

Prepared (also subject responsible if other)

BA/SEMC/CVVBAU Rob Carr

CVDVBA11:352 Checked

BA/SEMC/CVVBAU Jon Kenny JK 110711 Α File

Test Report issued by Accredited SAR Laboratory

for

FCC ID: PY7A1880033 (CK13i)

to

FCC OET BULLETIN 65 SUPPLEMENT C 01-01 **IEEE STD 1528:2003** IC RSS-102 ISSUE 4

Date of test: 2011-06-08 to 2011-07-15

Laboratory: Sony Ericsson SAR Test Laboratory

> Sony Ericsson Mobile Communications AB Maplewood, Chineham Business Park

Basingstoke, RG24 8YB,

England

Testing Engineer: Robert Carr

Robert.Carr@sonyericsson.com

+44 2087625958

Testing Approval: Jon Kenny

Jon.kenny@sonyericsson.com

+44 2087625957

Jou Kenny

ROTTERT CARR

Reference

Statement of Compliance

Sony Ericsson Mobile Communications AB declares under its sole responsibility that the product

Sony Ericsson Type AAB-1880033-BV; FCC ID PY7A1880033; IC 4170B-A1880033

to which this declaration relates, is in conformity with the appropriate RF exposure standards recommendations and guidelines. It also declares that the product was tested in accordance with the appropriate measurement standards, guidelines and recommended practices. Any deviations from these standards, guidelines and recommended practices are noted below:

(None)

This laboratory is accredited to ISO/IEC 17025 (SWEDAC accreditation no. 1847).

Laboratories are accredited by the Swedish Board for Accreditation and Conformity Assessment (SWEDAC) under the terms of Swedish legislation. The accredited laboratory activities meet the requirements in SS-EN ISO/IEC 17025 (2005). This report may not be reproduced other than in full, except with the prior written approval of the issuing laboratory

The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report.

Sony Ericsson encourages all feedback, both positive and negative, on this report. © Sony Ericsson Mobile Communication AB, 2011

Checked

JK

CVDVBA11:352

Α

110711

Reference File

BA/SEMC/CVVBAU Jon Kenny

BA/SEMC/CVVBAU Rob Carr

Table of contents

Prepared (also subject responsible if other)

1		TRODUCTION3
2	CUS	STOMER DETAILS3
3	DE	VICE UNDER TEST3
	3.1 3.2	Antenna Description
4	TES	ST EQUIPMENT6
	4.1	DOSIMETRIC SYSTEM6
5	ELI	ECTRICAL PARAMETERS ON THE TISSUE SIMULATING LIQUID7
	5.1	DIELECTRICS FOR FREQUENCIES TESTED
6	SYS	STEM ACCURACY VERIFICATION9
7	SAF	R MEASUREMENT UNCERTAINTY10
8		11
	8.1 8.2	TEST RESULTS
9	REI	FERENCES
A	PPEND	DIX14
	9.1 9.2 9.3	PHOTOGRAPHS OF THE DEVICE UNDER TEST

CVDVBA11:352

Reference

File

BA/SEMC/CVVBAU Rob Carr

Prepared (also subject responsible if other)

Checked Date BA/SEMC/CVVBAU Jon Kenny JK 110711 Α

1 Introduction

In this test report, compliance of the Sony Ericsson FCC ID: PY7A1880033 (CK13i) portable telephone with RF safety guidelines is demonstrated. The applicable RF safety guidelines and the SAR measurement specifications used for the test are described in the SAR Measurement Specifications of Wireless Handsets [1].

Customer details 2

Company Name:	Sony Ericsson Mob Int TW
Address:	9F, 35, Lane11, Kuang Fu N. Rd. Taipei Taiwan
Contact Name:	Ken Lee

Device Under Test 3

3.1 **Antenna Description**

Туре	Internal antenna	
Location	Bottom of phone	
Main and WLAN antennas distance	58.9 mm	
Dimensions	Max length 53 mm	
	Max width 21.54 mm	
Configuration	PIFA/IFA	

BA/SEMC/CVVBAU Rob Carr

Prepared (also subject responsible if other)

