

	Company Internal REPORT			
Prepared (also subject responsible if other)		No.		
LD/SEMC/BGGI/NM Hamid Kami Shirazi		BGGIN05:343		
Approved	Checked	Date	Rev	Reference
LD/SEMC/BGGI/NM Ramadan Plicanic	051122	051122	А	File

Report issued by Accredited SAR Laboratory

For

PY7A1041031 (Z300a)

Date of test:	9, to15, 11 2005
Laboratory:	Sony Ericsson SAR Test Laboratory Sonyericsson Mobile Communications AB Nya Vattentornet SE-221 82 LUND, Sweden
Testing Engineer:	Hamid Kami Shirazi <u>Kami.shirazi@sonyericsson.com</u> +46 46232644
Testing Approval	Ramadan Plicanic Kawadan Tucawa Ramadan.Plicanic@sonyericsson.com +46 46 19 38 62

Statement of Compliance

Sony Ericsson Mobile Communications AB declares under its sole responsibility that the product

Sony Ericsson Type; FCC ID: PY7A1041031; IC:4170B-A1041031

To which this declaration relates, is in conformity with the appropriate RF exposure standards recommendations and guidelines. It also declares that the product was tested in accordance with the appropriate measurement standards, guidelines and recommended practices. Any deviations from these standards, guidelines and recommended practices are noted below: (None)

This laboratory is accredited to ISO/IEC 17025 (SWEDAC accreditation no. 1847).

Laboratories are accredited by the Swedish Board for Accreditation and Conformity Assessment (SWEDAC) under the terms of Swedish legislation. The accredited laboratory activities meet the requirements in SS-EN ISO/IEC 17025 (2000). This report may not be reproduced other than in full, except with the prior written approval of the issuing laboratory. The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only

in connection with the statements or results from this report.

Sony Ericsson encourages all feedback, both positive and negative, on this report. © Sony Ericsson Mobile Communication AB, 2005

Sony Ericsson		Company Intern REPORT	al	
Prepared (also subject responsible if other)		No.		
LD/SEMC/BGGI/NM Hamid Kami Shirazi		BGGIN05:343		
Approved	Checked	Date	Rev	Reference
LD/SEMC/BGGI/NM Ramadan Plicanic	051122	051122	А	File

Table of contents 1

2	2 INTRODUCTION	3
3	3 DEVICE UNDER TEST	3
	3.1 ANTENNA DESCRIPTION	3
4	4 TEST EQUIPMENT	4
	4.1 DOSIMETRIC SYSTEM4.2 ADDITIONAL EQUIPMENT	4 4
5	5 ELECTRICAL PARAMETERS ON THE TISSUE SIMULATING LIQUID	5
6	5 SYSTEM ACCURACY VERIFICATION	5
7	7 SAR MEASUREMENT UNCERTAINTY	6
8	8 TEST RESULTS	7
9	9 REFERENCES	8
1	10 APPENDIX	9
	10.1 PHOTOGRAPHS OF THE DEVICE UNDER TEST	9
	10.2 DEVICE POSITION ON SAM TWINS PHANTOM	11
	10.3 Attechments	12

		Company Intern REPORT	al	
Prepared (also subject responsible if other)		No.		
LD/SEMC/BGGI/NM Hamid Kami Shirazi		BGGIN05:343		
Approved	Checked	Date	Rev	Reference
LD/SEMC/BGGI/NM Ramadan Plicanic	051122	051122	А	File

2 Introduction

In this test report, compliance of the Sony Ericsson PY7A1041031 (Z300a) portable telephone with RF safety guidelines is demonstrated. The applicable RF safety guidelines and the SAR measurement specifications used for the test are described in the SAR Measurement Specifications of Wireless Handsets [1].

