

No. 2010SAR00053

For

Sony Ericsson Mobile Communications(China) Co., Ltd.

GSM 850/1900 dual bands mobile phone

AAB-1880028-BV

With

Hardware Version: A

Software Version: R2AC001

SEMC ID: AAB-1880028-BV

Industry Canada ID: 4170B-A1880028

FCCID: PY7A1880028

Issued Date: 2010-7-1

No. DGA-PL-114/01-02

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of TMC Beijing.

Test Laboratory:

TMC Beijing, Telecommunication Metrology Center of MIIT

No. 52, Huayuan Bei Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2079, Fax:+86(0)10-62304793 Email:welcome@emcite.com. www.emcite.com

©Copyright. All rights reserved by TMC Beijing.

TABLE OF CONTENT

1 TEST LABORATORY	3
1.1 TESTING LOCATION	
1.2 TESTING ENVIRONMENT.	
1.4 Signature	
2 GENERAL INFORMATION	4
2.1 STATEMENT OF COMPLIANCE	4
2.2 APPLICANT INFORMATION	4
2.3 MANUFACTURER INFORMATION	4
3 EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	5
3.1 About EUT	5
3.2 INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	5
3.3 INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	5
3.4 ANTENNA DESCRIPTION	
4 CHARACTERISTICS OF THE TEST	6
4.1 APPLICABLE LIMIT REGULATIONS	6
4.2 Applicable Measurement Standards	б
5 OPERATIONAL CONDITIONS DURING TEST	6
5.1 SCHEMATIC TEST CONFIGURATION	6
5.2 SAR MEASUREMENT SET-UP	6
5.3 DASY4 E-FIELD PROBE SYSTEM	7
5.4 E-FIELD PROBE CALIBRATION	۵ ۵ و
5.6 Equivalent Tissues	9
5.7 System Specifications	10
6 CONDUCTED OUTPUT POWER MEASUREMENT	11
6.1 Summary	11
6.2 Conducted Power	11
7 TEST RESULTS	13
7.1 DIELECTRIC PERFORMANCE	13
7.2 System Validation	
7.3 SUMMARY OF MEASUREMENT RESULTS	
7.4 SUMMARY OF MEASUREMENT RESULTS (BLUETOOTH FUNCTION)	16
8 MEASUREMENT UNCERTAINTY	
	10
	19
ANNEX B TEST LAYOUT	20
ANNEX C GRAPH RESULTS	22
ANNEX D SYSTEM VALIDATION RESULTS	54

1 Test Laboratory

1.1 Testing Location

Company Name:	TMC Beijing, Telecommunication Metrology Center of MIIT
Address:	No 52, Huayuan beilu, Haidian District, Beijing, P.R.China
Postal Code:	100191
Telephone:	+86-10-62304633
Fax:	+86-10-62304793

1.2 Testing Environment

Temperature:	18°C~25 °C
Relative humidity:	30%~ 70%
Ground system resistance:	< 0.5 Ω

Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards.

1.3 Project Data

Project Leader:	Qi Dianyuan
Test Engineer:	Lin Xiaojun
Testing Start Date:	June 28, 2010
Testing End Date:	June 28, 2010

1.4 Signature

Lin Xiaojun (Prepared this test report)

Qi Dianyuan (Reviewed this test report)

Xiao Li Deputy Director of the laboratory (Approved this test report)

2 General Information

2.1 Statement of Compliance

The SAR values found for the AAB-1880028-BV Mobile Phone are below the maximum recommended levels of 1.6 W/Kg as averaged over any 1g tissue according to the FCC rule, the ANSI C95.1-1999.

For body worn operation, this device has been tested and meets FCC RF exposure guidelines when used with any accessory that contains no metal and that positions the handset a minimum of 15mm from the body. Use of other accessories may not ensure compliance with FCC RF exposure guidelines.

The measurement together with the test system set-up is described in chapter 5 of this test report. A detailed description of the equipment under test can be found in chapter 3 of this test report.

Company Name:	Sony Ericsson Mobile Communications(China) Co., Ltd.
Address /Dest:	1/F, China Digital Kingdom Building, No.1 North Road, Wangjing,
Address /Post.	Chaoyang District, Beijing, China
City:	Beijing
Postal Code:	/
Country:	China
Contact:	Ma, Gang
Email:	gang.song@sonyericsson.com
Telephone:	+86-10-58656312
Fax:	+86-10-58656750

2.2 Applicant Information

2.3 Manufacturer Information

Company Name:	Sony	Ericsson Mobi	ile Communica	ations AB
Address /Post:	Nya	Vattentornet	22188 Lund	Sweden
City:	Lund			
Postal Code:	22188			
Country:	Sweden			
Contact:	Nordlof, Anders			
Email:	Ande	rs.Nordlof@so	nyericsson.coi	m
Telephone:	+46 46 193919			
Fax:	+46 46 193295			

Manufacturer Sony Ericsson Sony Ericsson

MERRY ELECTRONICS

3 Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1 About EUT

Description:	GSM	850/1900,	GPRS,	EDGE,	ΒT	EDR2.0,
	FM-rec	eiver mobile	phone			
Model:	AAB-18	880028-BV				
Operating mode(s):	GSM, F	PCS, Bluetoo	oth			
GPRS Multislot Class:	10					
GPRS capability Class:	В					
EGPRS Multislot Class:	10					
Test device Production information:	Produc	tion unit				
Device type:	Portabl	e device				
Antenna type:	Integra	ted antenna				
Accessories/Body-worn configurations:	Headse	et				

3.2 Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version
EUT1	WUJABC0227	A	R2AC001

*EUT ID: is used to identify the test sample in the lab internally.

3.3 Internal Identification of AE used during the test

AE ID*	Description	Model	SN
AE1	Travel Adapter	CAA-0004001-BV	/
AE2	Battery	BST-38	/
AE3	Headset	EMC262-002	/

*AE ID: is used to identify the test sample in the lab internally.

3.4 Antenna description

There are two antennae in the EUT, Main antenna and BT antenna.

Antenna dimension: Max length: 9mm Max width: 50mm

4 CHARACTERISTICS OF THE TEST

4.1 Applicable Limit Regulations

ANSI C95.1–1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

4.2 Applicable Measurement Standards

IEEE 1528–2003: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques.

OET Bulletin 65 (Edition 97-01) and Supplement C(Edition 01-01): Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits.

KDB648474 D01 SAR Handsets Multi Xmiter and Ant, v01r05: SAR Evaluation Considerations for Handsets with Multiple Transmitters and Antennas.

5 OPERATIONAL CONDITIONS DURING TEST

5.1 Schematic Test Configuration

For the SAR tests at GSM 850 and PCS 1900, a communication link is set up with a System Simulator (SS) by air link. The EUT is commanded to operate at maximum transmitting power.

In order to determine the highest value of the peak spatial-average SAR of the EUT, it was tested at middle frequency (cheek and tilt, for both left and right sides of the SAM phantom). After found the worst case, perform the tests at the high and low frequencies. In addition, for all other conditions where the peak spatial-average SAR value determined is within 3 dB of the applicable SAR limit, all other test frequencies shall be tested as well.

5.2 SAR Measurement Set-up

These measurements were performed with the automated near-field scanning system DASY4 Professional from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision robot (working range greater than 0.9m) which positions the probes with a positional repeatability of better than \pm 0.02mm. Special E-field and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines (length =300mm) to the data acquisition unit.

A cell controller system contains the power supply, robot controller, teaches pendant (Joystick), and remote control, is used to drive the robot motors. The PC consists of the Micron Pentium III 800 MHz computer with Windows 2000 system and SAR Measurement Software DASY4, A/D interface card, monitor, mouse, and keyboard. The Stäubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

Picture 1: SAR Lab Test Measurement Set-up

The DAE consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

5.3 Dasy4 E-field Probe System

The SAR measurements were conducted with the dosimetric probe ES3DV3 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the standard procedure with an accuracy of better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB.

ES3DV3 Probe Specification

Construction Symmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

Calibration	Basic Broad Band Calibration in air	
	Conversion Factors (CF) for HSL 900 and HSL	
	1810	
	Additional CF for other liquids and frequencies	
	upon request	
Frequency	10 MHz to 4 GHz; Linearity: ± 0.2 dB (30 MHz to	
	4 GHz)	
Directivity	\pm 0.2 dB in HSL (rotation around probe axis)	Pie
	\pm 0.3 dB in tissue material (rotation normal to prob	be a
Dynamic Range	5 μ W/g to > 100 mW/g; Linearity: ± 0.2 dB	
Dimensions	Overall length: 330 mm (Tip: 20 mm)	
	Tip diameter: 3.9 mm (Body: 12 mm)	,
	Distance from probe tip to dipole centers: 2.0 mm	
Application	General dosimetry up to 4 GHz	
	Dosimetry in strong gradient fields	ľ
	Compliance tests of mobile phones	

Picture 2: ES3DV3 E-field Probe eaxis)

Picture3:ES3DV3 E-field probe

5.4 E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

No. 2010SAR00053 Page 8 of 58

No. 2010SAR00053 Page 9 of 58

$$\mathbf{SAR} = \mathbf{C} \frac{\Delta T}{\Delta t}$$

Where: $\Delta t = Exposure time (30 seconds),$

- C = Heat capacity of tissue (brain or muscle),
- ΔT = Temperature increase due to RF exposure.

Or

$$\mathbf{SAR} = \frac{|\mathbf{E}|^2 \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

5.5 Other Test Equipment

5.5.1 Device Holder for Transmitters

Picture 4: Device Holder

In combination with the Generic Twin Phantom V3.0, the Mounting Device (POM) enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatably positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

5.5.2 Phantom

The Generic Twin Phantom is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness2±0. l mmFilling VolumeApprox. 20 litersDimensions810 x 1000 x 500 mm (H x L x W)AvailableSpecial

5.6 Equivalent Tissues

The liquid used for the frequency range of 800-2000

MHz consisted of water, sugar, salt and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table 1 and 2 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528.