BA/SEMC/CVVBAU Jon Kenny

CVDVBA11:352 Checked

Reference 110711 Α File

Device Description 3.2

Device model	AAB-18	880033-B	V			
Market name	CK13i	CK13i				
Serial number (EUT #)	WUJ02	98766 (#	20352)			
	WUJ02	98792 (#	20581) -	WLAN		
Mode	GSM	850 (#20)352)	GSI	M 1900 (#	20352)
Crest factor		8.3			8.3	
Multiple access scheme		TDMA			TDMA	
Channel No.	128	190	251	512	661	885
Measured Power Level [dBm] 1	33.3	33.3	33.3	30.3	30.3	30.3
Product Maximum power Level [dBm] ¹	33.3	33.3	33.3	30.3	30.3	30.3
Data mode	GPRS GPRS					
Crest factor	4.15 (2TX)		4.15 (2TX)			
Measured Power Level [dBm] 1	33.3	33.3	33.3	30.3	30.3	30.3
Product Maximum power Level [dBm] ¹		33.3	33.3	30.3	30.3	30.3
Data mode		EDGE		EDGE		
Crest factor	4	.15 (2TX	.)		4.15 (2T)	X)
Measured Power Level [dBm] 1	33.3	33.3	33.3	30.3	30.3	30.3
Product Maximum power Level [dBm] ¹		33.3	33.3	30.3	30.3	30.3
Transmitting frequency range [MHz]	82	4.0 - 849	0.0	1	1850.0 - 1910.0	

GPRS Multislot class	10
EDGE class	10
GPRS Capability class	В
BT class and conducted power	Class 1 3.2 mW
Prototype or production unit	Preproduction
Hardware Version	AP2.1
Software version	P5AB194 P5AB215 (WLAN #20581)
Device category	Portable
RF exposure environment	General population / uncontrolled

¹ These values are supplied by the customer

No.

Prepared (also subject responsible if other)
BA/SEMC/CVVBAU Rob Carr

Approved

BA/SEMC/CVVBAU Jon Kenny

 $\begin{array}{c|cccc} & & CVDVBA11:352 \\ \text{Checked} & & \text{Date} & & \text{Rev} & & \text{Reference} \\ JK & & 110711 & A & & File \end{array}$

WLAN Output Power						
Mode	Max Output Power (dBm)	EUT (#20581) Measured Ave Power (dBm) ¹				
	(42)	Ch 1	Ch 6	Ch11		
802.11b 1Mbit/sec		14.6	14.5	14.5		
802.11b 2Mbit/sec	14.5	14.5	14.5	14.5		
802.11b 5.5Mbit/sec	14.5	14.5	14.5	14.6		
802.11b 11Mbit/sec		14.5	14.5	14.5		
802.11g 6Mbit/sec		14.5	14.5	14.6		
802.11g 9Mbit/sec		14.5	14.5	14.5		
802.11g 12Mbit/sec		14.5	14.5	14.5		
802.11g 18Mbit/sec	14.5	14.5	14.4	14.5		
802.11g 24Mbit/sec	14.5	14.5	14.5	14.5		
802.11g 36Mbit/sec		14.5	14.5	14.5		
802.11g 48Mbit/sec		14.5	14.5	14.5		
802.11g 54Mbit/sec		14.5	14.6	14.5		

Mode	,	EUT (#20581) Measured Peak Power (dBm) ¹			
	Ch 1	Ch 6	Ch 11		
802.11b 1Mbit/sec	17.8	17.8	17.9		
802.11b 2Mbit/sec	17.7	17.7	17.7		
802.11b 5.5Mbit/sec	17.7	17.7	17.8		
802.11b 11Mbit/sec	17.7	17.9	17.9		
802.11g 6Mbit/sec	22.9	22.8	22.6		
802.11g 9Mbit/sec	22.8	22.8	22.1		
802.11g 12Mbit/sec	22.7	22.9	22.9		
802.11g 18Mbit/sec	23.1	23.1	22.9		
802.11g 24Mbit/sec	23.1	22.9	22.9		
802.11g 36Mbit/sec	22.4	23.1	22.9		
802.11g 48Mbit/sec	22.9	23.1	22.6		
802.11g 54Mbit/sec	22.7	22.5	22.1		

¹ These values are supplied by the customer

BA/SEMC/CVVBAU Rob Carr

Prepared (also subject responsible if other)

BA/SEMC/CVVBAU Jon Kenny

CVDVBA11:352 Checked Reference

JK 110711 Α File

Test equipment 4

4.1 **Dosimetric system**

SAR measurements were made using the DASY4 professional system (software version 4.7, Build 55) with SAM twin phantom, manufactured by Schmid & Partner Engineering AG (SPEAG). The list of calibrated equipment is given below.

