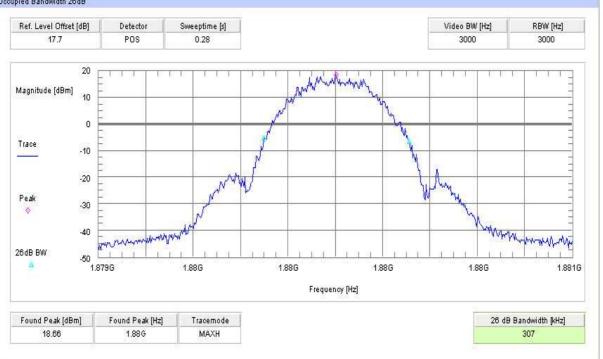

Channel 810 -26 dBc Bandwidth



Channel 512 (EDGE) 99% (-20 dB) Occupied Bandwidth

Occupied Bandwidth 20dB

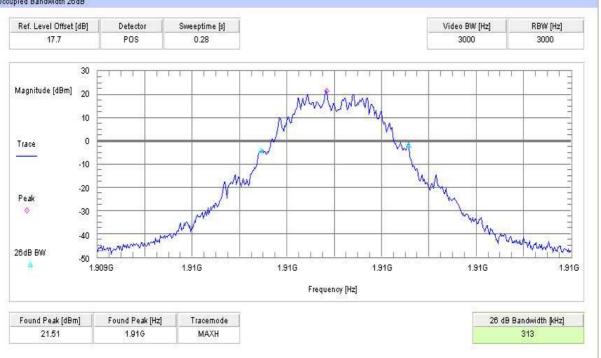

Channel 512 (EDGE) -26 dBc Bandwidth Docupied Bandwidth 26dB



Channel 661 (EDGE) 99% (-20 dB) Occupied Bandwidth

Occupied Bandwidth 20dB

Channel 661 (EDGE) -26 dBc Bandwidth Occupied Bandwidth 28dB



Channel 810 (EDGE) 99% (-20 dB) Occupied Bandwidth

Occupied Bandwidth 20dB

Channel 810 (EDGE) -26 dBc Bandwidth Occupied Bandwidth 28dB

5.2 **PART GSM 850**

5.2.1 RF Power Output

Reference

FCC:	CFR Part 22.9.1.3, 2.1046
IC:	RSS 132, Issue 2, Section 4.4 and 6.4

Summary:

This paragraph contains both average, peak output powers and EIRP measurements for the mobile station. In all cases, the peak output power is within the required mask (this mask is specified in the JTC standards, TIA PN3389 Vol. 1 Chap 7, and is no FCC requirement).

Method of Measurements:

The mobile was set up for the max. output power with pseudo random data modulation.

The power was measured with R&S Signal Analyzer FSIQ 26 (peak and average)

These measurements were done at 3 frequencies, 824.2 MHz, 836.4 MHz and 848.8 MHz (bottom, middle and top of operational frequency range).

Limits:

Nominal	Peak Output Power (dBm)
+38.45	

Test Results: Output Power (conducted) GMSK Mode

Frequency (MHz)	Average Output Power (dBm)	Peak-to-Average Ratio (dB)
824.2	32.79	0.10
836.4	32.54	0.10
848.8	32.41	0.10
Measurement uncertainty	±0.5 dB	

Test Results: Output Power (conducted) 8-PSK Mode

Frequency	Average	Peak-to-Average
(MHz)	Output Power	Ratio
	(dBm)	(dB)
824.2	27.79	3.00
836.4	27.82	3.00
848.8	27.59	3.20
Measurement uncertainty	±0.5 dB	

Test report no.: 1-1954-06-05/10

ERP Measurements

Description: This is the test for the maximum radiated power from the phone. Rule Part 22.913 specifies that "Mobile/portable stations are limited to 7 watts ERP.

Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method

(a) The measurements were performed with full rf output power and modulation.

(b) Test was performed at listed 3m test site (listed with FCC, IC).

(c) The transmitter under test was placed at the specified height on a non-conducting turntable (80 cm height)

(d) The BICONILOG antenna (20 MHz to 1 GHz) or HORN antenna (1 GHz to 18 GHz) was used for measuring.

(e) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

 $Total\ Correction\ Factor\ recorded\ in\ the\ EMI\ Receiver = Cable\ Loss\ +\ Antenna\ Factor$

E (dBuV/m) = Reading (dBuV) + Total Correction Factor (dB/m)

(f) Set the EMI Receiver and #2 as follows:

Center Frequency: test frequency

Resolution BW: 100 kHz

Video BW: same

Detector Mode: positive

Average: off

Span: 3 x the signal bandwidth

(g) The test antenna was lowered or raised from 1 to 4 meters until the maximum signal level was detected.

(h) The transmitter was rotated through 360 o about a vertical axis until a higher maximum signal was received.

(i) The test antenna was lowered or raised again from 1 to 4 meters until a maximum was obtained. This level was recorded.

(j) The recorded reading was corrected to the true field strength level by adding the antenna factor, cable loss and subtracting the pre-amplifier gain.

(k) The above steps were repeated with both transmitters' antenna and test receiving antenna placed in vertical and horizontal polarization. Both readings with the antennas placed in vertical and horizontal polarization shall be recorded. (l) Repeat for all different test signal frequencies

Measuring the ERP of Spurious/Harmonic Emissions using Substitution Method

(a) Set the EMI Receiver (for measuring E-Field) and Receiver #2 (for measuring ERP) as follows:

CETECOM ICT Services GmbH

Test report no.: 1-1954-06-05/10

Total Correction factor in EMI Receiver # 2 = L2 - L1 + G1

Where: P: Actual RF Power fed into the substitution antenna port after corrected.

P1: Power output from the signal generator

P2: Power measured at attenuator A input

P3: Power reading on the Average Power Meter

EIRP: EIRP after correction

ERP: ERP after correction

(o) Adjust both transmitting and receiving antenna in a HORIZONTAL polarization, then repeat step (k) to (o)

(p) Repeat step (d) to (o) for different test frequency

(q) Repeat steps (c) to (j) with the substitution antenna oriented in horizontal polarization.

(r) Actual gain of the EUT's antenna is the difference of the measured EIRP and measured RF power at the RF port. Correct the antenna gain if necessary.

Limits:

Nominal Peak Output Power (dBm) +38.45

Test Results: Output Power (radiated) GMSK Mode

Frequency (MHz)	Average (dBm)
824.2	33.00
836.4	33.30
848.8	33.10
Measurement uncertainty	±0.5 dB

Test Results: Output Power (radiated) 8-PSK Mode

Frequency (MHz)	Average (dBm)
824.2	27.58
836.4	27.06
848.8	26.90
Measurement uncertainty	±0.5 dB

Sample calculation:

Freg	SA Reading	SG Setting	Ant. gain	Dipol gain	Cable loss	ERP	Substitution Antenna
MHz	dBµV	dBm	dBi	dBd	dB	dBm	
848.8	137.8	26.6	8.4	0.0	3.3	31.7	UHAP Schwarzbeck S/N 460
EDD $SC(dDm)$ Calle Less (dD) : Ant min (dD)							

ERP = SG (dBm) - Cable Loss (dB) + Ant. gain (dB)

*ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.1dBi

5.2.2 Frequency Stability

Reference

FCC:	CFR Part 22.355, 2.1055
IC:	RSS 132, Issue 2, Section 4.3 and 6.3

Method of Measurement:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the mobile station in a "call mode". This is accomplished with the use of a R&S CMU 200 DIGITAL RADIOCOMMUNICATION TESTER..

1. Measure the carrier frequency at room temperature.

2. Subject the mobile station to overnight soak at -30 C.

3. With the mobile station, powered with 3.7 Volts, connected to the CMU 200 and in a simulated call on channel 661 (centre channel), measure the carrier frequency. These measurements should be made within 2 minutes of powering up the mobile station, to prevent significant self warming.

4. Repeat the above measurements at 10 C increments from -30 C to +60 C. Allow at least 1 1/2 hours at each temperature, un-powered, before making measurements.

5. Re-measure carrier frequency at room temperature with nominal 3.7 Volts. Vary supply voltage from minimum 3.3 Volts to maximum 4.4 Volts, in 13 steps re-measuring carrier frequency at each voltage. Pause at 3.7 V ac

Volts for 1 1/2 hours un-powered, to allow any self heating to stabilize, before continuing.

6. Subject the mobile station to overnight soak at +60 C.

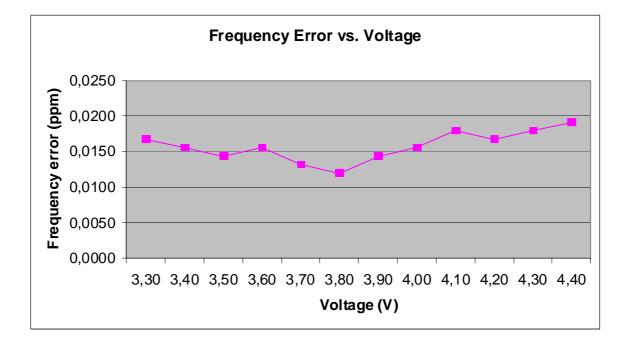
7. With the mobile station, powered with 3.7 Volts, connected to the CMU 200 and in a simulated call on channel 661(center channel), measure the carrier frequency. These measurements should be made within 2 minutes of powering up the mobile station, to prevent significant self warming.

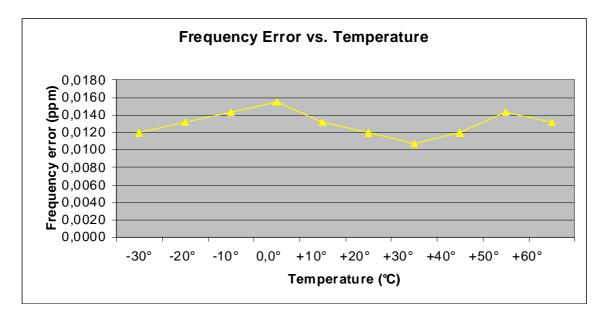
8. Repeat the above measurements at 10 C increments from +60 C to -30 C. Allow at least 1 1/2 hours at each temperature, un-powered, before making measurements.

9. At all temperature levels hold the temperature to +/-0.5 C during the measurement procedure.

Measurement Limit:

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 22.355, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.. This transceiver is specified to operate with an input voltage of between 3.3 V dc and 4.4 V dc, with a nominal voltage of 3.7 V dc.


Voltage **Frequency Error Frequency Error Frequency Error (V)** (Hz) (%) (ppm) 3.3 14 0,00000167 0,0167 3.4 13 0,00000155 0,0155 3.5 12 0,00000143 0,0143 3.6 13 0,00000155 0,0155 3.7 11 0,00000132 0,0132 10 0,00000120 0,0120 3.8 3.9 12 0,00000143 0,0143 4.0 0,00000155 0,0155 13 4.1 15 0,00000179 0,0179 4.2 14 0,0000167 0,0167 4.3 15 0,00000179 0,0179 4.4 16 0,00000191 0,0191


Measurement Results: AFC FREQ ERROR vs. VOLTAGE

Measurement Results: AFC FREQ ERROR vs. TEMPERATURE

TEMPERATURE	Frequency Error	Frequency Error	Frequency Error
(°C)	(Hz)	(%)	(ppm)
-30	10	0,00000120	0,0120
-20	11	0,00000132	0,0132
-10	12	0,00000143	0,0143
±0.0	13	0,00000155	0,0155
+10	11	0,00000132	0,0132
+20	10	0,00000120	0,0120
+30	9	0,0000108	0,0108
+40	10	0,00000120	0,0120
+50	12	0,00000143	0,0143
+60	11	0,00000132	0,0132

5.2.3 Radiated Emissions

Reference

200	
FCC:	CFR Part 22.917, 2.1053
IC:	RSS 132, Issue 2, Section 4.5 and 6.5

Measurement Procedure:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2003 requirements and is recognized by the FCC to be in compliance for a 3 and a10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest

frequency generated within the equipment, which is the transmitted carrier that can be as high as 848.8 MHz. This was rounded up to 12 GHz. The resolution bandwidth is set as outlined in Part 22.917. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the USPCS band.

The final open field emission (here 10m semi-anechoic chamber listed by FCC) test procedure is as follows:

a) The test item was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna.

b) The antenna output was terminated in a 50 ohm load.

c) A double ridged wave guide antenna was placed on an adjustable height antenna mast 3 meters from the test item for emission measurements.

d) Detected emissions were maximized at each frequency by rotating the test item and adjusting the receive antenna height and polarization. The maximum meter reading was recorded. The radiated emission measurements of the harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and I MHz bandwidth. If the harmonic could not be detected above the noise floor, the ambient level was recorded. The equivalent power into a dipole antenna was calculated from the field intensity levels measured at 3 meters using the equation shown below:

e)Now each detected emissions were substituted by the Substitution method, in accordance with the TIA/EIA 603 .

Measurement Limit:

Sec. 22.917 Emission Limits.

