CETECOM ICT Services GmbH

 Untertuerkheimer Str. 6-10, 66117 Saarbruecken, Germany
 Phone: +49 (0) 681 598-0

 SAR-Laboratory
 Phone: +49 (0) 681 598-8454

Fax: -8475

Accredited testing laboratory

DAR registration number: DAT-P-176/94-D1

Test report no.	: 2-4576-46-02/07
Type identification	: AAA-1042081-BV
Test specification	: IEEE P1528/D1.2
FCC-ID	: PY7A1042081
IC-ID	: 4170B-A1042081

Table of Contents

1	Genera	1 Information	3
	1.1 No	tes	3
	1.1.1	Statement of Compliance	3
	1.2 Te	sting laboratory	4
	1.3 De	tails of applicant	4
	1.4 Ap	plication details	4
	1.5 Te	st item	5
	1.6 Te	st specification(s)	6
	1.6.1		
2		cal test	
		nmary of test results	7
		st environment	
	2.3 Me	asurement and test set-up	7
	2.4 Me	asurement system	
	2.4.1	System Description	
	2.4.2	Test environment	
	2.4.3	Probe description	
	2.4.4	Phantom description	
	2.4.5	Device holder description	
	2.4.6	Scanning procedure	
	2.4.7	Spatial Peak SAR Evaluation	
	2.4.8	Data Storage and Evaluation	
	2.4.9	Test equipment utilized	
	2.4.10	Tissue simulating liquids: dielectric properties	
	2.4.11	Tissue simulating liquids: parameters	
	2.4.12	Measurement uncertainty evaluation for SAR test	
	2.4.13	Measurement uncertainty evaluation for system validation	
	2.4.14	System validation	
	2.4.15	Validation procedure	
		st results (Head and Body SAR)	
	2.5.1	General description of test procedures	
	2.6 Te	st results (conducted power measurement)	. 24

Annex 1 System performance verification	
Annex 2 Measurement results (printout from DASY TM)	30
Annex 2.1 PCS 850 MHz head	
Annex 2.2 PCS 850 MHz body	43
Annex 2.3 PCS 1900 MHz head	50
Annex 2.4 PCS 1900 MHz body	63
Annex 2.5 Z-axis scans	
Annex 3 Photo documentation	72
Annex 3.1 Liquid depth	83
Annex 4 Calibration parameters	

1 General Information

1.1 Notes

The test results of this test report relate exclusively to the test item specified in 1.5. The CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the CETECOM ICT Services GmbH.

1.1.1 Statement of Compliance

The SAR values found for the AAA-1042081-BV Mobile Phone 850/1900 are below the maximum recommended levels of 1.6 W/Kg as averaged over any 1 g tissue according to the FCC rule §2.1093, the ANSI/IEEE C 95.1:1999, the NCRP Report Number 86 for uncontrolled environment, according to the Health Canada's Safety Code 6 and the Industry Canada Radio Standards Specification RSS-102 for General Population/Uncontrolled exposure.

For body worn operation, this device has been tested and meets FCC RF exposure guidelines when used with any accessory that contains no metal and that positions the handset a minimum of 15 mm from the body. Use of other accessories may not ensure compliance with FCC RF exposure guidelines.

The measurement together with the test system set-up is described in chapter 2.3 of this test report. A detailed description of the equipment under test can be found in chapter 1.5.

Test engineer:

2008-01-10

Date

Oleksandr Hnatovskiy Name

Signature

Technical responsibility for area of testing:

2008-01-10	Thomas Vogler	Thomas Vor	
Date	Name	Signature	

1.2 Testing laboratory

CETECOM ICT Services GmbH Untertuerkheimer Straße 6-10, 66117 Saarbruecken Germany Telephone: + 49 681 598 - 0 Fax: + 49 681 598 - 8475

e-mail: <u>info@ict.cetecom.de</u> Internet: <u>http://www.cetecom-ict.de</u>

State of accreditation: The Test laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025. DAR registration number: DAT-P-176/94-D1

Test location, if different from CETECOM ICT Services GmbH

Name:	
Street:	
Town:	
Country:	
Phone:	
Fax:	

1.3 Details of applicant

Name: Sony Ericsson Mobile Communications AB

Street:	Nya Vattentornet
Town:	22188 Lund
Country:	Sweden
G	

Contact:	Mr. Peter Lindeborg
Telephone:	+46-46-212-6180

1.4 Application details

Date of receipt of application:	2008-01-07
Date of receipt of test item:	2008-01-07
Start/Date of test:	2008-01-07
End of test:	2008-01-09

1.5 Test item

Type identification:

FCC-ID : IC: Serial number: PY7A1042081 4170B-A1042081 TP81070098

AAA-1042081-BV

Mobile Phone 850/1900

Manufacturer:

Name:
Street:
Town:
Country:

Sony Ericsson Mobile Communications AB Nya Vattentornet 22188 Lund Sweden

additional information on the DUT:			
device type :	portable device		
IMEI No :	00100300-155963-5		
exposure category:	· · · · · · · · · · · · · · · · · · ·	uncontrolled environment / general population	
test device production information	production unit		
device operating configurations :			
operating mode(s)	PCS		
modulation	GMSK		
GPRS mobile station class :	В		
GPRS multislot class :	8	voice mode :	
EGPRS multislot class	voice mode :		
maximum no. of timeslots in uplink :	1		
operating frequency range(s)	PCS 1900 (tested) PCS 850 (tested)		
- transmitter frequency range :	1850.2 MHz ~ 1909.8 MHz	824.2 MHz ~ 848.8 MHz	
- receiver frequency range :	1930.2 MHz ~ 1989.8 MHz		
Power class :	1, tested with power level 0 (1900 MHz band)		
	4, tested with power level 5 (850 MHz band)		
measured peak output power	850 band: 33.0 dBm		
(conducted):	1900 band: 30.9 dBm		
test channels (low – mid – high) :	128 – 190 – 251 (850 MHz band)		
	512 – 661 – 810 (1900 MHz band)		
hardware version :	FP1.3		
software version :	P1CB003		
antenna type :	Integrated monopole antenna		
accessories /	portable hands free		
body-worn configurations :			
Sony Ericsson standard battery BST-36			

1.6 Test specification(s)

Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01)

IEEE P1528/D1.2 (April 21, 2003)

RSS-102: Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands (Issue 2 of November 2005)

Canada's Safety Code 6: Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz (99-EHD-237)

IEEE Std C95.3 – 1991, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields – RF and Microwave.

IEEE Std C95.1 – 1999, IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz – 300 GHz.

1.6.1 RF exposure limits

Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational
Spatial Peak SAR* (Brain)	1.60 mW/g	8.00 mW/g
Spatial Average SAR** (Whole Body)	0.08 mW/g	0.40 mW/g
Spatial Peak SAR *** (Hands/Feet/Ankle/Wrist)	4.00 mW/g	20.00 mW/g

Table 1: RF exposure limits

The limit applied in this test report is shown in **bold** letters

Notes:

- The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time
- ** The Spatial Average value of the SAR averaged over the whole body.
- *** The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

2 Technical test

2.1 Summary of test results

No deviations from the technical specification(s) were ascertained in the course of the tests performed.	\square
The deviations as specified in 2.5 were ascertained in the course of the tests performed.	

2.2 Test environment

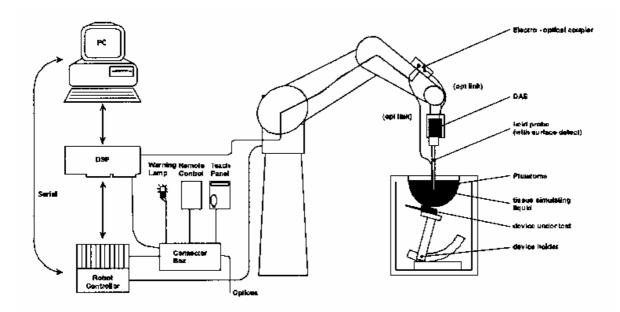
General Environment conditions in the test area are as follows:

Ambient temperature:	$20^{\circ}C - 24^{\circ}C$
Tissue simulating liquid:	$20^{\circ}C - 24^{\circ}C$
Humidity:	40% - 50%

Exact temperature values for each test are shown in the table(s) under 2.5. and/or on the measurement plots.

2.3 Measurement and test set-up

The measurement system is described in chapter 2.4.


The test setup for the system validation can be found in chapter 2.4.14.

A description of positioning and test signal control can be found in chapter 2.5 together with the test results.

2.4 Measurement system

2.4.1 System Description

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- A unit to operate the optical surface detector which is connected to the EOC.
- The <u>Electro-Optical Coupler (EOC)</u> performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY4 measurement server.
- The DASY4 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2000
- DASY4 software and SEMCAD data evaluation software.
- Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- System validation dipoles allowing to validate the proper functioning of the system.

2.4.2 Test environment

The DASY4 measurement system is placed at the head end of a room with dimensions:

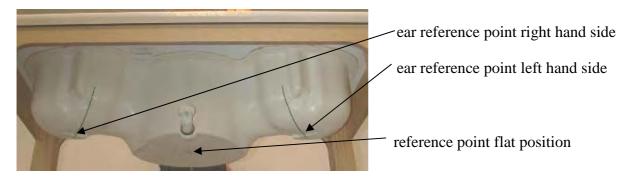
 $5 \times 2.5 \times 3 \text{ m}^3$, the SAM phantom is placed in a distance of 75 cm from the side walls and 1.1m from the rear wall. Above the test system a 1.5 x 1.5 m² array of pyramid absorbers is installed to reduce reflections from the ceiling.

Picture 1 of the photo documentation shows a complete view of the test environment.

The system allows the measurement of SAR values larger than 0.005 mW/g.

2.4.3 **Probe description**

Isotropic E-Field Probe ET3DV6 for Dosimetric Measurements


Technical data according to manufacturer information				
Construction	Symmetrical design with triangular core			
	Built-in optical fiber for surface detection system			
	Built-in shielding against static charges			
	PEEK enclosure material (resistant to organic			
	solvents, e.g., glycolether)			
Calibration	In air from 10 MHz to 2.5 GHz			
	In head tissue simulating liquid (HSL) at 900 (800-			
	1000) MHz and 1.8 GHz (1700-1910 MHz)			
	(accuracy \pm 9.5%; k=2) Calibration for other liquids			
	and frequencies upon request			
Frequency	10 MHz to 3 GHz (dosimetry); Linearity: \pm 0.2 dB			
	(30 MHz to 3 GHz)			
Directivity	\pm 0.2 dB in HSL (rotation around probe axis)			
	\pm 0.4 dB in HSL (rotation normal to probe axis)			
Dynamic range	$5 \mu\text{W/g}$ to > 100 mW/g; Linearity: $\pm 0.2 \text{dB}$			
Optical Surface Detection	± 0.2 mm repeatability in air and clear liquids over			
	diffuse reflecting surfaces (ET3DV6 only)			
Dimensions	Overall length: 330 mm			
	Tip length: 16 mm			
	Body diameter: 12 mm			
	Tip diameter: 6.8 mm			
	Distance from probe tip to dipole centers: 2.7 mm			
Application	General dosimetry up to 3 GHz			
	Compliance tests of mobile phones			
	Fast automatic scanning in arbitrary phantoms			
	(ET3DV6)			

2.4.4 Phantom description

The used SAM Phantom meets the requirements specified in Edition 01-01 of Supplement C to OET Bulletin 65 for Specific Absorption Rate (SAR) measurements.

The phantom consists of a fibreglass shell integrated in a wooden table. It allows left-hand and right-hand head as well as body-worn measurements with a maximum liquid depth of 18 cm in head position and 22 cm in planar position (body measurements). The thickness of the Phantom shell is 2 mm +/- 0.1 mm.

2.4.5 Device holder description

The DASY4 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. This device holder is used for standard mobile phones or PDA's only. If necessary an additional support of polystyrene material is used.

Larger DUT's (e.g. notebooks) cannot be tested using this device holder. Instead a support of bigger polystyrene cubes and thin polystyrene plates is used to position the DUT in all relevant positions to find and measure spots with maximum SAR values.

Therefore those devices are normally only tested at the flat part of the SAM.

2.4.6 Scanning procedure

The DASY4 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

- The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. +/- 5 %.
- The "surface check" measurement tests the optical surface detection system of the DASY4 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1 mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within $\pm 30^{\circ}$.)
- The "area scan" measures the SAR above the DUT or verification dipole on a parallel plane to the surface. It is used to locate the approximate location of the peak SAR with 2D spline interpolation. The robot performs a stepped movement along one grid axis while the local electrical field strenth is measured by the probe. The probe is touching the surface of the SAM during acquisition of measurement values. The standard scan uses large grid spacing for faster measurement. Standard grid spacing for head measurements is 15 mm in x- and y- dimension. If a finer resolution is needed, the grid spacing can be reduced. Grid spacing and orientation have no influence on the SAR result. For special applications where the standard scan method does not find the peak SAR within the grid, e.g. mobile phones with flip cover, the grid can be adapted in orientation. Results of this coarse scan are shown in annex 2.
- A "7x7x7 zoom scan" measures the field in a volume around the 2D peak SAR value acquired in the previous "coarse" scan. This is a fine 7x7 grid where the robot additionally moves the probe in 7 steps along the z-axis away from the bottom of the Phantom. Grid spacing for the cube measurement is 5 mm in x and y-direction and 5 mm in z-direction. DASY4 is also able to perform repeated zoom scans if more than 1 peak is found during area scan. In this document, the evaluated peak 1g and 10g averaged SAR values are shown in the 2D-graphics in annex 2. Test results relevant for the specified standard (see chapter 1.6.) are shown in table form in chapter 2.5.
- A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 7x7x7 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 2mm steps. This measurement shows the continuity of the liquid and can depending in the field strength also show the liquid depth. A z-axis scan of the measurement with maximum SAR value is shown in annex 2.

2.4.7 Spatial Peak SAR Evaluation

The spatial peak SAR - value for 1 and 10 g is evaluated after the Cube measurements have been done. The basis of the evaluation are the SAR values measured at the points of the fine cube grid consisting of 7 x 7 x 7 points. The algorithm that finds the maximal averaged volume is separated into three different stages.

- The data between the dipole center of the probe and the surface of the phantom are extrapolated. This data cannot be measured since the center of the dipole is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is about 1 mm (see probe calibration sheet). The extrapolated data from a cube measurement can be visualized by selecting 'Graph Evaluated'.
- The maximum interpolated value is searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10 g) are computed using the 3d-spline interpolation algorithm. If the volume cannot be evaluated (i.e., if a part of the grid was cut off by the boundary of the measurement area) the evaluation will be started on the corners of the bottom plane of the cube.
- All neighboring volumes are evaluated until no neighboring volume with a higher average value is found.

Extrapolation

The extrapolation is based on a least square algorithm [W. Gander, Computermathematik, p.168-180]. Through the points in the first 3 cm along the z-axis, polynomials of order four are calculated. These polynomials are then used to evaluate the points between the surface and the probe tip. The points, calculated from the surface, have a distance of 1 mm from each other.

Interpolation

The interpolation of the points is done with a 3d-Spline. The 3d-Spline is composed of three onedimensional splines with the "Not a knot"-condition [W. Gander, Computermathematik, p.141-150] (x, y and z -direction) [Numerical Recipes in C, Second Edition, p.123ff].

Volume Averaging

At First the size of the cube is calculated. Then the volume is integrated with the trapezoidal algorithm. 8000 points (20x20x20) are interpolated to calculate the average.

Advanced Extrapolation

DASY4 uses the advanced extrapolation option which is able to compansate boundary effects on E-field probes.