SAR System 1

Description	Inventory Number	Due Date
Signal generator HP SMY02	3.110	2012-05
Directional coupler HP778D	15.233	None
Power meter R&S NRVD	FB000511	2012-05
Power sensor R&S NRV-Z5	FB000512	2012-05
Power sensor R&S NRV-Z5	FB000513	2012-05
Network analyzer Agilent 8719D	2.022	2012-05
Dielectric probe kit HP8507C	14.046	Self Cal
R&S CMU200	FB000540	2012-05
DASY4 DAE3	448	2011-11
E-field probe ET3DV6	1610	2011-11

SAR System 2

Description	Inventory Number	Due Date
Signal generator HP E4433B	1.045	2012-05
Directional coupler HP778D	FB000506	None
Power meter R&S NRVD	4.073	2012-05
Power sensor R&S NRV-Z5	4.074	2012-05
Power sensor R&S NRV-Z5	4.076	2012-05
R&S CMU200	FB000539	2015-05
DASY4 DAE3	415	2011-11
E-field probe ET3DV6	1539	2011-11
DASY4 DAE3	417	2011-11
E-field probe ET3DV6	1584	2011-11

Dipoles

Description	Serial Number	Due Date
Dipole Validation Kit, D835V2	438	2012-05
Dipole Validation Kit, D1900V2	539	2012-10
Dipole Validation Kit, D2450V2	721	2012-10

BA/SEMC/CVVBAU Rob Carr

Prepared (also subject responsible if other)

BA/SEMC/CVVBAU Jon Kenny

CVDVBA11:352 Checked Reference JK 110711 Α File

5 Electrical parameters on the tissue simulating liquid

Prior to conducting SAR measurements, the relative permittivity, $\epsilon_{\mbox{\tiny r}},$ and the conductivity σ , of the tissue simulating liquids were measured with the dielectric probe kit. These values are shown in the table below. The mass density, ρ, entered into the DASY4 software is also given. Recommended limits for permittivity ε_r , conductivity σ and mass density p are also shown.

f	Tissue	Measured / Recommended Dielectric Parameters		Parameters	Density
[MHz]	z] type weasured / Recommended		ε _r	σ [S/m]	ρ [g/cm³]
835	Head	Measured, 2011-06-10	40.42	0.87	1.00
633	пеаи	Recommended	41.50	0.90	1.00
835	Body	Measured, 2011-06-13	52.87	0.97	1.00
633	Бойу	Recommended	55.20	0.97	1.00
1900	Head	Measured, 2011-06-08	38.78	1.45	1.00
1900	пеац	Recommended	40.00	1.40	1.00
1900	Dody	Measured, 2011-06-14	51.79	1.53	1.00
1900	Body	Recommended	53.30	1.52	1.00
2450	Hood	Measured, 2011-06-22	37.39	1.85	1.00
2430	Head	Recommended	39.20	1.80	1.00
2450	Dody	Measured, 2011-06-21	50.19	2.01	1.00
2430	Body	Recommended	52.70	1.95	1.00

BA/SEMC/CVVBAU Rob Carr

Prepared (also subject responsible if other)

BA/SEMC/CVVBAU Jon Kenny

CVDVBA11:352 Checked

Reference 110711 Α File

Dielectrics for Frequencies Tested 5.1

Band	Ch	Frequency (MHz)	Param	eters		
	400	004.0	ε _r	40.6		
GSM	128	824.2	σ	0.86		
850	190	836.6	ε _r	40.4		
Head	190	030.0	σ	0.87		
Tieau	251	848.8	٤ _r	40.3		
	201	040.0	σ	0.881		
	128	824.2	ε _r	53.0		
GSM	120	024.2	σ	0.96		
850	190	836.6	ε _r	52.8		
Body	190	030.0	σ	0.972		
Body	251	848.8	ε _r	52.7		
	201	040.0	σ	0.984		
	512	1850.2	ε _r	39.0		
GSM	312	1630.2	σ	1.41		
1900	661	1880.0	ε _r	38.9		
Head	001	1000.0	σ	1.44		
ricau	810	1909.8	ε _r	38.8		
			σ	1.47		
	512	512	512	1850.2	ε _r	52.0
GSM	312	1030.2	σ	1.48		
1900	661	661 1880.0	ε _r	51.9		
Body	001		σ	1.51		
Body	810	1909.8	ε _r	51.8		
	010	1303.0	σ	1.54		
	1	2412.0	ε _r	37.6		
		2412.0	σ	1.81		
WLAN	6	2437.0	ε _r	37.4		
Head		2407.0	σ	1.84		
	11	2462.0	ε _r	37.3		
	' '	2702.0	σ	1.85		
	1	2412.0	$\epsilon_{\rm r}$	50.4		
	'	2712.0	σ	1.96		
WLAN	6	2437.0	$\epsilon_{\rm r}$	50.2		
Body		2107.0	σ	1.99		
	11	2462.0	ε _r	50.1		
		2.02.0	σ	2.03		