Picture 5: Generic Twin Phantom

MIXTURE %	FREQUENCY 850MHz			
Water	41.45			
Sugar	56.0			
Salt	1.45			
Preventol	0.1			
Cellulose	1.0			
Dielectric Parameters Target Value	f=850MHz ε=41.5 σ=0.90			
MIXTURE %	FREQUENCY 1900MHz			
Water	55.242			
Glycol monobutyl	44.452			
Salt	0.306			
Dielectric Parameters Target Value	f=1900MHz ε=40.0 σ=1.40			
Table 2. Composition of the Body Tissue Equivalent Matter				
MIXTURE %	FREQUENCY 850MHz			
Water	52.5			
Sugar	45.0			
Salt	1.4			
Preventol	0.1			
Cellulose	1.0			
Dielectric Parameters Target Value	f=850MHz ε=55.2 σ=0.97			
MIXTURE %	FREQUENCY 1900MHz			

Table 1. Composition of the Head Tissue Equivalent Matter

Water	52.5		
Sugar	45.0		
Salt	1.4		
Preventol	0.1		
Cellulose	1.0		
Dielectric Parameters Target Value	f=850MHz ε=55.2 σ=0.97		
MIXTURE %	FREQUENCY 1900MHz		
Water	69.91		
Glycol monobutyl	29.96		
Salt	0.13		
Dielectric Parameters Target Value	f=1900MHz ε=53.3 σ=1.52		

5.7 System Specifications

Specifications

Positioner: Stäubli Unimation Corp. Robot Model: RX90L Repeatability: ±0.02 mm No. of Axis: 6

Data Acquisition Electronic (DAE) System

- **Cell Controller**
- Processor: Pentium III
- Clock Speed: 800 MHz

Operating System: Windows 2000

Data Converter

Features: Signal Amplifier, multiplexer, A/D converter, and control logic Software: DASY4 software

Connecting Lines: Optical downlink for data and status info.

Optical uplink for commands and clock

6 CONDUCTED OUTPUT POWER MEASUREMENT

6.1 Summary

During the process of testing, the EUT was controlled via Rhode & Schwarz Digital Radio Communication tester (CMU-200) to ensure the maximum power transmission and proper modulation. This result contains conducted output power for the EUT. In all cases, the measured peak output power should be greater and within 5% than EMI measurement.

6.2 Conducted Power

6.2.1 Measurement Methods

The EUT was set up for the maximum output power. The channel power was measured with Agilent Spectrum Analyzer E4440A. These measurements were done at low, middle and high channels for each test bands both before and after SAR test.

6.2.2 Measurement result

Table 3: Conducted Power Measurement Results

	Conducted Power (dBm)					
CSM SEOMHT Speech	Channel 128	Channel 190	Channel 251			
	(824.2MHz)	(836.6MHz)	(848.8MHz)			
	33.2	33.3	33.3			
Max Power	33.3	33.3	33.3			
	C	onducted Power (dBm)				
	Channel 128	Channel 190	Channel 251			
	(824.2MHz)	(836.6MHz)	(848.8MHz)			
	31.5	31.5	31.5			
Max Power	31.5	31.5	31.5			
	C	onducted Power (dBm)				
	Channel 128	Channel 190	Channel 251			
	(824.2MHz)	(836.6MHz)	(848.8MHz			
	31.5	31.5 31.5				
Max Power	31.5	31.5	31.5			
	Conducted Power (dBm)					
GSM 1000MHz Speech	Channel 512	Channel 661	Channel 810			
GSW 1900WINZ Speech	(1850.2MHz)	(1880MHz)	(1909.8MHz)			
	30.3	30.3	30.3			
Max Power	30.3	30.3	30.3			
	Conducted Power (dBm)					
	Channel 512	Channel 661	Channel 810			
GSWI 1900WINZ GFRS	(1850.2MHz)	(1880MHz)	(1909.8MHz)			
	30.3	30.3	30.3			
Max Power	30.3 30.3 30.3					
GSM 1900MHz EGPRS	Conducted Power (dBm)					

	Channel 512 (1850.2MHz)	Channel 661 (1880MHz)	Channel 810 (1909.8MHz)
	30.3	30.3	30.3
Max Power	30.3	30.3	30.3

6.2.3 Power Drift

To control the output power stability during the SAR test, DASY4 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in Table 10 to Table 13 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

6.2.4 Tolerance

Table 4: GSM850 Transmitter Output Power

(Transmitter Output Powers are for Calibration Targets. Tolerances are for BL.)

Power Control Level	Transmitter Output	Tolerance		
	Power (dBm)	NTC	ETC	
5	33	+0.3/-0.5	+1/-1.5	
6	31	± 0.5	± 2	
7	29	± 2	± 3	
8	27	± 2	± 3	
9	25 ± 2		± 3	
10	10 23 ±2		± 3	
11	21	± 2	± 3	
12	19	± 2	±-3	
13	17	± 2	± 3	
14	15	± 2	± 3	
15	13	± 2	± 3	
16	11	± 3	± 4	
17	9	± 3	± 4	
18	7	± 3	± 4	
19	5	± 3	± 4	

Table 5: PCS Transmitter Output Power

(Transmitter Output Powers are for Calibration Targets. Tolerances are for BL.)

Power Control Lovel	Transmitter Output	Tolerance		
Fower Control Level	Power (dBm)	NTC	ETC	
0	30	+0.3/-0.5	±1	
1	28	± 0.5	±2	
2	26	± 2	±2	
3	24	± 2	± 3	
4	22	± 2	± 3	
5	20	± 2	± 3	
6	18	± 2	± 3	
7	16	± 2	± 3	

8	14	± 2	± 3
9	12	± 2	± 3
10	10	± 2	± 3
11	8	± 2	± 3
12	6	± 2	± 3
13	4	± 2	± 3
14	2	± 3	± 4
15	0	± 3	± 4

7 TEST RESULTS

7.1 Dielectric Performance

Table 6: Dielectric Performance of Head Tissue Simulating Liquid

Measurement is made at temperature 23.0 °C and relative humidity 40%.

Liquid temperature during the test: 22.5°C

Measurement Date : 850 MHz June 28, 2010 1900 MHz June 29, 2010

/	Frequency	Permittivity ε	Conductivity σ (S/m)
Target value	850 MHz	41.5	0.90
l'arget value	1900 MHz	40.0	1.40
Measurement value	850 MHz	40.6	0.89
(Average of 10 tests)	1900 MHz	39.7	1.40

Table 7: Dielectric Performance of Body Tissue Simulating Liquid

Measurement is made at temperature 23.0 °C and relative humidity 40%.

Liquid temperature during the test: 22.5°C

```
Measurement Date : 850 MHz June 28, 2010 1900 MHz June 29, 2010
```

/	Frequency Permittivity ε		Conductivity σ (S/m)		
Target value	850 MHz	55.2	0.97		
l'arget value	1900 MHz	53.3	1.52		
Measurement value	850 MHz	54.4	0.96		
(Average of 10 tests)	1900 MHz	51.8	1.54		

7.2 System Validation

Table 8: System Validation of Head

Measurement is made at temperature 23.0 °C and relative humidity 40%.							
Liquid temper	ature during the te	est: 22.5°C					
Measurement	t Date : 850 MHz <u>.</u>	June 28, 2010 1900	MHz June 29, 2010				
	Dipole	Frequency	Permittivity ε	Conductivity σ (S/m)			
	calibration	835 MHz	39.9	0.88			
Liquid	Target value	1900 MHz	38.9	1.38			
parameters	Actural	835 MHz	40.7	0.87			
	Measurement value1900 MHz39.71.40						

	Frequency	Target value (W/kg)		Measured value (W/kg)		Deviation	
Verification results		10 g Average	1 g Average	10 g Average	1 g Average	10 g Average	1 g Average
	835 MHz	1.54	2.38	1.49	2.28	-3.25%	-4.20%
	1900 MHz	5.05	9.91	4.88	9.65	-3.37%	-2.62%

Note: Target values are the data of the dipole validation results, please check Annex F for the Dipole Calibration Certificate.

Table 9: System Validation of Body

Measurement is made at temperature 23.0 °C and relative humidity 40%.

Liquid temperature during the test: 22.5°C

Measurement Date : 850 MHz June 28, 2010 1900 MHz June 29, 2010

		<u></u>						
	Dipole	Frequency		Permittivity ε		Conductivity σ (S/m)		
	calibration	835	MHz	54.5		0.9	0.97	
Liquid	Target value	1900	MHz	52.5		1.5	1	
parameters	Actural	835 MHz		54.5		0.94		
	value	1900 MHz		51.8		1.54		
	Frequency	Target value (W/kg)		Measure (W/ł	d value ‹g)	Deviation		
Verification		10 g	1 g	10 g	1 g	10 g	1 g	
results		Average	Average	Average	Average	Average	Average	
1030113	835 MHz	1.57	2.41	1.52	2.30	-3.18%	-4.56%	
	1900 MHz	5.24	10.4	5.03	10.1	-4.01%	-2.88%	

Note: Target values are the data of the dipole validation results, please check Annex F for the Dipole Calibration Certificate.

