

CETECOM ICT Services GmbH

Untertuerkheimer Str. 6-10, 66117 Saarbruecken, Germany Phone: +49 (0) 681 598-0
SAR-Laboratory Phone: +49 (0) 681 598-8454

Fax: -8475

Accredited testing laboratory

DAR registration number: DAT-P-176/94-D1

Test report no. : 2-4883-26-02/08
Type identification : AAB-1032091-BV
Test specification : IEEE P1528/D1.2
FCC-ID : PY7A1032091
IC-ID : 4170B-A1032091

Table of Contents

1	General Information.....	3
1.1	Notes.....	3
1.1.1	Statement of Compliance.....	3
1.2	Testing laboratory.....	4
1.3	Details of applicant.....	4
1.4	Application details.....	4
1.5	Test item.....	5
1.6	Test specification(s)	6
1.6.1	RF exposure limits	6
2	Technical test.....	7
2.1	Summary of test results	7
2.2	Test environment.....	7
2.3	Measurement and test set-up	7
2.4	Measurement system	8
2.4.1	System Description	8
2.4.2	Test environment	9
2.4.3	Probe description	9
2.4.4	Phantom description.....	10
2.4.5	Device holder description	10
2.4.6	Scanning procedure.....	11
2.4.7	Spatial Peak SAR Evaluation.....	12
2.4.8	Data Storage and Evaluation.....	13
2.4.9	Test equipment utilized.....	15
2.4.10	Tissue simulating liquids: dielectric properties.....	16
2.4.11	Tissue simulating liquids: parameters	17
2.4.12	Measurement uncertainty evaluation for SAR test	18
2.4.13	Measurement uncertainty evaluation for system validation.....	19
2.4.14	System validation.....	20
2.4.15	Validation procedure.....	21
2.5	Test results (Head and Body SAR).....	22
2.5.1	General description of test procedures.....	24
2.6	Test results (conducted power measurement).....	25
2.6.1	Multiple Transmitter Information.....	25
Annex 1	System performance verification.....	26
Annex 2	Measurement results (printout from DASY TM)	32
Annex 2.1	PCS 850 MHz head.....	32
Annex 2.2	PCS 850 MHz body	56
Annex 2.3	PCS 1900 MHz head.....	63
Annex 2.4	PCS 1900 MHz body	87
Annex 2.5	Z-axis scans.....	94
Annex 3	Photo documentation	96
Annex 3.1	Liquid depth	113
Annex 4	RF Technical Brief Cover Sheet acc. to RSS-102	115
Annex 4.1	Declaration of RF Exposure Compliance.....	115
Annex 5	Calibration parameters.....	116

1 General Information

1.1 Notes

The test results of this test report relate exclusively to the test item specified in 1.5. The CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the CETECOM ICT Services GmbH.

1.1.1 Statement of Compliance

The SAR values found for the AAB-1032091-BV **Mobile Phone** are below the maximum recommended levels of 1.6 W/Kg as averaged over any 1 g tissue according to the FCC rule §2.1093, the ANSI/IEEE C 95.1:1999, the NCRP Report Number 86 for uncontrolled environment, according to the Health Canada's Safety Code 6 and the Industry Canada Radio Standards Specification RSS-102 for General Population/Uncontrolled exposure.

For body worn operation, this device has been tested and meets FCC RF exposure guidelines when used with any accessory that contains no metal and that positions the handset a minimum of 15 mm from the body. Use of other accessories may not ensure compliance with FCC RF exposure guidelines.

The measurement together with the test system set-up is described in chapter 2.3 of this test report. A detailed description of the equipment under test can be found in chapter 1.5.

Test engineer:

2008-04-24

Oleksandr Hnatovskiy

Date

Name _____

Signature

John

Technical responsibility for area of testing:

2008-04-24

Thomas Vogler

Date:

Name _____

Signature

Thomas Vay

1.2 Testing laboratory

CETECOM ICT Services GmbH

Untertuerkheimer Straße 6-10,

66117 Saarbruecken

Germany

Telephone: + 49 681 598 - 0

Fax: + 49 681 598 - 8475

e-mail: info@ict.cetecom.de

Internet: <http://www.cetecom-ict.de>

State of accreditation: The Test laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025. DAR registration number: DAT-P-176/94-D1

Test location, if different from CETECOM ICT Services GmbH

Name: ---

Street: ---

Town: ---

Country: ---

Phone: ---

Fax: ---

1.3 Details of applicant

Name: Sony Ericsson Mobile Communications AB

Street: Nya Vattentornet

Town: 22188 Lund

Country: Sweden

Contact: Mr. Peter Lindeborg

Telephone: +46-46-212-6180

1.4 Application details

Date of receipt of application: 2008-04-16

Date of receipt of test item: 2008-04-16

Start/Date of test: 2008-04-16

End of test: 2008-04-23

Person(s) present during the test: ---

1.5 Test item

Description of the test item: Mobile Phone

Type identification: AAB-1032091-BV

FCC-ID : PY7A1032091

IC-ID : 4170B-A1032091

Serial number: TP8108062V

Manufacturer:

Name: Sony Ericsson Mobile Communications AB

Street: Nya Vattentornet

Town: 22188 Lund

Country: Sweden

additional information on the DUT:

device type :	portable device		
IMEI No :	00440107-371069-7		
exposure category:	uncontrolled environment / general population		
test device production information	production unit		
device operating configurations :			
operating mode(s)	GSM, DCS, PCS, Bluetooth		
modulation	GMSK		
GRPS mobile station class :	B		
GRPS multislot class :	10	voice mode : ---	
EGPRS multislot class	---	voice mode : ---	
maximum no. of timeslots in uplink :	2		
operating frequency range(s)	PCS 1900 (tested)	PCS 850 (tested)	DCS 1800
- transmitter frequency range :	1850.2 MHz ~ 1909.8 MHz	824.2 MHz ~ 848.8 MHz	1710 MHz ~ 1785 MHz
- receiver frequency range :	1930.2 MHz ~ 1989.8 MHz	869.2 MHz ~ 893.8 MHz	1805 MHz ~ 1880 MHz
Power class :	1, tested with power level 0 (1900 MHz band) 4, tested with power level 5 (850 MHz band)		
measured peak output power (conducted):	850 band: 32.9 dBm 1900 band: 29.8 dBm		
test channels (low – mid – high) :	128 – 190 – 251 (850 MHz band) 512 – 661 – 810 (1900 MHz band)		
hardware version :	FP2		
software version :	R2AB002		
antenna type :	Integrated antenna		
accessories / body-worn configurations :	Stereo headset		
battery options :	Sony Ericsson Battery BST-38		

1.6 Test specification(s)

Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01)

IEEE P1528/D1.2 (April 21, 2003)

RSS-102: Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands (Issue 2 of November 2005)

Canada's Safety Code 6: Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz (99-EHD-237)

IEEE Std C95.3 – 1991, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields – RF and Microwave.

IEEE Std C95.1 – 1999, IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz – 300 GHz.

1.6.1 RF exposure limits

Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational
Spatial Peak SAR* (Brain)	1.60 mW/g	8.00 mW/g
Spatial Average SAR** (Whole Body)	0.08 mW/g	0.40 mW/g
Spatial Peak SAR*** (Hands/Feet/Ankle/Wrist)	4.00 mW/g	20.00 mW/g

Table 1: RF exposure limits

The limit applied in this test report is shown in **bold** letters

Notes:

* The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time

** The Spatial Average value of the SAR averaged over the whole body.

*** The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

2 Technical test

2.1 Summary of test results

No deviations from the technical specification(s) were ascertained in the course of the tests performed.	<input checked="" type="checkbox"/>
The deviations as specified in 2.5 were ascertained in the course of the tests performed.	<input type="checkbox"/>

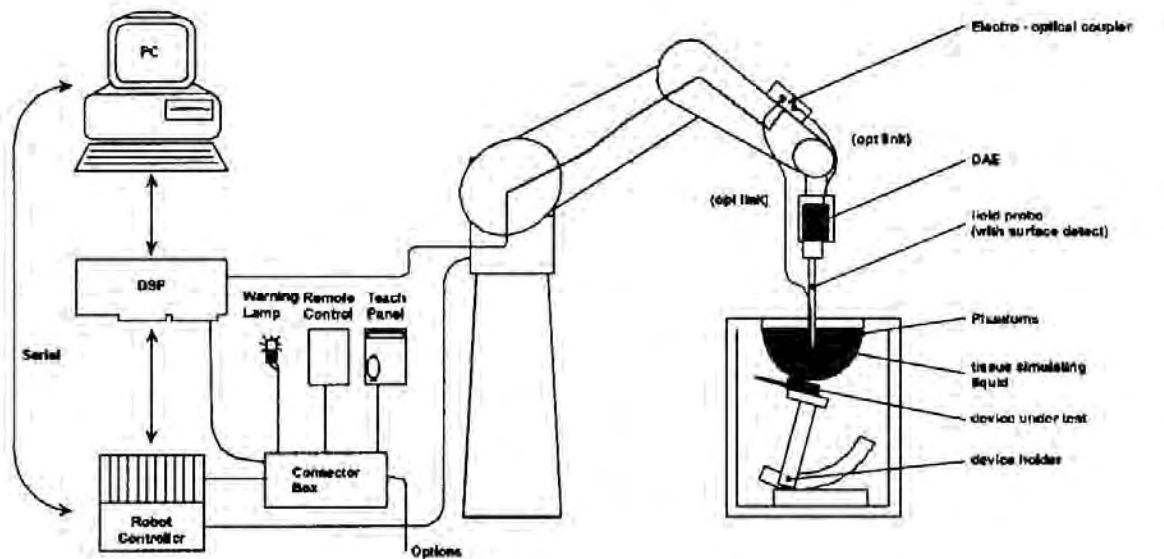
2.2 Test environment

General Environment conditions in the test area are as follows:

Ambient temperature: 20°C – 24°C
Tissue simulating liquid: 20°C – 24°C
Humidity: 40% – 50%

Exact temperature values for each test are shown in the table(s) under 2.5. and/or on the measurement plots.

2.3 Measurement and test set-up


The measurement system is described in chapter 2.4.

The test setup for the system validation can be found in chapter 2.4.14.

A description of positioning and test signal control can be found in chapter 2.5 together with the test results.

2.4 Measurement system

2.4.1 System Description

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- A unit to operate the optical surface detector which is connected to the EOC.
- The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY4 measurement server.
- The DASY4 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2000
- DASY4 software and SEMCAD data evaluation software.
- Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- System validation dipoles allowing to validate the proper functioning of the system.

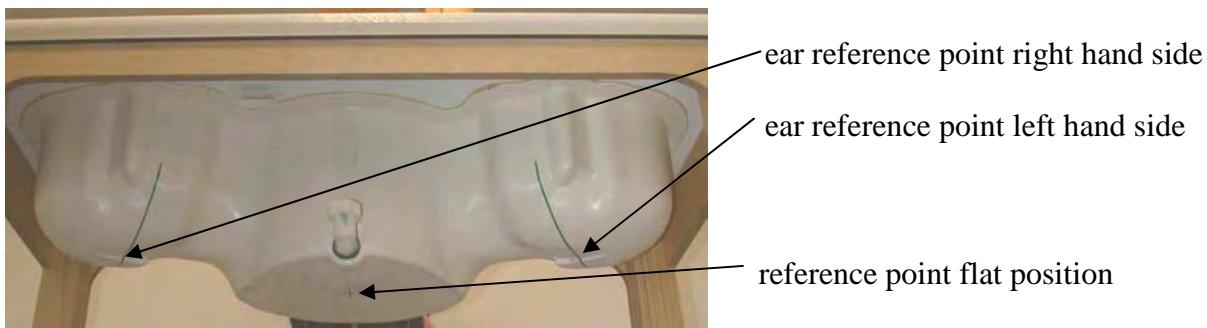
2.4.2 Test environment

The DASY4 measurement system is placed at the head end of a room with dimensions: 5 x 2.5 x 3 m³, the SAM phantom is placed in a distance of 75 cm from the side walls and 1.1m from the rear wall. Above the test system a 1.5 x 1.5 m² array of pyramid absorbers is installed to reduce reflections from the ceiling.

Picture 1 of the photo documentation shows a complete view of the test environment.

The system allows the measurement of SAR values larger than 0.005 mW/g.

2.4.3 Probe description


Isotropic E-Field Probe ET3DV6 for Dosimetric Measurements

Technical data according to manufacturer information	
Construction	Symmetrical design with triangular core Built-in optical fiber for surface detection system Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., glycolether)
Calibration	In air from 10 MHz to 2.5 GHz In head tissue simulating liquid (HSL) at 900 (800-1000) MHz and 1.8 GHz (1700-1910 MHz) (accuracy \pm 9.5%; k=2) Calibration for other liquids and frequencies upon request
Frequency	10 MHz to 3 GHz (dosimetry); Linearity: \pm 0.2 dB (30 MHz to 3 GHz)
Directivity	\pm 0.2 dB in HSL (rotation around probe axis) \pm 0.4 dB in HSL (rotation normal to probe axis)
Dynamic range	5 μ W/g to > 100 mW/g; Linearity: \pm 0.2 dB
Optical Surface Detection	\pm 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces (ET3DV6 only)
Dimensions	Overall length: 330 mm Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm Distance from probe tip to dipole centers: 2.7 mm
Application	General dosimetry up to 3 GHz Compliance tests of mobile phones Fast automatic scanning in arbitrary phantoms (ET3DV6)

2.4.4 Phantom description

The used SAM Phantom meets the requirements specified in Edition 01-01 of Supplement C to OET Bulletin 65 for Specific Absorption Rate (SAR) measurements.

The phantom consists of a fibreglass shell integrated in a wooden table. It allows left-hand and right-hand head as well as body-worn measurements with a maximum liquid depth of 18 cm in head position and 22 cm in planar position (body measurements). The thickness of the Phantom shell is 2 mm +/- 0.1 mm.

2.4.5 Device holder description

The DASY4 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. This device holder is used for standard mobile phones or PDA's only. If necessary an additional support of polystyrene material is used.

Larger DUT's (e.g. notebooks) cannot be tested using this device holder. Instead a support of bigger polystyrene cubes and thin polystyrene plates is used to position the DUT in all relevant positions to find and measure spots with maximum SAR values.

Therefore those devices are normally only tested at the flat part of the SAM.

2.4.6 Scanning procedure

The DASY4 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

- The „reference“ and „drift“ measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT’s output power and should vary max. +/- 5 %.
- The „surface check“ measurement tests the optical surface detection system of the DASY4 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above $\pm 0.1\text{mm}$). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within $\pm 30^\circ$.)
- The „area scan“ measures the SAR above the DUT or verification dipole on a parallel plane to the surface. It is used to locate the approximate location of the peak SAR with 2D spline interpolation. The robot performs a stepped movement along one grid axis while the local electrical field strength is measured by the probe. The probe is touching the surface of the SAM during acquisition of measurement values. The standard scan uses large grid spacing for faster measurement. Standard grid spacing for head measurements is 15 mm in x- and y- dimension. If a finer resolution is needed, the grid spacing can be reduced. Grid spacing and orientation have no influence on the SAR result. For special applications where the standard scan method does not find the peak SAR within the grid, e.g. mobile phones with flip cover, the grid can be adapted in orientation. Results of this coarse scan are shown in annex 2.
- A „7x7x7 zoom scan“ measures the field in a volume around the 2D peak SAR value acquired in the previous „coarse“ scan. This is a fine 7x7 grid where the robot additionally moves the probe in 7 steps along the z-axis away from the bottom of the Phantom. Grid spacing for the cube measurement is 5 mm in x and y-direction and 5 mm in z-direction. DASY4 is also able to perform repeated zoom scans if more than 1 peak is found during area scan. In this document, the evaluated peak 1g and 10g averaged SAR values are shown in the 2D-graphics in annex 2. Test results relevant for the specified standard (see chapter 1.6.) are shown in table form in chapter 2.5.
- A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 7x7x7 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 2mm steps. This measurement shows the continuity of the liquid and can - depending in the field strength – also show the liquid depth. A z-axis scan of the measurement with maximum SAR value is shown in annex 2.

2.4.7 Spatial Peak SAR Evaluation

The spatial peak SAR - value for 1 and 10 g is evaluated after the Cube measurements have been done. The basis of the evaluation are the SAR values measured at the points of the fine cube grid consisting of 7 x 7 x 7 points. The algorithm that finds the maximal averaged volume is separated into three different stages.

- The data between the dipole center of the probe and the surface of the phantom are extrapolated. This data cannot be measured since the center of the dipole is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is about 1 mm (see probe calibration sheet). The extrapolated data from a cube measurement can be visualized by selecting 'Graph Evaluated'.
- The maximum interpolated value is searched with a straight-forward algorithm. Around this maximum the SAR - values averaged over the spatial volumes (1g or 10 g) are computed using the 3d-spline interpolation algorithm. If the volume cannot be evaluated (i.e., if a part of the grid was cut off by the boundary of the measurement area) the evaluation will be started on the corners of the bottom plane of the cube.
- All neighboring volumes are evaluated until no neighboring volume with a higher average value is found.

Extrapolation

The extrapolation is based on a least square algorithm [W. Gander, Computermathematik, p.168-180]. Through the points in the first 3 cm along the z-axis, polynomials of order four are calculated. These polynomials are then used to evaluate the points between the surface and the probe tip. The points, calculated from the surface, have a distance of 1 mm from each other.

Interpolation

The interpolation of the points is done with a 3d-Spline. The 3d-Spline is composed of three one-dimensional splines with the "Not a knot"-condition [W. Gander, Computermathematik, p.141-150] (x, y and z -direction) [Numerical Recipes in C, Second Edition, p.123ff].

Volume Averaging

At First the size of the cube is calculated. Then the volume is integrated with the trapezoidal algorithm. 8000 points (20x20x20) are interpolated to calculate the average.

Advanced Extrapolation

DASY4 uses the advanced extrapolation option which is able to compensate boundary effects on E-field probes.

2.4.8 Data Storage and Evaluation

Data Storage

The DASY4 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity	Norm _i , a _{i0} , a _{i1} , a _{i2}
	- Conversion factor	ConvF _i
	- Diode compression point	Dcp _i
Device parameters:	- Frequency	f
	- Crest factor	cf
Media parameters:	- Conductivity	σ
	- Density	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY4 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot cf/dcp_i$$

with V_i = compensated signal of channel i ($i = x, y, z$)
 U_i = input signal of channel i ($i = x, y, z$)
 cf = crest factor of exciting field (DASY parameter)
 dcp_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$

H-field probes: $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1}f + a_{i2}f^2)/f$

with V_i = compensated signal of channel i ($i = x, y, z$)
 $Norm_i$ = sensor sensitivity of channel i ($i = x, y, z$)
 $[mV/(V/m)^2]$ for E-field Probes
 $ConvF$ = sensitivity enhancement in solution
 a_{ij} = sensor sensitivity factors for H-field probes
 f = carrier frequency [GHz]
 E_i = electric field strength of channel i in V/m
 H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot}^2 \cdot \sigma) / (\rho \cdot 1000)$$

with SAR = local specific absorption rate in mW/g
 E_{tot} = total field strength in V/m
 σ = conductivity in [mho/m] or [Siemens/m]
 ρ = equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = E_{tot}^2 / 3770 \quad \text{or} \quad P_{pwe} = H_{tot}^2 \cdot 37.7$$

with P_{pwe} = equivalent power density of a plane wave in mW/cm²
 E_{tot} = total electric field strength in V/m
 H_{tot} = total magnetic field strength in A/m

2.4.9 Test equipment utilized

This table gives a complete overview of the SAR measurement equipment

Devices used during the test described in chapter 2.5. are marked

	Manufacturer	Device	Type	Serial number	Date of last calibration)*
<input checked="" type="checkbox"/>	Schmid & Partner Engineering AG	Dosimetric E-Field Probe	ET3DV6	1558	August 23, 2007
<input type="checkbox"/>	Schmid & Partner Engineering AG	Dosimetric E-Field Probe	ET3DV6	1559	January 23, 2008
<input checked="" type="checkbox"/>	Schmid & Partner Engineering AG	900 MHz System Validation Dipole	D900V2	102	August 23, 2007
<input type="checkbox"/>	Schmid & Partner Engineering AG	1800 MHz System Validation Dipole	D1800V2	287	August 21, 2007
<input checked="" type="checkbox"/>	Schmid & Partner Engineering AG	1900 MHz System Validation Dipole	D1900V2	5d009	August 21, 2007
<input type="checkbox"/>	Schmid & Partner Engineering AG	2450 MHz System Validation Dipole	D2450V2	710	August 20, 2007
<input checked="" type="checkbox"/>	Schmid & Partner Engineering AG	Data acquisition electronics	DAE3V1	413	January 18, 2008
<input checked="" type="checkbox"/>	Schmid & Partner Engineering AG	Software	DASY 4 V4.5	---	N/A
<input checked="" type="checkbox"/>	Schmid & Partner Engineering AG	Phantom	SAM	---	N/A
<input checked="" type="checkbox"/>	Rohde & Schwarz	Universal Radio Communication Tester	CMU 200	832221/055	March 20, 2008
<input checked="" type="checkbox"/>	Hewlett Packard)*	Network Analyser 300 kHz to 6 GHz	8753C	2937U00269	March 13, 2007
<input checked="" type="checkbox"/>	Hewlett Packard)*	Network Analyser 300 kHz to 6 GHz	85047A	2936A00872	March 13, 2007
<input checked="" type="checkbox"/>	Hewlett Packard	Dielectric Probe Kit	85070C	US99360146	N/A
<input checked="" type="checkbox"/>	Hewlett Packard	Signal Generator	8665A	2833A00112	November 12, 2007
<input checked="" type="checkbox"/>	Amplifier Research	Amplifier	25S1G4 (25 Watt)	20452	N/A
<input checked="" type="checkbox"/>	Rohde & Schwarz	Power Meter	NRP	101367	January 9, 2008
<input checked="" type="checkbox"/>	Rohde & Schwarz	Power Meter Sensor	NRP Z22	100227	January 9, 2008
<input checked="" type="checkbox"/>	Rohde & Schwarz	Power Meter Sensor	NRP Z22	100234	January 9, 2008

)* : Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

2.4.10 Tissue simulating liquids: dielectric properties

The following materials are used for producing the tissue-equivalent materials.

(liquids used for tests described in chapter 2.5. are marked with):

Ingredients (% of weight)	Frequency (MHz)					
frequency band	<input type="checkbox"/> 450	<input checked="" type="checkbox"/> 835	<input type="checkbox"/> 900	<input type="checkbox"/> 1800	<input checked="" type="checkbox"/> 1900	<input type="checkbox"/> 2450
Tissue Type	Head	Head	Head	Head	Head	Head
Water	38.56	41.45	40.92	52.64	54.9	62.7
Salt (NaCl)	3.95	1.45	1.48	0.36	0.18	0.5
Sugar	56.32	56.0	56.5	0.0	0.0	0.0
HEC	0.98	1.0	1.0	0.0	0.0	0.0
Bactericide	0.19	0.1	0.1	0.0	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	36.8
DGBE	0.0	0.0	0.0	47.0	44.92	0.0

Table 2: Head tissue dielectric properties

Ingredients (% of weight)	Frequency (MHz)					
frequency band	<input type="checkbox"/> 450	<input checked="" type="checkbox"/> 835	<input type="checkbox"/> 900	<input type="checkbox"/> 1800	<input checked="" type="checkbox"/> 1900	<input type="checkbox"/> 2450
Tissue Type	Body	Body	Body	Body	Body	Body
Water	51.16	52.4	56.0	69.91	69.91	73.2
Salt (NaCl)	1.49	1.40	0.76	0.13	0.13	0.04
Sugar	46.78	45.0	41.76	0.0	0.0	0.0
HEC	0.52	1.0	1.21	0.0	0.0	0.0
Bactericide	0.05	0.1	0.27	0.0	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0
DGBE	0.0	0.0	0.0	29.96	29.96	26.7

Table 3: Body tissue dielectric properties

Salt: 99+% Pure Sodium Chloride

Water: De-ionized, 16MΩ+ resistivity

DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100(ultra pure): Polyethylene glycol mono [4-(1,1,3,3-tetramethylbutyl)phenyl]ether

Sugar: 98+% Pure Sucrose

HEC: Hydroxyethyl Cellulose

2.4.11 Tissue simulating liquids: parameters

Used Target Frequency	Target Head Tissue		Measured Head Tissue		Measured Date
	[MHz]	Permittivity	Conductivity [S/m]	Permittivity	Conductivity [S/m]
835	41.5	0.90	42.4	0.89	2008-04-22
900	42.0	0.99	42.0	0.96	2008-04-22
1900	40.0	1.40	41.2	1.43	2008-04-18
1900	40.0	1.40	41.2	1.43	2008-04-20
1900	40.0	1.40	41.2	1.43	2008-04-21

Table 4: Parameter of the head tissue simulating liquid

Used Target Frequency	Target Body Tissue		Measured Body Tissue		Measured Date
	[MHz]	Permittivity	Conductivity [S/m]	Permittivity	Conductivity [S/m]
835	55.2	0.97	55.0	0.98	2008-04-17
900	55.0	1.05	54.4	1.05	2008-04-17
1900	53.3	1.52	52.5	1.54	2008-04-16

Table 5: Parameter of the body tissue simulating liquid

Note: The dielectric properties have been measured using the contact probe method at 21°C.

2.4.12 Measurement uncertainty evaluation for SAR test

The overall combined measurement uncertainty of the measurement system is $\pm 10.3\%$ ($K=1$).

The expanded uncertainty ($k=2$) is assessed to be $\pm 20.6\%$

This measurement uncertainty budget is suggested by IEEE P1528 and determined by Schmid & Partner Engineering AG. The breakdown of the individual uncertainties is as follows:

Error Sources	Uncertainty Value	Probability Distribution	Divi- sor	c_i 1g	c_i 10g	Standard Uncertainty 1g	Standard Uncertainty 10g	v_i^2 or v_{eff}
Measurement System								
Probe calibration	$\pm 4.8\%$	Normal	1	1	1	$\pm 4.8\%$	$\pm 4.8\%$	∞
Axial isotropy	$\pm 4.7\%$	Rectangular	$\sqrt{3}$	0.7	0.7	$\pm 1.9\%$	$\pm 1.9\%$	∞
Hemispherical isotropy	$\pm 9.6\%$	Rectangular	$\sqrt{3}$	0.7	0.7	$\pm 3.9\%$	$\pm 3.9\%$	∞
Spatial resolution	$\pm 0.0\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 0.0\%$	$\pm 0.0\%$	∞
Boundary effects	$\pm 1.0\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 0.6\%$	$\pm 0.6\%$	∞
Probe linearity	$\pm 4.7\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 2.7\%$	$\pm 2.7\%$	∞
System detection limits	$\pm 1.0\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 0.6\%$	$\pm 0.6\%$	∞
Readout electronics	$\pm 1.0\%$	Normal	1	1	1	$\pm 1.0\%$	$\pm 1.0\%$	∞
Response time	$\pm 0.8\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 0.5\%$	$\pm 0.5\%$	∞
Integration time	$\pm 2.6\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 1.5\%$	$\pm 1.5\%$	∞
RF ambient conditions	$\pm 3.0\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 1.7\%$	$\pm 1.7\%$	∞
Probe positioner	$\pm 0.4\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 0.2\%$	$\pm 0.2\%$	∞
Probe positioning	$\pm 2.9\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 1.7\%$	$\pm 1.7\%$	∞
Max. SAR evaluation	$\pm 1.0\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 0.6\%$	$\pm 0.6\%$	∞
Test Sample Related								
Device positioning	$\pm 2.9\%$	Normal	1	1	1	$\pm 2.9\%$	$\pm 2.9\%$	145
Device holder uncertainty	$\pm 3.6\%$	Normal	1	1	1	$\pm 3.6\%$	$\pm 3.6\%$	5
Power drift	$\pm 5.0\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 2.9\%$	$\pm 2.9\%$	∞
Phantom and Set-up								
Phantom uncertainty	$\pm 4.0\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 2.3\%$	$\pm 2.3\%$	∞
Liquid conductivity (target)	$\pm 5.0\%$	Rectangular	$\sqrt{3}$	0.64	0.43	$\pm 1.8\%$	$\pm 1.2\%$	∞
Liquid conductivity (meas.)	$\pm 2.5\%$	Normal	1	0.64	0.43	$\pm 1.6\%$	$\pm 1.1\%$	∞
Liquid permittivity (target)	$\pm 5.0\%$	Rectangular	$\sqrt{3}$	0.6	0.49	$\pm 1.7\%$	$\pm 1.4\%$	∞
Liquid permittivity (meas.)	$\pm 2.5\%$	Normal	1	0.6	0.49	$\pm 1.5\%$	$\pm 1.2\%$	∞
Combined Uncertainty								
Expanded Std. Uncertainty						$\pm 10.3\%$	$\pm 10.0\%$	330
						$\pm 20.6\%$	$\pm 20.1\%$	

Table 6: Measurement uncertainties

2.4.13 Measurement uncertainty evaluation for system validation

The overall combined measurement uncertainty of the measurement system is $\pm 8.4\%$ ($K=1$).

The expanded uncertainty ($k=2$) is assessed to be $\pm 16.8\%$

This measurement uncertainty budget is suggested by IEEE P1528 and determined by Schmid & Partner Engineering AG. The breakdown of the individual uncertainties is as follows:

Error Sources	Uncertainty Value	Probability Distribution	Divisor	c_i 1g	c_i 10g	Standard Uncertainty 1g	Standard Uncertainty 10g	v_i^2 or v_{eff}
Measurement System								
Probe calibration	$\pm 4.8\%$	Normal	1	1	1	$\pm 4.8\%$	$\pm 4.8\%$	∞
Axial isotropy	$\pm 4.7\%$	Rectangular	$\sqrt{3}$	0.7	0.7	$\pm 1.9\%$	$\pm 1.9\%$	∞
Hemispherical isotropy	$\pm 0.0\%$	Rectangular	$\sqrt{3}$	0.7	0.7	$\pm 0.0\%$	$\pm 3.9\%$	∞
Boundary effects	$\pm 1.0\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 0.6\%$	$\pm 0.6\%$	∞
Probe linearity	$\pm 4.7\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 2.7\%$	$\pm 2.7\%$	∞
System detection limits	$\pm 1.0\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 0.6\%$	$\pm 0.6\%$	∞
Readout electronics	$\pm 1.0\%$	Normal	1	1	1	$\pm 1.0\%$	$\pm 1.0\%$	∞
Response time	$\pm 0.0\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 0.0\%$	$\pm 0.0\%$	∞
Integration time	$\pm 0.0\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 0.0\%$	$\pm 0.0\%$	∞
RF ambient conditions	$\pm 3.0\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 1.7\%$	$\pm 1.7\%$	∞
Probe positioner	$\pm 0.4\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 0.2\%$	$\pm 0.2\%$	∞
Probe positioning	$\pm 2.9\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 1.7\%$	$\pm 1.7\%$	∞
Max. SAR evaluation	$\pm 1.0\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 0.6\%$	$\pm 0.6\%$	∞
Test Sample Related								
Dipole axis to liquid distance	$\pm 2.0\%$	Normal	1	1	1	$\pm 1.2\%$	$\pm 1.2\%$	∞
Power drift	$\pm 4.7\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 2.7\%$	$\pm 2.7\%$	∞
Phantom and Set-up								
Phantom uncertainty	$\pm 4.0\%$	Rectangular	$\sqrt{3}$	1	1	$\pm 2.3\%$	$\pm 2.3\%$	∞
Liquid conductivity (target)	$\pm 5.0\%$	Rectangular	$\sqrt{3}$	0.64	0.43	$\pm 1.8\%$	$\pm 1.2\%$	∞
Liquid conductivity (meas.)	$\pm 2.5\%$	Normal	1	0.64	0.43	$\pm 1.6\%$	$\pm 1.1\%$	∞
Liquid permittivity (target)	$\pm 5.0\%$	Rectangular	$\sqrt{3}$	0.6	0.49	$\pm 1.7\%$	$\pm 1.4\%$	∞
Liquid permittivity (meas.)	$\pm 2.5\%$	Normal	1	0.6	0.49	$\pm 1.5\%$	$\pm 1.2\%$	∞
Combined Uncertainty						$\pm 8.4\%$	$\pm 8.1\%$	
Expanded Std. Uncertainty						$\pm 16.8\%$	$\pm 16.2\%$	

Table 7: Measurement uncertainties

2.4.14 System validation

The system validation is performed for verifying the accuracy of the complete measurement system and performance of the software. The system validation is performed with tissue equivalent material according to IEEE P1528 (described above). The following table shows validation results for all frequency bands and tissue liquids used during the tests of the test item described in chapter 1.5. (graphic plot(s) see annex 1).

