

Prepared (also subject responsible if other)

BA/SEMC/CCDAU Jon Kenny

Approved LD/SEMC/CCDALEC Peter Lindeborg

CCDA09: .

Checked Date PL 090105

Α

Reference File

Report issued by Accredited SAR Laboratory

for

FCC ID: PY7A3880016 (W508)

Date of test: January 21st to January 30th 2009

Laboratory: Sony Ericsson SAR Test Laboratory

Sony Ericsson Mobile Communications AB Maplewood, Chineham Business Park

Basingstoke, RG24 8YB,

England

Testing Engineer: Jon Kenny

Jon.Kenny@sonyericsson.com

+44 1256 77 48 91

Testing Approval: Peter Lindeborg

peter.lindeborg@sonyericsson.com

+46 10 802 43 68

Statement of Compliance

Sony Ericsson Mobile Communications AB declares under its sole responsibility that the product

Sony Ericsson Type AAD-3880016-BV; FCC ID PY7A3880016; IC 4170B-A3880016

to which this declaration relates, is in conformity with the appropriate RF exposure standards recommendations and guidelines. It also declares that the product was tested in accordance with the appropriate measurement standards, guidelines and recommended practices. Any deviations from these standards, guidelines and recommended practices are noted below:

(None)

This laboratory is accredited to ISO/IEC 17025 (SWEDAC accreditation no. 1847).

Laboratories are accredited by the Swedish Board for Accreditation and Conformity Assessment (SWEDAC) under the terms of Swedish legislation. The accredited laboratory activities meet the requirements in SS-EN ISO/IEC 17025 (2005). This report may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report.

Sony Ericsson encourages all feedback, both positive and negative, on this report. © Sony Ericsson Mobile Communication AB, 2008

BA/SEMC/CCDAU Jon Kenny

Prepared (also subject responsible if other)

LD/SEMC/CCDALEC Peter Lindeborg

Checked PL

CCDA09: . Date

090105

Rev Α

Reference

File

Table of contents

1	INT	TRODUCTION	. 3
2		STOMER DETAILS	
Z			
3	DEV	VICE UNDER TEST	
	3.1 3.2	Antenna Description	.3
4	TES	ST EQUIPMENT	. 5
	4.1	DOSIMETRIC SYSTEM	
	4.2	ADDITIONAL EQUIPMENT	
5	ELF	ECTRICAL PARAMETERS ON THE TISSUE SIMULATING LIQUID	. 6
		· ·	
6	SYS	STEM ACCURACY VERIFICATION	.7
7	SAE	R MEASUREMENT UNCERTAINTY	•
,			
8	TES	ST RESULTS	.9
	DE	FERENCES	
)	REI	FERENCES	IJ
4	PPEND	DIX	12
	9.1	PHOTOGRAPHS OF THE DEVICE UNDER TEST	
	9.1	DEVICE POSITION AT SAM TWIN PHANTOM	
		ATTACHMENTS	

CCDA09: .

BA/SEMC/CCDAU Jon Kenny

Prepared (also subject responsible if other)

LD/SEMC/CCDALEC Peter Lindeborg

Checked Date Rev Reference PL090105 Α File

1 Introduction

In this test report, compliance of the Sony Ericsson FCC ID: PY7A3880016 (W508) portable telephone with RF safety guidelines is demonstrated. The applicable RF safety guidelines and the SAR measurement specifications used for the test are described in the SAR Measurement Specifications of Wireless Handsets [1].

2 **Customer details**

Company Name:	Sony Ericsson Mobile
	Communications AB
Address:	2/F China Digital Kingdom
	Building, No.1 North, Beijing,
	100102, China
Contact Name:	Roy Zhou

3 **Device Under Test**

3.1 **Antenna Description**

Туре	Internal antenna	
Location	Bottom of phone	
Main and BT antennas distance	12.5mm	
Dimensions	Max length	46 mm
	Max width 14 mm	
Configuration	Monopole	

BA/SEMC/CCDAU Jon Kenny

Prepared (also subject responsible if other)