(a) On any frequency outside a licensee's frequency block (e.g. A, D, B, etc.) within the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least $43 + 10 \log (P) dB$, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

Measurement Results:

Radiated emissions measurements were made only at the upper, center, and lower carrier frequencies of the USPCS band (824.2 MHz, 836.4 MHz and 848.8 MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the USPCS band into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

The final open field radiated levels are presented on the next pages.

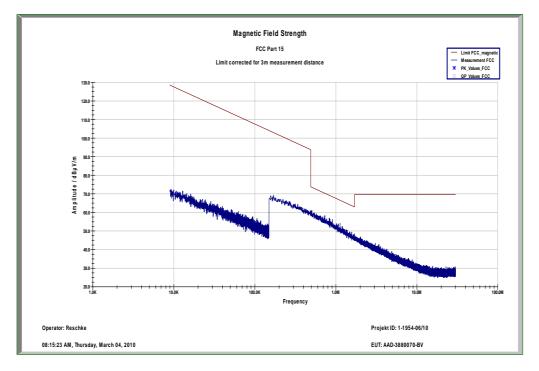
All measurements were done in horizontal and vertical polarization; the plots shows the worst case.

The plots show only the middle channel. If spurious were detected, the lowest and highest channel were checked, too. The found values are stated in the table below.

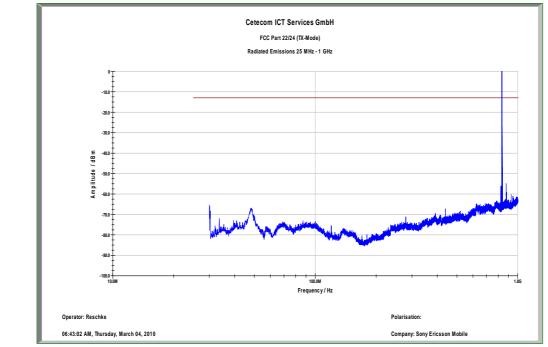
As can be seen from this data, the emissions from the test item were within the specification limit.

Harmonic	Tx ch128 Freq. (MHz)	Level (dBm)	Tx ch189 Freq. (MHz)	Level (dBm)	Tx ch251 Freq. (MHz)	Level (dBm)
2	1648.4	-30.50	1672.8	-	1697.6	-28.47
3	2472.6	-38.04	2509.2	-38.26	2546.4	-36.14
4	3296.8	-46.39	3345.6	-	3395.2	-48.96
5	4121.0	-	4182.0	-	4244.0	-
6	4945.2	-38.38	5018.4	-	5092.8	-36.70
7	5769.4	-	5854.8	-	5941.6	-
8	6593.6	-	6691.2	-	6790.4	-
9	7417.8	-	7527.6	-	7639.2	-
10	8242.0	-	8364.0	-	8488.0	-

Sample calculation:

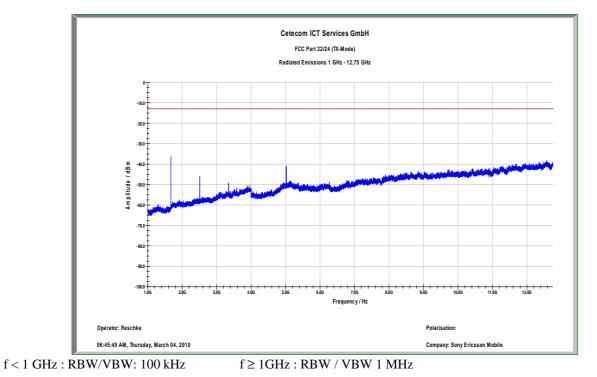

SA	SG	Ant.	Dipol	Cable	ERP	Substitution Antenna
Reading	Setting	gain	gain	loss		
dBµV	dBm	dBi	dBd	dB	dBm	
137.8	26.6	8.4	0.0	3.3	31.7	UHAP Schwarzbeck S/N 460
	Reading dBµV	ReadingSettingdBµVdBm	ReadingSettinggaindBµVdBmdBi	ReadingSettinggaindBµVdBmdBidBd	ReadingSettinggaingainlossdBµVdBmdBidBddB	ReadingSettinggaingainlossdBµVdBmdBidBddBdBm

ERP = SG (dBm) - Cable Loss (dB) + Ant. gain (dB)

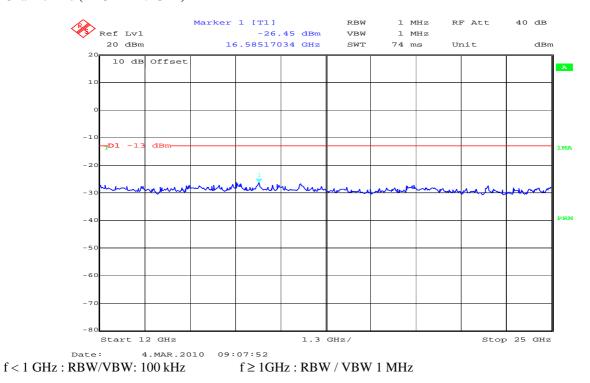

*ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.1dBi

Channel 189 (Traffic mode up to 30 MHz)

Channel 189 (30 MHz - 1 GHz)



f < 1 GHz: RBW/VBW: 100 kHz


 $f \ge 1GHz$: RBW / VBW 1 MHz

Channel 189 (1 GHz – 12.5 GHz)

Channel 128 (12 GHz - 25 GHz)

5.2.4 Conducted Spurious Emissions

Reference

FCC:	CFR Part 22.917, 1.1051
IC:	RSS 132, Issue 2, Section 4.5 and 6.5

Measurement Procedure

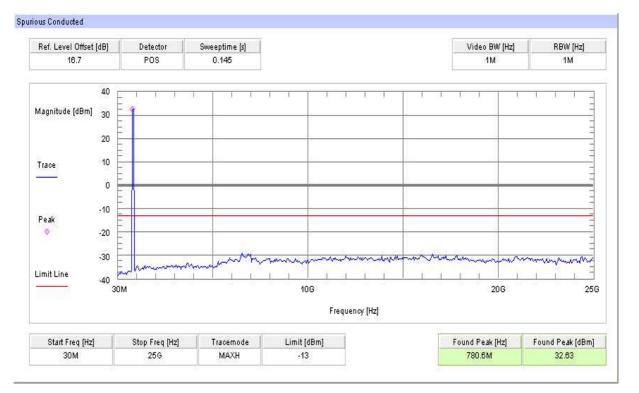
The following steps outline the procedure used to measure the conducted emissions from the mobile station. 1. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 19.1 GHz, data taken from 10 MHz to 20 GHz.

2. Determine mobile station transmits frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

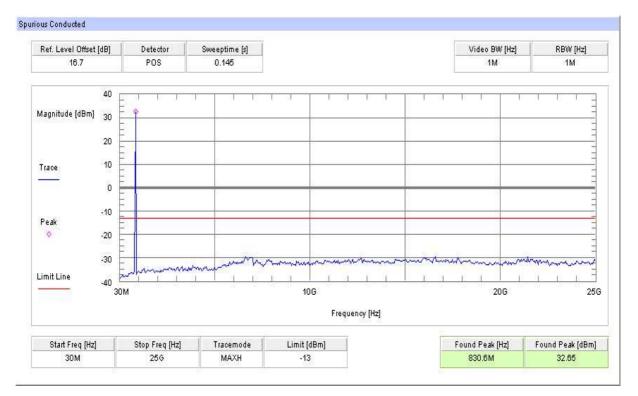
USPCS Transmitter Channel Frequency 128 824.2 MHz 189 836.4 MHz 251 848.8 MHz

Measurement Limit

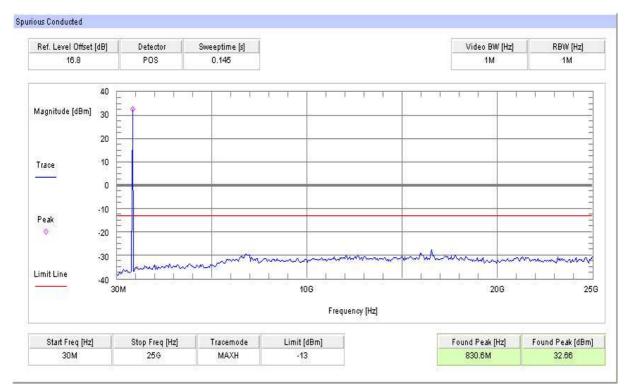
(a) On any frequency outside frequency band of the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log (P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.


Harmonic	Tx ch128 Freq. (MHz)	Level (dBm)	Tx ch189 Freq. (MHz)	Level (dBm)	Tx ch251 Freq. (MHz)	Level (dBm)
2	1648.4	-	1672.8	-	1697.6	-
3	2472.6	-	2509.2	-	2546.4	-
4	3296.8	-	3345.6	-	3395.2	-
5	4121.0	-	4182.0	-	4244.0	-
6	4945.2	-	5018.4	-	5092.8	-
7	5769.4	-	5854.8	-	5941.6	-
8	6593.6	-	6691.2	-	6790.4	-
9	7417.8	-	7527.6	-	7639.2	-
10	8242.0	-	8364.0	-	8488.0	-

Measurement Results


CETECOM ICT Services GmbH Test report no.: 1-1954-06-05/10

Channel: 128


Channel 189

CETECOM ICT Services GmbH Test report no.: 1-1954-06-05/10

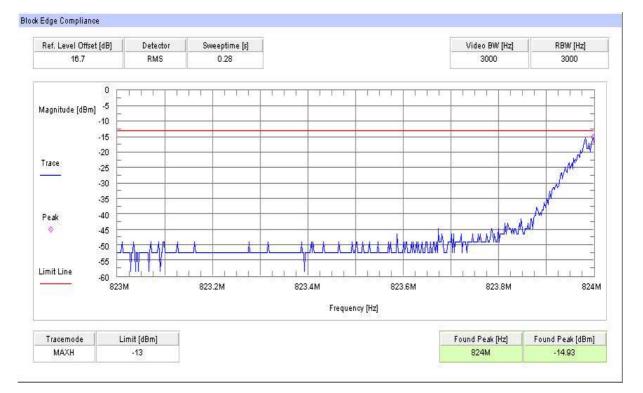
Channel 251

5.2.5 Block Edge Compliance

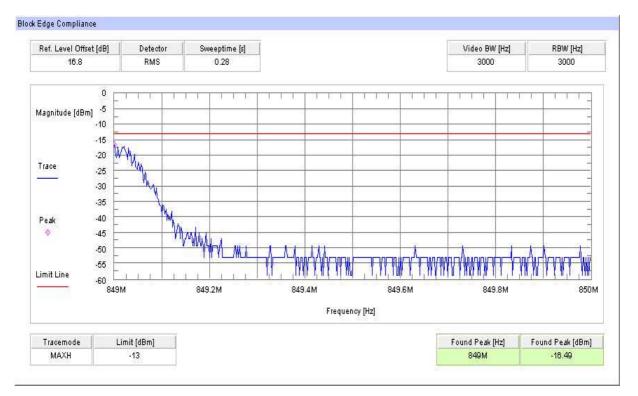
Reference

FCC:	CFR Part 22.917
IC:	RSS 132, Issue 2, Section 6.5

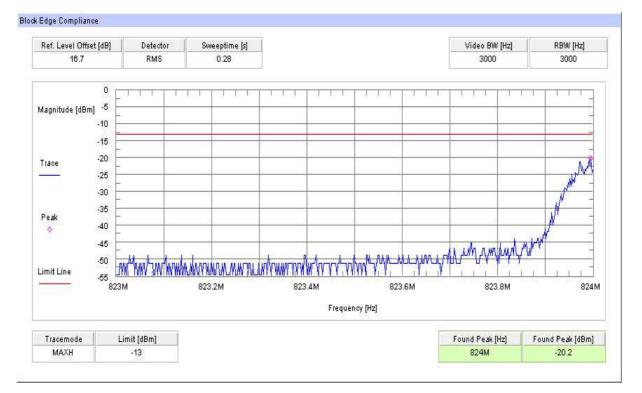
Measurement Limit:


Sec. 22.917(b) Emission Limits.

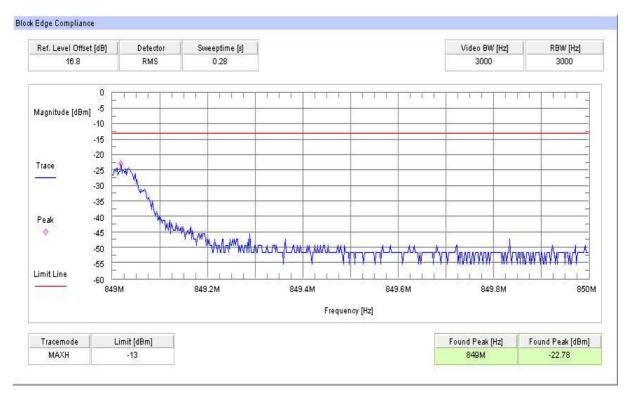
(a) On any frequency outside frequency band of the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. For all power levels +33 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.


