CETECOM ICT Services GmbH

Untertuerkheimer Str. 6-10, 66117 Saarbruecken, Germany Phone: +49 (0) 681 598-0 SAR-Laboratory Phone: +49 (0) 681 598-8454

Fax: -8475

Accredited testing laboratory

DAR registration number: DAT-P-176/94-D1

Test report no. : 2-4883-47-03/08
Type identification : AAC-1052191-BV
Test specification : IEEE P1528/D1.2
FCC-ID : PY7A1052191
IC-ID : 4170B-A1052191

As of 2008-07-21 Page 1 of 98

CETECOM ICT Services GmbH

Test report no.: 2-4883-47-03/08

Table of Contents

1 General Information	
1.1 Notes	3
1.1.1 Statement of Compliance	3
1.2 Testing laboratory	4
1.3 Details of applicant	4
1.4 Application details	4
1.5 Test item	5
1.6 Test specification(s)	
1.6.1 RF exposure limits	6
2 Technical test	
2.1 Summary of test results	
2.2 Test environment	
2.3 Measurement and test set-up	
2.4 Measurement system	
2.4.1 System Description	8
2.4.2 Test environment	9
2.4.3 Probe description	9
2.4.4 Phantom description	
2.4.5 Device holder description	
2.4.6 Scanning procedure	
2.4.7 Spatial Peak SAR Evaluation	
2.4.8 Data Storage and Evaluation	
2.4.9 Test equipment utilized	
2.4.10 Tissue simulating liquids: dielectric properties	
2.4.11 Tissue simulating liquids: parameters	
2.4.12 Measurement uncertainty evaluation for SAR test	
2.4.13 Measurement uncertainty evaluation for system validation	
2.4.14 System validation	
2.4.15 Validation procedure	21
2.5 Test results (Head and Body SAR)	
2.5.1 General description of test procedures	24
2.6 Test results (conducted power measurement)	
2.6.1 Multiple Transmitter Information	
•	
Annex 1 System performance verification	26
Annex 2 Measurement results (printout from DASY TM)	
Annex 2.1 PCS 850 MHz head	
Annex 2.2 PCS 850 MHz body	
Annex 2.3 PCS 1900 MHz head	
Annex 2.4 GSM 1800 MHz body	
Annex 2.5 Z-axis scans	
Annex 3 RF Technical Brief Cover Sheet acc. to RSS-102	
Annex 3 RF Technical Brief Cover Sheet acc. to RSS-102	
Annex 4 Photo documentation	
Annex 5 Calibration parameters	98

1 General Information

1.1 Notes

The test results of this test report relate exclusively to the test item specified in 1.5. The CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the CETECOM ICT Services GmbH.

1.1.1 Statement of Compliance

The SAR values found for the AAC-1052191-BV **GSM Mobile phone** are below the maximum recommended levels of 1.6 W/Kg as averaged over any 1 g tissue according to the FCC rule §2.1093, the ANSI/IEEE C 95.1:1999, the NCRP Report Number 86 for uncontrolled environment, according to the Health Canada's Safety Code 6 and the Industry Canada Radio Standards Specification RSS-102 for General Population/Uncontrolled exposure.

For body worn operation, this device has been tested and meets FCC RF exposure guidelines when used with any accessory that contains no metal and that positions the handset a minimum of 15 mm from the body. Use of other accessories may not ensure compliance with FCC RF exposure guidelines.

The measurement together with the test system set-up is described in chapter 2.3 of this test report. A detailed description of the equipment under test can be found in chapter 1.5.

•
:

2008-07-21 Oleksandr Hnatovskiy

Date Name Signature

Technical responsibility for area of testing:

2008-07-21 Thomas Vogler

Date Name Signature

As of 2008-07-21 Page 3 of 98

CETECOM ICT Services GmbH

Test report no.: 2-4883-47-03/08

1.2 Testing laboratory

CETECOM ICT Services GmbH Untertuerkheimer Straße 6-10, 66117 Saarbruecken Germany

Telephone: + 49 681 598 - 0 Fax: + 49 681 598 - 8475

e-mail: info@ict.cetecom.de
Internet: http://www.cetecom-ict.de

State of accreditation: The Test laboratory (area of testing) is accredited according to DIN EN

ISO/IEC 17025. DAR registration number: DAT-P-176/94-D1

Test location, if different from CETECOM ICT Services GmbH

Name: --Street: --Town: --Country: --Phone: --Fax: ---

1.3 Details of applicant

Name: Sony Ericsson Mobile Communications AB

Street: Nya Vattentornet
Town: 22188 Lund
Country: Sweden

Contact: Mr. Peter Lindeborg Telephone: +46-46-212-6180

1.4 Application details

Date of receipt of application: 2008-07-07
Date of receipt of test item: 2008-07-07
Start/Date of test: 2008-07-07
End of test: 2008-07-16

Person(s) present during the test: ---

As of 2008-07-21 Page 4 of 98

CETECOM ICT Services GmbH

Test report no.: 2-4883-47-03/08

1.5 Test item

Description of the test item:

Type identification:

FCC-ID:

IC-ID:

Serial number:

GSM Mobile phone
AAC-1052191-BV
PY7A1052191
4170B-A1052191
CB5111K87ZK

Manufacturer:

Name: Sony Ericsson Mobile Communications AB

Street: Nya Vattentornet
Town: 22188 Lund
Country: Sweden

additional information on the DUT:					
device type:	portable device	portable device			
IMEI No:	00440107-475829-7				
exposure category:	uncontrolled environment / ge	eneral population			
test device production information	production unit				
device operating configurations:					
operating mode(s)	GSM, DCS, PCS, Bluetooth				
modulation	GMSK, 8-PSK				
GPRS mobile station class:	В				
GPRS multislot class:	10	voice mode :			
EGPRS multislot class	10	voice mode :			
maximum no. of timeslots in uplink:	2				
operating frequency range(s)	transmitter frequency range	receiver frequency range			
PCS 1900 (tested):	1850.2 MHz ~ 1909.8 MHz	1930.2 MHz ~ 1989.8 MHz			
PCS 850 (tested):	824.2 MHz ~ 848.8 MHz	869.2 MHz ~ 893.8 MHz			
DCS 1800	1710 MHz ~ 1785 MHz	1805 MHz ~ 1880 MHz			
GSM 900	880 MHz ~ 915 MHz	925 MHz ~ 960 MHz			
Power class:	1, tested with power level 0 (1	1900 MHz band)			
	4, tested with power level 5 (
measured peak output power	850 MHz band: 33.24dBm (GMSK); 30.82dBm (8-PSK)			
(conducted):	1900 MHz band: 30.41dBm (GMSK); 29.48dBm (8-PSK)			
test channels (low-mid-high):	128-190-251 (850 MHz band				
	512-661-810 (1900 MHz band	d)			
hardware version :	AP1.2				
software version:	R3DA008				
antenna type:	Integrated antenna				
accessories/body-worn onfigurations:	Stereo headset				
battery options :	Sony Ericsson Battery BST-3	3 Li-Polymer 3.6V 950mAh			

As of 2008-07-21 Page 5 of 98

1.6 Test specification(s)

Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01)

IEEE P1528/D1.2 (April 21, 2003)

RSS-102: Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands (Issue 2 of November 2005)

Canada's Safety Code 6: Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz (99-EHD-237)

IEEE Std C95.3 – 1991, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields – RF and Microwave.

IEEE Std C95.1 – 1999, IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz – 300 GHz.

1.6.1 RF exposure limits

Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational
Spatial Peak SAR* (Brain)	1.60 mW/g	8.00 mW/g
Spatial Average SAR** (Whole Body)	0.08 mW/g	0.40 mW/g
Spatial Peak SAR*** (Hands/Feet/Ankle/Wrist)	4.00 mW/g	20.00 mW/g

Table 1: RF exposure limits

The limit applied in this test report is shown in **bold** letters

Notes:

- * The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time
- ** The Spatial Average value of the SAR averaged over the whole body.
- *** The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

As of 2008-07-21 Page 6 of 98

CETECOM ICT Services GmbH

Test report no.: 2-4883-47-03/08

2 Technical test

2.1 Summary of test results

No deviations from the technical specification(s) were ascertained in the course of the tests performed.	
The deviations as specified in 2.5 were ascertained in the course of the tests performed.	

2.2 Test environment

General Environment conditions in the test area are as follows:

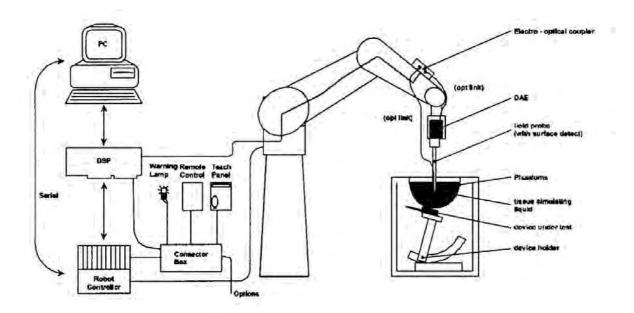
Ambient temperature: $20^{\circ}\text{C} - 24^{\circ}\text{C}$ Tissue simulating liquid: $20^{\circ}\text{C} - 24^{\circ}\text{C}$ Humidity: 40% - 50%

Exact temperature values for each test are shown in the table(s) under 2.5. and/or on the measurement plots.

2.3 Measurement and test set-up

The measurement system is described in chapter 2.4.

The test setup for the system validation can be found in chapter 2.4.14.


A description of positioning and test signal control can be found in chapter 2.5 together with the test results.

As of 2008-07-21 Page 7 of 98

2.4 Measurement system

2.4.1 System Description

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- A unit to operate the optical surface detector which is connected to the EOC.
- The <u>Electro-Optical Coupler (EOC)</u> performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY4 measurement server.
- The DASY4 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2000
- DASY4 software and SEMCAD data evaluation software.
- Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- System validation dipoles allowing to validate the proper functioning of the system.

As of 2008-07-21 Page 8 of 98

2.4.2 Test environment

The DASY4 measurement system is placed at the head end of a room with dimensions:

 $5 \times 2.5 \times 3 \text{ m}^3$, the SAM phantom is placed in a distance of 75 cm from the side walls and 1.1m from the rear wall. Above the test system a 1.5 x 1.5 m² array of pyramid absorbers is installed to reduce reflections from the ceiling.

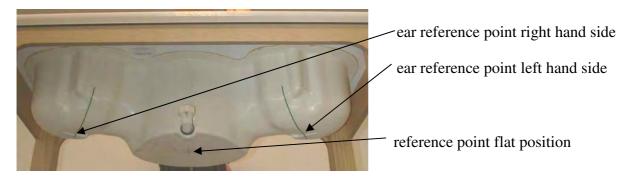
Picture 1 of the photo documentation shows a complete view of the test environment.

The system allows the measurement of SAR values larger than 0.005 mW/g.

2.4.3 Probe description

Isotropic E-Field Probe ET3DV6 for Dosimetric Measurements

Technical data	according to manufacturer information
Construction	Symmetrical design with triangular core
	Built-in optical fiber for surface detection system
	Built-in shielding against static charges
	PEEK enclosure material (resistant to organic
	solvents, e.g., glycolether)
Calibration	In air from 10 MHz to 2.5 GHz
	In head tissue simulating liquid (HSL) at 900 (800-
	1000) MHz and 1.8 GHz (1700-1910 MHz)
	(accuracy \pm 9.5%; k=2) Calibration for other liquids
	and frequencies upon request
Frequency	10 MHz to 3 GHz (dosimetry); Linearity: ± 0.2 dB
- 1	(30 MHz to 3 GHz)
Directivity	± 0.2 dB in HSL (rotation around probe axis)
•	± 0.4 dB in HSL (rotation normal to probe axis)
Dynamic range	$5 \mu \text{W/g to} > 100 \text{ mW/g}$; Linearity: $\pm 0.2 \text{ dB}$
Optical Surface Detection	± 0.2 mm repeatability in air and clear liquids over
	diffuse reflecting surfaces (ET3DV6 only)
Dimensions	Overall length: 330 mm
	Tip length: 16 mm
	Body diameter: 12 mm
	Tip diameter: 6.8 mm
	Distance from probe tip to dipole centers: 2.7 mm
Application	General dosimetry up to 3 GHz
	Compliance tests of mobile phones
	Fast automatic scanning in arbitrary phantoms
	(ET3DV6)


As of 2008-07-21 Page 9 of 98

2.4.4 Phantom description

The used SAM Phantom meets the requirements specified in Edition 01-01 of Supplement C to OET Bulletin 65 for Specific Absorption Rate (SAR) measurements.

The phantom consists of a fibreglass shell integrated in a wooden table. It allows left-hand and right-hand head as well as body-worn measurements with a maximum liquid depth of 18 cm in head position and 22 cm in planar position (body measurements). The thickness of the Phantom shell is 2 mm +/- 0.1 mm.

2.4.5 Device holder description

The DASY4 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. This device holder is used for standard mobile phones or PDA's only. If necessary an additional support of polystyrene material is used.

Larger DUT's (e.g. notebooks) cannot be tested using this device holder. Instead a support of bigger polystyrene cubes and thin polystyrene plates is used to position the DUT in all relevant positions to find and measure spots with maximum SAR values.

Therefore those devices are normally only tested at the flat part of the SAM.

As of 2008-07-21 Page 10 of 98

2.4.6 Scanning procedure

The DASY4 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

- The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. +/- 5 %.
- The "surface check" measurement tests the optical surface detection system of the DASY4 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within ± 30°.)
- The "area scan" measures the SAR above the DUT or verification dipole on a parallel plane to the surface. It is used to locate the approximate location of the peak SAR with 2D spline interpolation. The robot performs a stepped movement along one grid axis while the local electrical field strenth is measured by the probe. The probe is touching the surface of the SAM during acquisition of measurement values. The standard scan uses large grid spacing for faster measurement. Standard grid spacing for head measurements is 15 mm in x- and y- dimension. If a finer resolution is needed, the grid spacing can be reduced. Grid spacing and orientation have no influence on the SAR result. For special applications where the standard scan method does not find the peak SAR within the grid, e.g. mobile phones with flip cover, the grid can be adapted in orientation. Results of this coarse scan are shown in annex 2.
- A "7x7x7 zoom scan" measures the field in a volume around the 2D peak SAR value acquired in the previous "coarse" scan. This is a fine 7x7 grid where the robot additionally moves the probe in 7 steps along the z-axis away from the bottom of the Phantom. Grid spacing for the cube measurement is 5 mm in x and y-direction and 5 mm in z-direction. DASY4 is also able to perform repeated zoom scans if more than 1 peak is found during area scan. In this document, the evaluated peak 1g and 10g averaged SAR values are shown in the 2D-graphics in annex 2. Test results relevant for the specified standard (see chapter 1.6.) are shown in table form in chapter 2.5.
- A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 7x7x7 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 2mm steps. This measurement shows the continuity of the liquid and can depending in the field strength also show the liquid depth. A z-axis scan of the measurement with maximum SAR value is shown in annex 2.

As of 2008-07-21 Page 11 of 98

2.4.7 Spatial Peak SAR Evaluation

The spatial peak SAR - value for 1 and 10 g is evaluated after the Cube measurements have been done. The basis of the evaluation are the SAR values measured at the points of the fine cube grid consisting of 7 x 7 x 7 points. The algorithm that finds the maximal averaged volume is separated into three different stages.

- The data between the dipole center of the probe and the surface of the phantom are extrapolated. This data cannot be measured since the center of the dipole is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is about 1 mm (see probe calibration sheet). The extrapolated data from a cube measurement can be visualized by selecting 'Graph Evaluated'.
- The maximum interpolated value is searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10 g) are computed using the 3d-spline interpolation algorithm. If the volume cannot be evaluated (i.e., if a part of the grid was cut off by the boundary of the measurement area) the evaluation will be started on the corners of the bottom plane of the cube.
- All neighboring volumes are evaluated until no neighboring volume with a higher average value is found

Extrapolation

The extrapolation is based on a least square algorithm [W. Gander, Computermathematik, p.168-180]. Through the points in the first 3 cm along the z-axis, polynomials of order four are calculated. These polynomials are then used to evaluate the points between the surface and the probe tip. The points, calculated from the surface, have a distance of 1 mm from each other.

Interpolation

The interpolation of the points is done with a 3d-Spline. The 3d-Spline is composed of three one-dimensional splines with the "Not a knot"-condition [W. Gander, Computermathematik, p.141-150] (x, y and z -direction) [Numerical Recipes in C, Second Edition, p.123ff].

Volume Averaging

At First the size of the cube is calculated. Then the volume is integrated with the trapezoidal algorithm. 8000 points (20x20x20) are interpolated to calculate the average.

Advanced Extrapolation

DASY4 uses the advanced extrapolation option which is able to compansate boundary effects on E-field probes.

As of 2008-07-21 Page 12 of 98

2.4.8 Data Storage and Evaluation

Data Storage

The DASY4 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation by SEMCAD

Device parameters:

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe pa	ırameters: -	Sensitivity	N	$lorm_i, a_{i0},$	a_{i1}, a_{i2}
----------	--------------	-------------	---	-------------------	------------------

Conversion factor
 Diode compression point
 Frequency
 TonvFi
 Dcpi
 f

- Crest factor cf Media parameters: - Conductivity σ

- Density ho

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY4 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

As of 2008-07-21 Page 13 of 98

CETECOM ICT Services GmbH

Test report no.: 2-4883-47-03/08

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot cf/dcp_i$$

with V_i = compensated signal of channel i (i = x, y, z) U_i = input signal of channel i (i = x, y, z)

> cf = crest factor of exciting field (DASY parameter) dcp_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$

H-field probes: $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1}f + a_{i2}f^2)/f$

with V_i = compensated signal of channel i (i = x, y, z)

Norm_i = sensor sensitivity of channel i (i = x, y, z)

 $[mV/(V/m)^2]$ for E-field Probes

ConvF = sensitivity enhancement in solution

 a_{ij} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

E_i = electric field strength of channel i in V/m H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot}^2 \cdot \sigma) / (\rho \cdot 1000)$$

with SAR = local specific absorption rate in mW/g

 E_{tot} = total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{\text{pwe}} = E_{tot}^2 / 3770$$
 or $P_{\text{pwe}} = H_{tot}^2 \cdot 37.7$

with P_{pwe} = equivalent power density of a plane wave in mW/cm²

 E_{tot} = total electric field strength in V/m H_{tot} = total magnetic field strength in A/m

As of 2008-07-21 Page 14 of 98

2.4.9 Test equipment utilized

This table gives a complete overview of the SAR measurement equipment

Devices used during the test described in chapter 2.5. are marked \boxtimes

	Manufacturer	Device	Туре	Serial number	Date of last calibration)*
	Schmid & Partner Engineering AG	Dosimetric E-Field Probe	ET3DV6	1558	August 23, 2007
	Schmid & Partner Engineering AG	Dosimetric E-Field Probe	ET3DV6	1559	January 23, 2008
	Schmid & Partner Engineering AG	900 MHz System Validation Dipole	D900V2	102	August 23, 2007
	Schmid & Partner Engineering AG	1800 MHz System Validation Dipole	D1800V2	287	August 21, 2007
	Schmid & Partner Engineering AG	1900 MHz System Validation Dipole	D1900V2	5d009	August 21, 2007
	Schmid & Partner Engineering AG	2450 MHz System Validation Dipole	D2450V2	710	August 20, 2007
	Schmid & Partner Engineering AG	Data acquisition electronics	DAE3V1	413	January 18, 2008
	Schmid & Partner Engineering AG	Software	DASY 4 V4.5		N/A
	Schmid & Partner Engineering AG	Phantom	SAM		N/A
	Rohde & Schwarz	Universal Radio Communication Tester	CMU 200	832221/055	March 20, 2008
	Hewlett Packard)*	Network Analyser 300 kHz to 6 GHz	8753C	2937U00269	March 13, 2007
	Hewlett Packard)*	Network Analyser 300 kHz to 6 GHz	85047A	2936A00872	March 13, 2007
	Hewlett Packard	Dielectric Probe Kit	85070C	US99360146	N/A
	Hewlett Packard	Signal Generator	8665A	2833A00112	November 12, 2007
	Amplifier	Amplifier	25S1G4	20452	N/A
<u> </u>	Reasearch		(25 Watt)		
	Rohde & Schwarz	Power Meter	NRP	101367	January 9, 2008
X	Rohde & Schwarz	Power Meter Sensor	NRP Z22	100227	January 9, 2008
\boxtimes	Rohde & Schwarz	Power Meter Sensor	NRP Z22	100234	January 9, 2008

^{)* :} Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

As of 2008-07-21 Page 15 of 98

2.4.10 Tissue simulating liquids: dielectric properties

The following materials are used for producing the tissue-equivalent materials.