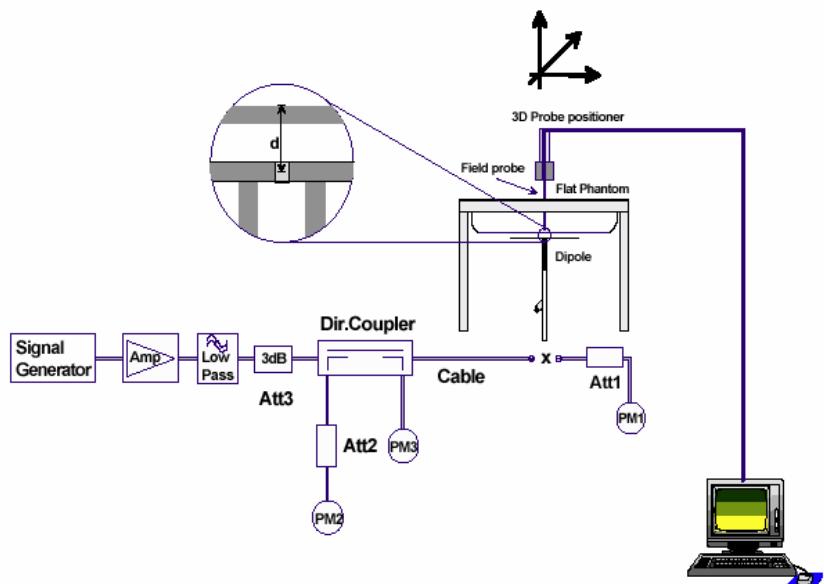

Validation Kit	Frequency	Target Peak SAR (1000 mW) (+/- 10%)	Target SAR _{1g} (1000 mW) (+/- 10%)	Measured Peak SAR	Measured SAR _{1g}	Measured date
D900V2 S/N: 102	900 MHz head	15.2 mW/g	10.3 mW/g	14.4 mW/g	9.9 mW/g	2008-04-22
D900V2 S/N: 102	900 MHz body	15.2 mW/g	10.6 mW/g	15.7 mW/g	10.9 mW/g	2008-04-17
D1900V2 S/N: 5d009	1900 MHz head	64.0 mW/g	35.9 mW/g	65.1 mW/g	38.1 mW/g	2008-04-18
D1900V2 S/N: 5d009	1900 MHz head	64.0 mW/g	35.9 mW/g	66.3 mW/g	38.6 mW/g	2008-04-20
D1900V2 S/N: 5d009	1900 MHz head	64.0 mW/g	35.9 mW/g	65.2 mW/g	37.9 mW/g	2008-04-21
D1900V2 S/N: 5d009	1900 MHz body	63.2 mW/g	37.7 mW/g	67.6 mW/g	39.0 mW/g	2008-04-16

Table 8: Results system validation

2.4.15 Validation procedure

The validation is performed by using a validation dipole which is positioned parallel to the planar part of the SAM phantom at the reference point. The distance of the dipole to the SAM phantom is determined by a plexiglass spacer. The dipole is connected to the signal source consisting of signal generator and amplifier via a directional coupler, N-connector cable and adaption to SMA. It is fed with a power of 1000 mW. To adjust this power a power meter is used. The power sensor is connected to the cable before the validation to measure the power at this point and do adjustments at the signal generator. At the outputs of the directional coupler both return loss as well as forward power are controlled during the validation to make sure that emitted power at the dipole is kept constant. This can also be checked by the power drift measurement after the test (result on plot).

Validation results have to be equal or near the values determined during dipole calibration (target SAR in table above) with the relevant liquids and test system.

2.5 Test results (Head and Body SAR)

The table contains the measured SAR values averaged over a mass of 1 g					
Channel / frequency	Position	Left hand position	Right hand position	Limit	Liquid temperature
128 / 824.2 MHz	cheek	0.189 W/kg	0.203 W/kg	1.6 W/kg	21.5/21.1 °C
190 / 836.6 MHz	cheek	0.290 W/kg	0.305 W/kg	1.6 W/kg	21.5/21.1 °C
251 / 848.8 MHz	cheek	0.222 W/kg	0.281 W/kg	1.6 W/kg	21.5/21.1 °C
128 / 824.2 MHz	tilted 15°	0.193 W/kg	0.156 W/kg	1.6 W/kg	21.5/21.2 °C
190 / 836.6 MHz	tilted 15°	0.286 W/kg	0.223 W/kg	1.6 W/kg	21.6/21.2 °C
251 / 848.8 MHz	tilted 15°	0.225 W/kg	0.169 W/kg	1.6 W/kg	21.6/21.2 °C
Slide opened					
128 / 824.2 MHz	cheek	0.191 W/kg	0.245 W/kg	1.6 W/kg	21.5/21.2 °C
190 / 836.6 MHz	cheek	0.322 W/kg	0.406 W/kg	1.6 W/kg	21.5/21.2 °C
251 / 848.8 MHz	cheek	0.371 W/kg	0.431 W/kg	1.6 W/kg	21.5/21.2 °C
128 / 824.2 MHz	tilted 15°	0.167 W/kg	0.203 W/kg	1.6 W/kg	21.4/21.2 °C
190 / 836.6 MHz	tilted 15°	0.311 W/kg	0.323 W/kg	1.6 W/kg	21.4/21.2 °C
251 / 848.8 MHz	tilted 15°	0.379 W/kg	0.319 W/kg	1.6 W/kg	21.3/21.2 °C

Table 9: Test results (Head SAR 850 MHz)

The table contains the measured SAR values averaged over a mass of 1 g				
Channel / frequency	Position	Body worn	Limit	Liquid temperature
128 / 824.2 MHz	front	0.097 W/kg	1.6 W/kg	21.0 °C
190 / 836.6 MHz	front	0.166 W/kg	1.6 W/kg	21.0 °C
251 / 848.8 MHz	front	0.152 W/kg	1.6 W/kg	21.1 °C
128 / 824.2 MHz	rear	0.674 W/kg	1.6 W/kg	21.1 °C
190 / 836.6 MHz	rear	1.110 W/kg	1.6 W/kg	21.1 °C
251 / 848.8 MHz	rear	0.876 W/kg	1.6 W/kg	21.1 °C
190 / 836.6 MHz	rear 1TS	0.755 W/kg	1.6 W/kg	21.1 °C

Table 10: Test results (Body SAR 850 MHz)

Note: The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR limit (< 0.8 W/kg), testing at the high and low channels is optional.

Tests in body position were performed with 15 mm air gap between DUT and SAM to simulate the use of a non-metallic belt-clip or holster.

The table contains the measured SAR values averaged over a mass of 1 g					
Channel / frequency	Position	Left hand position	Right hand position	Limit	Liquid temperature
512 / 1850.2 MHz	cheek	0.363 W/kg	0.291 W/kg	1.6 W/kg	21.4/21.5 °C
661 / 1880.0 MHz	cheek	0.355 W/kg	0.288 W/kg	1.6 W/kg	21.5/21.5 °C
810 / 1909.8 MHz	cheek	0.401 W/kg	0.333 W/kg	1.6 W/kg	21.5/21.5 °C
512 / 1850.2 MHz	tilted 15°	0.210 W/kg	0.216 W/kg	1.6 W/kg	21.4/21.5 °C
661 / 1880.0 MHz	tilted 15°	0.224 W/kg	0.215 W/kg	1.6 W/kg	21.4/21.5 °C
810 / 1909.8 MHz	tilted 15°	0.243 W/kg	0.245 W/kg	1.6 W/kg	21.5/21.5 °C
Slide opened					
512 / 1850.2 MHz	cheek	0.439 W/kg	0.694 W/kg	1.6 W/kg	21.1/20.4 °C
661 / 1880.0 MHz	cheek	0.417 W/kg	0.687 W/kg	1.6 W/kg	21.1/20.4 °C
810 / 1909.8 MHz	cheek	0.326 W/kg	0.598 W/kg	1.6 W/kg	21.1/20.3 °C
512 / 1850.2 MHz	tilted 15°	0.263 W/kg	0.284 W/kg	1.6 W/kg	21.0/20.3 °C
661 / 1880.0 MHz	tilted 15°	0.270 W/kg	0.316 W/kg	1.6 W/kg	21.0/20.2 °C
810 / 1909.8 MHz	tilted 15°	0.241 W/kg	0.292 W/kg	1.6 W/kg	21.0/20.2 °C

Table 11: Test results (Head SAR 1900 MHz)

The table contains the measured SAR values averaged over a mass of 1 g					
Channel / frequency	Position	Body worn		Limit	Liquid temperature
512 / 1850.2 MHz	front	0.080 W/kg		1.6 W/kg	20.7 °C
661 / 1880.0 MHz	front	0.097 W/kg		1.6 W/kg	20.6 °C
810 / 1909.8 MHz	front	0.122 W/kg		1.6 W/kg	20.6 °C
512 / 1850.2 MHz	rear	0.234 W/kg		1.6 W/kg	20.6 °C
661 / 1880.0 MHz	rear	0.223 W/kg		1.6 W/kg	20.6 °C
810 / 1909.8 MHz	rear	0.273 W/kg		1.6 W/kg	20.7 °C
810 / 1909.8 MHz	rear 1TS	0.263 W/kg		1.6 W/kg	20.7 °C

Table 12: Test results (Body SAR 1900 MHz)

Note: The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR limit (< 0.8 W/kg), testing at the high and low channels is optional.

Tests in body position were performed with 15 mm air gap between DUT and SAM to simulate the use of a non-metallic belt-clip or holster.

2.5.1 General description of test procedures

The DUT is tested using a CMU 200 communications tester as controller unit to set test channels and maximum output power to the DUT, as well as for measuring the conducted peak power.

Test positions as described in the tables above are in accordance with the specified test standard.

Tests in body position are performed with the maximum number of timeslots in uplink.

Tests in head position are performed in voice mode with 1 timeslot unless GPRS/EGPRS function allows parallel voice and data traffic on 2 or more timeslots (see chapter 1.5 for details).

Conducted output power was measured using an integrated RF connector and attached RF cable.

2.6 Test results (conducted power measurement)

For the measurements a Rohde & Schwarz Radio Communication Tester CMU 200 was used. The output power was measured using an integrated RF connector and attached RF cable. The conducted output power was measured before and after each SAR measurement. The resulting power values were within a 0.2 dB tolerance of the values shown below.

PCS 850	
Channel / frequency	GSM
128 / 824.2 MHz	32.6 dBm
190 / 836.6 MHz	32.7 dBm
251 / 848.8 MHz	32.9 dBm

PCS 1900	
Channel / frequency	GSM
512 / 1850.2 MHz	29.6 dBm
661 / 1880.0 MHz	29.6 dBm
810 / 1909.8 MHz	29.8 dBm

Table 13: Test results conducted peak power measurement

2.6.1 Multiple Transmitter Information

The DUT incorporates a Bluetooth module with 2.5 mW output power. At issue date of this test report no additional standalone or simultaneous transmit measurements together with the GSM transmitter were regarded as necessary by the FCC because BT output power remains below 12 mW.

Annex 1 System performance verification

Date/Time: 2008-04-22 09:30:44 Date/Time: 2008-04-22 09:37:06

SystemPerformanceCheck-D900-850 head 2008-04-22

DUT: Dipole 900 MHz; Type: D900V2; Serial: 102

Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: HSL850 Medium parameters used: $f = 900$ MHz; $\sigma = 0.96$ mho/m; $\epsilon_r = 42$; $\rho = 1000$ kg/m³

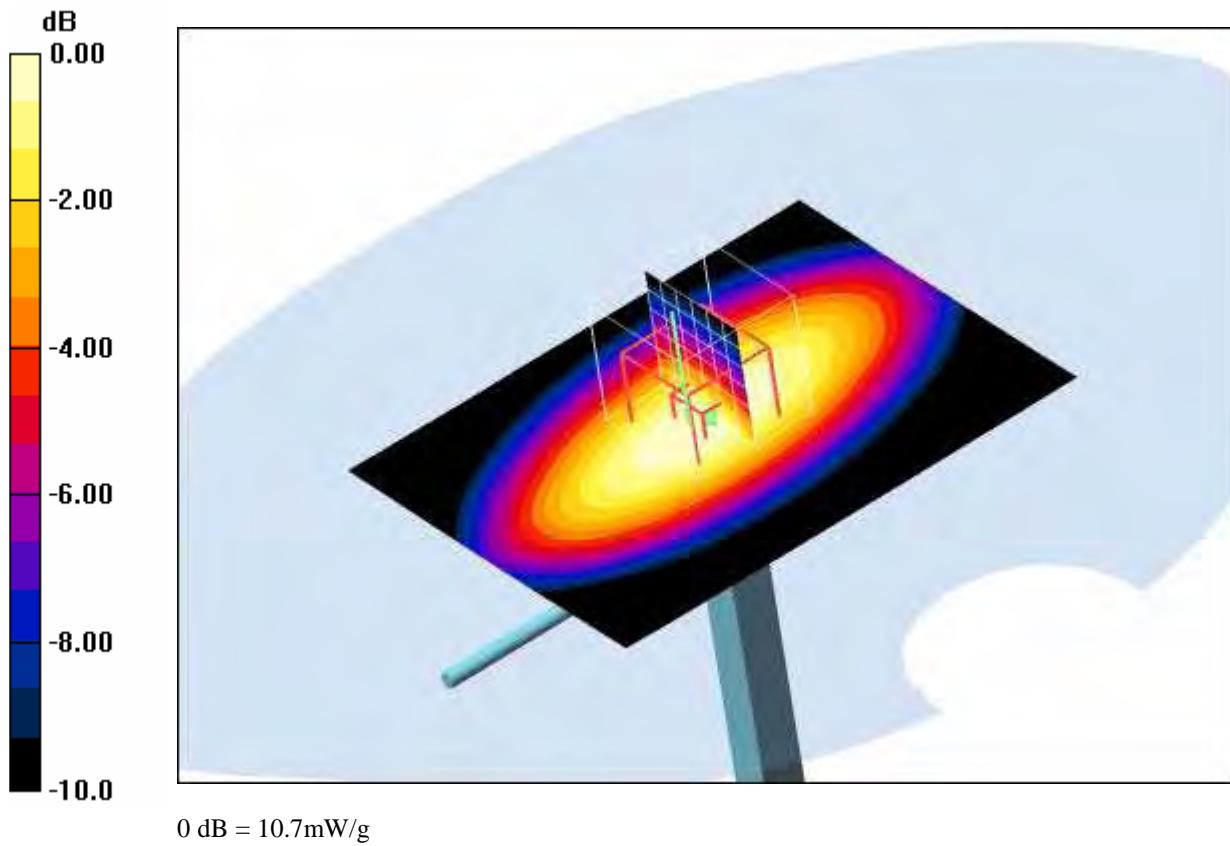
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(6.24, 6.24, 6.24); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

d=15mm, Pin=1000mW/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 10.9 mW/g


d=15mm, Pin=1000mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 109.2 V/m; Power Drift = -0.067 dB

Peak SAR (extrapolated) = 14.4 W/kg

SAR(1 g) = 9.9 mW/g; SAR(10 g) = 6.43 mW/g

Maximum value of SAR (measured) = 10.7 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 21.5°C; liquid temperature: 21.5°C

Date/Time: 2008-04-17 08:57:06 Date/Time: 2008-04-17 09:03:28

SystemPerformanceCheck-D900-850 body 2008-04-17**DUT: Dipole 900 MHz; Type: D900V2; Serial: 102**

Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: M850 Medium parameters used: $f = 900$ MHz; $\sigma = 1.05$ mho/m; $\epsilon_r = 54.4$; $\rho = 1000$ kg/m³

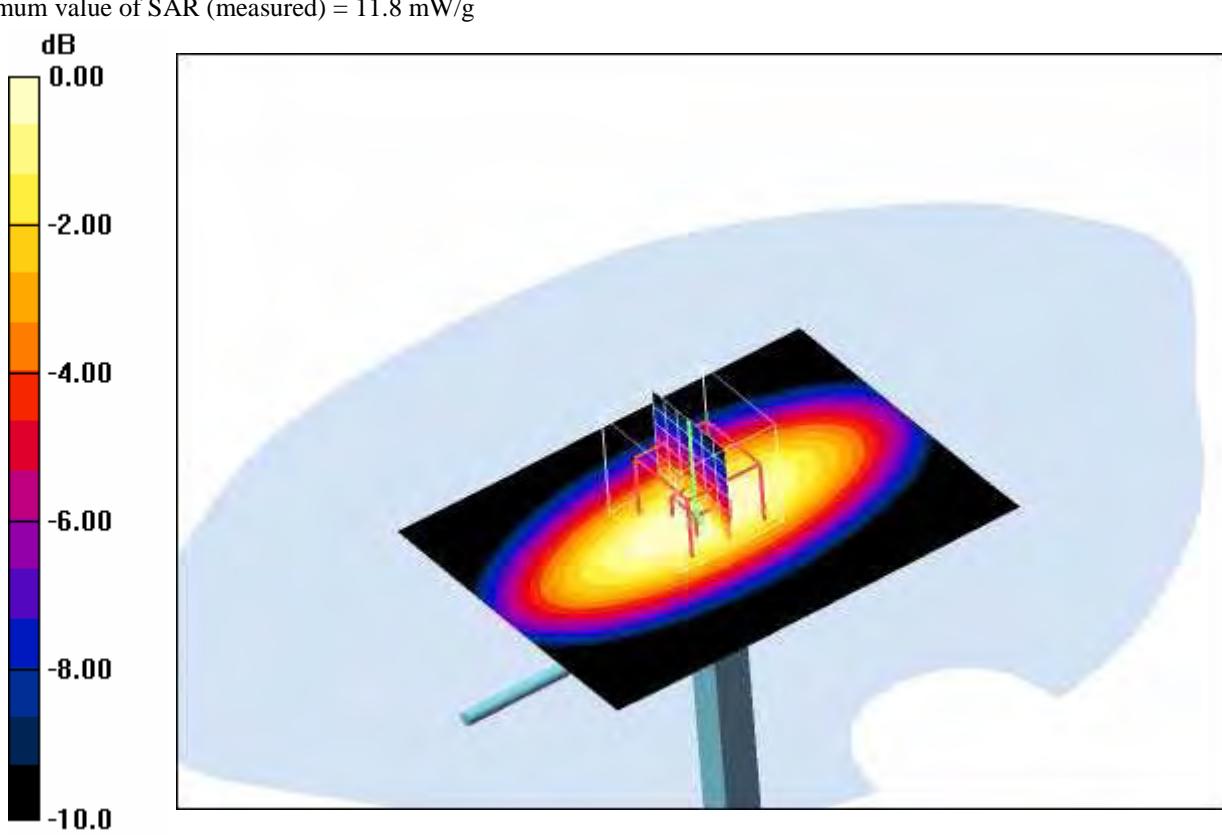
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(5.92, 5.92, 5.92); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

d=15mm, Pin=1000mW/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 11.9 mW/g


d=15mm, Pin=1000mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 110.1 V/m; Power Drift = -0.044 dB

Peak SAR (extrapolated) = 15.7 W/kg

SAR(1 g) = 10.9 mW/g; SAR(10 g) = 7.07 mW/g

Maximum value of SAR (measured) = 11.8 mW/g

0 dB = 11.8mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 21.0°C; liquid temperature: 21.0°C

Date/Time: 2008-04-18 17:00:22 Date/Time: 2008-04-18 17:04:37

SystemPerformanceCheck-D1900 head 2008-04-18**DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d009**

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL1900 Medium parameters used (interpolated): $f = 1900$ MHz; $\sigma = 1.43$ mho/m; $\epsilon_r = 41.2$; $\rho = 1000$ kg/m³

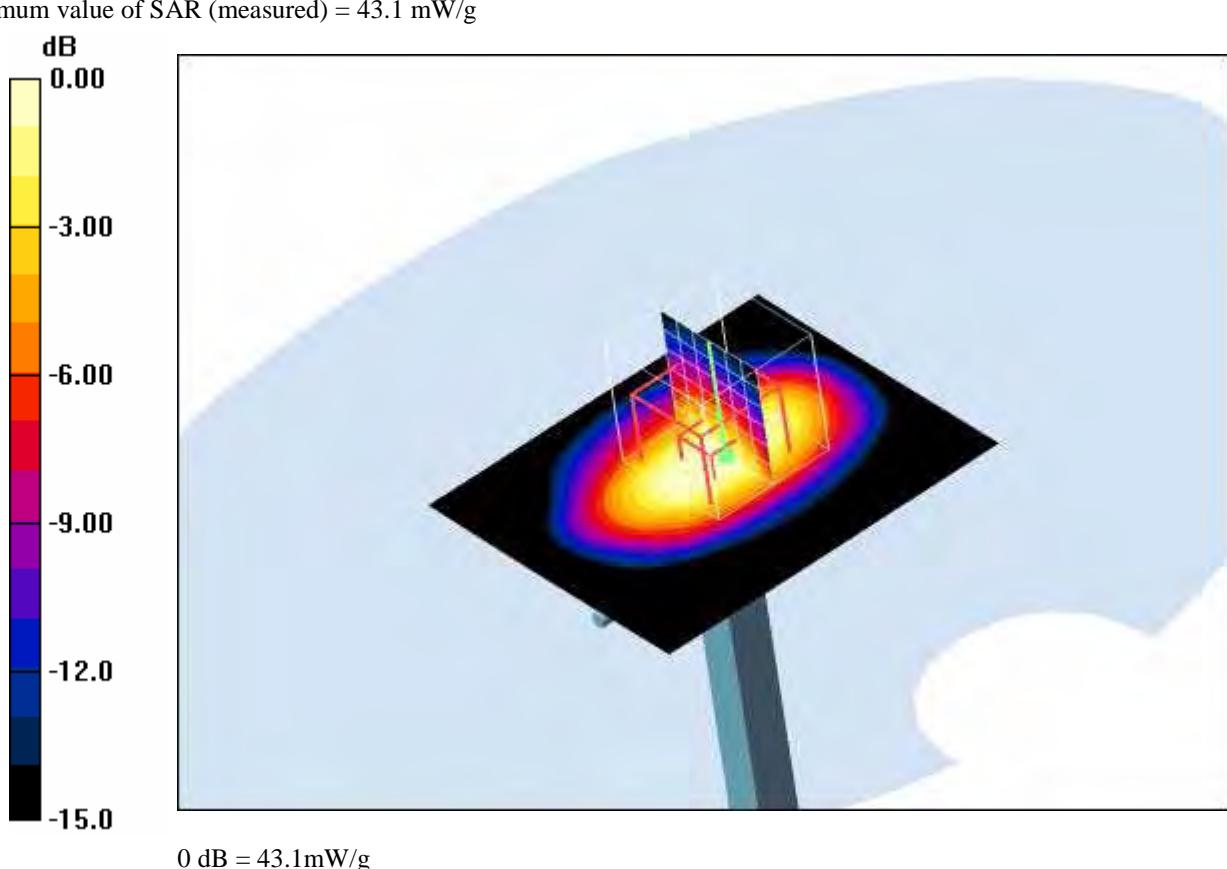
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

d=10mm, Pin=1000mW/Area Scan (51x61x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 48.3 mW/g


d=10mm, Pin=1000mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 174.4 V/m; Power Drift = 0.032 dB

Peak SAR (extrapolated) = 65.1 W/kg

SAR(1 g) = 38.1 mW/g; SAR(10 g) = 20.3 mW/g

Maximum value of SAR (measured) = 43.1 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.8°C; liquid temperature: 21.1°C

Date/Time: 2008-04-20 14:05:07 Date/Time: 2008-04-20 14:09:23

SystemPerformanceCheck-D1900 head 2008-04-20**DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d009**

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL1900 Medium parameters used (interpolated): $f = 1900$ MHz; $\sigma = 1.43$ mho/m; $\epsilon_r = 41.2$; $\rho = 1000$ kg/m³

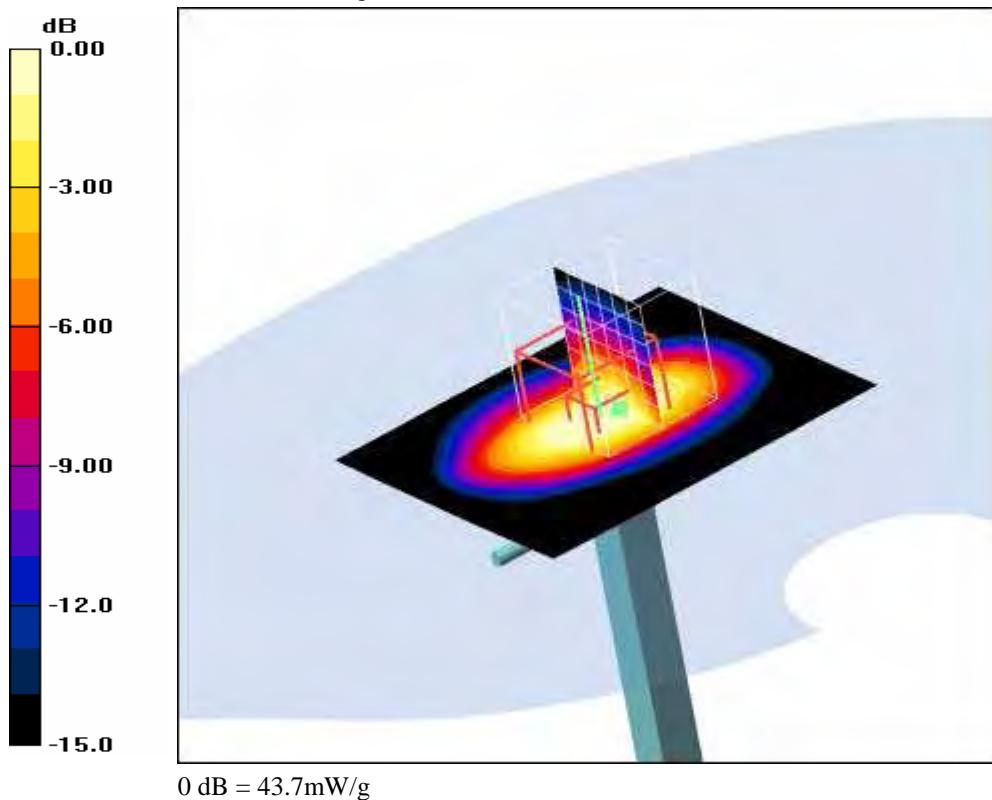
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

d=10mm, Pin=1000mW/Area Scan (51x61x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 49.1 mW/g


d=10mm, Pin=1000mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 182.3 V/m; Power Drift = -0.016 dB

Peak SAR (extrapolated) = 66.3 W/kg

SAR(1 g) = 38.6 mW/g; SAR(10 g) = 20.4 mW/g

IMaximum value of SAR (measured) = 43.7 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 21.7°C; liquid temperature: 20.5°C

Date/Time: 2008-04-21 08:55:07 Date/Time: 2008-04-21 08:59:33

SystemPerformanceCheck-D1900 head 2008-04-21**DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d009**

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL1900 Medium parameters used (interpolated): $f = 1900$ MHz; $\sigma = 1.43$ mho/m; $\epsilon_r = 41.2$; $\rho = 1000$ kg/m³

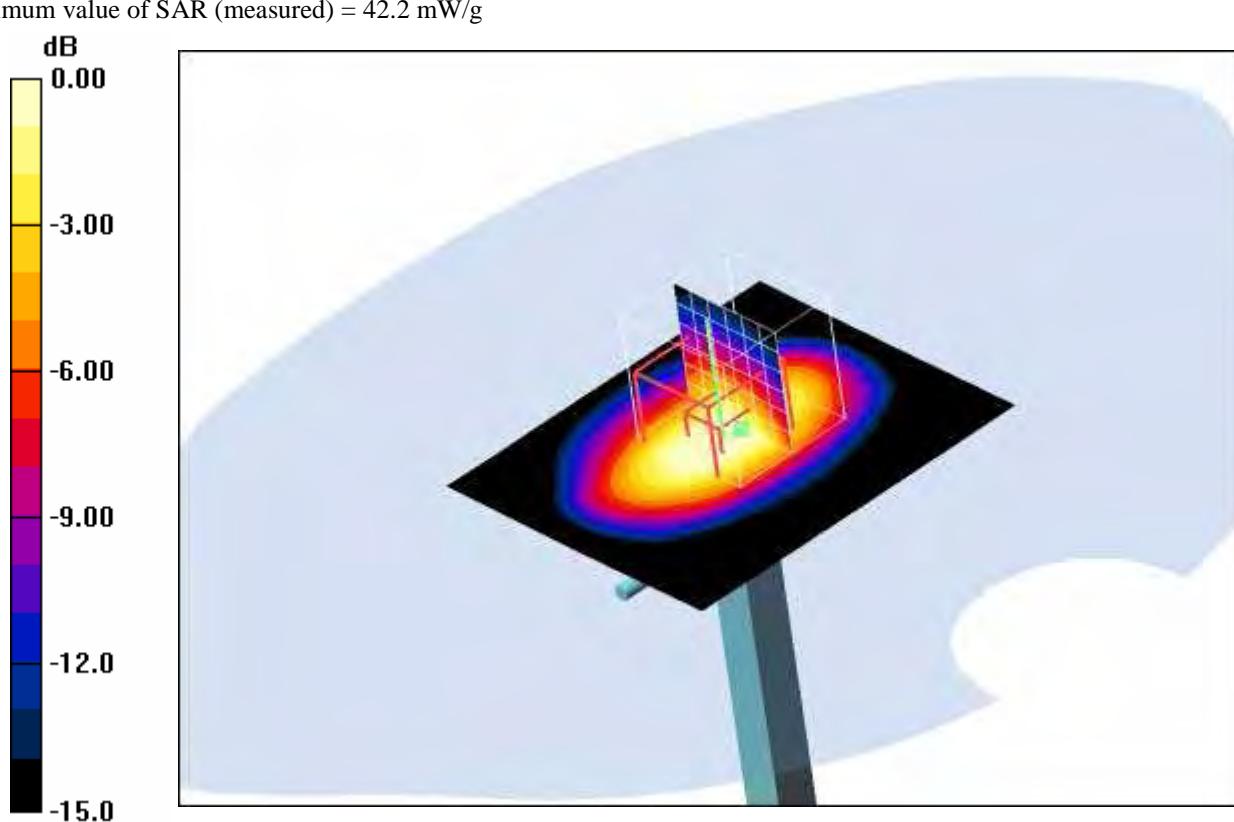
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

d=10mm, Pin=1000mW/Area Scan (51x61x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 47.1 mW/g


d=10mm, Pin=1000mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 177.6 V/m; Power Drift = -0.140 dB

Peak SAR (extrapolated) = 65.2 W/kg

SAR(1 g) = 37.9 mW/g; SAR(10 g) = 20.1 mW/g

Maximum value of SAR (measured) = 42.2 mW/g

0 dB = 42.2mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 21.1°C; liquid temperature: 21.0°C

Date/Time: 2008-04-16 12:46:36 Date/Time: 2008-04-16 12:50:49

SystemPerformanceCheck-D1900 body 2008-04-16**DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d009**

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: M1900 UMTS Medium parameters used: $f = 1900$ MHz; $\sigma = 1.54$ mho/m; $\epsilon_r = 52.5$; $\rho = 1000$ kg/m³

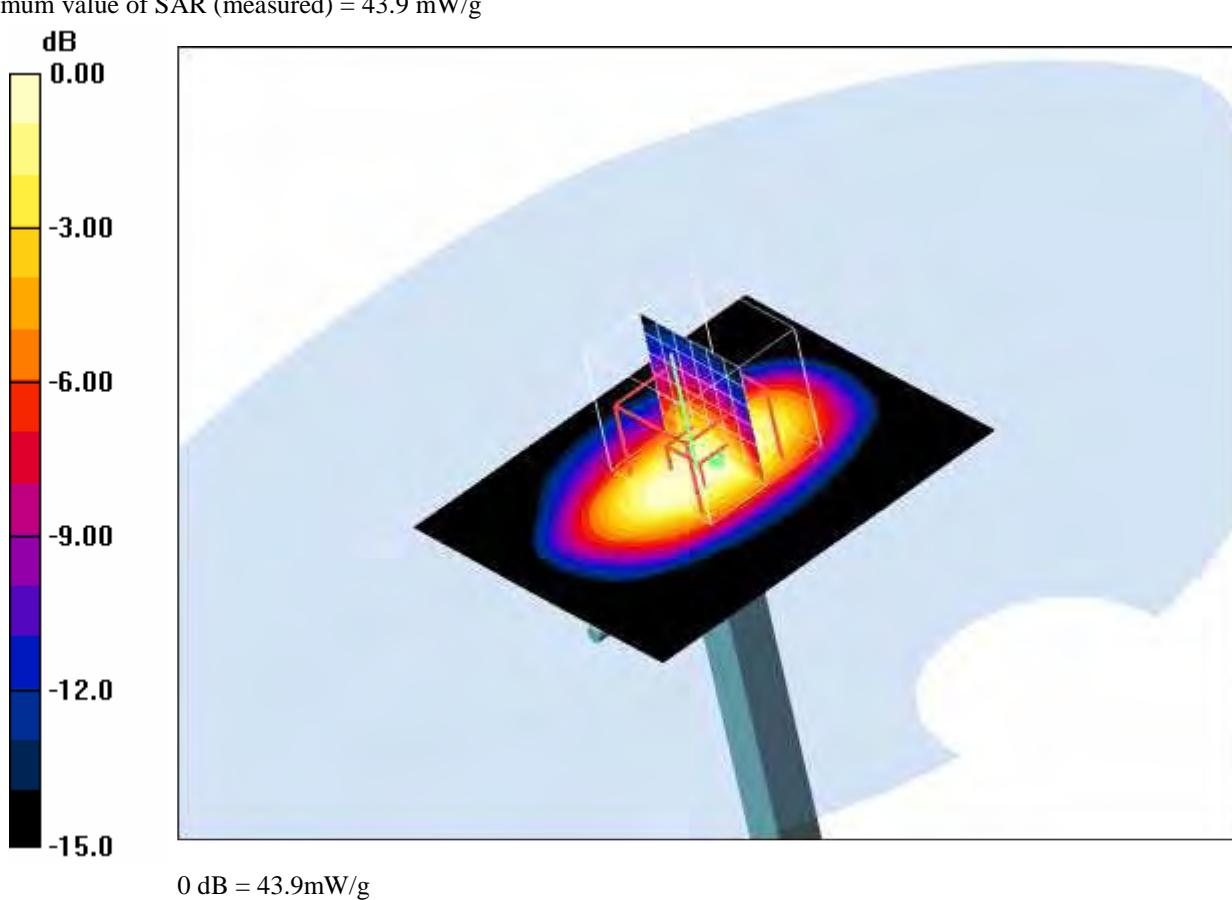
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.46, 4.46, 4.46); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

d=10mm, Pin=1000mW/Area Scan (51x61x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 50.9 mW/g


d=10mm, Pin=1000mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 175.2 V/m; Power Drift = -0.023 dB

Peak SAR (extrapolated) = 67.6 W/kg

SAR(1 g) = 39 mW/g; SAR(10 g) = 20.7 mW/g

Maximum value of SAR (measured) = 43.9 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.0°C; liquid temperature: 20.5°C

Annex 2 Measurement results (printout from DASY TM)**Remark: results of conducted power measurements: see chapter 2.5/2.6 (if applicable)****Annex 2.1 PCS 850 MHz head**

Date/Time: 2008-04-22 10:01:09 Date/Time: 2008-04-22 10:07:22 Date/Time: 2008-04-22 10:19:10

P1528_OET65-LeftHandSide-GSM850**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 850; Frequency: 824.2 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: $f = 824.2$ MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 42.4$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - Low/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.169 mW/g