CVDVBA11:352

BA/SEMC/CVVBAU Rob Carr

Prepared (also subject responsible if other)

Checked Reference

BA/SEMC/CVVBAU Jon Kenny JK 110711 Α File

System accuracy verification 6

A system accuracy verification of the DASY4 was performed using the dipole validation kit listed in section 4.1. The system verification test was conducted on the same day as the measurement of the DUT. The ambient humidity and temperature of test facility were kept between the range 30-70% and 20.0-25.0 °C respectively. RF noise had been measured in liquid when all RF equipment in lab was switched off. Measured value was 0.0002 mW/g in 1g mass.

f ₀	Tissue type	Measured / Reference	SAR [W/kg] 1g	Dielectric Parameters		Density	Liquid
[MHz]				ε _r	σ [S/m]	ρ [g/cm³]	T[°C]
835	835 Head	Measured, 2011-06-10	10.04	40.42	0.87	1.00	21.5
033	пеац	Reference	9.61	41.50	0.90	1.00	22.0
00E De	Pody	Measured, 2011-06-13	10.24	52.87	0.97	1.00	23.5
835	Body	Reference	9.80	55.20	0.97	1.00	22.0
1900	Head	Measured, 2011-06-08	36.32	38.78	1.45	1.00	21.6
1900	пеац	Reference	39.10	40.00	1.40	1.00	22.0
1000	Body	Measured, 2011-06-14	36.80	51.79	1.53	1.00	23.5
1900	Бойу	Reference	39.70	53.30	1.52	1.00	22.0
2450	Head	Measured, 2011-07-15	51.60	37.39	1.85	1.00	24.5
		Reference	53.00	39.20	1.80	1.00	22.0
2450	Body	Measured, 2011-07-14	56.00	50.19	2.01	1.00	22.6
2450		Reference	51.50	52.70	1.95	1.00	22.0

Prepared (also subject responsible if other) BA/SEMC/CVVBAU Rob Carr

BA/SEMC/CVVBAU Jon Kenny

CVDVBA11:352 Checked Reference JK Α 110711 File

7 **SAR** measurement uncertainty

SAR measurement uncertainty evaluation for Sony Ericsson PY7A1880033 (CK13i) phone According to IEEE 1528

	Uncert. 1g (%)	Uncert. 10g (%)	Prob.		1g mass	
Uncertainty Component			Dist.	Div.	Ci	Calc (%)
Measurement System	-	•			•	-
Probe Calibration*	±5.9	±5.9	N	1	1	±5.9
Axial Isotropy*	±4.7	±4.7	R	√3	0.71	±1.9
Hemispherical Isotropy*	±9.6	±9.6	R	√3	0.71	±3.9
Boundary effect*	±1.0	±1.0	R	√3	1	±0.6
Linearity*	±4.7	±4.7	R	√3	1	±2.7
System Detection limits*	±1.0	±1.0	R	√3	1	±0.6
Readout electronics*	±0.3	±0.3	N	1	1	±0.3
Response time*	±0.8	±0.8	R	√3	1	±0.5
Integration time*	±2.6	±2.6	R	√3	1	±1.5
RF Ambient Conditions (noise)*	±0.1	±0.0	R	√3	1	±0.1
RF Ambient Conditions (Reflections)*	±3.0	±3.0	R	√3	1	±1.7
Probe positioner mech. Tolerance*	±0.4	±0.4	R	√3	1	±0.2
Probe positioning with respect to phantom*	±2.9	±2.9	R	√3	1	±1.7
Extrap, interpolation and integration*	±1.0	±1.0	R	√3	1	±0.6
Measurement System Uncertainty						±8.4
Test Sample Related	•					
Test sample positioning	±3.7	±1.7	N	1	1	±3.7
Device holder uncertainty	±5.3	±4.7	N	1	1	±5.3
Power drift*	±5.0	±5.0	R	√3	1	±2.9
Test Sample Related Uncertainty						±7.1
Phantom and Tissue Parameters	•				•	
Phantom uncertainty*	±4.0	±4.0	R	√3	1	±2.3
Liquid conductivity (target)*	±5.0	±5.0	R	√3	0.64	±1.8
Liquid conductivity (measured)	±2.8	±2.8	N	1	0.64	±1.8
Liquid Permittivity (target)*	±5.0	±5.0	R	√3	0.60	±1.7
Liquid Permittivity (measured)	±3.3	±3.3	N	1	0.60	±2.0
Phantom and Tissue Parameters Uncertainty						±4.3
Combined standard uncertainty (%)						
Expanded standard uncertainty (%) (k=2)						±23.6