(liquids used for tests described in chapter 2.5. are marked with \boxtimes):

Ingredients	Frequency (MHz)					
(% of weight)						
frequency band	<u> </u>	⊠ 835	900	1800	∑ 1900	2450
Tissue Type	Head	Head	Head	Head	Head	Head
Water	38.56	41.45	40.92	52.64	54.9	62.7
Salt (NaCl)	3.95	1.45	1.48	0.36	0.18	0.5
Sugar	56.32	56.0	56.5	0.0	0.0	0.0
HEC	0.98	1.0	1.0	0.0	0.0	0.0
Bactericide	0.19	0.1	0.1	0.0	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	36.8
DGBE	0.0	0.0	0.0	47.0	44.92	0.0

Table 2: Head tissue dielectric properties

Ingredients	Frequency (MHz)					
(% of weight)						
frequency band	<u> </u>	⊠ 835	900	1800	∑ 1900	2450
Tissue Type	Body	Body	Body	Body	Body	Body
Water	51.16	52.4	56.0	69.91	69.91	73.2
Salt (NaCl)	1.49	1.40	0.76	0.13	0.13	0.04
Sugar	46.78	45.0	41.76	0.0	0.0	0.0
HEC	0.52	1.0	1.21	0.0	0.0	0.0
Bactericide	0.05	0.1	0.27	0.0	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0
DGBE	0.0	0.0	0.0	29.96	29.96	26.7

Table 3: Body tissue dielectric properties

Salt: 99+% Pure Sodium Chloride Sugar: 98+% Pure Sucrose Water: De-ionized, $16M\Omega$ + resistivity HEC: Hydroxyethyl Cellulose

DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100(ultra pure): Polyethylene glycol mono [4-(1,1,3,3-tetramethylbutyl)phenyl]ether

As of 2008-07-21 Page 16 of 98

2.4.11 Tissue simulating liquids: parameters

Used Target	Target		Meas	sured	Measured
Frequency	Head '	Head Tissue		Head Tissue	
[MHz]	Permittivity	Conductivity	Permittivity Conductivity		
		[S/m]		[S/m]	
835	41.5	0.90	42.7	0.89	2008-07-07
900	41.5	0.97	42.0	0.95	2008-07-07
1900	40.0	1.40	39.9	1.39	2008-07-15
1900	40.0	1.40	39.9	1.39	2008-07-16

Table 4: Parameter of the head tissue simulating liquid

Used Target	Target		Meas	sured	Measured
Frequency	Body '	Body Tissue		Body Tissue	
[MHz]	Permittivity	Conductivity	Permittivity	Conductivity	
		[S/m]		[S/m]	
835	55.2	0.97	54.2	0.97	2008-07-14
900	55.0	1.05	53.6	1.04	2008-07-14
1900	53.3	1.52	53.2	1.53	2008-07-11

Table 5: Parameter of the body tissue simulating liquid

Note: The dielectric properties have been measured using the contact probe method at 22°C.

As of 2008-07-21 Page 17 of 98

2.4.12 Measurement uncertainty evaluation for SAR test

The overall combined measurement uncertainty of the measurement system is \pm 10,3% (K=1). The expanded uncertainty (k=2) is assessed to be \pm 20.6%

This measurement uncertainty budget is suggested by IEEE P1528 and determined by Schmid & Partner Engineering AG. The breakdown of the individual uncertainties is as follows:

Error Sources	Uncertainty Value	Probability Distribution	Divi- sor	c _i	c _i 10g	Standard Uncertainty 1g	Standard Uncertainty 10g	v _i ² or v _{eff}
Measurement System								
Probe calibration	± 4.8%	Normal	1	1	1	± 4.8%	± 4.8%	∞
Axial isotropy	± 4.7%	Rectangular	√3	0.7	0.7	± 1.9%	± 1.9%	∞
Hemispherical isotropy	± 9.6%	Rectangular	√3	0.7	0.7	± 3.9%	± 3.9%	∞
Spatial resolution	± 0.0%	Rectangular	√3	1	1	± 0.0%	± 0.0%	8
Boundary effects	± 1.0%	Rectangular	√3	1	1	± 0.6%	± 0.6%	8
Probe linearity	± 4.7%	Rectangular	√3	1	1	± 2.7%	± 2.7%	8
System detection limits	± 1.0%	Rectangular	√3	1	1	± 0.6%	± 0.6%	8
Readout electronics	± 1.0%	Normal	1	1	1	± 1.0%	± 1.0%	8
Response time	± 0.8%	Rectangular	√3	1	1	± 0.5%	± 0.5%	8
Integration time	± 2.6%	Rectangular	√3	1	1	± 1.5%	± 1.5%	8
RF ambient conditions	± 3.0%	Rectangular	√3	1	1	± 1.7%	± 1.7%	8
Probe positioner	± 0.4%	Rectangular	√3	1	1	± 0.2%	± 0.2%	8
Probe positioning	± 2.9%	Rectangular	√3	1	1	± 1.7%	± 1.7%	8
Max. SAR evaluation	± 1.0%	Rectangular	√3	1	1	± 0.6%	± 0.6%	8
Test Sample Related								
Device positioning	± 2.9%	Normal	1	1	1	± 2.9%	± 2.9%	145
Device holder uncertainty	± 3.6%	Normal	1	1	1	± 3.6%	± 3.6%	5
Power drift	± 5.0%	Rectangular	√3	1	1	± 2.9%	± 2.9%	8
Phantom and Set-up								
Phantom uncertainty	± 4.0%	Rectangular	√3	1	1	± 2.3%	± 2.3%	8
Liquid conductivity (target)	± 5.0%	Rectangular	√3	0.64	0.43	± 1.8%	± 1.2%	8
Liquid conductivity (meas.)	± 2.5%	Normal	1	0.64	0.43	± 1.6%	± 1.1%	∞
Liquid permittivity (target)	± 5.0%	Rectangular	√3	0.6	0.49	± 1.7%	± 1.4%	∞
Liquid permittivity (meas.)	± 2.5%	Normal	1	0.6	0.49	± 1.5%	± 1.2%	8
Combined Uncertainty						± 10.3%	± 10.0%	330
Expanded Std. Uncertainty						± 20.6%	± 20.1%	

Table 6: Measurement uncertainties

As of 2008-07-21 Page 18 of 98

2.4.13 Measurement uncertainty evaluation for system validation

The overall combined measurement uncertainty of the measurement system is \pm 8.4% (K=1).

The expanded uncertainty (k=2) is assessed to be $\pm 16.8\%$

This measurement uncertainty budget is suggested by IEEE P1528 and determined by Schmid & Partner Engineering AG. The breakdown of the individual uncertainties is as follows:

Error Sources	Uncertainty Value	Probability Distribution	Divi- sor	c _i	c _i 10g	Standard Uncertainty 1g	Standard Uncertainty 10g	v _i ² or v _{eff}
Measurement System								
Probe calibration	± 4.8%	Normal	1	1	1	± 4.8%	± 4.8%	∞
Axial isotropy	± 4.7%	Rectangular	√3	0.7	0.7	± 1.9%	± 1.9%	∞
Hemispherical isotropy	± 0.0%	Rectangular	√3	0.7	0.7	± 0.0%	± 3.9%	∞
Boundary effects	± 1.0%	Rectangular	√3	1	1	± 0.6%	± 0.6%	∞
Probe linearity	± 4.7%	Rectangular	√3	1	1	± 2.7%	± 2.7%	∞
System detection limits	± 1.0%	Rectangular	√3	1	1	± 0.6%	± 0.6%	∞
Readout electronics	± 1.0%	Normal	1	1	1	± 1.0%	± 1.0%	∞
Response time	± 0.0%	Rectangular	√3	1	1	± 0.0%	± 0.0%	∞
Integration time	± 0.0%	Rectangular	√3	1	1	± 0.0%	± 0.0%	∞
RF ambient conditions	± 3.0%	Rectangular	√3	1	1	± 1.7%	± 1.7%	∞
Probe positioner	± 0.4%	Rectangular	√3	1	1	± 0.2%	± 0.2%	∞
Probe positioning	± 2.9%	Rectangular	√3	1	1	± 1.7%	± 1.7%	∞
Max. SAR evaluation	± 1.0%	Rectangular	√3	1	1	± 0.6%	± 0.6%	∞
Test Sample Related								
Dipole axis to liquid distance	± 2.0%	Normal	1	1	1	± 1.2%	± 1.2%	∞
Power drift	± 4.7%	Rectangular	√3	1	1	± 2.7%	± 2.7%	∞
Phantom and Set-up								
Phantom uncertainty	± 4.0%	Rectangular	√3	1	1	± 2.3%	± 2.3%	∞
Liquid conductivity (target)	± 5.0%	Rectangular	√3	0.64	0.43	± 1.8%	± 1.2%	∞
Liquid conductivity (meas.)	± 2.5%	Normal	1	0.64	0.43	± 1.6%	± 1.1%	∞
Liquid permittivity (target)	± 5.0%	Rectangular	√3	0.6	0.49	± 1.7%	± 1.4%	∞
Liquid permittivity (meas.)	± 2.5%	Normal	1	0.6	0.49	± 1.5%	± 1.2%	∞
Combined Uncertainty						± 8.4%	± 8.1%	
Expanded Std. Uncertainty						± 16.8%	± 16.2%	

Table 7: Measurement uncertainties

As of 2008-07-21 Page 19 of 98

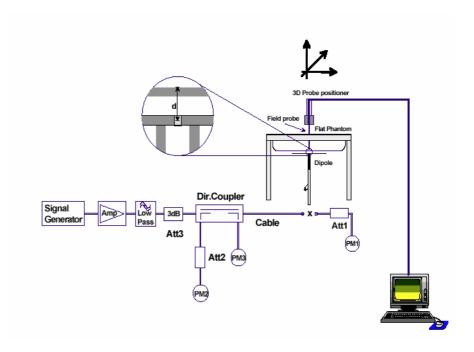
2.4.14 System validation

The system validation is performed for verifying the accuracy of the complete measurement system and performance of the software. The system validation is performed with tissue equivalent material according to IEEE P1528 (described above). The following table shows validation results for all frequency bands and tissue liquids used during the tests of the test item described in chapter 1.5. (graphic plot(s) see annex 1).

Validation Kit	Frequency	Target Peak SAR	Target SAR _{1g} (1000 mW)	Measured Peak SAR	Measured SAR _{1g}	Measured date
		(1000 mW)	(+/- 10 %)			
		(+/- 10%)				
D900V2	900 MHz	15.2 mW/s	10.2 mW/s	146 m W/a	10.1 mW/s	2000 07 07
S/N: 102	head	15.2 mW/g	10.3 mW/g	14.6 mW/g	10.1 mW/g	2008-07-07
D900V2	900 MHz	15.2 mW/g	10.6 mW/g	16.6 mW/g	11.3 mW/g	2008-07-14
S/N: 102	body	13.2 m vv/g	10.0 m vv/g	10.0 m vv/g	11.5 m w/g	2000-07-14
D1900V2	1900 MHz	640 mW/a	25 0 mW/a	61 5 mW/a	26 5 mW/a	2008-07-15
S/N: 5d009	head	64.0 mW/g	35.9 mW/g	61.5 mW/g	36.5 mW/g	2000-07-15
D1900V2	1900 MHz	640 mW/a	25 0 mW/a	67.0 mW/s	20.2 mW/s	2009 07 16
S/N: 5d009	head	64.0 mW/g	35.9 mW/g	67.9 mW/g	39.2 mW/g	2008-07-16
D1900V2	1900 MHz	62.2 mW/a	27.7 mW/a	67.2 mW/a	40.2 mW/a	2009 07 11
S/N: 5d009	body	63.2 mW/g	37.7 mW/g	67.3 mW/g	40.2 mW/g	2008-07-11

Table 8: Results system validation

As of 2008-07-21 Page 20 of 98



2.4.15 Validation procedure

The validation is performed by using a validation dipole which is positioned parallel to the planar part of the SAM phantom at the reference point. The distance of the dipole to the SAM phantom is determined by a plexiglass spacer. The dipole is connected to the signal source consisting of signal generator and amplifier via a directional coupler, N-connector cable and adaption to SMA. It is fed with a power of 1000 mW. To adjust this power a power meter is used. The power sensor is connected to the cable before the validation to measure the power at this point and do adjustments at the signal generator. At the outputs of the directional coupler both return loss as well as forward power are controlled during the validation to make sure that emitted power at the dipole is kept constant. This can also be checked by the power drift measurement after the test (result on plot).

Validation results have to be equal or near the values determined during dipole calibration (target SAR in table above) with the relevant liquids and test system.

As of 2008-07-21 Page 21 of 98

2.5 Test results (Head and Body SAR)

The table contains the measured SAR values averaged over a mass of 1 g							
Channel / frequency	Position	Left hand position	Right hand position	Limit	Liquid temperature		
	Slide-in						
128 / 824.2 MHz	cheek	0.898 W/kg	0.949 W/kg	1.6 W/kg	22.1/22.4 °C		
190 / 836.6 MHz	cheek	1.060 W/kg	1.070 W/kg	1.6 W/kg	22.1/22.4 °C		
251 / 848.8 MHz	cheek	1.140 W/kg	1.290 W/kg	1.6 W/kg	22.1/22.4 °C		
128 / 824.2 MHz	tilted 15°	0.511 W/kg	0.559 W/kg	1.6 W/kg	22.1/22.3 °C		
190 / 836.6 MHz	tilted 15°	0.558 W/kg	0.593 W/kg	1.6 W/kg	22.1/22.3 °C		
251 / 848.8 MHz	tilted 15°	0.658 W/kg	0.677 W/kg	1.6 W/kg	22.1/22.3 °C		
	Slide opened						
128 / 824.2 MHz	cheek	1.160 W/kg	1.190 W/kg	1.6 W/kg	22.2/22.2 °C		
190 / 836.6 MHz	cheek	1.130 W/kg	1.230 W/kg	1.6 W/kg	22.2/22.2 °C		
251 / 848.8 MHz	cheek	1.190 W/kg	1.310 W/kg	1.6 W/kg	22.2/22.2 °C		
128 / 824.2 MHz	tilted 15°	0.632 W/kg	0.721 W/kg	1.6 W/kg	22.1/22.0 °C		
190 / 836.6 MHz	tilted 15°	0.672 W/kg	0.648 W/kg	1.6 W/kg	22.1/22.0 °C		
251 / 848.8 MHz	tilted 15°	0.659 W/kg	0.719 W/kg	1.6 W/kg	22.1/22.0 °C		

Table 9: Test results (Head SAR 850 MHz)

The table contains the measured SAR values averaged over a mass of 1 g						
Channel / frequency	Position	Body worn	Limit	Liquid temperature		
128 / 824.2 MHz	front	0.624 W/kg	1.6 W/kg	21.9 °C		
190 / 836.6 MHz	front	0.667 W/kg	1.6 W/kg	21.8 °C		
251 / 848.8 MHz	front	0.673 W/kg	1.6 W/kg	21.7 °C		
128 / 824.2 MHz	rear	1.160 W/kg	1.6 W/kg	21.7 °C		
190 / 836.6 MHz	rear	1.260 W/kg	1.6 W/kg	21.7 °C		
251 / 848.8 MHz	rear	1.250 W/kg	1.6 W/kg	21.7 °C		
190 / 836.6 MHz	rear EDGE	0.648 W/kg	1.6 W/kg	21.6 °C		
190 / 836.6 MHz	rear 1TS	0.790 W/kg	1.6 W/kg	21.6 °C		

Table 10: Test results (Body SAR 850 MHz)

Note: The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR limit (< 0.8 W/kg), testing at the high and low channels is optional.

Tests in body position were performed with 15 mm air gap between DUT and SAM to simulate the use of a non-metallic belt-clip or holster.

As of 2008-07-21 Page 22 of 98

The table contains the measured SAR values averaged over a mass of 1 g							
Channel / frequency	Position	Left hand position	Right hand position	Limit	Liquid temperature		
	Slide-in						
512 / 1850.2 MHz	cheek	0.735 W/kg	0.597 W/kg	1.6 W/kg	22.5/21.3 °C		
661 / 1880.0 MHz	cheek	0.717 W/kg	0.654 W/kg	1.6 W/kg	22.4/21.3 °C		
810 / 1909.8 MHz	cheek	0.709 W/kg	0.847 W/kg	1.6 W/kg	22.3/21.3 °C		
512 / 1850.2 MHz	tilted 15°	0.314 W/kg	0.269 W/kg	1.6 W/kg	22.2/22.5 °C		
661 / 1880.0 MHz	tilted 15°	0.390 W/kg	0.315 W/kg	1.6 W/kg	22.1/22.5 °C		
810 / 1909.8 MHz	tilted 15°	0.485 W/kg	0.384 W/kg	1.6 W/kg	22.0/22.5 °C		
	Slide opened						
512 / 1850.2 MHz	cheek	0.471 W/kg	0.442 W/kg	1.6 W/kg	21.8/21.6 °C		
661 / 1880.0 MHz	cheek	0.517 W/kg	0.456 W/kg	1.6 W/kg	21.7/21.6 °C		
810 / 1909.8 MHz	cheek	0.568 W/kg	0.476 W/kg	1.6 W/kg	21.7/21.6 °C		
512 / 1850.2 MHz	tilted 15°	0.287 W/kg	0.367 W/kg	1.6 W/kg	21.9/21.6 °C		
661 / 1880.0 MHz	tilted 15°	0.304 W/kg	0.385 W/kg	1.6 W/kg	21.8/21.6 °C		
810 / 1909.8 MHz	tilted 15°	0.372 W/kg	0.422 W/kg	1.6 W/kg	21.8/21.6 °C		

Table 11: Test results (Head SAR 1900 MHz)

The table contains the measured SAR values averaged over a mass of 1 g						
Channel / frequency	Position	Body worn	Limit	Liquid temperature		
512 / 1850.2 MHz	front	0.150 W/kg	1.6 W/kg	22.8 °C		
661 / 1880.0 MHz	front	0.134 W/kg	1.6 W/kg	22.8 °C		
810 / 1909.8 MHz	front	0.131 W/kg	1.6 W/kg	22.8 °C		
512 / 1850.2 MHz	rear	0.310 W/kg	1.6 W/kg	22.8 °C		
661 / 1880.0 MHz	rear	0.304 W/kg	1.6 W/kg	22.8 °C		
810 / 1909.8 MHz	rear	0.329 W/kg	1.6 W/kg	22.8 °C		
810 / 1909.8 MHz	rear EDGE	0.211 W/kg	1.6 W/kg	22.8 °C		
810 / 1909.8 MHz	rear 1TS	0.308 W/kg	1.6 W/kg	22.8 °C		

Table 12: Test results (Body SAR 1900 MHz)

Note: The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR limit (< 0.8 W/kg), testing at the high and low channels is optional.