7.3 Summary of Measurement Results

	Duty Cycle
Speech	1 : 8.3
GPRS/EGPRS	1:4

Table 10: SAR Values (Head, GSM 850 MHz Band)

Limit of SAR (W/kg)	1 g Average		
	1.6	Power Drift	
Tost Caso	Measurement	(dB)	
lest Case	1 g Average		
Left hand, Touch cheek, High frequency (See Fig.1)	1.09	-0.016	
Left hand, Touch cheek, Mid frequency (See Fig.2)	1.06	-0.087	
Left hand, Touch cheek, Low frequency (See Fig.3)	1.04	0.037	

Left hand, Tilt 15 Degree, Mid frequency (See Fig.4)	0.445	0.005
Right hand, Touch cheek, High frequency (See Fig.5)	0.922	-0.058
Right hand, Touch cheek, Mid frequency (See Fig.6)	0.855	0.123
Right hand, Touch cheek, Low frequency (See Fig.7)	0.835	-0.027
Right hand, Tilt 15 Degree, Mid frequency (See Fig.8)	0.474	-0.080

Table 11: SAR Values (Body, GSM 850 MHz Band)

	1 g Average		
Limit of SAR (W/Kg)	1.6	Power Drift (dB)	
Test Case	Measurement Result (W/kg)		
	1 g Average		
Body, Towards Ground, High frequency with GPRS (See Fig.9)	0.949	-0.047	
Body, Towards Ground, Mid frequency with GPRS (See Fig.10)	0.917	-0.098	
Body, Towards Ground, Low frequency with GPRS (See Fig.11)	0.934	-0.077	
Body, Towards Ground, High frequency with EGPRS (See Fig.12)	0.345	-0.059	
Body, Towards Ground, High frequency with Headset (See Fig.13)	0.611	0.014	
Body, Towards Phantom, High frequency with GPRS (See Fig.14)	0.644	-0.082	

Table 12: SAR Values (Head, PCS 1900 MHz Band)

Limit of SAR (W/kg)	1 g Average	
	1.6	Power Drift
Tost Casa	Measurement	(dB)
Test Case	1 g Average	
Left hand, Touch cheek, High frequency (See Fig.15)	0.748	-0.124
Left hand, Touch cheek, Mid frequency (See Fig.16)	0.875	-0.147
Left hand, Touch cheek, Low frequency (See Fig.17)	0.908	-0.025
Left hand, Tilt 15 Degree, Mid frequency (See Fig.18)	0.473	-0.00903
Right hand, Touch cheek, High frequency (See Fig.19)	1	-0.000805
Right hand, Touch cheek, Mid frequency (See Fig.20)	1.17	-0.083
Right hand, Touch cheek, Low frequency (See Fig.21)	1.3	0.022
Right hand, Tilt 15 Degree, Mid frequency (See Fig.22)	0.762	0.049

Table 13: SAR Values (Body, PCS 1900 MHz Band)

Limit of SAR (W/kg)	1 g Average 1.6	Power		
Test Case	Measurement Result (W/kg)	t (dB)		
	1 g Average			
Body, Towards Ground, High frequency with GPRS (See Fig.23)	0.699	0.050		
Body, Towards Ground, Mid frequency with GPRS (See Fig.24)	0.816	-0.059		

Body, Towards Ground, Low frequency with GPRS (See Fig.25)	0.820	-0.012
Body, Towards Ground, Low frequency with EGPRS (See Fig.26)	0.384	-0.099
Body, Towards Ground, Low frequency with Headset (See Fig.27)	0.446	-0.005
Body, Towards Phantom, Low frequency with GPRS (See Fig.28)	0.625	0.196

7.4 Summary of Measurement Results (Bluetooth function)

The distance between BT antenna and GSM antenna is >5cm. The location of the antennas inside mobile phone is shown below:

The output power of BT antenna is 3.2mW. According to the output power measurement result and the distance between the two antennas, we can draw the conclusion that: stand-alone SAR and simultaneous transmission SAR are not required for BT transmitter, because the output power of BT transmitter is \leq 2P_{Ref} and its antenna is >5cm from other antenna

7.5 Conclusion

Localized Specific Absorption Rate (SAR) of this portable wireless device has been measured in all cases requested by the relevant standards cited in Clause 4.2 of this report. Maximum localized SAR is below exposure limits specified in the relevant standards cited in Clause 4.1 of this test report.

The maximum SAR values are obtained at the case of PCS 1900 MHz Band, Head, Right hand, Touch cheek, Low frequency (Table 10), and the value are: 1.3(1g).

8 Measurement Uncertainty

							Standard	Degree
No	Error Description	Туре	Tolerance	Probability	Divisor		Uncertainty	of
INO.			(±%)	Distribution	DIVISOI	Ci	(0/) 1/ (0/)	freedom
							$(\%) u_i (\%)$	V_{eff} or v_i
1	System repeatability	А	0.5	Ν	1	1	0.5	9
	Measurement system							
2	-probe calibration	В	3.5	Ν	1	1	3.5	∞
3	-axial isotropy of the probe	В	4.7	R	$\sqrt{3}$	0.5	4.2	~
4	 hemisphere isotropy of the probe 	В	9.4	R	$\sqrt{3}$	0.5	4.5	
5	-space resolution	В	0	R	$\sqrt{3}$	1	0	∞
6	-boundary effect	В	11.0	R	$\sqrt{3}$	1	6.4	∞
7	-probe linearity	В	4.7	R	$\sqrt{3}$	1	2.7	∞
8	-detection limit	В	1.0	R	$\sqrt{3}$	1	0.6	∞
9	-readout electronics	В	1.0	N	1	1	1.0	∞
10	- RF Ambient Conditions	В	3.0	R	$\sqrt{3}$	1	1.73	œ
11	 Probe Positioner Mechanical Tolerance 	В	0.4	R	$\sqrt{3}$	1	0.2	∞
12	 Probe Positioning with respect to Phantom Shell 	В	2.9	R	$\sqrt{3}$	1	1.7	œ
13	 Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation 	В	3.9	R	$\sqrt{3}$	1	2.3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	Test sample Related							
14	-Test Sample Positioning	Α	4.9	N	1	1	4.9	5
15	- Device Holder	Α	6.1	N	1	1	6.1	5
16	 Output Power Variation - SAR drift measurement 	В	5.0	R	$\sqrt{3}$	1	2.9	∞
	Phantom and Tissue Parameters							
17	 Phantom Uncertainty (shape and thickness tolerances) 	В	1.0	R	$\sqrt{3}$	1	0.6	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

18	 — liquid conductivity (deviation from target) 	В	5.0	R	$\sqrt{3}$	0.6	1.7	8
19	 — liquid conductivity (measurement error) 	A	0.23	Ν	1	1	0.23	9
20	-liquid permittivity (deviation from target)	В	5.0	R	$\sqrt{3}$	0.6	1.7	8
21	 liquid permittivity (measurement error) 	A	0.46	N	1	1	0.46	9
Combined standard uncertainty		<i>u</i> _c =	$\sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$	2 /		12.2	88.7	
Expa (conf	inded uncertainty fidence interval of 95 %)	μ	$u_e = 2u_c$	Ν	k=2		24.4	/

9 MAIN TEST INSTRUMENTS

Table 14: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period	
01	Network analyzer	HP 8753E	US38433212	August 29,2009	One year	
02	Power meter	NRVD	101253	September 4, 2009	One year	
03	Power sensor	NRV-Z5	100333	September 4, 2009	One year	
04	Signal Generator	E4433B	US37230472	September 3, 2009	One Year	
05	Amplifier	VTL5400	0505	No Calibration Requested		
06	BTS	CMU 200	113312	August 10, 2009	One year	
07	E-field Probe	SPEAG ES3DV3	3149	September 25, 2009	One year	
08	DAE	SPEAG DAE4	771	November 19, 2009	One year	
09	Dipole Validation Kit	SPEAG D835V2	443	February 26, 2010	Two years	
10	Dipole Validation Kit	SPEAG D1900V2	541	February 26, 2010	Two years	

END OF REPORT BODY

ANNEX A MEASUREMENT PROCESS

The evaluation was performed with the following procedure:

Step 1: Measurement of the SAR value at a fixed location above the reference point was measured and was used as a reference value for assessing the power drop.

Step 2: The SAR distribution at the exposed side of the phantom was measured at a distance of 3.9 mm from the inner surface of the shell. The area covered the entire dimension of the flat phantom and the horizontal grid spacing was 10 mm x 10 mm. Based on this data, the area of the maximum absorption was determined by spline interpolation.

Step 3: Around this point, a volume of 30 mm x 30 mm x 30 mm was assessed by measuring 7 x 7x 7 points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:

a. The data at the surface were extrapolated, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.

b. The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot"-condition (in $x \sim y$ and z-directions). The volume was integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.

c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

Step 4: Re-measurement the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation is repeated.

Picture A: SAR Measurement Points in Area Scan

ANNEX B TEST LAYOUT

Picture B1: Specific Absorption Rate Test Layout

Picture B2: Liquid depth in the Flat Phantom (850 MHz Head)

Picture B3: Liquid depth in the Flat Phantom (1900MHz Head)

Picture B4: Liquid depth in the Flat Phantom (850 MHz Body)

Picture B5: Liquid depth in the Flat Phantom (1900MHz Body)

ANNEX C GRAPH RESULTS

850 Left Cheek High

Date/Time: 2010-6-28 8:36:37 Electronics: DAE4 Sn771 Medium: 850 HEAD Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.89$ mho/m; $\epsilon r = 40.6$; $\rho = 1000$ kg/m³ Ambient Temperature:23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Cheek High/Area Scan (51x81x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.22 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13.6 V/m; Power Drift = -0.016 dB Peak SAR (extrapolated) = 1.47 W/kg SAR(1 g) = 1.09 mW/g; SAR(10 g) = 0.778 mW/g Maximum value of SAR (measured) = 1.14 mW/g

⁰ dB = 1.14 mW/g

Fig.1-1 Z-Scan at power reference point (850 MHz CH251)

850 Left Cheek Middle

Date/Time: 2010-6-28 8:07:42 Electronics: DAE4 Sn771 Medium: 850 HEAD Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.878$ mho/m; $\epsilon r = 40.7$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Cheek Middle/Area Scan (51x81x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.19 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.7 V/m; Power Drift = -0.087 dBPeak SAR (extrapolated) = 1.46 W/kgSAR(1 g) = 1.06 mW/g; SAR(10 g) = 0.756 mW/gMaximum value of SAR (measured) = 1.12 mW/g