LD/SEMC/CCDALEC Peter Lindeborg

CCDA09: . Checked

 PL

Rev Reference 090105 Α File

Device Description 3.2

Device model	AAD-3	880016	-BV			
Market name	W508					
Serial number (EUT #)	BX900GKJ0S (#14448)					
Mode		SSM 850)	Ĺ	GSM 19	00
Crest factor		8.3			8.3	
Multiple access scheme		TDMA			TDMA	١
Channel No.	128	190	251	512	661	885
Measured Power Level [dBm] ¹ (#13877)	32.8	32.9	32.8	30.9	30.9	30.9
Product Maximum power Level [dBm] ¹	33.0	33.0	33.0	31.0	31.0	31.0
Data mode	GPRS		GPRS			
Crest factor		4.15		4.15		
Measured Power Level [dBm] ¹ (#13877)	29.9	29.9	29.9	28.0	27.8	27.9
Product Maximum power Level [dBm] ¹	30.0	30.0	30.0	28.0	28.0	28.0
Data mode	EDGE		EDGE			
Crest factor		4.15			4.15	
Measured Power Level [dBm] ¹ (#13877)	27.3	27.2	27.3	26.5	26.4	26.3
Product Maximum power Level [dBm] ¹	27.5	27.5	27.5	26.5	26.5	26.5
Transmitting frequency range [MHz]	824	4.0 - 849	9.0	18	50.0 - 19	910.0

GPRS Multislot class	10
EDGE class	10
GPRS Capability class	В
BT class and conducted power	Class 1, 4.5 dBm
Prototype or production unit	Preproduction
Hardware Version	AP2.1
Software version	R1DA017
Device category	Portable
RF exposure environment	General population / uncontrolled

BA/SEMC/CCDAU Jon Kenny

Prepared (also subject responsible if other)

LD/SEMC/CCDALEC Peter Lindeborg

CCDA09: . Checked Rev Reference PL090105 Α File

Test equipment 4

Dosimetric system 4.1

SAR measurements were made using the DASY4 professional system (software version 4.7, Build 55) with SAM twin phantom, manufactured by Schmid & Partner Engineering AG (SPEAG). The list of calibrated equipment is given below.

Description	Serial Number	Due Date
DASY4 DAE3	448	2009-11
E-field probe ET3DV6	1610	2009-11
Dipole Validation Kit, D835V2	442	2009-12
Dipole Validation Kit, D1900V2	539	2009-12

Additional equipment 4.2

Description	Inventory Number	Due Date
Signal generator R&S SMY 02	3.094	2009-04
Directional coupler HP778D	15.233	None
Power meter R&S NRVD	4.073	2009-04
Power sensor R&S NRV-Z5	4.074	2009-04
Power sensor R&S NRV-Z5	4.076	2009-04
Network analyzer Agilent 8719D	2.022	2009-04
Dielectric probe kit HP8507C	14.046	Self Cal
R&S CMU200	20011270	2009-04

Prepared (also subject responsible if other)

BA/SEMC/CCDAU Jon Kenny CCDA09: .

Approved Checked Date Rev Reference LD/SEMC/CCDALEC Peter Lindeborg PL 090105 A File

5 Electrical parameters on the tissue simulating liquid

Prior to conducting SAR measurements, the relative permittivity, ϵ_r , and the conductivity σ , of the tissue simulating liquids were measured with the dielectric probe kit. These values are shown in the table below. The mass density, ρ , entered into the DASY4 software is also given. Recommended limits for permittivity ϵ_r , conductivity σ and mass density ρ are also shown.

f	Tissue	Massured / Passemmanded	Dielectric F	Parameters	Density	
[MHz]	Measured / Recomme		ε _r	σ [S/m]	ρ [g/cm³]	
835	Head	Measured, 2009-01-28	40.29	0.86	1.00	
033	пеац	Recommended	41.5	0.90	1.00	
835	Dody	Measured, 2009-01-28	53.19	0.97	1.00	
033	Бойу	Body	Recommended	55.2	0.97	1.00
1900	Hood	Measured, 2009-01-21	38.02	1.47	1.00	
1900	Head Recor	Recommended	40.0	1.40	1.00	
1900	Dody	Measured, 2009-01-29	50.66	1.54	1.00	
1900	Body	Recommended	53.3	1.52	1.00	

Prepared (also subject responsible if other)

BA/SEMC/CCDAU Jon Kenny

CCDA09: . Checked

Rev Reference LD/SEMC/CCDALEC Peter Lindeborg PL090105 Α File

6 System accuracy verification

A system accuracy verification of the DASY4 was performed using the dipole validation kit listed in section 3.1. The system verification test was conducted on the same day as the measurement of the DUT. The ambient humidity and temperature of test facility were kept between the range 30-70% and 20.0-25.0 °C respectively. RF noise had been measured in liquid when all RF equipment in lab was switched off. Measured value was 0.0002 mW/g in 1g mass.