CETECOM ICT Services GmbH Test report no.: 1-1954-06-05/10

Block 1 Channel 128



Block 4 Channel 251



Block 1 Channel 128 (EDGE)

Block 4 Channel 251 (EDGE)

5.2.6 Occupied Bandwidth

Reference

FCC:	CFR Part 22.917, 2.1049
IC:	RSS 132, Issue 2, Section 4.2

Occupied Bandwidth Results

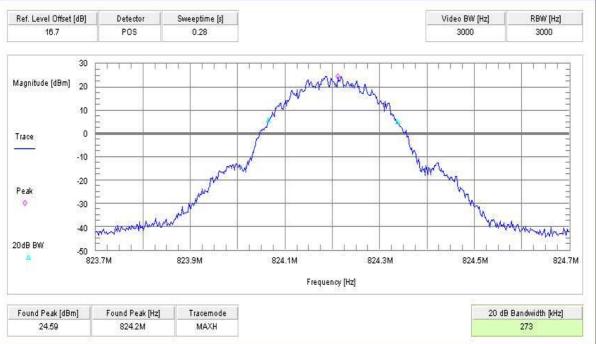
Similar to conducted emissions, occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the USPCS frequency band. Table below lists the measured 99% power and -26dBC occupied bandwidths. Spectrum analyzer plots are included on the following pages.

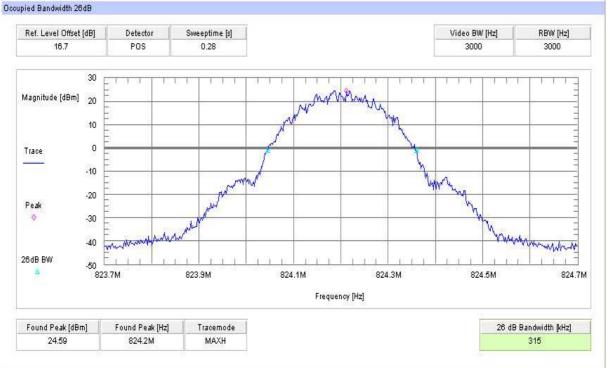
Normal mode

Frequency	99% Occupied Bandwidth (kHz)	-26 dBc Bandwidth (kHz)		
824.2 MHz	273	315		
836.4 MHz	269	313		
848.8 MHz	259	305		

EDGE mode

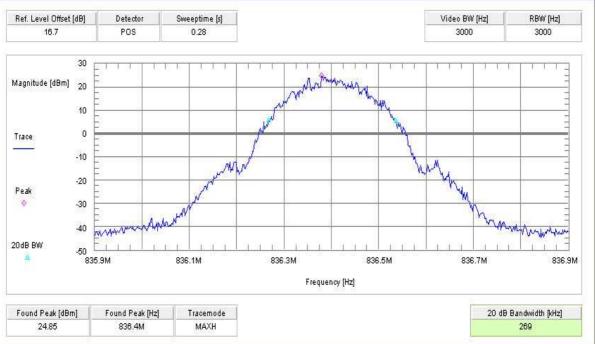
Frequency	99% Occupied Bandwidth	-26 dBc Bandwidth
	(kHz)	(kHz)
824.2 MHz	275	311
836.4 MHz	283	311
848.8 MHz	246	313


Part 22 requires a measurement bandwidth of at least 1% of the occupied bandwidth. For ca. 300 kHz, this equates to a resolution bandwidth of at least 3 kHz. For this testing, a resolution bandwidth 3.0 kHz was used.

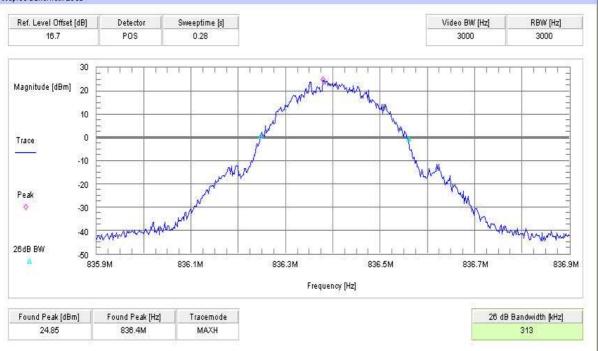

Channel 128

99% (-20 dB) Occupied Bandwidth

Channel 128 -26 dBc Bandwidth

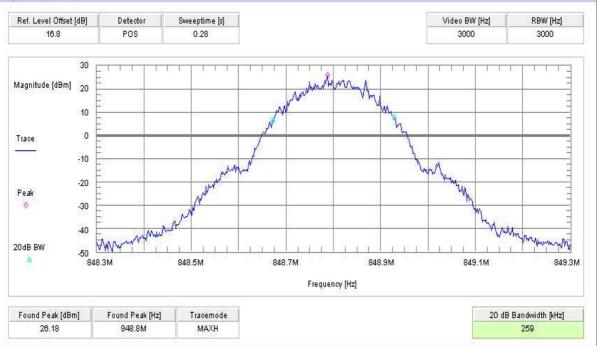


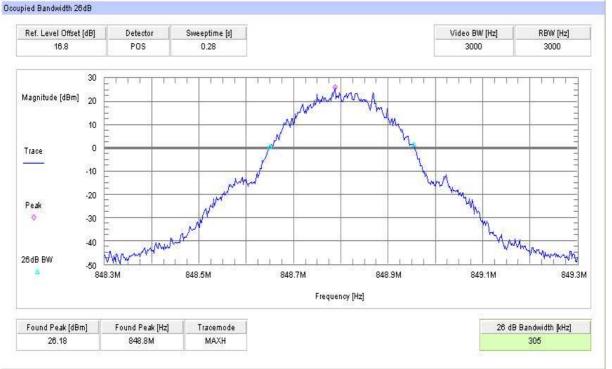
Channel 189

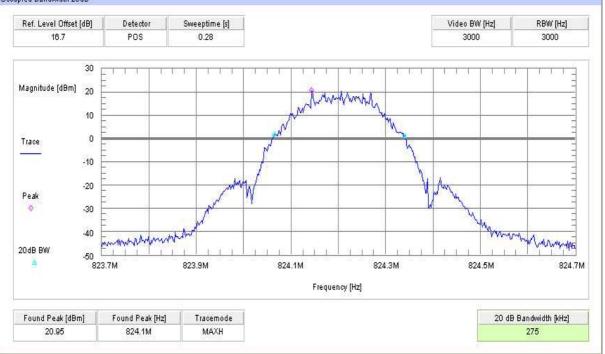

99% (-20 dB) Occupied Bandwidth

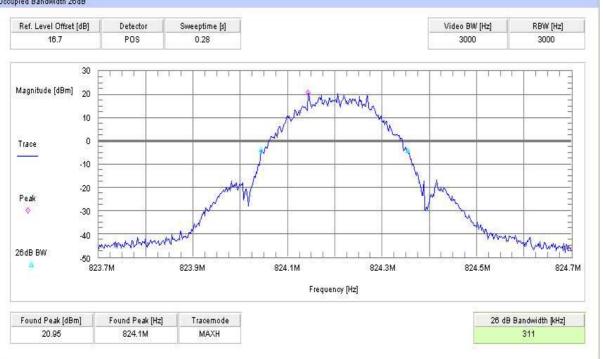
Channel 189 -26 dBc Bandwidth

Occupied Bandwidth 26dB



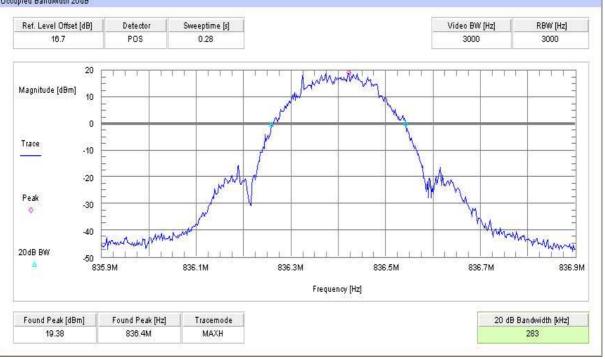

Channel 251


Channel 251 -26 dBc Bandwidth



Channel 128 (EDGE) 99% (-20 dB) Occupied Bandwidth

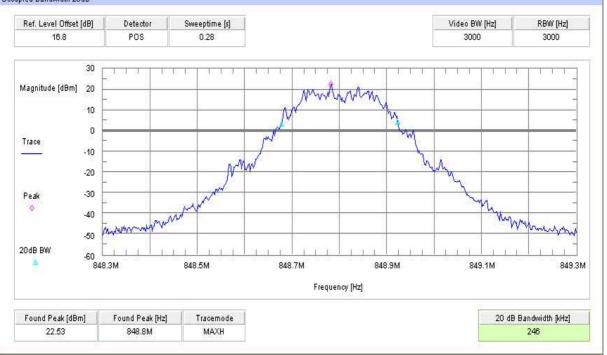
Occupied Bandwidth 20dB


Channel 128 (EDGE) -26 dBc Bandwidth Docupied Bandwidth 26dB


Channel 189 (EDGE) 99% (-20 dB) Occupied Bandwidth

Occupied Bandwidth 20dB

Channel 189 (EDGE) -26 dBc Bandwidth


Occupied Bandwidth 26dB

Channel 251 (EDGE) 99% (-20 dB) Occupied Bandwidth

Occupied Bandwidth 20dB

Channel 251 (EDGE) -26 dBc Bandwidth Docupied Bandwidth 26dB

5.3 PART UMTS Band II

5.3.1 RF Power Output

Reference

FCC:	CFR Part 24.232, 2.1046
IC:	RSS 133, Issue 5, Section 6.4

Summary:

This paragraph contains both average/peak output power and EIRP measurements for the mobile station. In all cases, the peak output power is within the required mask (this mask is specified in the JTC standards, TIA PN3389 Vol. 1 Chap 7, and is no FCC requirement).

Method of Measurements:

The mobile was set up for the max. output power with pseudo random data modulation.

The power was measured with R&S Signal Analyzer FSIQ 26 (peak and average)

These measurements were done at 3 frequencies, 1852.4 MHz, 1880.0 MHz and 1907.6 MHz (bottom, middle and top of operational frequency range).

Settings for maximum output power were used.

Limits:

Nominal Peak Output Power (dBm)
+33

In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

Test Results: Output Power (conducted) UMTS Mode

Frequency	Average	Peak-to-Average
(MHz)	Output Power	Ratio
	(dBm)	(dB)
1852.4	24.61	3.10
1880.0	24.51	3.20
1907.6 23.98 2.90		2.90
Measurement uncertainty	±0.5 dB	

The following HSDPA sub-tests are defined by 3GPP 34.121 (table C.10.1.4)

Sub-test	β _c	$\beta_{\rm d}$	β_d (SF)	β_{c}/β_{d}	$\beta_{hs}^{(1)}$	$CM(dB)^{(2)}$
1	2/15	15/15	64	2/15	4/15	0.0
2	$12/15^{(3)}$	$15/15^{(3)}$	64	$12/15^{(3)}$	24/15	1.0
3	15/15	8/15	64	15/8	30/15	1.5
4	15/15	4/15	64	15/4	30/15	1.5
			-	-		

Note 1: Δ_{ACK} , Δ_{NACK} , $\Delta_{CQI} = 8 \iff A_{hs} = \beta_{hs}/\beta_c = 30/15 \iff \beta_{hs} = 30/15 * \beta_c$ Note 2 : CM = 1 for $\beta_c/\beta_d = 12/15$, $\beta_{hs}/\beta_c = 24/15$

Note 3 : For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1,TF1) to $\beta_c = 11/15$ and $\beta_d = 15/15$ Table 1: Subtests for UMTS Release 5 HSDPA

It was checked that the EUT supports the HSDPA-Mode and fulfils the requirements of the table above. The exact power-values are part of the SAR-report.

EIRP Measurements

Description:

This is the test for the maximum radiated power from the phone.

Rule Part 24.232(b) specifies that "Mobile/portable stations are limited to 2 watts e.i.r.p. peak power..." and 24.232(c) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage."

Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method

(a) The measurements were performed with full rf output power and modulation.

(b) Test was performed at listed 3m test site (listed with FCC, IC).

(c) The transmitter under test was placed at the specified height on a non-conducting turntable (80 cm height)
(d) The BICONILOG antenna (20 MHz to 1 GHz) or HORN antenna (1 GHz to 18 GHz) was used for measuring.
(e) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor

E (dBuV/m) = Reading (dBuV) + Total Correction Factor (dB/m)

(f) Set the EMI Receiver and #2 as follows:

Center Frequency: test frequency

Resolution BW: 100 kHz

Video BW: same

Detector Mode: positive

Average: off

Span: 3 x the signal bandwidth

(g) The test antenna was lowered or raised from 1 to 4 meters until the maximum signal level was detected.

(h) The transmitter was rotated through 360 o about a vertical axis until a higher maximum signal was received.