No.

JK

BA/SEMC/CVVBAU Rob Carr

Prepared (also subject responsible if other)

Approved

BA/SEMC/CVVBAU Jon Kenny

CVDVBA11:352
Checked Date

110711 A

Reference

File

8

8.1 Test results

The ambient humidity and temperature of test facility were kept between the range 30-70% and 20.0-25.0 °C respectively. A base station simulator was used to control the device during the SAR measurement. The DUT was supplied with a fully charged battery for each measurement.

For head measurement, the DUT was tested on the right-hand side and the left-hand side of the phantom, in two phone positions, cheek (touch) and tilt (cheek + 15°). The DUT was tested at the lowest, middle and highest frequencies in the transmission band. The measured 1-gram averaged SAR values of the DUT towards the head are provided in Table 1.

For body measurement the DUT was tested with the back (antenna) and front (display) towards the phantom flat section with 15 mm distance in speech mode and data mode. For all modes, the device was tested at the lowest, middle and highest frequencies in the transmission band. For portable hands free (PHF) usage the Sony Ericsson head set MH-610 was connected to the DUT. The measured 1-gram averaged SAR values of the DUT towards the body are provided in Table 2.

					Measured SAR [W/kg]		
Band	Channel	Measured output power ¹ [dBm]	Position	Liquid T [°C]	Left-hand 1g mass	Right-hand 1g mass	
	128	33.3	Cheek	21.5	0.41	0.41	
			Tilt	21.5	ı	i	
GSM 850	190	33.3	Cheek	21.5	0.54	0.53	
G3W 650			Tilt	21.5	0.32	0.30	
	251	33.3	Cheek	21.5	0.70	0.66	
			Tilt	21.5	-	-	
	512	30.3	Cheek	21.6	1.11	0.78	
			Tilt	21.6	-	-	
CCM 4000	661	30.3	Cheek	21.6	1.24	0.81	
GSM 1900			Tilt	21.6	0.43	0.45	
	810	30.3	Cheek	21.6	1.36	0.94	
			Tilt	21.6	-	-	
WLAN 802.11b 1 Mbps	1	14.6	Cheek	24.5	-	0.14	
			Tilt	24.5	0.13	-	
	6	14.5	Cheek	24.5	0.11	0.13	
			Tilt	24.5	0.12	0.12	
	11	14.5	Cheek	24.5	-	0.12	
			Tilt	24.5	0.11	=	

Table 1: SAR measurement result for Sony Ericsson PY7A1880033 telephone at highest possible output power. Measured towards the head.

¹ Measured output values were provided by the customer.

BA/SEMC/CVVBAU Rob Carr

Approved

BA/SEMC/CVVBAU Jon Kenny

Company Internal REPORT

No.