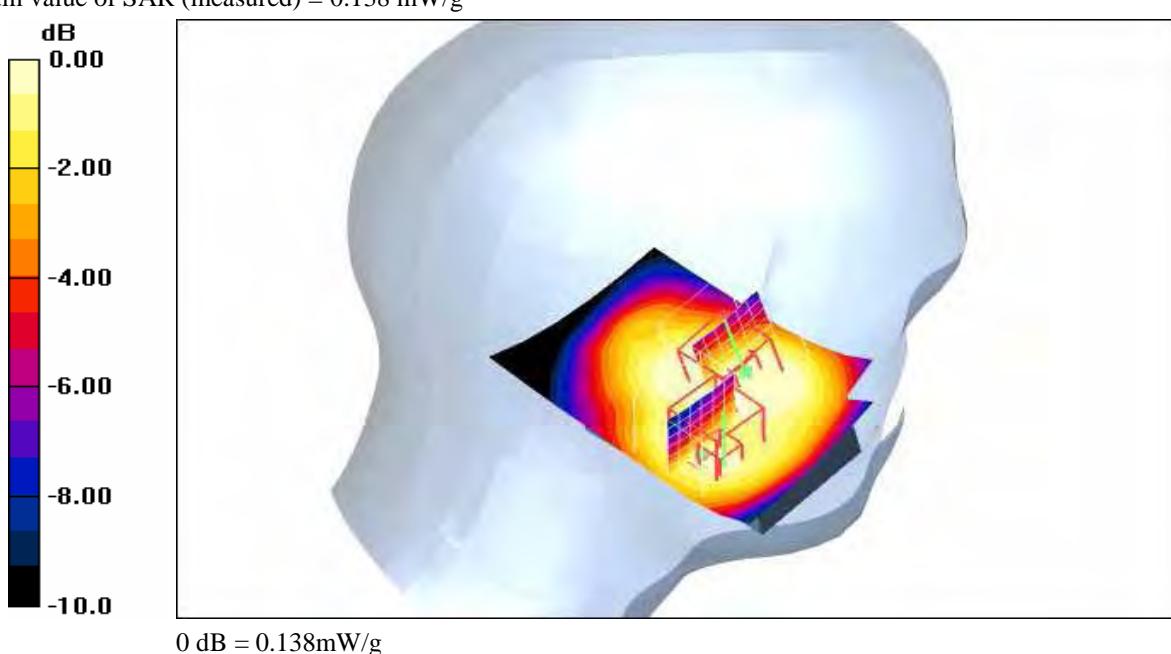
Touch position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.8 V/m; Power Drift = -0.013 dB

Peak SAR (extrapolated) = 0.325 W/kg

SAR(1 g) = 0.189 mW/g; SAR(10 g) = 0.124 mW/g

Maximum value of SAR (measured) = 0.208 mW/g


Touch position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.8 V/m; Power Drift = -0.013 dB

Peak SAR (extrapolated) = 0.207 W/kg

SAR(1 g) = 0.133 mW/g; SAR(10 g) = 0.092 mW/g

Maximum value of SAR (measured) = 0.138 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 21.6°C; liquid temperature: 21.5°C

Date/Time: 2008-04-22 10:34:08 Date/Time: 2008-04-22 10:40:12 Date/Time: 2008-04-22 10:51:52

P1528_OET65-LeftHandSide-GSM850**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 850; Frequency: 836.6 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: $f = 836.6$ MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 42.4$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - Middle/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.298 mW/g

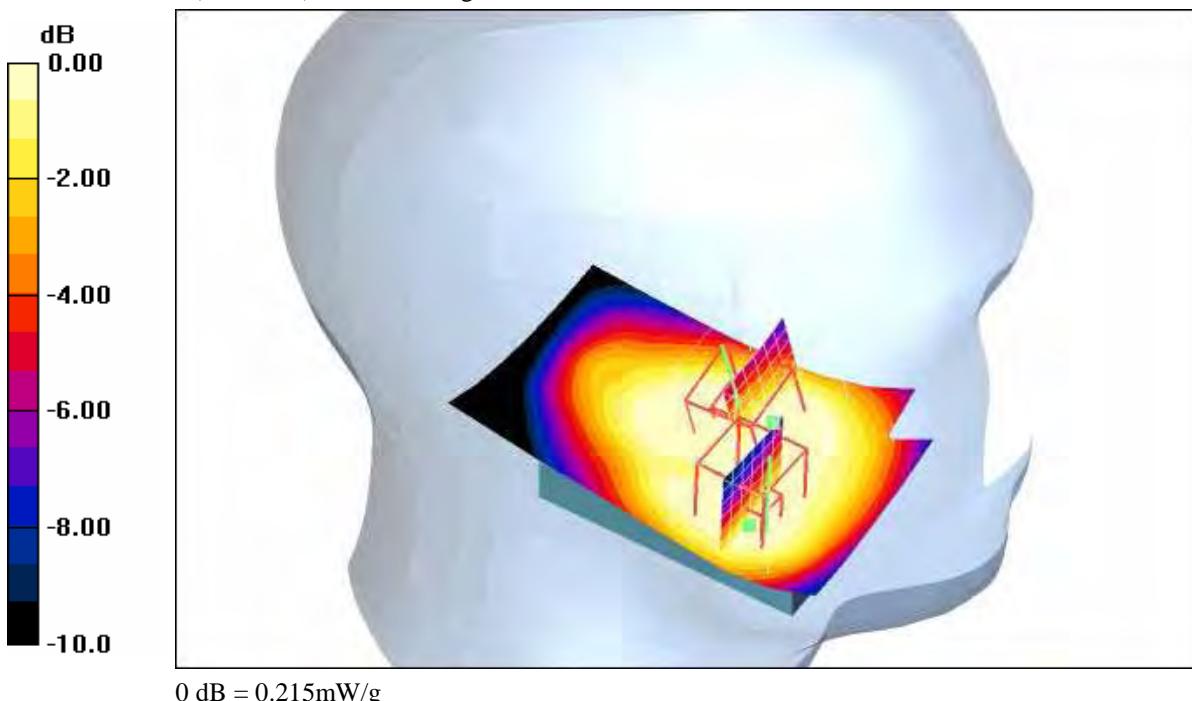
Touch position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.1 V/m; Power Drift = -0.035 dB

Peak SAR (extrapolated) = 0.468 W/kg

SAR(1 g) = 0.290 mW/g; SAR(10 g) = 0.194 mW/g

Maximum value of SAR (measured) = 0.322 mW/g


Touch position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.1 V/m; Power Drift = -0.035 dB

Peak SAR (extrapolated) = 0.316 W/kg

SAR(1 g) = 0.207 mW/g; SAR(10 g) = 0.145 mW/g

Maximum value of SAR (measured) = 0.215 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 21.6°C; liquid temperature: 21.5°C

Date/Time: 2008-04-22 11:06:28 Date/Time: 2008-04-22 11:12:46 Date/Time: 2008-04-22 11:24:46

P1528_OET65-LeftHandSide-GSM850**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 850; Frequency: 848.8 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: $f = 848.8$ MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 42.4$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection) Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - High/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.232 mW/g

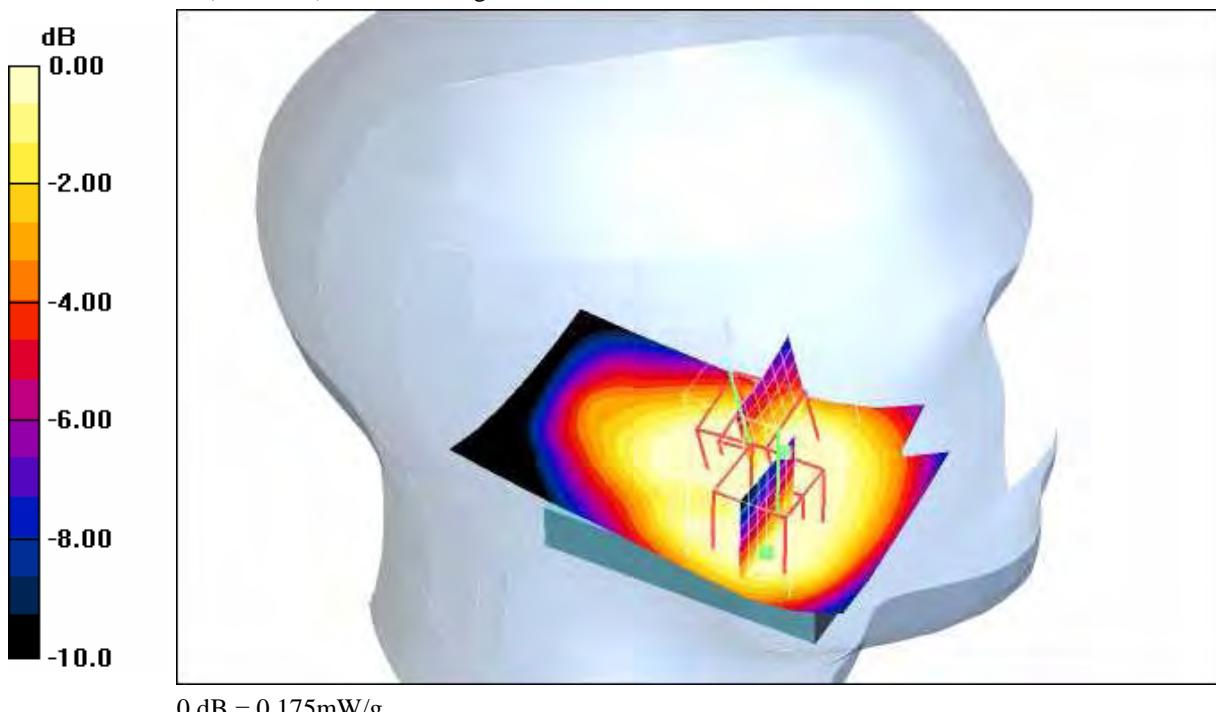
Touch position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.0 V/m; Power Drift = -0.097 dB

Peak SAR (extrapolated) = 0.349 W/kg

SAR(1 g) = 0.222 mW/g; SAR(10 g) = 0.151 mW/g

Maximum value of SAR (measured) = 0.237 mW/g


Touch position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.0 V/m; Power Drift = -0.097 dB

Peak SAR (extrapolated) = 0.250 W/kg

SAR(1 g) = 0.168 mW/g; SAR(10 g) = 0.114 mW/g

Maximum value of SAR (measured) = 0.175 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 21.7°C; liquid temperature: 21.5°C

Date/Time: 2008-04-22 11:40:33 Date/Time: 2008-04-22 11:46:55 Date/Time: 2008-04-22 11:58:13

P1528_OET65-LeftHandSide-GSM850**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 850; Frequency: 824.2 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: $f = 824.2$ MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 42.4$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection) Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - Low/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.240 mW/g

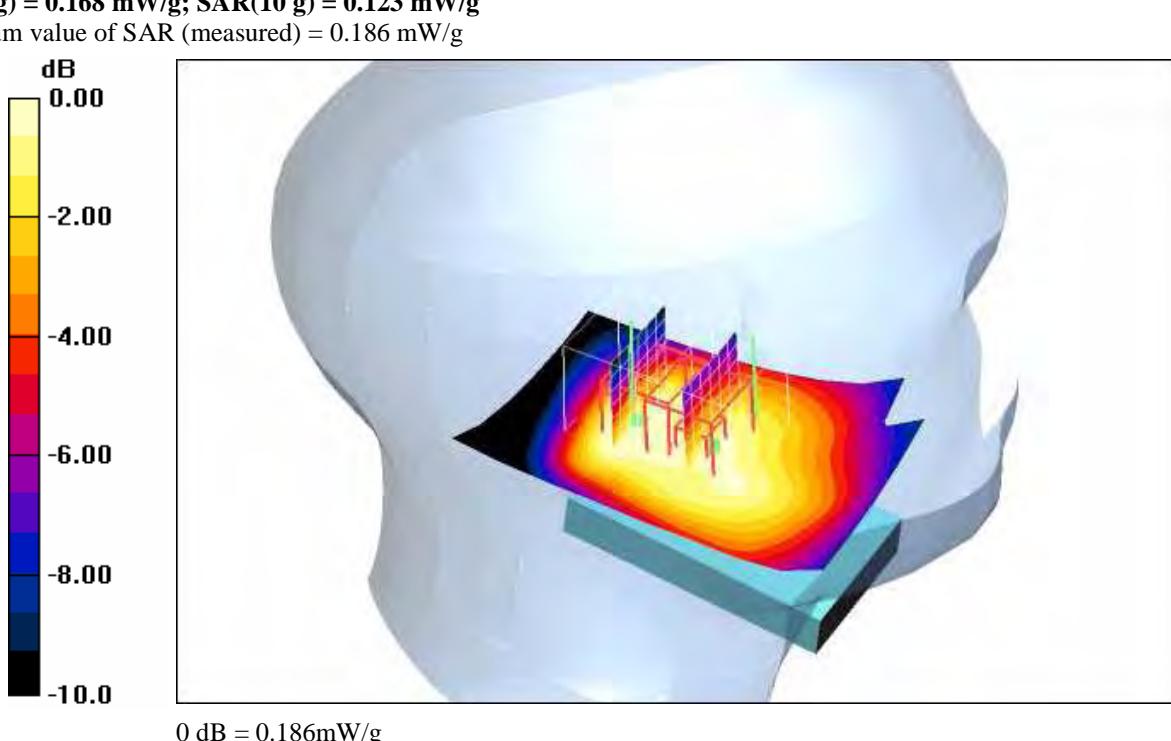
Tilt position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 17.2 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.539 W/kg

SAR(1 g) = 0.193 mW/g; SAR(10 g) = 0.116 mW/g

Maximum value of SAR (measured) = 0.209 mW/g


Tilt position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 17.2 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.229 W/kg

SAR(1 g) = 0.168 mW/g; SAR(10 g) = 0.123 mW/g

Maximum value of SAR (measured) = 0.186 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 21.8°C; liquid temperature: 21.5°C

Date/Time: 2008-04-22 12:13:46 Date/Time: 2008-04-22 12:20:20 Date/Time: 2008-04-22 12:31:53

P1528_OET65-LeftHandSide-GSM850**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 850; Frequency: 836.6 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: $f = 836.6$ MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 42.4$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - Middle/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.352 mW/g

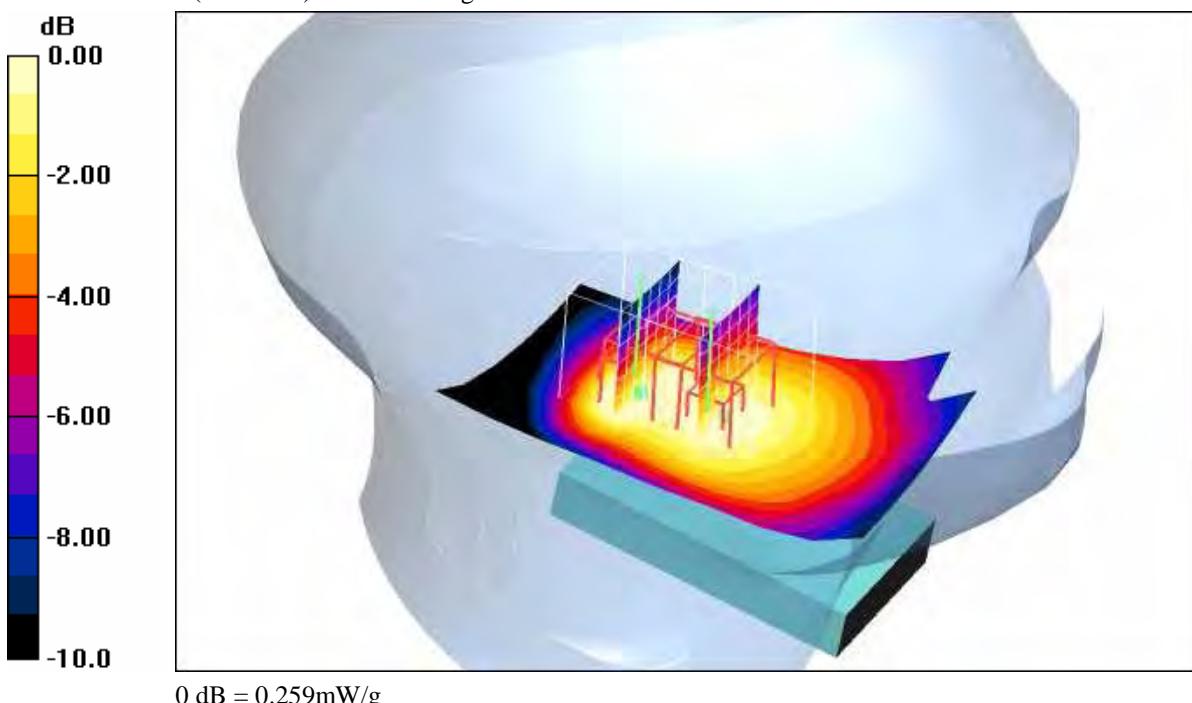
Tilt position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 19.1 V/m; Power Drift = -0.116 dB

Peak SAR (extrapolated) = 0.824 W/kg

SAR(1 g) = 0.286 mW/g; SAR(10 g) = 0.169 mW/g

Maximum value of SAR (measured) = 0.308 mW/g


Tilt position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 19.1 V/m; Power Drift = -0.116 dB

Peak SAR (extrapolated) = 0.319 W/kg

SAR(1 g) = 0.247 mW/g; SAR(10 g) = 0.181 mW/g

Maximum value of SAR (measured) = 0.259 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 21.8°C; liquid temperature: 21.6°C

Date/Time: 2008-04-22 12:47:36 Date/Time: 2008-04-22 12:54:06 Date/Time: 2008-04-22 13:05:35

P1528_OET65-LeftHandSide-GSM850**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 850; Frequency: 848.8 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: $f = 848.8$ MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 42.4$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - High/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.273 mW/g

Tilt position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

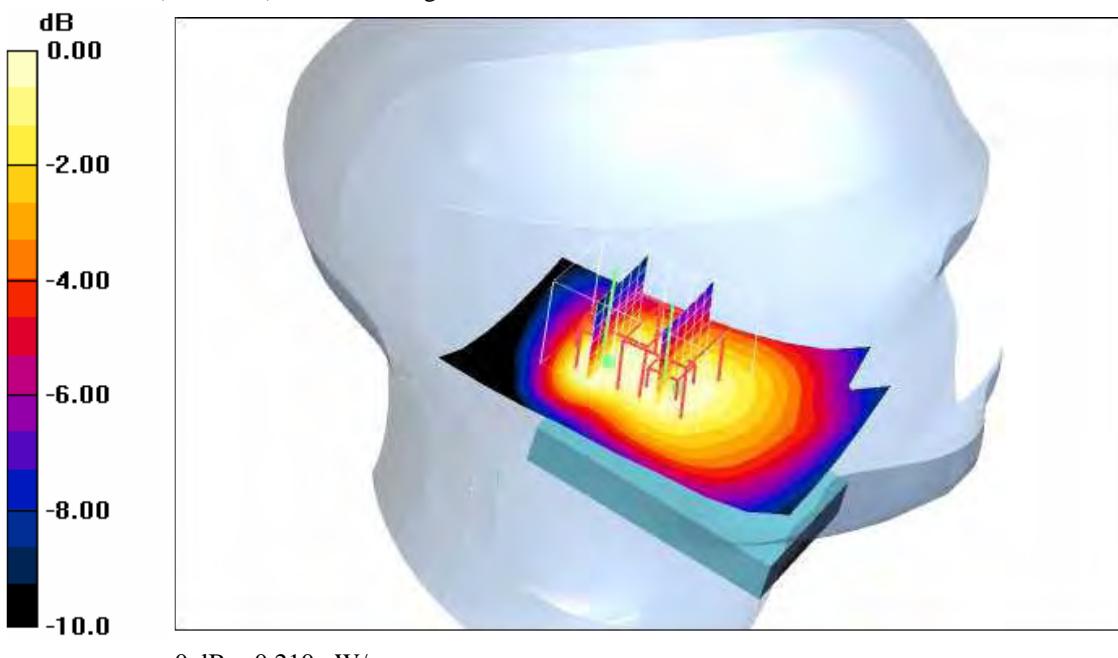
Reference Value = 17.1 V/m; Power Drift = -0.191 dB

Peak SAR (extrapolated) = 0.642 W/kg

SAR(1 g) = 0.225 mW/g; SAR(10 g) = 0.136 mW/g

Maximum value of SAR (measured) = 0.243 mW/g

Tilt position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 17.1 V/m; Power Drift = -0.191 dB

Peak SAR (extrapolated) = 0.266 W/kg

SAR(1 g) = 0.201 mW/g; SAR(10 g) = 0.145 mW/g

Maximum value of SAR (measured) = 0.210 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 21.9°C; liquid temperature: 21.6°C

Date/Time: 2008-04-22 13:20:21 Date/Time: 2008-04-22 13:27:08

P1528_OET65-LeftHandSide-GSM850-open**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 850; Frequency: 824.2 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: $f = 824.2$ MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 42.4$; $\rho = 1000$ kg/m³

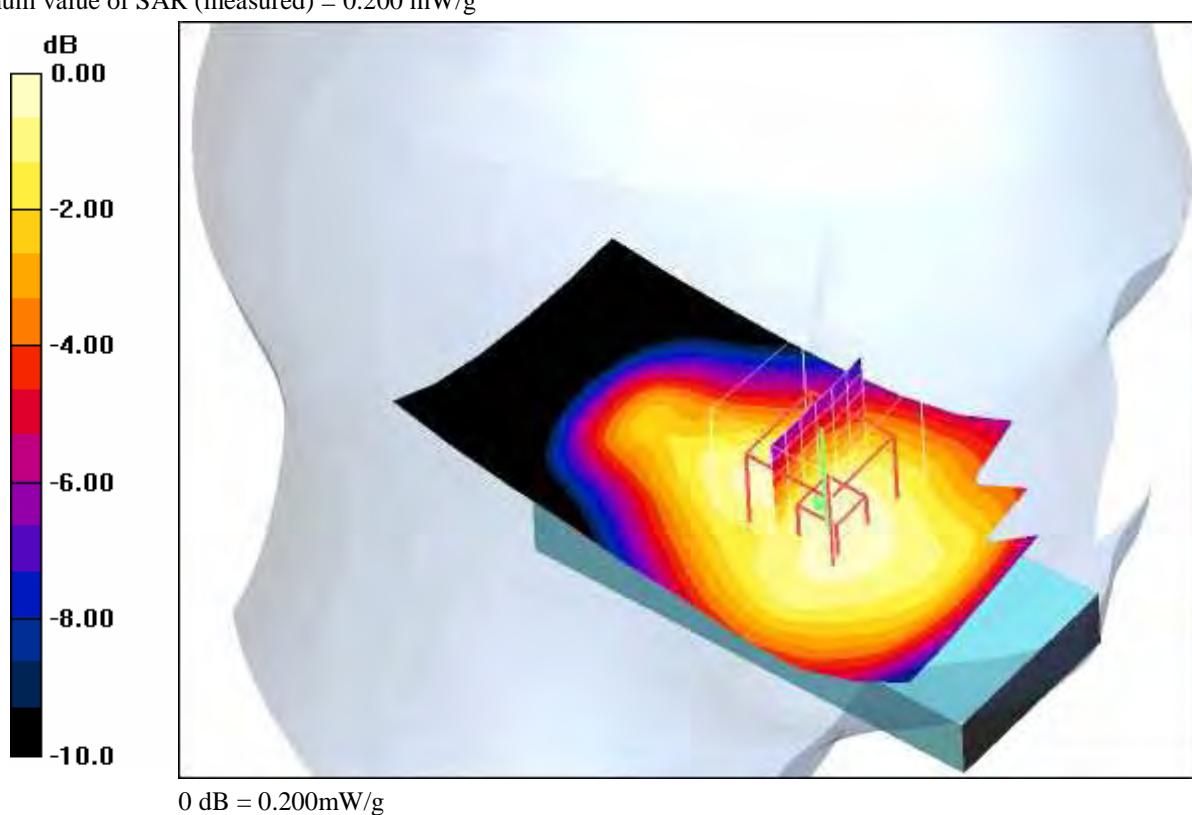
Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.194 mW/g


Touch position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.2 V/m; Power Drift = 0.065 dB

Peak SAR (extrapolated) = 0.245 W/kg

SAR(1 g) = 0.191 mW/g; SAR(10 g) = 0.144 mW/g

Maximum value of SAR (measured) = 0.200 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.0°C; liquid temperature: 21.5°C

Date/Time: 2008-04-22 13:43:28 Date/Time: 2008-04-22 13:51:07

P1528_OET65-LeftHandSide-GSM850-open**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 850; Frequency: 836.6 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: $f = 836.6$ MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 42.4$; $\rho = 1000$ kg/m³

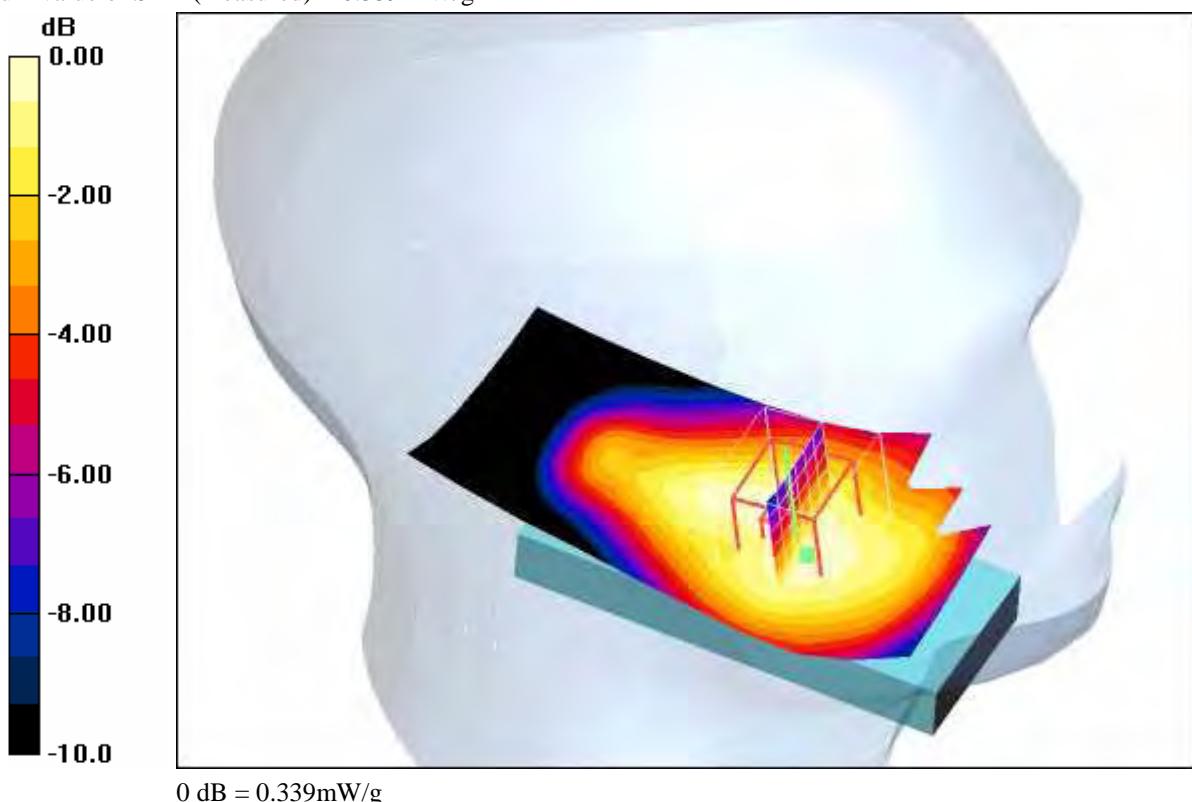
Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.330 mW/g


Touch position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.6 V/m; Power Drift = -0.059 dB

Peak SAR (extrapolated) = 0.411 W/kg

SAR(1 g) = 0.322 mW/g; SAR(10 g) = 0.239 mW/g

Maximum value of SAR (measured) = 0.339 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.1°C; liquid temperature: 21.5°C

Date/Time: 2008-04-22 14:05:56 Date/Time: 2008-04-22 14:12:31

P1528_OET65-LeftHandSide-GSM850-open**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 850; Frequency: 848.8 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: $f = 848.8$ MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 42.4$; $\rho = 1000$ kg/m³

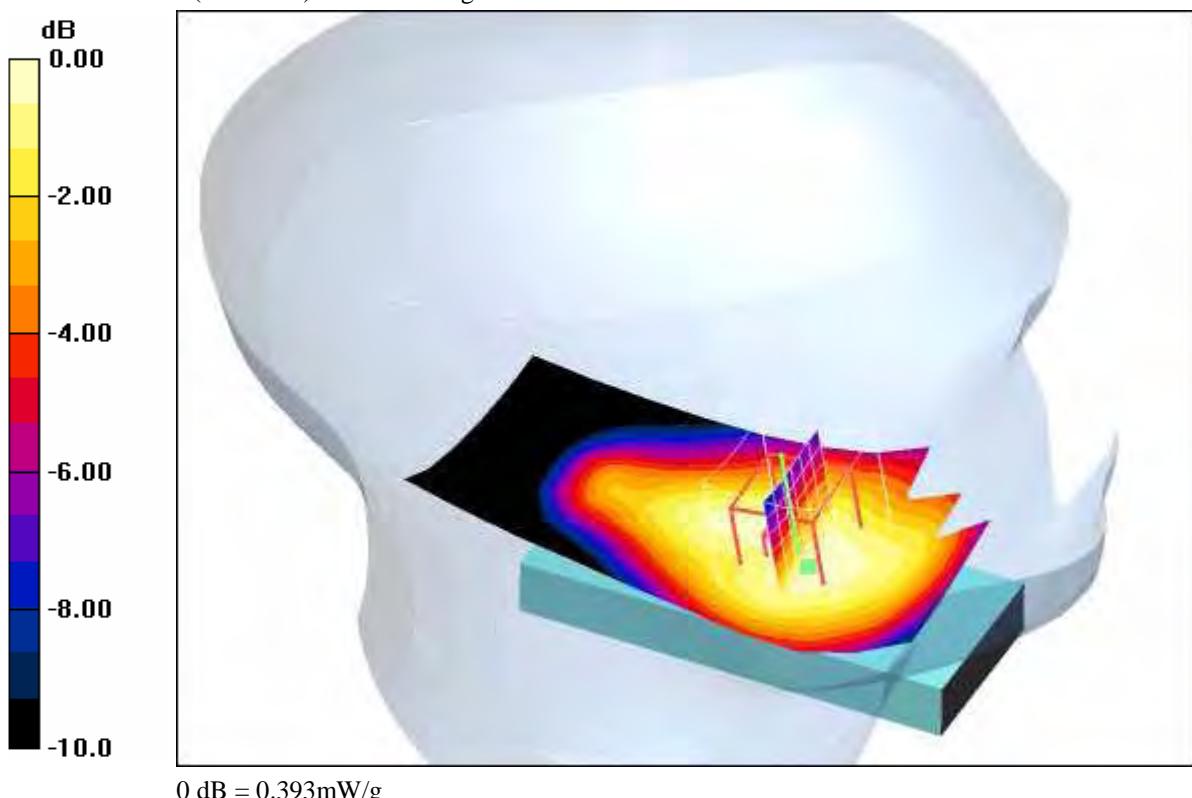
Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.384 mW/g


Touch position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.0 V/m; Power Drift = -0.042 dB

Peak SAR (extrapolated) = 0.482 W/kg

SAR(1 g) = 0.371 mW/g; SAR(10 g) = 0.275 mW/g

Maximum value of SAR (measured) = 0.393 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.2°C; liquid temperature: 21.5°C

Date/Time: 2008-04-22 14:28:24 Date/Time: 2008-04-22 14:35:05 Date/Time: 2008-04-22 14:46:27

P1528_OET65-LeftHandSide-GSM850-open**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 850; Frequency: 824.2 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: $f = 824.2$ MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 42.4$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.175 mW/g

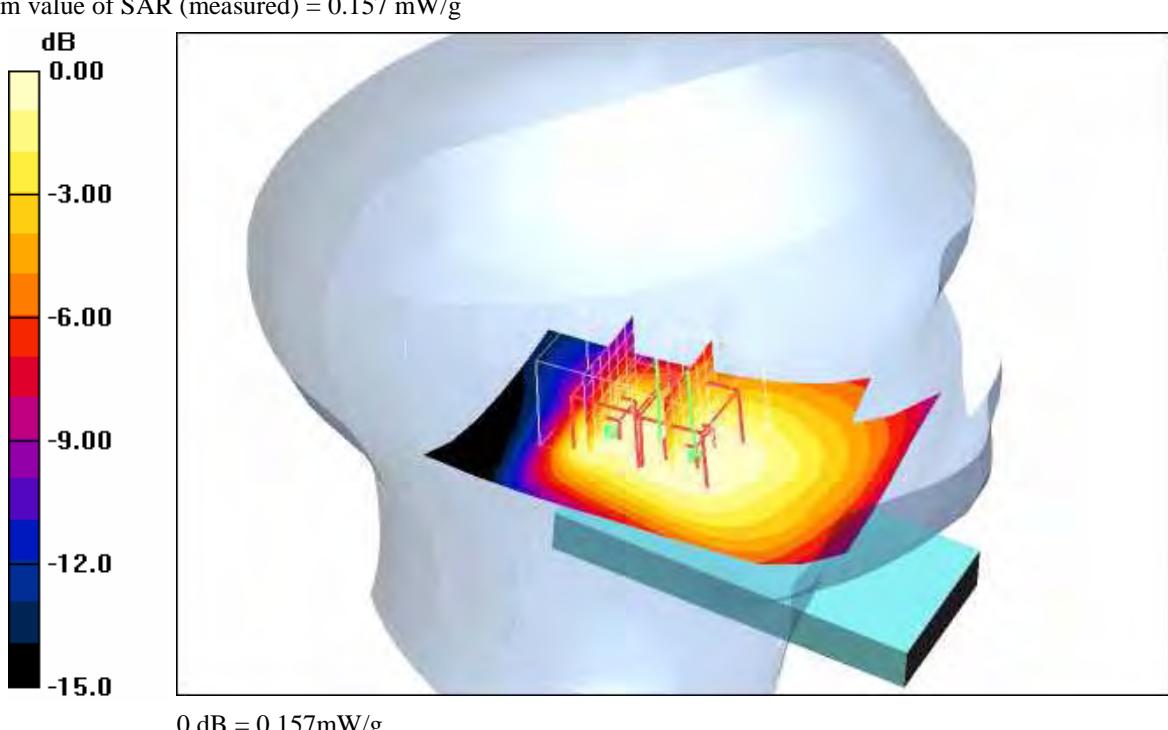
Tilt position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.3 V/m; Power Drift = 0.012 dB