 $0 \, dB = 1.12 \, mW/g$

Fig. 2 850 MHz CH190

850 Left Cheek Low

Date/Time: 2010-6-28 8:50:56 Electronics: DAE4 Sn771 Medium: 850 HEAD Medium parameters used: f = 825 MHz; $\sigma = 0.866$ mho/m; $\epsilon r = 40.7$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Cheek Low/Area Scan (51x81x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.16 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13.8 V/m; Power Drift = 0.037 dBPeak SAR (extrapolated) = 1.43 W/kgSAR(1 g) = 1.04 mW/g; SAR(10 g) = 0.748 mW/gMaximum value of SAR (measured) = 1.10 mW/g

 $0 \ dB = 1.10 \ mW/g$

Fig. 3 850 MHz CH128

850 Left Tilt Middle

Date/Time: 2010-6-28 8:22:13 Electronics: DAE4 Sn771 Medium: 850 HEAD Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.878$ mho/m; $\epsilon r = 40.7$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Tilt Middle/Area Scan (51x81x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.466 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 15.5 V/m; Power Drift = 0.005 dBPeak SAR (extrapolated) = 0.564 W/kgSAR(1 g) = 0.445 mW/g; SAR(10 g) = 0.328 mW/g

Maximum value of SAR (measured) = 0.469 mW/g

Fig. 4 850 MHz CH190

850 Right Cheek High

Date/Time: 2010-6-28 9:33:49 Electronics: DAE4 Sn771 Medium: 850 HEAD Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.89$ mho/m; $\epsilon r = 40.6$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Cheek High/Area Scan (51x81x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.985 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 13.0 V/m; Power Drift = -0.058 dB Peak SAR (extrapolated) = 1.16 W/kg

SAR(1 g) = 0.922 mW/g; SAR(10 g) = 0.673 mW/g

Maximum value of SAR (measured) = 0.961 mW/g

Fig. 5 850MHz CH251

850 Right Cheek Middle

Date/Time: 2010-6-28 9:05:17 Electronics: DAE4 Sn771 Medium: 850 HEAD Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.878$ mho/m; $\epsilon r = 40.7$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Cheek Middle/Area Scan (61x81x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.929 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.8 V/m; Power Drift = 0.123 dBPeak SAR (extrapolated) = 1.14 W/kgSAR(1 g) = 0.885 mW/g; SAR(10 g) = 0.649 mW/gMaximum value of SAR (measured) = 0.935 mW/g

0 dB = 0.935 mW/g

Fig. 6 850 MHz CH190

850 Right Cheek Low

Date/Time: 2010-6-28 9:48:02 Electronics: DAE4 Sn771 Medium: 850 HEAD Medium parameters used: f = 825 MHz; $\sigma = 0.866$ mho/m; $\epsilon r = 40.7$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Cheek Low/Area Scan (61x81x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.886 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 12.9 V/m; Power Drift = -0.027 dBPeak SAR (extrapolated) = 1.06 W/kgSAR(1 g) = 0.835 mW/g; SAR(10 g) = 0.615 mW/gMaximum value of SAR (measured) = 0.881 mW/g

 $0 \, dB = 0.881 \, mW/g$

Fig. 7 850 MHz CH128

850 Right Tilt Middle

Date/Time: 2010-6-28 9:19:30 Electronics: DAE4 Sn771 Medium: 850 HEAD Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.878$ mho/m; $\epsilon r = 40.7$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

Tilt Middle/Area Scan (61x81x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.500 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 17.6 V/m; Power Drift = -0.080 dBPeak SAR (extrapolated) = 0.610 W/kgSAR(1 g) = 0.474 mW/g; SAR(10 g) = 0.347 mW/g

Maximum value of SAR (measured) = 0.503 mW/g

Fig. 8 850 MHz CH190

850 Body Towards Ground High with GPRS

Date/Time: 2010-6-28 13:41:06 Electronics: DAE4 Sn771 Medium: 850 Body Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.96$ mho/m; $\epsilon r = 54.4$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 GPRS Frequency: 848.8 MHz Duty Cycle: 1:4 Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Ground High/Area Scan (51x81x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.02 mW/g

Toward Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 29.5 V/m; Power Drift = -0.047 dBPeak SAR (extrapolated) = 1.31 W/kgSAR(1 g) = 0.949 mW/g; SAR(10 g) = 0.659 mW/gMaximum value of SAR (measured) = 1.00 mW/g

 $0 \, dB = 1.00 \, mW/g$

Fig. 9 850 MHz CH251

Fig. 9-1 Z-Scan at power reference point (850 MHz CH251)

850 Body Towards Ground Middle with GPRS

Date/Time: 2010-6-28 13:56:20 Electronics: DAE4 Sn771 Medium: 850 Body Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.95$ mho/m; $\epsilon r = 54.5$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 GPRS Frequency: 836.6 MHz Duty Cycle: 1:4 Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Ground Middle/Area Scan (51x81x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.975 mW/g

Toward Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 29.2 V/m; Power Drift = -0.098 dBPeak SAR (extrapolated) = 1.25 W/kgSAR(1 g) = 0.917 mW/g; SAR(10 g) = 0.640 mW/g

SAK(1 g) = 0.917 m w/g, SAK(10 g) = 0.040 m w/g

Maximum value of SAR (measured) = 0.945 mW/g

 $0 \ dB = 0.945 mW/g$

Fig. 10 850 MHz CH190

850 Body Towards Ground Low with GPRS

Date/Time: 2010-6-28 14:11:37 Electronics: DAE4 Sn771 Medium: 850 Body Medium parameters used (interpolated): f = 825 MHz; $\sigma = 0.933$ mho/m; $\epsilon r = 54.6$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 GPRS Frequency: 824.2 MHz Duty Cycle: 1:4 Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Ground Low/Area Scan (51x81x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.997 mW/g

Toward Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 29.6 V/m; Power Drift = -0.077 dBPeak SAR (extrapolated) = 1.27 W/kgSAR(1 g) = 0.934 mW/g; SAR(10 g) = 0.654 mW/gMaximum value of SAP (measured) = 0.084 mW/g

 $0 \, dB = 0.984 \, mW/g$

850 Body Towards Ground High with EGPRS

Date/Time: 2010-6-28 14:28:01 Electronics: DAE4 Sn771 Medium: 850 Body Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.96$ mho/m; $\epsilon r = 54.4$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 GPRS Frequency: 848.8 MHz Duty Cycle: 1:4 Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Ground High/Area Scan (51x81x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.370 mW/g

Toward Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 17.9 V/m; Power Drift = -0.059 dBPeak SAR (extrapolated) = 0.475 W/kgSAR(1 g) = 0.345 mW/g; SAR(10 g) = 0.241 mW/gMaximum value of SAR (measured) = 0.361 mW/g

 $0 \ dB = 0.361 mW/g$

Fig. 12 850 MHz CH251

850 Body Towards Ground High with Headset

Date/Time: 2010-6-28 14:45:21 Electronics: DAE4 Sn771 Medium: 850 Body Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.96$ mho/m; $\epsilon r = 54.4$; $\rho = 1000$ kg/m³ Ambient Temperature:23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Ground High/Area Scan (51x81x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.703 mW/g

Toward Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 24.1 V/m; Power Drift = 0.014 dB Peak SAR (extrapolated) = 0.900 W/kg SAR(1 g) = 0.611 mW/g; SAR(10 g) = 0.422 mW/g Maximum value of SAR (measured) = 0.649 mW/g

0 dB = 0.649 mW/g

Fig. 13 850 MHz CH251

850 Body Towards Phantom High with GPRS

Date/Time: 2010-6-28 15:02:42 Electronics: DAE4 Sn771 Medium: 850 Body Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.96$ mho/m; $\epsilon r = 54.4$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 850 GPRS Frequency: 848.8 MHz Duty Cycle: 1:4 Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

Toward Phantom High/Area Scan (51x81x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.684 mW/g

Toward Phantom High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 25.8 V/m; Power Drift = -0.082 dBPeak SAR (extrapolated) = 0.834 W/kgSAR(1 g) = 0.644 mW/g; SAR(10 g) = 0.464 mW/gMaximum value of SAR (measured) = 0.664 mW/g

0 dB = 0.664 mW/g

Fig. 14 850 MHz CH251

1900 Left Cheek High

Date/Time: 2010-6-29 8:40:36 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used: f = 1910 MHz; $\sigma = 1.41$ mho/m; $\epsilon r = 39.6$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz new Frequency: 1909.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Cheek High/Area Scan (51x71x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.832 mW/g

Cheek High/Zoom Scan (7x7x7) Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 10.5 V/m; Power Drift = -0.124 dB Peak SAR (extrapolated) = 1.2 W/kg SAR(1 g) = 0.748 mW/g; SAR(10 g) = 0.445 mW/g Maximum value of SAR (measured) = 0.811 mW/g

 $0 \, dB = 0.811 mW/g$

Fig. 15 1900 MHz CH810

1900 Left Cheek Middle

Date/Time: 2010-6-29 8:11:25 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.39$ mho/m; $\epsilon r = 39.7$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz new Frequency: 1880 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Cheek Middle/Area Scan (51x71x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.970 mW/g

Cheek Middle/Zoom Scan (7x7x7) Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 11.7 V/m; Power Drift = -0.147 dB

Peak SAR (extrapolated) = 1.39 W/kg SAR(1 g) = 0.875 mW/g; SAR(10 g) = 0.516 mW/g

Maximum value of SAR (measured) = 0.947 mW/g

 $0 \, dB = 0.947 \, mW/g$

Fig. 16 1900 MHz CH661

1900 Left Cheek Low

Date/Time: 2010-6-29 8:54:49 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.36$ mho/m; $\epsilon r = 39.8$; $\rho = 1000$ kg/m³ Ambient Temperature:23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz new Frequency: 1850.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Cheek Low/Area Scan (51x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1 mW/g

Cheek Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.7 V/m; Power Drift = -0.025 dB Peak SAR (extrapolated) = 1.44 W/kg