Tests in body position were performed with 15 mm air gap between DUT and SAM to simulate the use of a non-metallic belt-clip or holster.

As of 2008-07-21 Page 23 of 98

2.5.1 General description of test procedures

The DUT is tested using a CMU 200 communications tester as controller unit to set test channels and maximum output power to the DUT, as well as for measuring the conducted peak power.

Test positions as described in the tables above are in accordance with the specified test standard.

Tests in body position are performed with the maximum number of timeslots in uplink.

Tests in head position are performed in voice mode with 1 timeslot unless GPRS/EGPRS function allows parallel voice and data traffic on 2 or more timeslots (see chapter 1.5 for details).

Conducted output power was measured using an integrated RF connector and attached RF cable.

As of 2008-07-21 Page 24 of 98

2.6 Test results (conducted power measurement)

For the measurements a Rohde & Schwarz Radio Communication Tester CMU 200 was used. The output power was measured using an integrated RF connector and attached RF cable. The conducted output power was measured before and after each SAR measurement. The resulting power values were within a 0.2 dB tolerance of the values shown below.

PCS 850						
Channel / frequency	GMSK	8-PSK				
128 / 824.2 MHz	33.24 dBm	30.46 dBm				
190 / 836.6 MHz	33.20 dBm	30.59 dBm				
251 / 848.8 MHz	33.30 dBm	30.82 dBm				
PCS 1900						
Channel / frequency	GMSK	8-PSK				
512 / 1850.2 MHz	30.04 dBm	29.48 dBm				
661 / 1880.0 MHz	30.21 dBm	29.11 dBm				
810 / 1909.8 MHz	30.41 dBm	28.70 dBm				

Table 13: Test results conducted peak power measurement

2.6.1 Multiple Transmitter Information

The DUT incorporates a Bluetooth module with 5 mW output power. At issue date of this test report no additional standalone or simultaneous transmit measurements together with the GSM transmitter were regarded as necessary by the FCC because BT output power remains below 12 mW.

As of 2008-07-21 Page 25 of 98

Annex 1 System performance verification

Date/Time: 2008-07-07 09:43:00Date/Time: 2008-07-07 09:49:23

SystemPerformanceCheck-D850 head 2008-07-07

DUT: Dipole 900 MHz; Type: D900V2; Serial: 102

Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: HSL850 Medium parameters used: f = 900 MHz; $\sigma = 0.95$ mho/m; $\varepsilon_r = 42$; $\rho = 1000$ kg/m³

Phantom section: Flat Section DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(6.24, 6.24, 6.24); Calibrated: 2007-08-23

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

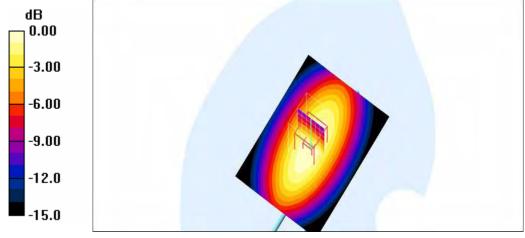
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18

- Phantom: SAM 12; Type: SAM; Serial: 1043

- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

d=15mm, Pin=1000mW/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 10.9 mW/g


d=15mm, Pin=1000mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 111.4 V/m; Power Drift = 0.017 dB

Peak SAR (extrapolated) = 14.6 W/kg

SAR(1 g) = 10.1 mW/g; SAR(10 g) = 6.55 mW/gMaximum value of SAR (measured) = 10.9 mW/g

0 dB = 10.9 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 22.4° C; liquid temperature: 22.5° C

As of 2008-07-21 Page 26 of 98

Date/Time: 2008-07-14 07:47:11Date/Time: 2008-07-14 07:53:30

SystemPerformanceCheck-D900-850 body 2008-07-14

DUT: Dipole 900 MHz; Type: D900V2; Serial: 102

Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: M850 Medium parameters used: f = 900 MHz; $\sigma = 1.04 \text{ mho/m}$; $\varepsilon_r = 53.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(5.92, 5.92, 5.92); Calibrated: 2007-08-23

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

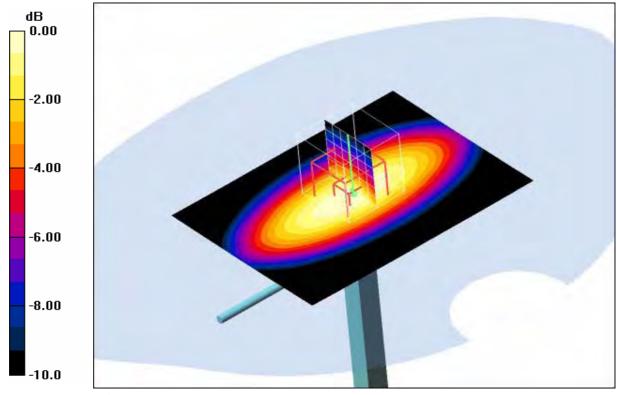
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18

- Phantom: SAM 12; Type: SAM; Serial: 1043

- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

d=15mm, Pin=1000mW/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 12.2 mW/g


d=15mm, Pin=1000mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 112.1 V/m; Power Drift = -0.018 dB

Peak SAR (extrapolated) = 16.6 W/kg

SAR(1 g) = 11.3 mW/g; SAR(10 g) = 7.32 mW/g Maximum value of SAR (measured) = 12.3 mW/g

0 dB = 12.3 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 22.7° C; liquid temperature: 22.6° C

As of 2008-07-21 Page 27 of 98

Date/Time: 2008-07-15 07:52:29Date/Time: 2008-07-15 07:56:45

SystemPerformanceCheck-D1900 head 2008-07-15

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d009

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

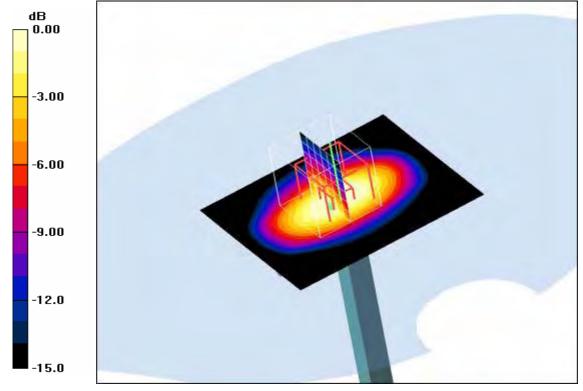
Medium: HSL1900 Medium parameters used: f = 1900 MHz; $\sigma = 1.39 \text{ mho/m}$; $\varepsilon_r = 39.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

d=10mm, Pin=1000mW/Area Scan (51x61x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 45.6 mW/g


d=10mm, Pin=1000mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 181.0 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 61.5 W/kg

SAR(1 g) = 36.5 mW/g; SAR(10 g) = 19.5 mW/gMaximum value of SAR (measured) = 40.9 mW/g

0 dB = 40.9 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 22.3 °C; liquid temperature: 22.3 °C

As of 2008-07-21 Page 28 of 98

Date/Time: 2008-07-16 07:02:50Date/Time: 2008-07-16 07:07:06

SystemPerformanceCheck-D1900 head 2008-07-16

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d009

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

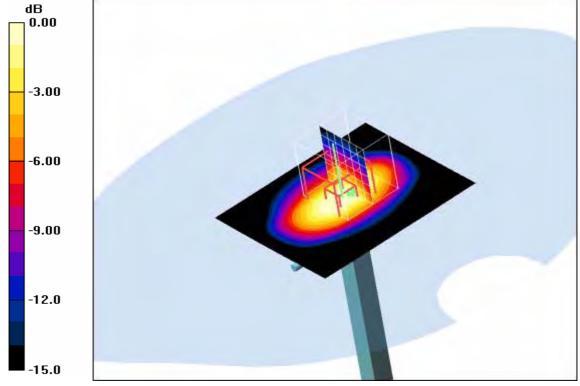
Medium: HSL1900 Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.39 \text{ mho/m}$; $\varepsilon_r = 39.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

d=10mm, Pin=1000mW/Area Scan (51x61x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 48.2 mW/g


d=10mm, Pin=1000mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 185.5 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 67.9 W/kg

SAR(1 g) = 39.2 mW/g; SAR(10 g) = 20.7 mW/g.Maximum value of SAR (measured) = 44.8 mW/g

0 dB = 44.8 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 22.7° C; liquid temperature: 22.5° C

As of 2008-07-21 Page 29 of 98

Date/Time: 2008-07-11 09:41:03Date/Time: 2008-07-11 09:45:12

SystemPerformanceCheck-D1900 body 2008-07-11

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d009

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

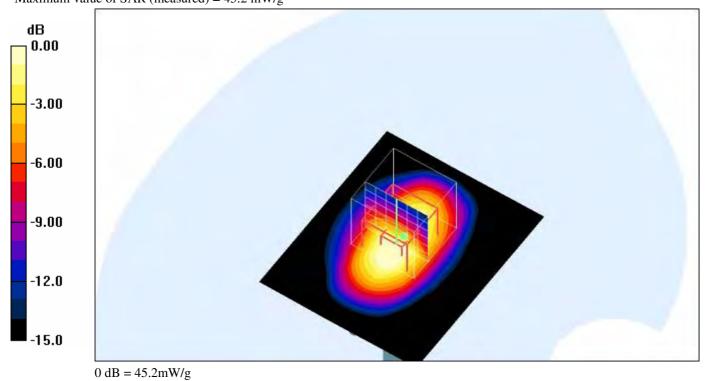
Medium: M1900 Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.53 \text{ mho/m}$; $\varepsilon_r = 53.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(4.46, 4.46, 4.46); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

d=10mm, Pin=1000mW/Area Scan (51x61x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 52.9 mW/g


d=10mm, Pin=1000mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 180.1 V/m; Power Drift = -0.021 dB

Peak SAR (extrapolated) = 67.3 W/kg

SAR(1 g) = 40.2 mW/g; SAR(10 g) = 21.7 mW/gMaximum value of SAR (measured) = 45.2 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 23.4° C; liquid temperature: 22.8° C

As of 2008-07-21 Page 30 of 98

Annex 2 Measurement results (printout from DASY TM)

Remark: results of conducted power measurements: see chapter 2.5/2.6 (if applicable)

Annex 2.1 PCS 850 MHz head

Date/Time: 2008-07-07 16:40:58Date/Time: 2008-07-07 16:47:23

P1528 OET65-LeftHandSide-GSM850

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK

Communication System: PCS 850; Frequency: 824.2 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: f = 824.2 MHz; $\sigma = 0.89 \text{ mho/m}$; $\varepsilon_r = 42.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

- Electronics: DAE3 Sn413; Calibrated: 2008-01-18

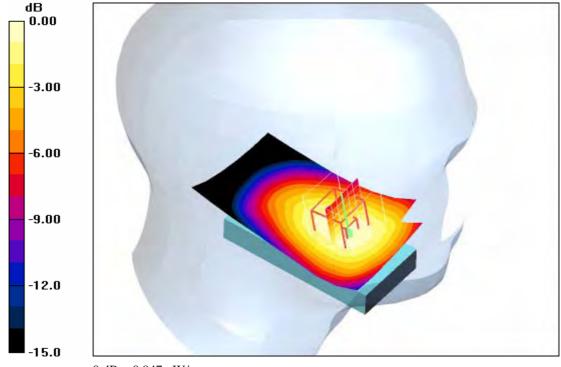
- Phantom: SAM 12; Type: SAM; Serial: 1043

- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - Low/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.935 mW/g

Touch position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 33.5 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 1.18 W/kg

SAR(1 g) = 0.898 mW/g; SAR(10 g) = 0.647 mW/g

Maximum value of SAR (measured) = 0.947 mW/g

0 dB = 0.947 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.8°C; liquid temperature: 22.1°C

As of 2008-07-21 Page 31 of 98

Date/Time: 2008-07-07 16:10:29Date/Time: 2008-07-07 16:16:59

P1528_OET65-LeftHandSide-GSM850

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK Communication System: PCS 850; Frequency: 836.6 MHz; Duty Cycle: 1:8

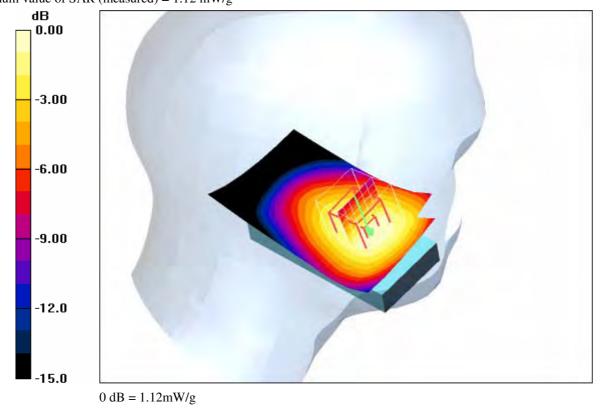
Medium: HSL850 Medium parameters used: f = 836.6 MHz; $\sigma = 0.89 \text{ mho/m}$; $\varepsilon_r = 42.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - Middle/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.13 mW/g


Touch position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 13.1 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 1.38 W/kg

SAR(1 g) = 1.06 mW/g; SAR(10 g) = 0.755 mW/gMaximum value of SAR (measured) = 1.12 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 22.8° C; liquid temperature: 22.1° C

As of 2008-07-21 Page 32 of 98

Date/Time: 2008-07-07 17:05:46Date/Time: 2008-07-07 17:13:20

P1528 OET65-LeftHandSide-GSM850

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK Communication System: PCS 850; Frequency: 848.8 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: f = 848.8 MHz; $\sigma = 0.89 \text{ mho/m}$; $\varepsilon_r = 42.7$; $\rho = 1000 \text{ kg/m}^3$

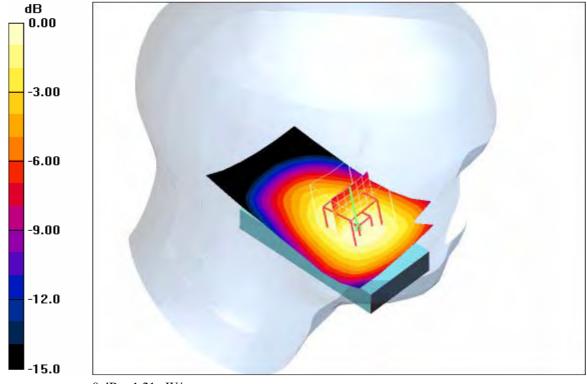
Phantom section: Left Section DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - High/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.22 mW/g

Touch position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 15.9 V/m; Power Drift = 0.021 dB

Peak SAR (extrapolated) = 1.50 W/kg

SAR(1 g) = 1.14 mW/g; SAR(10 g) = 0.819 mW/g

Maximum value of SAR (measured) = 1.21 mW/g

0 dB = 1.21 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.8°C; liquid temperature: 22.1°C

As of 2008-07-21 Page 33 of 98

Date/Time: 2008-07-07 18:10:50Date/Time: 2008-07-07 18:17:06Date/Time: 2008-07-07 18:28:58

P1528 OET65-LeftHandSide-GSM850

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK

Communication System: PCS 850; Frequency: 824.2 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: f = 824.2 MHz; $\sigma = 0.89 \text{ mho/m}$; $\varepsilon_r = 42.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section **DASY4** Configuration:

- Probe: ET3DV6 SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - Low/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.544 mW/g

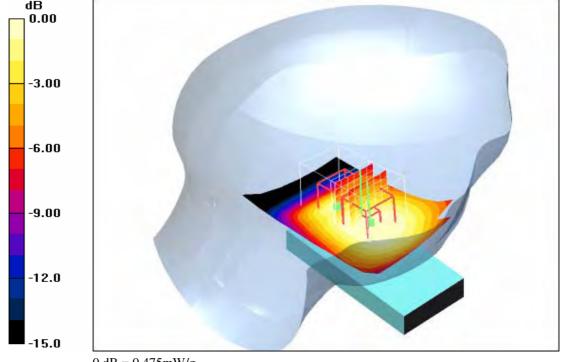
Tilt position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 18.1 V/m; Power Drift = 0.016 dB

Peak SAR (extrapolated) = 0.656 W/kg

SAR(1 g) = 0.511 mW/g; SAR(10 g) = 0.373 mW/gMaximum value of SAR (measured) = 0.540 mW/g


Tilt position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 18.1 V/m; Power Drift = 0.016 dB

Peak SAR (extrapolated) = 0.593 W/kg

SAR(1 g) = 0.402 mW/g; SAR(10 g) = 0.259 mW/gMaximum value of SAR (measured) = 0.475 mW/g

0 dB = 0.475 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions): ambient temperature: 23.0°C; liquid temperature: 22.1°C

As of 2008-07-21 Page 34 of 98

Date/Time: 2008-07-07 18:43:15Date/Time: 2008-07-07 18:49:37Date/Time: 2008-07-07 19:01:38

P1528_OET65-LeftHandSide-GSM850

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK

Communication System: PCS 850; Frequency: 836.6 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: f = 836.6 MHz; $\sigma = 0.89 \text{ mho/m}$; $\varepsilon_r = 42.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - Middle/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

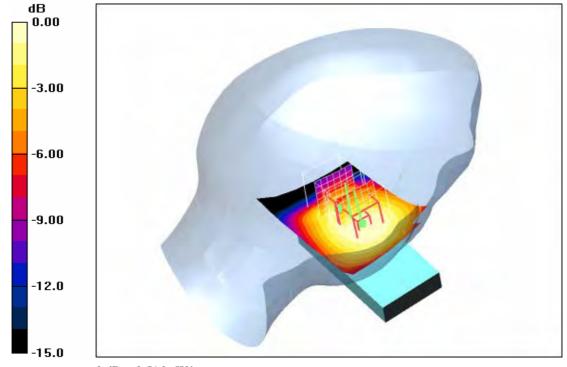
Maximum value of SAR (interpolated) = 0.583 mW/g

Tilt position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 26.1 V/m; Power Drift = 0.023 dB

Peak SAR (extrapolated) = 0.727 W/kg


SAR(1 g) = 0.558 mW/g; SAR(10 g) = 0.405 mW/g Maximum value of SAR (measured) = 0.589 mW/g

Tilt position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 26.1 V/m; Power Drift = 0.023 dB

Peak SAR (extrapolated) = 0.647 W/kg

SAR(1 g) = 0.438 mW/g; SAR(10 g) = 0.273 mW/gMaximum value of SAR (measured) = 0.516 mW/g

0 dB = 0.516 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions):

ambient temperature: 23.0°C; liquid temperature: 22.1°C

As of 2008-07-21 Page 35 of 98

Date/Time: 2008-07-07 17:28:33Date/Time: 2008-07-07 17:34:46Date/Time: 2008-07-07 17:46:52

P1528_OET65-LeftHandSide-GSM850

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK

Communication System: PCS 850; Frequency: 848.8 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: f = 848.8 MHz; $\sigma = 0.89 \text{ mho/m}$; $\varepsilon_r = 42.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - High/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.695 mW/g