2.4.8 Data Storage and Evaluation

Data Storage

The DASY4 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity	Norm _i , a_{i0} , a_{i1} , a_{i2}
	- Conversion factor	ConvF _i
	- Diode compression point	Dcpi
Device parameters:	- Frequency	f
	- Crest factor	cf
Media parameters:	- Conductivity	σ
	- Density	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY4 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot cf/dcp_i$$

with	Vi	= compensated signal of channel i	(i = x, y, z)
	U_i	= input signal of channel i	(i = x, y, z)
	cf	= crest factor of exciting field	(DASY parameter)
	dcp_i	= diode compression point	(DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-fiel	d probes:	$E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$				
H-field probes:		$\mathbf{H}_{i} = (V_{i})^{1/2} \cdot (a_{i0} + a_{i1}f + a_{i2}f^{2})/f$				
with	$V_i \\ Norm_i \\ ConvF \\ a_{ij} \\ f \\ E_i \\ H_i \\ \end{cases}$	 = compensated signal of channel i (i = x, y, z) = sensor sensitivity of channel i (i = x, y, z) [mV/(V/m)²] for E-field Probes = sensitivity enhancement in solution = sensor sensitivity factors for H-field probes = carrier frequency [GHz] = electric field strength of channel i in V/m = magnetic field strength of channel i in A/m 				

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot}^2 \cdot \sigma) / (\rho \cdot 1000)$$

with	SAR	= local specific absorption rate in mW/g
	E _{tot}	= total field strength in V/m
	σ	= conductivity in [mho/m] or [Siemens/m]
	ho	= equivalent tissue density in g/cm ³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = E_{tot}^{2} / 3770$$
 or $P_{pwe} = H_{tot}^{2} \cdot 37.7$

with P_{pwe} = equivalent power density of a plane wave in mW/cm² E_{tot} = total electric field strength in V/m H = total magnetic field strength in A/m

 H_{tot} = total magnetic field strength in A/m

2.4.9 Test equipment utilized

This table gives a complete overview of the SAR measurement equipment

Devices used during the test described in chapter 2.5. are marked \boxtimes

	Manufacturer	Device	Tuno	Serial number	Date of last
	Manufacturer	Device	Туре	Serial number	
					calibration)*
\boxtimes	Schmid & Partner	Dosimetric E-Field Probe	ET3DV6	1558	August 23, 2007
	Engineering AG				
	Schmid & Partner	Dosimetric E-Field Probe	ET3DV6	1559	January 17, 2007
	Engineering AG				
\square	Schmid & Partner	900 MHz System	D900V2	102	August 23, 2007
	Engineering AG	Validation Dipole			
	Schmid & Partner	1800 MHz System	D1800V2	287	August 21, 2007
	Engineering AG	Validation Dipole			
\square	Schmid & Partner	1900 MHz System	D1900V2	5d009	August 21, 2007
	Engineering AG	Validation Dipole			
	Schmid & Partner	2450 MHz System	D2450V2	710	August 20, 2007
	Engineering AG	Validation Dipole			
\square	Schmid & Partner	Data acquisition	DAE3V1	477	May 22, 2007
	Engineering AG	electronics			··· · ································
\square	Schmid & Partner	Software	DASY 4		N/A
	Engineering AG		V4.5		
\square	Schmid & Partner	Phantom	SAM		N/A
	Engineering AG				
\square	Rohde & Schwarz	Universal Radio	CMU 200	106826	March 14, 2007
		Communication Tester			,
\square	Hewlett Packard)*	Network Analyser	8753C	2937U00269	March 13, 2007
	,	300 kHz to 6 GHz			,
\boxtimes	Hewlett Packard)*	Network Analyser	85047A	2936A00872	March 13, 2007
		300 kHz to 6 GHz			,
\square	Hewlett Packard	Dielectric Probe Kit	85070C	US99360146	N/A
\square	Hewlett Packard	Signal Generator	8665A	2833A00112	February 9, 2007
\square	Amplifier	Amplifier	25S1G4	20452	N/A
	Reasearch		(25 Watt)		
\square	Agilent	Power Meter	438A	2804U01006	February 2, 2007
\boxtimes	Agilent	Power Meter Sensor	8482A	2703A03025	February 2, 2007

)* : Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

2.4.10 Tissue simulating liquids: dielectric properties

The following materials are used for producing the tissue-equivalent materials.

(liquids used for tests described in chapter 2.5. are marked with \boxtimes) :

Ingredients (% of weight)	Frequency (MHz)							
frequency band	450	835	900	1800	⊠ 1900	2450		
Tissue Type	Head	Head	Head	Head	Head	Head		
Water	38.56	41.45	40.92	52.64	54.9	62.7		
Salt (NaCl)	3.95	1.45	1.48	0.36	0.18	0.5		
Sugar	56.32	56.0	56.5	0.0	0.0	0.0		
HEC	0.98	1.0	1.0	0.0	0.0	0.0		
Bactericide	0.19	0.1	0.1	0.0	0.0	0.0		
Triton X-100	0.0	0.0	0.0	0.0	0.0	36.8		
DGBE	0.0	0.0	0.0	47.0	44.92	0.0		

Table 2: Head tissue dielectric properties

Ingredients	Frequency (MHz)						
(% of weight)							
frequency band	450	835	900	1800	🛛 1900	2450	
Tissue Type	Body	Body	Body	Body	Body	Body	
Water	51.16	52.4	56.0	69.91	69.91	73.2	
Salt (NaCl)	1.49	1.40	0.76	0.13	0.13	0.04	
Sugar	46.78	45.0	41.76	0.0	0.0	0.0	
HEC	0.52	1.0	1.21	0.0	0.0	0.0	
Bactericide	0.05	0.1	0.27	0.0	0.0	0.0	
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	
DGBE	0.0	0.0	0.0	29.96	29.96	26.7	

Table 3: Body tissue dielectric properties

Salt: 99+% Pure Sodium ChlorideSugar: 98+% Pure SucroseWater: De-ionized, 16MΩ+ resistivityHEC: Hydroxyethyl CelluloseDGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]Triton X-100(ultra pure): Polyethylene glycol mono [4-(1,1,3,3-tetramethylbutyl)phenyl]ether

2.4.11 Tissue simulating liquids: parameters

Used Target	-		Measured		Measured
Frequency	Head	Tissue	Head	Tissue	Date
[MHz]	Permittivity	Conductivity	Permittivity	Conductivity	
		[S/m]		[S/m]	
835	41.5	0.90	42.2	0.89	2008-01-07
900	42.0	0.99	41.4	0.96	2008-01-07
835	41.5	0.90	42.2	0.89	2008-01-08
900	42.0	0.99	41.4	0.96	2008-01-08
1900	40.0	1.40	40.9	1.45	2008-01-09

Table 4: Parameter of the head tissue simulating liquid

Used Target Target		Measured		Measured	
Frequency	y Body Tissue		Body	Tissue	Date
[MHz]	Permittivity	Conductivity	Permittivity	Conductivity	
		[S/m]		[S/m]	
835	55.2	0.97	55.3	0.96	2008-01-08
900	55.0	1.05	54.7	1.03	2008-01-08
1900	53.3	1.52	52.7	1.54	2008-01-09

 Table 5: Parameter of the body tissue simulating liquid

Note: The dielectric properties have been measured using the contact probe method at 21°C.

2.4.12 Measurement uncertainty evaluation for SAR test

The overall combined measurement uncertainty of the measurement system is \pm 10,3% (K=1). The expanded uncertainty (k=2) is assessed to be \pm 20.6%

This measurement uncertainty budget is suggested by IEEE P1528 and determined by Schmid & Partner Engineering AG. The breakdown of the individual uncertainties is as follows:

Error Sources	Uncertainty Value	Probability Distribution	Divi- sor	c _i 1g	c _i 10g	Standard Uncertainty 1g	Standard Uncertainty 10g	v_i^2 or v_{eff}
Measurement System								
Probe calibration	$\pm 4.8\%$	Normal	1	1	1	$\pm 4.8\%$	$\pm 4.8\%$	∞
Axial isotropy	± 4.7%	Rectangular	√3	0.7	0.7	± 1.9%	± 1.9%	∞
Hemispherical isotropy	± 9.6%	Rectangular	√3	0.7	0.7	± 3.9%	± 3.9%	∞
Spatial resolution	$\pm 0.0\%$	Rectangular	√3	1	1	$\pm 0.0\%$	$\pm 0.0\%$	∞
Boundary effects	± 1.0%	Rectangular	√3	1	1	± 0.6%	± 0.6%	∞
Probe linearity	± 4.7%	Rectangular	√3	1	1	± 2.7%	± 2.7%	∞
System detection limits	± 1.0%	Rectangular	√3	1	1	$\pm 0.6\%$	$\pm 0.6\%$	∞
Readout electronics	± 1.0%	Normal	1	1	1	± 1.0%	± 1.0%	∞
Response time	$\pm 0.8\%$	Rectangular	√3	1	1	$\pm 0.5\%$	$\pm 0.5\%$	∞
Integration time	$\pm 2.6\%$	Rectangular	√3	1	1	± 1.5%	± 1.5%	∞
RF ambient conditions	± 3.0%	Rectangular	√3	1	1	$\pm 1.7\%$	$\pm 1.7\%$	∞
Probe positioner	$\pm 0.4\%$	Rectangular	√3	1	1	$\pm 0.2\%$	$\pm 0.2\%$	∞
Probe positioning	$\pm 2.9\%$	Rectangular	√3	1	1	$\pm 1.7\%$	$\pm 1.7\%$	∞
Max. SAR evaluation	± 1.0%	Rectangular	√3	1	1	$\pm 0.6\%$	$\pm 0.6\%$	∞
Test Sample Related								
Device positioning	$\pm 2.9\%$	Normal	1	1	1	$\pm 2.9\%$	$\pm 2.9\%$	145
Device holder uncertainty	± 3.6%	Normal	1	1	1	± 3.6%	± 3.6%	5
Power drift	± 5.0%	Rectangular	√3	1	1	± 2.9%	± 2.9%	∞
Phantom and Set-up								
Phantom uncertainty	± 4.0%	Rectangular	√3	1	1	± 2.3%	± 2.3%	∞
Liquid conductivity (target)	± 5.0%	Rectangular	√3	0.64	0.43	$\pm 1.8\%$	± 1.2%	∞
Liquid conductivity (meas.)	± 2.5%	Normal	1	0.64	0.43	± 1.6%	$\pm 1.1\%$	∞
Liquid permittivity (target)	± 5.0%	Rectangular	√3	0.6	0.49	± 1.7%	± 1.4%	∞
Liquid permittivity (meas.)	± 2.5%	Normal	1	0.6	0.49	± 1.5%	± 1.2%	∞
Combined Uncertainty						± 10.3%	± 10.0%	330
Expanded Std. Uncertainty						± 20.6%	± 20.1%	

 Table 6: Measurement uncertainties

2.4.13 Measurement uncertainty evaluation for system validation

The overall combined measurement uncertainty of the measurement system is \pm 8.4% (K=1). The expanded uncertainty (k=2) is assessed to be \pm 16.8%

This measurement uncertainty budget is suggested by IEEE P1528 and determined by Schmid & Partner Engineering AG. The breakdown of the individual uncertainties is as follows:

Error Sources	Uncertainty Value	Probability Distribution	Divi- sor	c _i 1g	c _i 10g	Standard Uncertainty 1g	Standard Uncertainty 10g	v_i^2 or v_{eff}
Measurement System								
Probe calibration	± 4.8%	Normal	1	1	1	± 4.8%	$\pm 4.8\%$	x
Axial isotropy	$\pm 4.7\%$	Rectangular	√3	0.7	0.7	$\pm 1.9\%$	$\pm 1.9\%$	x
Hemispherical isotropy	$\pm 0.0\%$	Rectangular	√3	0.7	0.7	$\pm 0.0\%$	± 3.9%	x
Boundary effects	± 1.0%	Rectangular	√3	1	1	$\pm 0.6\%$	$\pm 0.6\%$	x
Probe linearity	± 4.7%	Rectangular	√3	1	1	± 2.7%	$\pm 2.7\%$	x
System detection limits	± 1.0%	Rectangular	√3	1	1	$\pm 0.6\%$	$\pm 0.6\%$	x
Readout electronics	± 1.0%	Normal	1	1	1	± 1.0%	± 1.0%	x
Response time	$\pm 0.0\%$	Rectangular	√3	1	1	$\pm 0.0\%$	$\pm 0.0\%$	x
Integration time	$\pm 0.0\%$	Rectangular	√3	1	1	$\pm 0.0\%$	$\pm 0.0\%$	x
RF ambient conditions	± 3.0%	Rectangular	√3	1	1	$\pm 1.7\%$	$\pm 1.7\%$	x
Probe positioner	$\pm 0.4\%$	Rectangular	√3	1	1	± 0.2%	$\pm 0.2\%$	x
Probe positioning	± 2.9%	Rectangular	√3	1	1	± 1.7%	$\pm 1.7\%$	x
Max. SAR evaluation	± 1.0%	Rectangular	√3	1	1	$\pm 0.6\%$	$\pm 0.6\%$	x
Test Sample Related								
Dipole axis to liquid distance	± 2.0%	Normal	1	1	1	± 1.2%	± 1.2%	x
Power drift	± 4.7%	Rectangular	√3	1	1	± 2.7%	$\pm 2.7\%$	x
Phantom and Set-up								
Phantom uncertainty	± 4.0%	Rectangular	√3	1	1	± 2.3%	± 2.3%	x
Liquid conductivity (target)	± 5.0%	Rectangular	√3	0.64	0.43	$\pm 1.8\%$	± 1.2%	x
Liquid conductivity (meas.)	± 2.5%	Normal	1	0.64	0.43	± 1.6%	$\pm 1.1\%$	x
Liquid permittivity (target)	± 5.0%	Rectangular	√3	0.6	0.49	$\pm 1.7\%$	± 1.4%	x
Liquid permittivity (meas.)	$\pm 2.5\%$	Normal	1	0.6	0.49	± 1.5%	$\pm 1.2\%$	8
Combined Uncertainty						± 8.4%	± 8.1%	
Expanded Std. Uncertainty						± 16.8%	± 16.2%	

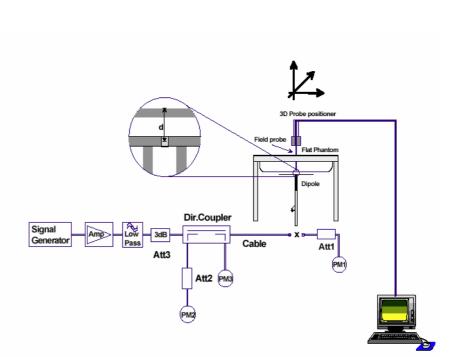
Table 7: Measurement uncertainties

2.4.14 System validation

The system validation is performed for verifying the accuracy of the complete measurement system and performance of the software. The system validation is performed with tissue equivalent material according to IEEE P1528 (described above). The following table shows validation results for all frequency bands and tissue liquids used during the tests of the test item described in chapter 1.5. (graphic plot(s) see annex 1).