f radio-1	Tissue	Measured / Reference	SAR [W/kg]	-	ectric meters	Density	Liquid
[MHz]	type		1g	٤r	σ [S/m]	ρ [g/cm³]	T[°C]
835	Head	Measured, 2009-01-28	9.84	40.29	0.86	1.00	21.9
000	Head	Reference	9.34	41.5	0.90	1.00	22.0
835	Body	Measured, 2009-01-28	10.16	53.19	0.97	1.00	22.6
000	Бойу	Reference	9.85	55.2	0.97	1.00	22.0
1900	Hood	Measured, 2009-01-21	38.88	38.02	1.47	1.00	21.5
1900	00 Head	Reference	41.3	40.0	1.40	1.00	22.0
1900	Pody	Measured, 2009-01-29	40.4	50.66	1.54	1.00	21.6
1900	Body	Reference	41.3	53.3	1.52	1.00	22.0

Prepared (also subject responsible if other)

BA/SEMC/CCDAU Jon Kenny CCDA09: .

Approved Checked Date Rev Reference LD/SEMC/CCDALEC Peter Lindeborg PL 090105 A File

7 SAR measurement uncertainty

SAR measurement uncertainty evaluation for Sony Ericsson PY7A3880016 (W508) phone According to IEEE 1528

Uncertainty Component	Uncer. (%)	Prob Dist.	Div.	Ci	1g mass	
Measurement System						
Probe Calibration	±5.9	N	1	1	±5.9	
Axial Isotropy	±4.7	R	√3	0.7	±1.9	
Spherical Isotropy	±9.6	R	√3	0.7	±3.9	
Boundary effect	±1.0	R	√3	1	±0.6	
Probe linearity	±4.7	R	√3	1	±2.7	
Detection limit	±1.0	R	√3	1	±0.6	
Readout electronics	±0.3	N	1	1	±0.3	
Response time	±0.8	R	√3	1	±0.5	
Integration time	±2.6	R	√3	1	±1.5	
RF Ambient Conditions	±3.0	R	√3	1	±1.7	
Mech. Constraints of robot	±0.4	R	√3	1	±0.2	
Probe positioning	±2.9	R	√3	1	±1.7	
Extrap, interpolation and integration	±1.0	R	√3	1	±0.6	
Measurement System Uncertainty					±8.4	
Test Sample Related						
Device positioning	±3.5	N	1	1	±3.5	
Device holder uncertainty	±3.5	N	1	1	±3.5	
Power drift	±5.0	R	√3	1	±2.9	
Test Sample Related Uncertainty					±5.5	
Phantom and Tissue Parameters						
Phantom uncertainty	±4.0	R	√3	1	±2.3	
Liquid conductivity (measured)	±2.5	R	1	0.64	±1.6	
Liquid conductivity (target)	±5.0	R	√3	0.64	±1.8	
Liquid Permittivity (measured)	±2.5	R	1	0.6	±1.5	
Liquid Permittivity (target)	±5.0	R	√3	0.6	±1.7	
Phantom and Tissue Parameters Uncertainty					±4.1	
Combined standard uncertainty						
Extended standard uncertainty (k=2)						

PL

BA/SEMC/CCDAU Jon Kenny

Prepared (also subject responsible if other)

LD/SEMC/CCDALEC Peter Lindeborg

CCDA09: . Checked Date Rev Reference 090105 Α File

8 **Test results**

The ambient humidity and temperature of test facility were kept between the range 30-70% and 20.0-25.0 °C respectively. A base station simulator was used to control the device during the SAR measurement. The DUT was supplied with a fully charged battery for each measurement.

For head measurement, the DUT was tested with the flip open on the right-hand side, and the left-hand side of the phantom in two phone positions, cheek (touch) and tilt (cheek + 15°). The DUT was tested at the lowest, middle and highest frequencies in the transmission band. The measured 1-gram averaged SAR values of the DUT towards the head are provided in Table 1.

For body measurement the DUT was tested with the flip in the closed position with the back (antenna) and front(display) towards the phantom flat section with 15 mm distance in both speech and data mode. For all modes, the device was tested at the lowest, middle and highest frequencies in the transmission band. For portable hands free (PHF) usage the Sony Ericsson head set HPB-60 was connected to the DUT. The measured 1-gram averaged SAR values of the DUT towards the body are provided in Table 2.