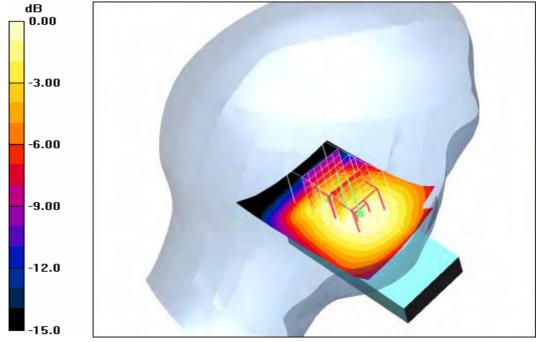
Tilt position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 28.6 V/m; Power Drift = -0.041 dB

Peak SAR (extrapolated) = 0.846 W/kg

SAR(1 g) = 0.658 mW/g; SAR(10 g) = 0.477 mW/g Maximum value of SAR (measured) = 0.690 mW/g


Tilt position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 28.6 V/m; Power Drift = -0.041 dB

Peak SAR (extrapolated) = 0.789 W/kg

SAR(1 g) = 0.538 mW/g; SAR(10 g) = 0.348 mW/gMaximum value of SAR (measured) = 0.639 mW/g

0 dB = 0.639 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 23.0°C; liquid temperature: 22.1°C

As of 2008-07-21 Page 36 of 98

Date/Time: 2008-07-07 20:51:08Date/Time: 2008-07-07 20:59:22

P1528_OET65-LeftHandSide-GSM850-open

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK Communication System: PCS 850; Frequency: 824.2 MHz; Duty Cycle: 1:8

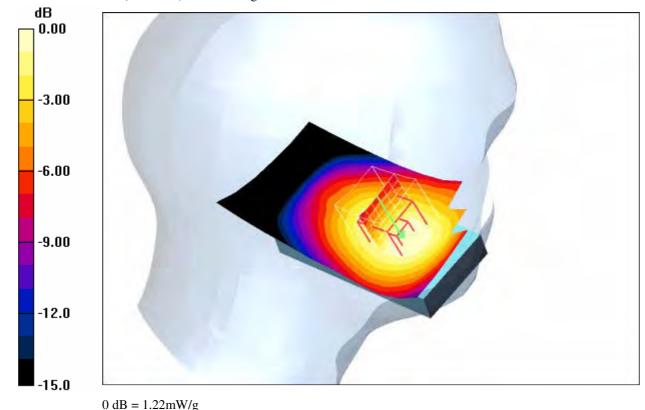
Medium: HSL850 Medium parameters used: f = 824.2 MHz; $\sigma = 0.89 \text{ mho/m}$; $\varepsilon_r = 42.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.23 mW/g


Touch position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 37.1 V/m; Power Drift = 0.015 dB

Peak SAR (extrapolated) = 1.48 W/kg

SAR(1 g) = 1.16 mW/g; SAR(10 g) = 0.845 mW/g Maximum value of SAR (measured) = 1.22 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 23.3°C; liquid temperature: 22.2°C

As of 2008-07-21 Page 37 of 98

Date/Time: 2008-07-07 21:14:37Date/Time: 2008-07-07 21:21:15

P1528_OET65-LeftHandSide-GSM850-open

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK Communication System: PCS 850; Frequency: 836.6 MHz; Duty Cycle: 1:8

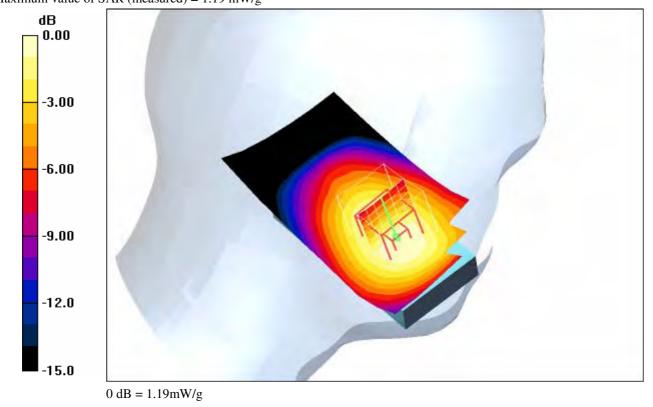
Medium: HSL850 Medium parameters used: f = 836.6 MHz; $\sigma = 0.89 \text{ mho/m}$; $\varepsilon_r = 42.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.21 mW/g


Touch position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 13.2 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.41 W/kg

SAR(1 g) = 1.13 mW/g; SAR(10 g) = 0.827 mW/gMaximum value of SAR (measured) = 1.19 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 23.3 °C; liquid temperature: 22.2 °C

As of 2008-07-21 Page 38 of 98

Date/Time: 2008-07-07 21:36:51Date/Time: 2008-07-07 21:44:23

P1528 OET65-LeftHandSide-GSM850-open

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK Communication System: PCS 850; Frequency: 848.8 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: f = 848.8 MHz; $\sigma = 0.89 \text{ mho/m}$; $\varepsilon_r = 42.7$; $\rho = 1000 \text{ kg/m}^3$

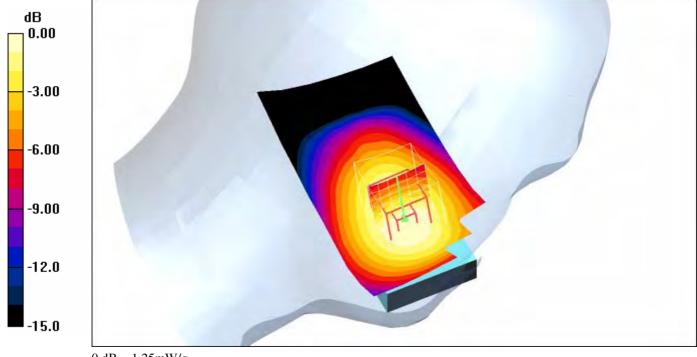
Phantom section: Left Section DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.28 mW/g

Touch position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 13.5 V/m; Power Drift = -0.028 dB

Peak SAR (extrapolated) = 1.49 W/kg

SAR(1 g) = 1.19 mW/g; SAR(10 g) = 0.871 mW/g

Maximum value of SAR (measured) = 1.25 mW/g

0 dB = 1.25 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions): ambient temperature: 23.2°C; liquid temperature: 22.1°C

As of 2008-07-21 Page 39 of 98

Date/Time: 2008-07-07 20:28:51Date/Time: 2008-07-07 20:35:31

P1528_OET65-LeftHandSide-GSM850-open

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK Communication System: PCS 850; Frequency: 824.2 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: f = 824.2 MHz; $\sigma = 0.89 \text{ mho/m}$; $\varepsilon_r = 42.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23

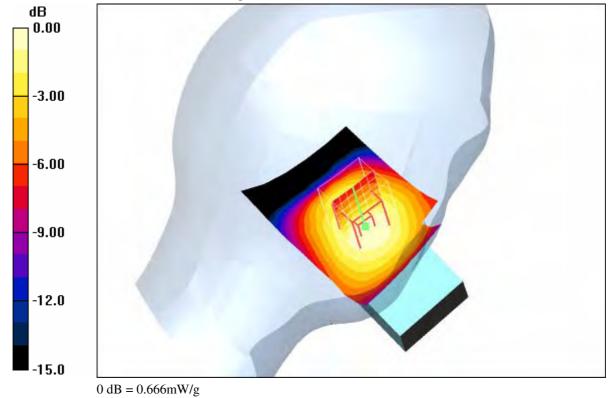
Sensor-Surface: 4mm (Mechanical Surface Detection)Electronics: DAE3 Sn413; Calibrated: 2008-01-18

- Phantom: SAM 12; Type: SAM; Serial: 1043

- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.670 mW/g


Tilt position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 21.0 V/m; Power Drift = -0.066 dB

Peak SAR (extrapolated) = 0.822 W/kg

SAR(1 g) = 0.632 mW/g; SAR(10 g) = 0.460 mW/g Maximum value of SAR (measured) = 0.666 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 23.2°C; liquid temperature: 22.1°C

As of 2008-07-21 Page 40 of 98

Date/Time: 2008-07-07 19:53:55Date/Time: 2008-07-07 20:00:37Date/Time: 2008-07-07 20:12:08

P1528_OET65-LeftHandSide-GSM850-open

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK Communication System: PCS 850; Frequency: 836.6 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: f = 836.6 MHz; $\sigma = 0.89 \text{ mho/m}$; $\varepsilon_r = 42.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.710 mW/g

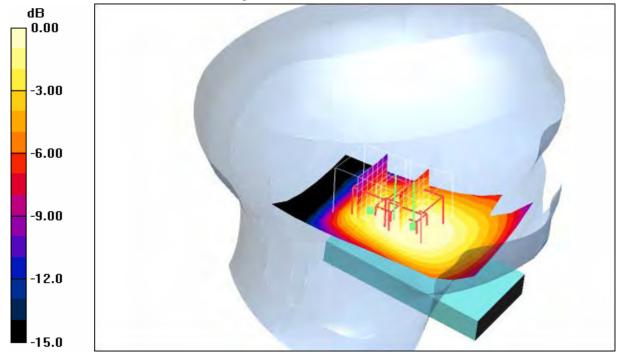
Tilt position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 27.9 V/m; Power Drift = 0.020 dB

Peak SAR (extrapolated) = 0.865 W/kg

SAR(1 g) = 0.672 mW/g; SAR(10 g) = 0.486 mW/g Maximum value of SAR (measured) = 0.710 mW/g


Tilt position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 27.9 V/m; Power Drift = 0.020 dB

Peak SAR (extrapolated) = 0.831 W/kg

SAR(1 g) = 0.500 mW/g; SAR(10 g) = 0.328 mW/g Maximum value of SAR (measured) = 0.596 mW/g

0 dB = 0.596 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions):

ambient temperature: 23.2°C; liquid temperature: 22.1°C

As of 2008-07-21 Page 41 of 98

Date/Time: 2008-07-07 19:18:11Date/Time: 2008-07-07 19:25:57Date/Time: 2008-07-07 19:38:52

P1528_OET65-LeftHandSide-GSM850-open

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK Communication System: PCS 850; Frequency: 848.8 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: f = 848.8 MHz; $\sigma = 0.89 \text{ mho/m}$; $\varepsilon_r = 42.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.690 mW/g

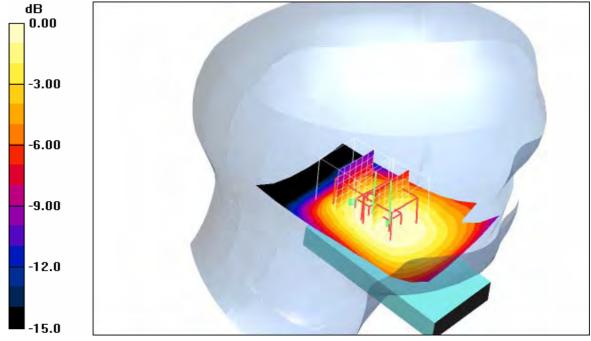
Tilt position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 27.5 V/m; Power Drift = 0.049 dB

Peak SAR (extrapolated) = 0.863 W/kg

SAR(1 g) = 0.659 mW/g; SAR(10 g) = 0.475 mW/g Maximum value of SAR (measured) = 0.691 mW/g


Tilt position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 27.5 V/m; Power Drift = 0.049 dB

Peak SAR (extrapolated) = 0.819 W/kg

SAR(1 g) = 0.491 mW/g; SAR(10 g) = 0.320 mW/g Maximum value of SAR (measured) = 0.589 mW/g

0 dB = 0.589 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 23.2°C; liquid temperature: 22.1°C

As of 2008-07-21 Page 42 of 98

Date/Time: 2008-07-07 11:03:55Date/Time: 2008-07-07 11:10:02

P1528_OET65-RightHandSide-GSM850

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK

Communication System: PCS 850; Frequency: 824.2 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: f = 824.2 MHz; $\sigma = 0.89 \text{ mho/m}$; $\varepsilon_r = 42.7$; $\rho = 1000 \text{ kg/m}^3$

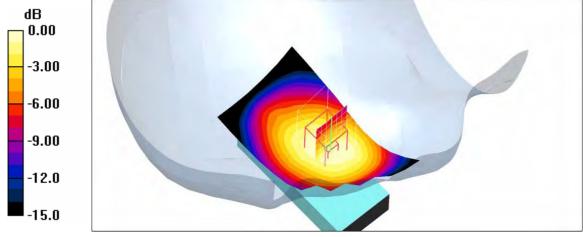
Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.02 mW/g


Touch position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 34.2 V/m; Power Drift = -0.020 dB

Peak SAR (extrapolated) = 1.28 W/kg

SAR(1 g) = 0.949 mW/g; SAR(10 g) = 0.674 mW/gMaximum value of SAR (measured) = 1.02 mW/g

0 dB = 1.02 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions):

ambient temperature: 22.0°C; liquid temperature: 22.4°C

As of 2008-07-21 Page 43 of 98

Date/Time: 2008-07-07 11:24:29Date/Time: 2008-07-07 11:30:36

P1528_OET65-RightHandSide-GSM850

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK Communication System: PCS 850; Frequency: 836.6 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: f = 836.6 MHz; $\sigma = 0.89$ mho/m; $\varepsilon_r = 42.7$; $\rho = 1000$ kg/m³

Phantom section: Right Section

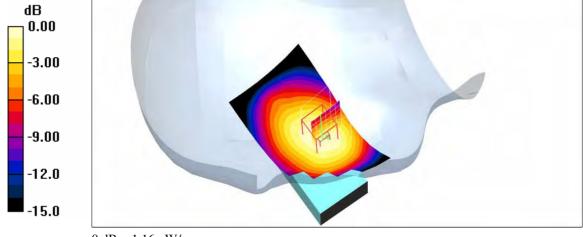
DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.16 mW/g

Touch position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 36.2 V/m; Power Drift = -0.025 dB

Peak SAR (extrapolated) = 1.53 W/kg

SAR(1 g) = 1.07 mW/g; SAR(10 g) = 0.749 mW/g

Maximum value of SAR (measured) = 1.16 mW/g

0 dB = 1.16 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions):

ambient temperature: 22.0°C; liquid temperature: 22.4°C

As of 2008-07-21 Page 44 of 98

Date/Time: 2008-07-07 11:45:05Date/Time: 2008-07-07 11:51:23

P1528_OET65-RightHandSide-GSM850

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK

Communication System: PCS 850; Frequency: 848.8 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: f = 848.8 MHz; $\sigma = 0.89 \text{ mho/m}$; $\varepsilon_r = 42.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

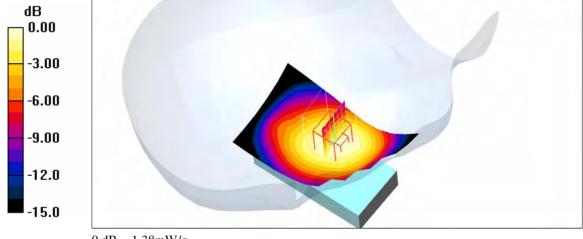
DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.39 mW/g

Touch position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 40.5 V/m; Power Drift = 0.026 dB

Peak SAR (extrapolated) = 1.87 W/kg

SAR(1 g) = 1.29 mW/g; SAR(10 g) = 0.897 mW/g

Maximum value of SAR (measured) = 1.38 mW/g

0 dB = 1.38 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions):

ambient temperature: 22.0°C; liquid temperature: 22.4°C

As of 2008-07-21 Page 45 of 98

Date/Time: 2008-07-07 12:46:30Date/Time: 2008-07-07 12:53:10

P1528_OET65-RightHandSide-GSM850

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK

Communication System: PCS 850; Frequency: 824.2 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: f = 824.2 MHz; $\sigma = 0.89 \text{ mho/m}$; $\varepsilon_r = 42.7$; $\rho = 1000 \text{ kg/m}^3$

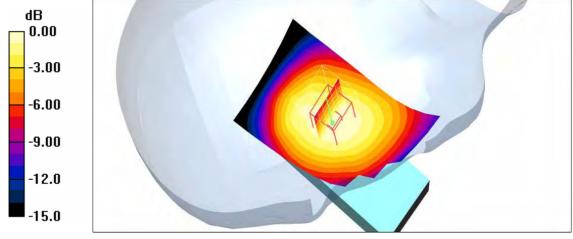
Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.590 mW/g


Tilt position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 26.3 V/m; Power Drift = 0.011 dB

Peak SAR (extrapolated) = 0.724 W/kg

SAR(1 g) = 0.559 mW/g; SAR(10 g) = 0.405 mW/gMaximum value of SAR (measured) = 0.595 mW/g

0 dB = 0.595 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 21.9°C; liquid temperature: 22.3°C

As of 2008-07-21 Page 46 of 98

Date/Time: 2008-07-07 12:26:23Date/Time: 2008-07-07 12:33:00

P1528_OET65-RightHandSide-GSM850

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK Communication System: PCS 850; Frequency: 836.6 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: f = 836.6 MHz; $\sigma = 0.89 \text{ mho/m}$; $\varepsilon_r = 42.7$; $\rho = 1000 \text{ kg/m}^3$

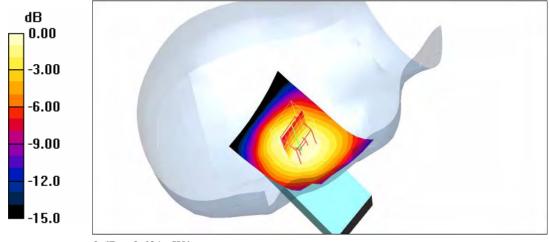
Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.638 mW/g


Tilt position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 27.1 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.765 W/kg

SAR(1 g) = 0.593 mW/g; SAR(10 g) = 0.429 mW/gMaximum value of SAR (measured) = 0.631 mW/g

0 dB = 0.631 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions):

ambient temperature: 21.9°C; liquid temperature: 22.3°C

As of 2008-07-21 Page 47 of 98

Date/Time: 2008-07-07 12:06:03Date/Time: 2008-07-07 12:12:36

P1528_OET65-RightHandSide-GSM850

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK Communication System: PCS 850; Frequency: 848.8 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: f = 848.8 MHz; $\sigma = 0.89 \text{ mho/m}$; $\varepsilon_r = 42.7$; $\rho = 1000 \text{ kg/m}^3$

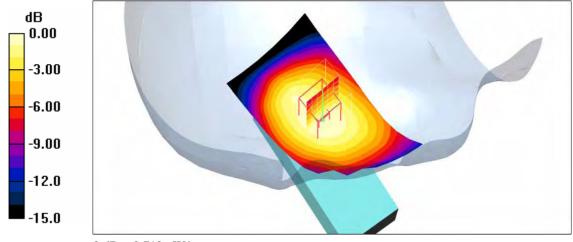
Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.720 mW/g


Tilt position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 28.8 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.884 W/kg

SAR(1 g) = 0.677 mW/g; SAR(10 g) = 0.488 mW/g Maximum value of SAR (measured) = 0.719 mW/g

0 dB = 0.719 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 21.9°C; liquid temperature: 22.3°C

As of 2008-07-21 Page 48 of 98

Date/Time: 2008-07-07 13:29:45Date/Time: 2008-07-07 13:36:04

P1528_OET65-RightHandSide-GSM850 open

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK Communication System: PCS 850; Frequency: 824.2 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: f = 824.2 MHz; $\sigma = 0.89 \text{ mho/m}$; $\varepsilon_r = 42.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

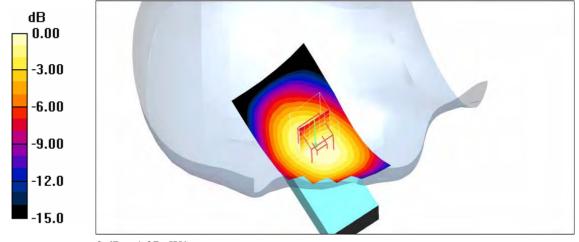
DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.27 mW/g