Validation Kit	Frequency	Target Peak SAR (1000 mW)	Target SAR _{1g} (1000 mW) (+/- 10%)	Measured Peak SAR	Measured SAR _{1g}	Measured date	
		(+/- 10%)					
D900V2	900 MHz	15.2 mW/a	10.2 mW/a	15.2 mW/a	10.2 mW/a	2009 01 07	
S/N: 102	head	15.2 mW/g	10.3 mW/g	15.3 mW/g	10.3 mW/g	2008-01-07	
D900V2	900 MHz	15.2 mW/g	10.3 mW/g	16.4 mW/g	10.7 mW/g	2008-01-08	
S/N: 102	head	13.2 mvv/g	10.5 mw/g	10.4 m w/g	10.7 m w/g	2000-01-00	
D900V2	900 MHz	15.2 mW/a	$10.6 \text{ mW}/\sigma$	15.8 mW/g	10.8 mW/g	2008-01-08	
S/N: 102	body	15.2 mW/g	10.6 mW/g	15.0 mw/g	10.0 m w/g	2000-01-00	
D1900V2	1900 MHz	(4.0))/-	25.0 \\\/-	(5.4)))/-	27.0 11/-	2000 01 00	
S/N: 5d009	head	64.0 mW/g	35.9 mW/g	65.4 mW/g	37.9 mW/g	2008-01-09	
D1900V2	1900 MHz	63.2 mW/a	37.7 mW/c	69.4 mW/g	39.7 mW/g	2008-01-09	
S/N: 5d009	body	63.2 mW/g	37.7 mW/g	07.7 III W/g	<i>37.1</i> mw/g	2000-01-09	

Table 8: Results system validation



2.4.15 Validation procedure

The validation is performed by using a validation dipole which is positioned parallel to the planar part of the SAM phantom at the reference point. The distance of the dipole to the SAM phantom is determined by a plexiglass spacer. The dipole is connected to the signal source consisting of signal generator and amplifier via a directional coupler, N-connector cable and adaption to SMA. It is fed with a power of 1000 mW. To adjust this power a power meter is used. The power sensor is connected to the cable before the validation to measure the power at this point and do adjustments at the signal generator. At the outputs of the directional coupler both return loss as well as forward power are controlled during the validation to make sure that emitted power at the dipole is kept constant. This can also be checked by the power drift measurement after the test (result on plot).

Validation results have to be equal or near the values determined during dipole calibration (target SAR in table above) with the relevant liquids and test system.

The table contains	The table contains the measured SAR values averaged over a mass of 1 g						
Channel / frequency	Position	Left hand position	Right hand position	Limit	Liquid temperature		
128 / 824.2 MHz	cheek	1.040 W/kg	0.823 W/kg	1.6 W/kg	21.0/21.2 °C		
190 / 836.6 MHz	cheek	1.060 W/kg	1.110 W/kg	1.6 W/kg	21.0/21.2 °C		
251 / 848.8 MHz	cheek	1.030 W/kg	1.090 W/kg	1.6 W/kg	21.0/21.3 °C		
128 / 824.2 MHz	tilted 15°	0.386 W/kg	0.457 W/kg	1.6 W/kg	21.0/21.3 °C		
190 / 836.6 MHz	tilted 15°	0.410 W/kg	0.469 W/kg	1.6 W/kg	21.0/21.3 °C		
251 / 848.8 MHz	tilted 15°	0.397 W/kg	0.470 W/kg	1.6 W/kg	21.0/21.3 °C		
190 / 836.6 MHz	cheek + BT		1.150 W/kg	1.6 W/kg	21.2 °C		

2.5 Test results (Head and Body SAR)

Table 9: Test results (Head SAR 850 MHz)

The table contains the measured SAR values averaged over a mass of 1 g						
Channel / frequency	Position	Body worn	Limit	Liquid temperature		
128 / 824.2 MHz	front	0.399 W/kg	1.6 W/kg	21.8°C		
128 / 824.2 MHz	front + BT	0.403 W/kg	1.6 W/kg	21.9°C		
190 / 836.6 MHz	front	0.398 W/kg	1.6 W/kg	21.8°C		
251 / 848.8 MHz	front	0.373 W/kg	1.6 W/kg	21.9°C		
128 / 824.2 MHz	rear	0.328 W/kg	1.6 W/kg	21.9°C		
190 / 836.6 MHz	rear	0.365 W/kg	1.6 W/kg	21.9°C		
251 / 848.8 MHz	rear	0.357 W/kg	1.6 W/kg	21.9°C		

Table 10: Test results (Body SAR 850 MHz)

Note: The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR limit (< 0.8 W/kg), testing at the high and low channels is optional.

Tests in body position were performed with 15 mm air gap between DUT and SAM to simulate the use of a non-metallic belt-clip or holster.

The table contains	The table contains the measured SAR values averaged over a mass of 1 g					
Channel / frequency	Position	Left hand position	Right hand position	Limit	Liquid temperature	
512 / 1850.2 MHz	cheek	1.380 W/kg	1.060 W/kg	1.6 W/kg	20.2/20.3 °C	
512 / 1850.2 MHz	cheek + BT	1.390 W/kg		1.6 W/kg	20.5 °C	
661 / 1880.0 MHz	cheek	1.340 W/kg	1.090 W/kg	1.6 W/kg	20.1/20.4 °C	
810 / 1909.8 MHz	cheek	1.160 W/kg	1.060 W/kg	1.6 W/kg	20.1/20.5 °C	
512 / 1850.2 MHz	tilted 15°	0.838 W/kg	0.678 W/kg	1.6 W/kg	20.1/20.2 °C	
661 / 1880.0 MHz	tilted 15°	0.790 W/kg	0.655 W/kg	1.6 W/kg	20.1/20.2 °C	
810 / 1909.8 MHz	tilted 15°	0.715 W/kg	0.597 W/kg	1.6 W/kg	20.1/20.2 °C	

Table 11: Test results (Head SAR 1900 MHz)

The table contains the measured SAR values averaged over a mass of 1 g						
Channel / frequency	Position	Body worn	Limit	Liquid temperature		
512 / 1850.2 MHz	front	0.294 W/kg	1.6 W/kg	20.8°C		
661 / 1880.0 MHz	front	0.265 W/kg	1.6 W/kg	20.9°C		
810 / 1909.8 MHz	front	0.232 W/kg	1.6 W/kg	20.9°C		
512 / 1850.2 MHz	rear	0.363 W/kg	1.6 W/kg	20.9°C		
661 / 1880.0 MHz	rear	0.331 W/kg	1.6 W/kg	21.0°C		
810 / 1909.8 MHz	rear	0.291 W/kg	1.6 W/kg	21.0°C		
512 / 1850.2 MHz	rear + BT	0.398 W/kg	1.6 W/kg	20.9°C		

Table 12: Test results (Body SAR 1900 MHz)

Note: The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR limit (< 0.8 W/kg), testing at the high and low channels is optional.

Tests in body position were performed with 15 mm air gap between DUT and SAM to simulate the use of a non-metallic belt-clip or holster.

2.5.1 General description of test procedures

The DUT is tested using a CMU 200 communications tester as controller unit to set test channels and maximum output power to the DUT, as well as for measuring the conducted peak power.

Test positions as described in the tables above are in accordance with the specified test standard.

Tests in body position are performed with the maximum number of timeslots in uplink.

Tests in head position are performed in voice mode with 1 timeslot unless GPRS/EGPRS function allows parallel voice and data traffic on 2 or more timeslots (see chapter 1.5 for details).

Conducted output power was measured using an integrated RF connector and attached RF cable.

2.6 Test results (conducted power measurement)

For the measurements a Rohde & Schwarz Radio Communication Tester CMU 200 was used. The output power was measured using an integrated RF connector and attached RF cable. The conducted output power was measured before and after each SAR measurement. The resulting power values were within a 0.2 dB tolerance of the values shown below.

PCS 850						
Channel / frequency	GSM					
128 / 824.2 MHz	33.0 dBm					
190 / 836.6 MHz	32.7 dBm					
251 / 848.8 MHz	33.0 dBm					
PCS 1900						
Channel / frequency	GSM					
512 / 1850.2 MHz	30.8 dBm					
661 / 1880.0 MHz	30.9 dBm					
810 / 1909.8 MHz	30.9 dBm					

Table 13: Test results conducted peak power measurement

Annex 1 System performance verification

Date/Time: 2008-01-07 13:02:41Date/Time: 2008-01-07 13:09:00

9*212*90/

SystemPerformanceCheck-D900head2008-01-07

DUT: Dipole 900 MHz; Type: D900V2; Serial: 102

Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1

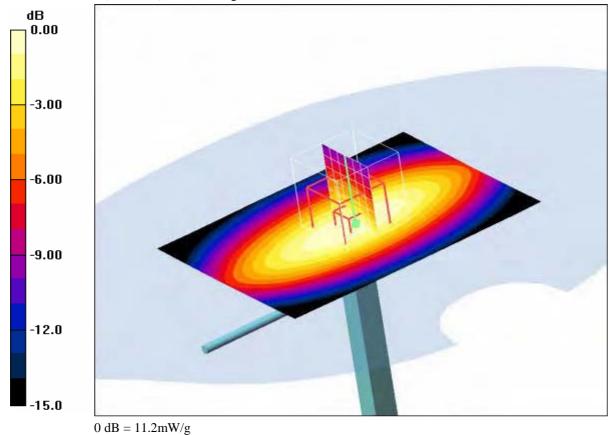
Medium: HSL850 Medium parameters used: f = 900 MHz; $\sigma = 0.96$ mho/m; $\epsilon_r = 41.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(6.24, 6.24, 6.24); Calibrated: 2007-08-23

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn477; Calibrated: 2007-05-22
- Phantom: SAM 12; Type: SAM; Serial: 1043


- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

d=15mm, Pin=1000mW/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 11.1 mW/g

d=15mm, Pin=1000mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm Reference Value = 111.4 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 15.3 W/kg SAR(1 g) = 10.3 mW/g; SAR(10 g) = 6.66 mW/gMaximum value of SAR (measured) = 11.2 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 22.0° C; liquid temperature: 21.0° C

Date/Time: 2008-01-08 08:08:47Date/Time: 2008-01-08 08:16:19

SystemPerformanceCheck-D900 head 2008-01-08

DUT: Dipole 900 MHz; Type: D900V2; Serial: 102

Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: HSL850 Medium parameters used: f = 900 MHz; $\sigma = 0.96$ mho/m; $\varepsilon_r = 41.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(6.24, 6.24, 6.24); Calibrated: 2007-08-23

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

- Electronics: DAE3 Sn477; Calibrated: 2007-05-22

- Phantom: SAM 12; Type: SAM; Serial: 1043

- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

d=15mm, Pin=1000mW/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 11.6 mW/g

d=15mm, Pin=1000mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 114.0 V/m; Power Drift = -0.036 dBPeak SAR (extrapolated) = 16.4 W/kg SAR(1 g) = 10.7 mW/g; SAR(10 g) = 6.86 mW/g Maximum value of SAR (measured) = 11.6 mW/g

 $0 \, dB = 11.6 \, mW/g$

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 21.3° C; liquid temperature: 21.3° C

Date/Time: 2008-01-08 14:21:33Date/Time: 2008-01-08 14:27:56

SystemPerformanceCheck-D900 body 2008-01-08

DUT: Dipole 900 MHz; Type: D900V2; Serial: 102

Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: M850 Medium parameters used: f = 900 MHz; $\sigma = 1.03 \text{ mho/m}$; $\epsilon_r = 54.7$; $\rho = 1000 \text{ kg/m}^3$

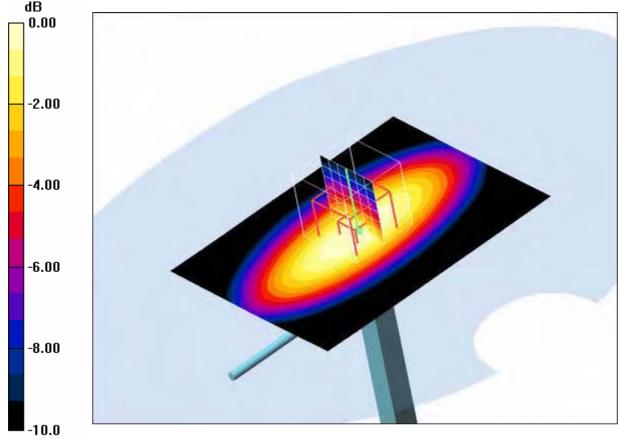
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(5.92, 5.92, 5.92); Calibrated: 2007-08-23

- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)

- Electronics: DAE3 Sn477; Calibrated: 2007-05-22


- Phantom: SAM 12; Type: SAM; Serial: 1043

- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

d=15mm, Pin=1000mW/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 11.7 mW/g

d=15mm, Pin=1000mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 110.1 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 15.8 W/kgSAR(1 g) = 10.8 mW/g; SAR(10 g) = 6.97 mW/gMaximum value of SAR (measured) = 11.6 mW/g

 $0 \, dB = 11.6 \, mW/g$

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 22.8°C; liquid temperature: 21.8°C

Date/Time: 2008-01-09 09:21:09Date/Time: 2008-01-09 09:25:23

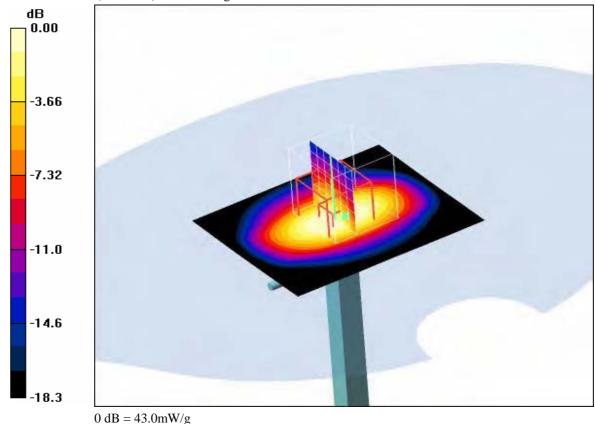
SystemPerformanceCheck-D1900 head 2008-01-09

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d009

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL1900 Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.45 \text{ mho/m}$; $\epsilon_r = 40.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY4 Configuration:


- Probe: ET3DV6 SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn477; Calibrated: 2007-05-22
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

d=10mm, Pin=1000mW/Area Scan (51x61x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 48.1 mW/g

d=10mm, Pin=1000mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 180.8 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 65.4 W/kg SAR(1 g) = 37.9 mW/g; SAR(10 g) = 19.9 mW/g Maximum value of SAR (measured) = 43.0 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 20.5°C; liquid temperature: 20.3°C

Date/Time: 2008-01-09 15:18:52Date/Time: 2008-01-09 15:23:11

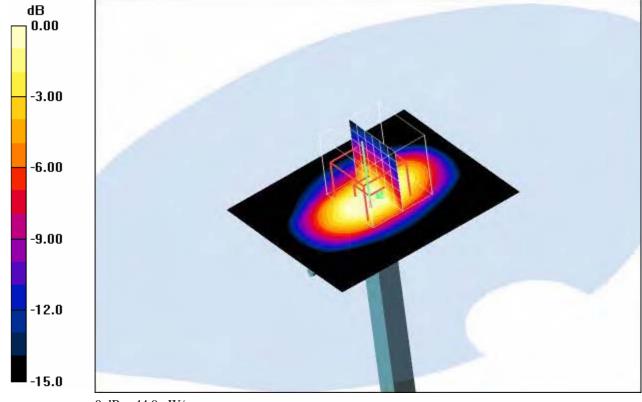
SystemPerformanceCheck-D1900 body 2008-01-09

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d009

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: M1900 Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.54$ mho/m; $\epsilon_r = 52.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY4 Configuration:


- Probe: ET3DV6 SN1558; ConvF(4.46, 4.46, 4.46); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn477; Calibrated: 2007-05-22
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

d=10mm, Pin=1000mW/Area Scan (51x61x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 52.0 mW/g

d=10mm, Pin=1000mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 180.3 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 69.4 W/kg SAR(1 g) = 39.7 mW/g; SAR(10 g) = 20.9 mW/g Maximum value of SAR (measured) = 44.9 mW/g

 $0 \, dB = 44.9 \, mW/g$

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 22.8°C; liquid temperature: 20.8°C

Annex 2 Measurement results (printout from DASY TM)

Remark: results of conducted power measurements: see chapter 2.5/2.6 (if applicable)