(i) The test antenna was lowered or raised again from 1 to 4 meters until a maximum was obtained. This level was recorded.

(j) The recorded reading was corrected to the true field strength level by adding the antenna factor, cable loss and subtracting the pre-amplifier gain.

(k) The above steps were repeated with both transmitters' antenna and test receiving antenna placed in vertical and horizontal polarization. Both readings with the antennas placed in vertical and horizontal polarization shall be recorded. (l) Repeat for all different test signal frequencies

Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method

(a) Set the EMI Receiver (for measuring E-Field) and Receiver #2 (for measuring EIRP) as follows:

(a) bet the Livit Receiver	(for measuring E r feld) and receiver #2 (for measuring Entry) as follows.
Center Frequency	: equal to the signal source
Resolution BW	: 10 kHz
Video BW	: same
Detector Mode	: positive
Average	: off
Span	: 3 x the signal bandwidth
(b) Load an appropriate c	orrection factors file in EMI Receiver for correcting the field strength reading level
Total Correction Factor re	ecorded in the EMI Receiver = Cable Loss + Antenna Factor
E (dBuV/m) = Reading (d)	(BuV) + Total Correction Factor (dB/m)
(c) Select the frequency a	nd E-field levels for ERP/EIRP measurements.
(d) Substitute the EUT by	a signal generator and one of the following transmitting antennas (substitution antenna):
DIPOLE antenna for freq	uency from 30-1000 MHz or .HORN antenna for frequency above 1 GHz}.
(e) Mount the transmitting	g antenna at 1.5 meter high from the ground plane.
(f) Use one of the followi	ng antenna as a receiving antenna: .DIPOLE antenna for frequency from 30-1000 MHz or
.HORN antenna for frequ	
(g) If the DIPOLE antenn	a is used, tune its elements to the frequency as specified in the calibration manual.
(h) Adjust both transmitti	ng and receiving antenna in a VERTICAL polarization.
(i) Tune the EMI Receive	rs to the test frequency.
	antenna from 1 to 4 meters until the maximum signal level was detected.
(k) The transmitter was re-	otated through 360 o about a vertical axis until a higher maximum signal was received.
(l) Lower or raise the test	antenna from 1 to 4 meters until the maximum signal level was detected.
(m) Adjust input signal to	the substitution antenna until an equal or a known related level to that detected from the
transmitter was obtained i	in the test receiver.
(n) Record the power leve	el read from the Average Power Meter and calculate the ERP/EIRP as follows:
P = P1 - L1 = (P2 + L2) -	-L1 = P3 + A + L2 - L1
EIRP = P + G1 = P3 + L2	2 - L1 + A + G1
ERP = EIRP - 2.15 dB	

Total Correction factor in EMI Receiver # 2 = L2 - L1 + G1

Where: P: Actual RF Power fed into the substitution antenna port after corrected.

P1: Power output from the signal generator

P2: Power measured at attenuator A input

P3: Power reading on the Average Power Meter

EIRP: EIRP after correction

ERP: ERP after correction

(o) Adjust both transmitting and receiving antenna in a HORIZONTAL polarization, then repeat step (k) to (o)

(p) Repeat step (d) to (o) for different test frequency

(q) Repeat steps (c) to (j) with the substitution antenna oriented in horizontal polarization.

(r) Actual gain of the EUT's antenna is the difference of the measured EIRP and measured RF power at the RF port. Correct the antenna gain if necessary.

Limits:

Nominal Peak Output Power (dBm)
+33

Test Results: Output Power (radiated) UMTS Mode

Frequency (MHz)	Average EIRP (dBm)
1852.4	24.12
1880.0	25.21
1907.6	24.93
Measurement uncertainty	±0.5 dB

Sample Calculation:

Freq	SA	SG	Ant.	Dipol	Cable	EIRP		
	Reading	Setting	gain	gain	loss	Result		
MHz	dBµV	dBm	dBi	dBd	dB	dBm		
1852.4	125.8	22.6	8.4	0.0	3.3	27.7		

EIRP = SG (dBm) - Cable Loss (dB) + Ant. gain (dBi)

5.3.2 Frequency Stability

Reference

FCC:	CFR Part 24.235, 2.1055
IC:	RSS 133, Issue 5, Section 6.3

Method of Measurement:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the mobile station in a "call mode". This is accomplished with the use of a R&S CMU 200 DIGITAL RADIOCOMMUNICATION TESTER.

1. Measure the carrier frequency at room temperature.

2. Subject the mobile station to overnight soak at -30 C.

3. With the mobile station, powered with Vnom, connected to the CMU 200 and in a simulated call on channel 661 (center channel), measure the carrier frequency. These measurements should be made within 2 minutes of powering up the mobile station, to prevent significant self warming.

4. Repeat the above measurements at 10 C increments from -30 C to +60 C. Allow at least 1 1/2 hours at each temperature, un-powered, before making measurements.

5. Re-measure carrier frequency at room temperature with Vnom. Vary supply voltage from Vmin to Vmax, in 12 steps re-measuring carrier frequency at each voltage. Pause at Vnom for 1 1/2 hours un-powered, to allow any self heating to stabilize, before continuing.

6. Subject the mobile station to overnight soak at +60 C.

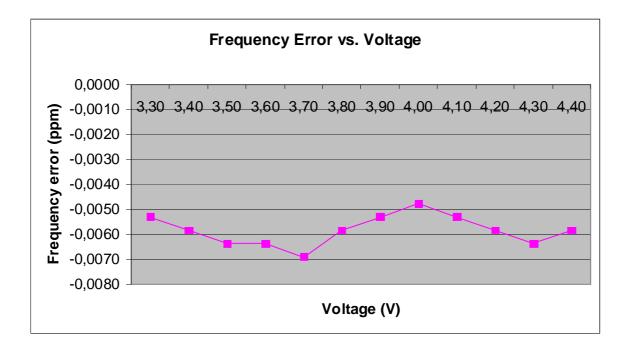
7. With the mobile station, powered with Vnom, connected to the CMU 200 and in a simulated call on channel 661(center channel), measure the carrier frequency. These measurements should be made within 2 minutes of powering up the mobile station, to prevent significant self warming.

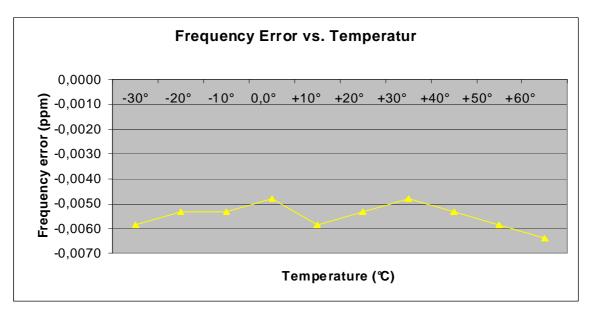
8. Repeat the above measurements at 10 C increments from +60 C to -30 C. Allow at least 1 1/2 hours at each temperature, un-powered, before making measurements.

9. At all temperature levels hold the temperature to ± -0.5 C during the measurement procedure.

Measurement Limit:

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block..


Test Results: AFC FREQ ERROR vs. VOLTAGE


Voltage	Frequency Error	Frequency Error	Frequency Error
(V)	(Hz)	(%)	(ppm)
3.3	-10	-0,00000053	-0,0053
3.4	-11	-0,00000059	-0,0059
3.5	-12	-0,0000064	-0,0064
3.6	-12	-0,0000064	-0,0064
3.7	-13	-0,0000069	-0,0069
3.8	-11	-0,00000059	-0,0059
3.9	-10	-0,00000053	-0,0053
4.0	-9	-0,0000048	-0,0048
4.1	-10	-0,00000053	-0,0053
4.2	-11	-0,00000059	-0,0059
4.3	-12	-0,00000064	-0,0064
4.4	-11	-0,0000059	-0,0059

Test Results: AFC FREQ ERROR vs. TEMPERATURE

TEMPERATURE (°C)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)
-30	-11	-0,0000059	-0,0059
-20	-10	-0,00000053	-0,0053
-10	-10	-0,00000053	-0,0053
±0.0	-9	-0,00000048	-0,0048
+10	-11	-0,00000059	-0,0059
+20	-10	-0,00000053	-0,0053
+30	-9	-0,00000048	-0,0048
+40	-10	-0,00000053	-0,0053
+50	-11	-0,00000059	-0,0059
+60	-12	-0,0000064	-0,0064

5.3.3 Radiated Emissions

Reference

FCC:	CFR Part 24.238, 2.1053
IC:	RSS 133, Issue 5, Section 6.5

Measurement Procedure:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2003 requirements and is recognized by the FCC to be in compliance for a 3 and a 10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 1910 MHz. This was rounded up to 20 GHz. The resolution bandwidth is set as outlined in Part 24.238. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the USPCS band.

The final open field emission (here 10m semi-anechoic chamber listed by FCC) test procedure is as follows:

a) The test item was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna.

b) The antenna output was terminated in a 50 ohm load.

c) A double ridged waveguide antenna was placed on an adjustable height antenna mast 3 meters from the test item for emission measurements.

d) Detected emissions were maximized at each frequency by rotating the test item and adjusting the receive antenna height and polarization. The maximum meter reading was recorded. The radiated emission measurements of the harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and I MHz bandwidth. If the harmonic could not be detected above the noise floor, the ambient level was recorded.
e) Now each detected emissions were substituted by the Substitution method, in accordance with the TIA/EIA 603.

Measurement Limit:

Sec. 24.238 Emission Limits.

(a) On any frequency outside a licensee's frequency block (e.g. A, D, B, etc.) within the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

Measurement Results: Radiated Emissions

Radiated emissions measurements were made only at the upper, center, and lower carrier frequencies of the UMTS band (1852.4 MHz, 1880.0 MHz and 1907.6 MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the UMTS band into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

The final open field radiated levels are presented on the next table.

All measurements were done in horizontal and vertical polarization; the plots show the worst case.

The plots show only the middle channel. If spurious were detected, the lowest and highest channel were checked, too. The found values are stated in the table below.

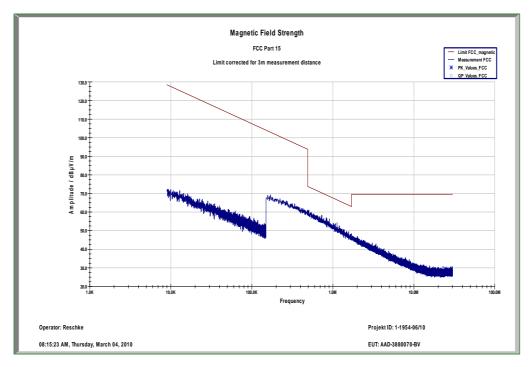
As can be seen from this data, the emissions from the test item were within the specification limit.

Harmonic	Tx ch9262 Freq. (MHz)	Level (dBm)	Tx ch9400 Freq. (MHz)	Level (dBm)	Tx ch9538 Freq. (MHz)	Level (dBm)
2	3704.8	-47.51	3760	-47.56	3815.2	-46.89
3	5557.2	-	5640	-	5722.8	-
4	7409.6	-	7520	-	7630.4	-
5	9262.0	-	9400	-	9538.0	-
6	11114.4	-	11280	-	11445.6	-
7	12966.8	-	13160	-	13353.2	-
8	14819.2	-	15040	-	15260.8	-
9	16671.6	-	16920	-	17168.4	-
10	18524.0	-	18800	-	19076.0	-

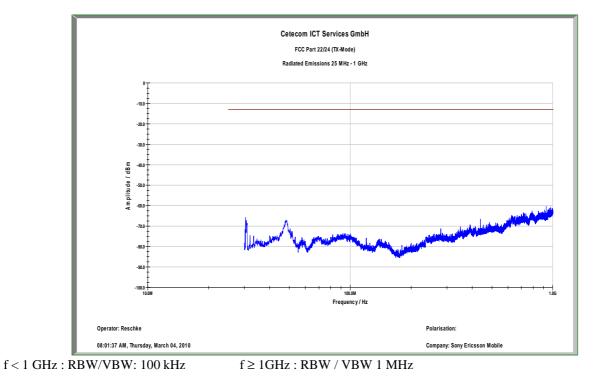
No peaks found < 20 dB below limit.