Touch position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 38.3 V/m; Power Drift = -0.027 dB

Peak SAR (extrapolated) = 1.56 W/kg

SAR(1 g) = 1.19 mW/g; SAR(10 g) = 0.868 mW/g

Maximum value of SAR (measured) = 1.27 mW/g

0 dB = 1.27 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions):

ambient temperature: 22.2°C; liquid temperature: 22.2°C

As of 2008-07-21 Page 49 of 98

Date/Time: 2008-07-07 13:52:17Date/Time: 2008-07-07 13:58:35

P1528_OET65-RightHandSide-GSM850 open

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK Communication System: PCS 850; Frequency: 836.6 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: f = 836.6 MHz; $\sigma = 0.89 \text{ mho/m}$; $\varepsilon_r = 42.7$; $\rho = 1000 \text{ kg/m}^3$

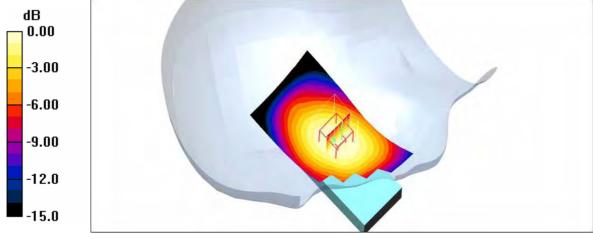
Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.34 mW/g


Touch position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 39.2 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 1.61 W/kg

SAR(1 g) = 1.23 mW/g; SAR(10 g) = 0.896 mW/g Maximum value of SAR (measured) = 1.29 mW/g

0 dB = 1.29 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 22.2°C; liquid temperature: 22.2°C

As of 2008-07-21 Page 50 of 98

Date/Time: 2008-07-07 14:15:14Date/Time: 2008-07-07 14:21:34

P1528_OET65-RightHandSide-GSM850 open

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK Communication System: PCS 850; Frequency: 848.8 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: f = 848.8 MHz; $\sigma = 0.89 \text{ mho/m}$; $\varepsilon_r = 42.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

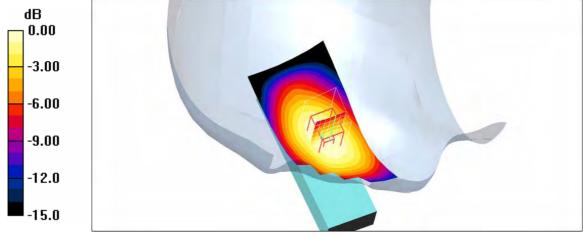
DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.41 mW/g

Touch position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 40.3 V/m; Power Drift = 0.062 dB

Peak SAR (extrapolated) = 1.69 W/kg

SAR(1 g) = 1.31 mW/g; SAR(10 g) = 0.957 mW/g

Maximum value of SAR (measured) = 1.40 mW/g

0 dB = 1.40 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions):

ambient temperature: 22.2°C; liquid temperature: 22.2°C

As of 2008-07-21 Page 51 of 98

Date/Time: 2008-07-07 15:08:43Date/Time: 2008-07-07 15:15:17Date/Time: 2008-07-07 15:27:10

P1528_OET65-RightHandSide-GSM850 open

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK

Communication System: PCS 850; Frequency: 824.2 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: f = 824.2 MHz; $\sigma = 0.89 \text{ mho/m}$; $\varepsilon_r = 42.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.776 mW/g

Tilt position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 29.9 V/m; Power Drift = -0.041 dB

Peak SAR (extrapolated) = 0.933 W/kg

SAR(1 g) = 0.721 mW/g; SAR(10 g) = 0.523 mW/g Maximum value of SAR (measured) = 0.765 mW/g

Tilt position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 29.9 V/m; Power Drift = -0.041 dB

Peak SAR (extrapolated) = 0.880 W/kg

SAR(1 g) = 0.609 mW/g; SAR(10 g) = 0.385 mW/gMaximum value of SAR (measured) = 0.712 mW/g

0 dB = 0.712 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions):

ambient temperature: 22.4°C; liquid temperature: 22.0°C

As of 2008-07-21 Page 52 of 98

Date/Time: 2008-07-07 15:48:16Date/Time: 2008-07-07 15:54:53

P1528_OET65-RightHandSide-GSM850 open

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK Communication System: PCS 850; Frequency: 836.6 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: f = 836.6 MHz; $\sigma = 0.89 \text{ mho/m}$; $\varepsilon_r = 42.7$; $\rho = 1000 \text{ kg/m}^3$

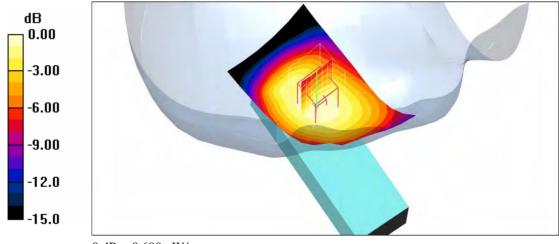
Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.690 mW/g


Tilt position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 28.1 V/m; Power Drift = 0.017 dB

Peak SAR (extrapolated) = 0.843 W/kg

SAR(1 g) = 0.648 mW/g; SAR(10 g) = 0.468 mW/g Maximum value of SAR (measured) = 0.690 mW/g

0 dB = 0.690 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 22.4°C; liquid temperature: 22.0°C

As of 2008-07-21 Page 53 of 98

Date/Time: 2008-07-07 14:36:10Date/Time: 2008-07-07 14:42:41

P1528_OET65-RightHandSide-GSM850 open

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK Communication System: PCS 850; Frequency: 848.8 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: f = 848.8 MHz; $\sigma = 0.89 \text{ mho/m}$; $\varepsilon_r = 42.7$; $\rho = 1000 \text{ kg/m}^3$

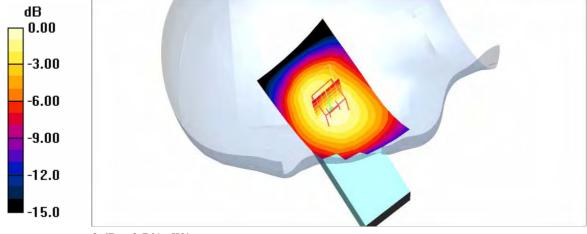
Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.756 mW/g


Tilt position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 29.1 V/m; Power Drift = 0.042 dB

Peak SAR (extrapolated) = 0.930 W/kg

SAR(1 g) = 0.719 mW/g; SAR(10 g) = 0.518 mW/gMaximum value of SAR (measured) = 0.761 mW/g

0 dB = 0.761 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 22.4°C; liquid temperature: 22.0°C

As of 2008-07-21 Page 54 of 98

Annex 2.2 PCS 850 MHz body

Date/Time: 2008-07-14 12:29:18Date/Time: 2008-07-14 12:35:57

P1528_OET65-Body-GSM850 GPRS class 10

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK

Communication System: PCS 850 GPRS class 10; Frequency: 824.2 MHz; Duty Cycle: 1:4

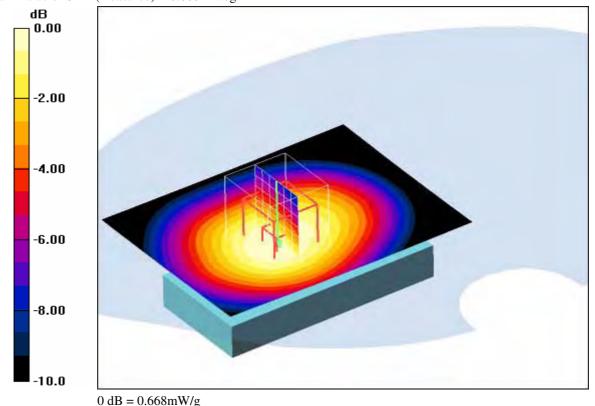
Medium: M850 Medium parameters used: f = 824.2 MHz; $\sigma = 0.97$ mho/m; $\varepsilon_r = 54.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(6.17, 6.17, 6.17); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Front position - Low/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.696 mW/g


Front position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 26.8 V/m; Power Drift = -0.143 dB

Peak SAR (extrapolated) = 0.848 W/kg

SAR(1 g) = 0.624 mW/g; SAR(10 g) = 0.448 mW/g Maximum value of SAR (measured) = 0.668 mW/g

0.008111W

Additional information:

position or distance of DUT to SAM (if not standard head positions): 15 mm

ambient temperature: 22.6°C; liquid temperature: 21.9°C

As of 2008-07-21 Page 55 of 98

Date/Time: 2008-07-14 12:50:23Date/Time: 2008-07-14 12:57:02

P1528_OET65-Body-GSM850 GPRS class 10

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK

Communication System: PCS 850 GPRS class 10; Frequency: 836.6 MHz; Duty Cycle: 1:4

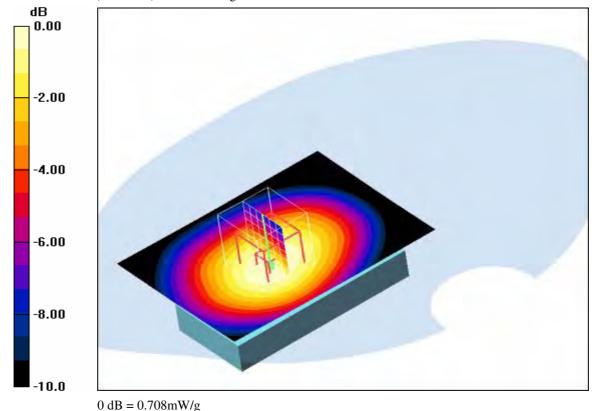
Medium: M850 Medium parameters used: f = 836.6 MHz; $\sigma = 0.97 \text{ mho/m}$; $\varepsilon_r = 54.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(6.17, 6.17, 6.17); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Front position - Middle/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.712 mW/g


Front position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 27.5 V/m; Power Drift = 0.024 dB

Peak SAR (extrapolated) = 0.887 W/kg

SAR(1 g) = 0.667 mW/g; SAR(10 g) = 0.480 mW/gMaximum value of SAR (measured) = 0.708 mW/g

0 **02** 01/00III ()

Additional information:

position or distance of DUT to SAM (if not standard head positions): 15 mm

ambient temperature: 22.6°C; liquid temperature: 21.8°C

As of 2008-07-21 Page 56 of 98

Date/Time: 2008-07-14 13:10:42Date/Time: 2008-07-14 13:17:23

P1528_OET65-Body-GSM850 GPRS class 10

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK

Communication System: PCS 850 GPRS class 10; Frequency: 848.8 MHz; Duty Cycle: 1:4

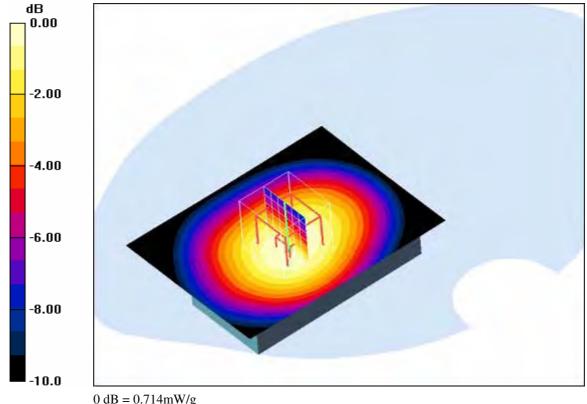
Medium: M850 Medium parameters used: f = 848.8 MHz; $\sigma = 0.97 \text{ mho/m}$; $\varepsilon_r = 54.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(6.17, 6.17, 6.17); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Front position - High/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.723 mW/g


Front position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 27.3 V/m; Power Drift = 0.021 dB

Peak SAR (extrapolated) = 0.889 W/kg

SAR(1 g) = 0.673 mW/g; SAR(10 g) = 0.486 mW/gMaximum value of SAR (measured) = 0.714 mW/g

0 dD = 0.71+III W/

Additional information:

position or distance of DUT to SAM (if not standard head positions) : 15 mm

ambient temperature: 22.6°C; liquid temperature: 21.7°C

As of 2008-07-21 Page 57 of 98

Date/Time: 2008-07-14 13:35:27Date/Time: 2008-07-14 13:41:22

P1528_OET65-Body-GSM850 GPRS class 10

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK

Communication System: PCS 850 GPRS class 10; Frequency: 824.2 MHz; Duty Cycle: 1:4

Medium: M850 Medium parameters used: f = 824.2 MHz; $\sigma = 0.97 \text{ mho/m}$; $\varepsilon_r = 54.2$; $\rho = 1000 \text{ kg/m}^3$

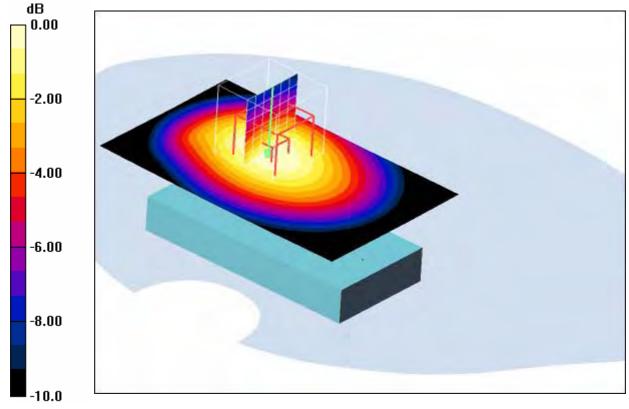
Phantom section: Flat Section DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(6.17, 6.17, 6.17); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Rear position - Low/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.26 mW/g

Rear position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 37.1 V/m; Power Drift = -0.076 dB

Peak SAR (extrapolated) = 1.63 W/kg

SAR(1 g) = 1.16 mW/g; SAR(10 g) = 0.794 mW/g

Maximum value of SAR (measured) = 1.23 mW/g

0 dB = 1.23 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : 15 mm ambient temperature: 22.6° C; liquid temperature: 21.7° C

As of 2008-07-21 Page 58 of 98

Date/Time: 2008-07-14 13:57:06Date/Time: 2008-07-14 14:03:18

P1528_OET65-Body-GSM850 GPRS class 10

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK

Communication System: PCS 850 GPRS class 10; Frequency: 836.6 MHz; Duty Cycle: 1:4

Medium: M850 Medium parameters used: f = 836.6 MHz; $\sigma = 0.97 \text{ mho/m}$; $\varepsilon_r = 54.2$; $\rho = 1000 \text{ kg/m}^3$

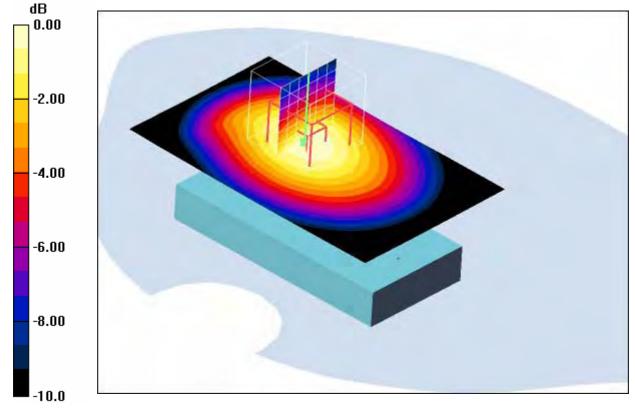
Phantom section: Flat Section DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(6.17, 6.17, 6.17); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Rear position - Middle/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.35 mW/g

Rear position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 38.6 V/m; Power Drift = 0.034 dB

Peak SAR (extrapolated) = 1.75 W/kg

SAR(1 g) = 1.26 mW/g; SAR(10 g) = 0.864 mW/g

Maximum value of SAR (measured) = 1.35 mW/g

0 dB = 1.35 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : 15 mm ambient temperature: 22.6° C; liquid temperature: 21.7° C

As of 2008-07-21 Page 59 of 98

Date/Time: 2008-07-14 14:20:10Date/Time: 2008-07-14 14:26:13

P1528_OET65-Body-GSM850 GPRS class 10

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK

Communication System: PCS 850 GPRS class 10; Frequency: 848.8 MHz; Duty Cycle: 1:4

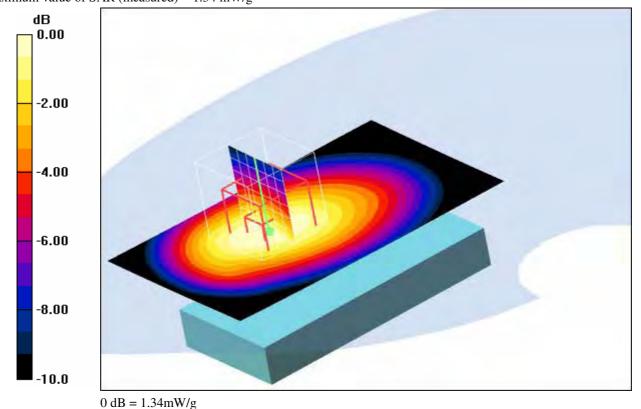
Medium: M850 Medium parameters used: f = 848.8 MHz; $\sigma = 0.97 \text{ mho/m}$; $\varepsilon_r = 54.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(6.17, 6.17, 6.17); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Rear position - High/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.38 mW/g


Rear position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 38.8 V/m; Power Drift = 0.018 dB

Peak SAR (extrapolated) = 1.72 W/kg

SAR(1 g) = 1.25 mW/g; SAR(10 g) = 0.855 mW/g Maximum value of SAR (measured) = 1.34 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions): 15 mm

ambient temperature: 22.6°C; liquid temperature: 21.7°C

As of 2008-07-21 Page 60 of 98

Date/Time: 2008-07-14 15:02:17Date/Time: 2008-07-14 15:08:10

P1528_OET65-Body-GSM850 EGPRS class 10

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK

Communication System: PCS 850 EGPRS class 10; Frequency: 836.6 MHz; Duty Cycle: 1:4

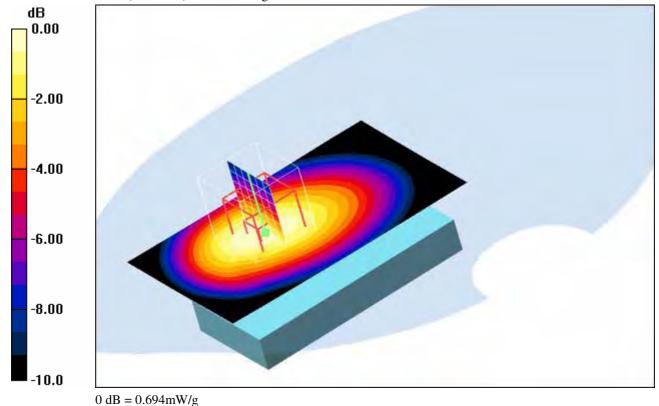
Medium: M850 Medium parameters used: f = 836.6 MHz; $\sigma = 0.97 \text{ mho/m}$; $\varepsilon_r = 54.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(6.17, 6.17, 6.17); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Rear position - Middle/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.690 mW/g


Rear position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 27.7 V/m; Power Drift = -0.069 dB

Peak SAR (extrapolated) = 0.905 W/kg

SAR(1 g) = 0.648 mW/g; SAR(10 g) = 0.444 mW/gMaximum value of SAR (measured) = 0.694 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions): 15 mm

ambient temperature: 22.8°C; liquid temperature: 21.6°C

Page 61 of 98 As of 2008-07-21

Date/Time: 2008-07-14 14:41:15Date/Time: 2008-07-14 14:47:15

P1528_OET65-Body-GSM850 GPRS class 8

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK Communication System: PCS 850; Frequency: 836.6 MHz; Duty Cycle: 1:8