Annex 2.1 PCS 850 MHz head

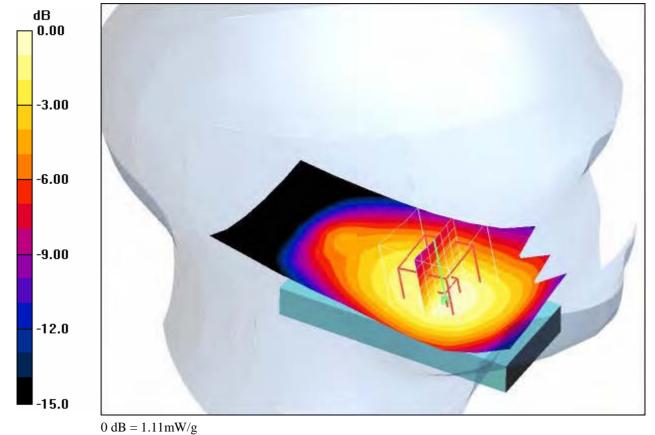
Date/Time: 2008-01-07 14:30:58Date/Time: 2008-01-07 14:38:11

P1528_OET65-LeftHandSide-GSM850

DUT: Sony Ericsson; Type: AAA-10042081-BV FG; Serial: TP81070098 Communication System: PCS 850; Frequency: 824.2 MHz; Duty Cycle: 1:8 Medium: HSL850 Medium parameters used: f = 824.2 MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 42.2$; $\rho = 1000$ kg/m³ Phantom section: Left Section DASY4 Configuration: - Probe: ET3DV6 - SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23 - Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn477; Calibrated: 2007-05-22

- Phantom: SAM 12; Type: SAM; Serial: 1043


- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.13 mW/g

Touch position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 37.0 V/m; Power Drift = -0.116 dBPeak SAR (extrapolated) = 1.46 W/kgSAR(1 g) = 1.04 mW/g; SAR(10 g) = 0.711 mW/gMaximum value of SAR (measured) = 1.11 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 22.0° C; liquid temperature: 21.0° C

Date/Time: 2008-01-07 14:54:18Date/Time: 2008-01-07 15:00:56

P1528_OET65-LeftHandSide-GSM850

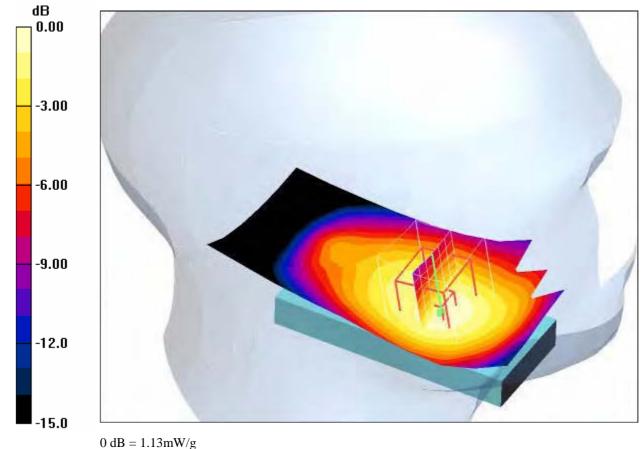
DUT: Sony Ericsson; Type: AAA-10042081-BV FG; Serial: TP81070098

Communication System: PCS 850; Frequency: 836.6 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: f = 836.6 MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 42.2$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:


- Probe: ET3DV6 SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn477; Calibrated: 2007-05-22
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.14 mW/g

Touch position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 37.1 V/m; Power Drift = 0.018 dBPeak SAR (extrapolated) = 1.50 W/kgSAR(1 g) = 1.06 mW/g; SAR(10 g) = 0.723 mW/gMaximum value of SAR (measured) = 1.13 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 22.1° C; liquid temperature: 21.0° C

Date/Time: 2008-01-07 15:16:35Date/Time: 2008-01-07 15:23:32

P1528_OET65-LeftHandSide-GSM850

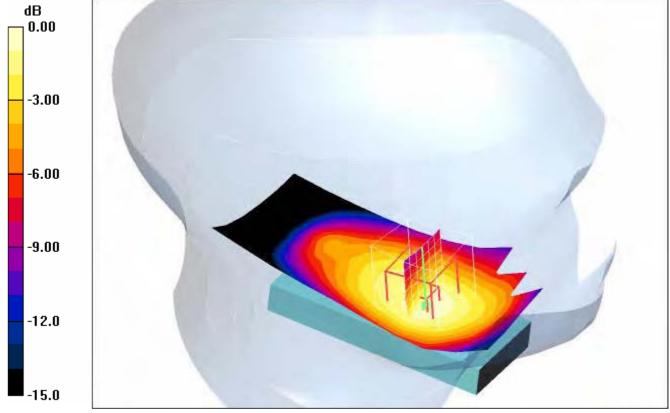
DUT: Sony Ericsson; Type: AAA-10042081-BV FG; Serial: TP81070098

Communication System: PCS 850; Frequency: 848.8 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: f = 848.8 MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 42.2$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:


- Probe: ET3DV6 SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn477; Calibrated: 2007-05-22
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.09 mW/g

Touch position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 36.8 V/m; Power Drift = 0.00 dBPeak SAR (extrapolated) = 1.45 W/kgSAR(1 g) = 1.03 mW/g; SAR(10 g) = 0.703 mW/gMaximum value of SAR (measured) = 1.11 mW/g

 $0 \, dB = 1.11 \, mW/g$

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 22.2°C; liquid temperature: 21.0°C

Date/Time: 2008-01-07 15:42:20Date/Time: 2008-01-07 15:49:09Date/Time: 2008-01-07 16:00:36 P1528_OET65-LeftHandSide-GSM850 DUT: Sony Ericsson; Type: AAA-10042081-BV FG; Serial: TP81070098

Communication System: PCS 850; Frequency: 824.2 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: f = 824.2 MHz; $\sigma = 0.89 \text{ mho/m}$; $\varepsilon_r = 42.2$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn477; Calibrated: 2007-05-22

- Phantom: SAM 12; Type: SAM; Serial: 1043

- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

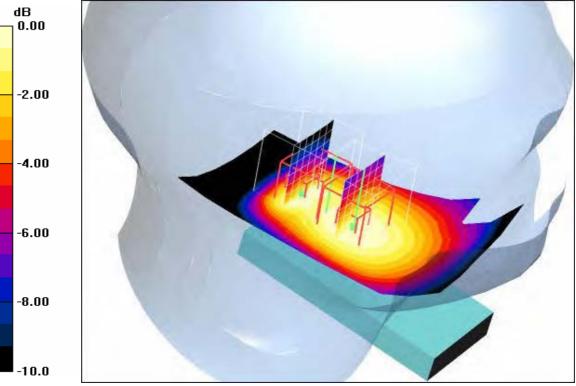
Maximum value of SAR (interpolated) = 0.441 mW/g

Tilt position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 22.1 V/m; Power Drift = -0.194 dB

Peak SAR (extrapolated) = 0.847 W/kg

SAR(1 g) = 0.318 mW/g; SAR(10 g) = 0.220 mW/g


Maximum value of SAR (measured) = 0.357 mW/g

Tilt position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 22.1 V/m; Power Drift = -0.194 dB Peak SAR (extrapolated) = 0.490 W/kg

SAR(1 g) = 0.386 mW/g; SAR(10 g) = 0.284 mW/gMaximum value of SAR (measured) = 0.405 mW/g

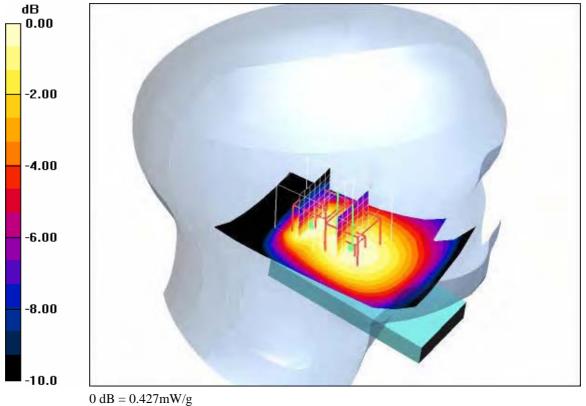
$0 \, dB = 0.405 \, mW/g$

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 22.3°C; liquid temperature: 21.0°C

 $Date/Time: 2008-01-07 \ 16:16:08 Date/Time: 2008-01-07 \ 16:22:56 Date/Time: 2008-01-07 \ 16:34:20$ $P1528_OET65-LeftHandSide-GSM850$ DUT: Sony Ericsson; Type: AAA-10042081-BV FG; Serial: TP81070098Communication System: PCS 850; Frequency: 836.6 MHz; Duty Cycle: 1:8 Medium: HSL850 Medium parameters used: f = 836.6 MHz; σ = 0.89 mho/m; ε_r = 42.2; ρ = 1000 kg/m³ Phantom section: Left Section DASY4 Configuration: - Probe: ET3DV6 - SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: DAE3 Sn477; Calibrated: 2007-05-22 - Phantom: SAM 12; Type: SAM; Serial: 1043 - Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146 Tilt position - Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.470 mW/g Tilt position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

Tilt position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 22.8 V/m; Power Drift = -0.067 dB Peak SAR (extrapolated) = 0.921 W/kg SAR(1 g) = 0.339 mW/g; SAR(10 g) = 0.232 mW/g Maximum value of SAR (measured) = 0.381 mW/g

Tilt position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 22.8 V/m; Power Drift = -0.067 dB Peak SAR (extrapolated) = 0.513 W/kg SAR(1 g) = 0.410 mW/g; SAR(10 g) = 0.301 mW/g

Maximum value of SAR (measured) = 0.427 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 22.4°C; liquid temperature: $21.0^{\circ}C$

Date/Time: 2008-01-07 16:50:05Date/Time: 2008-01-07 16:56:57Date/Time: 2008-01-07 17:08:21
P1528_OET65-LeftHandSide-GSM850
DUT: Sony Ericsson; Type: AAA-10042081-BV FG; Serial: TP81070098
Communication System: PCS 850; Frequency: 848.8 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: f = 848.8 MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 42.2$; $\rho = 1000$ kg/m³ Phantom section: Left Section

Phantom section: Left Sect

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn477; Calibrated: 2007-05-22

- Phantom: SAM 12; Type: SAM; Serial: 1043

- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.491 mW/g

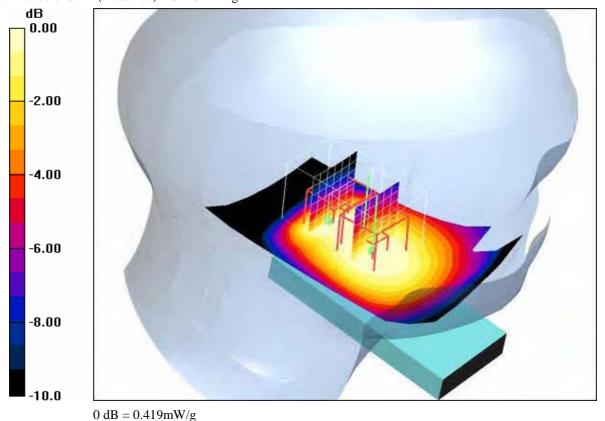
Tilt position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 23.2 V/m; Power Drift = -0.170 dB

Peak SAR (extrapolated) = 0.908 W/kg

SAR(1 g) = 0.332 mW/g; SAR(10 g) = 0.226 mW/g

Maximum value of SAR (measured) = 0.381 mW/g


Tilt position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 23.2 V/m; Power Drift = -0.170 dB Peak SAR (extrapolated) = 0.505 W/kg

SAR(1 g) = 0.397 mW/g; SAR(10 g) = 0.291 mW/g

Maximum value of SAR (measured) = 0.419 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 22.4° C; liquid temperature: 21.0° C

Date/Time: 2008-01-08 10:37:17Date/Time: 2008-01-08 10:43:51

P1528_OET65-RightHandSide-GSM850

DUT: Sony Ericsson; Type: AAA-10042081-BV FG; Serial: TP81070098

Communication System: PCS 850; Frequency: 824.2 MHz; Duty Cycle: 1:8 Medium: HSL850 Medium parameters used: f = 824.2 MHz; σ = 0.89 mho/m; ϵ_r = 42.2; ρ = 1000 kg/m³

Phantom section: Right Section

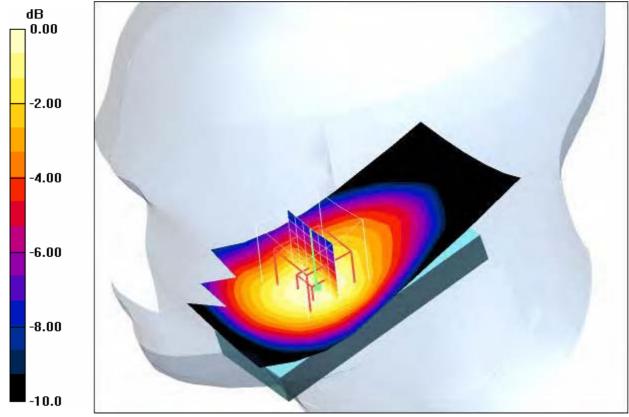
DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn477; Calibrated: 2007-05-22

- Phantom: SAM 12; Type: SAM; Serial: 1043


- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.887 mW/g

Touch position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 30.9 V/m; Power Drift = -0.066 dB Peak SAR (extrapolated) = 1.10 W/kg SAR(1 g) = 0.823 mW/g; SAR(10 g) = 0.573 mW/g Maximum value of SAR (measured) = 0.872 mW/g

 $0 \, dB = 0.872 \, mW/g$

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 21.6°C; liquid temperature: 21.2°C

Date/Time: 2008-01-08 11:22:45Date/Time: 2008-01-08 11:29:13

P1528_OET65-RightHandSide-GSM850

DUT: Sony Ericsson; Type: AAA-10042081-BV FG; Serial: TP81070098

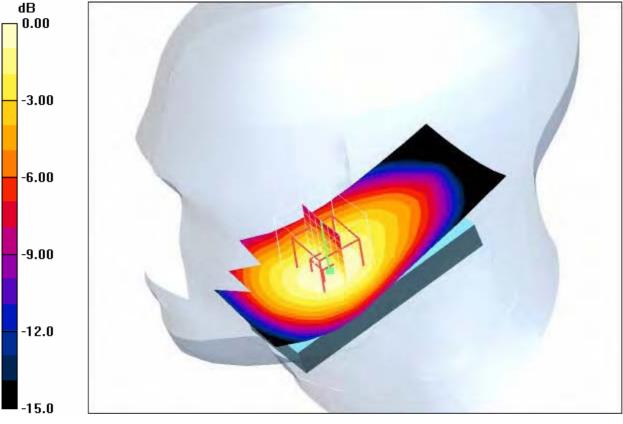
Communication System: PCS 850; Frequency: 836.6 MHz; Duty Cycle: 1:8 Medium: HSL850 Medium parameters used: f = 836.6 MHz; σ = 0.89 mho/m; ϵ_r = 42.2; ρ = 1000 kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn477; Calibrated: 2007-05-22
- Phantom: SAM 12; Type: SAM; Serial: 1043


- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.19 mW/g

Touch position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 36.5 V/m; Power Drift = -0.00 dBPeak SAR (extrapolated) = 1.44 W/kg SAR(1 g) = 1.11 mW/g; SAR(10 g) = 0.760 mW/g Maximum value of SAR (measured) = 1.15 mW/g

 $0 \, dB = 1.15 \, mW/g$

Additional information:

Date/Time: 2008-01-08 11:44:59Date/Time: 2008-01-08 11:51:41

P1528_OET65-RightHandSide-GSM850

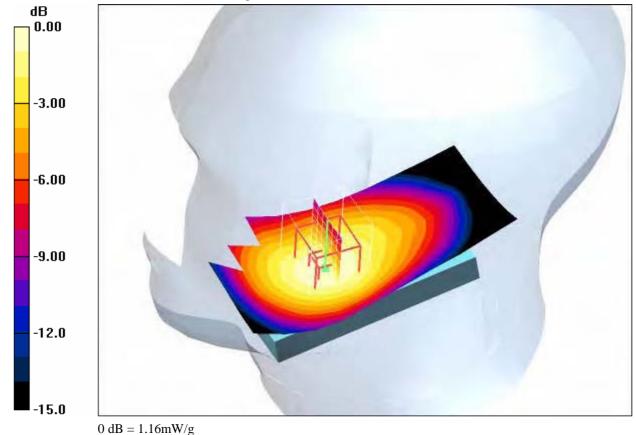
DUT: Sony Ericsson; Type: AAA-10042081-BV FG; Serial: TP81070098

Communication System: PCS 850; Frequency: 848.8 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: f = 848.8 MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 42.2$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:


- Probe: ET3DV6 SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn477; Calibrated: 2007-05-22
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.16 mW/g

Touch position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 36.3 V/m; Power Drift = -0.015 dBPeak SAR (extrapolated) = 1.46 W/kgSAR(1 g) = 1.09 mW/g; SAR(10 g) = 0.754 mW/gMaximum value of SAR (measured) = 1.16 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 21.8° C; liquid temperature: 21.3° C

Date/Time: 2008-01-08 08:47:56Date/Time: 2008-01-08 08:54:24Date/Time: 2008-01-08 09:06:00

P1528_OET65-RightHandSide-GSM850

DUT: Sony Ericsson; Type: AAA-10042081-BV FG; Serial: TP81070098

Communication System: PCS 850; Frequency: 824.2 MHz; Duty Cycle: 1:8 Medium: HSL850 Medium parameters used: f = 824.2 MHz; $\sigma = 0.89$ mho/m; $\varepsilon_r = 42.2$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn477; Calibrated: 2007-05-22

- Phantom: SAM 12; Type: SAM; Serial: 1043

- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

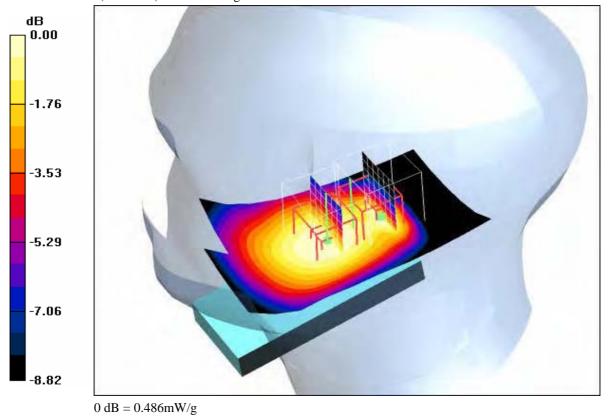
Maximum value of SAR (interpolated) = 0.501 mW/g

Tilt position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 23.9 V/m; Power Drift = -0.196 dB

Peak SAR (extrapolated) = 0.966 W/kg

SAR(1 g) = 0.364 mW/g; SAR(10 g) = 0.251 mW/g


Maximum value of SAR (measured) = 0.412 mW/g

Tilt position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 23.9 V/m; Power Drift = -0.196 dB Peak SAR (extrapolated) = 0.583 W/kg

SAR(1 g) = 0.457 mW/g; SAR(10 g) = 0.338 mW/gMaximum value of SAR (measured) = 0.486 mW/g

Additional information:

Date/Time: 2008-01-08 09:29:39Date/Time: 2008-01-08 09:36:09Date/Time: 2008-01-08 09:47:46

P1528_OET65-RightHandSide-GSM850

DUT: Sony Ericsson; Type: AAA-10042081-BV FG; Serial: TP81070098

Communication System: PCS 850; Frequency: 836.6 MHz; Duty Cycle: 1:8 Medium: HSL850 Medium parameters used: f = 836.6 MHz; $\sigma = 0.89$ mho/m; $\varepsilon_r = 42.2$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn477; Calibrated: 2007-05-22
- Phantom: SAM 12; Type: SAM; Serial: 1043

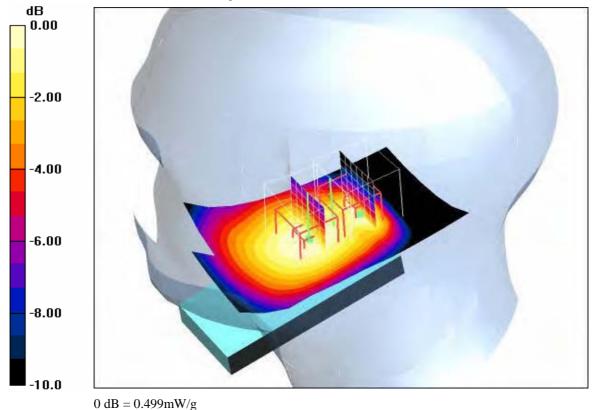
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.519 mW/g

Tilt position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 24.0 V/m; Power Drift = -0.066 dB


Peak SAR (extrapolated) = 1.08 W/kg

SAR(1 g) = 0.375 mW/g; SAR(10 g) = 0.254 mW/g

Maximum value of SAR (measured) = 0.414 mW/g

Tilt position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 24.0 V/m; Power Drift = -0.066 dBPeak SAR (extrapolated) = 0.600 W/kgSAR(1 g) = 0.469 mW/g; SAR(10 g) = 0.345 mW/gMaximum value of SAR (measured) = 0.499 mW/g

Additional information:

Date/Time: 2008-01-08 10:03:32Date/Time: 2008-01-08 10:10:13Date/Time: 2008-01-08 10:21:50

P1528_OET65-RightHandSide-GSM850

DUT: Sony Ericsson; Type: AAA-10042081-BV FG; Serial: TP81070098

Communication System: PCS 850; Frequency: 848.8 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: f = 848.8 MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 42.2$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn477; Calibrated: 2007-05-22

- Phantom: SAM 12; Type: SAM; Serial: 1043

- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.519 mW/g

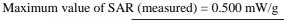
Tilt position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

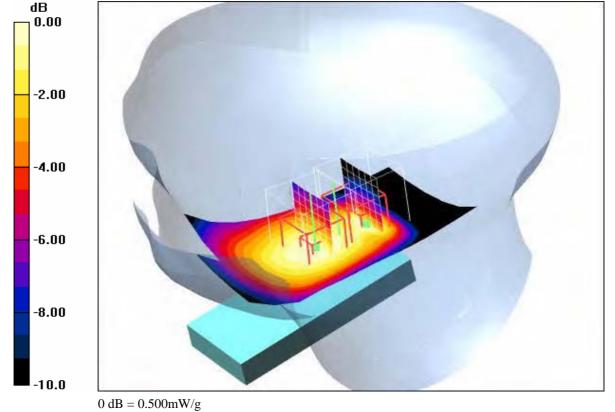
Reference Value = 24.1 V/m; Power Drift = -0.025 dB

Peak SAR (extrapolated) = 1.09 W/kg

SAR(1 g) = 0.378 mW/g; SAR(10 g) = 0.252 mW/g

Maximum value of SAR (measured) = 0.416 mW/g


Tilt position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 24.1 V/m; Power Drift = -0.025 dB

Peak SAR (extrapolated) = 0.602 W/kg

SAR(1 g) = 0.470 mW/g; SAR(10 g) = 0.345 mW/g Maximum value of SAR (measured) = 0.500 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 21.5° C; liquid temperature: 21.3° C

Date/Time: 2008-01-08 13:24:42Date/Time: 2008-01-08 13:31:20

P1528_OET65-RightHandSide-GSM850 + BT

DUT: Sony Ericsson; Type: AAA-10042081-BV FG; Serial: TP81070098

Communication System: PCS 850; Frequency: 836.6 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: f = 836.6 MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 42.2$; $\rho = 1000$ kg/m³

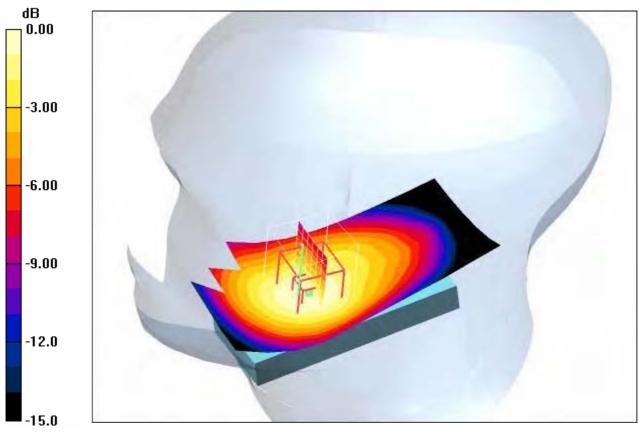
Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn477; Calibrated: 2007-05-22


- Phantom: SAM 12; Type: SAM; Serial: 1043

- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position – Middle + BT/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.24 mW/g

Touch position – Middle + BT/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm Reference Value = 37.2 V/m; Power Drift = -0.051 dB Peak SAR (extrapolated) = 1.53 W/kg SAR(1 g) = 1.15 mW/g; SAR(10 g) = 0.808 mW/g Maximum value of SAR (measured) = 1.22 mW/g

 $0 \, dB = 1.22 \, mW/g$

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 21.7° C; liquid temperature: 21.2° C

Annex 2.2 PCS 850 MHz body

Date/Time: 2008-01-08 14:46:12Date/Time: 2008-01-08 14:52:41

P1528_OET65-Body-GSM850 GPRS class 8

DUT: Sony Ericsson; Type: AAA-10042081-BV FG; Serial: TP81070098

Communication System: PCS 850 GPRS; Frequency: 824.2 MHz; Duty Cycle: 1:8

Medium: M850 Medium parameters used: f = 824.2 MHz; $\sigma = 0.96$ mho/m; $\epsilon_r = 55.3$; $\rho = 1000$ kg/m³

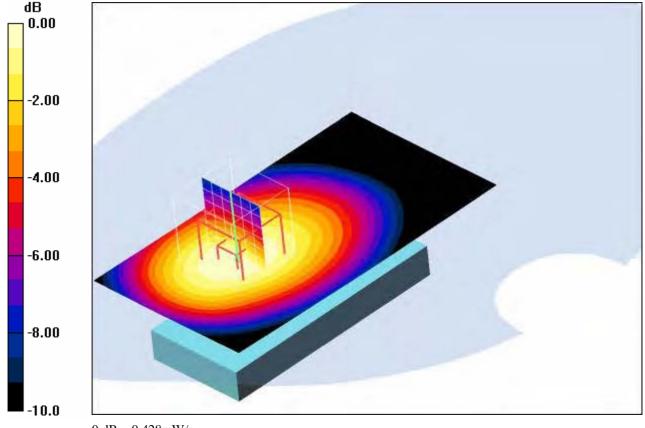
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(6.17, 6.17, 6.17); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn477; Calibrated: 2007-05-22
- Phantom: SAM 12; Type: SAM; Serial: 1043

- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Front position - Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.429 mW/g

Front position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 21.9 V/m; Power Drift = -0.193 dB Peak SAR (extrapolated) = 0.539 W/kg SAR(1 g) = 0.399 mW/g; SAR(10 g) = 0.282 mW/g

Maximum value of SAR (measured) = 0.428 mW/g

 $0 \, dB = 0.428 \, mW/g$

Additional information:

Date/Time: 2008-01-08 15:07:44Date/Time: 2008-01-08 15:14:16

P1528_OET65-Body-GSM850 GPRS class 8

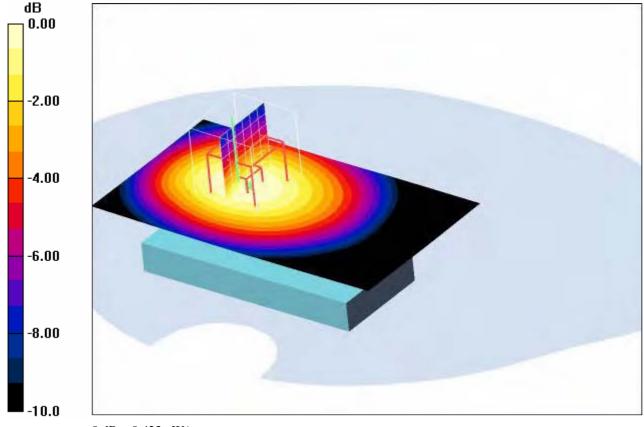
DUT: Sony Ericsson; Type: AAA-10042081-BV FG; Serial: TP81070098

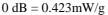
Communication System: PCS 850 GPRS; Frequency: 836.6 MHz; Duty Cycle: 1:8

Medium: M850 Medium parameters used: f = 836.6 MHz; $\sigma = 0.96 \text{ mho/m}$; $\varepsilon_r = 55.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:


- Probe: ET3DV6 SN1558; ConvF(6.17, 6.17, 6.17); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn477; Calibrated: 2007-05-22
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146


Front position - Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.428 mW/g

Front position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 21.8 V/m; Power Drift = -0.045 dB Peak SAR (extrapolated) = 0.534 W/kg SAR(1 g) = 0.398 mW/g; SAR(10 g) = 0.282 mW/g Maximum value of SAR (measured) = 0.423 mW/g

Additional information:

Date/Time: 2008-01-08 15:32:02Date/Time: 2008-01-08 15:38:19

P1528_OET65-Body-GSM850 GPRS class 8

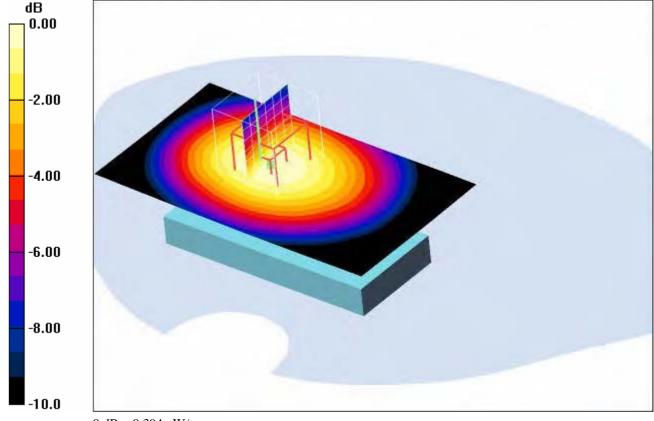
DUT: Sony Ericsson; Type: AAA-10042081-BV FG; Serial: TP81070098

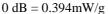
Communication System: PCS 850 GPRS; Frequency: 848.8 MHz; Duty Cycle: 1:8

Medium: M850 Medium parameters used: f = 848.8 MHz; $\sigma = 0.96$ mho/m; $\varepsilon_r = 55.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:


- Probe: ET3DV6 SN1558; ConvF(6.17, 6.17, 6.17); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn477; Calibrated: 2007-05-22
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146


Front position - High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.397 mW/g

Front position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 21.0 V/m; Power Drift = -0.033 dB Peak SAR (extrapolated) = 0.496 W/kg SAR(1 g) = 0.373 mW/g; SAR(10 g) = 0.265 mW/g Maximum value of SAR (measured) = 0.394 mW/g

Additional information:

Date/Time: 2008-01-08 15:56:39Date/Time: 2008-01-08 16:03:14

P1528_OET65-Body-GSM850 GPRS class 8

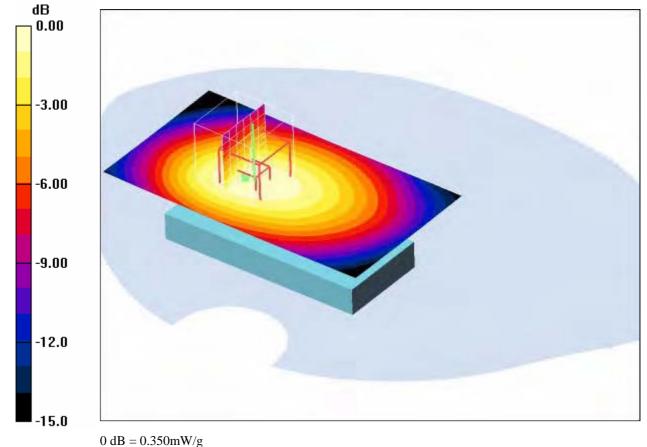
DUT: Sony Ericsson; Type: AAA-10042081-BV FG; Serial: TP81070098

Communication System: PCS 850 GPRS; Frequency: 824.2 MHz; Duty Cycle: 1:8

Medium: M850 Medium parameters used: f = 824.2 MHz; $\sigma = 0.96$ mho/m; $\varepsilon_r = 55.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:


- Probe: ET3DV6 SN1558; ConvF(6.17, 6.17, 6.17); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn477; Calibrated: 2007-05-22
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Rear position - Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.357 mW/g

Rear position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 19.6 V/m; Power Drift = -0.075 dBPeak SAR (extrapolated) = 0.453 W/kgSAR(1 g) = 0.328 mW/g; SAR(10 g) = 0.229 mW/gMaximum value of SAR (measured) = 0.350 mW/g

Additional information:

Date/Time: 2008-01-08 16:17:58Date/Time: 2008-01-08 16:24:41

P1528_OET65-Body-GSM850 GPRS class 8

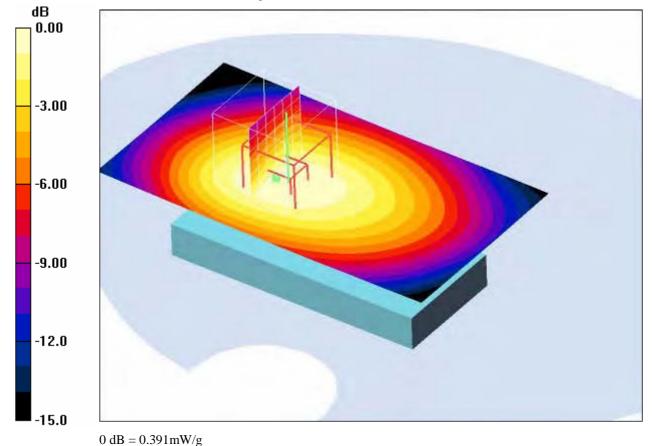
DUT: Sony Ericsson; Type: AAA-10042081-BV FG; Serial: TP81070098

Communication System: PCS 850 GPRS; Frequency: 836.6 MHz; Duty Cycle: 1:8

Medium: M850 Medium parameters used: f = 836.6 MHz; $\sigma = 0.96$ mho/m; $\varepsilon_r = 55.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:


- Probe: ET3DV6 SN1558; ConvF(6.17, 6.17, 6.17); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn477; Calibrated: 2007-05-22
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Rear position - Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.392 mW/g

Rear position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 20.8 V/m; Power Drift = -0.024 dB Peak SAR (extrapolated) = 0.500 W/kg SAR(1 g) = 0.365 mW/g; SAR(10 g) = 0.255 mW/g Maximum value of SAR (measured) = 0.391 mW/g

Additional information:

Date/Time: 2008-01-08 16:39:06Date/Time: 2008-01-08 16:45:44

P1528_OET65-Body-GSM850 GPRS class 8

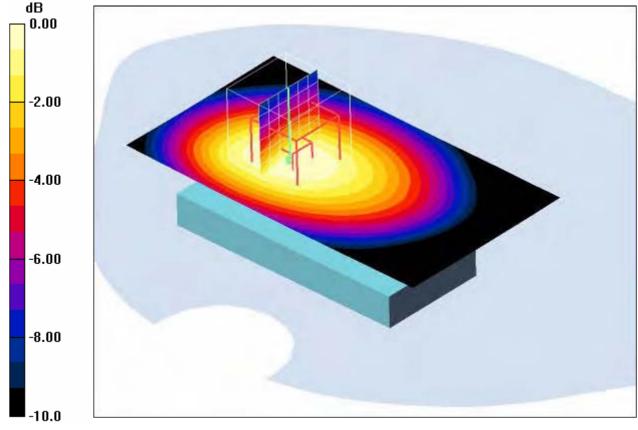
DUT: Sony Ericsson; Type: AAA-10042081-BV FG; Serial: TP81070098

Communication System: PCS 850 GPRS; Frequency: 848.8 MHz; Duty Cycle: 1:8

Medium: M850 Medium parameters used: f = 848.8 MHz; $\sigma = 0.96$ mho/m; $\varepsilon_r = 55.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:


- Probe: ET3DV6 SN1558; ConvF(6.17, 6.17, 6.17); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn477; Calibrated: 2007-05-22
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Rear position - High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.389 mW/g

Rear position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 20.7 V/m; Power Drift = -0.020 dB Peak SAR (extrapolated) = 0.489 W/kg SAR(1 g) = 0.357 mW/g; SAR(10 g) = 0.249 mW/g Maximum value of SAR (measured) = 0.381 mW/g

 $0 \ dB = 0.381 \ mW/g$

Additional information:

Date/Time: 2008-01-08 17:20:58Date/Time: 2008-01-08 17:28:32

P1528_OET65-Body-GSM850 GPRS class 8

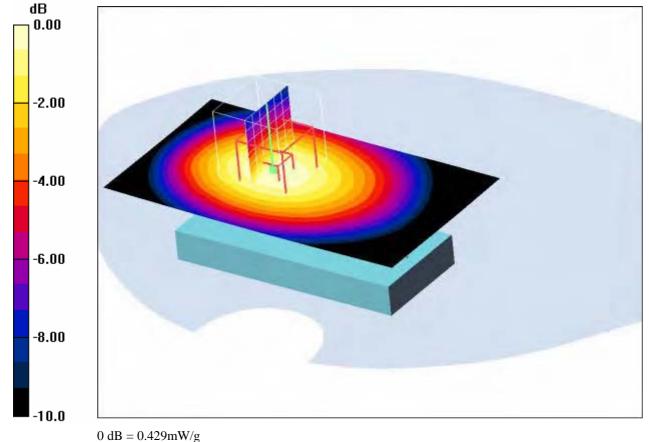
DUT: Sony Ericsson; Type: AAA-10042081-BV FG; Serial: TP81070098

Communication System: PCS 850 GPRS; Frequency: 824.2 MHz; Duty Cycle: 1:8

Medium: M850 Medium parameters used: f = 824.2 MHz; $\sigma = 0.96$ mho/m; $\varepsilon_r = 55.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:


- Probe: ET3DV6 SN1558; ConvF(6.17, 6.17, 6.17); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn477; Calibrated: 2007-05-22
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Front position - Low BT/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.421 mW/g

Front position - Low BT/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm Reference Value = 21.6 V/m; Power Drift = -0.147 dB Peak SAR (extrapolated) = 0.546 W/kg SAR(1 g) = 0.403 mW/g; SAR(10 g) = 0.285 mW/g Maximum value of SAR (measured) = 0.429 mW/g

Additional information:

Annex 2.3 PCS 1900 MHz head

Date/Time: 2008-01-09 09:41:04Date/Time: 2008-01-09 09:47:41

CETECON

P1528_OET65-LeftHandSide-GSM1900

DUT: Sony Ericsson; Type: AAA-10042081-BV FG; Serial: TP81070098

Communication System: PCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8

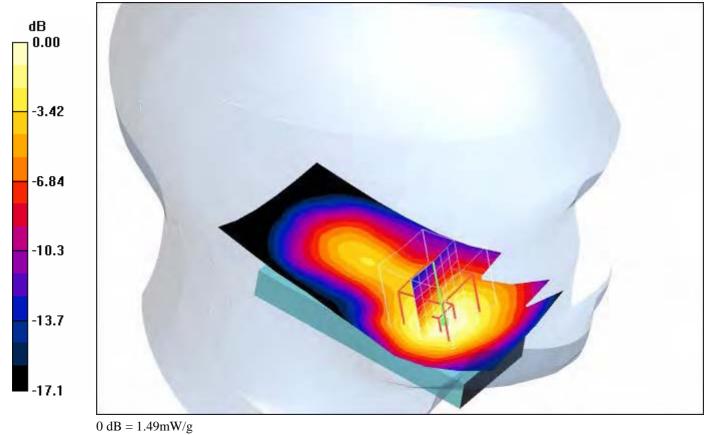
Medium: HSL1900 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.45$ mho/m; $\epsilon_r = 40.9$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn477; Calibrated: 2007-05-22
- Phantom: SAM 12; Type: SAM; Serial: 1043

- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146


Touch position - Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.55 mW/g

Touch position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 34.5 V/m; Power Drift = 0.025 dB Peak SAR (extrapolated) = 2.05 W/kg SAR(1 g) = 1.38 mW/g; SAR(10 g) = 0.804 mW/g

Maximum value of SAR (measured) = 1.49 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 20.7° C; liquid temperature: 20.2° C

Date/Time: 2008-01-09 10:10:39Date/Time: 2008-01-09 10:17:05

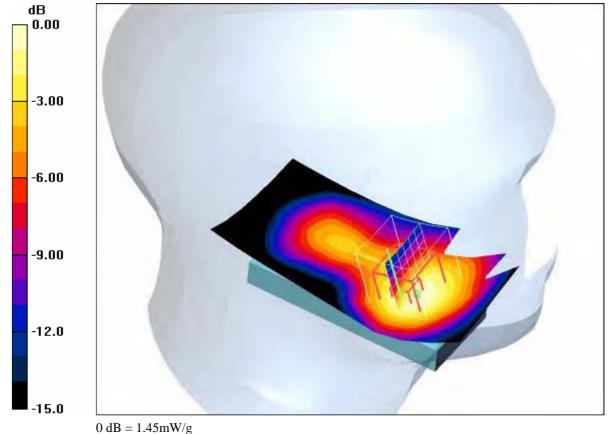
P1528_OET65-LeftHandSide-GSM1900

DUT: Sony Ericsson; Type: AAA-10042081-BV FG; Serial: TP81070098

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8 Medium: HSL1900 Medium parameters used: f = 1880 MHz; σ = 1.45 mho/m; ϵ_r = 40.9; ρ = 1000 kg/m³

Phantom section: Left Section

DASY4 Configuration:


- Probe: ET3DV6 SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn477; Calibrated: 2007-05-22
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.54 mW/g

Touch position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.2 V/m; Power Drift = -0.01 dBPeak SAR (extrapolated) = 1.98 W/kgSAR(1 g) = 1.34 mW/g; SAR(10 g) = 0.784 mW/gMaximum value of SAR (measured) = 1.45 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 20.7° C; liquid temperature: 20.1° C

Date/Time: 2008-01-09 10:32:21Date/Time: 2008-01-09 10:39:44

P1528_OET65-LeftHandSide-GSM1900

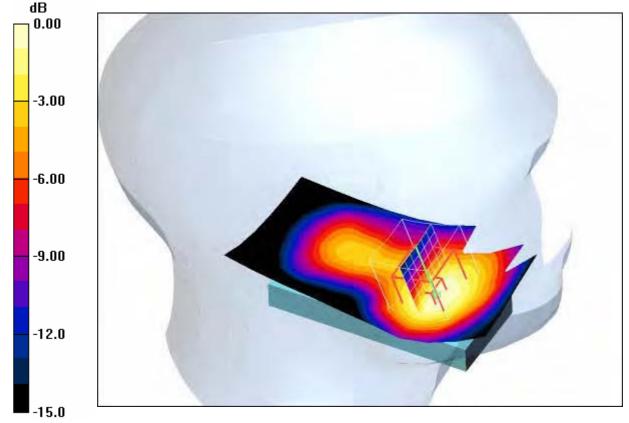
DUT: Sony Ericsson; Type: AAA-10042081-BV FG; Serial: TP81070098

Communication System: PCS 1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used: f = 1909.8 MHz; $\sigma = 1.45$ mho/m; $\epsilon_r = 40.9$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:


- Probe: ET3DV6 SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn477; Calibrated: 2007-05-22
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.32 mW/g

Touch position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.9 V/m; Power Drift = 0.00 dBPeak SAR (extrapolated) = 1.70 W/kgSAR(1 g) = 1.16 mW/g; SAR(10 g) = 0.683 mW/gMaximum value of SAR (measured) = 1.24 mW/g

0 dB = 1.24 mW/g

Additional information:

CETECOM

Date/Time: 2008-01-09 10:59:19Date/Time: 2008-01-09 11:05:50

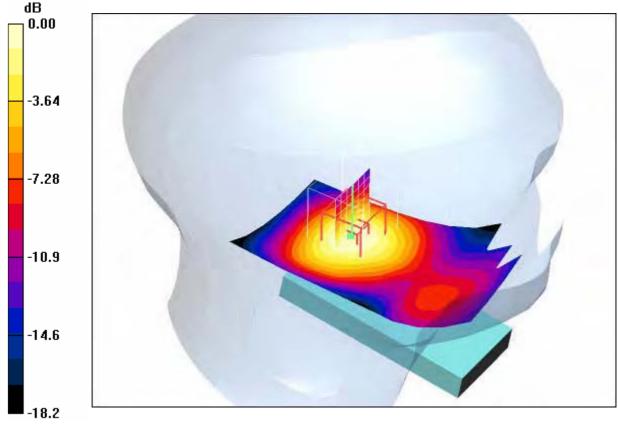
P1528_OET65-LeftHandSide-GSM1900

DUT: Sony Ericsson; Type: AAA-10042081-BV FG; Serial: TP81070098

Communication System: PCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8 Medium: HSL1900 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.45$ mho/m; $\epsilon_r = 40.9$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:


- Probe: ET3DV6 SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn477; Calibrated: 2007-05-22
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.999 mW/g

Tilt position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm Reference Value = 20.2 V/m; Power Drift = 0.014 dB Peak SAR (extrapolated) = 1.19 W/kg SAR(1 g) = 0.838 mW/g; SAR(10 g) = 0.514 mW/g Maximum value of SAR (measured) = 0.922 mW/g

 $0 \, dB = 0.922 mW/g$

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 21.0° C; liquid temperature: 20.1° C

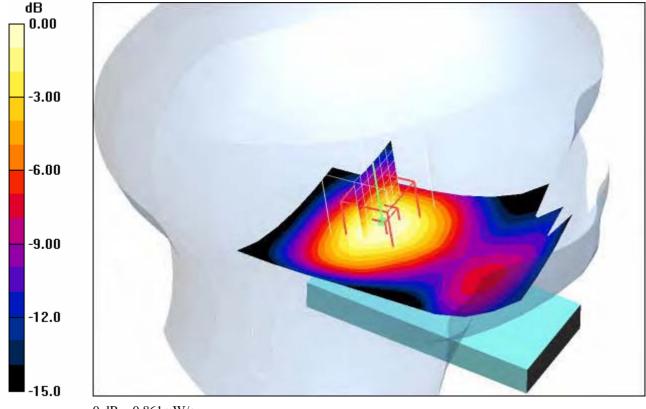
Date/Time: 2008-01-09 11:22:16Date/Time: 2008-01-09 11:28:58

P1528_OET65-LeftHandSide-GSM1900

DUT: Sony Ericsson; Type: AAA-10042081-BV FG; Serial: TP81070098

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8 Medium: HSL1900 Medium parameters used: f = 1880 MHz; σ = 1.45 mho/m; ϵ_r = 40.9; ρ = 1000 kg/m³ Phantom section: Left Section

DASY4 Configuration:


- Probe: ET3DV6 SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn477; Calibrated: 2007-05-22
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.958 mW/g