Peak SAR (extrapolated) = 0.211 W/kg

SAR(1 g) = 0.167 mW/g; SAR(10 g) = 0.122 mW/g

Maximum value of SAR (measured) = 0.175 mW/g


Tilt position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.3 V/m; Power Drift = 0.012 dB

Peak SAR (extrapolated) = 0.356 W/kg

SAR(1 g) = 0.141 mW/g; SAR(10 g) = 0.095 mW/g

Maximum value of SAR (measured) = 0.157 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.2°C; liquid temperature: 21.4°C

Date/Time: 2008-04-22 15:01:09 Date/Time: 2008-04-22 15:29:09 Date/Time: 2008-04-22 15:40:58

P1528_OET65-LeftHandSide-GSM850-open**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 850; Frequency: 836.6 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: $f = 836.6$ MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 42.4$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.296 mW/g

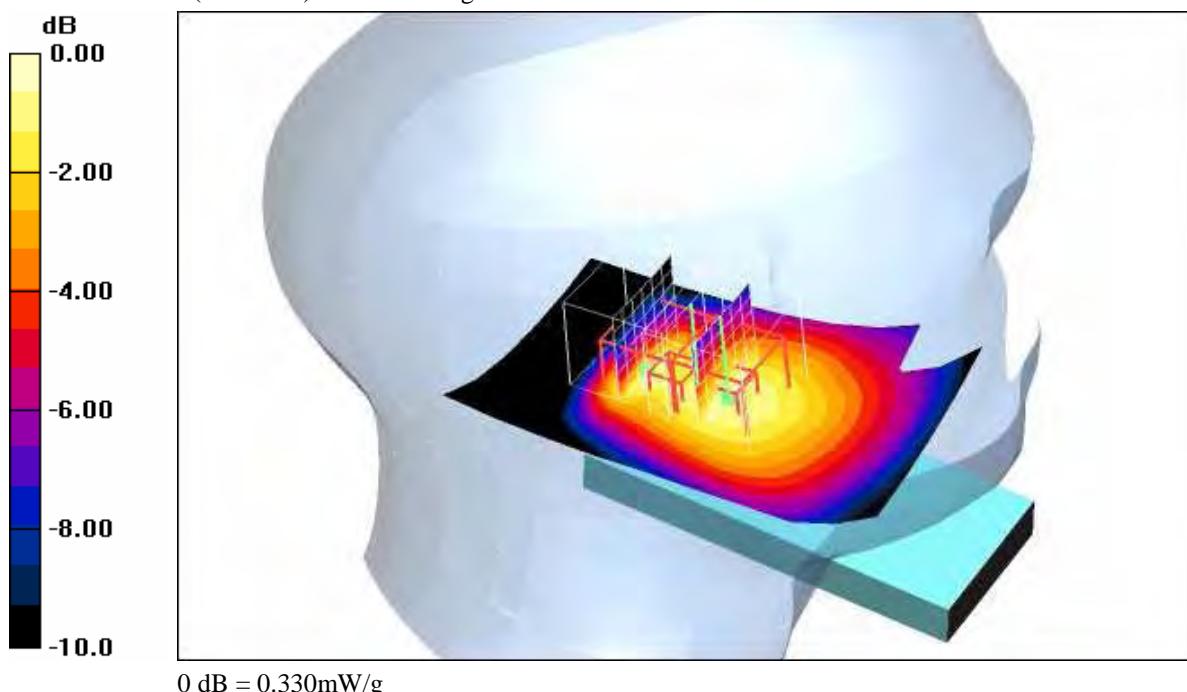
Tilt position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 19.1 V/m; Power Drift = 0.189 dB

Peak SAR (extrapolated) = 0.548 W/kg

SAR(1 g) = 0.245 mW/g; SAR(10 g) = 0.168 mW/g

Maximum value of SAR (measured) = 0.289 mW/g


Tilt position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 19.1 V/m; Power Drift = 0.189 dB

Peak SAR (extrapolated) = 0.397 W/kg

SAR(1 g) = 0.311 mW/g; SAR(10 g) = 0.226 mW/g

Maximum value of SAR (measured) = 0.330 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.2°C; liquid temperature: 21.4°C

Date/Time: 2008-04-22 15:54:58 Date/Time: 2008-04-22 16:01:53 Date/Time: 2008-04-22 16:13:21

P1528_OET65-LeftHandSide-GSM850-open**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 850; Frequency: 848.8 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: $f = 848.8$ MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 42.4$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.402 mW/g

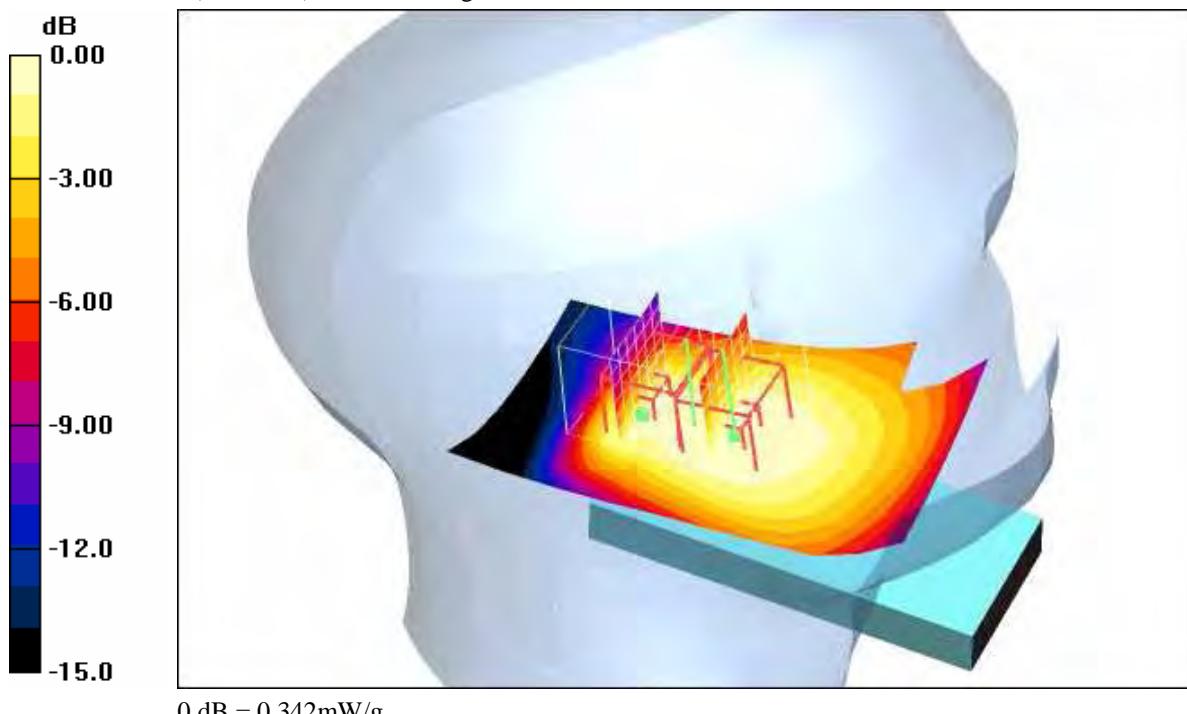
Tilt position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 21.6 V/m; Power Drift = -0.126 dB

Peak SAR (extrapolated) = 0.477 W/kg

SAR(1 g) = 0.379 mW/g; SAR(10 g) = 0.277 mW/g

Maximum value of SAR (measured) = 0.400 mW/g


Tilt position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 21.6 V/m; Power Drift = -0.126 dB

Peak SAR (extrapolated) = 0.751 W/kg

SAR(1 g) = 0.297 mW/g; SAR(10 g) = 0.204 mW/g

Maximum value of SAR (measured) = 0.342 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.2°C; liquid temperature: 21.3°C

Date/Time: 2008-04-22 21:55:05 Date/Time: 2008-04-22 22:01:18 Date/Time: 2008-04-22 22:13:17

P1528_OET65-RightHandSide-GSM850**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 850; Frequency: 824.2 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: $f = 824.2$ MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 42.4$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - Low/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.239 mW/g

Touch position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.6 V/m; Power Drift = -0.153 dB

Peak SAR (extrapolated) = 0.303 W/kg

SAR(1 g) = 0.203 mW/g; SAR(10 g) = 0.145 mW/g

Maximum value of SAR (measured) = 0.219 mW/g

Touch position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.6 V/m; Power Drift = -0.153 dB

Peak SAR (extrapolated) = 0.275 W/kg

SAR(1 g) = 0.161 mW/g; SAR(10 g) = 0.116 mW/g

Maximum value of SAR (measured) = 0.179 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.3°C; liquid temperature: 21.1°C

Date/Time: 2008-04-22 22:28:06 Date/Time: 2008-04-22 22:35:22 Date/Time: 2008-04-22 22:47:07

P1528_OET65-RightHandSide-GSM850**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 850; Frequency: 836.6 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: $f = 836.6$ MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 42.4$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection) Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - Middle/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.235 mW/g

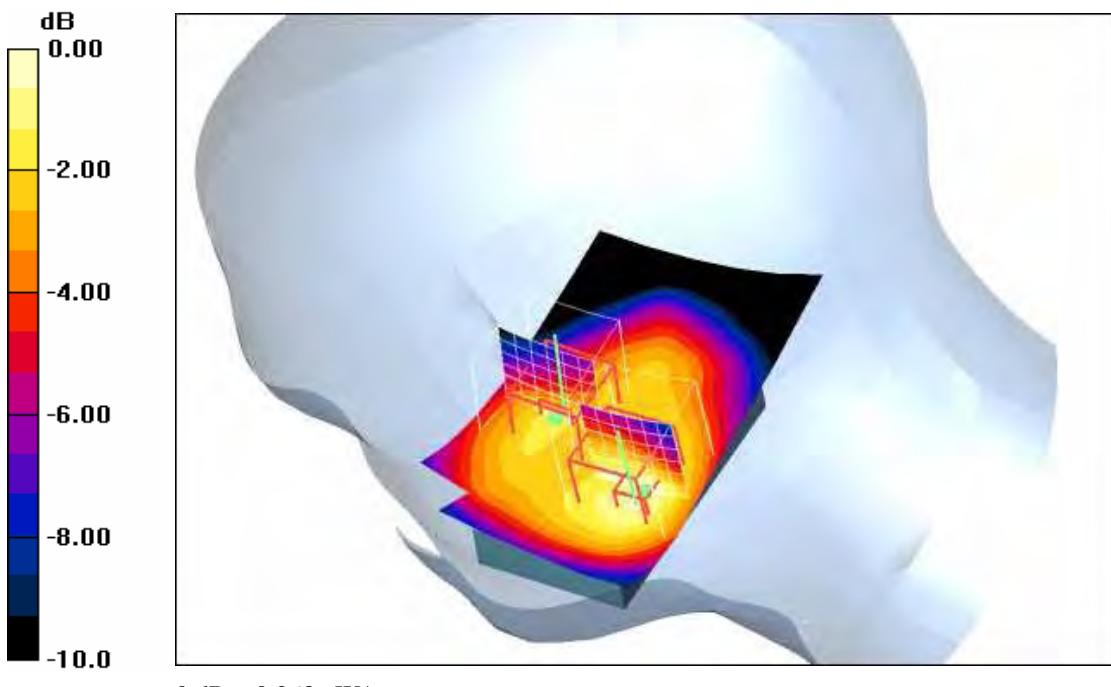
Touch position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 19.6 V/m; Power Drift = -0.115 dB

Peak SAR (extrapolated) = 0.480 W/kg

SAR(1 g) = 0.305 mW/g; SAR(10 g) = 0.209 mW/g

Maximum value of SAR (measured) = 0.340 mW/g


Touch position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 19.6 V/m; Power Drift = -0.115 dB

Peak SAR (extrapolated) = 0.460 W/kg

SAR(1 g) = 0.231 mW/g; SAR(10 g) = 0.154 mW/g

Maximum value of SAR (measured) = 0.263 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.3°C; liquid temperature: 21.1°C

Date/Time: 2008-04-22 23:02:35 Date/Time: 2008-04-22 23:09:11 Date/Time: 2008-04-22 23:21:07

P1528_OET65-RightHandSide-GSM850**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 850; Frequency: 848.8 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: $f = 848.8$ MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 42.4$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - High/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.299 mW/g

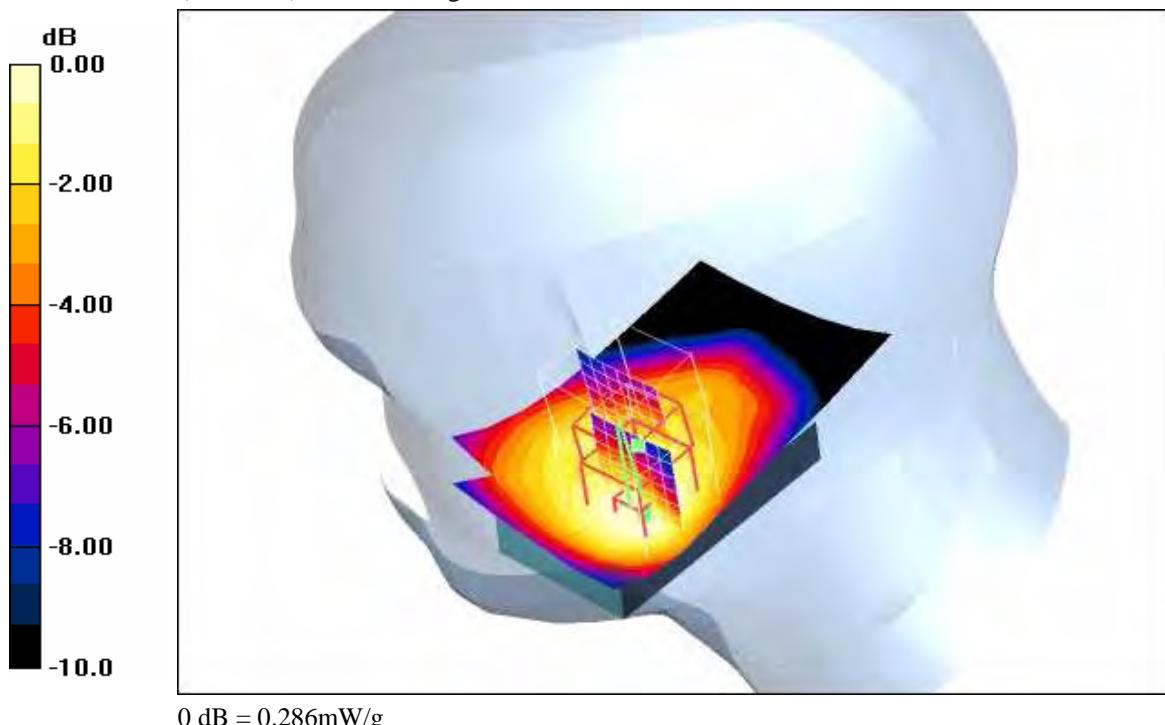
Touch position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 17.8 V/m; Power Drift = -0.020 dB

Peak SAR (extrapolated) = 0.420 W/kg

SAR(1 g) = 0.281 mW/g; SAR(10 g) = 0.201 mW/g

Maximum value of SAR (measured) = 0.307 mW/g


Touch position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 17.8 V/m; Power Drift = -0.020 dB

Peak SAR (extrapolated) = 0.350 W/kg

SAR(1 g) = 0.239 mW/g; SAR(10 g) = 0.178 mW/g

Maximum value of SAR (measured) = 0.286 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.2°C; liquid temperature: 21.1°C

Date/Time: 2008-04-22 20:08:53 Date/Time: 2008-04-22 20:14:54 Date/Time: 2008-04-22 20:26:24

P1528_OET65-RightHandSide-GSM850**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 850; Frequency: 824.2 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: $f = 824.2$ MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 42.4$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - Low/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.220 mW/g

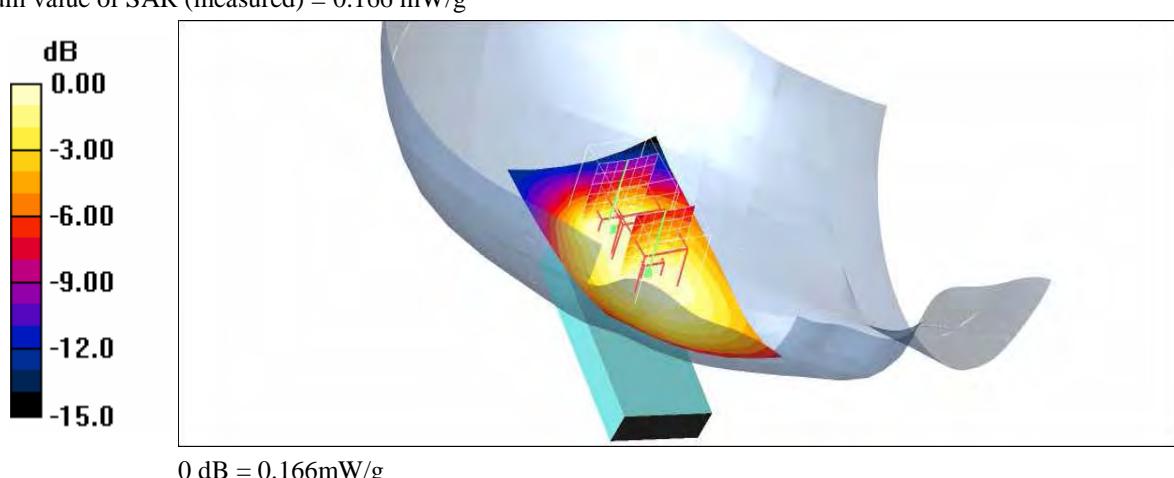
Tilt position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.8 V/m; Power Drift = -0.142 dB

Peak SAR (extrapolated) = 0.405 W/kg

SAR(1 g) = 0.156 mW/g; SAR(10 g) = 0.104 mW/g

Maximum value of SAR (measured) = 0.169 mW/g


Tilt position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.8 V/m; Power Drift = -0.142 dB

Peak SAR (extrapolated) = 0.210 W/kg

SAR(1 g) = 0.156 mW/g; SAR(10 g) = 0.114 mW/g

Maximum value of SAR (measured) = 0.166 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.1°C; liquid temperature: 21.2°C

Date/Time: 2008-04-22 20:39:52 Date/Time: 2008-04-22 20:45:57 Date/Time: 2008-04-22 20:57:30

P1528_OET65-RightHandSide-GSM850**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 850; Frequency: 836.6 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: $f = 836.6$ MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 42.4$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - Middle/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.282 mW/g

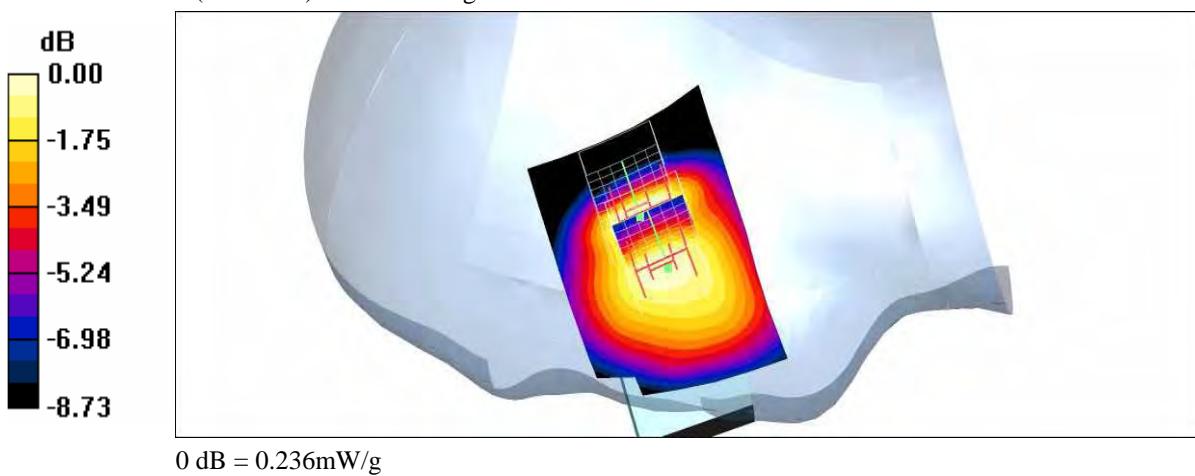
Tilt position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.7 V/m; Power Drift = 0.124 dB

Peak SAR (extrapolated) = 0.516 W/kg

SAR(1 g) = 0.211 mW/g; SAR(10 g) = 0.144 mW/g

Maximum value of SAR (measured) = 0.232 mW/g


Tilt position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.7 V/m; Power Drift = 0.124 dB

Peak SAR (extrapolated) = 0.284 W/kg

SAR(1 g) = 0.223 mW/g; SAR(10 g) = 0.163 mW/g

Maximum value of SAR (measured) = 0.236 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.1°C; liquid temperature: 21.2°C

Date/Time: 2008-04-22 21:12:15 Date/Time: 2008-04-22 21:18:25 Date/Time: 2008-04-22 21:29:56

P1528_OET65-RightHandSide-GSM850**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 850; Frequency: 848.8 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: $f = 848.8$ MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 42.4$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - High/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.216 mW/g

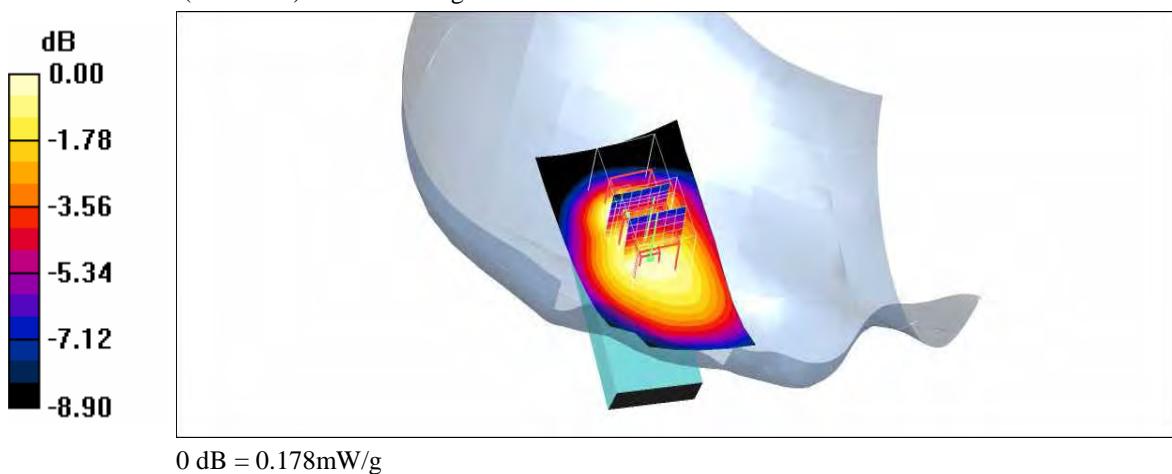
Tilt position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.7 V/m; Power Drift = -0.080 dB

Peak SAR (extrapolated) = 0.381 W/kg

SAR(1 g) = 0.156 mW/g; SAR(10 g) = 0.109 mW/g

Maximum value of SAR (measured) = 0.175 mW/g


Tilt position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.7 V/m; Power Drift = -0.080 dB

Peak SAR (extrapolated) = 0.216 W/kg

SAR(1 g) = 0.169 mW/g; SAR(10 g) = 0.124 mW/g

Maximum value of SAR (measured) = 0.178 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.1°C; liquid temperature: 21.2°C

Date/Time: 2008-04-22 16:31:43 Date/Time: 2008-04-22 16:39:18

P1528_OET65-RightHandSide-GSM850-open**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 850; Frequency: 824.2 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: $f = 824.2$ MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 42.4$; $\rho = 1000$ kg/m³

Phantom section: Right Section

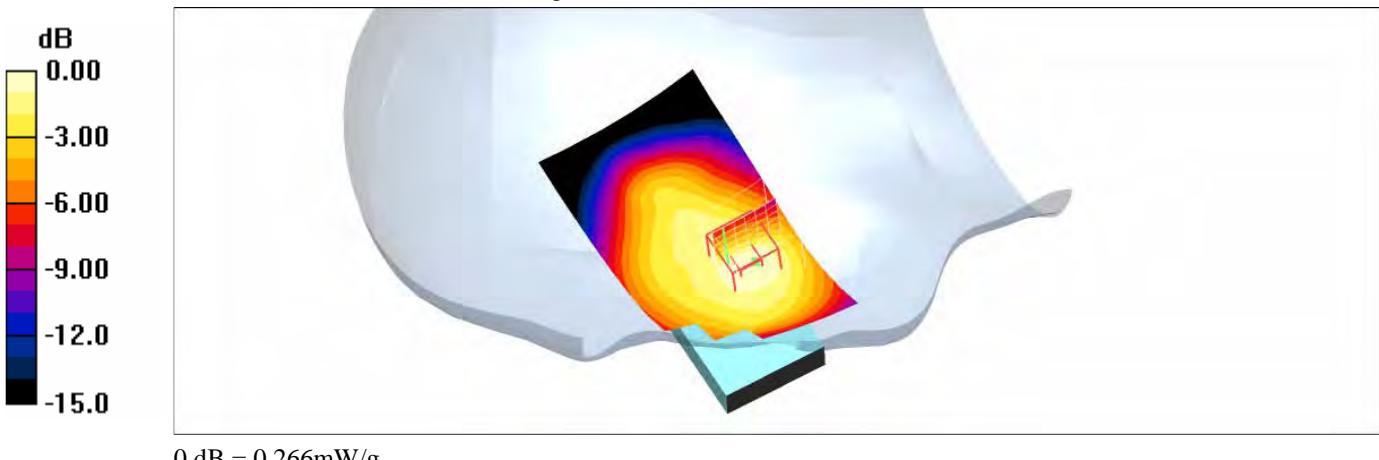
DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.254 mW/g

Touch position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 16.9 V/m; Power Drift = -0.031 dB

Peak SAR (extrapolated) = 0.371 W/kg

SAR(1 g) = 0.245 mW/g; SAR(10 g) = 0.173 mW/g

Maximum value of SAR (measured) = 0.266 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.3°C; liquid temperature: 21.2°C

Date/Time: 2008-04-22 16:53:38 Date/Time: 2008-04-22 17:00:04

P1528_OET65-RightHandSide-GSM850-open**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 850; Frequency: 836.6 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: $f = 836.6$ MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 42.4$; $\rho = 1000$ kg/m³

Phantom section: Right Section

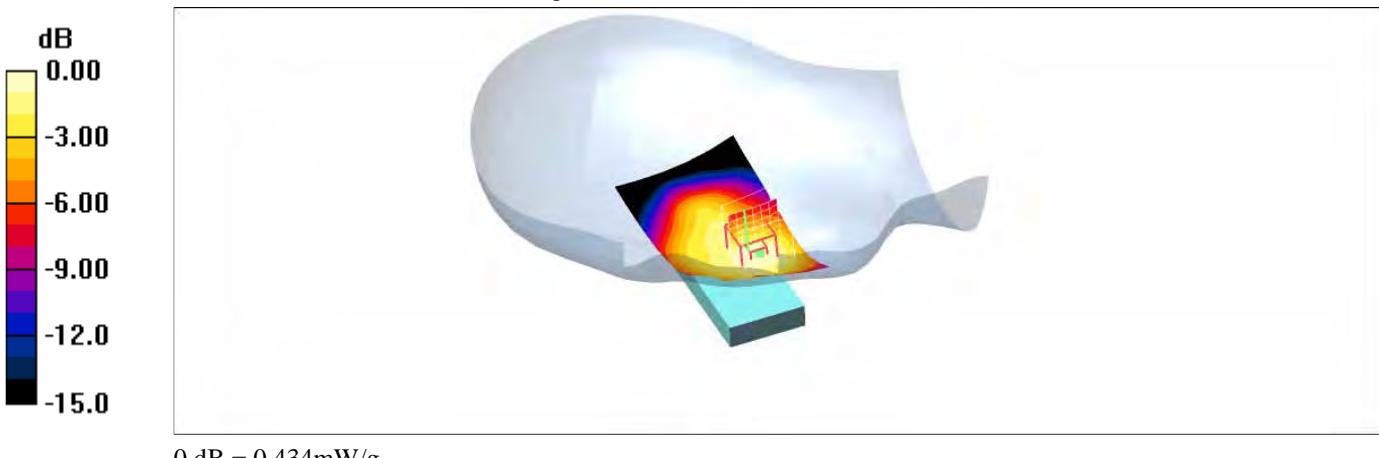
DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection) Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.433 mW/g

Touch position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 22.1 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.597 W/kg

SAR(1 g) = 0.406 mW/g; SAR(10 g) = 0.289 mW/g

Maximum value of SAR (measured) = 0.434 mW/g

0 dB = 0.434mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.3°C; liquid temperature: 21.2°C

Date/Time: 2008-04-22 17:14:49 Date/Time: 2008-04-22 17:21:16

P1528_OET65-RightHandSide-GSM850-open**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 850; Frequency: 848.8 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: $f = 848.8$ MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 42.4$; $\rho = 1000$ kg/m³

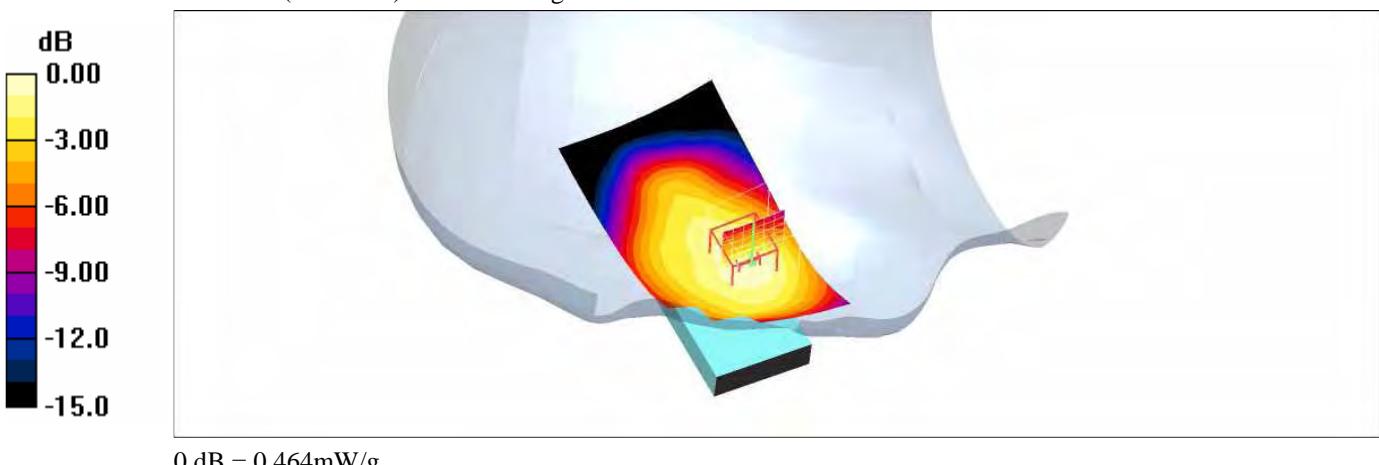
Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.443 mW/g


Touch position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 22.6 V/m; Power Drift = -0.046 dB

Peak SAR (extrapolated) = 0.657 W/kg

SAR(1 g) = 0.431 mW/g; SAR(10 g) = 0.303 mW/g

Maximum value of SAR (measured) = 0.464 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.3°C; liquid temperature: 21.2°C

Date/Time: 2008-04-22 19:35:23 Date/Time: 2008-04-22 19:42:04 Date/Time: 2008-04-22 19:53:33

P1528_OET65-RightHandSide-GSM850-open**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 850; Frequency: 824.2 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: $f = 824.2$ MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 42.4$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.227 mW/g

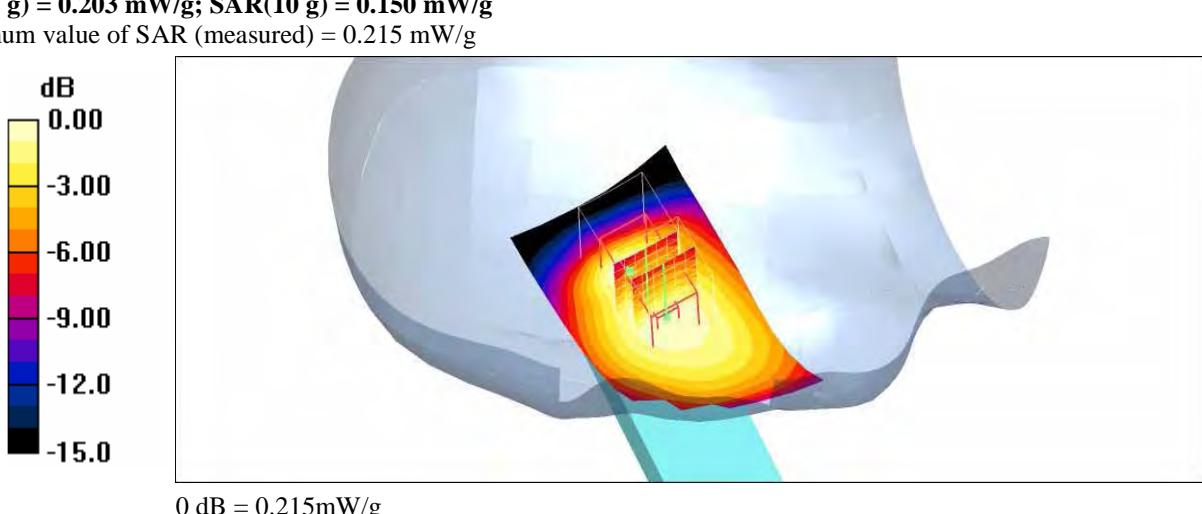
Tilt position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.8 V/m; Power Drift = -0.017 dB

Peak SAR (extrapolated) = 0.345 W/kg

SAR(1 g) = 0.177 mW/g; SAR(10 g) = 0.119 mW/g

Maximum value of SAR (measured) = 0.202 mW/g


Tilt position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.8 V/m; Power Drift = -0.017 dB

Peak SAR (extrapolated) = 0.251 W/kg

SAR(1 g) = 0.203 mW/g; SAR(10 g) = 0.150 mW/g

Maximum value of SAR (measured) = 0.215 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.2°C; liquid temperature: 21.2°C