SAR(1 g) = 0.908 mW/g; SAR(10 g) = 0.534 mW/g

Maximum value of SAR (measured) = 0.973 mW/g

 $0 \, dB = 0.973 mW/g$

Fig. 17 1900 MHz CH512

1900 Left Tilt Middle

Date/Time: 2010-6-29 8:25:57 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.39$ mho/m; $\epsilon r = 39.7$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz new Frequency: 1880 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Tilt Middle/Area Scan (51x71x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.549 mW/g

Tilt Middle/Zoom Scan (7x7x7) Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 16.6 V/m; Power Drift = -0.00903 dB Peak SAR (extrapolated) = 0.717 W/kg SAR(1 g) = 0.473 mW/g; SAR(10 g) = 0.290 mW/g Maximum value of SAR (measured) = 0.498 mW/g

0 dB = 0.498 mW/g

Fig. 18 1900 MHz CH661

1900 Right Cheek High

Date/Time: 2010-6-29 9:38:11 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used: f = 1910 MHz; $\sigma = 1.41$ mho/m; $\epsilon r = 39.6$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz new Frequency: 1909.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Cheek High/Area Scan (51x71x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.09 mW/g

Cheek High/Zoom Scan (7x7x7) Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 10 V/m; Power Drift = -0.000805 dB Peak SAR (extrapolated) = 1.74 W/kg SAR(1 g) = 1 mW/g; SAR(10 g) = 0.545 mW/g Maximum value of SAR (measured) = 1.11 mW/g

 $0 \, dB = 1.11 \, mW/g$

Fig. 19 1900 MHz CH810

1900 Right Cheek Middle

Date/Time: 2010-6-29 9:09:28 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.39$ mho/m; $\epsilon r = 39.7$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz new Frequency: 1880 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Cheek Middle/Area Scan (51x71x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.27 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 12.8 V/m; Power Drift = -0.083 dB Peak SAR (extrapolated) = 2.02 W/kg SAR(1 g) = 1.17 mW/g; SAR(10 g) = 0.632 mW/g

Maximum value of SAR (measured) = 1.3 mW/g

0 dB = 1.3 mW/g

Fig. 20 1900 MHz CH661

1900 Right Cheek Low

Date/Time: 2010-6-29 9:52:37 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.36$ mho/m; $\epsilon r = 39.8$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz new Frequency: 1850.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Cheek Low/Area Scan (51x71x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.41 mW/g

Cheek Low/Zoom Scan (7x7x7) Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 11.6 V/m; Power Drift = 0.022 dB Peak SAR (extrapolated) = 2.19 W/kg SAR(1 g) = 1.3 mW/g; SAR(10 g) = 0.708 mW/g

Maximum value of SAR (measured) = 1.43 mW/g

 $0 \, dB = 1.43 mW/g$

Fig. 21 1900 MHz CH512

Fig. 21-1 Z-Scan at power reference point (1900 MHz CH512)

1900 Right Tilt Middle

Date/Time: 2010-6-29 9:23:40 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.39$ mho/m; $\epsilon r = 39.7$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz new Frequency: 1880 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

Tilt Middle/Area Scan (51x71x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.909 mW/g

Tilt Middle/Zoom Scan (7x7x7) Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 18.6 V/m; Power Drift = 0.049 dB Peak SAR (extrapolated) = 1.19 W/kg SAR(1 g) = 0.762 mW/g; SAR(10 g) = 0.451 mW/gMaximum value of SAR (measured) = 0.834 mW/g

 $0 \, dB = 0.834 mW/g$

Fig.22 1900 MHz CH661

1900 Body Towards Ground High with GPRS

Date/Time: 2010-6-29 13:45:50 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used: f = 1910 MHz; $\sigma = 1.55$ mho/m; $\epsilon r = 51.8$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz GPRS Frequency: 1909.8 MHz Duty Cycle: 1:4 Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

Toward Ground High/Area Scan (51x81x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.795 mW/g

Toward Ground High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 10.1 V/m; Power Drift = 0.050 dB Peak SAR (extrapolated) = 1.17 W/kg

SAR(1 g) = 0.699 mW/g; SAR(10 g) = 0.412 mW/g

Maximum value of SAR (measured) = 0.729 mW/g

Fig. 23 1900 MHz CH810

1900 Body Towards Ground Middle with GPRS

Date/Time: 2010-6-29 14:01:13 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.52$ mho/m; $\epsilon r = 51.9$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz GPRS Frequency: 1880 MHz Duty Cycle: 1:4 Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

Toward Ground Middle/Area Scan (51x81x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.936 mW/g

Toward Ground Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.5 V/m; Power Drift = -0.059 dB Peak SAR (extrapolated) = 1.36 W/kg SAR(1 g) = 0.816 mW/g; SAR(10 g) = 0.478 mW/g

Maximum value of SAR (measured) = 0.845 mW/g

Fig. 24 1900 MHz CH661

1900 Body Towards Ground Low with GPRS

Date/Time: 2010-6-29 14:16:33 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.50$ mho/m; $\epsilon r = 51.9$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz GPRS Frequency: 1850.2 MHz Duty Cycle: 1:4 Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

Toward Ground Low/Area Scan (51x81x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.925 mW/g

Toward Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.9 V/m; Power Drift = -0.012 dBPeak SAR (extrapolated) = 1.36 W/kgSAR(1 g) = 0.820 mW/g; SAR(10 g) = 0.476 mW/gMaximum value of SAR (measured) = 0.848 mW/g

 $0 \, dB = 0.848 mW/g$

Fig. 25 1900 MHz CH512

Fig. 25-1 Z-Scan at power reference point (1900 MHz CH512)

1900 Body Towards Ground Low with EGPRS

Date/Time: 2010-6-29 14:33:06 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.50$ mho/m; $\epsilon r = 51.9$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz GPRS Frequency: 1850.2 MHz Duty Cycle: 1:4 Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

Toward Ground Low/Area Scan (51x81x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.450 mW/g

Toward Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.76 V/m; Power Drift = -0.099 dBPeak SAR (extrapolated) = 0.647 W/kgSAR(1 g) = 0.384 mW/g; SAR(10 g) = 0.219 mW/gMaximum value of SAR (measured) = 0.394 mW/g

 $0 \, dB = 0.394 \, mW/g$

Fig. 26 1900 MHz CH512

1900 Body Towards Ground Low with Headset

Date/Time: 2010-6-29 14:50:22 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.50$ mho/m; $\epsilon r = 51.9$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz Frequency: 1850.2 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

Toward Ground Low/Area Scan (51x81x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.493 mW/g

Toward Ground Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.2 V/m; Power Drift = -0.005 dB Peak SAR (extrapolated) = 0.686 W/kg SAR(1 g) = 0.446 mW/g; SAR(10 g) = 0.279 mW/g Maximum value of SAR (measured) = 0.457 mW/g

0 dB = 0.457 mW/g

Fig. 27 1900 MHz CH512

1900 Body Towards Phantom Low with GPRS

Date/Time: 2010-6-29 15:07:28 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.50$ mho/m; $\epsilon r = 51.9$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: GSM 1900MHz GPRS Frequency: 1850.2 MHz Duty Cycle: 1:4 Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

Toward Phantom Low/Area Scan (51x81x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.697 mW/g

Toward Phantom Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.7 V/m; Power Drift = 0.196 dBPeak SAR (extrapolated) = 0.961 W/kgSAR(1 g) = 0.625 mW/g; SAR(10 g) = 0.395 mW/gMaximum value of SAR (measured) = 0.646 mW/g

0 dB = 0.646 mW/g

Fig.28 1900 MHz CH512

ANNEX D SYSTEM VALIDATION RESULTS

835MHz

Date/Time: 2010-6-28 7:28:15 Electronics: DAE4 Sn771 Medium: Head 850 Medium parameters used: f = 835 MHz; $\sigma = 0.87$ mho/m; $\epsilon_r = 40.7$; $\rho = 1000$ kg/m³ Ambient Temperature:23.0°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3149 ConvF(6.56, 6.56, 6.56)

System Validation /Area Scan (101x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 2.51 mW/g

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 53.9 V/m; Power Drift = -0.078 dB Peak SAR (extrapolated) = 3.36 W/kg SAR(1 g) = 2.28 mW/g; SAR(10 g) = 1.49 mW/g Maximum value of SAR (measured) = 2.41 mW/g

835MHz

Date/Time: 2010-6-28 13:16:41 Electronics: DAE4 Sn771 Medium: 850 Body Medium parameters used: f = 835 MHz; $\sigma = 0.94$ mho/m; $\epsilon_r = 54.4$; $\rho = 1000$ kg/m³ Ambient Temperature:23.0°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3149 ConvF(6.22, 6.22, 6.22)

System Validation /Area Scan (101x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 2.48 mW/g

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 50.5V/m; Power Drift = -0.063 dB Peak SAR (extrapolated) = 3.31 W/kg SAR(1 g) = 2.30 mW/g; SAR(10 g) = 1.52 mW/g Maximum value of SAR (measured) = 2.37 mW/g

 $0 \; dB = 2.37 mW/g$

Fig.30 validation 835MHz 250mW

1900MHz

Date/Time: 2010-6-29 7:31:10 Electronics: DAE4 Sn771 Medium: Head 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.40$ mho/m; $\epsilon_r = 39.7$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3149 ConvF(5.03, 5.03, 5.03)

System Validation/Area Scan (101x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 11.2 mW/g

System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 88.5 V/m; Power Drift = 0.104 dB Peak SAR (extrapolated) = 14.9 W/kg SAR(1 g) = 9.65 mW/g; SAR(10 g) = 4.88 mW/g Maximum value of SAR (measured) = 10.3 mW/g

0 dB = 10.3 mW/g

Fig.31 validation 1900MHz 250mW

1900MHz

Date/Time: 2010-6-29 13:21:05 Electronics: DAE4 Sn771 Medium: Body 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.54$ mho/m; $\epsilon_r = 51.8$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.0°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3149 ConvF(4.68, 4.68, 4.68)

System Validation/Area Scan (101x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 11.3 mW/g

System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 90.2 V/m; Power Drift = 0.085 dB Peak SAR (extrapolated) = 16.0 W/kg SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.03 mW/gMaximum value of SAR (measured) = 10.6 mW/g

0 dB = 10.6 mW/g

Fig.32 validation 1900MHz 250mW

Calibration certificate and Test positions are described in the additional document:

Appendix to test report no. 2010SAR00053

Calibration certificate and Test positions

No.2010SAR00053 Page 1 of 33

Appendix to test report no. 2010SAR00053

Calibration certificate and Test positions

No. DGA-PL-114/01-02

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of TMC Beijing.