Tilt position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 24.2 V/m; Power Drift = -0.022 dB Peak SAR (extrapolated) = 1.11 W/kg SAR(1 g) = 0.790 mW/g; SAR(10 g) = 0.482 mW/g Maximum value of SAR (measured) = 0.861 mW/g

0 dB = 0.861 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 21.1° C; liquid temperature: 20.1° C

Date/Time: 2008-01-09 11:44:03Date/Time: 2008-01-09 11:50:55

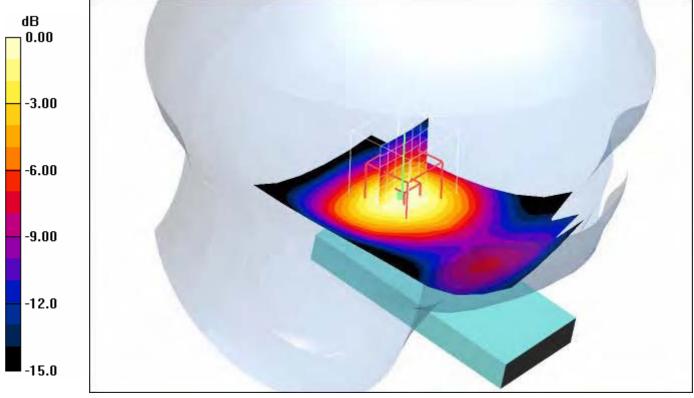
P1528_OET65-LeftHandSide-GSM1900

DUT: Sony Ericsson; Type: AAA-10042081-BV FG; Serial: TP81070098

Communication System: PCS 1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8 Medium: HSL1900 Medium parameters used: f = 1909.8 MHz; $\sigma = 1.45$ mho/m; $\varepsilon_r = 40.9$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:


- Probe: ET3DV6 SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn477; Calibrated: 2007-05-22
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.863 mW/g

Tilt position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm Reference Value = 23.0 V/m; Power Drift = 0.012 dB Peak SAR (extrapolated) = 1.03 W/kg SAR(1 g) = 0.715 mW/g; SAR(10 g) = 0.430 mW/gMaximum value of SAR (measured) = 0.789 mW/g

 $0 \, dB = 0.789 mW/g$

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 21.2° C; liquid temperature: 20.1° C

Date/Time: 2008-01-09 14:36:47Date/Time: 2008-01-09 14:44:31

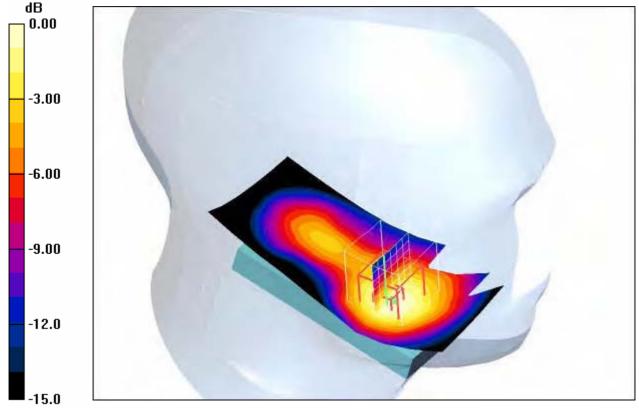
P1528_OET65-LeftHandSide-GSM1900 + BT

DUT: Sony Ericsson; Type: AAA-10042081-BV FG; Serial: TP81070098

Communication System: PCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.45$ mho/m; $\epsilon_r = 40.9$; $\rho = 1000$ kg/m³

Phantom section: Left Section


DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn477; Calibrated: 2007-05-22
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - Low + BT/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.57 mW/g

Touch position - Low + BT/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm Reference Value = 34.6 V/m; Power Drift = 0.030 dBPeak SAR (extrapolated) = 2.06 W/kg**SAR(1 g) = 1.39 \text{ mW/g}; SAR(10 g) = 0.819 \text{ mW/g}** Maximum value of SAR (measured) = 1.52 mW/g

 $0 \, dB = 1.52 mW/g$

Additional information:

Date/Time: 2008-01-09 13:17:09Date/Time: 2008-01-09 13:23:36

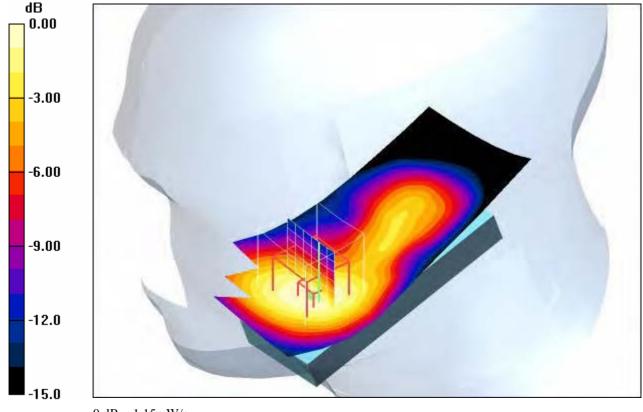
P1528_OET65-RightHandSide-GSM1900

DUT: Sony Ericsson; Type: AAA-10042081-BV FG; Serial: TP81070098

Communication System: PCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used: f = 1850.2 MHz; σ = 1.45 mho/m; ϵ_r = 40.9; ρ = 1000 kg/m³

Phantom section: Right Section


DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn477; Calibrated: 2007-05-22
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.16 mW/g

Touch position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm Reference Value = 27.9 V/m; Power Drift = -0.023 dB Peak SAR (extrapolated) = 1.49 W/kg SAR(1 g) = 1.06 mW/g; SAR(10 g) = 0.649 mW/g Maximum value of SAR (measured) = 1.15 mW/g

 $0 \; dB = 1.15 mW/g$

Additional information:

Date/Time: 2008-01-09 13:38:40Date/Time: 2008-01-09 13:45:08

P1528_OET65-RightHandSide-GSM1900

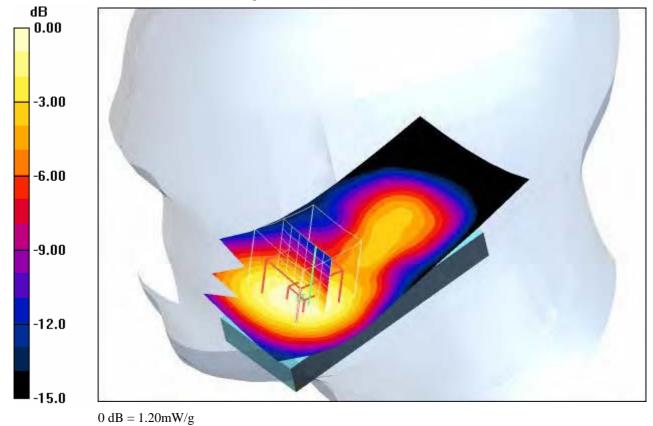
DUT: Sony Ericsson; Type: AAA-10042081-BV FG; Serial: TP81070098

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.45$ mho/m; $\epsilon_r = 40.9$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:


- Probe: ET3DV6 SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn477; Calibrated: 2007-05-22
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.21 mW/g

Maximum value of SAR (interpolated) = 1.21 mW/g

Touch position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 28.7 V/m; Power Drift = 0.035 dBPeak SAR (extrapolated) = 1.56 W/kgSAR(1 g) = 1.09 mW/g; SAR(10 g) = 0.662 mW/gMaximum value of SAR (measured) = 1.20 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 22.0° C; liquid temperature: 20.4° C

Date/Time: 2008-01-09 14:00:14Date/Time: 2008-01-09 14:06:44

P1528_OET65-RightHandSide-GSM1900

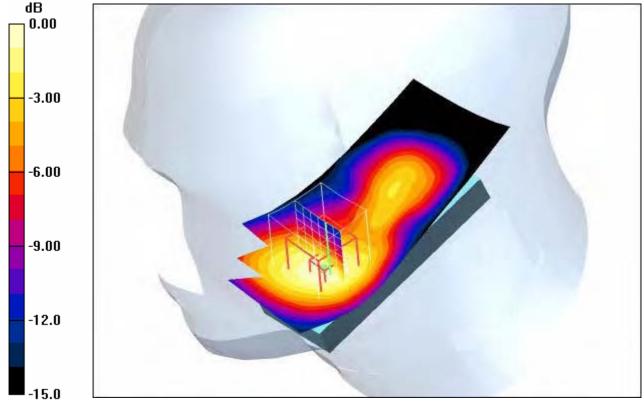
DUT: Sony Ericsson; Type: AAA-10042081-BV FG; Serial: TP81070098

Communication System: PCS 1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used: f = 1909.8 MHz; $\sigma = 1.45$ mho/m; $\epsilon_r = 40.9$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:


- Probe: ET3DV6 SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn477; Calibrated: 2007-05-22
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.13 mW/g

Touch position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm Reference Value = 28.1 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 1.53 W/kg SAR(1 g) = 1.06 mW/g; SAR(10 g) = 0.624 mW/g

Maximum value of SAR (measured) = 1.16 mW/g

 $0 \, dB = 1.16 mW/g$

Additional information:

Date/Time: 2008-01-09 12:09:32Date/Time: 2008-01-09 12:15:59

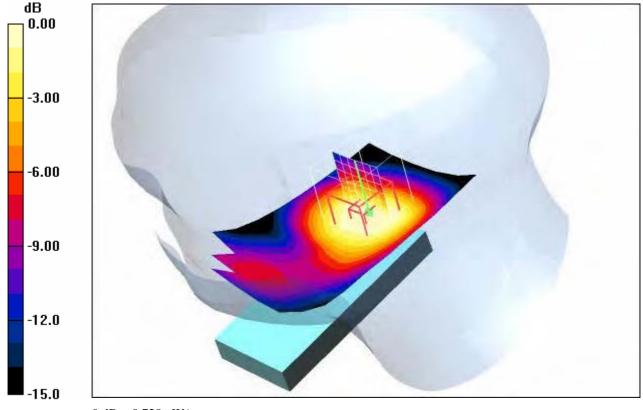
P1528_OET65-RightHandSide-GSM1900

DUT: Sony Ericsson; Type: AAA-10042081-BV FG; Serial: TP81070098

Communication System: PCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8 Medium: HSL1900 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.45$ mho/m; $\epsilon_r = 40.9$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:


- Probe: ET3DV6 SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn477; Calibrated: 2007-05-22
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.835 mW/g

Tilt position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm Reference Value = 23.3 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.886 W/kg SAR(1 g) = 0.678 mW/g; SAR(10 g) = 0.445 mW/g Maximum value of SAR (measured) = 0.728 mW/g

 $0 \ dB = 0.728 mW/g$

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 21.5° C; liquid temperature: 20.2° C

Date/Time: 2008-01-09 12:30:10Date/Time: 2008-01-09 12:36:37

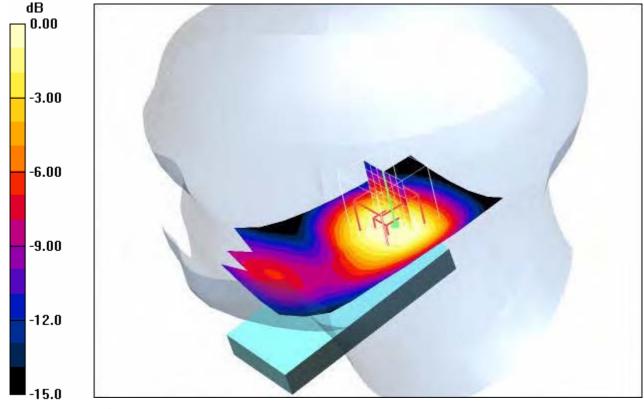
P1528_OET65-RightHandSide-GSM1900

DUT: Sony Ericsson; Type: AAA-10042081-BV FG; Serial: TP81070098

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8 Medium: HSL1900 Medium parameters used: f = 1880 MHz; σ = 1.45 mho/m; ϵ_r = 40.9; ρ = 1000 kg/m³

Phantom section: Right Section

DASY4 Configuration:


- Probe: ET3DV6 SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn477; Calibrated: 2007-05-22
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.806 mW/g

Tilt position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 22.6 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 0.879 W/kg SAR(1 g) = 0.655 mW/g; SAR(10 g) = 0.424 mW/g Maximum value of SAR (measured) = 0.703 mW/g

 $0 \, dB = 0.703 mW/g$

Additional information:

position or distance of DUT to SAM (if not standard head positions) : ambient temperature: 21.6° C; liquid temperature: 20.2° C

Date/Time: 2008-01-09 12:51:00Date/Time: 2008-01-09 12:57:31

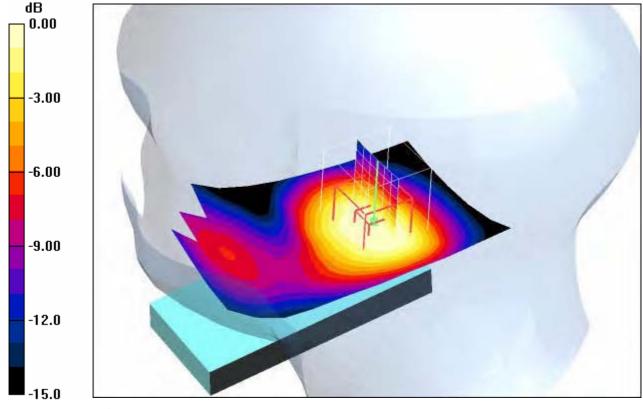
P1528_OET65-RightHandSide-GSM1900

DUT: Sony Ericsson; Type: AAA-10042081-BV FG; Serial: TP81070098

Communication System: PCS 1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8 Medium: HSL1900 Medium parameters used: f = 1909.8 MHz; σ = 1.45 mho/m; ϵ_r = 40.9; ρ = 1000 kg/m³

Phantom section: Right Section

DASY4 Configuration:


- Probe: ET3DV6 SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn477; Calibrated: 2007-05-22
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.751 mW/g

Tilt position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm Reference Value = 21.6 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.811 W/kgSAR(1 g) = 0.597 mW/g; SAR(10 g) = 0.384 mW/gMaximum value of SAR (measured) = 0.639 mW/g

 $0 \, dB = 0.639 mW/g$

Additional information:

Annex 2.4 PCS 1900 MHz body

Date/Time: 2008-01-09 15:43:47Date/Time: 2008-01-09 15:50:08Date/Time: 2008-01-09 16:01:57 P1528 OET65-Body-GSM1900 GPRS

DUT: Sony Ericsson; Type: AAA-10042081-BV FG; Serial: TP81070098

Communication System: PCS 1900 GPRS; Frequency: 1850.2 MHz; Duty Cycle: 1:8

Medium: M1900 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.54 \text{ mho/m}$; $\varepsilon_r = 52.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

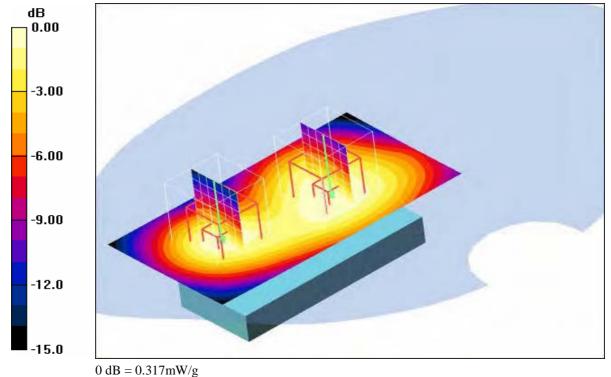
DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(4.46, 4.46, 4.46); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn477; Calibrated: 2007-05-22
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Front position - Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.325 mW/g

Front position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 15.3 V/m; Power Drift = -0.091 dB Peak SAR (extrapolated) = 0.465 W/kg SAR(1 g) = 0.279 mW/g; SAR(10 g) = 0.166 mW/g Maximum value of SAR (measured) = 0.303 mW/g