3 Device under Test

3.1 Antenna Description

Туре	Internal antenna	Internal antenna			
Location	Inside back, at the	Inside back, at the middle			
Dimensions	Max length	38mm			
Dimensions	Max width	Max width 16mm			
Configuration	PIFA				

3.2

Device description

Device model	PY7A1041031(Z300a)				
Serial number	TP81032	.00Q			
Mode	GSM 850)			GSM1900
Multiple Access Scheme	TDMA				TDMA
Maximum Output Power Setting	Ch128	Ch190	Ch2	251	30.3
(dBm)	32.7	32.4	31.5	5	30.5
Factory Tolerance in Power Setting	±0.5dBm				
Maximum Peak Output Power	Ch128	Ch190	Ch2	251	30.8
(dBm)	33.2	32.9	32.0)	30.8
Crest Factor			8		
Transmitting Frequency Range(MHz)	824.2 - 848.8 1850.2 - 1909.8				
Prototype or Production Unit	Preproduction				
Device Category	Portable				
RF exposure environment	General	population	/ unco	ontroll	led

		Company Intern REPORT	al	
Prepared (also subject responsible if other)		No.		
LD/SEMC/BGGI/NM Hamid Kami Shirazi		BGGIN05:343		
Approved	Checked	Date	Rev	Reference
LD/SEMC/BGGI/NM Ramadan Plicanic	051122	051122	А	File

4 Test equipment

4.1 Dosimetric system

SAR measurements were made using the DASY3 professional system (software version 3.1c) with SAM twin phantom, manufactured by Schmid & Partner Engineering AG (SPEAG). The list of calibrated equipment is given below.

Description	Serial Number	Due Date
DASY3 DAE V1	419	March 2006
E-field probe ET3DV6	1585	March 2006
Dipole Validation Kit, D835V2	484	March 2007
Dipole Validation Kit, D1900V2	5d002	March 2007

4.2 Additional equipment

Description	Inventory Number	Due Date
Signal generator ESG-D4000A	INV 483972	Nov. 2006
Directional coupler HP778D	INV 39656	Jan. 2006
Power meter R&S NRVD	INV 483920	Jan. 2006
Power sensor R&S NRV-Z5	INV 2333	Jan. 2006
Power sensor R&S NRV-Z5	INV 2334	Jan. 2006
Termination 65N50-0-11	INV 2903	Jan. 2006
Network analyzer HP8753C	INV421671	Nov. 2006
S-parameter test set HP85047A	INV 421670	Nov. 2006
Dielectric probe kit HP8507D	INV 20 000 053	Self calibrated
CMU200	INV 74510	Mar. 2006

		Company Inter REPORT	nal	
Prepared (also subject responsible if other)		No.		
LD/SEMC/BGGI/NM Hamid Kami Shirazi		BGGIN05:343		
Approved	Checked	Date	Rev	Reference
LD/SEMC/BGGI/NM Ramadan Plicanic	051122	051122	А	File

5 Electrical parameters on the tissue simulating liquid

Prior to conducting SAR measurements, the relative permittivity, $\boldsymbol{\epsilon}$ r, and the conductivity, $\boldsymbol{\sigma}$, of the tissue simulating liquids were measured with the dielectric probe kit. These values are shown in the table below. The mass density, $\boldsymbol{\rho}$, entered into the DASY3 software is also given. Recommended limits for permittivity $\boldsymbol{\epsilon}$ r, conductivity $\boldsymbol{\sigma}$ and mass density $\boldsymbol{\rho}$ are also shown.

f	Tissue	Limits / Measured	Diel	ectric Parame	eters
(MHz)	type	Linits / Measured	ε _r	σ (S/m)	ρ (g/cm³)
835	Head	09/Nov/2005	41.0	0.93	1.00
055	neau	Recommended	41.5	0.90	1.00
1900	Head	14/Nov/2005	38.0	1.47	1.00
1900 Head	Recommended	40.0	1.40	1.00	
835	Body	15/Nov/2005	54.0	1.00	1.00
035	Бойу	Recommended	55.2	0.97	1.00
1900	Body	10/Nov/2005	51.8	1.54	1.00
1300	Bouy	Recommended	53.3	1.52	1.00

6 System accuracy verification

A system accuracy verification of the DASY3 was performed using the dipole validation kit listed in section 3.1. The system verification test was conducted on the same day as the measurement of the DUT. Measurement made in ambient temperature 22-24 °C and humanity 40-50%. The obtained results are displayed in the table below.