Date/Time: 2008-04-22 19:02:54 Date/Time: 2008-04-22 19:09:32 Date/Time: 2008-04-22 19:21:01

P1528_OET65-RightHandSide-GSM850-open**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 850; Frequency: 836.6 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: $f = 836.6$ MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 42.4$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.359 mW/g

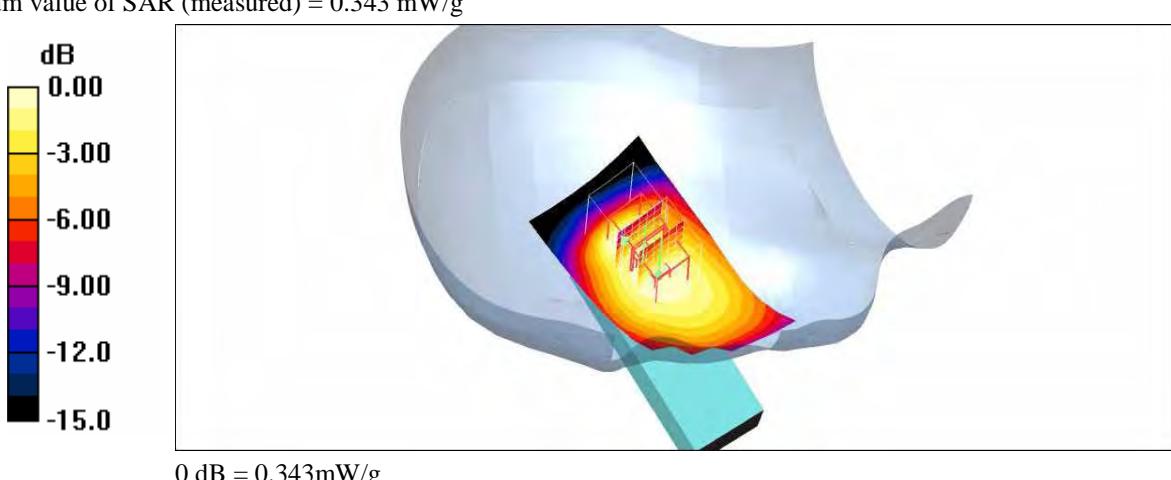
Tilt position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 19.9 V/m; Power Drift = -0.017 dB

Peak SAR (extrapolated) = 0.563 W/kg

SAR(1 g) = 0.277 mW/g; SAR(10 g) = 0.187 mW/g

Maximum value of SAR (measured) = 0.323 mW/g


Tilt position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 19.9 V/m; Power Drift = -0.017 dB

Peak SAR (extrapolated) = 0.407 W/kg

SAR(1 g) = 0.323 mW/g; SAR(10 g) = 0.237 mW/g

Maximum value of SAR (measured) = 0.343 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.2°C; liquid temperature: 21.2°C

Date/Time: 2008-04-22 17:49:53 Date/Time: 2008-04-22 17:56:26 Date/Time: 2008-04-22 18:07:44

P1528_OET65-RightHandSide-GSM850-open**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 850; Frequency: 848.8 MHz; Duty Cycle: 1:8

Medium: HSL850 Medium parameters used: $f = 848.8$ MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 42.4$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(6.39, 6.39, 6.39); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.422 mW/g

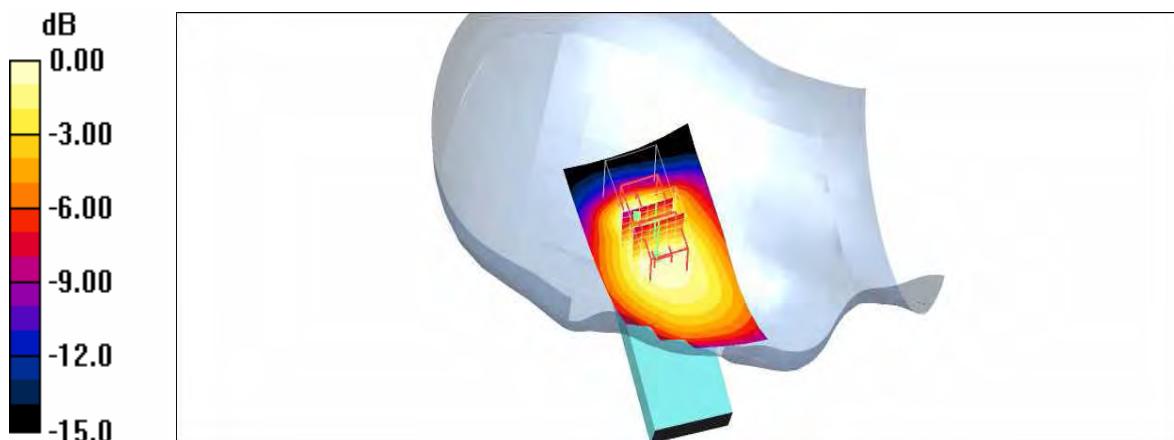
Tilt position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 19.5 V/m; Power Drift = -0.024 dB

Peak SAR (extrapolated) = 0.905 W/kg

SAR(1 g) = 0.281 mW/g; SAR(10 g) = 0.183 mW/g

Maximum value of SAR (measured) = 0.310 mW/g


Tilt position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 19.5 V/m; Power Drift = -0.024 dB

Peak SAR (extrapolated) = 0.407 W/kg

SAR(1 g) = 0.319 mW/g; SAR(10 g) = 0.232 mW/g

Maximum value of SAR (measured) = 0.337 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.2°C; liquid temperature: 21.2°C

Annex 2.2 PCS 850 MHz body

Date/Time: 2008-04-17 09:41:00 Date/Time: 2008-04-17 10:25:04 Date/Time: 2008-04-17 10:36:49

P1528_OET65-Body-GSM850 GPRS class 10

DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V

Communication System: PCS 850 GPRS class 10; Frequency: 824.2 MHz; Duty Cycle: 1:4

Medium: M850 Medium parameters used: $f = 824.2$ MHz; $\sigma = 0.98$ mho/m; $\epsilon_r = 55$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(6.17, 6.17, 6.17); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Front position - Low/Area Scan (51x81x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.080 mW/g

Front position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

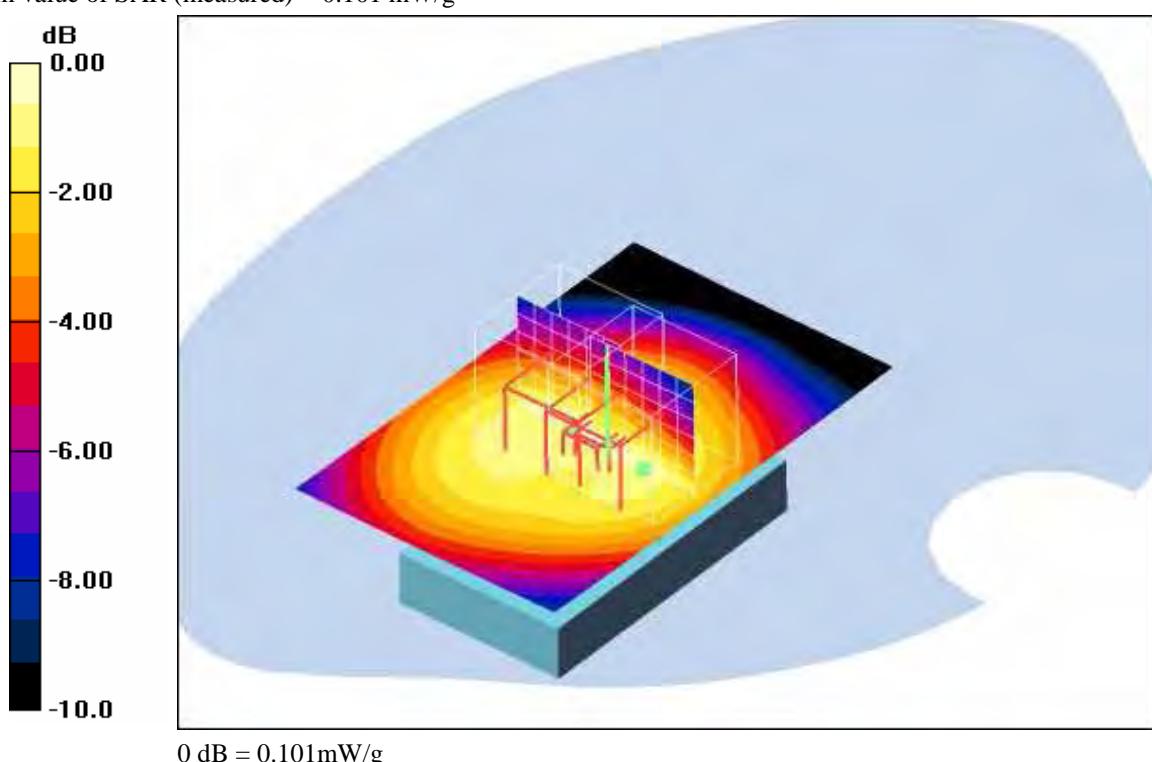
Reference Value = 10.4 V/m; Power Drift = -0.010 dB

Peak SAR (extrapolated) = 0.127 W/kg

SAR(1 g) = 0.097 mW/g; SAR(10 g) = 0.072 mW/g

Maximum value of SAR (measured) = 0.102 mW/g

Front position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 1:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.4 V/m; Power Drift = -0.010 dB

Peak SAR (extrapolated) = 0.126 W/kg

SAR(1 g) = 0.097 mW/g; SAR(10 g) = 0.073 mW/g

Maximum value of SAR (measured) = 0.101 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : 15 mm

ambient temperature: 21.0°C; liquid temperature: 21.0°C

Date/Time: 2008-04-17 10:57:37 Date/Time: 2008-04-17 11:03:30

P1528_OET65-Body-GSM850 GPRS class 10**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 850 GPRS class 10; Frequency: 836.6 MHz; Duty Cycle: 1:4

Medium: M850 Medium parameters used: $f = 836.6$ MHz; $\sigma = 0.98$ mho/m; $\epsilon_r = 55$; $\rho = 1000$ kg/m³

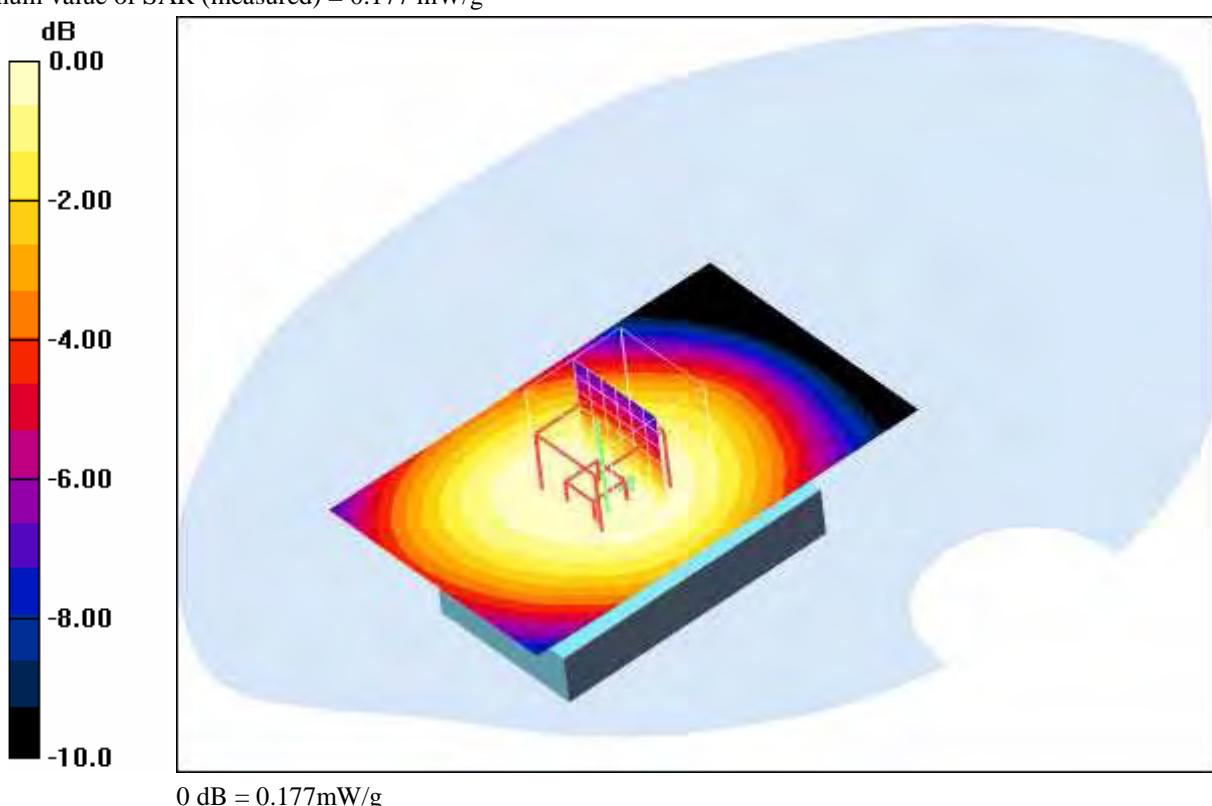
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(6.17, 6.17, 6.17); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Front position - Middle/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.175 mW/g


Front position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.7 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 0.217 W/kg

SAR(1 g) = 0.166 mW/g; SAR(10 g) = 0.125 mW/g

Maximum value of SAR (measured) = 0.177 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : 15 mm

ambient temperature: 21.0°C; liquid temperature: 21.0°C

Date/Time: 2008-04-17 11:19:07 Date/Time: 2008-04-17 11:25:05

P1528_OET65-Body-GSM850 GPRS class 10**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 850 GPRS class 10; Frequency: 848.8 MHz; Duty Cycle: 1:4

Medium: M850 Medium parameters used: $f = 848.8$ MHz; $\sigma = 0.98$ mho/m; $\epsilon_r = 55$; $\rho = 1000$ kg/m³

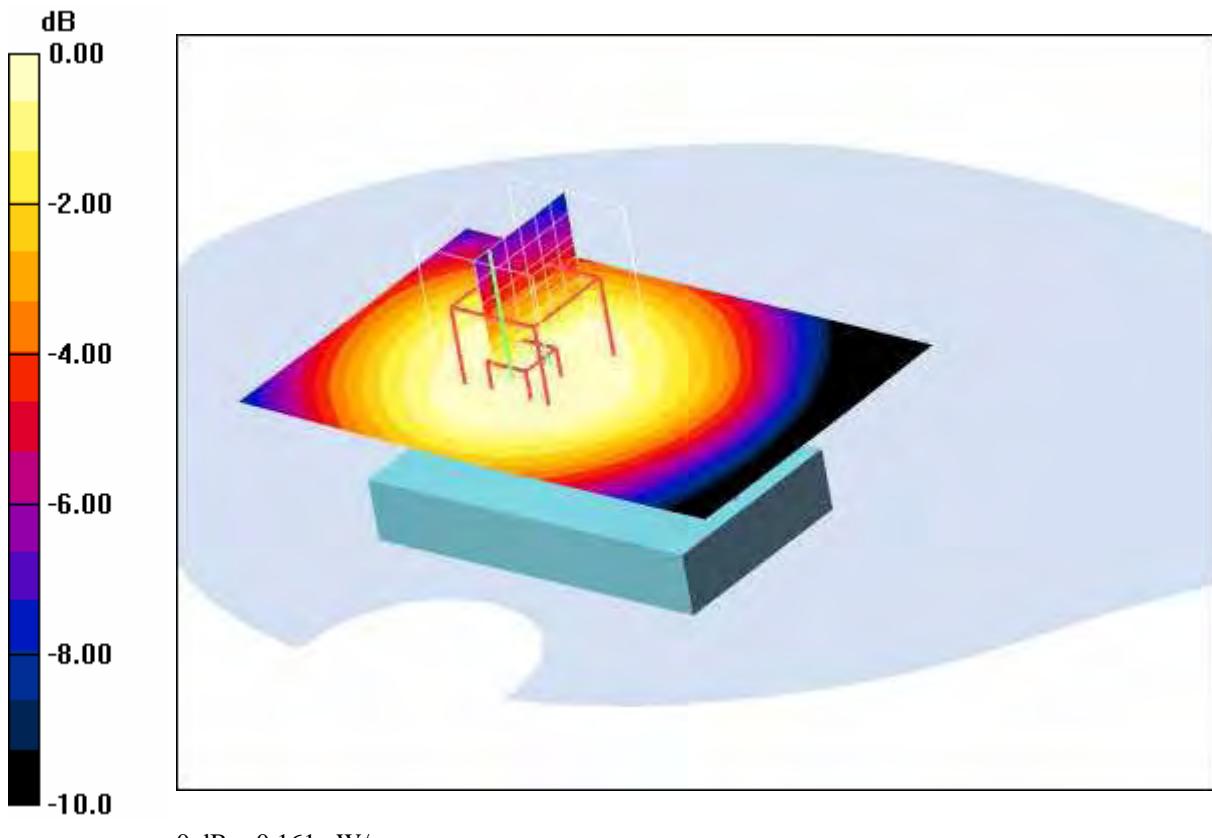
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(6.17, 6.17, 6.17); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection) Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Front position - High/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.165 mW/g


Front position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.2 V/m; Power Drift = -0.033 dB

Peak SAR (extrapolated) = 0.198 W/kg

SAR(1 g) = 0.152 mW/g; SAR(10 g) = 0.114 mW/g

Maximum value of SAR (measured) = 0.161 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : 15 mm

ambient temperature: 21.1°C; liquid temperature: 21.1°C

Date/Time: 2008-04-17 11:48:53 Date/Time: 2008-04-17 11:55:13

P1528_OET65-Body-GSM850 GPRS class 10**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 850 GPRS class 10; Frequency: 824.2 MHz; Duty Cycle: 1:4

Medium: M850 Medium parameters used: $f = 824.2$ MHz; $\sigma = 0.98$ mho/m; $\epsilon_r = 55$; $\rho = 1000$ kg/m³

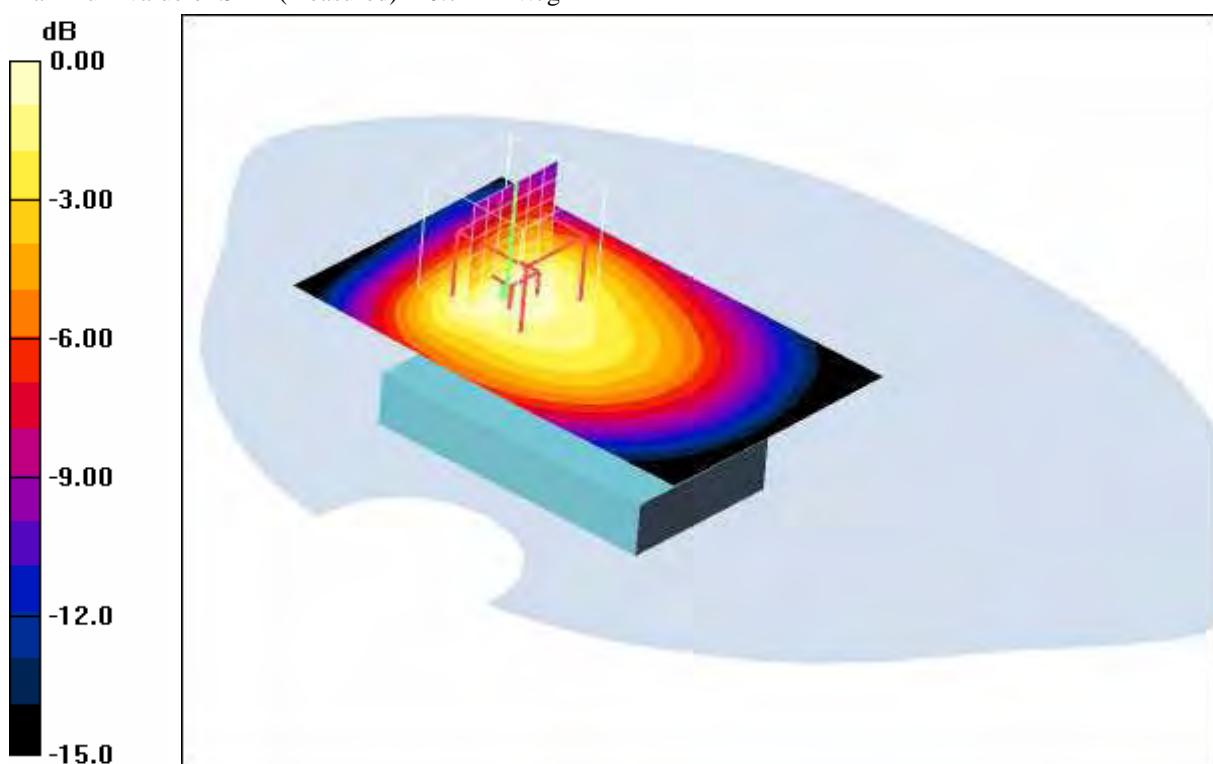
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(6.17, 6.17, 6.17); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Rear position - Low/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.789 mW/g


Rear position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 26.8 V/m; Power Drift = -0.100 dB

Peak SAR (extrapolated) = 1.03 W/kg

SAR(1 g) = 0.674 mW/g; SAR(10 g) = 0.438 mW/g

Maximum value of SAR (measured) = 0.724 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : 15 mm

ambient temperature: 21.2°C; liquid temperature: 21.1°C

Date/Time: 2008-04-17 12:14:25 Date/Time: 2008-04-17 12:20:27

P1528_OET65-Body-GSM850 GPRS class 10**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 850 GPRS class 10; Frequency: 836.6 MHz; Duty Cycle: 1:4

Medium: M850 Medium parameters used: $f = 836.6$ MHz; $\sigma = 0.98$ mho/m; $\epsilon_r = 55$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

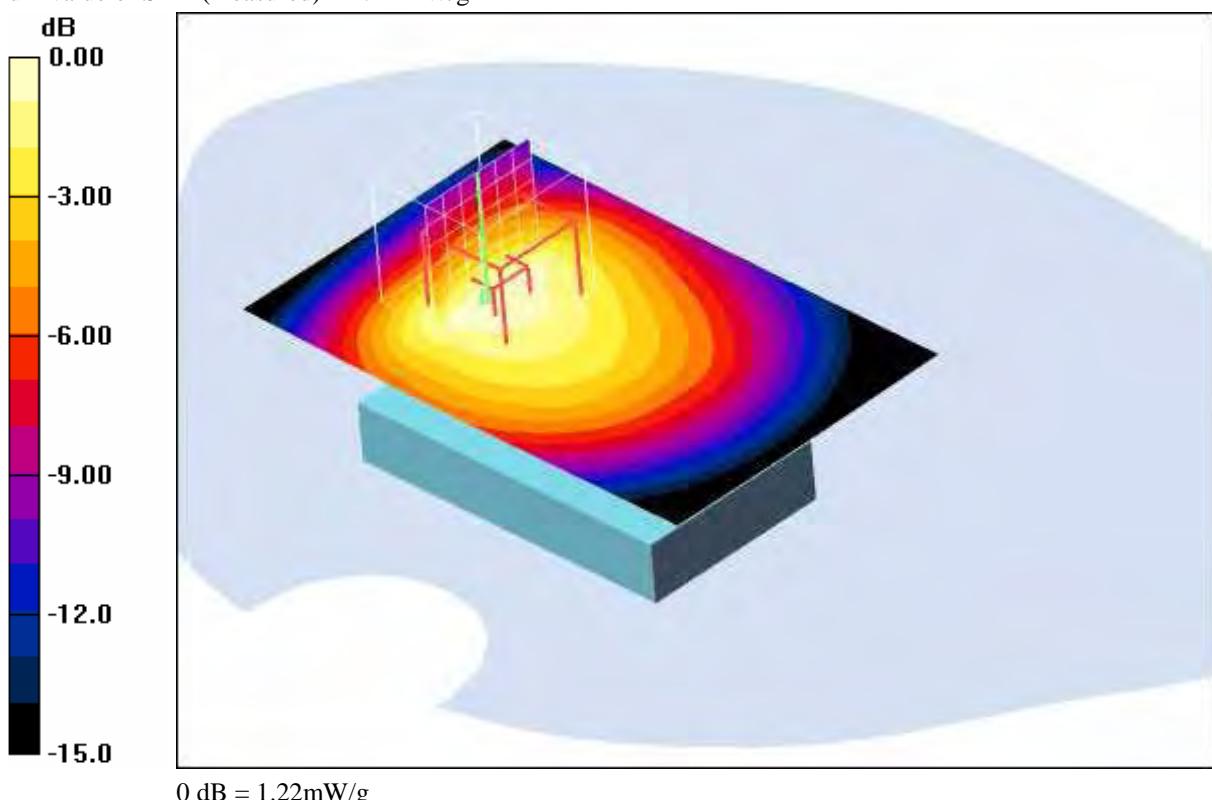
DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(6.17, 6.17, 6.17); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Rear position - Middle/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.30 mW/g

Rear position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 34.8 V/m; Power Drift = -0.098 dB

Peak SAR (extrapolated) = 1.75 W/kg

SAR(1 g) = 1.11 mW/g; SAR(10 g) = 0.720 mW/g

Maximum value of SAR (measured) = 1.22 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : 15 mm

ambient temperature: 21.2°C; liquid temperature: 21.1°C

Date/Time: 2008-04-17 12:35:50 Date/Time: 2008-04-17 12:43:02

P1528_OET65-Body-GSM850 GPRS class 10**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 850 GPRS class 10; Frequency: 848.8 MHz; Duty Cycle: 1:4

Medium: M850 Medium parameters used: $f = 848.8$ MHz; $\sigma = 0.98$ mho/m; $\epsilon_r = 55$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

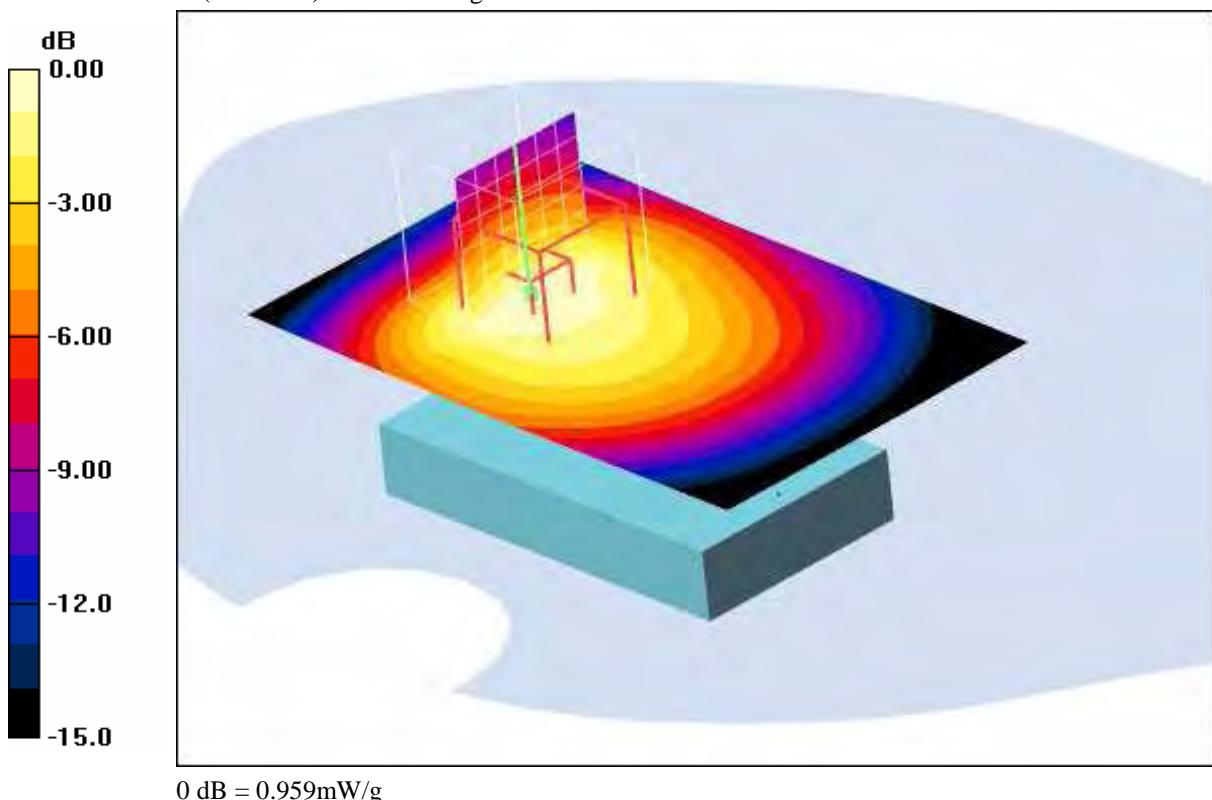
DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(6.17, 6.17, 6.17); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection) Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Rear position - High/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 1.06 mW/g

Rear position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 30.9 V/m; Power Drift = -0.047 dB

Peak SAR (extrapolated) = 1.34 W/kg

SAR(1 g) = 0.876 mW/g; SAR(10 g) = 0.571 mW/g

Maximum value of SAR (measured) = 0.959 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : 15 mm

ambient temperature: 21.4°C; liquid temperature: 21.1°C

Date/Time: 2008-04-17 12:59:42 Date/Time: 2008-04-17 13:06:03

P1528_OET65-Body-GSM850**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 850; Frequency: 836.6 MHz; Duty Cycle: 1:8

Medium: M850 Medium parameters used: $f = 836.6$ MHz; $\sigma = 0.98$ mho/m; $\epsilon_r = 55$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

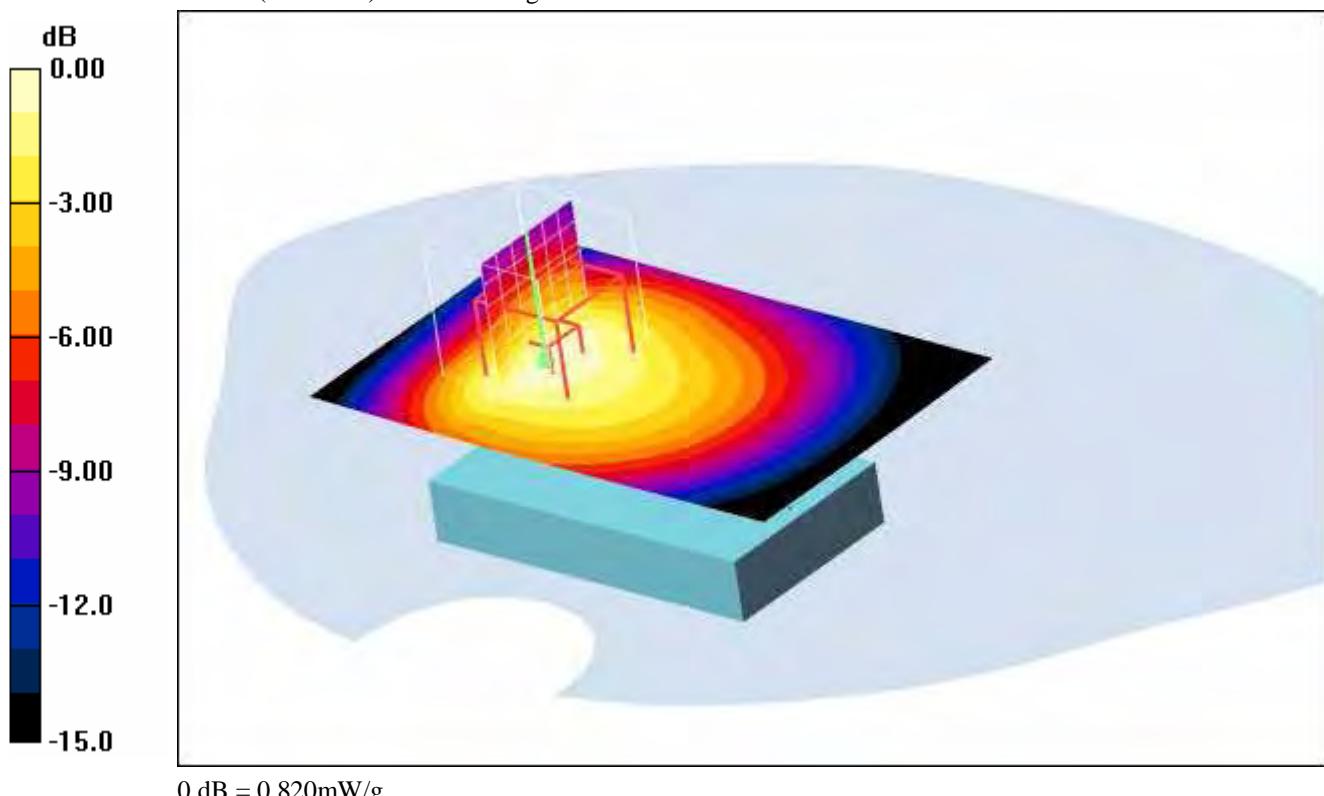
DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(6.17, 6.17, 6.17); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Rear position - Middle/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.869 mW/g

Rear position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 28.5 V/m; Power Drift = -0.034 dB

Peak SAR (extrapolated) = 1.19 W/kg

SAR(1 g) = 0.755 mW/g; SAR(10 g) = 0.484 mW/g

Maximum value of SAR (measured) = 0.820 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : 15 mm

ambient temperature: 21.5°C; liquid temperature: 21.1°C

Annex 2.3 PCS 1900 MHz head

Date/Time: 2008-04-18 17:21:30 Date/Time: 2008-04-18 17:27:58 Date/Time: 2008-04-18 17:40:03

P1528_OET65-LeftHandSide-GSM1900**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used: $f = 1850.2$ MHz; $\sigma = 1.43$ mho/m; $\epsilon_r = 41.2$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - Low/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.359 mW/g