Front position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 15.3 V/m; Power Drift = -0.091 dB Peak SAR (extrapolated) = 0.427 W/kg SAR(1 g) = 0.294 mW/g; SAR(10 g) = 0.196 mW/g

Maximum value of SAR (measured) = 0.317 mW/g

Additional information:

Date/Time: 2008-01-09 16:18:04Date/Time: 2008-01-09 16:24:11Date/Time: 2008-01-09 16:35:41

P1528_OET65-Body-GSM1900 GPRS

DUT: Sony Ericsson; Type: AAA-10042081-BV FG; Serial: TP81070098

Communication System: PCS 1900 GPRS; Frequency: 1880 MHz; Duty Cycle: 1:8

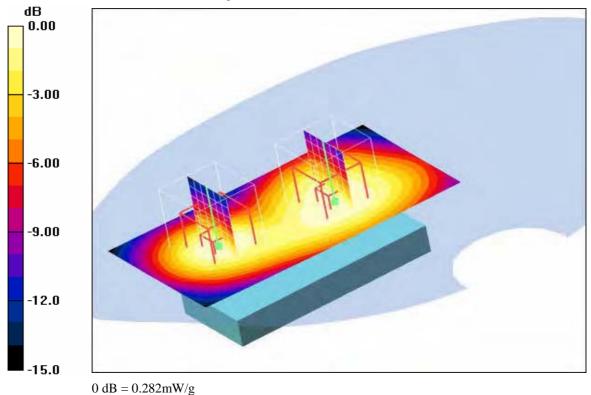
Medium: M1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.54$ mho/m; $\epsilon_r = 52.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(4.46, 4.46, 4.46); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn477; Calibrated: 2007-05-22
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Front position - Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.302 mW/g

Front position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.0 V/m; Power Drift = -0.055 dB Peak SAR (extrapolated) = 0.440 W/kg SAR(1 g) = 0.264 mW/g; SAR(10 g) = 0.156 mW/g Maximum value of SAR (measured) = 0.288 mW/g

Front position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.0 V/m; Power Drift = -0.055 dBPeak SAR (extrapolated) = 0.377 W/kgSAR(1 g) = 0.265 mW/g; SAR(10 g) = 0.177 mW/gMaximum value of SAR (measured) = 0.282 mW/g

Additional information:

Date/Time: 2008-01-09 16:50:28Date/Time: 2008-01-09 16:56:38Date/Time: 2008-01-09 17:08:10

P1528_OET65-Body-GSM1900 GPRS

DUT: Sony Ericsson; Type: AAA-10042081-BV FG; Serial: TP81070098

Communication System: PCS 1900 GPRS; Frequency: 1909.8 MHz; Duty Cycle: 1:8

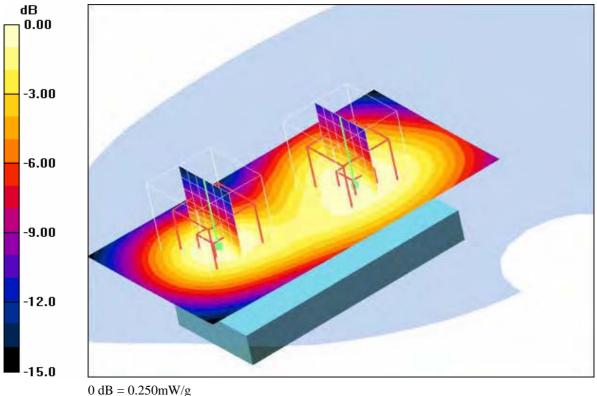
Medium: M1900 Medium parameters used: f = 1909.8 MHz; $\sigma = 1.54$ mho/m; $\epsilon_r = 52.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1558; ConvF(4.46, 4.46, 4.46); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn477; Calibrated: 2007-05-22
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Front position - High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.266 mW/g

Front position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.7 V/m; Power Drift = -0.067 dB Peak SAR (extrapolated) = 0.394 W/kg SAR(1 g) = 0.232 mW/g; SAR(10 g) = 0.136 mW/g Maximum value of SAR (measured) = 0.250 mW/g

Front position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.7 V/m; Power Drift = -0.067 dB Peak SAR (extrapolated) = 0.346 W/kg SAR(1 g) = 0.232 mW/g; SAR(10 g) = 0.153 mW/g

Additional information:

Date/Time: 2008-01-09 17:14:05Date/Time: 2008-01-09 17:20:25Date/Time: 2008-01-09 17:31:53
P1528_OET65-Body-GSM1900 GPRS
DUT: Sony Ericsson; Type: AAA-10042081-BV FG; Serial: TP81070098

Communication System: PCS 1900 GPRS; Frequency: 1850.2 MHz; Duty Cycle: 1:8

Medium: M1900 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.54$ mho/m; $\epsilon_r = 52.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.46, 4.46, 4.46); Calibrated: 2007-08-23

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn477; Calibrated: 2007-05-22

- Phantom: SAM 12; Type: SAM; Serial: 1043

- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Rear position - Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.417 mW/g

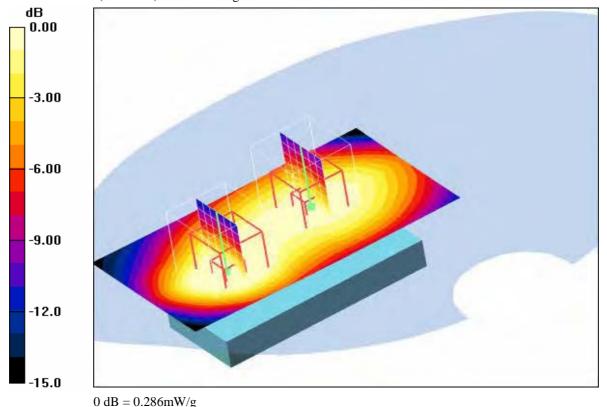
Rear position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.5 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 0.596 W/kg

SAR(1 g) = 0.363 mW/g; SAR(10 g) = 0.217 mW/g

Maximum value of SAR (measured) = 0.394 mW/g


Rear position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 16.5 V/m; Power Drift = -0.00 dBPeak SAR (extrapolated) = 0.398 W/kg

SAR(1 g) = 0.268 mW/g; SAR(10 g) = 0.180 mW/g

Maximum value of SAR (measured) = 0.286 mW/g

Additional information:

Date/Time: 2008-01-09 17:47:29Date/Time: 2008-01-09 17:53:56Date/Time: 2008-01-09 18:05:25 **P1528_OET65-Body-GSM1900 GPRS** DUT: Sony Friegeon: Type: AAA 10042081 BV EC: Soriel: TP81070008

DUT: Sony Ericsson; Type: AAA-10042081-BV FG; Serial: TP81070098

Communication System: PCS 1900 GPRS; Frequency: 1880 MHz; Duty Cycle: 1:8

Medium: M1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.54$ mho/m; $\epsilon_r = 52.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

Phantom section: Flat Sect

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.46, 4.46, 4.46); Calibrated: 2007-08-23

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn477; Calibrated: 2007-05-22

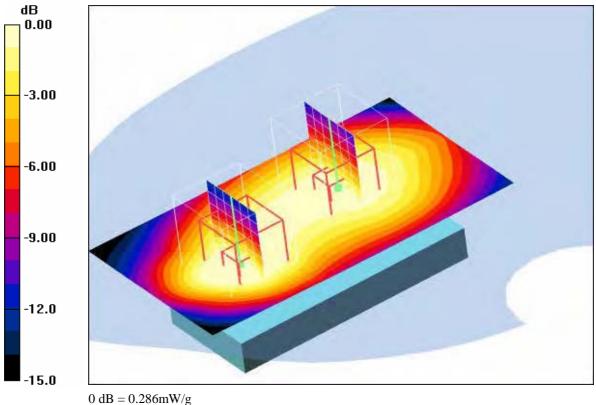
- Phantom: SAM 12; Type: SAM; Serial: 1043

- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Rear position - Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.393 mW/g

Rear position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 16.6 V/m; Power Drift = -0.018 dB Peak SAR (extrapolated) = 0.563 W/kg

SAR(1 g) = 0.331 mW/g; SAR(10 g) = 0.194 mW/g

Maximum value of SAR (measured) = 0.359 mW/g

Rear position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.6 V/m; Power Drift = -0.018 dBPeak SAR (extrapolated) = 0.407 W/kgSAR(1 g) = 0.270 mW/g; SAR(10 g) = 0.179 mW/gMaximum value of SAR (measured) = 0.286 mW/g

Additional information:

Date/Time: 2008-01-09 18:20:04Date/Time: 2008-01-09 18:26:33Date/Time: 2008-01-09 18:38:03 P1528_OET65-Body-GSM1900 GPRS DUT: Sony Ericsson; Type: AAA-10042081-BV FG; Serial: TP81070098

Communication System: PCS 1900 GPRS; Frequency: 1909.8 MHz; Duty Cycle: 1:8

Medium: M1900 Medium parameters used: f = 1909.8 MHz; $\sigma = 1.54$ mho/m; $\epsilon_r = 52.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.46, 4.46, 4.46); Calibrated: 2007-08-23

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn477; Calibrated: 2007-05-22

- Phantom: SAM 12; Type: SAM; Serial: 1043

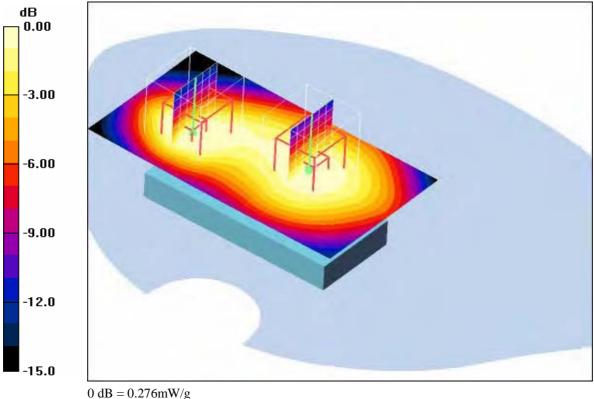
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Rear position -High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.338 mW/g

Rear position -High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.5 V/m; Power Drift = 0.016 dB


Peak SAR (extrapolated) = 0.507 W/kg

SAR(1 g) = 0.291 mW/g; SAR(10 g) = 0.167 mW/g

Maximum value of SAR (measured) = 0.316 mW/g

Rear position -High/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.5 V/m; Power Drift = 0.016 dB Peak SAR (extrapolated) = 0.401 W/kg SAR(1 g) = 0.259 mW/g; SAR(10 g) = 0.169 mW/gMaximum value of SAR (measured) = 0.276 mW/g

Additional information:

Date/Time: 2008-01-09 18:43:40Date/Time: 2008-01-09 18:51:06Date/Time: 2008-01-09 19:02:44

P1528_OET65-Body-GSM1900 GPRS + BT

DUT: Sony Ericsson; Type: AAA-10042081-BV FG; Serial: TP81070098

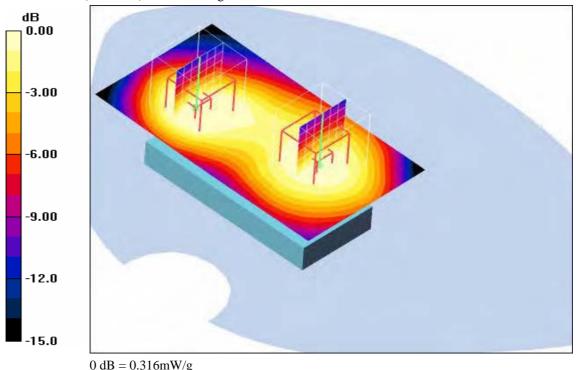
Communication System: PCS 1900 GPRS; Frequency: 1850.2 MHz; Duty Cycle: 1:8

Medium: M1900 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.54$ mho/m; $\epsilon_r = 52.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

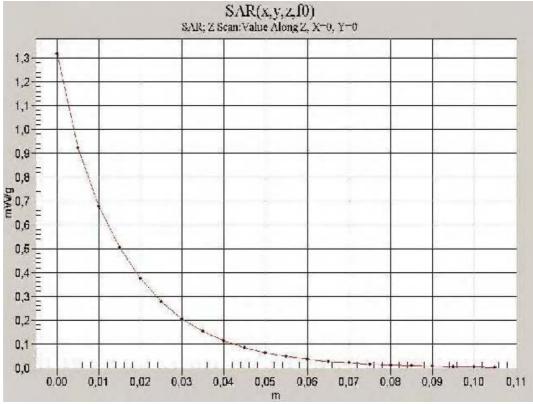
- Probe: ET3DV6 SN1558; ConvF(4.46, 4.46, 4.46); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn477; Calibrated: 2007-05-22
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

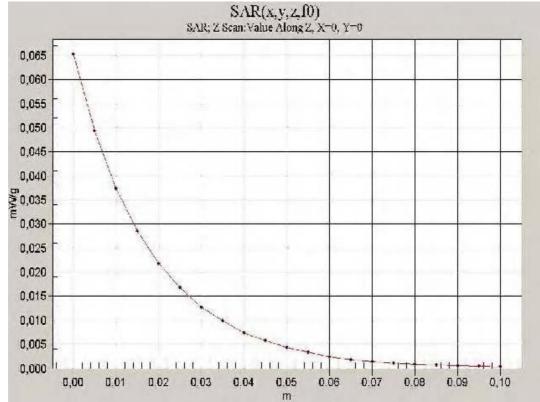

Rear position - Low + BT/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.461 mW/g

Rear position - Low + BT/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm Reference Value = 17.2 V/m; Power Drift = -0.030 dB Peak SAR (extrapolated) = 0.658 W/kg SAR(1 g) = 0.398 mW/g; SAR(10 g) = 0.234 mW/g Maximum value of SAR (measured) = 0.437 mW/g

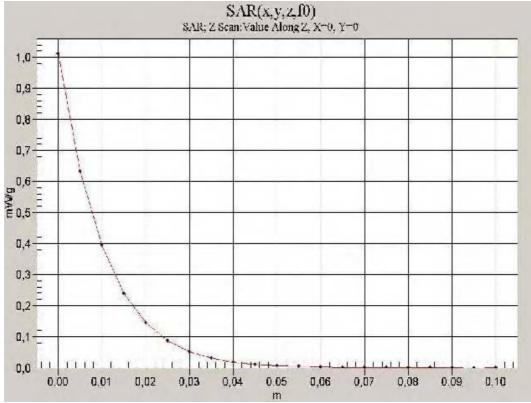
Rear position - Low + BT/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 17.2 V/m; Power Drift = -0.030 dB Peak SAR (extrapolated) = 0.435 W/kg SAR(1 g) = 0.296 mW/g; SAR(10 g) = 0.197 mW/g Maximum value of SAR (measured) = 0.316 mW/g

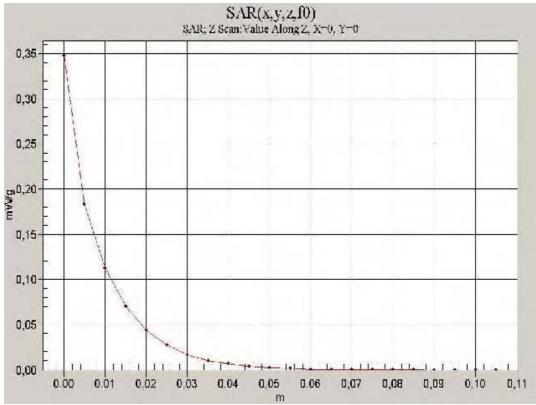

Additional information:

Annex 2.5 Z-axis scans

Z-axis scans 850 MHz head



Z-axis scans 850 MHz body


CETECOM ICT Services GmbH

Test report no.: 2-4576-46-02/07

Z-axis scans 1900 MHz head

Z-axis scans 1900 MHz body