Test Laboratory:

TMC Beijing, Telecommunication Metrology Center of MIIT

No. 52, Huayuan Bei Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2079, Fax:+86(0)10-62304793 Email:welcome@emcite.com. www.emcite.com

©Copyright. All rights reserved by TMC Beijing.

TABLE OF CONTENT

ANNEX E	PROBE CALIBRATION CERTIFICATE	3
ANNEX F	DIPOLE CALIBRATION CERTIFICATE	.12
835 MHz I	DIPOLE CALIBRATION CERTIFICATE	12
1900 MHz	DIPOLE CALIBRATION CERTIFICATE	21
ANNEX G	EUT APPEARANCE AND TEST POSITIONS	.30

ANNEX E PROBE CALIBRATION CERTIFICATE

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura Suiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service Is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Object	ES	3DV/2-SN- 31/9	
Object	20,	500-54. 5145	
Calibration procedure(s)	QA Cal	CAL-01.v6 ibration procedure for dosimetric E-field	d probes
Calibration date:	Se	otember 25, 2009	
Condition of the calibrated it	tem In 1	Folerance	
≿alibration Equipment used (№ Primary Standards	N&TE critical for cal	ibration) Cal Data (Calibrated by, Certification NO.)	Scheduled Calibration
Power meter E4419B	GB41293874	5-May-09 (METAS, NO. 251-00388)	May-10
ower sensor E4412A	MY41495277	5-May-09 (METAS, NO. 251-00388)	May-10
eference 3 dB Attenuator	SN:S5054 (3c)	10-Aug-09 (METAS, NO. 251-00403)	Aug-10
eference 20 dB Attenuator	SN:S5086 (20b)	3-May-09 (METAS, NO. 251-00389)	May-10
Reference 30 dB Attenuator	SN:S5129 (30b)	10-Aug-09 (METAS, NO. 251-00404)	Aug-10
DAE4	SN:617	10-Jun-09 (SPEAG, NO.DAE4-907_Jun09)	Jun-10
Reference Probe ES3DV2	SN: 3013	12-Jan-09 (SPEAG, NO. ES3-3013_Jan09)	Jan-10
	ID#	Check Data (in house)	Scheduled Calibration
Secondary Standards		A Aug 00/SPEAC in house sheek Oct 07)	In house check: Oct-09
Secondary Standards RF generator HP8648C	US3642U01700	4-Aug-33(SFEAG, III House check Oct-07)	an interference in a set and she has a set
Secondary Standards RF generator HP8648C Network Analyzer HP 8753E	US3642U01700 US37390585	18-Oct-01(SPEAG, in house check Nov-07)	In house check: Nov-09
Secondary Standards RF generator HP8648C Network Analyzer HP 8753E	US3642U01700 US37390585 Name	18-Oct-01(SPEAG, in house check Nov-07) Function	In house check: Nov-09 Signature
Secondary Standards RF generator HP8648C Network Analyzer HP 8753E Calibrated by:	US3642U01700 US37390585 Name Katja Pokovic	18-Oct-01(SPEAG, in house check Nov-07) Function Technical Manager	In house check: Nov-09 Signature
Secondary Standards RF generator HP8648C Network Analyzer HP 8753E Calibrated by:	US3642U01700 US37390585 Name Katja Pokovic	18-Oct-01(SPEAG, in house check Nov-07) Function Technical Manager	In house check: Nov-09 Signature

Certificate No: ES3DV3-3149_Sep09

Page 1 of 9

No. 2010SAR00053 Page 4 of 33

Calibration Laboratory of Schmid & Partner Engineering AG eughausstrasse 43, 8004 Zurich, Switzerland

CHUBRA

Schweizerischer Kalibrierdiens S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSI NORMx,y,z ConF DCP Polarization φ Polarization 9

tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point φ rotation around probe axis 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Page 2 of 9

ES3DV3 SN: 3149

September 25, 2009

Probe ES3DV3

SN: 3149

Manufactured:

June 12, 2007

Calibrated:

September 25, 2009

Calibrated for DASY4 System

Certificate No: ES3DV3-3149_ Sep09

Page 3 of 9

ES3DV3 SN: 3149 September 25, 2009 DASY - Parameters of Probe: ES3DV3 SN:3149

Sensitivity in Free Space^A

Diode Compression^B

NormX	1.14±10.1%	$\mu V/(V/m)^2$	DCP X	94mV
NormY	1.23±10.1%	$\mu V/(V/m)^2$	DCP Y	95mV
NormZ	1.29±10.1%	$\mu V/(V/m)^2$	DCP Z	91mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors) Please see Page 8

Boundary Effect

TSL	900MHz	Typical SAR gradient: 5% pe	er mm	
Sensor Cent SARbe[%] SARbe[%]	er to Phanton With With	n Surface Distance out Correction Algorithm o Correction Algorithm	3.0 mm 3.8 0.8	4.0 mm 1.6 0.7
TSL	1810MHz	Typical SAR gradient: 10%	per mm	
Sensor Cent SARbe[%] SARbe[%]	er to Phanton With With	n Surface Distance out Correction Algorithm o Correction Algorithm	3.0 mm 6.8 0.4	4.0 mm 3.6 0.2
Sensor Offse	a t			

Sensor Onser

Probe Tip to Sensor Center 2.0 mm

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distributio Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8). ^B Numerical linearization parameter: uncertainty not required.

Certificate No: ES3DV3-3149_ Sep09

Page 4 of 9

ES3DV3 SN: 3149

September 25, 2009

Frequency Response of E-Field

Uncertainty of Frequency Response of E-field: ±5.0% (k=2)

Page 5 of 9

ES3DV3 SN: 3149

September 25, 2009

Uncertainty of Axial Isotropy Assessment: ±0.5% (k=2)

Certificate No: ES3DV3-3149_ Sep09

Page 6 of 9

No. 2010SAR00053 Page 9 of 33

ES3DV3 SN: 3149

September 25, 2009

Uncertainty of Linearity Assessment: ±0.5% (k=2)

Page 7 of 9

ES3DV3 SN: 3149

September 25, 2009

Conversion Factor Assessment

f[MHz]	Validity[MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	Conve	Uncertainty
850	±50 /±100	Head	41.5±5%	0.90±5%	0.91	1.13	6.56	±11.0% (k=2)
900	±50 /±100	Head	41.5±5%	0.97±5%	0.83	1.26	6.34	±11.0% (k=2)
1800	±50 /±100	Head	40.0±5%	1.40±5%	0.69	1.47	5.18	±11.0% (k=2)
1900	±50 /±100	Head	40.0±5%	1.40±5%	0.72	1.38	5.03	±11.0% (k=2)
2100	±50 /±100	Head	39.8±5%	1.49±5%	0.66	1.34	4.58	±11.0% (k=2)
850	±50 /±100	Body	55.2±5%	0.97±5%	0.76	1.26	6.22	±11.0% (k=2)
900	±50 /±100	Body	55.0±5%	1.05±5%	0.99	1.06	6.02	±11.0% (k=2)
1800	±50 /±100	Body	53.3±5%	1.52±5%	0.75	1.34	4.97	±11.0% (k=2)
1900	±50 /±100	Body	53.3±5%	1.52±5%	0.62	1.33	4.68	±11.0% (k=2)
2100	±50 /±100	Body	53.5±5%	1.57±5%	0.68	1.34	4.35	±11.0% (k=2)

^c The validity of ±100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: ES3DV3-3149_ Sep09

Page 8 of 9

No. 2010SAR00053 Page 11 of 33

ES3DV3 SN: 3149

September 25, 2009

Deviation from Isotropy Error (Φ, θ) , f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ±2.5% (k=2)