Sample calculation:

Freq	SA	SG	Ant.	Dipol	Cable	EIRP		
	Reading	Setting	gain	gain	loss	Result		
MHz	dBµV	dBm	dBi	dBd	dB	dBm		
1852.4	125.8	22.6	8.4	0.0	3.3	27.7		


EIRP = SG (dBm) - Cable Loss (dB) + Ant. gain (dBi)

CETECOM ICT Services GmbH



Test report no.: 1-1954-06-05/10

Channel 9400 (Traffic mode up to 30 MHz)

Channel 9400 (30 MHz - 1 GHz)

Channel 9400 (1 GHz – 12.5 GHz)

f < 1 GHz : RBW/VBW: 100 kHz Carrier suppressed with a rejection filter

 $f \ge 1GHz : RBW / VBW 1 MHz$

5.3.4 Conducted Spurious Emissions

Reference

FCC:	CFR Part 24.238, 2.10.51
IC:	RSS 133, Issue 5, Section 6.5

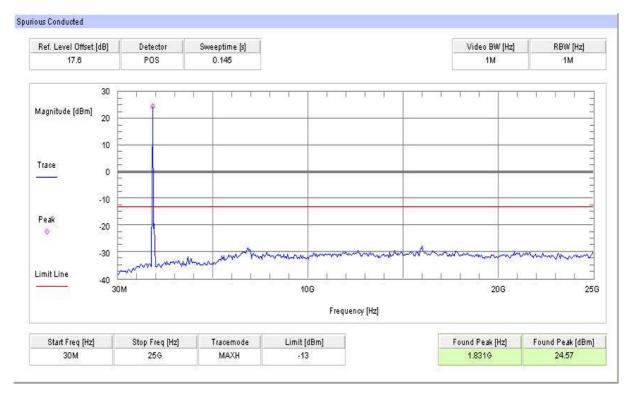
Measurement Procedure:

The following steps outline the procedure used to measure the conducted emissions from the mobile station. 1. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 19.1 GHz, data taken from 10 MHz to 20 GHz.

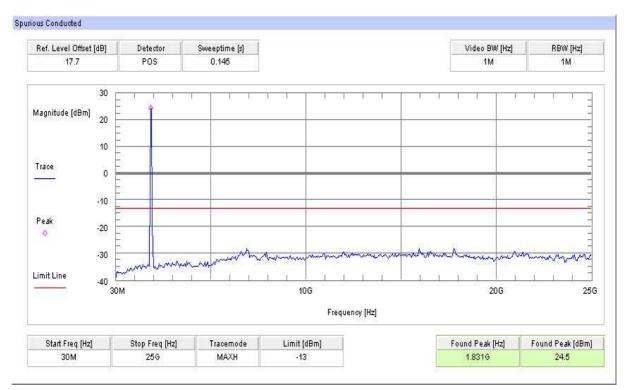
2. Determine mobile station transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

UMTS Transmitter Channel Frequency: 9262 1852.4 MHz 9400 1880.0 MHz 9538 1907.6 MHz

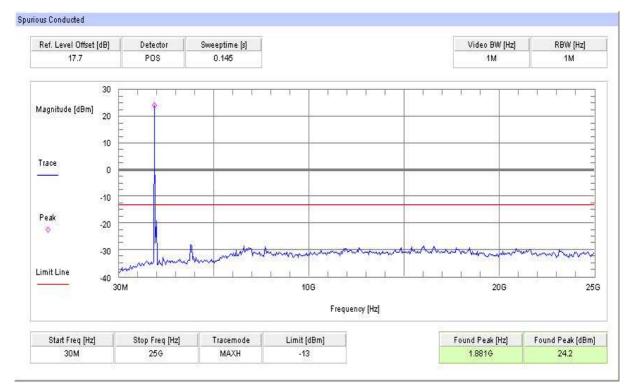
Measurement Limit:


(a) On any frequency outside frequency band of the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.

Harmonic	Tx ch 9262 Freq. (MHz)	Level (dBm)	Tx ch9400 Freq. (MHz)	Level (dBm)	Tx ch9538 Freq. (MHz)	Level (dBm)
2	3704.8	-	3760	-	3815.2	-
3	5557.2	-	5640	-	5722.8	-
4	7409.6	-	7520	-	7630.4	-
5	9262.0	-	9400	-	9538.0	-
6	11114.4	-	11280	-	11445.6	-
7	12966.8	-	13160	-	13353.2	-
8	14819.2	-	15040	-	15260.8	-
9	16671.6	-	16920	-	17168.4	-
10	18524.0	-	18800	-	19076.0	-


Measurement Results:

Channel 9262 (30 MHz – 25 GHz)



Channel 9400 (30 MHz - 25 GHz)

Channel 9538 (30 MHz – 25 GHz)

5.3.5 Block Edge Compliance

Reference

FCC:	CFR Part 24.238
IC:	RSS 133, Issue 5, Section 6.5

Measurement Limit:

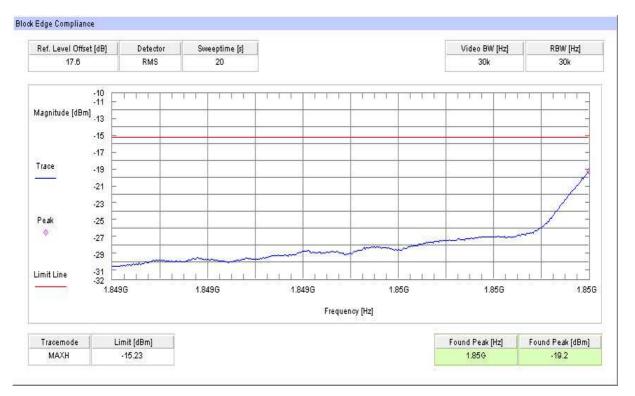
(a) On any frequency outside frequency band of the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.

Part 22.917 specifies that "the power of any emission outside of the authorized operating

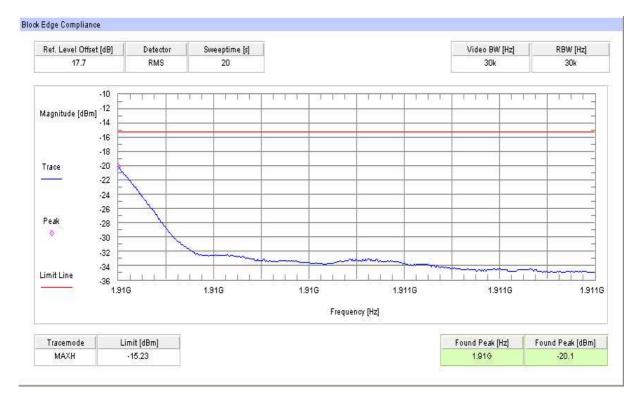
frequency ranges must be attenuated below the transmitting power (P) by a factor of at least

 $43 + 10 \log(P) dB."$

However, in publication number 890810, The FCC Office of Engineering and Technology specified the following correction to the limits when a resolution bandwidth smaller than 1% of the emission bandwidth is used:


"An alternative is to add an additional correction factor of 10 Log (RBW1/ RBW2) to the 43 +10 Log (P) limit. RBW1 is the narrower measurement resolution bandwidth and RBW2 is either the 1% emissions bandwidth or 1 MHz."

When using a 30 kHz bandwidth, this yields a -2.2185 adjustment to the limit $[10\log(30kHz/50kHz) = -2.2185]$. When this adjustment is applied to the limit, the limit becomes -15.2288.


CETECOM ICT Services GmbH Test report no.: 1-1954-06-05/10

Channel 9262

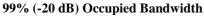
Channel 9538

5.3.6 Occupied Bandwidth

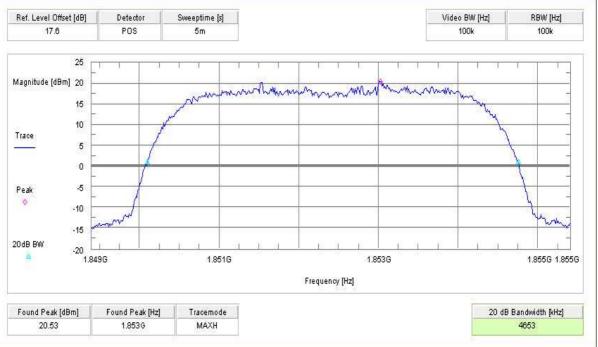
Reference

FCC:	CFR Part 24.238, 2.1049
IC:	RSS 133, Issue 5, Section 6.5

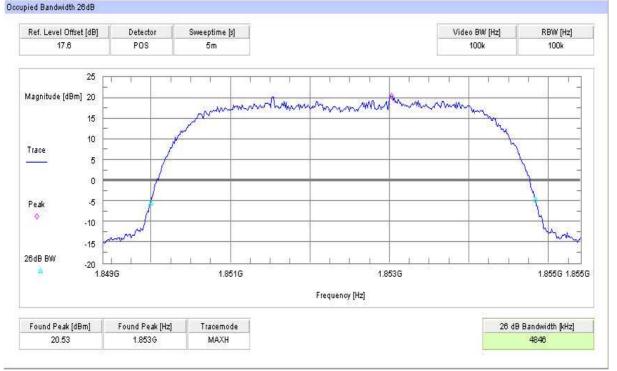
Occupied Bandwidth Results

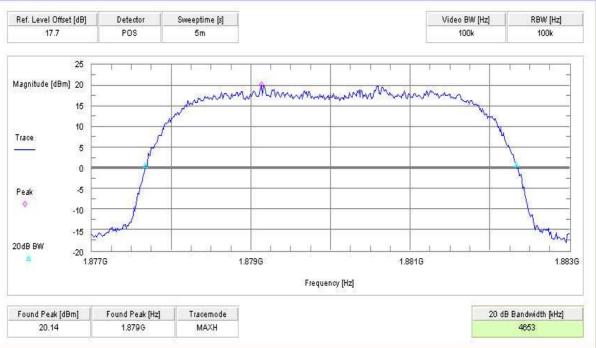

Similar to conducted emissions, occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the USPCS frequency band. Table 8.2 below lists the measured 99% power and -26dBC occupied bandwidths. Spectrum analyzer plots are included on the following pages.

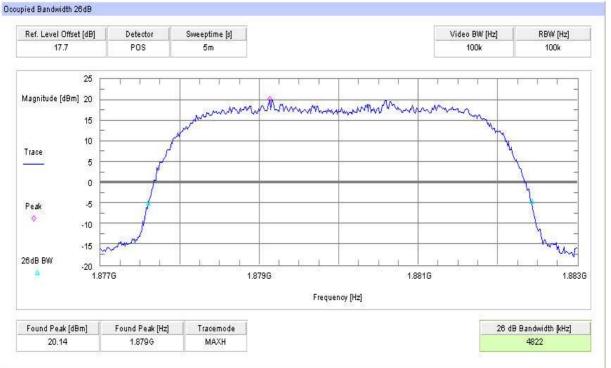
Normal mode

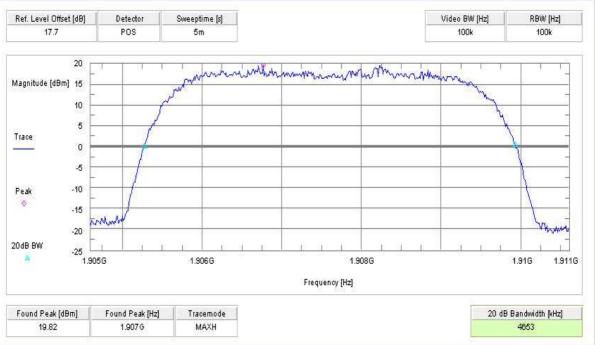

Frequency	99% Occupied Bandwidth kHz	-26 dBc Bandwidth kHz
1852.4 MHz	4653	4846
1880.0 MHz	4653	4822
1907.6 MHz	4653	4822

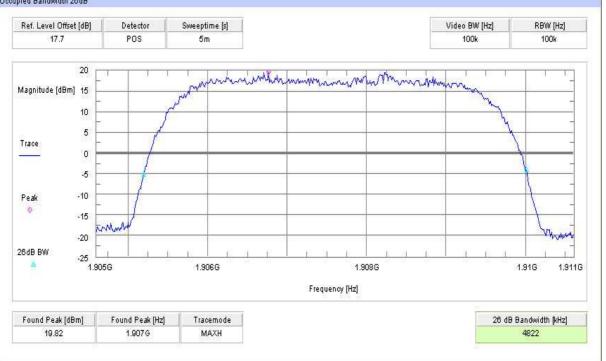
Part 24.238 (a) requires a measurement bandwidth of at least 1% of the occupied bandwidth. For ca. 4700 kHz, this equates to a resolution bandwidth of at least 50 kHz. For this testing, a resolution bandwidth 100 kHz was used.




Channel 9262 -26 dBc Bandwidth




Channel 9400 -26 dBc Bandwidth



Channel 9538 -26 dBc Bandwidth Occupied Bandwidth 26dB

5.4 PART UMTS Band V

5.4.1 RF Power Output

Reference

FCC:	CFR Part 22.9.1.3, 2.1046
IC:	RSS 132, Issue 2, Section 4.4 and 6.4

Summary:

This paragraph contains both average, peak output powers and EIRP measurements for the mobile station. In all cases, the peak output power is within the required mask (this mask is specified in the JTC standards, TIA PN3389 Vol. 1 Chap 7, and is no FCC requirement).

Method of Measurements:

The mobile was set up for the max. output power with pseudo random data modulation.

The power was measured with R&S Signal Analyzer FSIQ 26 (peak and average)

These measurements were done at 3 frequencies, 826.4 MHz, 836.0 MHz and 846.6 MHz (bottom, middle and top of operational frequency range).