RF noise had been measured in liquid when all RF equipment in lab was set off. Measured value was 0.001 m W/g in 1g mass.

f (MHz)	Tissue	Measured / Reference	SAR (W/kg) 1g/10g	Die	Liquid t(°C)		
	type		19/109	ε,	σ (S/m)	ρ (g/cm³)	
835	Head	09/Nov/2005	9.32/6.02	41.0	0.93	1.00	22±0,2
030	пеац	Reference	9.10/5.96	42.2	0.91	1.00	21.6±0,2
835	Head	10/Nov/2005	9.52/6.16	41.0	0.93	1.00	22±0,2
035	пеац	Reference	9.10/5.96	42.2	0.91	1.00	21.6±0,2
835	Body	15/Nov/2005	9.75/6.24	54.0	1.00	1.00	22±0,2
035	Бойу	Reference	9.48/6.24	54.9	1.01	1.00	21.4±0,2
1900	Head	11/Nov/2005	41.1/20.8	38.0	1.47	1.00	22±0,2
1900	пеац	Reference	39.2/20.6	39.6	1.45	1.00	21.5±0,2
1900	Head	14/Nov/2005	4.09/20.7	38.0	1.47	1.00	22±0,2
1900	пеац	Reference	39.2/20.6	39.6	1.45	1.00	21.5±0,2
1900	Pody	10/Nov/2005	40.7/21.0	51.8	1.54	1.00	22±0,2
1900	Body	Reference	39.2/20.6	51.6	1.58	1.00	22±0,2

		Company Inter REPORT	nal		
Prepared (also subject responsible if other)	No.				
LD/SEMC/BGGI/NM Hamid Kami Shirazi		BGGIN05:343			
Approved	Checked	Date	Rev	Reference	
LD/SEMC/BGGI/NM Ramadan Plicanic	051122	051122	А	File	

7 SAR measurement uncertainty

SAR measurement uncertainty evaluation for Sonyericsson PY7A1041031 (Z300a) phone

Uncertainty Component	Uncer. (%)	Prob Dist.	Div.	Ci	850 Head	850 Body	1900 Head	1900 Body
Measurement System								
Probe Calibration	±4.4	Ν	1	1	±4.4	±4.4	±4.4	±4.4
Axial Isotropy	±4.7	R	√3	0.5	±1.4	±1.4	±1.4	±1.4
Spherical Isotropy	±9.6	R	√3	0.5	±2.8	±2.8	±2.8	±2.8
Spatial resolution	±0.0	R	√3	1	±0.0	±0.0	±0.0	±0.0
Boundary effect	±5.5	R	√3	1	±3.2	±3.2	±3.2	±3.2
Probe linearity	±4.7	R	√3	1	±2.7	±2.7	±2.7	±2.7
Detection limit	±1.0	R	√3	1	±0.6	±0.6	±0.6	±0.6
Readout electronics	±1.0	Ν	1	1	±1.0	±1.0	±1.0	±1.0
Response time	±0.8	R	√3	1	±0.5	±0.5	±0.5	±0.5
Integration time	±1.4	R	√3	1	±0.8	±0.8	±0.8	±0.8
RF Ambient Conditions	±3.0	R	√3	1	±1.7	±1.7	±1.7	±1.7
Mech. Constraints of robot	±0.4	R	√3	1	±0.2	±0.2	±0.2	±0.2
Probe positioning	±2.9	R	√3	1	±1.7	±1.7	±1.7	±1.7
Extrap, interpolation and integration	±3.9	R	√3	1	±2.3	±2.3	±2.3	±2.3
Measurement System Uncertainty					±7.7	±7.7	±7.7	±7.7
Test Sample Related								
Device positioning	±6.0	Ν	0.89	1	±6.7	±6.7	±6.7	±6.7
Device holder uncertainty	±5.0	Ν	0.84	1	±5.9	±5.9	±5.9	±5.9
Power drift	-0.2/-0.7/-0.5/-1.2	R	√3	1	-0.1	-0.4	-0.3	±0.7
Test Sample Related Uncertainty					±8.9	±8.9	±8.9	±9.0
Phantom and Tissue Parameters								
Phantom uncertainty	±4.0	R	√3	1	±2.3	±2.3	±2.3	±2.3
Liquid conductivity (measured)	+3.3/+3.1/+5/+1.3	R	√3	0.6	+1.1	+1.1	+1.7	+0.5
Liquid conductivity (target)	±5.0	R	√3	0.6	±1.7	±1.7	±1.7	±1.7
Liquid Permittivity (measured)	-1.2/+2.2/-5/-2.8	R	√3	0.6	-0.4	+0.6	-1.7	-1.0
Liquid Permittivity (target)	±5.0	R	√3	0.6	±1.7	±1.7	±1.7	±1.7
Phantom and Tissue Parameters Uncertainty					±3.5	±3.4	±4.1	±3.5
						±12.5	±12.35	
Extended standard uncertainty (k=	2)				±24.6	±24.5	±25.0	±24.7