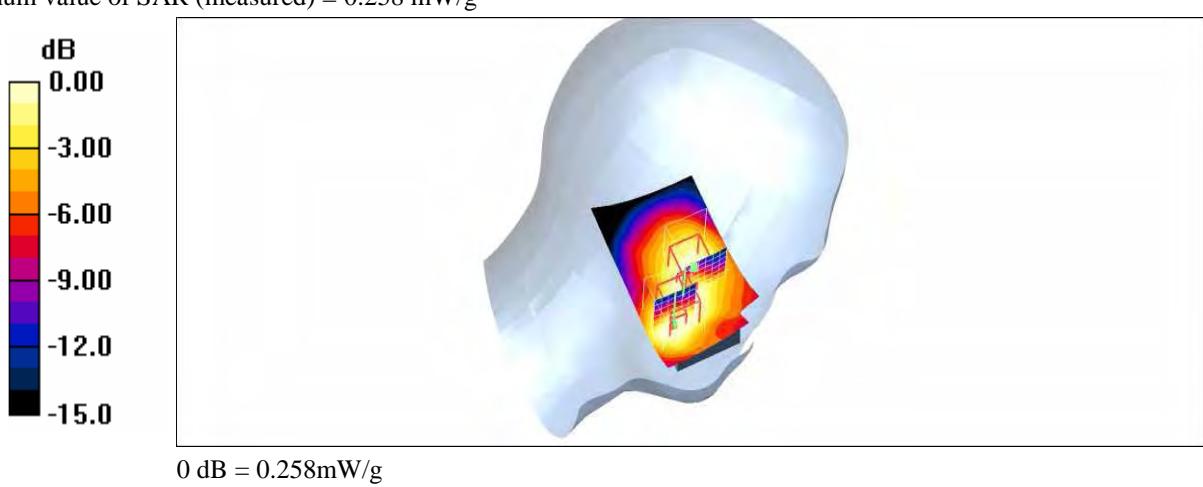
Touch position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.0 V/m; Power Drift = -0.070 dB

Peak SAR (extrapolated) = 0.621 W/kg

SAR(1 g) = 0.363 mW/g; SAR(10 g) = 0.192 mW/g

Maximum value of SAR (measured) = 0.404 mW/g


Touch position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.0 V/m; Power Drift = -0.070 dB

Peak SAR (extrapolated) = 0.357 W/kg

SAR(1 g) = 0.236 mW/g; SAR(10 g) = 0.161 mW/g

Maximum value of SAR (measured) = 0.258 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.6°C; liquid temperature: 21.4°C

Date/Time: 2008-04-18 17:55:03 Date/Time: 2008-04-18 18:01:11

P1528_OET65-LeftHandSide-GSM1900**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used: $f = 1880$ MHz; $\sigma = 1.43$ mho/m; $\epsilon_r = 41.2$; $\rho = 1000$ kg/m³

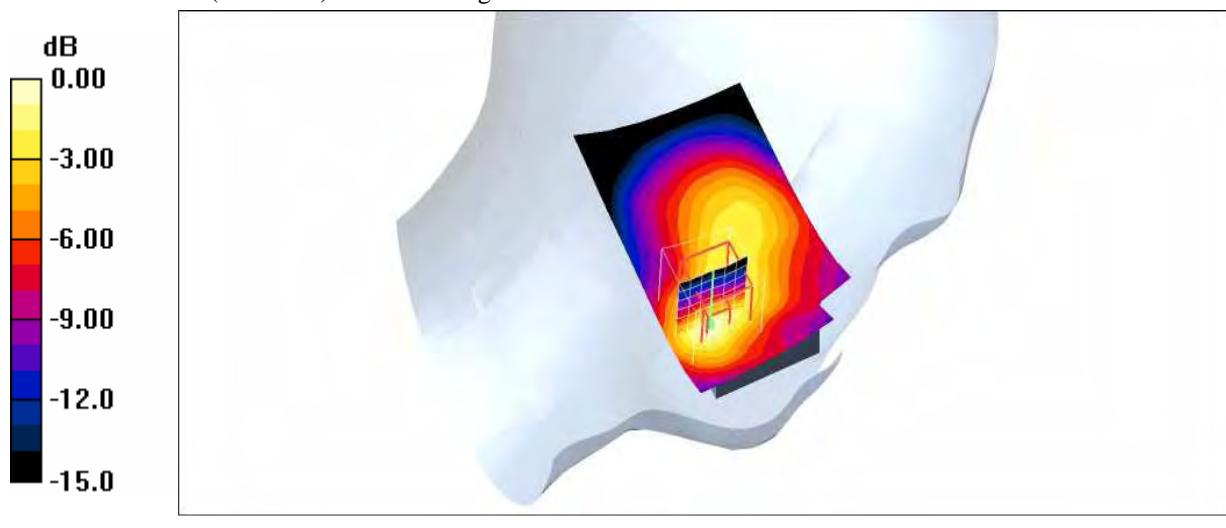
Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - Middle/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.359 mW/g


Touch position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.49 V/m; Power Drift = -0.033 dB

Peak SAR (extrapolated) = 0.588 W/kg

SAR(1 g) = 0.355 mW/g; SAR(10 g) = 0.187 mW/g

Maximum value of SAR (measured) = 0.389 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.5°C; liquid temperature: 21.5°C

Date/Time: 2008-04-18 18:15:57 Date/Time: 2008-04-18 18:22:11 Date/Time: 2008-04-18 18:34:07

P1528_OET65-LeftHandSide-GSM1900**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used: $f = 1909.8$ MHz; $\sigma = 1.43$ mho/m; $\epsilon_r = 41.2$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection) Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - High/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.414 mW/g

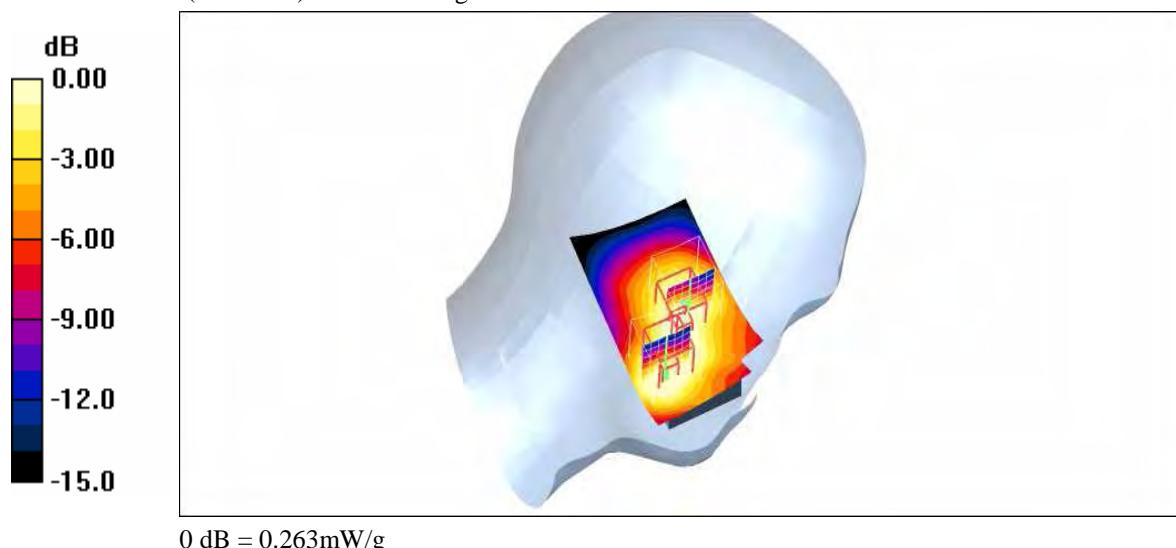
Touch position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.56 V/m; Power Drift = 0.038 dB

Peak SAR (extrapolated) = 0.671 W/kg

SAR(1 g) = 0.401 mW/g; SAR(10 g) = 0.208 mW/g

Maximum value of SAR (measured) = 0.441 mW/g


Touch position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.56 V/m; Power Drift = 0.038 dB

Peak SAR (extrapolated) = 0.368 W/kg

SAR(1 g) = 0.248 mW/g; SAR(10 g) = 0.170 mW/g

Maximum value of SAR (measured) = 0.263 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.4°C; liquid temperature: 21.5°C

Date/Time: 2008-04-18 19:30:16 Date/Time: 2008-04-18 19:36:35

P1528_OET65-LeftHandSide-GSM1900**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used: $f = 1850.2$ MHz; $\sigma = 1.43$ mho/m; $\epsilon_r = 41.2$; $\rho = 1000$ kg/m³

Phantom section: Left Section

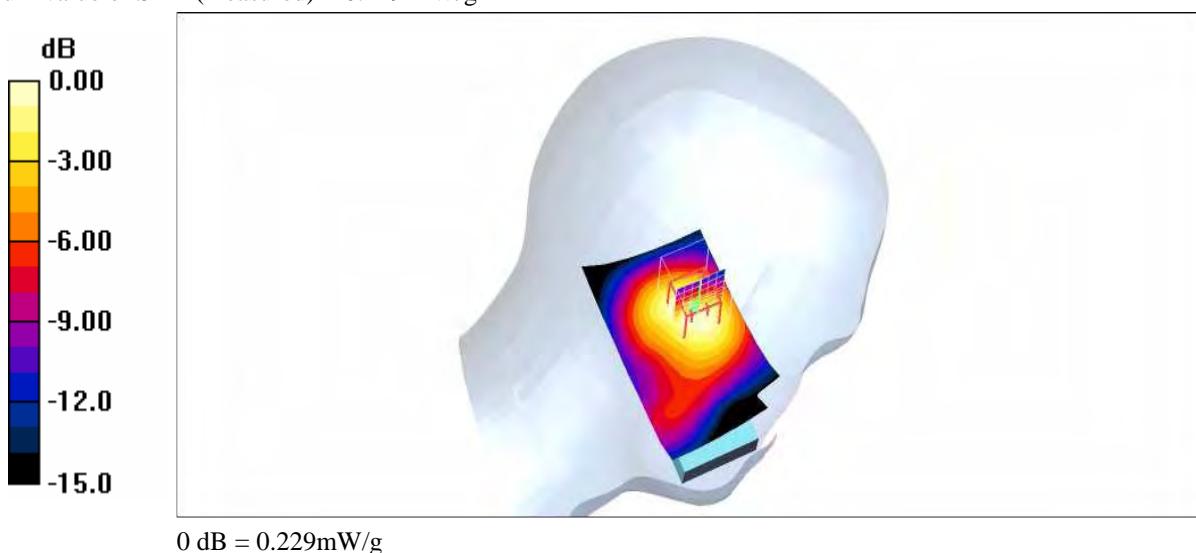
DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection) Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - Low/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.248 mW/g

Tilt position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 11.3 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.299 W/kg

SAR(1 g) = 0.210 mW/g; SAR(10 g) = 0.130 mW/g

Maximum value of SAR (measured) = 0.229 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.2°C; liquid temperature: 21.4°C

Date/Time: 2008-04-18 19:09:56 Date/Time: 2008-04-18 19:16:15

P1528_OET65-LeftHandSide-GSM1900**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used: $f = 1880$ MHz; $\sigma = 1.43$ mho/m; $\epsilon_r = 41.2$; $\rho = 1000$ kg/m³

Phantom section: Left Section

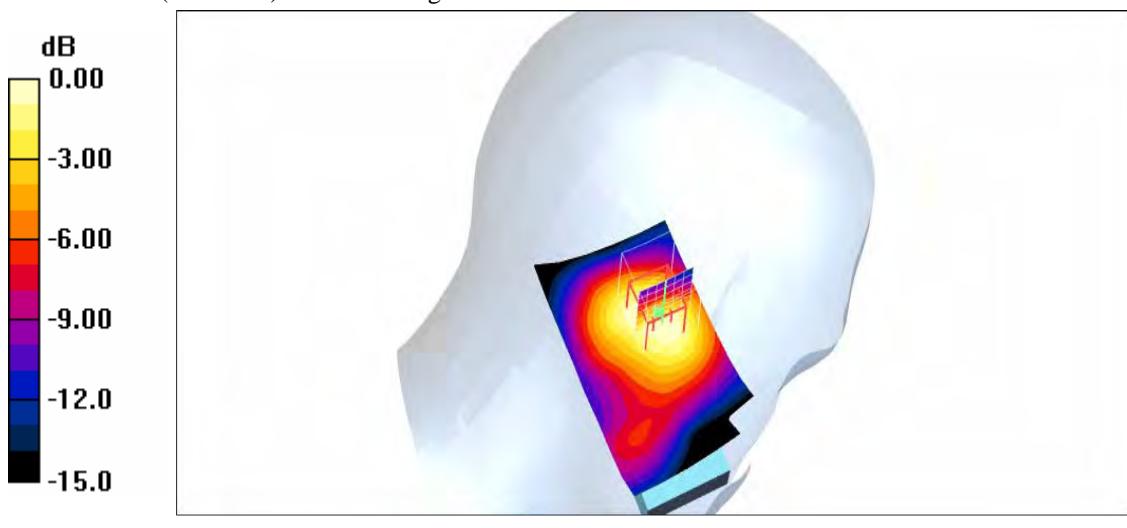
DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - Middle/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.262 mW/g

Tilt position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 12.7 V/m; Power Drift = 0.017 dB

Peak SAR (extrapolated) = 0.334 W/kg

SAR(1 g) = 0.224 mW/g; SAR(10 g) = 0.140 mW/g

Maximum value of SAR (measured) = 0.242 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.2°C; liquid temperature: 21.4°C

Date/Time: 2008-04-18 18:49:21 Date/Time: 2008-04-18 18:55:41

P1528_OET65-LeftHandSide-GSM1900**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used: $f = 1909.8$ MHz; $\sigma = 1.43$ mho/m; $\epsilon_r = 41.2$; $\rho = 1000$ kg/m³

Phantom section: Left Section

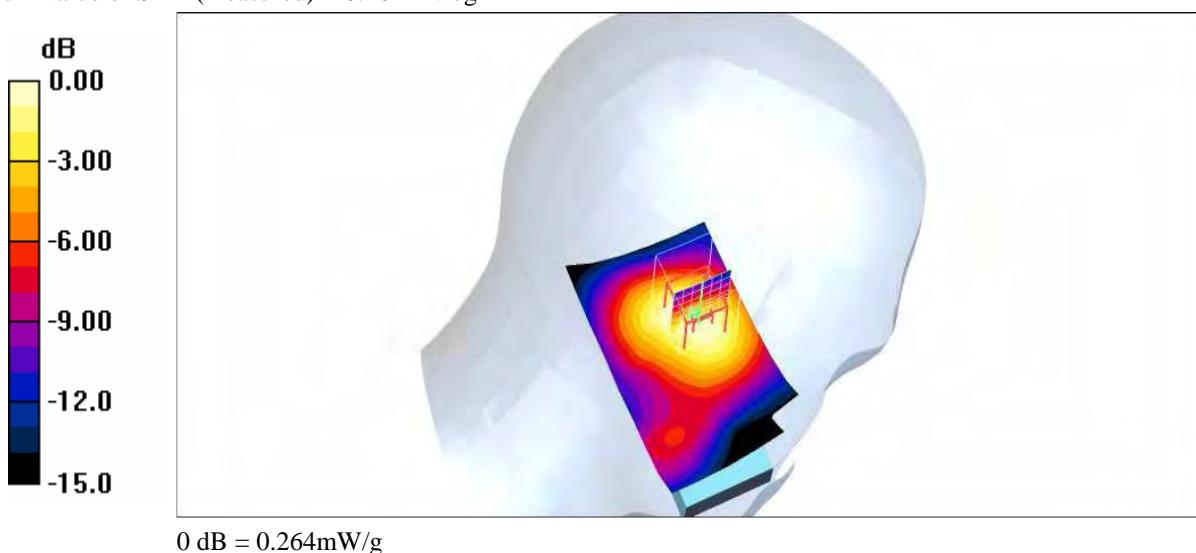
DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - High/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.285 mW/g

Tilt position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 13.3 V/m; Power Drift = 0.013 dB

Peak SAR (extrapolated) = 0.366 W/kg

SAR(1 g) = 0.243 mW/g; SAR(10 g) = 0.151 mW/g

Maximum value of SAR (measured) = 0.264 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.3°C; liquid temperature: 21.5°C

Date/Time: 2008-04-21 15:44:33 Date/Time: 2008-04-21 15:52:04

P1528_OET65-LeftHandSide-GSM1900-open**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used: $f = 1850.2$ MHz; $\sigma = 1.43$ mho/m; $\epsilon_r = 41.2$; $\rho = 1000$ kg/m³

Phantom section: Left Section

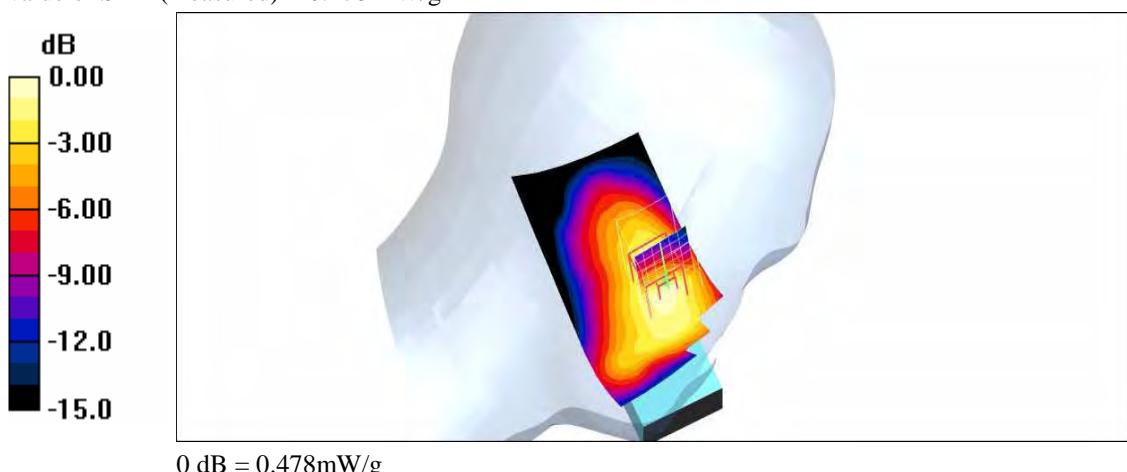
DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.492 mW/g

Touch position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 18.4 V/m; Power Drift = -0.034 dB

Peak SAR (extrapolated) = 0.701 W/kg

SAR(1 g) = 0.439 mW/g; SAR(10 g) = 0.273 mW/g

Maximum value of SAR (measured) = 0.478 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.2°C; liquid temperature: 21.1°C

Date/Time: 2008-04-21 16:14:19 Date/Time: 2008-04-21 16:20:55

P1528_OET65-LeftHandSide-GSM1900-open**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used: $f = 1880$ MHz; $\sigma = 1.43$ mho/m; $\epsilon_r = 41.2$; $\rho = 1000$ kg/m³

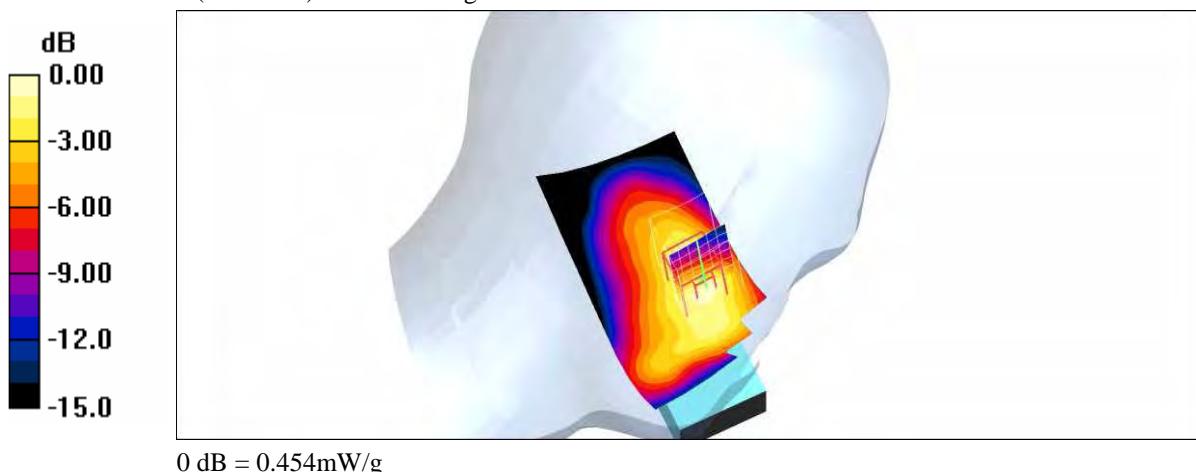
Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.456 mW/g


Touch position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.62 V/m; Power Drift = -0.011 dB

Peak SAR (extrapolated) = 0.680 W/kg

SAR(1 g) = 0.417 mW/g; SAR(10 g) = 0.256 mW/g

Maximum value of SAR (measured) = 0.454 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.2°C; liquid temperature: 21.1°C

Date/Time: 2008-04-21 16:36:02 Date/Time: 2008-04-21 16:42:38 Date/Time: 2008-04-21 16:54:23

P1528_OET65-LeftHandSide-GSM1900-open**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used: $f = 1909.8$ MHz; $\sigma = 1.43$ mho/m; $\epsilon_r = 41.2$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.366 mW/g

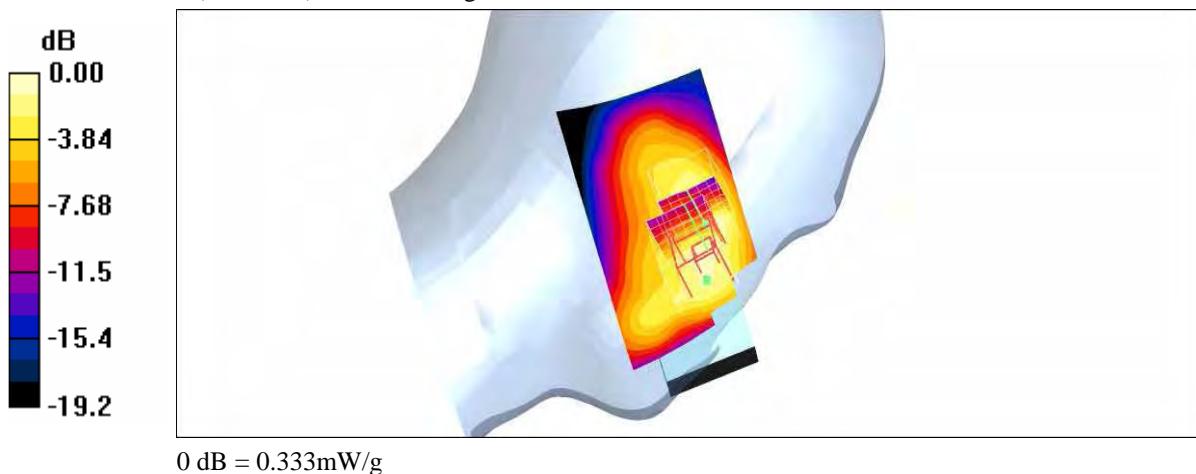
Touch position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.13 V/m; Power Drift = -0.050 dB

Peak SAR (extrapolated) = 0.555 W/kg

SAR(1 g) = 0.326 mW/g; SAR(10 g) = 0.197 mW/g

Maximum value of SAR (measured) = 0.360 mW/g


Touch position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.13 V/m; Power Drift = -0.050 dB

Peak SAR (extrapolated) = 0.436 W/kg

SAR(1 g) = 0.267 mW/g; SAR(10 g) = 0.162 mW/g

Maximum value of SAR (measured) = 0.333 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.2°C; liquid temperature: 21.1°C

Date/Time: 2008-04-21 17:10:15 Date/Time: 2008-04-21 17:17:03

P1528_OET65-LeftHandSide-GSM1900-open**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used: $f = 1850.2$ MHz; $\sigma = 1.43$ mho/m; $\epsilon_r = 41.2$; $\rho = 1000$ kg/m³

Phantom section: Left Section

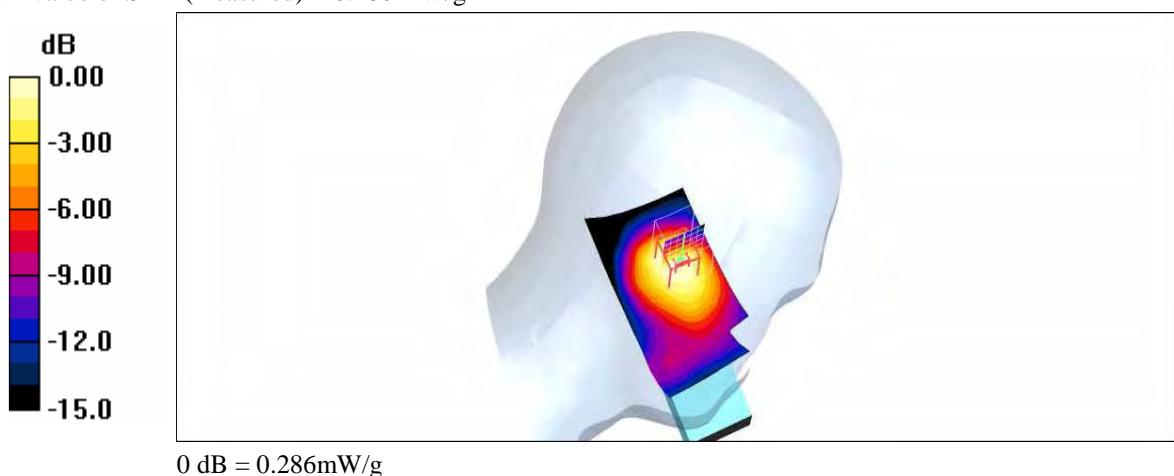
DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.297 mW/g

Tilt position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 13.0 V/m; Power Drift = -0.028 dB

Peak SAR (extrapolated) = 0.383 W/kg

SAR(1 g) = 0.263 mW/g; SAR(10 g) = 0.163 mW/g

Maximum value of SAR (measured) = 0.286 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.1°C; liquid temperature: 21.0°C

Date/Time: 2008-04-21 17:30:51 Date/Time: 2008-04-21 17:37:42

P1528_OET65-LeftHandSide-GSM1900-open**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used: $f = 1880$ MHz; $\sigma = 1.43$ mho/m; $\epsilon_r = 41.2$; $\rho = 1000$ kg/m³

Phantom section: Left Section

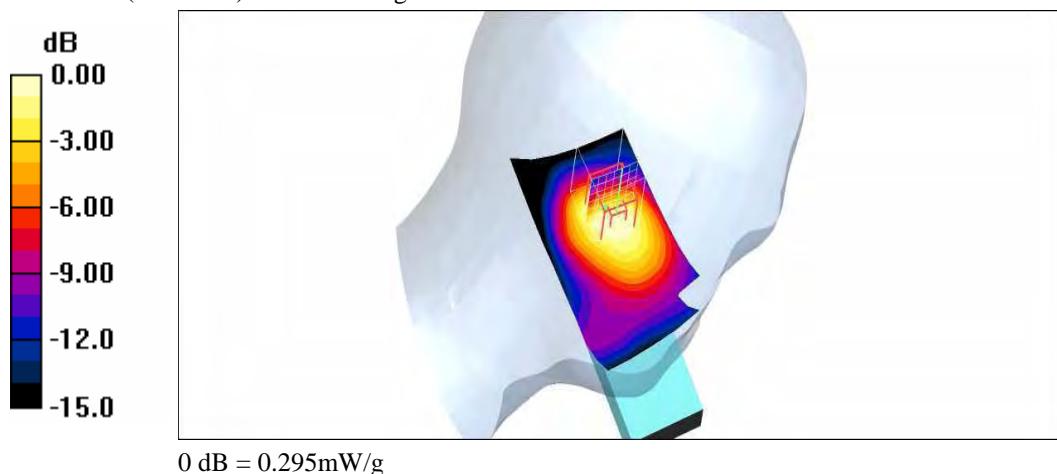
DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.316 mW/g

Tilt position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 14.7 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 0.408 W/kg

SAR(1 g) = 0.270 mW/g; SAR(10 g) = 0.166 mW/g

Maximum value of SAR (measured) = 0.295 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.1°C; liquid temperature: 21.0°C

Date/Time: 2008-04-21 17:51:40 Date/Time: 2008-04-21 17:58:32

P1528_OET65-LeftHandSide-GSM1900-open**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used: $f = 1909.8$ MHz; $\sigma = 1.43$ mho/m; $\epsilon_r = 41.2$; $\rho = 1000$ kg/m³

Phantom section: Left Section

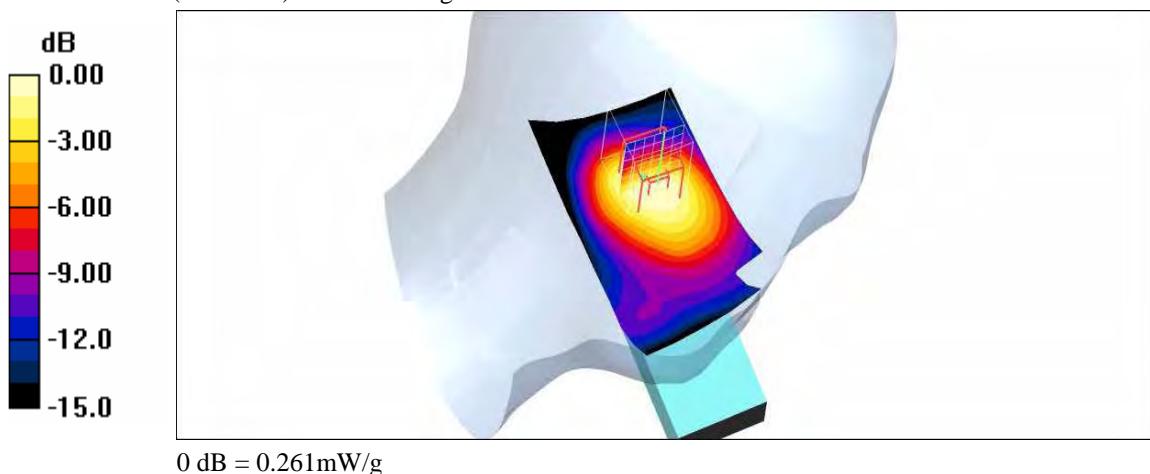
DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.292 mW/g

Tilt position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 14.0 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.371 W/kg

SAR(1 g) = 0.241 mW/g; SAR(10 g) = 0.149 mW/g

Maximum value of SAR (measured) = 0.261 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.1°C; liquid temperature: 21.0°C

Date/Time: 2008-04-18 19:54:55 Date/Time: 2008-04-18 20:01:03

P1528_OET65-RightHandSide-GSM1900**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used: $f = 1850.2$ MHz; $\sigma = 1.43$ mho/m; $\epsilon_r = 41.2$; $\rho = 1000$ kg/m³

Phantom section: Right Section

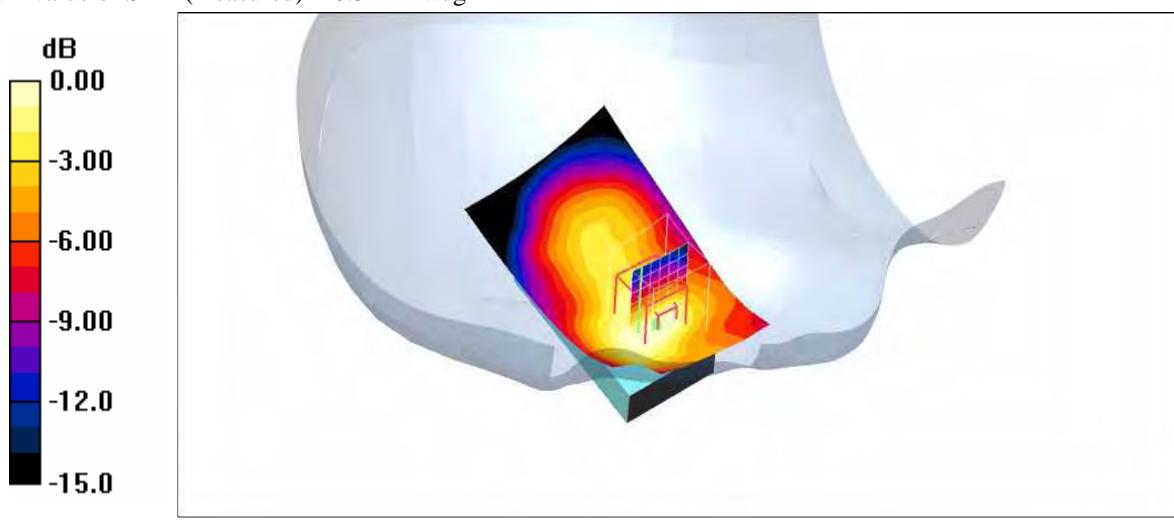
DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - Low/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.341 mW/g

Touch position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 15.7 V/m; Power Drift = 0.024 dB

Peak SAR (extrapolated) = 0.450 W/kg

SAR(1 g) = 0.291 mW/g; SAR(10 g) = 0.184 mW/g

Maximum value of SAR (measured) = 0.321 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.1°C; liquid temperature: 21.5°C

Date/Time: 2008-04-18 20:16:14 Date/Time: 2008-04-18 20:22:21

P1528_OET65-RightHandSide-GSM1900**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used: $f = 1880$ MHz; $\sigma = 1.43$ mho/m; $\epsilon_r = 41.2$; $\rho = 1000$ kg/m³

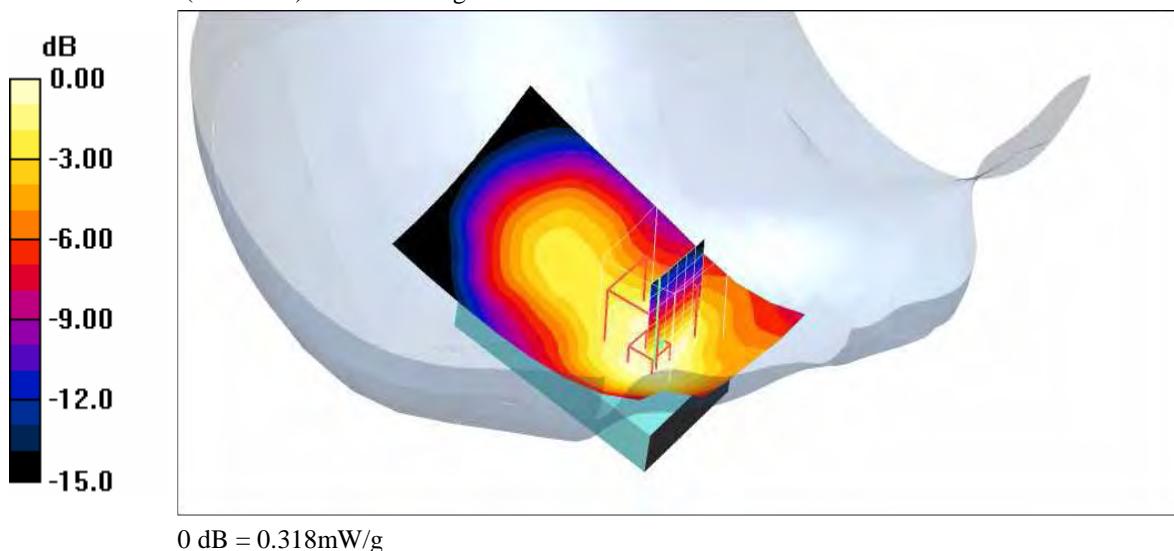
Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection) Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - Middle/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.334 mW/g