Settings for maximum output power were used.

Limits:

Nominal Peak Output Power (dBm)
+38.45

Test Results: Output Power (conducted) UMTS Mode

Frequency	Average	Peak-to-Average
(MHz)	Output Power	Ratio
	(dBm)	(dB)
826.4	24.34	3.10
836.0	24.28	3.10
846.6	24.41	3.10
Measurement uncertainty	±0.5 dB	

Test report no.: 1-1954-06-05/10

ERP Measurements

Description: This is the test for the maximum radiated power from the phone. Rule Part 22.913 specifies that "Mobile/portable stations are limited to 7 watts ERP.

Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method

(a) The measurements were performed with full rf output power and modulation.

(b) Test was performed at listed 3m test site (listed with FCC, IC).

(c) The transmitter under test was placed at the specified height on a non-conducting turntable (80 cm height)

(d) The BICONILOG antenna (20 MHz to 1 GHz) or HORN antenna (1 GHz to 18 GHz) was used for measuring. (e) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor

E (dBuV/m) = Reading (dBuV) + Total Correction Factor (dB/m)

(f) Set the EMI Receiver and #2 as follows:

Center Frequency: test frequency Resolution BW: 100 kHz

Video BW: same

Detector Mode: positive

Average: off

Span: 3 x the signal bandwidth

(g) The test antenna was lowered or raised from 1 to 4 meters until the maximum signal level was detected.

(h) The transmitter was rotated through 360 o about a vertical axis until a higher maximum signal was received.(i) The test antenna was lowered or raised again from 1 to 4 meters until a maximum was obtained. This level was recorded.

(j) The recorded reading was corrected to the true field strength level by adding the antenna factor, cable loss and subtracting the pre-amplifier gain.

(k) The above steps were repeated with both transmitters' antenna and test receiving antenna placed in vertical and horizontal polarization. Both readings with the antennas placed in vertical and horizontal polarization shall be recorded. (1) Repeat for all different test signal frequencies

Measuring the ERP of Spurious/Harmonic Emissions using Substitution Method

(a) Set the EMI Receiver (for measuring E-Field) and Receiver #2 (for measuring ERP) as follows:

(a) Set the Livit Receiver	(for measuring E-r read) and Receiver $\pi 2$ (for measuring ERr) as follows.
Center Frequency	: equal to the signal source
Resolution BW	: 10 kHz
Video BW	: same
Detector Mode	: positive
Average	: off
Span	: 3 x the signal bandwidth
(b) Load an appropriate c	orrection factors file in EMI Receiver for correcting the field strength reading level
Total Correction Factor re	ecorded in the EMI Receiver = Cable Loss + Antenna Factor
E (dBuV/m) = Reading (d)	dBuV) + Total Correction Factor (dB/m)
(c) Select the frequency a	nd E-field levels for ERP/EIRP measurements.
(d) Substitute the EUT by	a signal generator and one of the following transmitting antennas (substitution antenna):
.DIPOLE antenna for free	quency from 30-1000 MHz or .HORN antenna for frequency above 1 GHz}.
(e) Mount the transmittin	g antenna at 1.5 meter high from the ground plane.
(f) Use one of the followi	ng antenna as a receiving antenna: .DIPOLE antenna for frequency from 30-1000 MHz or
.HORN antenna for frequ	ency above 1 GHz }.
(g) If the DIPOLE antenn	a is used, tune its elements to the frequency as specified in the calibration manual.
(h) Adjust both transmitti	ng and receiving antenna in a VERTICAL polarization.
(i) Tune the EMI Receive	rs to the test frequency.
(j) Lower or raise the test	antenna from 1 to 4 meters until the maximum signal level was detected.
(k) The transmitter was re-	otated through 360 o about a vertical axis until a higher maximum signal was received.
(1) Lower or raise the test	antenna from 1 to 4 meters until the maximum signal level was detected.
(m) Adjust input signal to	the substitution antenna until an equal or a known related level to that detected from the
transmitter was obtained i	in the test receiver.
(n) Record the power leve	el read from the Average Power Meter and calculate the ERP/EIRP as follows:
P = P1 - L1 = (P2 + L2) -	-L1 = P3 + A + L2 - L1

EIRP = P + G1 = P3 + L2 - L1 - I3 + A + L2

ERP = EIRP - 2.15 dB

CETECOM ICT Services GmbH

Test report no.: 1-1954-06-05/10

Total Correction factor in EMI Receiver # 2 = L2 - L1 + G1Where: P: Actual RF Power fed into the substitution antenna port after corrected. P1: Power output from the signal generator

P2: Power measured at attenuator A input

P3: Power reading on the Average Power Meter

EIRP: EIRP after correction

ERP: ERP after correction

(o) Adjust both transmitting and receiving antenna in a HORIZONTAL polarization, then repeat step (k) to (o)

(p) Repeat step (d) to (o) for different test frequency

(q) Repeat steps (c) to (j) with the substitution antenna oriented in horizontal polarization.

(r) Actual gain of the EUT's antenna is the difference of the measured EIRP and measured RF power at the RF port. Correct the antenna gain if necessary.

Limits:

Nominal Peak Output Power (dBm)	
+38.45	

Test Results: Output Power (radiated) UMTS Mode

Frequency (MHz)	Average (dBm)
826.4	24.55
836.0	25.04
846.6	25.10
Measurement uncertainty	±0.5 dB

Sample calculation:

Freg		SA	SG	Ant.	Dipol	Cable	ERP	Substitution Antenna
		Reading	Setting	gain	gain	loss		
MHz		dBµV	dBm	dBi	dBd	dB	dBm	
846.6		124.9	21.5	8.4	0.0	3.3	26.3	UHAP Schwarzbeck S/N 460
EDD	6.0		11 7 (10)	. (15)			•

ERP = SG (dBm) - Cable Loss (dB) + Ant. gain (dB)

The following HSDPA sub-tests are defined by 3GPP 34.121 (table C.10.1.4)

Sub-test	β _c	β_{d}	β_d (SF)	β_c/β_d	$\beta_{hs}^{(1)}$	$CM(dB)^{(2)}$
1	2/15	15/15	64	2/15	4/15	0.0
2	$12/15^{(3)}$	$15/15^{(3)}$	64	$12/15^{(3)}$	24/15	1.0
3	15/15	8/15	64	15/8	30/15	1.5
4	15/15	4/15	64	15/4	30/15	1.5
			_	-		

Note 1: Δ_{ACK} , Δ_{NACK} , $\Delta_{CQI} = 8 \iff A_{hs} = \beta_{hs'}\beta_c = 30/15 \iff \beta_{hs} = 30/15 * \beta_c$

Note 2 : CM = 1 for $\beta_c/\beta_d = 12/15$, $\beta_{hs}/\beta_c = 24/15$

Note 3 : For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1,TF1) to $\beta_c = 11/15$ and $\beta_d = 15/15$ Table 1: Subtests for UMTS Release 5 HSDPA

It was checked that the EUT supports the HSDPA-Mode and fulfils the requirements of the table above. The exact power-values are part of the SAR-report.

5.4.2 Frequency Stability

Reference

FCC:	CFR Part 22.355, 2.1055
IC:	RSS 132, Issue 2, Section 4.3 and 6.3

Method of Measurement:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the mobile station in a "call mode". This is accomplished with the use of a R&S CMU 200 DIGITAL RADIOCOMMUNICATION TESTER..

ADIOCOMMUNICATION TESTER..

1. Measure the carrier frequency at room temperature.

2. Subject the mobile station to overnight soak at -30 C.

3. With the mobile station, powered with 3.7 Volts, connected to the CMU 200 and in a simulated call on channel 661 (centre channel), measure the carrier frequency. These measurements should be made within 2 minutes of powering up the mobile station, to prevent significant self warming.

4. Repeat the above measurements at 10 C increments from -30 C to +60 C. Allow at least 1 1/2 hours at each temperature, un-powered, before making measurements.

5. Re-measure carrier frequency at room temperature with nominal 3.7 Volts. Vary supply voltage from minimum 3.3 Volts to maximum 4.4 Volts, in 13 steps re-measuring carrier frequency at each voltage. Pause at 3.7 V ac Volts for 1 1/2 hours un-powered, to allow any self heating to stabilize, before continuing.

6. Subject the mobile station to overnight soak at +60 C.

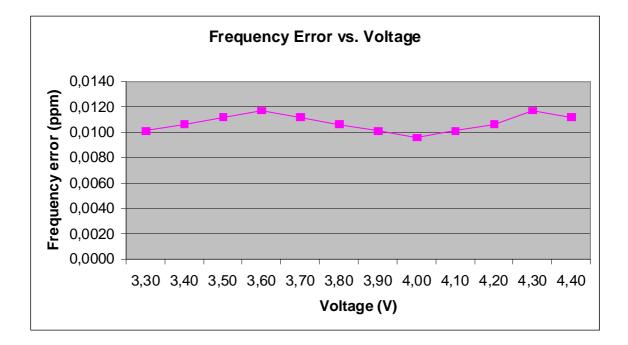
7. With the mobile station, powered with 3.7 Volts, connected to the CMU 200 and in a simulated call on channel 661(center channel), measure the carrier frequency. These measurements should be made within 2 minutes of powering up the mobile station, to prevent significant self warming.

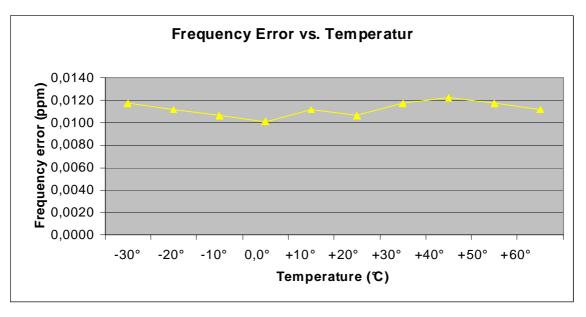
8. Repeat the above measurements at 10 C increments from +60 C to -30 C. Allow at least 1 1/2 hours at each temperature, un-powered, before making measurements.

9. At all temperature levels hold the temperature to ± -0.5 C during the measurement procedure.

Measurement Limit:

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 22.355, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. This transceiver is specified to operate with an input voltage of between 3.3 V dc and 4.4 V dc, with a nominal voltage of 3.7 V dc.


Test Results: AFC FREQ ERROR vs. VOLTAGE


Voltage (V)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)
3.3	19	0,00000101	0,0101
3.4	20	0,0000106	0,0106
3.5	21	0,00000112	0,0112
3.6	22	0,00000117	0,0117
3.7	21	0,00000112	0,0112
3.8	20	0,0000106	0,0106
3.9	19	0,00000101	0,0101
4.0	18	0,0000096	0,0096
4.1	19	0,00000101	0,0101
4.2	20	0,0000106	0,0106
4.3	22	0,00000117	0,0117
4.4	21	0,00000112	0,0112

Test Results: AFC FREQ ERROR vs. TEMPERATURE

TEMPERATURE (°C)	Frequency Error (Hz)	Frequency Error (%)	Frequency Error (ppm)
-30	22	0,00000117	0,0117
-20	21	0,00000112	0,0112
-10	20	0,00000106	0,0106
±0.0	19	0,00000101	0,0101
+10	21	0,00000112	0,0112
+20	20	0,00000106	0,0106
+30	22	0,00000117	0,0117
+40	23	0,00000122	0,0122
+50	22	0,00000117	0,0117
+60	21	0,00000112	0,0112

5.4.3 Radiated Emissions

Reference

FCC:	CFR Part 22.917, 2.1053
IC:	RSS 132, Issue 2, Section 4.5 and 6.5

Measurement Procedure:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2003 requirements and is recognized by the FCC to be in compliance for a 3 and a10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 848.8 MHz. This was rounded up to 12 GHz. The resolution bandwidth is set as outlined in Part 22.917. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the UMTS band.

The final open field emission (here 10m semi-anechoic chamber listed by FCC) test procedure is as follows:

a) The test item was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna.

b) The antenna output was terminated in a 50 ohm load.

c) A double ridged wave guide antenna was placed on an adjustable height antenna mast 3 meters from the test item for emission measurements.

d) Detected emissions were maximized at each frequency by rotating the test item and adjusting the receive antenna height and polarization. The maximum meter reading was recorded. The radiated emission measurements of the harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and I MHz bandwidth. If the harmonic could not be detected above the noise floor, the ambient level was recorded. The equivalent power into a dipole antenna was calculated from the field intensity levels measured at 3 meters using the equation shown below:

e)Now each detected emissions were substituted by the Substitution method, in accordance with the TIA/EIA 603.

Measurement Limit:

Sec. 22.917 Emission Limits.

(a) On any frequency outside a licensee' s frequency block (e.g. A, D, B, etc.) within the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

Measurement Results:

Radiated emissions measurements were made only at the upper, center, and lower carrier frequencies of the UMTS band (826.4 MHz, 836.0 MHz and 846.6 MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the UMTS band into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

The final open field radiated levels are presented on the next pages.