		Company Intern REPORT	al			
Prepared (also subject responsible if other)		No.				
LD/SEMC/BGGI/NM Hamid Kami Shirazi		BGGIN05:343				
Approved	Checked	Date	Rev	Reference		
LD/SEMC/BGGI/NM Ramadan Plicanic	051122	051122	А	File		

8 Test results

The measured 1-gram and averaged SAR values of the device against the head are provided in Tables 1 and body are provided in Tables 2. The ambient humidity and temperature of test facility were 40% - 50% and 22.0 °C – 23.0 °C respectively. The depth of the head and body tissue simulating liquid were 15±0.2 cm. A base station simulator was used to control the device during the SAR measurement. The phone was supplied with full-charged battery for each measurement.

For head measurement, the device was tested on the right-hand phantom (corresponding to the right side of the head) and the left-hand phantom in two phone position, cheek (touch) and tilt (cheek + 15deg).

For body measurement phone was tested on the antenna (back) to the phantom and Front to the phantom and with 15mm distance against flat section of phantom. For all modes, the device was tested at the lowest, middle and highest frequencies in the transmit band. All measurements in Body has done by using a Sonyericsson hands free headset.

		Power	Bewer		SAR (W/kg)	
Mode	Channel	(dBm)	Phone Position	Liquid t (°C)	Right-hand	Left-hand	
		(ubiii)		(0)	1g mass	1g mass	
	128	33.2	Cheek	22-23	1.22	1.29	
	120	55.Z	Tilt	22-23	0.28	0.27	
GSM	190 32.9 251 32.0	32.0	Cheek	22-23	1.43	1.39	
850		52.9	Tilt	22-23	0.28	0.28	
		251	32.0	Cheek	22-23	1.34	1.34
		32.0	Tilt	22-23	0.27	0.24	
	512	30.8	Cheek	22-23	0.90	1.02	
	512	30.8	Tilt	22-23	0.19	1.27	
GSM	661	30.8	Cheek	22-23	1.02	1.07	
1900	001	30.8	Tilt	22-23	0.25	0.21	
	910	20.9	Cheek	22-23	0.93	0.29	
	810	30.8	Tilt	22-23	0.25	0.27	

 Table1: SAR measurement result for Sony Ericsson PY7A1041031 (Z300a) telephone at highest possible output power. The phone has measured against the Head.

Mode	Channel	Power (dBm)	Phone Position	Liquid t (°C)	SAR (W/kg) in 1 g mass
	128	33.2	Front to phantom	22±0.2	0.06
GSM	120	55.Z	Antenna to phantom	22±0.2	0.39
850	190	32.9	Front to phantom	22±0.2	0.10
Body	190	32.9	Antenna to phantom	22±0.2	0.44
Douy	251	32.0	Front to phantom	22±0.2	0.07
			Antenna to phantom	22±0.2	0.42
	512	30.8	Front to phantom	22±0.2	0.07
GSM	512	30.0	Antenna to phantom	22±0.2	0.42
1900	661	30.8	Front to phantom	22±0.2	0.08
Body	001	30.8	Antenna to phantom	22±0.2	0.71
Body	810	20.0	Front to phantom	22±0.2	0.05
	610	30.8	Antenna to phantom	22±0.2	0.74

Table2: SAR measurement result for Sony Ericsson PY7A1041031 (Z300a) telephone at highest possible output power. The phone has measured against the Body.

 Company Internal REPORT

 Prepared (also subject responsible if other)
 No.

 LD/SEMC/BGGI/NM Hamid Kami Shirazi Approved
 BGGIN05:343

 Date
 Rev

 LD/SEMC/BGGI/NM Ramadan Plicanic
 051122

 April
 051122

9

References

[1] R.Plicanic, "SAR Measurement Specification of Wireless Handsets", Sony Ericsson SAR Test Laboratory internal document GUG/N 03:141

[2] Basic standard for the Measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300MHz-3GHz), European Standard EN 50361, July 2001

[3] FCC, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields: Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radio Frequency Emissions," Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01).

[4] IEEE, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques," Std. 1528-2003, June, 2003.