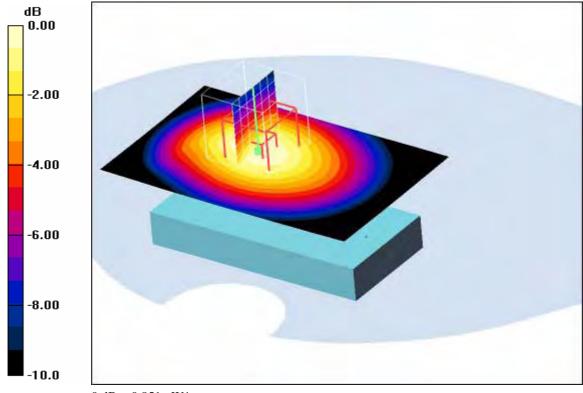
Medium: M850 Medium parameters used: f = 836.6 MHz; $\sigma = 0.97 \text{ mho/m}$; $\varepsilon_r = 54.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(6.17, 6.17, 6.17); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Rear position - Middle/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.845 mW/g


Rear position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 30.7 V/m; Power Drift = -0.047 dB

Peak SAR (extrapolated) = 1.10 W/kg

SAR(1 g) = 0.790 mW/g; SAR(10 g) = 0.540 mW/gMaximum value of SAR (measured) = 0.851 mW/g

0 dB = 0.851 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions): 15 mm

ambient temperature: 22.7°C; liquid temperature: 21.6°C

As of 2008-07-21 Page 62 of 98

Annex 2.3 PCS 1900 MHz head

Date/Time: 2008-07-16 08:46:45Date/Time: 2008-07-16 08:52:52

P1528 OET65-LeftHandSide-GSM1900

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK

Communication System: PCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.39 \text{ mho/m}$; $\varepsilon_r = 39.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - Low/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.775 mW/g

Touch position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 23.6 V/m; Power Drift = -0.038 dB

Peak SAR (extrapolated) = 1.11 W/kg

SAR(1 g) = 0.735 mW/g; SAR(10 g) = 0.433 mW/gMaximum value of SAR (measured) = 0.813 mW/g

-3.00 -6.00 -9.00 -12.0

0 dB = 0.813 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions):

ambient temperature: 22.7°C; liquid temperature: 22.5°C

As of 2008-07-21 Page 63 of 98

Date/Time: 2008-07-16 09:08:53Date/Time: 2008-07-16 09:14:45

P1528_OET65-LeftHandSide-GSM1900

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.39 \text{ mho/m}$; $\varepsilon_r = 39.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23

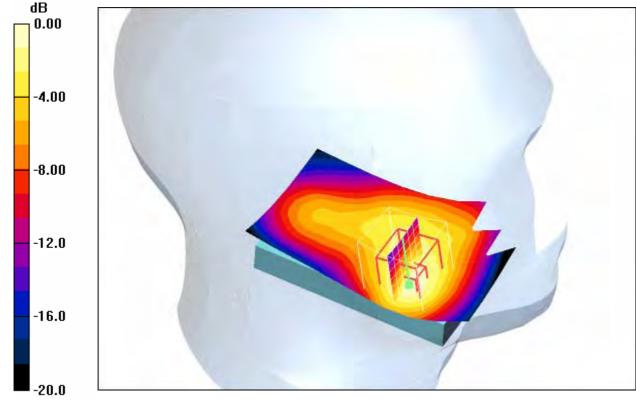
- Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: DAE3 Sn413; Calibrated: 2008-01-18

- Phantom: SAM 12; Type: SAM; Serial: 1043

- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - Middle/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.764 mW/g


Touch position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 11.7 V/m; Power Drift = -0.018 dB

Peak SAR (extrapolated) = 1.08 W/kg

SAR(1 g) = 0.717 mW/g; SAR(10 g) = 0.420 mW/g Maximum value of SAR (measured) = 0.804 mW/g

0 dB = 0.804 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 22.8 °C; liquid temperature: 22.4 °C

As of 2008-07-21 Page 64 of 98

Date/Time: 2008-07-16 09:29:41Date/Time: 2008-07-16 09:35:46Date/Time: 2008-07-16 09:48:01

P1528_OET65-LeftHandSide-GSM1900

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK

Communication System: PCS 1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used: f = 1909.8 MHz; $\sigma = 1.39 \text{ mho/m}$; $\varepsilon_r = 39.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - High/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.783 mW/g

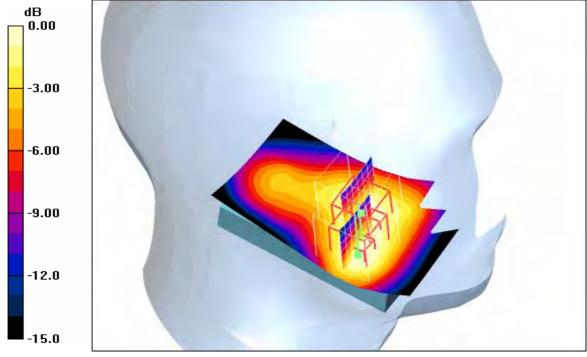
Touch position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 13.1 V/m; Power Drift = 0.107 dB

Peak SAR (extrapolated) = 1.08 W/kg

SAR(1 g) = 0.709 mW/g; SAR(10 g) = 0.418 mW/gMaximum value of SAR (measured) = 0.802 mW/g


Touch position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

uz=5mm

Reference Value = 13.1 V/m; Power Drift = 0.107 dB

Peak SAR (extrapolated) = 0.867 W/kg

SAR(1 g) = 0.590 mW/g; SAR(10 g) = 0.389 mW/g Maximum value of SAR (measured) = 0.687 mW/g

0 dB = 0.687 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.9°C; liquid temperature: 22.3°C

As of 2008-07-21 Page 65 of 98

Date/Time: 2008-07-16 10:44:03Date/Time: 2008-07-16 10:50:21

P1528_OET65-LeftHandSide-GSM1900

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK

Communication System: PCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8

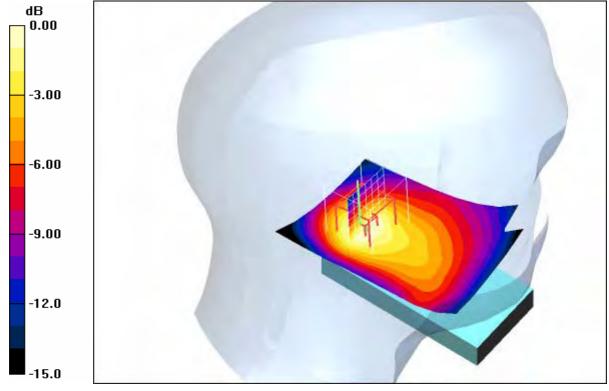
Medium: HSL1900 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.39 \text{ mho/m}$; $\varepsilon_r = 39.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - Low/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.363 mW/g


Tilt position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 16.6 V/m; Power Drift = -0.030 dB

Peak SAR (extrapolated) = 0.448 W/kg

SAR(1 g) = 0.314 mW/g; SAR(10 g) = 0.190 mW/g Maximum value of SAR (measured) = 0.343 mW/g

0 dB = 0.343 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions):

ambient temperature: 22.8°C; liquid temperature: 22.2°C

As of 2008-07-21 Page 66 of 98

Date/Time: 2008-07-16 10:22:39Date/Time: 2008-07-16 10:28:57

P1528_OET65-LeftHandSide-GSM1900

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.39 \text{ mho/m}$; $\varepsilon_r = 39.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

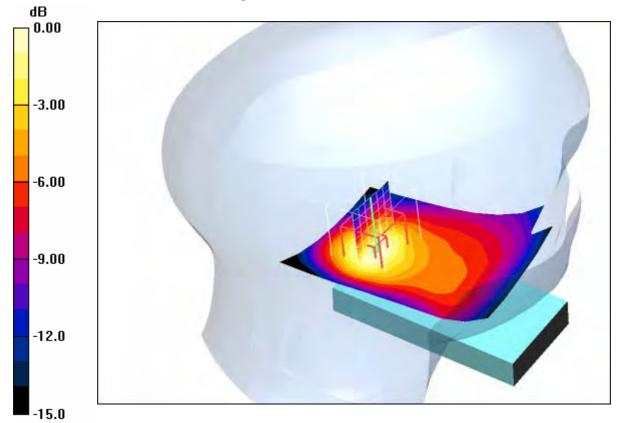
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18

- Phantom: SAM 12; Type: SAM; Serial: 1043

- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - Middle/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.446 mW/g


Tilt position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 18.5 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.567 W/kg

SAR(1 g) = 0.390 mW/g; SAR(10 g) = 0.230 mW/g Maximum value of SAR (measured) = 0.429 mW/g

0 dB = 0.429 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 22.8° C; liquid temperature: 22.1° C

As of 2008-07-21 Page 67 of 98

Date/Time: 2008-07-16 11:03:41Date/Time: 2008-07-16 11:09:59

P1528_OET65-LeftHandSide-GSM1900

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK

Communication System: PCS 1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8

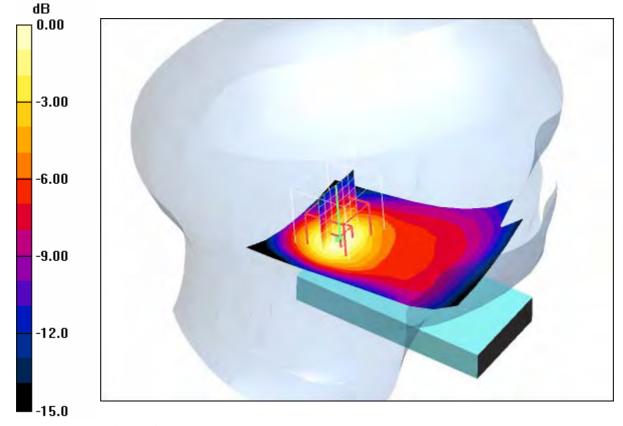
Medium: HSL1900 Medium parameters used: f = 1909.8 MHz; $\sigma = 1.39 \text{ mho/m}$; $\varepsilon_r = 39.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - High/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.559 mW/g


Tilt position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 20.5 V/m; Power Drift = 0.014 dB

Peak SAR (extrapolated) = 0.719 W/kg

SAR(1 g) = 0.485 mW/g; SAR(10 g) = 0.281 mW/g Maximum value of SAR (measured) = 0.544 mW/g

0 dB = 0.544 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 22.8° C; liquid temperature: 22.0° C

As of 2008-07-21 Page 68 of 98

Date/Time: 2008-07-16 12:26:18Date/Time: 2008-07-16 12:32:45

P1528_OET65-LeftHandSide-GSM1900-open

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK

Communication System: PCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8

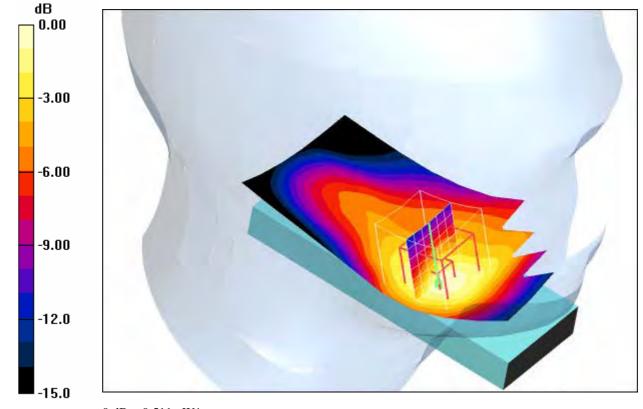
Medium: HSL1900 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.39$ mho/m; $\varepsilon_r = 39.9$; $\rho = 1000$ kg/m³

Phantom section: Left Section DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.477 mW/g


Touch position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 18.7 V/m; Power Drift = 0.021 dB

Peak SAR (extrapolated) = 0.691 W/kg

SAR(1 g) = 0.471 mW/g; SAR(10 g) = 0.289 mW/g Maximum value of SAR (measured) = 0.511 mW/g

0 dB = 0.511 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 22.8°C; liquid temperature: 21.8°C

As of 2008-07-21 Page 69 of 98

Date/Time: 2008-07-16 12:48:05Date/Time: 2008-07-16 12:54:57

P1528_OET65-LeftHandSide-GSM1900-open

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8

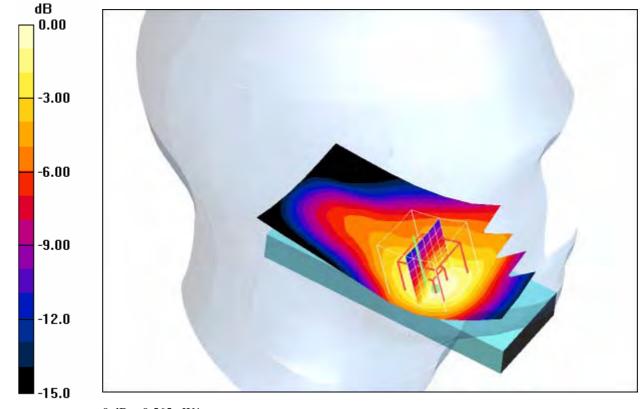
Medium: HSL1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.39 \text{ mho/m}$; $\varepsilon_r = 39.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.540 mW/g


$Touch\ position\ \textbf{-}\ Middle/Zoom\ Scan\ (7x7x7)/Cube\ 0\text{:}\ \text{Measurement\ grid:\ } dx=5mm,\ dy=5mm,$

dz=5mm

Reference Value = 19.9 V/m; Power Drift = 0.011 dB

Peak SAR (extrapolated) = 0.766 W/kg

SAR(1 g) = 0.517 mW/g; SAR(10 g) = 0.316 mW/g Maximum value of SAR (measured) = 0.565 mW/g

0 dB = 0.565 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: $22.8^{\circ}C$; liquid temperature: $21.7^{\circ}C$

As of 2008-07-21 Page 70 of 98

Date/Time: 2008-07-16 13:11:28Date/Time: 2008-07-16 13:18:19

P1528_OET65-LeftHandSide-GSM1900-open

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK

Communication System: PCS 1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8

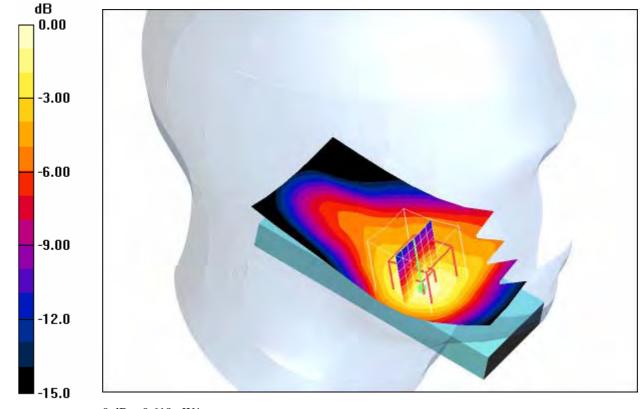
Medium: HSL1900 Medium parameters used: f = 1909.8 MHz; $\sigma = 1.39 \text{ mho/m}$; $\varepsilon_r = 39.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical Surface Detection)Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.556 mW/g


Touch position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 20.1 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 0.843 W/kg

SAR(1 g) = 0.568 mW/g; SAR(10 g) = 0.343 mW/g Maximum value of SAR (measured) = 0.619 mW/g

0 dB = 0.619 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: $22.9^{\circ}C$; liquid temperature: $21.7^{\circ}C$

As of 2008-07-21 Page 71 of 98

Date/Time: 2008-07-16 11:25:17Date/Time: 2008-07-16 11:31:51

P1528_OET65-LeftHandSide-GSM1900-open

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK

Communication System: PCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8

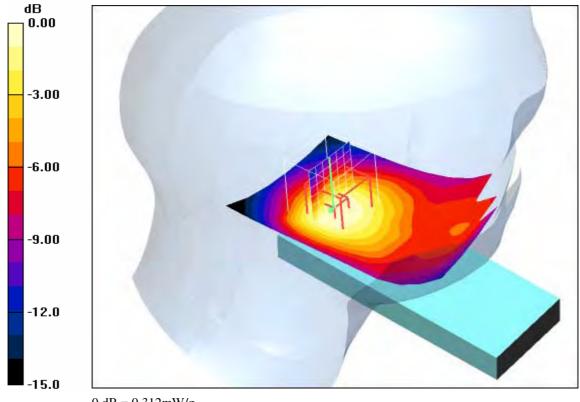
Medium: HSL1900 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.39 \text{ mho/m}$; $\varepsilon_r = 39.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.349 mW/g


Tilt position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 15.2 V/m; Power Drift = 0.014 dB

Peak SAR (extrapolated) = 0.400 W/kg

SAR(1 g) = 0.287 mW/g; SAR(10 g) = 0.184 mW/gMaximum value of SAR (measured) = 0.312 mW/g

0 dB = 0.312 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 22.8°C; liquid temperature: 21.9°C

As of 2008-07-21 Page 72 of 98

Date/Time: 2008-07-16 11:45:24Date/Time: 2008-07-16 11:51:59

P1528_OET65-LeftHandSide-GSM1900-open

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.39 \text{ mho/m}$; $\varepsilon_r = 39.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

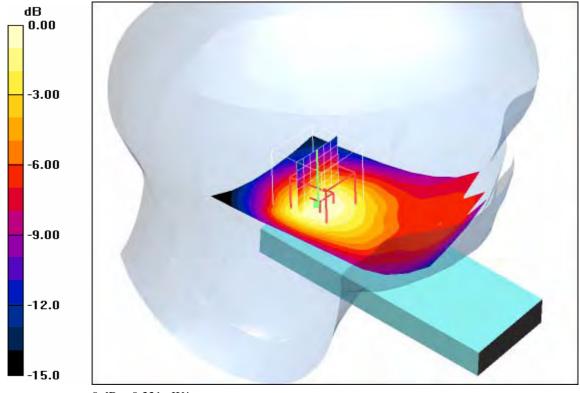
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18

- Phantom: SAM 12; Type: SAM; Serial: 1043

- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.372 mW/g


Tilt position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 15.5 V/m; Power Drift = 0.037 dB

Peak SAR (extrapolated) = 0.435 W/kg

SAR(1 g) = 0.304 mW/g; SAR(10 g) = 0.192 mW/gMaximum value of SAR (measured) = 0.331 mW/g

0 dB = 0.331 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 22.8° C; liquid temperature: 21.8° C

As of 2008-07-21 Page 73 of 98

Date/Time: 2008-07-16 12:05:15Date/Time: 2008-07-16 12:11:53

P1528_OET65-LeftHandSide-GSM1900-open

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK

Communication System: PCS 1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8

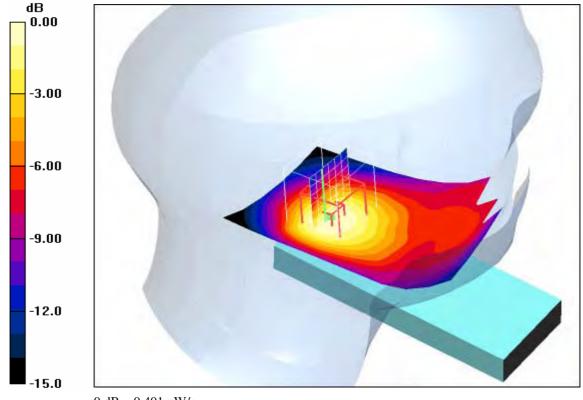
Medium: HSL1900 Medium parameters used: f = 1909.8 MHz; $\sigma = 1.39 \text{ mho/m}$; $\varepsilon_r = 39.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.453 mW/g