Touch position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.9 V/m; Power Drift = -0.020 dB

Peak SAR (extrapolated) = 0.449 W/kg

SAR(1 g) = 0.288 mW/g; SAR(10 g) = 0.178 mW/g

Maximum value of SAR (measured) = 0.318 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.1°C; liquid temperature: 21.5°C

Date/Time: 2008-04-18 20:37:11 Date/Time: 2008-04-18 20:43:21

P1528_OET65-RightHandSide-GSM1900**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used: $f = 1909.8$ MHz; $\sigma = 1.43$ mho/m; $\epsilon_r = 41.2$; $\rho = 1000$ kg/m³

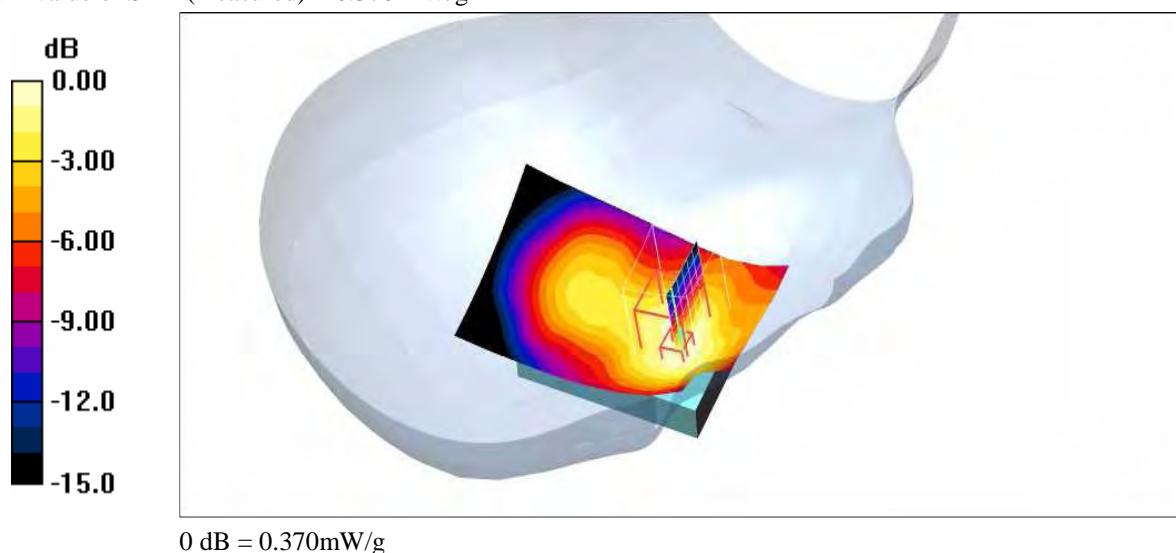
Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - High/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.373 mW/g


Touch position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.9 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 0.537 W/kg

SAR(1 g) = 0.333 mW/g; SAR(10 g) = 0.197 mW/g

Maximum value of SAR (measured) = 0.370 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.1°C; liquid temperature: 21.5°C

Date/Time: 2008-04-18 21:03:45 Date/Time: 2008-04-18 21:10:35

P1528_OET65-RightHandSide-GSM1900**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used: $f = 1850.2$ MHz; $\sigma = 1.43$ mho/m; $\epsilon_r = 41.2$; $\rho = 1000$ kg/m³

Phantom section: Right Section

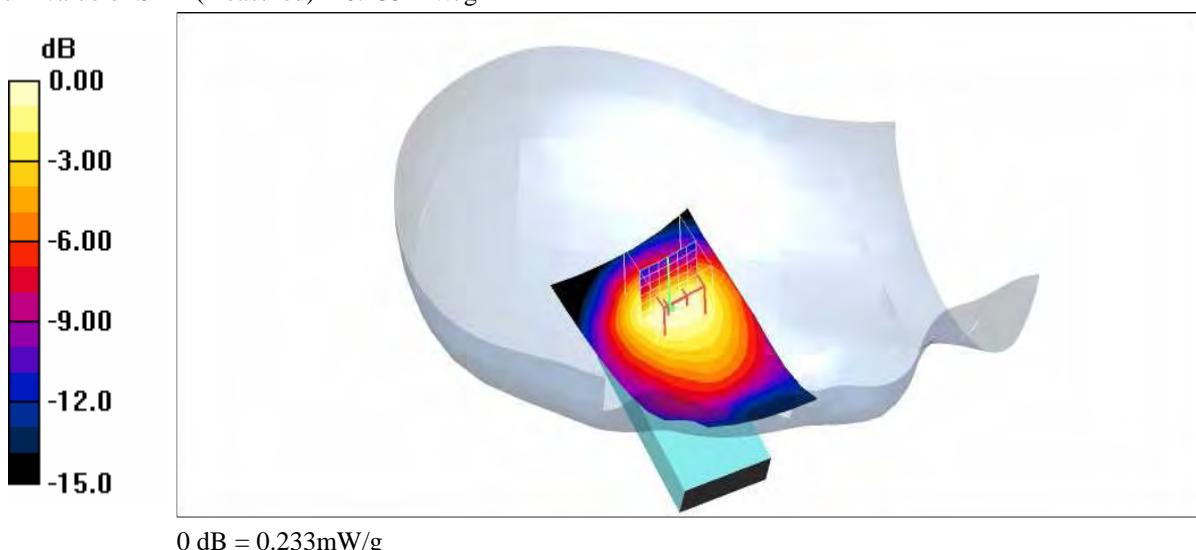
DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - Low/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.264 mW/g

Tilt position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 13.6 V/m; Power Drift = -0.031 dB

Peak SAR (extrapolated) = 0.310 W/kg

SAR(1 g) = 0.216 mW/g; SAR(10 g) = 0.137 mW/g

Maximum value of SAR (measured) = 0.233 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.1°C; liquid temperature: 21.5°C

Date/Time: 2008-04-18 21:25:18 Date/Time: 2008-04-18 21:31:26

P1528_OET65-RightHandSide-GSM1900**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used: $f = 1880$ MHz; $\sigma = 1.43$ mho/m; $\epsilon_r = 41.2$; $\rho = 1000$ kg/m³

Phantom section: Right Section

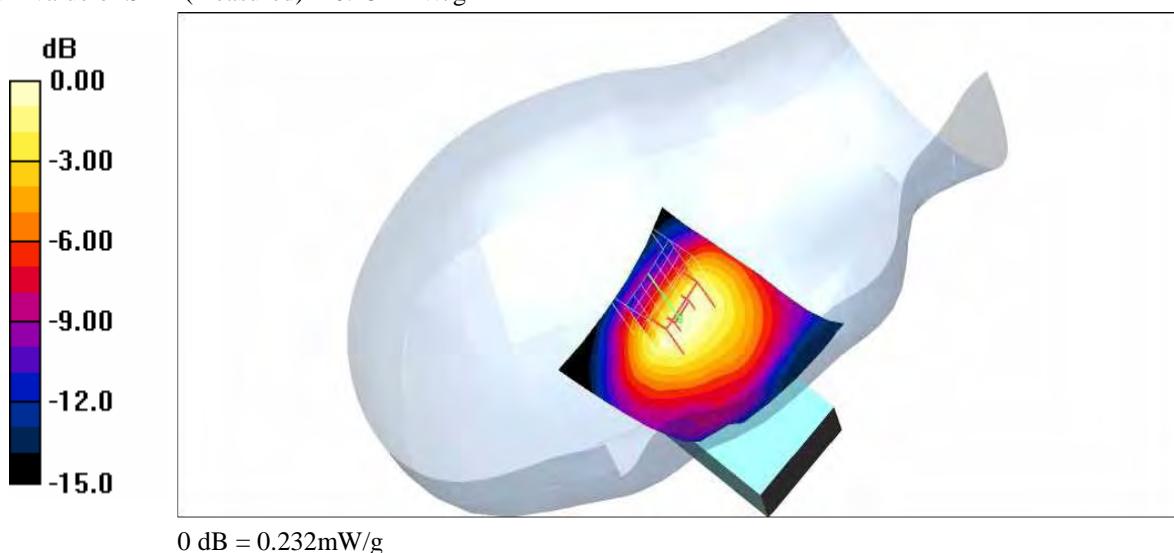
DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - Middle/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.264 mW/g

Tilt position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 13.5 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.305 W/kg

SAR(1 g) = 0.215 mW/g; SAR(10 g) = 0.136 mW/g

Maximum value of SAR (measured) = 0.232 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.1°C; liquid temperature: 21.5°C

Date/Time: 2008-04-18 21:44:41 Date/Time: 2008-04-18 21:50:50

P1528_OET65-RightHandSide-GSM1900**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used: $f = 1909.8$ MHz; $\sigma = 1.43$ mho/m; $\epsilon_r = 41.2$; $\rho = 1000$ kg/m³

Phantom section: Right Section

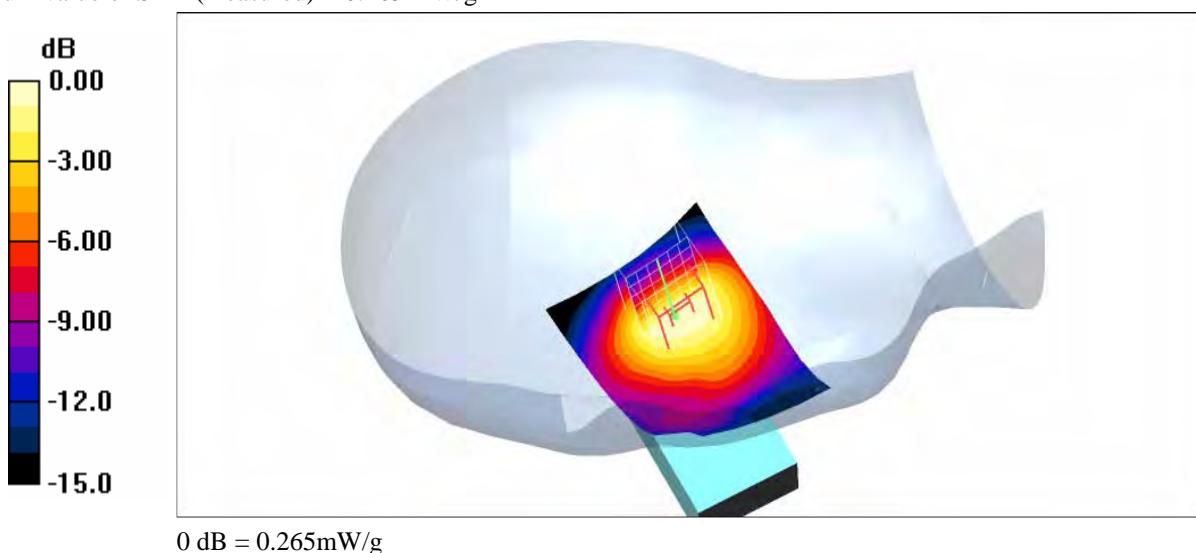
DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - High/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.300 mW/g

Tilt position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 14.3 V/m; Power Drift = 0.039 dB

Peak SAR (extrapolated) = 0.352 W/kg

SAR(1 g) = 0.245 mW/g; SAR(10 g) = 0.154 mW/g

Maximum value of SAR (measured) = 0.265 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.1°C; liquid temperature: 21.5°C

Date/Time: 2008-04-20 14:31:55 Date/Time: 2008-04-20 14:38:21

P1528_OET65-RightHandSide-GSM1900-open**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used: $f = 1850.2$ MHz; $\sigma = 1.43$ mho/m; $\epsilon_r = 41.2$; $\rho = 1000$ kg/m³

Phantom section: Right Section

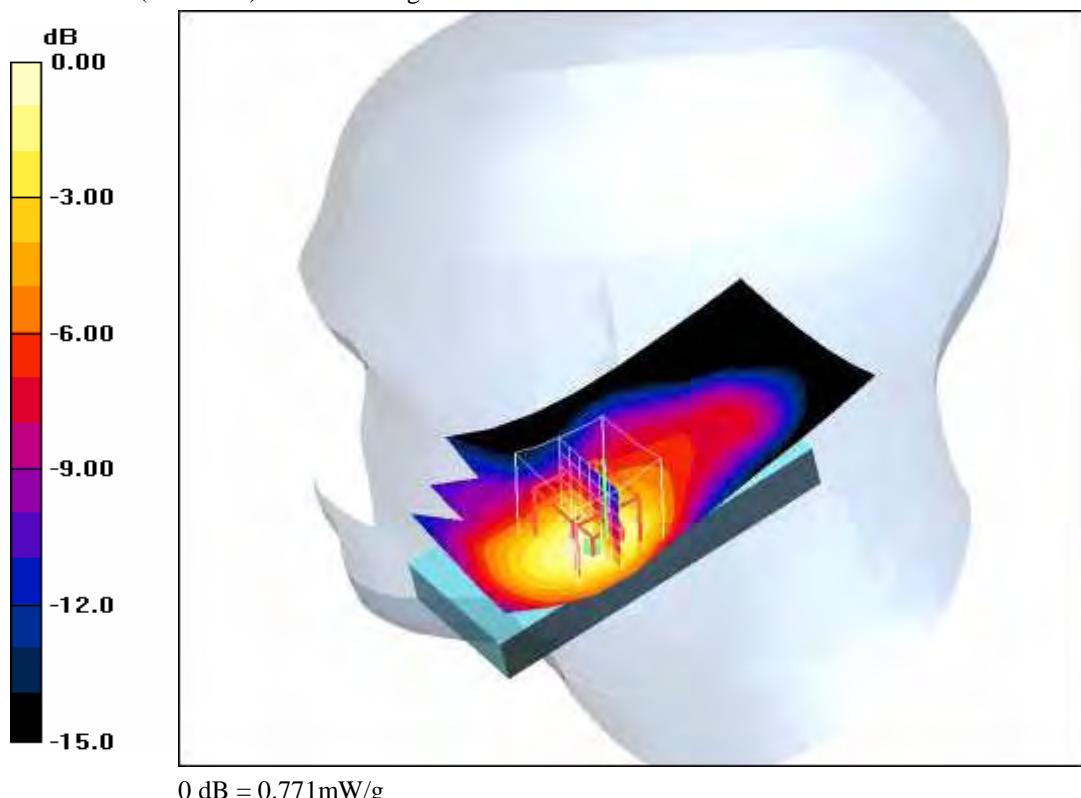
DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.751 mW/g

Touch position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 23.6 V/m; Power Drift = -0.039 dB

Peak SAR (extrapolated) = 1.08 W/kg

SAR(1 g) = 0.694 mW/g; SAR(10 g) = 0.407 mW/g

Maximum value of SAR (measured) = 0.771 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 21.8°C; liquid temperature: 20.4°C

Date/Time: 2008-04-20 14:55:32 Date/Time: 2008-04-20 15:02:21

P1528_OET65-RightHandSide-GSM1900-open**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used: $f = 1880$ MHz; $\sigma = 1.43$ mho/m; $\epsilon_r = 41.2$; $\rho = 1000$ kg/m³

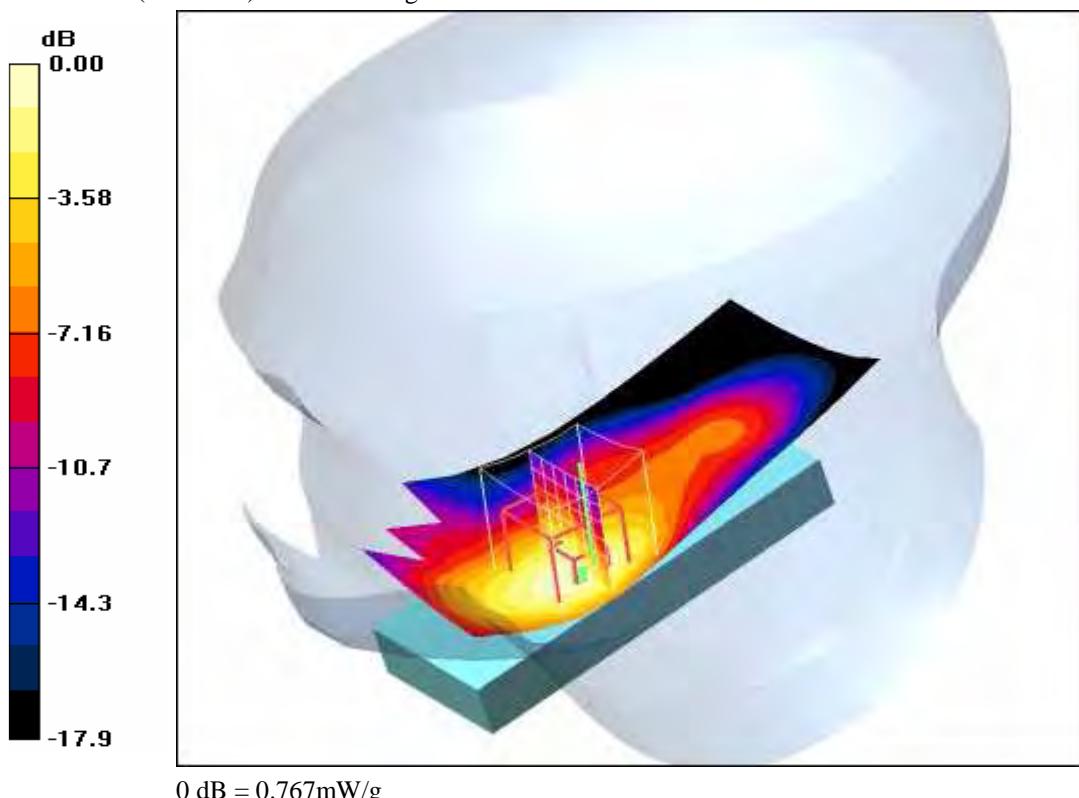
Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection) Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.778 mW/g


Touch position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 23.6 V/m; Power Drift = 0.015 dB

Peak SAR (extrapolated) = 1.09 W/kg

SAR(1 g) = 0.687 mW/g; SAR(10 g) = 0.396 mW/g

Maximum value of SAR (measured) = 0.767 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 21.8°C; liquid temperature: 20.4°C

Date/Time: 2008-04-20 15:17:12 Date/Time: 2008-04-20 15:23:39

P1528_OET65-RightHandSide-GSM1900-open**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used: $f = 1909.8$ MHz; $\sigma = 1.43$ mho/m; $\epsilon_r = 41.2$; $\rho = 1000$ kg/m³

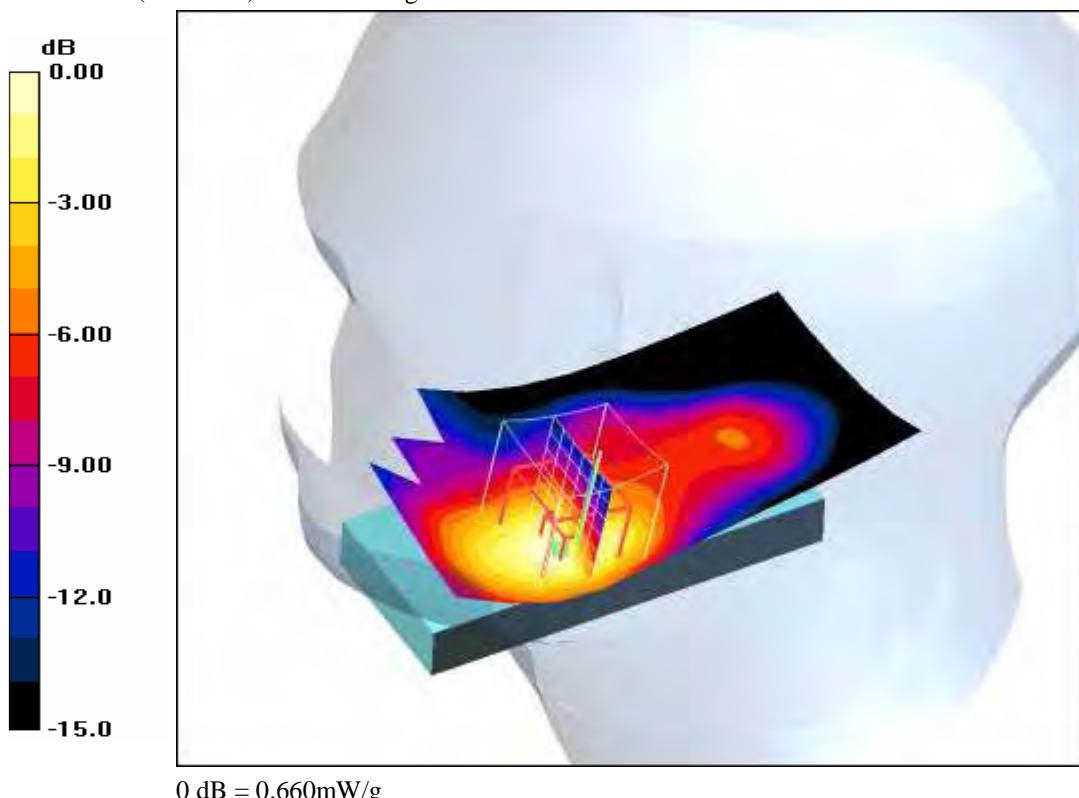
Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Touch position - High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.654 mW/g


Touch position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 22.0 V/m; Power Drift = -0.105 dB

Peak SAR (extrapolated) = 0.949 W/kg

SAR(1 g) = 0.598 mW/g; SAR(10 g) = 0.343 mW/g

Maximum value of SAR (measured) = 0.660 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 21.9°C; liquid temperature: 20.3°C

Date/Time: 2008-04-20 15:41:08 Date/Time: 2008-04-20 15:48:30

P1528_OET65-RightHandSide-GSM1900-open**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used: $f = 1850.2$ MHz; $\sigma = 1.43$ mho/m; $\epsilon_r = 41.2$; $\rho = 1000$ kg/m³

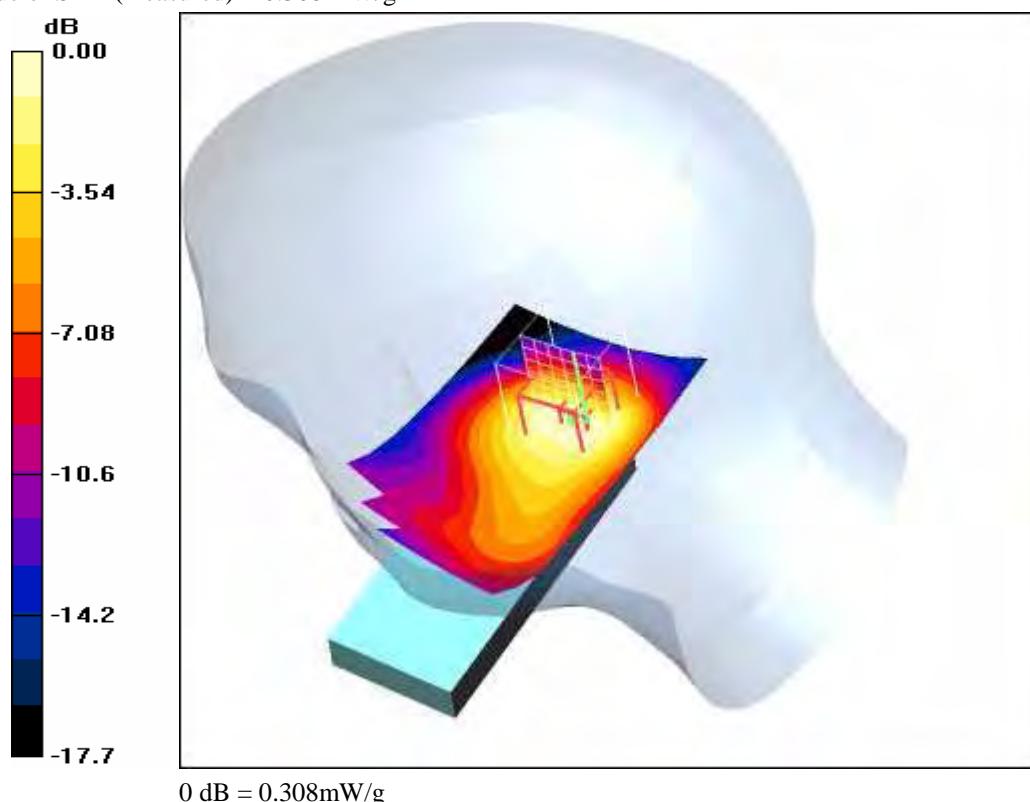
Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - Low/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.358 mW/g


Tilt position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.5 V/m; Power Drift = -0.049 dB

Peak SAR (extrapolated) = 0.425 W/kg

SAR(1 g) = 0.284 mW/g; SAR(10 g) = 0.174 mW/g

Maximum value of SAR (measured) = 0.308 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.0°C; liquid temperature: 20.3°C

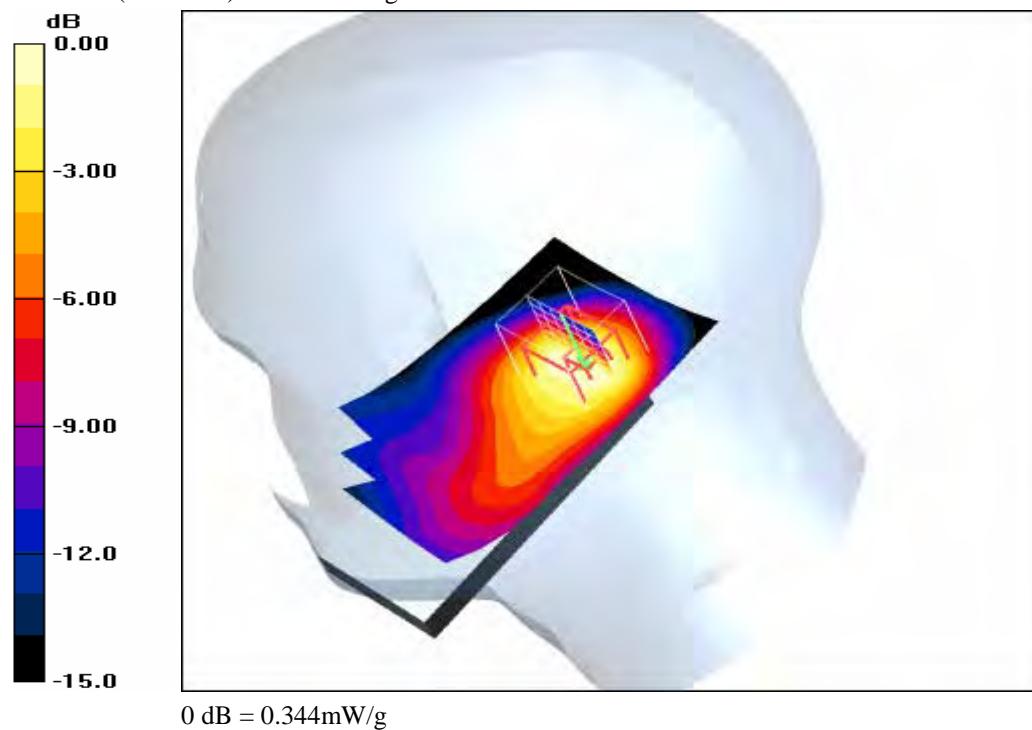
Date/Time: 2008-04-20 16:03:29 Date/Time: 2008-04-20 16:10:05

P1528_OET65-RightHandSide-GSM1900-open

DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used: $f = 1880$ MHz; $\sigma = 1.43$ mho/m; $\epsilon_t = 41.2$; $\rho = 1000$ kg/m³


Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - Middle/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 0.393 mW/g

Tilt position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 16.3 V/m; Power Drift = 0.030 dB
Peak SAR (extrapolated) = 0.482 W/kg
SAR(1 g) = 0.316 mW/g; SAR(10 g) = 0.188 mW/g
Maximum value of SAR (measured) = 0.344 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions):

ambient temperature: 22.0°C; liquid temperature: 20.2°C

Date/Time: 2008-04-20 16:23:19 Date/Time: 2008-04-20 16:29:55

P1528_OET65-RightHandSide-GSM1900-open**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used: $f = 1909.8$ MHz; $\sigma = 1.43$ mho/m; $\epsilon_r = 41.2$; $\rho = 1000$ kg/m³

Phantom section: Right Section

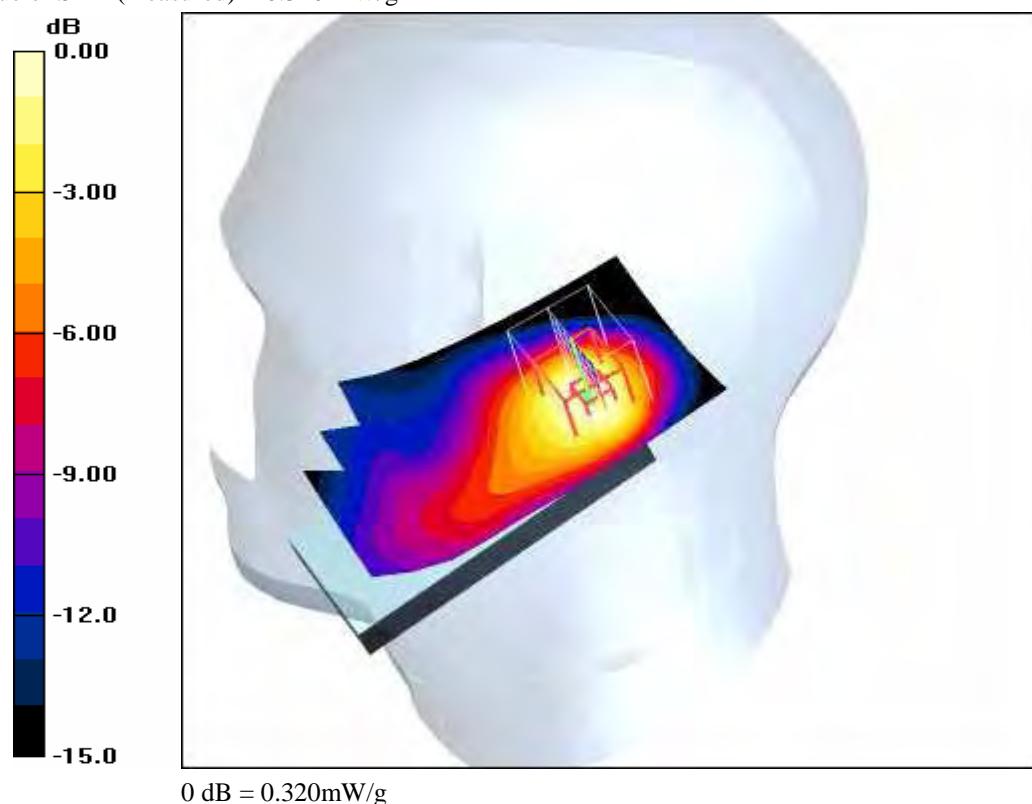
DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Tilt position - High/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.367 mW/g

Tilt position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 15.9 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.446 W/kg

SAR(1 g) = 0.292 mW/g; SAR(10 g) = 0.172 mW/g

Maximum value of SAR (measured) = 0.320 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.0°C; liquid temperature: 20.2°C

Annex 2.4 PCS 1900 MHz body

Date/Time: 2008-04-16 14:33:52 Date/Time: 2008-04-16 14:39:06

P1528_OET65-Body-GSM1900 GPRS class 10**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 1900 GPRS class 10; Frequency: 1850.2 MHz; Duty Cycle: 1:4

Medium: M1900 Medium parameters used: $f = 1850.2$ MHz; $\sigma = 1.54$ mho/m; $\epsilon_r = 52.5$; $\rho = 1000$ kg/m³

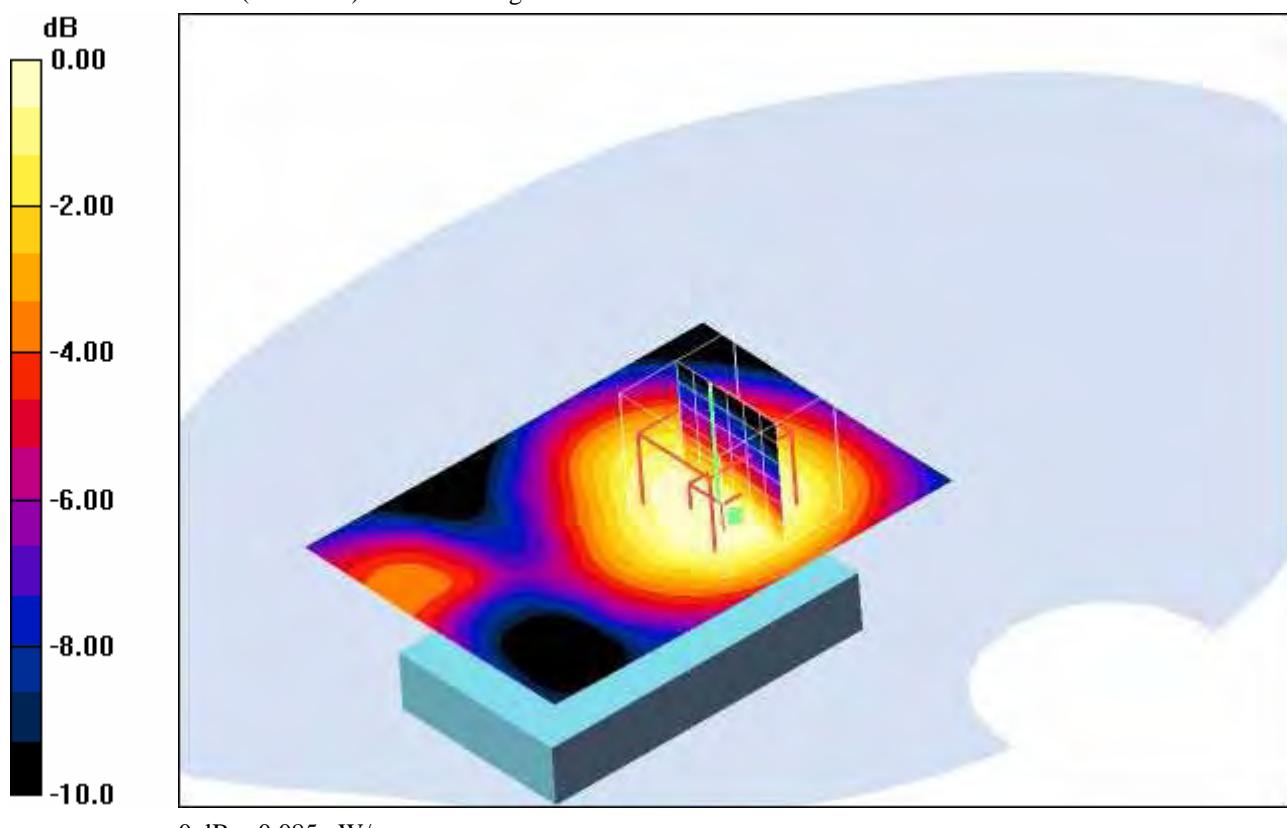
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.46, 4.46, 4.46); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Front position - Low/Area Scan (51x71x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.089 mW/g