		Company Intern REPORT	al		
Prepared (also subject responsible if other)		No.			
LD/SEMC/BGGI/NM Hamid Kami Shirazi		BGGIN05:343			
Approved	Checked	Date	Rev	Reference	
LD/SEMC/BGGI/NM Ramadan Plicanic	051122	051122	А	File	

10 Appendix

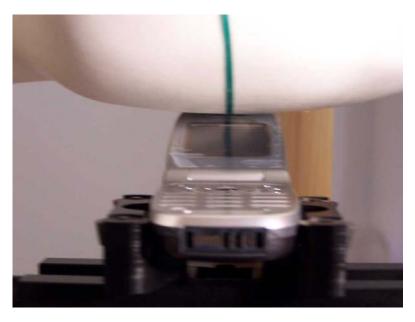
Photographs of the device under test

Front & back side

Down Connector

back side with battery

L & R Sides



	Company Internal REPORT			
	No.			
	BGGIN05:343			
Checked	Date	Rev	Reference	
051122	051122	А	File	
		REPORT No. BGGIN05:343 Checked Date	REPORT No. BGGIN05:343 Checked Date Rev	

10.2 Device position on SAM Twins Phantom

Device position against the head: Cheek (touch) phone position

Device position against the head: Tilt (cheek+15deg) phone position

6	Sony	Ericsson	
---	------	----------	--

	Company Internal REPORT				
Prepared (also subject responsible if other)	No.				
LD/SEMC/BGGI/NM Hamid Kami Shirazi		BGGIN05:343			
Approved	Checked	Date	Rev	Reference	
LD/SEMC/BGGI/NM Ramadan Plicanic	051122	051122	А	File	

Device position against the body: back side Phone

				nal				
Prepared (also subject responsible if other)				No.				
	LD/SEMC/BGGI/NM	Hamid Kami Shirazi		BGGIN05:343				
	Approved		Checked	Date	Rev	Reference		
	LD/SEMC/BGGI/NM	Ramadan Plicanic	051122	051122	А	File		

10.3 Attachment

- Probe & Dipole Calibration
- Measurement plots and system validation
- Annex

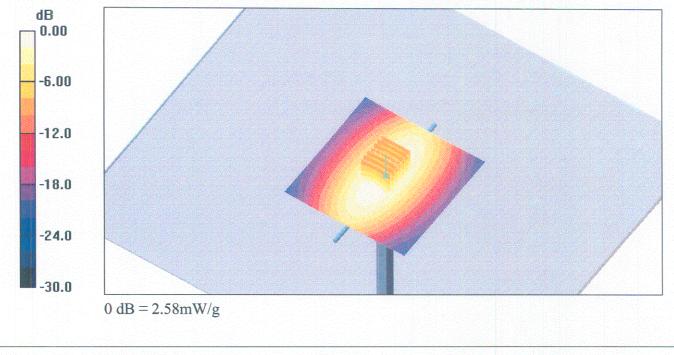
DASY4 Validation Report for Body TSL

Date/Time: 14.03.2005 10:51:59

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN484

Communication System: CW-835; Frequency: 835 MHz;Duty Cycle: 1:1 Medium: M900; Medium parameters used: f = 835 MHz; $\sigma = 1.01$ mho/m; $\epsilon_r = 54.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Probe: ET3DV6 SN1507; ConvF(5.98, 5.98, 5.98); Calibrated: 26.10.2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.01.2005
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001;
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Pin = 250 mW; d = 15 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.57 mW/g

Pin = 250 mW; d = 15 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 52.6 V/m; Power Drift = 0.025 dBPeak SAR (extrapolated) = 3.36 W/kgSAR(1 g) = 2.37 mW/g; SAR(10 g) = 1.56 mW/gMaximum value of SAR (measured) = 2.58 mW/g