Tilt position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 17.5 V/m; Power Drift = 0.014 dB

Peak SAR (extrapolated) = 0.550 W/kg

SAR(1 g) = 0.372 mW/g; SAR(10 g) = 0.231 mW/gMaximum value of SAR (measured) = 0.401 mW/g

0 dB = 0.401 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions):

ambient temperature: 22.8°C; liquid temperature: 21.8°C

As of 2008-07-21 Page 74 of 98

Date/Time: 2008-07-15 19:55:18Date/Time: 2008-07-15 20:01:07

P1528_OET65-RightHandSide-GSM1900

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK

Communication System: PCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.39 \text{ mho/m}$; $\varepsilon_r = 39.9$; $\rho = 1000 \text{ kg/m}^3$

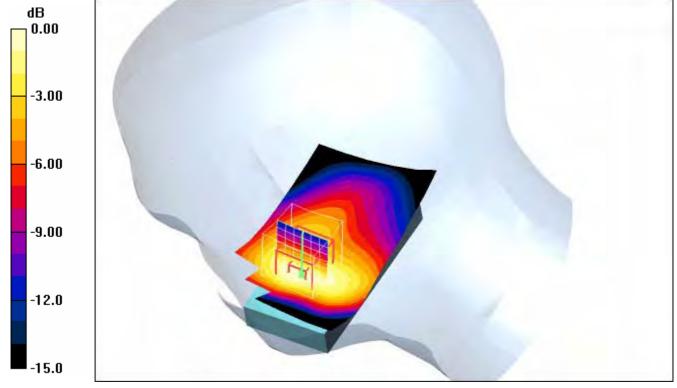
Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - Low/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.653 mW/g


Touch position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 22.0 V/m; Power Drift = -0.022 dB

Peak SAR (extrapolated) = 0.869 W/kg

SAR(1 g) = 0.597 mW/g; SAR(10 g) = 0.366 mW/g Maximum value of SAR (measured) = 0.656 mW/g

0 dB = 0.656 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 23.0°C; liquid temperature: 21.3°C

As of 2008-07-21 Page 75 of 98

Date/Time: 2008-07-15 20:17:12Date/Time: 2008-07-15 20:23:00

P1528_OET65-RightHandSide-GSM1900

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.39 \text{ mho/m}$; $\varepsilon_r = 39.9$; $\rho = 1000 \text{ kg/m}^3$

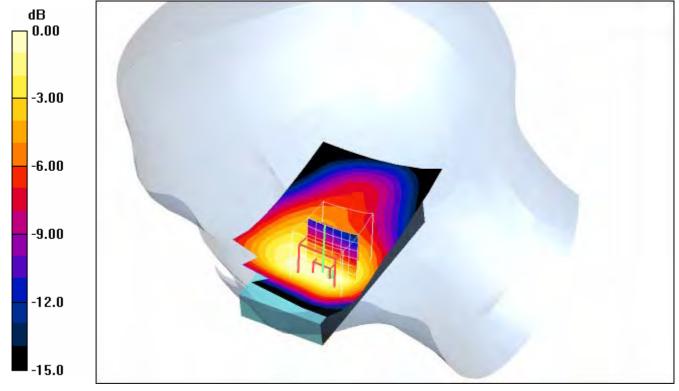
Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - Middle/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.717 mW/g


Touch position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 23.8 V/m; Power Drift = 0.045 dB

Peak SAR (extrapolated) = 0.972 W/kg

SAR(1 g) = 0.654 mW/g; SAR(10 g) = 0.393 mW/g Maximum value of SAR (measured) = 0.721 mW/g

0 dB = 0.721 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 23.0° C; liquid temperature: 21.3° C

As of 2008-07-21 Page 76 of 98

Date/Time: 2008-07-15 20:37:42Date/Time: 2008-07-15 20:43:31

P1528_OET65-RightHandSide-GSM1900

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK

Communication System: PCS 1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used: f = 1909.8 MHz; $\sigma = 1.39 \text{ mho/m}$; $\varepsilon_r = 39.9$; $\rho = 1000 \text{ kg/m}^3$

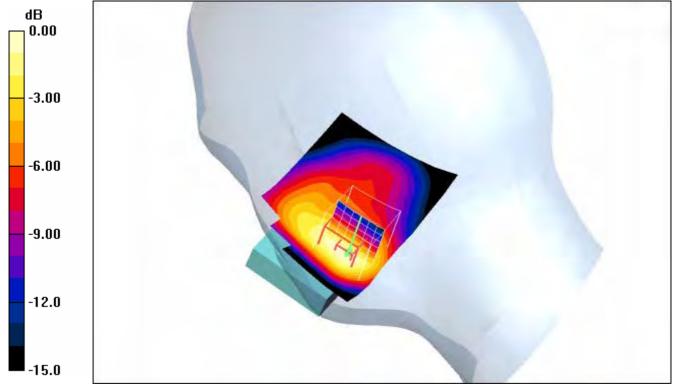
Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - High/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.989 mW/g


Touch position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 26.1 V/m; Power Drift = 0.193 dB

Peak SAR (extrapolated) = 1.32 W/kg

SAR(1 g) = 0.847 mW/g; SAR(10 g) = 0.503 mW/g Maximum value of SAR (measured) = 0.952 mW/g

0 dB = 0.952 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 23.0° C; liquid temperature: 21.3° C

As of 2008-07-21 Page 77 of 98

Date/Time: 2008-07-16 07:40:55Date/Time: 2008-07-16 07:46:54

P1528_OET65-RightHandSide-GSM1900

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK

Communication System: PCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.39 \text{ mho/m}$; $\varepsilon_r = 39.9$; $\rho = 1000 \text{ kg/m}^3$

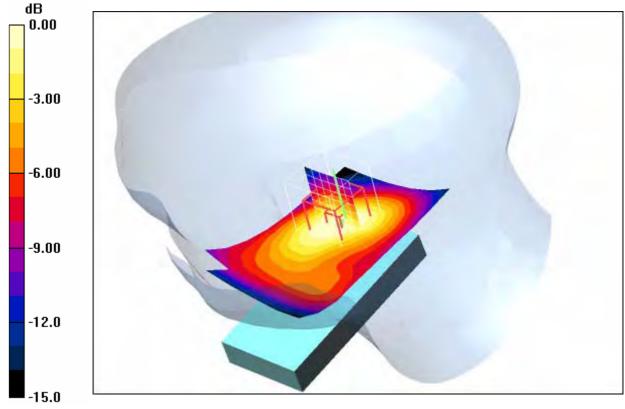
Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - Low/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.331 mW/g


Tilt position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 15.4 V/m; Power Drift = -0.024 dB

Peak SAR (extrapolated) = 0.419 W/kg

SAR(1 g) = 0.269 mW/g; SAR(10 g) = 0.169 mW/gMaximum value of SAR (measured) = 0.293 mW/g

0 dB = 0.293 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 22.7° C; liquid temperature: 22.5° C

As of 2008-07-21 Page 78 of 98

Date/Time: 2008-07-16 08:03:31Date/Time: 2008-07-16 08:09:32

P1528_OET65-RightHandSide-GSM1900

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.39$ mho/m; $\varepsilon_r = 39.9$; $\rho = 1000$ kg/m³

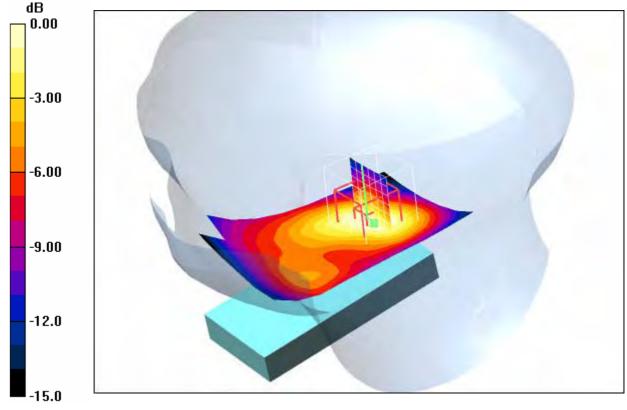
Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - Middle/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.356 mW/g


Tilt position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 16.7 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.495 W/kg

SAR(1 g) = 0.315 mW/g; SAR(10 g) = 0.191 mW/g Maximum value of SAR (measured) = 0.343 mW/g

0 dB = 0.343 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 22.7° C; liquid temperature: 22.5° C

As of 2008-07-21 Page 79 of 98

Date/Time: 2008-07-16 08:22:54Date/Time: 2008-07-16 08:28:57

P1528_OET65-RightHandSide-GSM1900

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK

Communication System: PCS 1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used: f = 1909.8 MHz; $\sigma = 1.39 \text{ mho/m}$; $\varepsilon_r = 39.9$; $\rho = 1000 \text{ kg/m}^3$

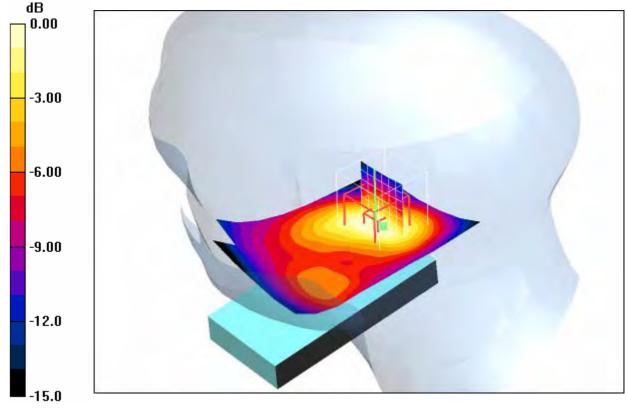
Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - High/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.438 mW/g


Tilt position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 18.2 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.586 W/kg

SAR(1 g) = 0.384 mW/g; SAR(10 g) = 0.230 mW/g Maximum value of SAR (measured) = 0.425 mW/g

0 dB = 0.425 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 22.7° C; liquid temperature: 22.5° C

As of 2008-07-21 Page 80 of 98

Date/Time: 2008-07-15 18:29:57Date/Time: 2008-07-15 18:36:15

P1528_OET65-RightHandSide-GSM1900-open

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK

Communication System: PCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.39 \text{ mho/m}$; $\varepsilon_r = 39.9$; $\rho = 1000 \text{ kg/m}^3$

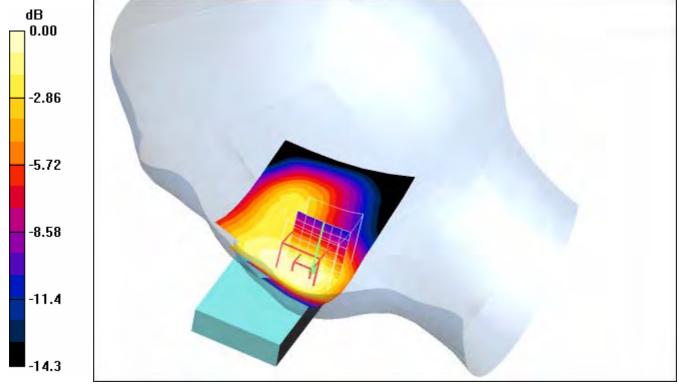
Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.497 mW/g


Touch position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 19.1 V/m; Power Drift = 0.047 dB

Peak SAR (extrapolated) = 0.632 W/kg

SAR(1 g) = 0.442 mW/g; SAR(10 g) = 0.297 mW/gMaximum value of SAR (measured) = 0.479 mW/g

0 dB = 0.479 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 23.4° C; liquid temperature: 21.6° C

As of 2008-07-21 Page 81 of 98

Date/Time: 2008-07-15 18:54:33Date/Time: 2008-07-15 19:00:56Date/Time: 2008-07-15 19:13:17

P1528_OET65-RightHandSide-GSM1900-open

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.39$ mho/m; $\varepsilon_r = 39.9$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.528 mW/g

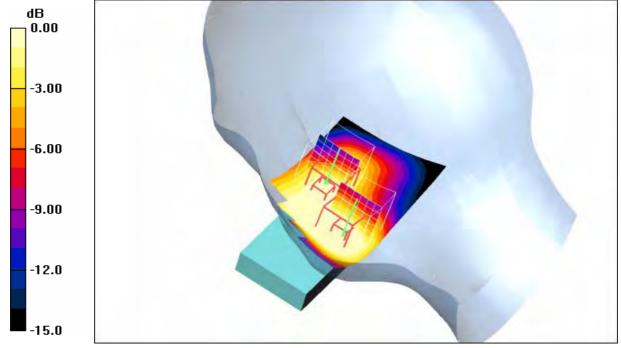
Touch position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 18.6 V/m; Power Drift = 0.037 dB

Peak SAR (extrapolated) = 0.678 W/kg

SAR(1 g) = 0.456 mW/g; SAR(10 g) = 0.306 mW/g Maximum value of SAR (measured) = 0.495 mW/g


Touch position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 18.6 V/m; Power Drift = 0.037 dB

Peak SAR (extrapolated) = 0.486 W/kg

SAR(1 g) = 0.318 mW/g; SAR(10 g) = 0.211 mW/gMaximum value of SAR (measured) = 0.351 mW/g

0 dB = 0.351 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions):

ambient temperature: 23.4°C; liquid temperature: 21.6°C

As of 2008-07-21 Page 82 of 98

Date/Time: 2008-07-15 19:27:58Date/Time: 2008-07-15 19:34:14

P1528_OET65-RightHandSide-GSM1900-open

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK

Communication System: PCS 1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used: f = 1909.8 MHz; $\sigma = 1.39 \text{ mho/m}$; $\varepsilon_r = 39.9$; $\rho = 1000 \text{ kg/m}^3$

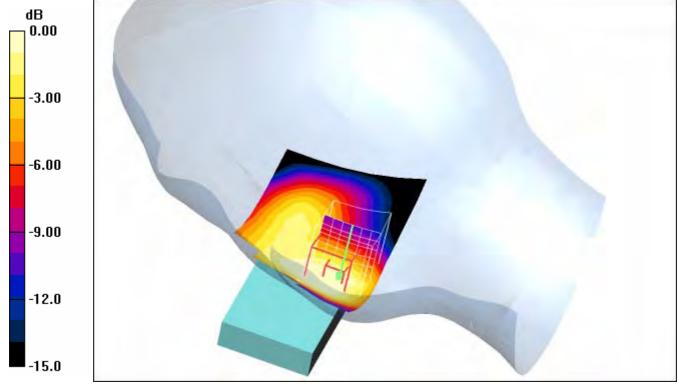
Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.563 mW/g


Touch position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 19.6 V/m; Power Drift = 0.063 dB

Peak SAR (extrapolated) = 0.704 W/kg

SAR(1 g) = 0.476 mW/g; SAR(10 g) = 0.314 mW/g Maximum value of SAR (measured) = 0.509 mW/g

0 dB = 0.509 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 23.4° C; liquid temperature: 21.6° C

As of 2008-07-21 Page 83 of 98

Date/Time: 2008-07-15 18:08:05Date/Time: 2008-07-15 18:14:28

P1528_OET65-RightHandSide-GSM1900-open

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK

Communication System: PCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.39 \text{ mho/m}$; $\varepsilon_r = 39.9$; $\rho = 1000 \text{ kg/m}^3$

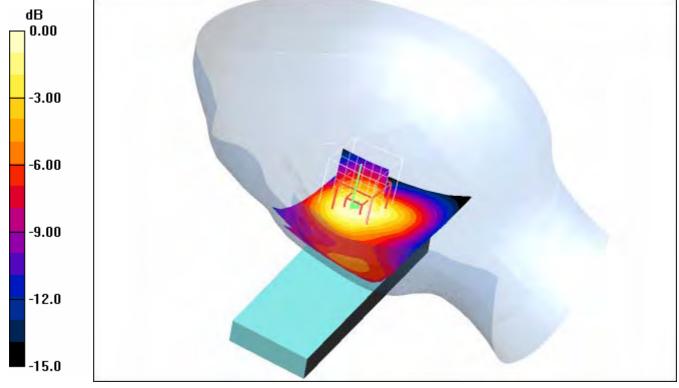
Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.480 mW/g


Tilt position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 16.9 V/m; Power Drift = 0.072 dB

Peak SAR (extrapolated) = 0.523 W/kg

SAR(1 g) = 0.367 mW/g; SAR(10 g) = 0.229 mW/gMaximum value of SAR (measured) = 0.397 mW/g

0 dB = 0.397 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 23.2° C; liquid temperature: 21.6° C

As of 2008-07-21 Page 84 of 98

Date/Time: 2008-07-15 17:46:55Date/Time: 2008-07-15 17:53:18

P1528_OET65-RightHandSide-GSM1900-open

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.39 \text{ mho/m}$; $\varepsilon_r = 39.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.505 mW/g

Tilt position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 16.9 V/m; Power Drift = -0.016 dB

Peak SAR (extrapolated) = 0.563 W/kg

SAR(1 g) = 0.385 mW/g; SAR(10 g) = 0.236 mW/g

Maximum value of SAR (measured) = 0.420 mW/g

0 dB = 0.420 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 23.2° C; liquid temperature: 21.6° C

As of 2008-07-21 Page 85 of 98

Date/Time: 2008-07-15 17:23:47Date/Time: 2008-07-15 17:30:07

P1528_OET65-RightHandSide-GSM1900-open

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K7ZK

Communication System: PCS 1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used: f = 1909.8 MHz; $\sigma = 1.39 \text{ mho/m}$; $\varepsilon_r = 39.9$; $\rho = 1000 \text{ kg/m}^3$

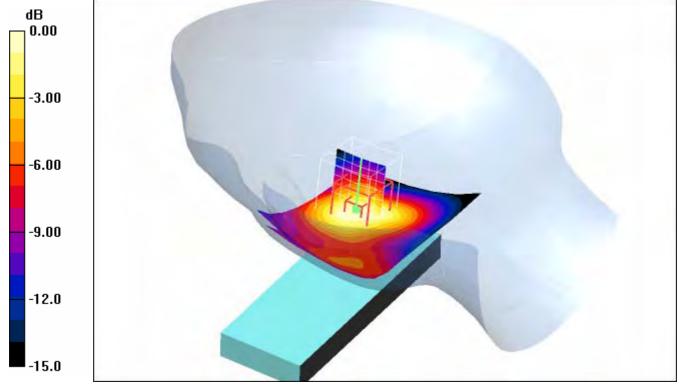
Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.555 mW/g


Tilt position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 18.0 V/m; Power Drift = 0.028 dB

Peak SAR (extrapolated) = 0.627 W/kg

SAR(1 g) = 0.422 mW/g; SAR(10 g) = 0.257 mW/gMaximum value of SAR (measured) = 0.466 mW/g

0 dB = 0.466 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 23.2° C; liquid temperature: 21.6° C

As of 2008-07-21 Page 86 of 98

Annex 2.4 GSM 1800 MHz body

Date/Time: 2008-07-11 10:08:55Date/Time: 2008-07-11 10:14:02

P1528_OET65-Body-GSM1900 GPRS class 10

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K87ZK

Communication System: PCS 1900 GPRS class 10; Frequency: 1850.2 MHz; Duty Cycle: 1:4

Medium: M1900 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.53 \text{ mho/m}$; $\varepsilon_r = 53.2$; $\rho = 1000 \text{ kg/m}^3$