Certificate No: ES3DV3-3149_Sep09

Page 9 of 9

ANNEX F DIPOLE CALIBRATION CERTIFICATE

835 MHz Dipole Calibration Certificate

Client TMC	78.11	Certificate No: D835V2-	-443_Feb10
CALIBRATIO	N CERTI	IFICATE	
Object		D835V2 - SN: 443	
Calibration Procedure(s)		TMC-XZ-01-027 Calibration procedure for dipole validation kits	
Calibration date:		February 26, 2010	
Condition of the calibrate	ed item	In Tolerance	
measurements(SI). The following pages and are p All calibrations have be humidity<70%.	measurement: part of the cert en conducted	s and the uncertainties with confidence probabili tificate. in the closed laboratory facility: environment tem	ity are given on th perature(22±3)°C ar
measurements(SI). The following pages and are p All calibrations have be humidity<70%. Calibration Equipment u Primary Standards	measurement: part of the cert en conducted sed (M&TE cr ID #	s and the uncertainties with confidence probabili ifficate. in the closed laboratory facility: environment tem ritical for calibration) Cal Date(Calibrated by, Certificate No.)	ity are given on the perature (22±3)°C are scheduled Calibration
measurements(SI). The following pages and are p All calibrations have be humidity<70%. Calibration Equipment u Primary Standards Power Meter NRVD Payor support NRVD	measurement: part of the cert en conducted sed (M&TE cr ID # 101253 100333	s and the uncertainties with confidence probabili tificate. in the closed laboratory facility: environment tem ritical for calibration) Cal Date(Calibrated by, Certificate No.) S 04-Sep-09 (TMC, No.JZ09-248)	ity are given on the perature (22±3)°C and the second seco
measurements(SI). The following pages and are p All calibrations have be humidity<70%. Calibration Equipment u Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe ES3D	measurements part of the cert en conducted sed (M&TE cr 1D # 101253 100333 W3 SN 314	s and the uncertainties with confidence probabili ifficate. in the closed laboratory facility: environment tem ritical for calibration) Cal Date(Calibrated by, Certificate No.) S 04-Sep-09 (TMC, No.JZ09-248) 04-Sep-09 (TMC, No.JZ09-248) 25-Sep-09(SPEAG, No.ES3-3149_Sep09)	ity are given on the perature (22±3)°C and Scheduled Calibration Jun-10 Jun-10 Sep-10
measurements(SI). The following pages and are p All calibrations have be humidity<70%. Calibration Equipment u Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe ES3D DAE4	neasurements part of the cert en conducted sed (M&TE cr 101253 100333 vV3 SN 314 SN 771	s and the uncertainties with confidence probabili tificate. in the closed laboratory facility: environment tem ritical for calibration) Cal Date(Calibrated by, Certificate No.) S 04-Sep-09 (TMC, No.JZ09-248) 04-Sep-09 (TMC, No.JZ09-248) 04-Sep-09 (SPEAG, No.ES3-3149_Sep09) 19-Nov-09(SPEAG, No.DAE4-771_Nov09)	ity are given on the perature(22±3)°C and Scheduled Calibration Jun-10 Jun-10 Sep-10 Nov-10
measurements(SI). The following pages and are p All calibrations have be humidity<70%. Calibration Equipment u Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe ES3D DAE4 RF generator E4438C Network Analyzer 875	measurement: part of the cert en conducted sed (M&TE cr 101253 100333 W3 SN 314 SN 771 MY450 3E US3843	s and the uncertainties with confidence probabili ifficate. in the closed laboratory facility: environment tem ritical for calibration) Cal Date(Calibrated by, Certificate No.) S 04-Sep-09 (TMC, No.JZ09-248) 04-Sep-09 (TMC, No.JZ09-248) 04-Sep-09 (SPEAG, No.ES3-3149_Sep09) 19-Nov-09(SPEAG, No.DAE4-771_Nov09) 192879 18-Jun-09(TMC, No.JZ09-302) 33212 29-Aug-09(TMC, No.JZ09-056)	ity are given on the perature (22±3)°C and Scheduled Calibration Jun-10 Jun-10 Sep-10 Nov-10 Jun-10 Aug-10
measurements(SI). The following pages and are All calibrations have be humidity<70%. Calibration Equipment u Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe ES3D DAE4 RF generator E4438C Network Analyzer 875	neasurement: part of the cert en conducted sed (M&TE cr 101253 100333 VV3 SN 314 SN 771 MY450 3E US3843 Name	s and the uncertainties with confidence probabili ifficate. in the closed laboratory facility: environment tem ritical for calibration) Cal Date(Calibrated by, Certificate No.) S 04-Sep-09 (TMC, No.JZ09-248) 04-Sep-09 (TMC, No.JZ09-248) 04-Sep-09 (TMC, No.JZ09-248) 25-Sep-09(SPEAG, No.DZ9-248) 25-Sep-09(SPEAG, No.DAE4-771_Nov09) 19-Nov-09(SPEAG, No.JZ09-302) 33212 29-Aug-09(TMC, No.JZ09-056) Function	ity are given on the perature (22±3)°C and Scheduled Calibration Jun-10 Jun-10 Sep-10 Nov-10 Jun-10 Aug-10 Signature
measurements(SI). The following pages and are All calibrations have be humidity<70%. Calibration Equipment u Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe ES3D DAE4 RF generator E4438C Network Analyzer 875	measurement: part of the cert en conducted sed (M&TE cr 101253 100333 VV3 SN 314 SN 771 MY450 3E US3843 Name Lin Hao	s and the uncertainties with confidence probabilitificate. in the closed laboratory facility: environment tem ritical for calibration) Cal Date(Calibrated by, Certificate No.) S 04-Sep-09 (TMC, No.JZ09-248) 04-Sep-09 (TMC, No.JZ09-248) 04-Sep-09 (TMC, No.JZ09-248) 04-Sep-09 (SPEAG, No.DES3-3149_Sep09) 19-Nov-09(SPEAG, No.DAE4-771_Nov09) 192879 18-Jun-09(TMC, No.JZ09-302) 33212 29-Aug-09(TMC, No.JZ09-056) Function SAR Test Engincer	Scheduled Calibratio Jun-10 Jun-10 Sep-10 Nov-10 Jun-10 Aug-10 Signature
measurements(SI). The following pages and are p All calibrations have be humidity<70%. Calibration Equipment u Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe ES3D DAE4 RF generator E4438C Network Analyzer 875 Calibrated by: Reviewed by:	measurements part of the cert en conducted sed (M&TE cr 101253 100333 vV3 SN 314 SN 771 MY450 3E US3843 Name Lin Hao Qi Dianyua	s and the uncertainties with confidence probabilitificate. in the closed laboratory facility: environment term ritical for calibration) Cal Date(Calibrated by, Certificate No.) S 04-Sep-09 (TMC, No.JZ09-248) 3 04-Sep-09 (TMC, No.JZ09-248) 49 25-Sep-09(SPEAG, No.DAE4-771_Nov09) 19-Nov-09(SPEAG, No.DAE4-771_Nov09) 192879 18-Jun-09(TMC, No.JZ09-302) 32212 29-Aug-09(TMC, No.JZ09-056) Function SAR Test Engincer an SAR Project Leader	ity are given on the perature $(22\pm3)^{\circ}$ and a second s

工业和信息化部通信计量中心 Telecommunication Metrology Center of MIIT

Glossary:

TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point
 exactly below the center marking of the flat phantom section, with the arms oriented parallel to
 the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low reflected
 power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No
 uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-443_Feb10

Page 2 of 9

工业和信息化部通信计量中心 Telecommunication Metrology Center of MIIT

TMX

Measurement Conditions

			Contraction of the second					
DASY sy	stem con	nfiguration,	as far	as not	given o	on pa	ige 1	

DASY Version	DASY5	V5.0
Extrapolation	Advanced Extrapolation	and the second second
Phantom	2mm Oval Phantom ELI4	STATISTICS NO
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.6 ± 6 %	0.92mho/m ± 6 %
Head TSL temperature during test	(21.7 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	Br. 1. 11 11 12
SAR measured	250 mW input power	2.38 mW / g
SAR normalized	normalized to 1W	9.52 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	9.41 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	N. N. S. W. M.
SAR measured	250 mW input power	1.54 mW / g
SAR normalized	normalized to 1W	6.16 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	6.12 mW /g ± 16.5 % (k=2)

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Certificate No: D835V2-443_Feb10

Page 3 of 9

TMX

Body TSL parameters

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.5 ± 6%	0.97mho/m ± 6 %
Body TSL temperature during test	(21.9 ± 0.2) °C	and the second	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
SAR measured	250 mW input power	2.41 mW/g
SAR normalized	normalized to 1W	9.64 mW / g
SAR for nominal Body TSL parameters 2	normalized to 1W	9.57 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	Churthe Mesure
SAR measured	250 mW input power	1.57 mW / g
SAR normalized	normalized to 1W	6.28 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	6.24 mW /g ± 16.5 % (k=2)

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Certificate No: D835V2-443_Feb10

Page 4 of 9

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.7Ω -3.7 jΩ	
Return Loss	- 25.9dB	r

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.4Ω - 5.1 jΩ
Return Loss	-25.6dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.387 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 3, 2001

Certificate No: D835V2-443_Feb10

Page 5 of 9

No. 2010SAR00053 Page 17 of 33

工业和信息化部通信计量中心 Telecommunication Metrology Center of MIIT

TMX

DASY5 Validation Report for Head TSL

Test Laboratory: TMC, Beijing, China

Date/Time: 2010-2-26 14:31:40

DUT: Dipole 835 MHz; Type: D835V2; Serial: SN: 443

Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1 Medium: Head 835MHz

Medium parameters used: f = 835 MHz; σ = 0.92 mho/m; ϵ_r = 41.6; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: ES3DV3 SN3149; ConvF(6.56, 6.56, 6.56); Calibrated: 25.09.09
- Electronics: DAE4 Sn771; Calibration: 19.11.09
- Phantom: 2mm Oval Phantom EL14; Type: QDOVA001BB
- Measurement SW: DASY5, V5.0 Build 119.9; Postprocessing SW: SEMCAD, V13.2 Build 87

Pin=250mW; d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.8 V/m; Power Drift = -0.037 dB Peak SAR (extrapolated) = 3.11 W/kgSAR(1 g) = 2.38 mW/g; SAR(10 g) = 1.54 mW/gMaximum value of SAR (measured) = 2.71 mW/g

Certificate No: D835V2-443_Feb10

Page 6 of 9

No. 2010SAR00053 Page 19 of 33

工业和信息化部通信计量中心 Telecommunication Metrology Center of MIIT

DASY5 Validation Report for Body TSL

Date/Time: 2010-2-26 9:52:36

Test Laboratory: TMC, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: SN: 443

Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1 Medium: Body 835MHz Medium parameters used: f = 835 MHz; σ = 0.97 mho/m; ϵ , = 54.5; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: ES3DV3 SN3149; ConvF(6.22, 6.22, 6.22); Calibrated: 25.09.09
- Electronics: DAE4 Sn771; Calibration: 19.11.09
- Phantom: 2mm Oval Phantom ELI4; Type: QDOVA001BB
- Measurement SW: DASY5, V5.0 Build 119.9; Postprocessing SW: SEMCAD, V13.2 Build 87

Pin=250mW; d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.0 V/m; Power Drift = -0.025 dB Peak SAR (extrapolated) = 3.78 W/kg SAR(1 g) = 2.41 mW/g; SAR(10 g) = 1.57 mW/g Maximum value of SAR (measured) = 2.70 mW/g