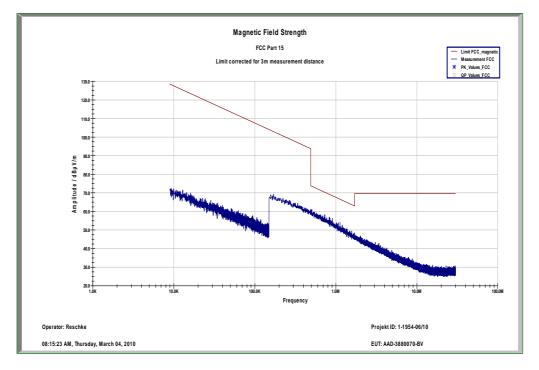
All measurements were done in horizontal and vertical polarization, the plots shows the worst case.

All measurements were done in horizontal and vertical polarization; the plots shows the worst case.

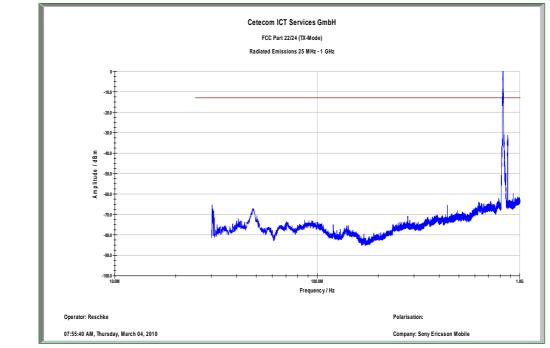
The plots show only the middle channel. If spurious were detected, the lowest and highest channel were checked, As can be seen from this data, the emissions from the test item were within the specification limit.

Harmonic	Tx ch4132 Freq. (MHz)	Level (dBm)	Tx ch4180 Freq. (MHz)	Level (dBm)	Tx ch4233 Freq. (MHz)	Level (dBm)
2	1652.8	-	1672.0	-	1693.2	-
3	2479.2	-	2508.0	-	2539.8	-
4	3305.6	-	3344.0	-	3386.4	-
5	4132.0	-	4180.0	-	4233.0	-
6	4958.4	-	5016.0	-	5079.6	-
7	5784.8	-	5852.0	-	5926.2	-
8	6611.2	-	6688.0	-	6772.8	-
9	7437.6	-	7524.0	-	7619.4	-
10	8264.0	-	8360.0	-	8466.0	-

Sample calculation:

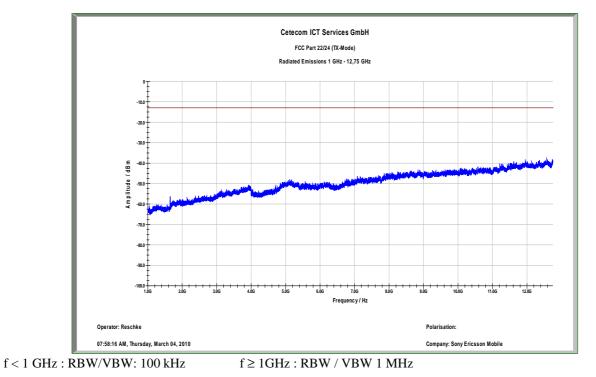

Setting	gain	Dipol gain	Cable loss	ERP	Substitution Antenna
dBm	dBi	dBd	dB	dBm	
21.5	8.4	0.0	3.3	26.3	UHAP Schwarzbeck S/N 460
1	Bm 1.5	Bm dBi 1.5 8.4	Bm dBi dBd 1.5 8.4 0.0	Bm dBi dBd dB 1.5 8.4 0.0 3.3	Bm dBi dBd dB dBm 1.5 8.4 0.0 3.3 26.3

ERP = SG (dBm) - Cable Loss (dB) + Ant. gain (dB)

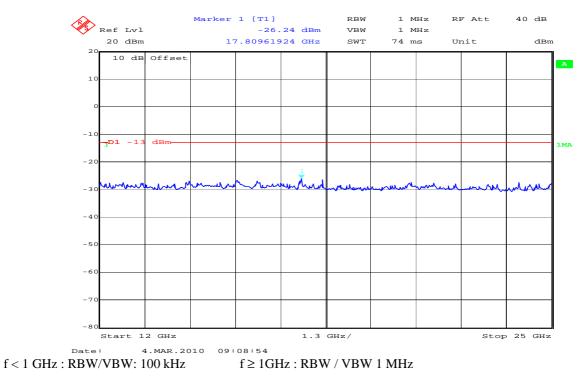

*ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP - 2.1 dBi

Channel 4180 (Traffic mode up to 30 MHz)

Channel 4180 (30 MHz - 1 GHz)



f < 1 GHz : RBW/VBW: 100 kHz


 $f \ge 1GHz$: RBW / VBW 1 MHz

Channel 4180 (1 GHz – 12.5 GHz)

Channel 4132 (12 GHz - 25 GHz) valid for all 3 channels

5.4.4 Conducted Spurious Emissions

Reference

FCC:	CFR Part 22.917, 1.1051
IC:	RSS 132, Issue 2, Section 4.5 and 6.5

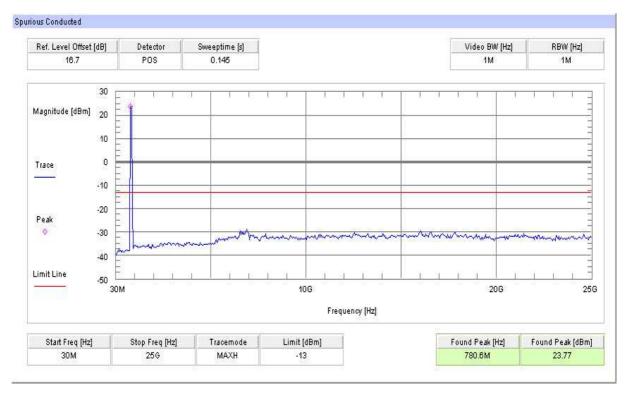
Measurement Procedure

The following steps outline the procedure used to measure the conducted emissions from the mobile station. 1. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 19.1 GHz, data taken from 10 MHz to 20 GHz.

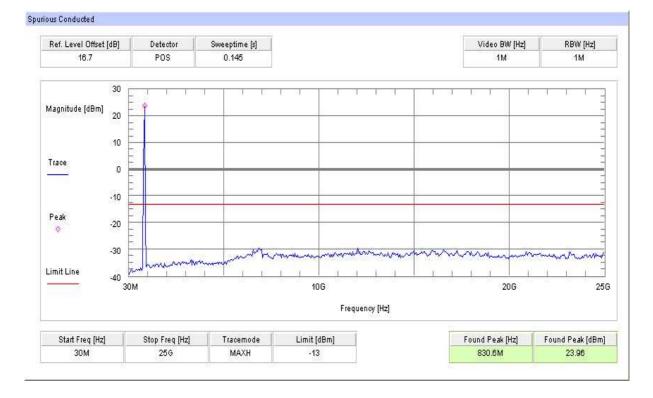
2. Determine mobile station transmits frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

UMTS Transmitter Channel Frequency 4132 826.4 MHz 4180 836.0 MHz 4233 846.6 MHz

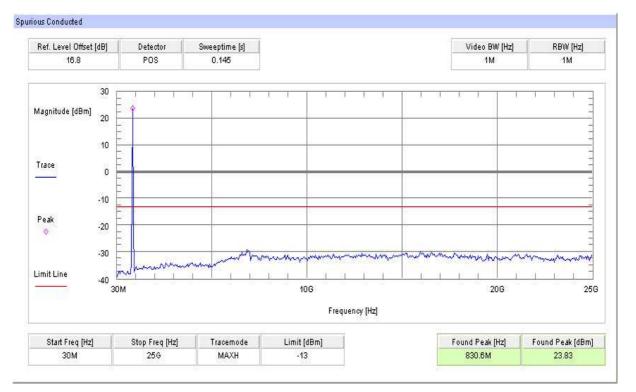
Measurement Limit


(a) On any frequency outside frequency band of the UMTS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log (P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.

Harmonic	Tx ch4132 Freq. (MHz)	Level (dBm)	Tx ch4180 Freq. (MHz)	Level (dBm)	Tx ch 4233 Freq. (MHz)	Level (dBm)
2	1652.8	-	1672.0	-	1693.2	-
3	2479.2	-	2508.0	-	2539.8	-
4	3305.6	-	3344.0	-	3386.4	-
5	4132.0	-	4180.0	-	4233.0	-
6	4958.4	-	5016.0	-	5079.6	-
7	5784.8	-	5852.0	-	5926.2	-
8	6611.2	-	6688.0	-	6772.8	-
9	7437.6	-	7524.0	-	7619.4	-
10	8264.0	-	8360.0	-	8466.0	_


Measurement Results

Channel 4132 (30 MHz – 25 GHz)



Channel 4180 (30 MHz - 25 GHz)

Channel 4233 (30 MHz – 25 GHz)

5.4.5 Block Edge Compliance

Reference

FCC:	CFR Part 22.917
IC:	RSS 132, Issue 2, Section 6.5

Measurement Limit:

Sec. 22.917(b) Emission Limits.

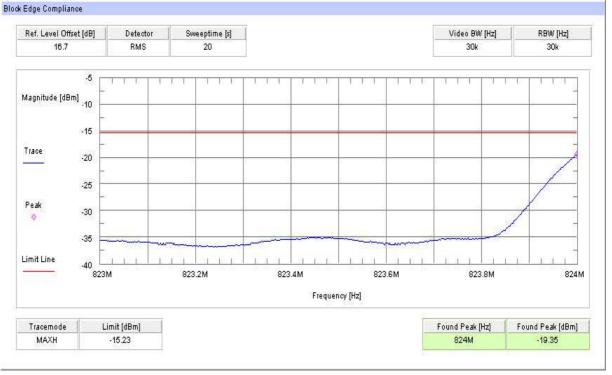
(a) On any frequency outside frequency band of the UMTS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. For all power levels +33 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.

Part 22.917 specifies that "the power of any emission outside of the authorized operating

frequency ranges must be attenuated below the transmitting power (P) by a factor of at least

 $43 + 10 \log(P) dB."$

However, in publication number 890810, The FCC Office of Engineering and Technology


specified the following correction to the limits when a resolution bandwidth smaller than 1%

of the emission bandwidth is used:

"An alternative is to add an additional correction factor of 10 Log (RBW1/RBW2) to the 43 +10 Log (P) limit. RBW1 is the narrower measurement resolution bandwidth and RBW2 is either the 1% emissions bandwidth or 1 MHz."


When using a 30 kHz bandwidth, this yields a -2.2185 adjustment to the limit $[10\log(30kHz/50kHz) = -2.2185]$. When this adjustment is applied to the limit, the limit becomes -15.2288.

Channel 4233

5.4.6 Occupied Bandwidth

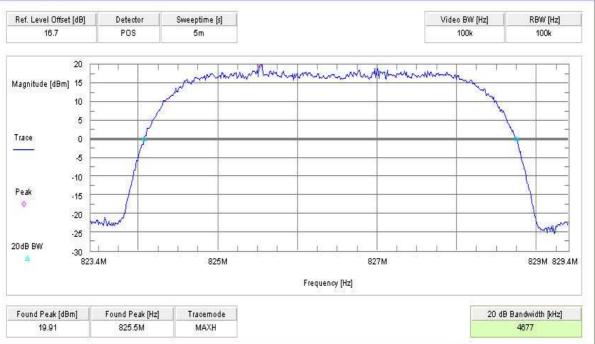
Reference

FCC:	CFR Part 22.917, 2.1049
IC:	RSS 132, Issue 2, Section 4.2

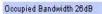
Occupied Bandwidth Results

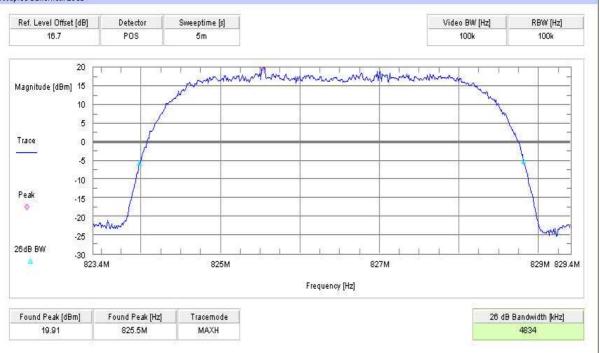
Similar to conducted emissions, occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the UMTS frequency band. Table below lists the measured 99% power and -26dBC occupied bandwidths. Spectrum analyzer plots are included on the following pages.