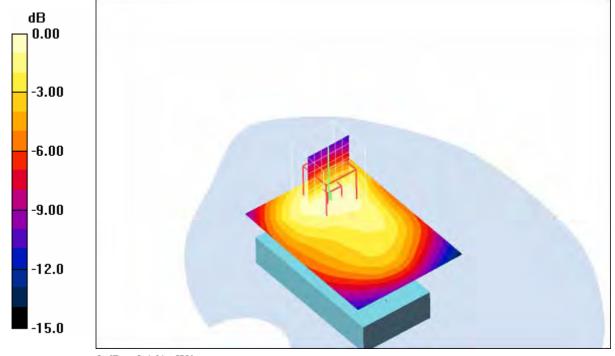
Phantom section: Flat Section DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(4.46, 4.46, 4.46); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Front position - Low/Area Scan (51x71x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.162 mW/g

Front position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 10.9 V/m; Power Drift = -0.067 dB

Peak SAR (extrapolated) = 0.225 W/kg

SAR(1 g) = 0.150 mW/g; SAR(10 g) = 0.099 mW/g

Maximum value of SAR (measured) = 0.161 mW/g

0 dB = 0.161 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions): 15 mm

ambient temperature: 23.4°C; liquid temperature: 22.8°C

As of 2008-07-21 Page 87 of 98

Date/Time: 2008-07-11 10:30:27Date/Time: 2008-07-11 10:35:39

P1528_OET65-Body-GSM1900 GPRS class 10

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K87ZK

Communication System: PCS 1900 GPRS class 10; Frequency: 1880 MHz; Duty Cycle: 1:4

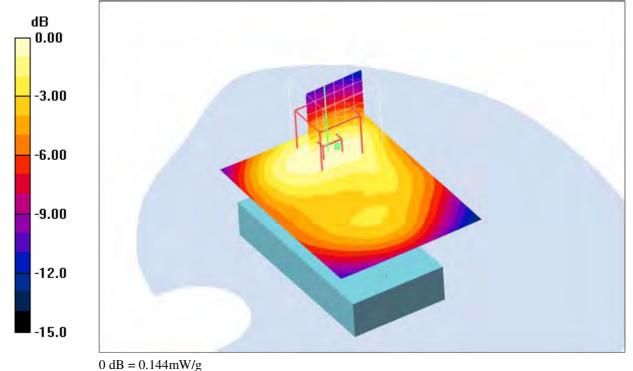
Medium: M1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.53$ mho/m; $\varepsilon_r = 53.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(4.46, 4.46, 4.46); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Front position - Middle/Area Scan (51x71x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.145 mW/g


Front position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 10.3 V/m; Power Drift = -0.011 dB

Peak SAR (extrapolated) = 0.203 W/kg

SAR(1 g) = 0.134 mW/g; SAR(10 g) = 0.088 mW/gMaximum value of SAR (measured) = 0.144 mW/g

0 dD = 0.144111W/

Additional information:

position or distance of DUT to SAM (if not standard head positions) : 15 mm ambient temperature: 23.4°C; liquid temperature: 22.8°C

• • •

As of 2008-07-21 Page 88 of 98

Date/Time: 2008-07-11 10:50:02Date/Time: 2008-07-11 10:55:19

P1528_OET65-Body-GSM1900 GPRS class 10

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K87ZK

Communication System: PCS 1900 GPRS class 10; Frequency: 1909.8 MHz; Duty Cycle: 1:4

Medium: M1900 Medium parameters used: f = 1909.8 MHz; $\sigma = 1.53$ mho/m; $\varepsilon_r = 53.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.46, 4.46, 4.46); Calibrated: 2007-08-23

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

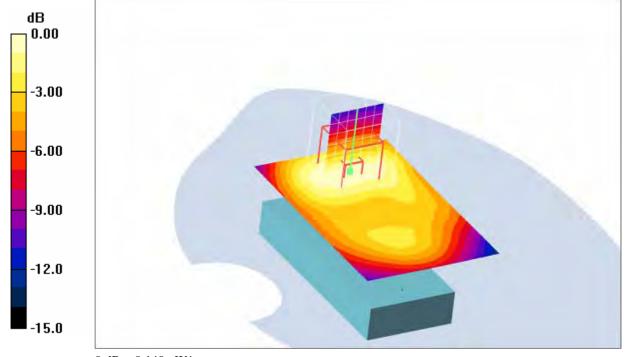
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18

- Phantom: SAM 12; Type: SAM; Serial: 1043

- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Front position - High/Area Scan (51x71x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.141 mW/g


Front position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 10.2 V/m; Power Drift = -0.035 dB

Peak SAR (extrapolated) = 0.200 W/kg

SAR(1 g) = 0.131 mW/g; SAR(10 g) = 0.085 mW/gMaximum value of SAR (measured) = 0.140 mW/g

0 dB = 0.140 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : 15 mm ambient temperature: 23.4°C; liquid temperature: 22.8°C

As of 2008-07-21 Page 89 of 98

Date/Time: 2008-07-11 12:29:21Date/Time: 2008-07-11 12:35:27Date/Time: 2008-07-11 12:47:34

P1528_OET65-Body-GSM1900 GPRS class 10

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K87ZK

Communication System: PCS 1900 GPRS class 10; Frequency: 1850.2 MHz; Duty Cycle: 1:4

Medium: M1900 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.53 \text{ mho/m}$; $\varepsilon_r = 53.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.46, 4.46, 4.46); Calibrated: 2007-08-23

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

- Electronics: DAE3 Sn413; Calibrated: 2008-01-18

- Phantom: SAM 12; Type: SAM; Serial: 1043

- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Rear position - Low/Area Scan (51x71x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.353 mW/g

Rear position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

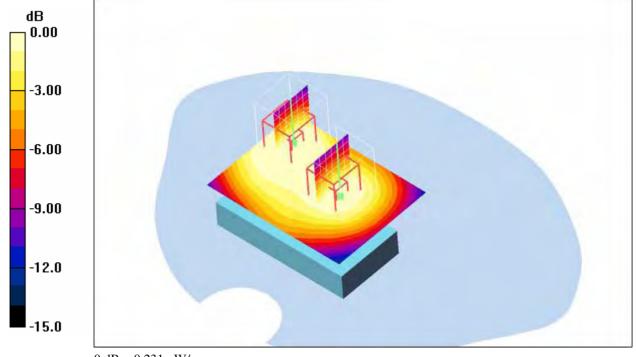
Reference Value = 15.8 V/m; Power Drift = -0.013 dB

Peak SAR (extrapolated) = 0.485 W/kg

SAR(1 g) = 0.310 mW/g; SAR(10 g) = 0.195 mW/g

Maximum value of SAR (measured) = 0.331 mW/g

Rear position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 15.8 V/m; Power Drift = -0.013 dB

Peak SAR (extrapolated) = 0.311 W/kg

SAR(1 g) = 0.219 mW/g; SAR(10 g) = 0.150 mW/g

Maximum value of SAR (measured) = 0.231 mW/g

0 dB = 0.231 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : 15 mm distance ambient temperature: 23.5°C; liquid temperature: 22.8°C

As of 2008-07-21 Page 90 of 98

Date/Time: 2008-07-11 11:54:00Date/Time: 2008-07-11 11:59:29Date/Time: 2008-07-11 12:11:55

P1528_OET65-Body-GSM1900 GPRS class 10

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K87ZK

Communication System: PCS 1900 GPRS class 10; Frequency: 1880 MHz; Duty Cycle: 1:4

Medium: M1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.53 \text{ mho/m}$; $\varepsilon_r = 53.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.46, 4.46, 4.46); Calibrated: 2007-08-23

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

- Electronics: DAE3 Sn413; Calibrated: 2008-01-18

- Phantom: SAM 12; Type: SAM; Serial: 1043

- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Rear position - Middle/Area Scan (51x71x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.327 mW/g

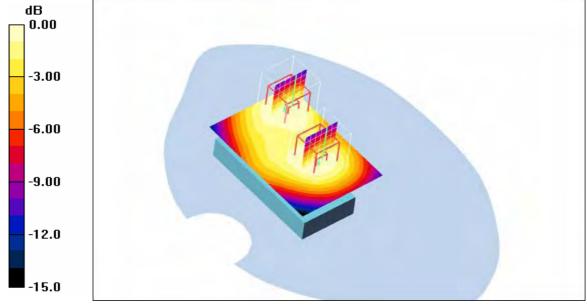
Rear position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 15.6 V/m; Power Drift = 0.109 dB

Peak SAR (extrapolated) = 0.503 W/kg

SAR(1 g) = 0.304 mW/g; SAR(10 g) = 0.184 mW/g Maximum value of SAR (measured) = 0.327 mW/g


Rear position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 15.6 V/m; Power Drift = 0.109 dB

Peak SAR (extrapolated) = 0.340 W/kg

SAR(1 g) = 0.231 mW/g; SAR(10 g) = 0.156 mW/g Maximum value of SAR (measured) = 0.245 mW/g

0 dB = 0.245 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions): 15 mm

ambient temperature: 23.5°C; liquid temperature: 22.8°C

As of 2008-07-21 Page 91 of 98

Date/Time: 2008-07-11 11:19:01Date/Time: 2008-07-11 11:24:19Date/Time: 2008-07-11 11:36:00

P1528_OET65-Body-GSM1900 GPRS class 10

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K87ZK

Communication System: PCS 1900 GPRS class 10; Frequency: 1909.8 MHz; Duty Cycle: 1:4

Medium: M1900 Medium parameters used: f = 1909.8 MHz; $\sigma = 1.53 \text{ mho/m}$; $\varepsilon_r = 53.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(4.46, 4.46, 4.46); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Rear position -High/Area Scan (51x71x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.360 mW/g

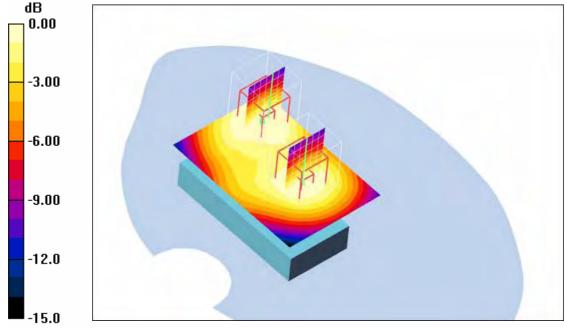
Rear position -High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 16.3 V/m; Power Drift = -0.016 dB

Peak SAR (extrapolated) = 0.545 W/kg

SAR(1 g) = 0.329 mW/g; SAR(10 g) = 0.198 mW/g Maximum value of SAR (measured) = 0.352 mW/g


Rear position -High/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 16.3 V/m; Power Drift = -0.016 dB

Peak SAR (extrapolated) = 0.351 W/kg

SAR(1 g) = 0.236 mW/g; SAR(10 g) = 0.157 mW/gMaximum value of SAR (measured) = 0.252 mW/g

0 dB = 0.252 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions): 15 mm

ambient temperature: 23.5°C; liquid temperature: 22.8°C

As of 2008-07-21 Page 92 of 98

Date/Time: 2008-07-11 13:43:02Date/Time: 2008-07-11 13:48:39Date/Time: 2008-07-11 14:00:41

P1528_OET65-Body-GSM1900 EGPRS class 10

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K87ZK

Communication System: PCS 1900 EGPRS class 10; Frequency: 1909.8 MHz; Duty Cycle: 1:4

Medium: M1900 Medium parameters used: f = 1909.8 MHz; $\sigma = 1.53 \text{ mho/m}$; $\varepsilon_r = 53.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(4.46, 4.46, 4.46); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Rear position -High EDGE/Area Scan (51x71x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.231 mW/g

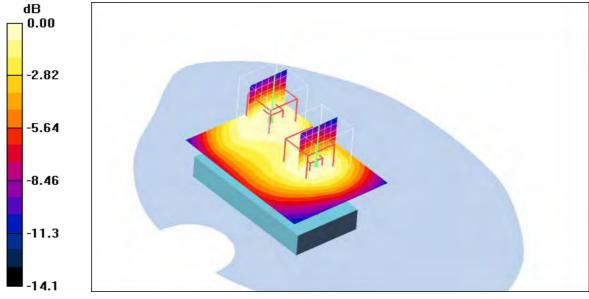
Rear position -High EDGE/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 13.0 V/m; Power Drift = -0.064 dB

Peak SAR (extrapolated) = 0.351 W/kg

SAR(1 g) = 0.211 mW/g; SAR(10 g) = 0.127 mW/gMaximum value of SAR (measured) = 0.227 mW/g


Rear position -High EDGE/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 13.0 V/m; Power Drift = -0.064 dB

Peak SAR (extrapolated) = 0.218 W/kg

SAR(1 g) = 0.147 mW/g; SAR(10 g) = 0.097 mW/gMaximum value of SAR (measured) = 0.156 mW/g

0 dB = 0.156 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions): 15 mm

ambient temperature: 23.5°C; liquid temperature: 22.8°C

As of 2008-07-21 Page 93 of 98

Date/Time: 2008-07-11 13:07:10Date/Time: 2008-07-11 13:12:38Date/Time: 2008-07-11 13:24:25

P1528 OET65-Body-GSM1900 GPRS class 8

DUT: Sony Ericsson; Type: AAC-1052191-BV; Serial: CB5111K87ZK

Communication System: PCS 1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8

Medium: M1900 Medium parameters used: f = 1909.8 MHz; $\sigma = 1.53 \text{ mho/m}$; $\varepsilon_r = 53.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section **DASY4** Configuration:

- Probe: ET3DV6 SN1558; ConvF(4.46, 4.46, 4.46); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Rear position -High/Area Scan (51x71x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.344 mW/g

Rear position -High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

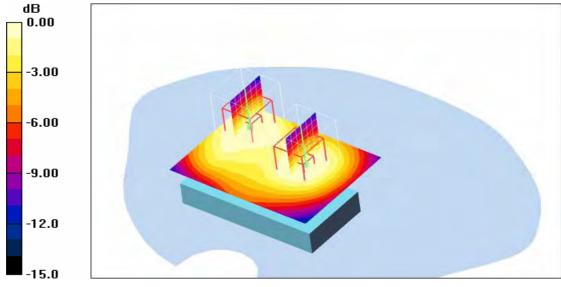
Reference Value = 15.9 V/m; Power Drift = -0.142 dB

Peak SAR (extrapolated) = 0.494 W/kg

SAR(1 g) = 0.308 mW/g; SAR(10 g) = 0.187 mW/g

Maximum value of SAR (measured) = 0.331 mW/g

Rear position -High/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 15.9 V/m; Power Drift = -0.142 dB

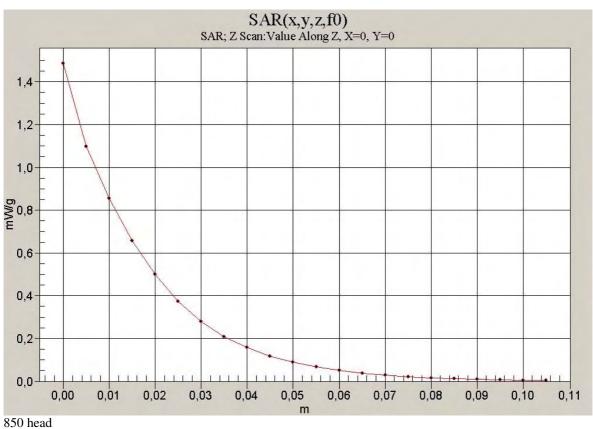
Peak SAR (extrapolated) = 0.351 W/kg

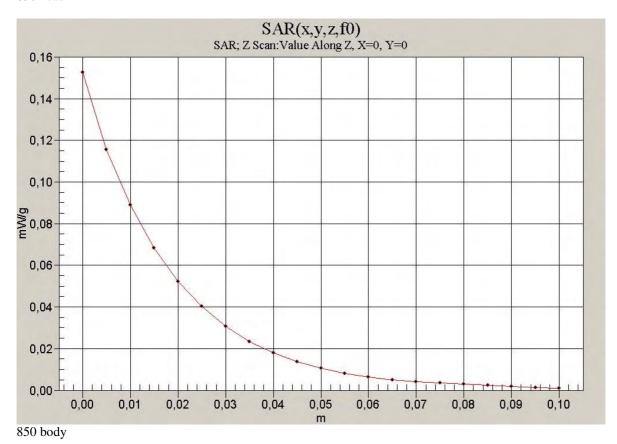
SAR(1 g) = 0.235 mW/g; SAR(10 g) = 0.156 mW/g

Maximum value of SAR (measured) = 0.251 mW/g

0 dB = 0.251 mW/g

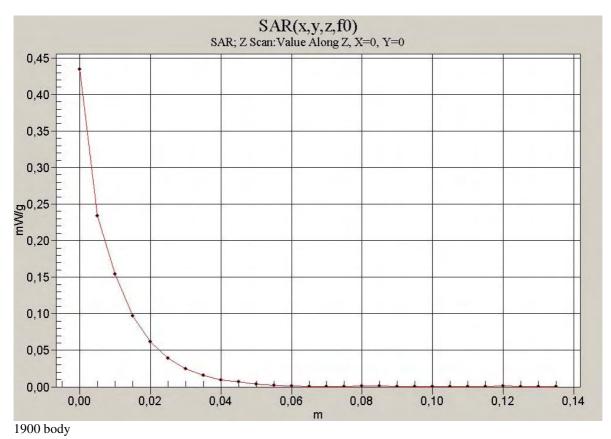
Additional information:


position or distance of DUT to SAM (if not standard head positions): 15 mm


ambient temperature: 23.5°C; liquid temperature: 22.8°C

As of 2008-07-21 Page 94 of 98


Annex 2.5 Z-axis scans



As of 2008-07-21 Page 95 of 98

As of 2008-07-21 Page 96 of 98

Annex 3 RF Technical Brief Cover Sheet acc. to RSS-102

1. COMPANY NUMBER: 4170B
2. MODEL NUMBER: A1052191
3. MANUFACTURER: Sony Ericsson Mobile Communications AB
4. TYPE OF EVALUATION:
(a) SAR Evaluation: Device used in the Vicinity of the Human Head
Multiple transmitters: Yes □ No ☒
 • Evaluated against exposure limits: General Public Use ∑ Controlled Use □ • Duty cycle used in evaluation: 12.5 % • Standard used for evaluation: RSS-102 Issue 2 (2005-11)
ullet SAR value: 1.310 W/kg. Measured $oximes$ Computed $oximes$ Calculated $oximes$
(b) SAR Evaluation: Body-worn Device
$ullet$ Multiple transmitters: Yes \square No \boxtimes
 • Evaluated against exposure limits: General Public Use ∑ Controlled Use □ • Duty cycle used in evaluation: 25 % • Standard used for evaluation: RSS-102 Issue 2 (2005-11)
ullet SAR value: 1.260 W/kg. Measured $oximes$ Computed $oximes$ Calculated $oximes$
Annex 3.1 Declaration of RF Exposure Compliance
ATTESTATION: I attest that the information provided in Annex 3 is correct; that a Technical Brief was prepared and the information it contains is correct; that the device evaluation was performed or supervised by me; that applicable measurement methods and evaluation methodologies have been followed and that the device meets the SAR and/or RF exposure limits of RSS-102.
Signature: Date: 2008-07-21

NAME: Thomas Vogler

TITLE: Dipl.-Ing. (FH)

COMPANY: CETECOM ICT Services GmbH

As of 2008-07-21 Page 97 of 98

CETECOM ICT Services GmbH

Test report no.: 2-4883-47-03/08

Annex 4 Photo documentation

Appendix to test report no. 2-4883-47-03/08°

Annex 5 Calibration parameters

Calibration parameters are described in the additional document :

Appendix to test report no. 2-4883-47-03/08' Calibration data, Phantom certificate and detail information of the DASY4 System

As of 2008-07-21 Page 98 of 98