Certificate No: D835V2-484_Mar05

Page 8 of 9

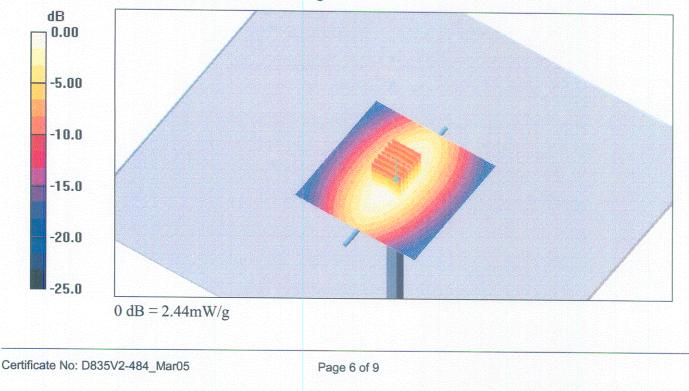
DASY4 Validation Report for Head TSL

Date/Time: 08.03.2005 10:35:22

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN484

Communication System: CW-835; Frequency: 835 MHz;Duty Cycle: 1:1 Medium: HSL 835 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.91$ mho/m; $\epsilon_r = 42$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Probe: ET3DV6 SN1507; ConvF(6.24, 6.24, 6.24); Calibrated: 26.10.2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.01.2005
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001;
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 144

Pin = 250 mW; d = 15 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.46 mW/g

Pin = 250 mW; d = 15 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.0 V/m; Power Drift = 0.015 dB Peak SAR (extrapolated) = 3.29 W/kgSAR(1 g) = 2.27 mW/g; SAR(10 g) = 1.49 mW/g Maximum value of SAR (measured) = 2.44 mW/g

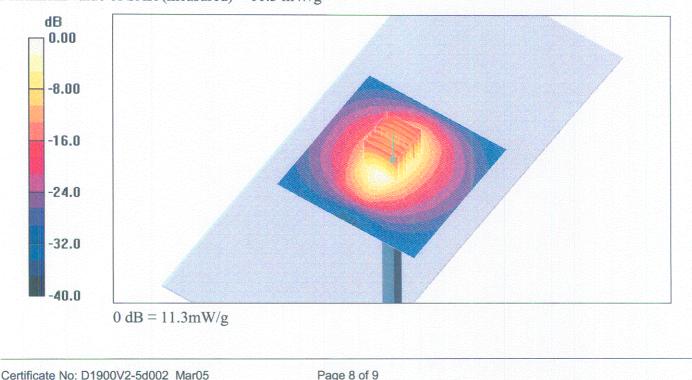
DASY4 Validation Report for Body TSL

Date/Time: 15.03.2005 15:20:32

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d002

Communication System: CW-1900; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: MSL 1900 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.57$ mho/m; $\epsilon_r = 52.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Probe: ET3DV6 SN1507; ConvF(4.43, 4.43, 4.43); Calibrated: 26.10.2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.01.2005
- Phantom: Flat Phantom 5.0; Type: QD000P50AA; Serial: 1001;
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 11.4 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 87.3 V/m; Power Drift = 0.061 dBPeak SAR (extrapolated) = 16.8 W/kgSAR(1 g) = 9.91 mW/g; SAR(10 g) = 5.23 mW/gMaximum value of SAR (measured) = 11.3 mW/g

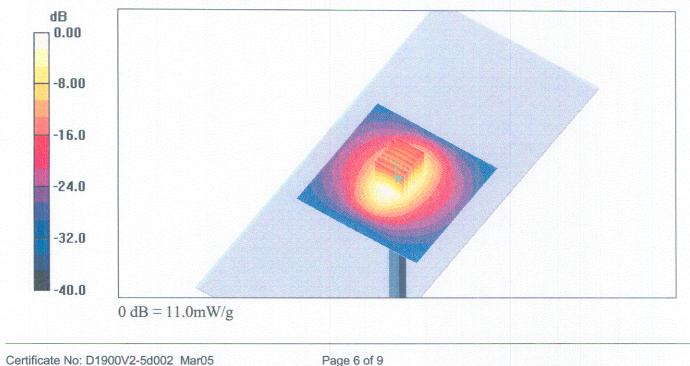
DASY4 Validation Report for Head TSL

Date/Time: 09.03.2005 15:20:45

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d002

Communication System: CW-1900; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: HSL 1900 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.46$ mho/m; $\epsilon_r = 39.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Probe: ET3DV6 SN1507; ConvF(4.96, 4.96, 4.96); Calibrated: 26.10.2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.01.2005
- Phantom: Flat Phantom 5.0; Type: QD000P50AA; Serial: 1001;
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 11.4 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 91.4 V/m; Power Drift = 0.037 dBPeak SAR (extrapolated) = 16.9 W/kgSAR(1 g) = 9.81 mW/g; SAR(10 g) = 5.15 mW/gMaximum value of SAR (measured) = 11.0 mW/g