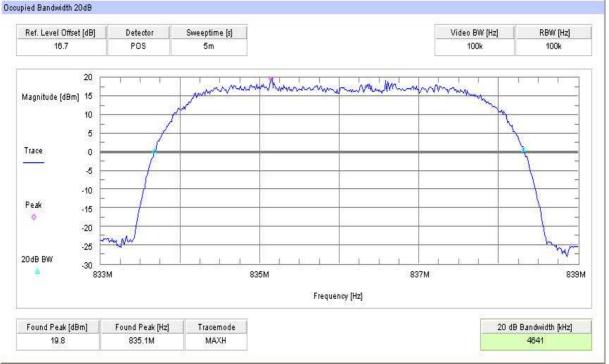
Normal mode

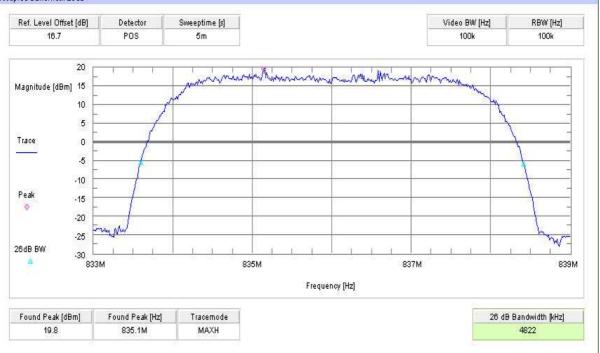

Frequency	99% Occupied Bandwidth (kHz)	-26 dBc Bandwidth (kHz)
826.4 MHz	4677	4834
836.0 MHz	4641	4822
846.6 MHz	4677	4846

Part 22 requires a measurement bandwidth of at least 1% of the occupied bandwidth. For ca. 4700 kHz, this equates to a resolution bandwidth of at least 50 kHz. For this testing, a resolution bandwidth 100 kHz was used.

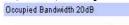


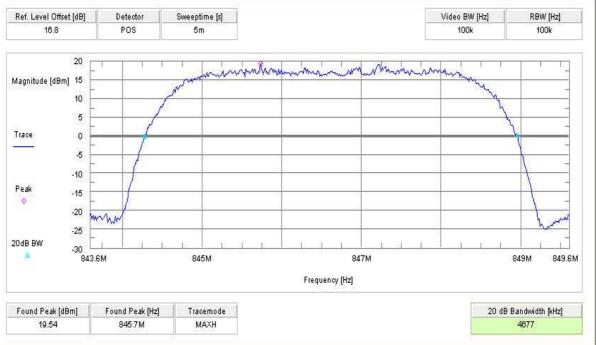

99% (-20 dB) Occupied Bandwidth

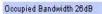

Channel 4132 -26 dBc Bandwidth

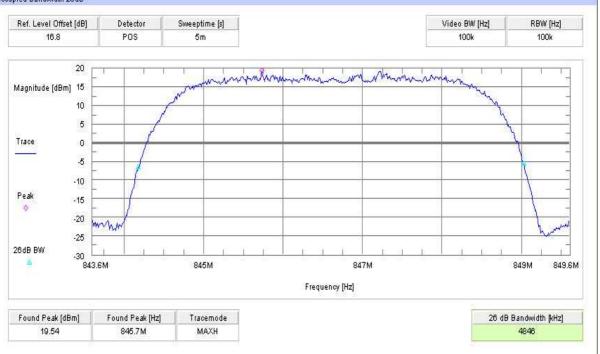


99% (-20 dB) Occupied Bandwidth


Channel 4180 -26 dBc Bandwidth


Occupied Bandwidth 26dB




99% (-20 dB) Occupied Bandwidth

Channel 4233 -26 dBc Bandwidth

5.5 Receiver

5.5.1 Receiver Radiated Emissions

Reference

FCC:	CFR Part 15.109, 2.1053
IC:	RSS 132, Issue 2, Section 4.6 and 6.6

Method of measurement

The measurement was performed in worst case. The EUT was not connected to the CMU 200. So the EUT perform a network search. In this case all oscillators are active.

Measurement Results

	SPURIOUS EMISSIONS LEVEL (dBµV/m)								
	Idle mode			-/-			-/-		
f (MHz)	Detector	Level (dBµV/m)	f (MHz)	Detector	Level (dBµV/m)	f (MHz)	Detector	Level (dBµV/m)	
No cr	itical peaks	found							
Measu	Measurement uncertainty				±3 0	dΒ			

f < 1 GHz : RBW/VBW: 100 kHz $f \ge$

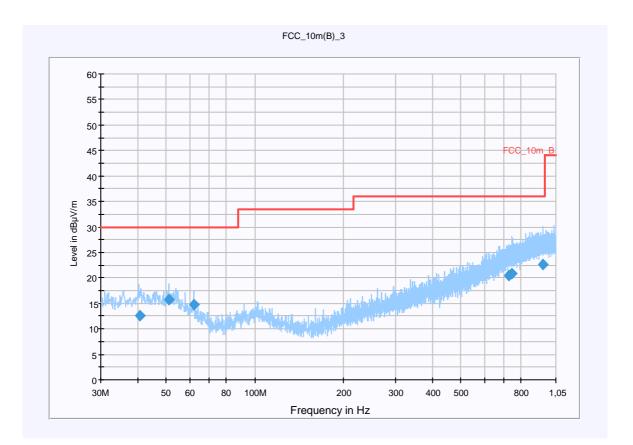
 $f \ge 1GHz : RBW/VBW: 1 MHz$

H = Horizontal; V= Vertical

Measurement distance see table

Limits: § 15.109

Frequency (MHz)	Field strength (dBµV/m)	Measurement distance (m)
30 - 88	30.0	10
88 - 216	33.5	10
216 - 960	36.0	10
above 960	54.0	3



Idle-Mode (30 MHz - 1 GHz)

Common Information	
EUT:	AAD-3880070-BV + CAA-0003005-BV
Serial Number:	IMEI:00440214-025458-6 + 5908W49308170
Test Description:	FCC part 15 B @ 10 m
Operating Conditions:	GSM idle, GPS on
Operator Name:	Lang
Comment:	powered with 115 V / 60 Hz

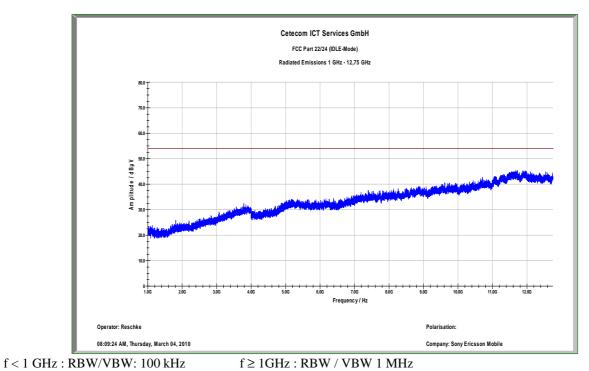
Scan Setup: STAN_Fin [EMI radiated] Hardware Setup: Electric Field (NOS) Level Unit: dBµV/m

Subrange	Detectors	IF Bandwidth	Meas. Time	Receiver
30 MHz - 1,05 GHz	QuasiPeak	120 kHz	15 s	Receiver

Final Result 1

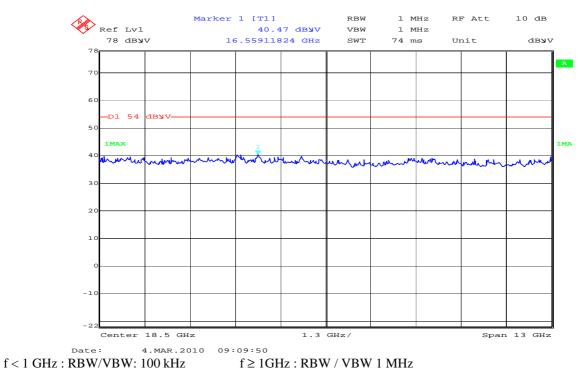
Frequency (MHz)	QuasiPeak (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Antenna height (cm)	Polarity	Turntable position (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)	Comment
40.762500	12.6	15000.000	120.000	98.0	V	-2.0	13.4	17.4	30.0	
50.974350	15.7	15000.000	120.000	220.0	V	171.0	13.3	14.3	30.0	
61.987650	14.9	15000.000	120.000	104.0	V	143.0	11.1	15.1	30.0	
726.517200	20.4	15000.000	120.000	189.0	Н	42.0	23.0	15.6	36.0	
745.900500	20.8	15000.000	120.000	214.0	Н	221.0	23.5	15.2	36.0	
948.064950	22.6	15000.000	120.000	220.0	V	35.0	25.3	13.4	36.0	

CETECOM ICT Services GmbH



Test report no.: 1-1954-06-05/10

Subrange 1	
Frequency Range:	30 MHz - 2 GHz
Receiver:	Receiver [ESCI 3] @ GPIB0 (ADR 20), SN 100083/003, FW 4.32
Signal Path:	without Notch FW 1.0
Antenna:	VULB 9163 SN 9163-295, FW Correction Table (vertical): VULP6113 Correction Table (horizontal): VULP6113 Correction Table: Cable_EN_1GHz (0909)
Antenna Tower:	Tower [EMCO 2090 Antenna Tower] @ GPIB0 (ADR 8), FW REV 3.12
Turntable:	Turntable [EMCO Turntable] @ GPIB0 (ADR 9), FW REV 3.12


Hardware Setup: EMI radiated\Electric Field (NOS) - [EMI radiated]

Idle-Mode (1 GHz – 12.0 GHz)

Idle-Mode (12 GHz - 25 GHz)

6 Test equipment and ancillaries used for tests

In order to simplify the identification of the equipment used at each specific test, each item of test equipment and ancillaries are provided with an identifier or number in the equipment list below.

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, rf-generating and signalling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

No.	Labor / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kal. Art	Last Calibration	Next Calibration
1	n. a.	Netzgerät	6032A	HP Meßtechnik	2818A03450	300001040	Ve	08.01.2009	08.01.2012
2	n. a.	Power Dämpfungsglied	8325	Byrd	1530	300001595			
3	n. a.	Horn Antenne 1- 26.5GHz	3115	EMCO	8812-3088	300001032	vlKI!	05.03.2009	05.03.2011
4	n. a.	Active Loop Antenne	6502	EMCO	2210	300001015	ne		
5	n. a.	Busisolator		Kontron		300001056	g		
6	n. a.	Absorberhalle		MWB	87400/02	300000996			
7	Spec.A. 2_2e	System-Rack	85900	HP I.V.	*	300000222	ne		
8	9	Netznachbildung Artificial Mains 9 kHz to 30 MHz	ESH3-Z5	R&S	828576/020	300001210	Ve	06.01.2010	06.01.2012
9	n. a.	Relais Matrix	3488A	HP Meßtechnik	2719A15013	300001156	ne		
10	n. a.	Relais Matrix	PSU	R&S	890167/024	300001168	ne		
11	n. a.	Trenntrafo	RT5A	Grundig	9242	300001263	ne		
12	n. a.	Leitungsteiler	11850C	HP Meßtechnik		300000997	ne		
13	n. a.	Switch / Control Unit	3488A	HP	2605e08770	300001443	ne		
14	n. a.	Band Reject filter	WRCG1855/1910- 1835/1925-40/8SS	Wainwright	7	300003350	ev		
15	n. a.	Band Reject filter	WRCG2400/2483- 2375/2505- 50/10SS	Wainwright	11	300003351	ev		
16	n. a.	TILE-Software Emission	Quantum Change, Modell TILE- ICS/FULL	EMCO	none	300003451	ne		

CETECOM ICT Services GmbH

Test report no.: 1-1954-06-05/10

17	n. a.	Hochpassfilter	WHKX2.9/18G- 12SS	Wainwright	1	300003492	ev		
18	n. a.	Hochpassfilter	WHK1.1/15G- 10SS	Wainwright	3	300003255	ev		
19	n. a.	Hochpassfilter	WHKX7.0/18G- 8SS	Wainwright	18	300003789	ne		
20	n. a.	PSA- Spektrumanalysator 3 Hz - 26,5 GHz	E4440A	Agilent Vertr. Bad Hom	MY48250080	300003812	k	05.08.2008	05.08.2010
21	n. a.	Microwave Analog Signal Generator	N5183A	Agilent Vertr. Bad Hom	MY47420220	300003813	k	06.08.2008	06.08.2010
22	n. a.	EMI Preselector 9kHz - 1 GHz	N9039A	Agilent Vertr. Bad Hom	MY48260003	300003825	vlKI!	19.08.2008	19.08.2010
23	n. a.	TRILOG Super Breitband Antenne	VULB9163	Schwarzbeck	371	300003854	vlKI!	17.12.2008	17.12.2010
24	n. a.	Netzgerät	6032A	HP Meßtechnik	2920A04590	300001041	Ve	08.01.2009	08.01.2012
25	n. a.	Signal Analyzer 20Hz- 26,5GHz-150 to + 30 DBM	FSiQ26	R&S	835111/0004	300002678	Ve	06.01.2009	06.01.2011
26	n. a.	Temperaturprüfschrank	T-40/50	CTS GmbH	064023	300003540	vlKI!	04.06.2009	04.06.2011
27	n. a.	Universal Communication Tester	CMU 200	R&S	103992	300003231	vlKI!	04.06.2008	04.06.2010