No. 2010SAR00053 Page 21 of 33

1900 MHz Dipole Calibration Certificate

	. S. F.VI	Certificate No: D1900V	/2-541_Feb10
CALIBRATION	N CERT	IFICATE	Wardin .
Object		D1900V2 - SN: 541	
Calibration Procedure(s)		TMC-XZ-01-027 Calibration procedure for dipole validation kits	
Calibration date:		February 26, 2010	
Condition of the calibrate	ed item	In Tolerance	
humidity<70%.	sed (M&TE c	in the closed laboratory facility: environment to	emperature(22±3)°C ar
Arr canonations have ee humidity<70%. Calibration Equipment us Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe ES3D DAE4 RF generator E4438C Network Analyzer 875.	sed (M&TE c ID # 101253 10033 0V3 SN 31 SN 77 MY455 3E US384	in the closed laboratory facility: environment to ritical for calibration) Cal Date(Calibrated by, Certificate No.) 04-Sep-09 (TMC, No. JZ09-248) 04-Sep-09 (TMC, No. JZ09-248) 09 25-Sep-09(SPEAG, No.ES3-3149_Sep09) 1 19-Nov-09(SPEAG, No.DAE4-771_Nov09) 092879 18-Jun-09(TMC, No.JZ09-302) 33212 29-Aug-09(TMC, No.JZ09-056)	Scheduled Calibration Sep-10 Sep-10 Sep-10 Nov-10 Jun-10 Aug-10
An enotations have ee humidity<70%. Calibration Equipment us Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe ES3D DAE4 RF generator E4438C Network Analyzer 875.	sed (M&TE c 1 ID # 101253 10033 0V3 SN 31 SN 77 MY450 3E US384	in the closed laboratory facility: environment to ritical for calibration) Cal Date(Calibrated by, Certificate No.) 04-Sep-09 (TMC, No. JZ09-248) 04-Sep-09 (TMC, No. JZ09-248) 04-Sep-09 (TMC, No. JZ09-248) 19-Nov-09(SPEAG, No.ES3-3149_Sep09) 19-Nov-09(SPEAG, No.DAE4-771_Nov09) 092879 18-Jun-09(TMC, No.JZ09-302) 33212 29-Aug-09(TMC, No.JZ09-056)	scheduled Calibration Sep-10 Sep-10 Sep-10 Nov-10 Jun-10 Aug-10
An enotations have ee humidity<70%. Calibration Equipment us Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe ES3D DAE4 RF generator E4438C Network Analyzer 875.	sed (M&TE c ID # 101253 10033 0V3 SN 31 SN 77 MY456 3E US384 Name Lin Hao	in the closed laboratory facility: environment to ritical for calibration) Cal Date(Calibrated by, Certificate No.) 04-Sep-09 (TMC, No. JZ09-248) 04-Sep-09 (TMC, No. JZ09-248) 49 25-Sep-09(SPEAG, No.ES3-3149_Sep09) 1 19-Nov-09(SPEAG, No.DAE4-771_Nov09) 092879 18-Jun-09(TMC, No.JZ09-302) 33212 29-Aug-09(TMC, No.JZ09-056) Function SAR Test Engineer	Scheduled Calibration Sep-10 Sep-10 Sep-10 Nov-10 Jun-10 Aug-10 Signature
An earonations have ee humidity<70%. Calibration Equipment us Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe ES3D DAE4 RF generator E4438C Network Analyzer 875. Calibrated by: Reviewed by:	sed (M&TE c ID # 101253 10033 0V3 SN 31 SN 77 MY459 3E US384 Name Lin Hao Qi Dianyu	in the closed laboratory facility: environment to ritical for calibration) Cal Date(Calibrated by, Certificate No.) 04-Sep-09 (TMC, No. JZ09-248) 3 04-Sep-09 (TMC, No. JZ09-248) 49 25-Sep-09(SPEAG, No.ES3-3149_Sep09) 1 19-Nov-09(SPEAG, No.DAE4-771_Nov09) 092879 18-Jun-09(TMC, No.JZ09-302) 33212 29-Aug-09(TMC, No.JZ09-056) Function SAR Test Engineer an SAR Project Leader	Scheduled Calibration Sep-10 Sep-10 Sep-10 Nov-10 Jun-10 Aug-10 Signature
An enotations have ee humidity<70%. Calibration Equipment us Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe ES3D DAE4 RF generator E4438C Network Analyzer 875. Calibrated by: Reviewed by: Approved by:	sed (M&TE c ID# 101253 10033 0V3 SN 31 SN 77 MY455 3E US384 Name Lin Hao Qi Dianyu Lu Bingso	in the closed laboratory facility: environment to ritical for calibration) Cal Date(Calibrated by, Certificate No.) O4-Sep-09 (TMC, No. JZ09-248) O4-Sep-09 (TMC, No. JZ09-248) O4-Sep-09 (TMC, No. JZ09-248) O4-Sep-09 (SPEAG, No.ES3-3149_Sep09) O4-Sep-09 (SPEAG, No.DAE4-771_Nov09) O52879 O5287 O528 O5287 O528 O528 O528 O528 O528 O528 O528 O528	emperature(22 ± 3)°C ar Scheduled Calibration Sep-10 Sep-10 Sep-10 Nov-10 Jun-10 Aug-10 Signature Thr H_{12} Signature BZ WZ BZ

Glossary: TSL

TSL tis ConvF ser N/A no

tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point
 exactly below the center marking of the flat phantom section, with the arms oriented parallel to
 the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low reflected
 power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No
 uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1900V2-541_Feb10

Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY5	V5.0
Advanced Extrapolation	all the state
2mm Oval Phantom ELI4	
10 mm	with Spacer
dx, dy, dz = 5 mm	and the second
1900 MHz ± 1 MHz	
	DASY5 Advanced Extrapolation 2mm Oval Phantom ELI4 10 mm dx, dy, dz = 5 mm 1900 MHz ± 1 MHz

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.6 ± 6 %	1.40mho/m ± 6 %
Head TSL temperature during test	(21.9 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.91 mW / g
SAR normalized	normalized to 1W	39.6 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	39.4 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	Line Barris
SAR measured	250 mW input power	5.05 mW / g
SAR normalized	normalized to 1W	20.2 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	20.1 mW /g ± 16.5 % (k=2)

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Certificate No: D1900V2-541_Feb10

Page 3 of 9

TMX

Body TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.5 ± 6%	1.51 mho/m ± 6 %
Body TSL temperature during test	(21.8 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.4 mW / g
SAR normalized	normalized to 1W	41.6 mW / g
SAR for nominal Body TSL parameters 2	normalized to 1W	41.4 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.24 mW / g
SAR normalized	normalized to 1W	21.0 mW / g
SAR for nominal Body TSL parameters 2	normalized to 1W	20.9 mW /g ± 16.5 % (k=2)

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Certificate No: D1900V2-541_Feb10

Page 4 of 9

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.8Ω + 4.0 jΩ
Return Loss	- 23.7dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.9Ω + 7.1 jΩ	
Return Loss	- 22.6dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.201 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 4, 2001

Certificate No: D1900V2-541_Feb10

Page 5 of 9

No. 2010SAR00053 Page 26 of 33

DASY5 Validation Report for Head TSL

Date/Time: 2010-2-26 15:20:47

Test Laboratory: TMC, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: SN: 541

Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1 Medium: Head 1900MHz

Medium parameters used: f = 1900 MHz; σ = 1.40 mho/m; ϵ $_r$ = 39.6; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: ES3DV3 SN3149; ConvF(5.03, 5.03, 5.03); Calibrated: 25.09.09
- Electronics: DAE4 Sn771; Calibration: 19.11.09
- Phantom: 2mm Oval Phantom ELI4; Type: QDOVA001BB
- Measurement SW: DASY5, V5.0 Build 119.9; Postprocessing SW: SEMCAD, V13.2 Build 87

Pin=250mW; d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 85.1 V/m; Power Drift = -0.057 dB Peak SAR (extrapolated) = 18.8 W/kg SAR(1 g) = 9.91 mW/g; SAR(10 g) = 5.05 mW/g Maximum value of SAR (measured) = 11.5 mW/g

Certificate No: D1900V2-541 Feb10

Page 6 of 9

No. 2010SAR00053 Page 28 of 33

工业和信息化部通信计量中心 Telecommunication Metrology Center of MIIT

DASY5 Validation Report for Body TSL

Test Laboratory: TMC, Beijing, China

Date/Time: 2010-2-26 10:41:08

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: SN: 541

Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1 Medium: Body 1900MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.51$ mho/m; $\varepsilon_r = 52.5$; $\rho = 1000$ kg/m³

TMX

DASY5 Configuration:

Phantom section: Flat Section

- Probe: ES3DV3 SN3149; ConvF(4.68, 4.68, 4.68); Calibrated: 25.09.09
- Electronics: DAE4 Sn771; Calibration: 19.11.09
- Phantom: 2mm Oval Phantom ELI4; Type: QDOVA001BB
- Measurement SW: DASY5, V5.0 Build 119.9; Postprocessing SW: SEMCAD, V13.2 Build 87

Pin=250mW; d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 80.2 V/m; Power Drift = -0.009 dB Peak SAR (extrapolated) = 19.1 W/kg SAR(1 g) = 10.4 mW/g; SAR(10 g) = 5.24 mW/g Maximum value of SAR (measured) = 12.0 mW/g

Certificate No: D1900V2-541_Feb10

Page 8 of 9

ANNEX G EUT APPEARANCE AND TEST POSITIONS

Picture G1: Constituents of the sample (Lithium Battery is in the Handset)

Picture G2: Left Hand Touch Cheek Position

Picture G3: Left Hand Tilt 15° Position

Picture G4: Right Hand Touch Cheek Position

Picture G5: Right Hand Tilt 15° Position

Picture G6: Body-worn Position (towards ground, the distance from handset to the bottom of the Phantom is 1.5cm)

Picture G7: Body-worn Position (towards phantom, the distance from handset to the bottom of the Phantom is 1.5cm)

Picture G8: Body-worn Position with headset (EUT towards ground, the distance from handset to the bottom of the Phantom is 1.5cm)