		Measured			Measured S	SAR [W/kg]	
Band	Channel	output power ¹ [dBm]	Position	Liquid T [°C]	Left-hand 1g mass	Right-hand 1g mass	
	128	32.8	Cheek	23.9	0.53	0.63	
	128	32.8	Tilt	23.9	-	-	
GSM	190	32.9	Cheek	23.9	0.58	0.66	
850			Tilt	23.9	0.40	0.39	
	251	32.8	Cheek	23.9	0.75	0.74	
		201 32.0	Tilt	23.9	-	-	
	M	F10	20.0	Cheek	22.7	0.59	0.51
		512 30.9	Tilt	22.7	1	-	
GSM		30.9	Cheek	22.7	0.60	0.52	
1900	001	30.9	Tilt	22.7	0.22	0.29	
	810	30.9	Cheek	22.7	0.64	0.56	
	610	30.9	Tilt	22.7	-	-	

Table 1: SAR measurement result for Sony Ericsson PY7A3880016 telephone at highest possible output power. Measured towards the head.

¹ Measured output values were provided by the customer.

Nο

Prepared (also subject responsible if other)

BA/SEMC/CCDAU Jon Kenny

LD/SEMC/CCDALEC Peter Lindeborg

Checked Date Rev Reference
PL 090105 A File

CCDA09: .

Band	Channel	Measured output power ¹ [dBm]	Position / Mode	Liquid T [°C]	Measured SAR [W/kg] 1g mass
	128	32.8	Back / CS	22.6	0.69
	128	29.9	Back / GPRS	22.6	0.61
GSM 850	190	32.9	Back / CS	22.6	0.64
	190	29.9	Back / GPRS	22.6	0.73
	251	32.8	Back / CS	22.6	0.53
		32.8	Back / PHF	22.6	0.51
		29.9	Back / GPRS	22.6	0.81
		27.3	Back / EGPRS	22.6	0.44
		29.9	Front / GPRS	22.6	0.43
	F10	30.9	Back / CS	24.7	0.65
	512	28.0	Back / GPRS	24.7	0.60
	661	30.9	Back / CS	24.7	0.71
		27.8	Back / GPRS	24.7	0.65
GSM 1900		30.9	Back / CS	24.7	0.81
		30.9	Back / PHF	24.7	0.47
	810	27.9	Back / GPRS	24.7	0.75
		26.3	Back / EGPRS	24.7	0.46
		27.9	Front / GPRS	24.7	0.25

Table 2: SAR measurement result for Sony Ericsson PY7A3880016 telephone at highest possible output power. Measured towards the body.

¹ Measured output values were provided by the customer.

BA/SEMC/CCDAU Jon Kenny

LD/SEMC/CCDALEC Peter Lindeborg

Company Internal REPORT

No.

Checked

PL

CCDA09: .

Date Rev Reference
090105 A File

9 References

- [1] R.Plicanic. "SAR Measurement Specification of Wireless Handsets". Sony Ericsson SAR Test Laboratory internal document GUG/N 03:141
- [2] FCC. "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields: Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radio Frequency Emissions." Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01).
- [3] IEEE. "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques." Std 1528-2003. June. 2003.
- [4] IEC 62209-1. "Procedure to measure the Specific Absorption Rate (SAR) for hand-held mobile wireless devices in the frequency range of 300 MHz to 3 GHz". February 2005.
- [5] FCC KDB648474. "SAR Evaluation Consideration for HANDSETS with Multiple Transmitters and Antenna", April 2008.

BA/SEMC/CCDAU Jon Kenny

LD/SEMC/CCDALEC Peter Lindeborg

Checked PL

No.

CCDA09: .

Date Rev Reference 090105 A File

Appendix

9.1 Photographs of the device under test

Front & Back Open

Sides Open

Front & Back Closed

Top & Bottom Closed

BA/SEMC/CCDAU Jon Kenny

LD/SEMC/CCDALEC Peter Lindeborg

Company Internal REPORT

No.

CCDA09: .

Date Rev Reference 090105 A File

9.2 Device position at SAM Twin Phantom

Checked

PL

DUT position towards the head Flip Open: Cheek (touch) position

DUT position towards the head Flip Open: Tilt (touch + 15°) position

BA/SEMC/CCDAU Jon Kenny

Approved

LD/SEMC/CCDALEC Peter Lindeborg

Company Internal REPORT

No.

Checked

PL

CCDA09: .

Date Rev Reference 090105 A File

DUT position towards the body with Flip Closed and 15 mm distance

9.3 Attachments

- System validation
- Measurement plots for head and body position
- Probe calibration
- Dipole calibration