Checked

JK

CVDVBA11:352

Date F

110711

A

Reference File

Band	Channel	Measured output power² [dBm]	Position	Body Distance (mm)	Liquid T [°C]	Measured SAR [W/kg] 1g mass
	128	33.3	Speech	15mm	23.5	0.68
			GPRS 2TX	15mm	23.5	0.73
	190	33.3	Speech	15mm	23.5	0.89
			GPRS 2TX	15mm	23.5	0.97
GSM 850		33.3	EDGE 2TX	15mm	23.5	0.95
	251	33.3	Speech	15mm	23.5	1.12
			Speech PHF	15mm	23.5	0.71
			Front GPRS 2TX	15mm	23.5	0.64
			GPRS 2TX	15mm	23.5	1.19
	512	30.3	Speech	15mm	23.5	0.54
		30.3	EDGE 2TX	15mm	23.5	0.98
	661	30.3	Speech	15mm	23.5	0.56
		30.3	EDGE 2TX	15mm	23.5	1.04
GSM 1900			Front EDGE 2TX	15mm	23.5	0.65
		30.3	GPRS 2TX	15mm	23.5	1.02
	810	30.3	Speech	15mm	23.5	0.60
			Speech PHF	15mm	23.5	0.48
		30.3	EDGE 2TX	15mm	23.5	1.02
WLAN	1	14.6	Back	15mm	22.6	0.05
802.11b	6	14.5	Back	15mm	22.6	0.05
1 Mbps	13	14.5	Back	15mm	22.6	0.05

Table 2: SAR measurement result for Sony Ericsson PY7A1880033 telephone at highest possible output power. Measured towards the body.

8.2 Simultaneous Transmitters

The EUT supports simultaneous transmission using WLAN and an active cell band. According to the requirements of KDB 648474 the highest cell band must be combined with the corresponding WLAN value. If the resulting SAR value is greater than the limit of 1.6 w/kg the Peak Location Separation Ratio must be calculated. If the peak location separation ratio is <0.3 volume scans must be performed.

The combined simultaneous transmission values for FCC ID: PY7A1880033 (CK13i) can be found in Table 3.

Band	Highest Cell Band	Corresponding WLAN	Combined SAR	
	SAR	SAR	(W/Kg)	
	(W/Kg)	(W/Kg)		
GSM 850 Head	0.70	0.13	0.83	
GSM1900 Head	1.36	0.13	1.49	
GSM 850 Body	1.19	0.05	1.24	
GSM 1900 Body	1.04	0.05	1.09	

Table 3. Simultaneous transmission combined SAR results for Sony Ericsson PY7A188033 telephone.

The combined results for all bands are below the limit of 1.6 W/Kg. Therefore peak location separation ratio and volume scan measurements are not required.

² The measured output power values were provided by the customer.

BA/SEMC/CVVBAU Rob Carr

BA/SEMC/CVVBAU Jon Kenny

Company Internal **REPORT**

JK

CVDVBA11:352

Checked Reference Α 110711 File

9 References

- [1] R.Plicanic. "SAR Measurement Specification of Wireless Handsets". Sony Ericsson SAR Test Laboratory internal document GUG/N 03:141
- FCC. "Evaluating Compliance with FCC Guidelines for Human Exposure to [2] Radio Frequency Electromagnetic Fields: Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radio Frequency Emissions." Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01).
- [3] IEEE. "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques." Std 1528-2003. June. 2003.
- [4] IEC 62209-1. "Procedure to measure the Specific Absorption Rate (SAR) for hand-held mobile wireless devices in the frequency range of 300 MHz to 3 GHz". February 2005.
- [5] FCC KDB648474. "SAR Evaluation Consideration for HANDSETS with Multiple Transmitters and Antenna", April 2008.
- [6] FCC KDB248227. "SAR Measurement procedure for 802.11a/b/g Transmitters", May 2007.

BA/SEMC/CVVBAU Rob Carr

Approved

BA/SEMC/CVVBAU Jon Kenny

Company Internal REPORT

No.

CVDVBA11:352

Date Rev Reference 110711 A File

Appendix

9.1 Photographs of the device under test

Checked

Front

Back

Sides

Back side with battery

BA/SEMC/CVVBAU Rob Carr

Approved

BA/SEMC/CVVBAU Jon Kenny

Company Internal REPORT

No.

CVDVBA11:352

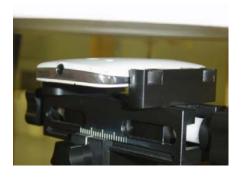
Date Rev

110711 A File

Reference

9.2 Device position at SAM Twin Phantom

Checked



DUT position towards the head: Cheek (touch) position

DUT position towards the head: Tilt (touch + 15°) position

DUT position towards the body

BA/SEMC/CVVBAU Rob Carr

BA/SEMC/CVVBAU Jon Kenny

Company Internal REPORT

No.

CVDVBA11:352

Date Rev Reference 110711 A File

9.3 Attachments

System validation

Checked

- Measurement plots for head and body position
- Probe calibration
- Dipole calibration