Front position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.68 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.112 W/kg

SAR(1 g) = 0.080 mW/g; SAR(10 g) = 0.053 mW/g

Maximum value of SAR (measured) = 0.085 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : 15 mm

ambient temperature: 22.6°C; liquid temperature: 20.7°C

Date/Time: 2008-04-16 17:47:32 Date/Time: 2008-04-16 17:53:19

P1528_OET65-Body-GSM1900 GPRS class 10**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 1900 GPRS class 10; Frequency: 1880 MHz; Duty Cycle: 1:4

Medium: M1900 Medium parameters used: $f = 1880$ MHz; $\sigma = 1.54$ mho/m; $\epsilon_r = 52.5$; $\rho = 1000$ kg/m³

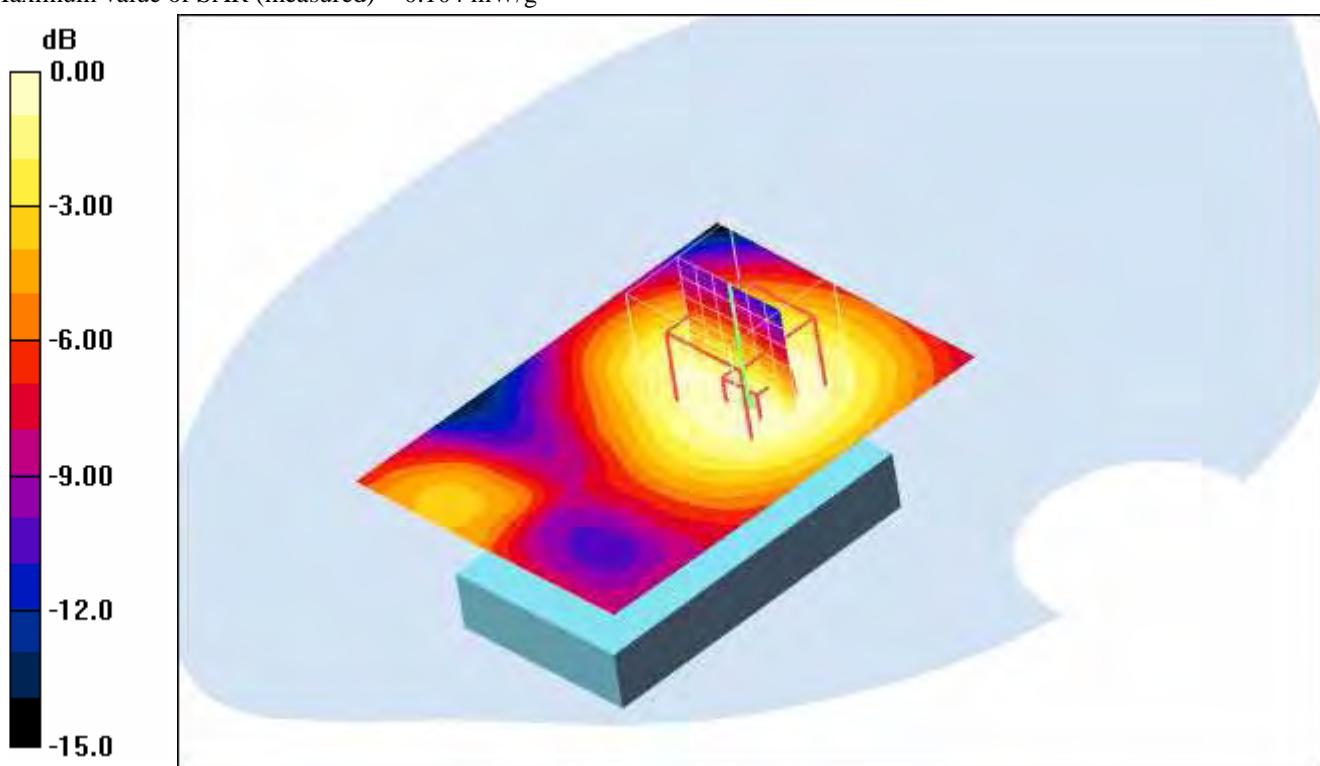
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.46, 4.46, 4.46); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Front position - Middle/Area Scan (51x71x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.105 mW/g


Front position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.60 V/m; Power Drift = -0.027 dB

Peak SAR (extrapolated) = 0.142 W/kg

SAR(1 g) = 0.097 mW/g; SAR(10 g) = 0.064 mW/g

Maximum value of SAR (measured) = 0.104 mW/g

0 dB = 0.104mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : 15 mm

ambient temperature: 22.2°C; liquid temperature: 20.6°C

Date/Time: 2008-04-16 18:07:48 Date/Time: 2008-04-16 18:13:11

P1528_OET65-Body-GSM1900 GPRS class 10**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 1900 GPRS class 10; Frequency: 1909.8 MHz; Duty Cycle: 1:4

Medium: M1900 Medium parameters used: $f = 1909.8$ MHz; $\sigma = 1.54$ mho/m; $\epsilon_r = 52.5$; $\rho = 1000$ kg/m³

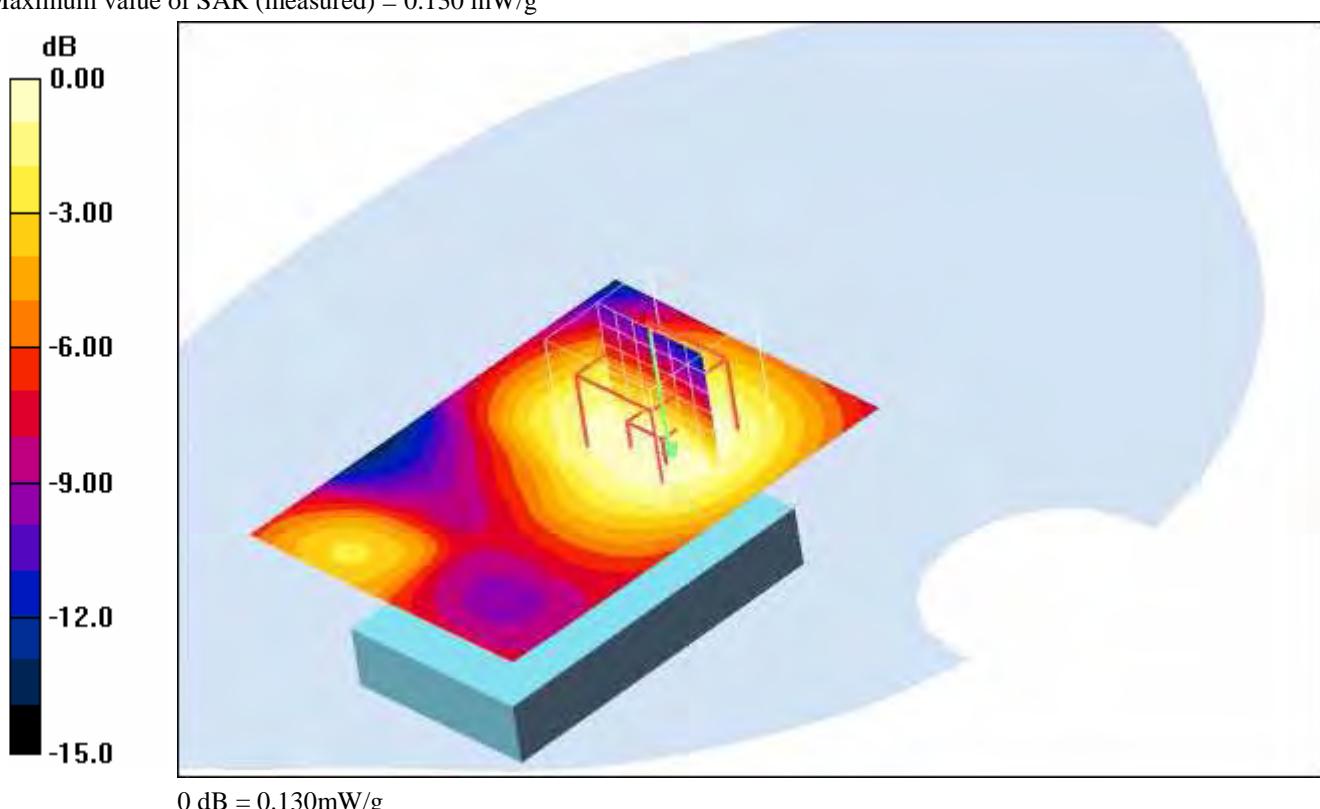
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.46, 4.46, 4.46); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Front position - High/Area Scan (51x71x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.130 mW/g


Front position - High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.73 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 0.174 W/kg

SAR(1 g) = 0.122 mW/g; SAR(10 g) = 0.080 mW/g

Maximum value of SAR (measured) = 0.130 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : 15 mm

ambient temperature: 22.2°C; liquid temperature: 20.6°C

Date/Time: 2008-04-16 15:02:59 Date/Time: 2008-04-16 15:08:38

P1528_OET65-Body-GSM1900 GPRS class 10**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 1900 GPRS class 10; Frequency: 1850.2 MHz; Duty Cycle: 1:4

Medium: M1900 Medium parameters used: $f = 1850.2$ MHz; $\sigma = 1.54$ mho/m; $\epsilon_r = 52.5$; $\rho = 1000$ kg/m³

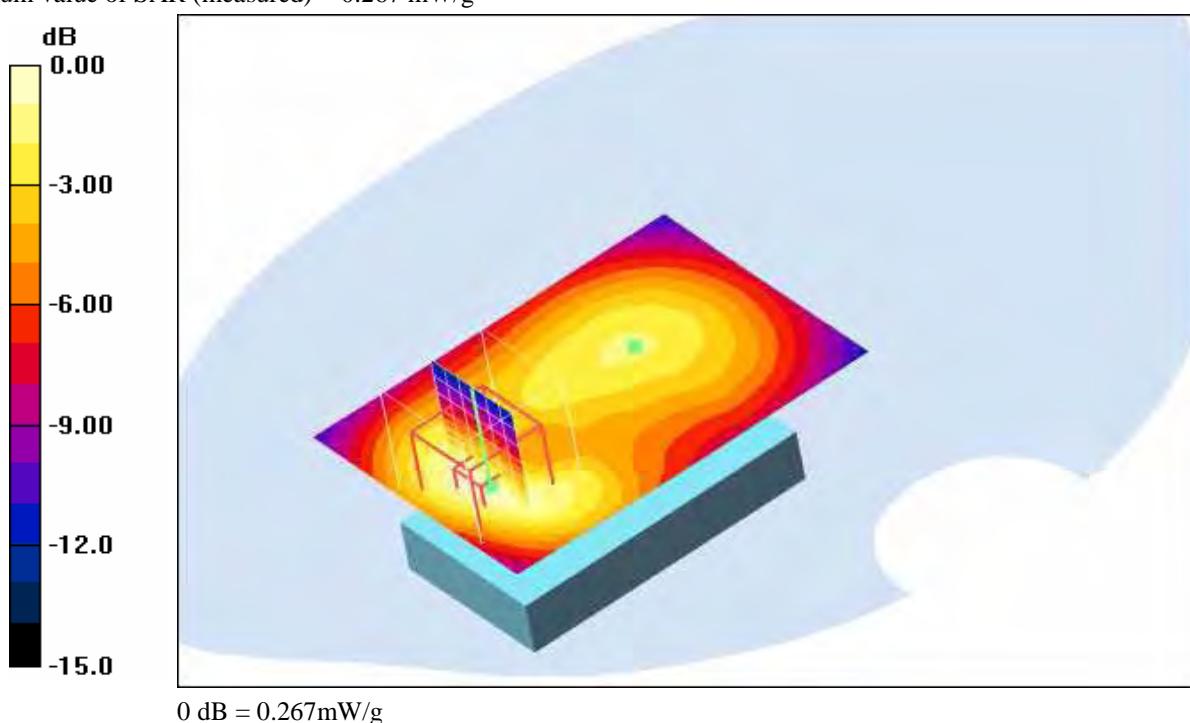
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.46, 4.46, 4.46); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Rear position - Low/Area Scan (51x71x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.266 mW/g


Rear position - Low/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.0 V/m; Power Drift = -0.038 dB

Peak SAR (extrapolated) = 0.384 W/kg

SAR(1 g) = 0.234 mW/g; SAR(10 g) = 0.132 mW/g

Maximum value of SAR (measured) = 0.267 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : 15 mm

ambient temperature: 22.5°C; liquid temperature: 20.6°C

Date/Time: 2008-04-16 15:36:13 Date/Time: 2008-04-16 15:41:34 Date/Time: 2008-04-16 15:53:20

P1528_OET65-Body-GSM1900 GPRS class 10**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 1900 GPRS class 10; Frequency: 1880 MHz; Duty Cycle: 1:4

Medium: M1900 Medium parameters used: $f = 1880$ MHz; $\sigma = 1.54$ mho/m; $\epsilon_r = 52.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.46, 4.46, 4.46); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Rear position - Middle/Area Scan (51x71x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.251 mW/g

Rear position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

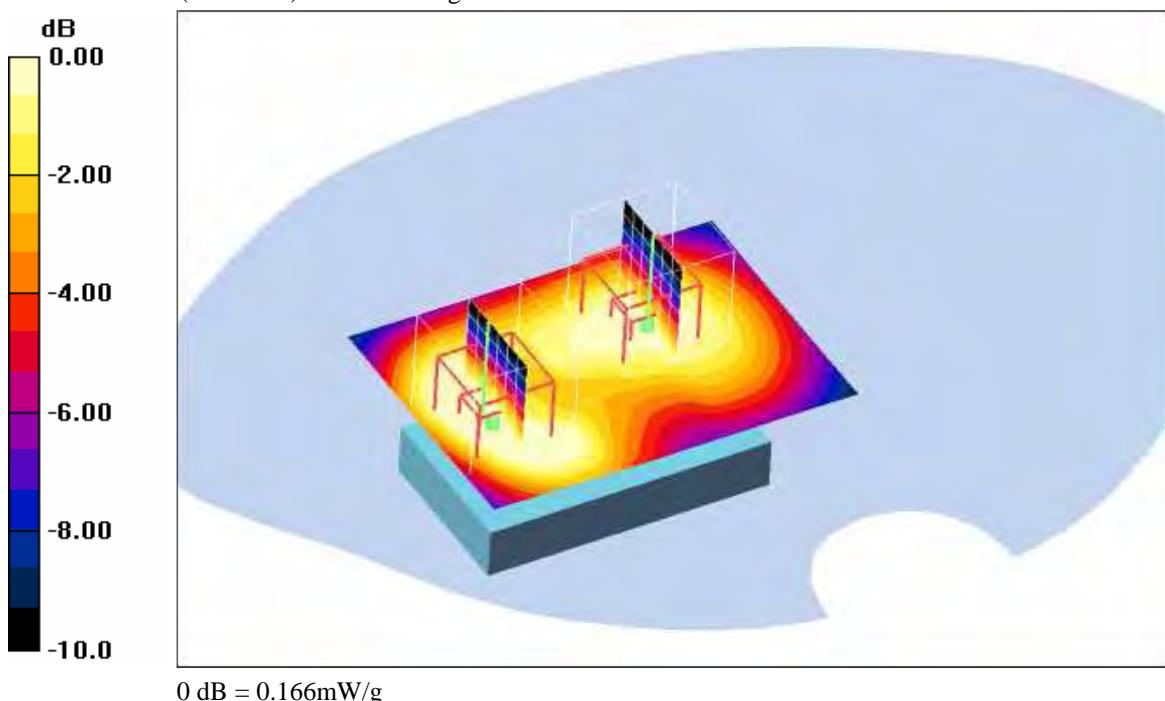
Reference Value = 13.6 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.366 W/kg

SAR(1 g) = 0.223 mW/g; SAR(10 g) = 0.125 mW/g

Maximum value of SAR (measured) = 0.247 mW/g

Rear position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 13.6 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.237 W/kg

SAR(1 g) = 0.156 mW/g; SAR(10 g) = 0.102 mW/g

Maximum value of SAR (measured) = 0.166 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : 15 mm

ambient temperature: 22.4°C; liquid temperature: 20.6°C

Date/Time: 2008-04-16 16:08:44 Date/Time: 2008-04-16 16:14:22 Date/Time: 2008-04-16 16:26:50

P1528_OET65-Body-GSM1900 GPRS class 10**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 1900 GPRS class 10; Frequency: 1909.8 MHz; Duty Cycle: 1:4

Medium: M1900 Medium parameters used: $f = 1909.8$ MHz; $\sigma = 1.54$ mho/m; $\epsilon_r = 52.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.46, 4.46, 4.46); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Rear position -High/Area Scan (51x71x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.315 mW/g

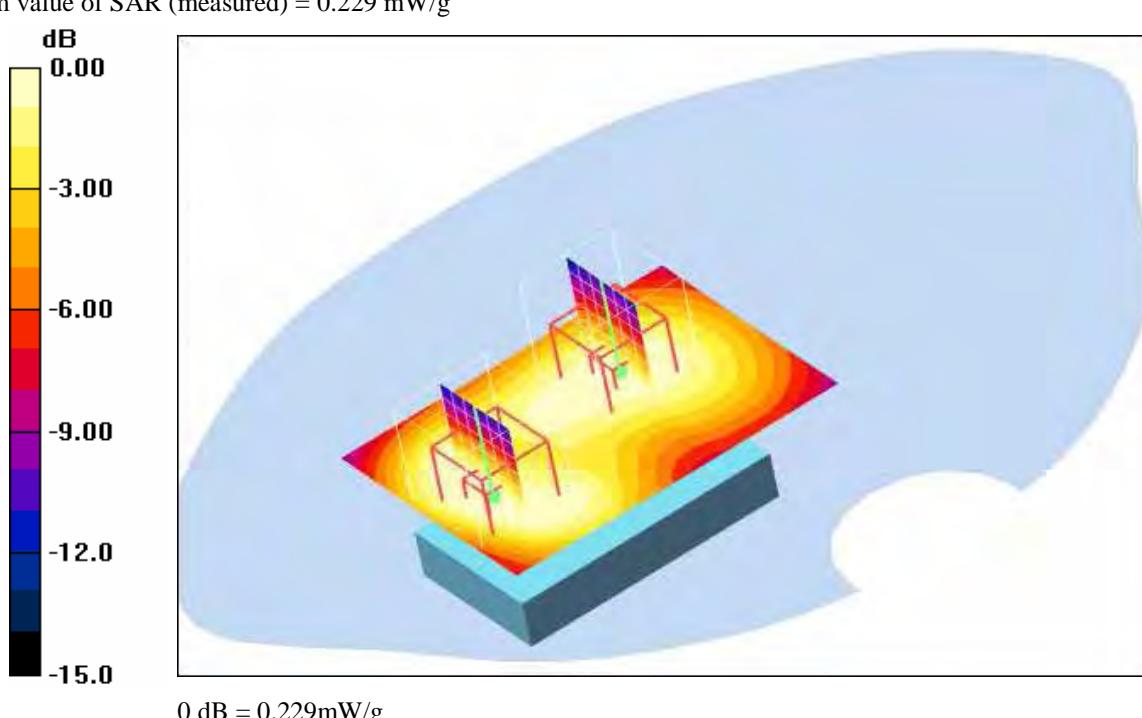
Rear position -High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.0 V/m; Power Drift = 0.040 dB

Peak SAR (extrapolated) = 0.456 W/kg

SAR(1 g) = 0.273 mW/g; SAR(10 g) = 0.153 mW/g

Maximum value of SAR (measured) = 0.306 mW/g


Rear position -High/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.0 V/m; Power Drift = 0.040 dB

Peak SAR (extrapolated) = 0.334 W/kg

SAR(1 g) = 0.214 mW/g; SAR(10 g) = 0.138 mW/g

Maximum value of SAR (measured) = 0.229 mW/g

Additional information:

position or distance of DUT to SAM (if not standard head positions) : 15 mm

ambient temperature: 22.3°C; liquid temperature: 20.7°C

Date/Time: 2008-04-16 17:14:48 Date/Time: 2008-04-16 17:20:00 Date/Time: 2008-04-16 17:32:11

P1528_OET65-Body-GSM1900**DUT: Sony Ericsson; Type: AAB-1032091-BV; Serial: TP8108062V**

Communication System: PCS 1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8

Medium: M1900 Medium parameters used: $f = 1909.8$ MHz; $\sigma = 1.54$ mho/m; $\epsilon_r = 52.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.46, 4.46, 4.46); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2008-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Rear position -High/Area Scan (51x71x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.298 mW/g

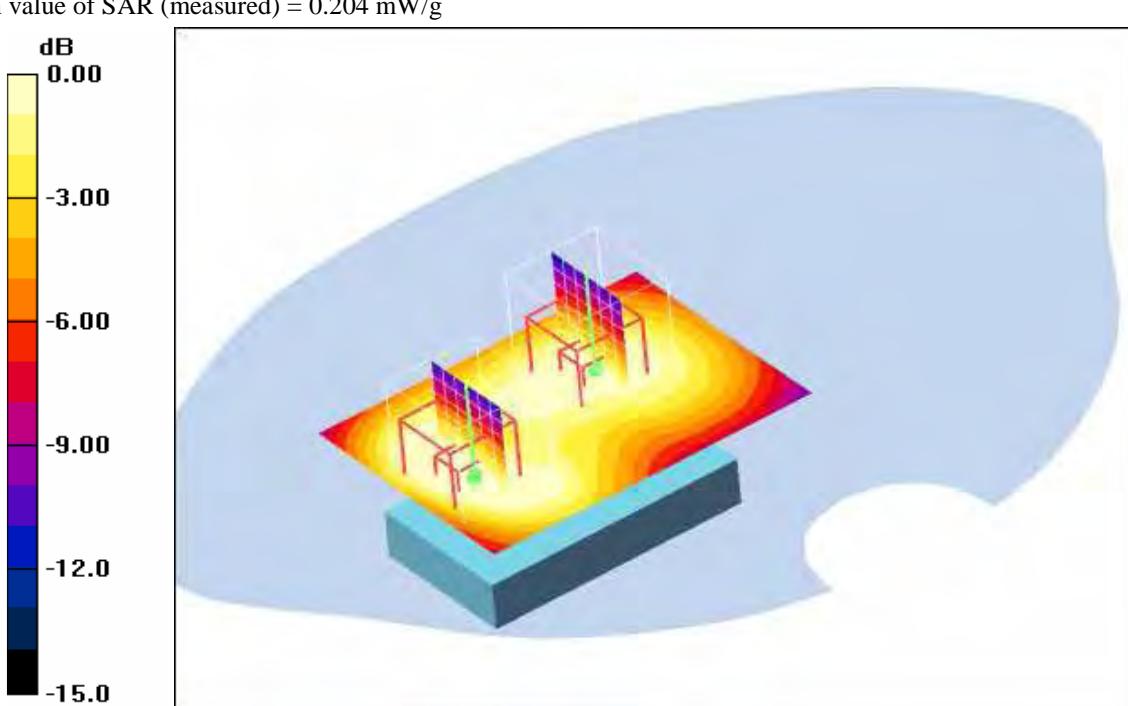
Rear position -High/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.4 V/m; Power Drift = -0.011 dB

Peak SAR (extrapolated) = 0.444 W/kg

SAR(1 g) = 0.263 mW/g; SAR(10 g) = 0.146 mW/g

Maximum value of SAR (measured) = 0.294 mW/g

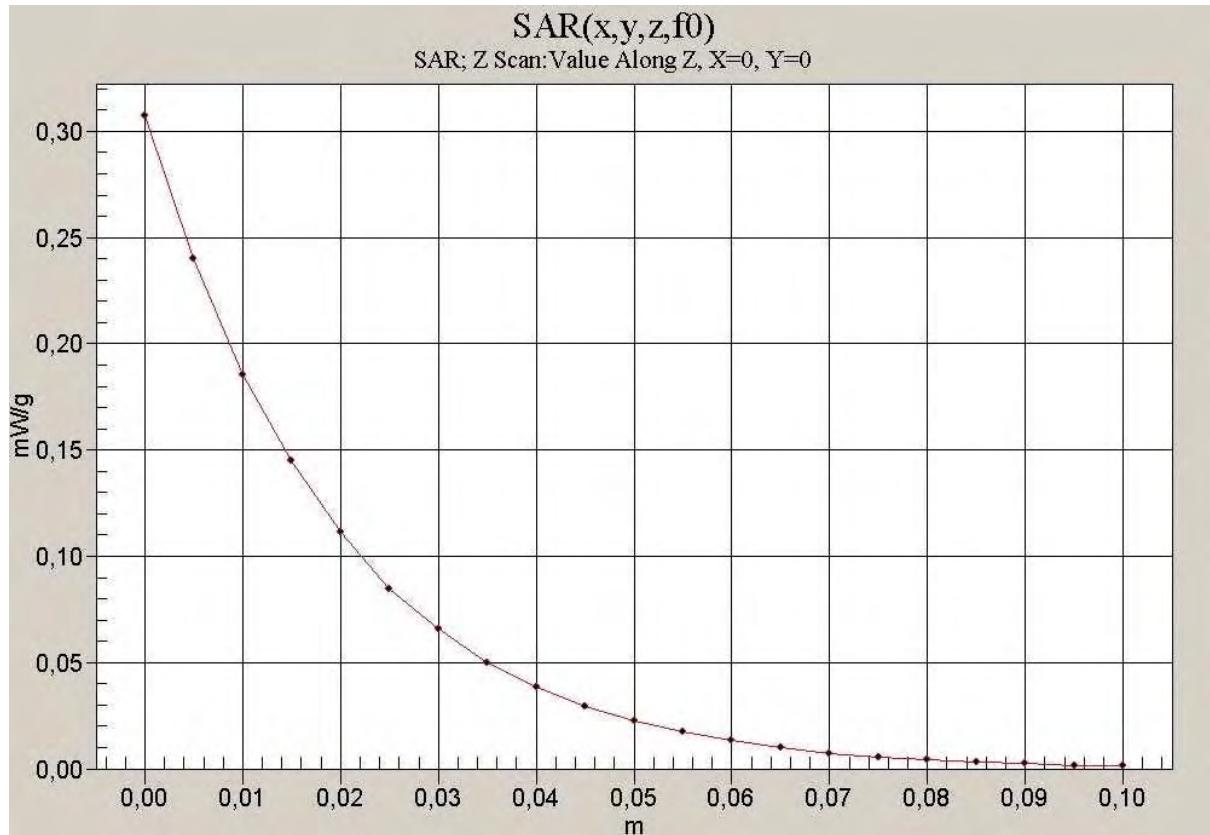

Rear position -High/Zoom Scan (7x7x7) (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.4 V/m; Power Drift = -0.011 dB

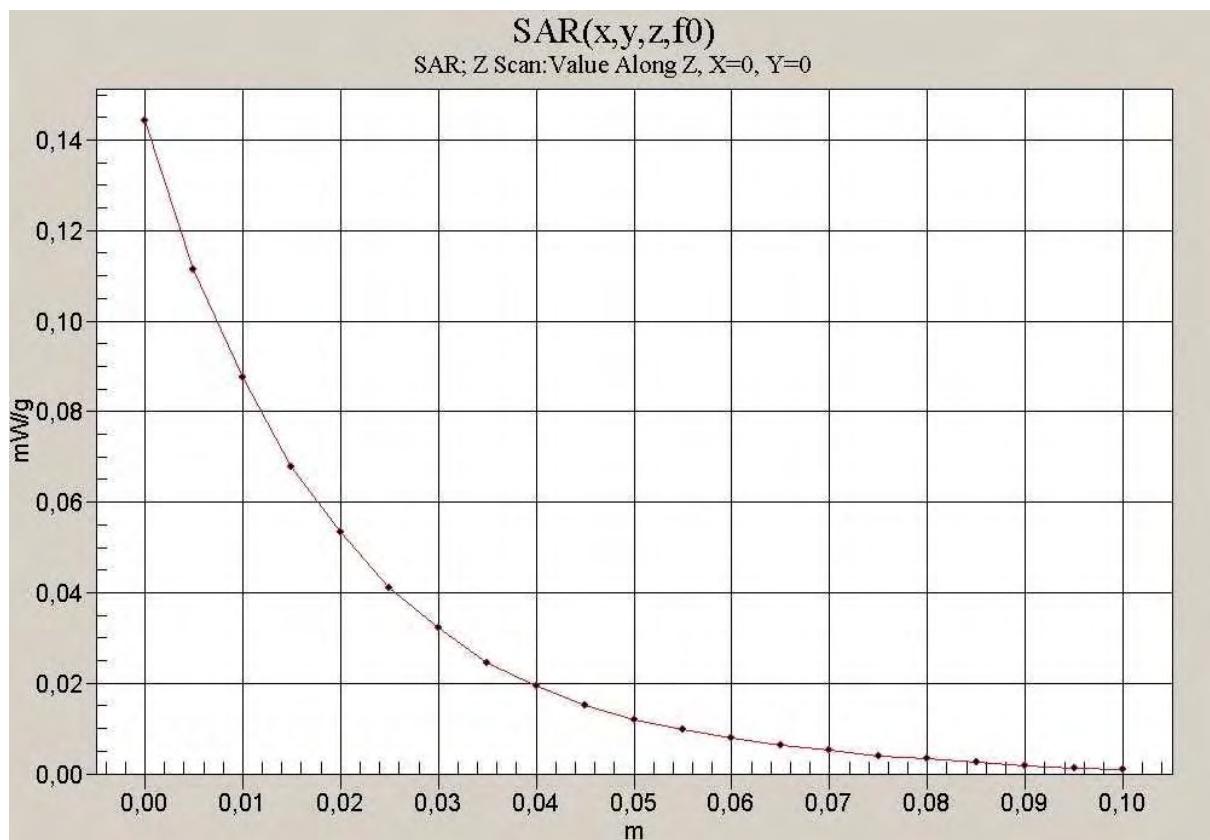
Peak SAR (extrapolated) = 0.298 W/kg

SAR(1 g) = 0.192 mW/g; SAR(10 g) = 0.125 mW/g

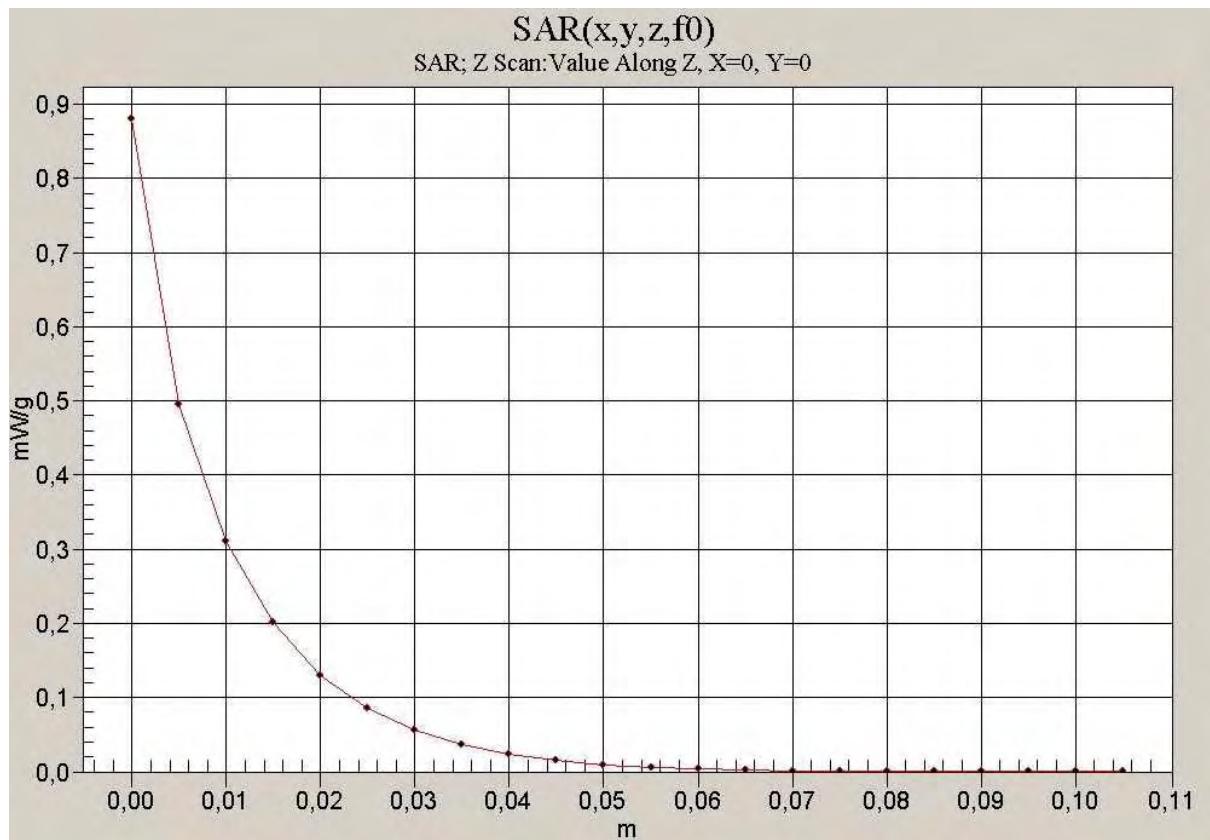
Maximum value of SAR (measured) = 0.204 mW/g

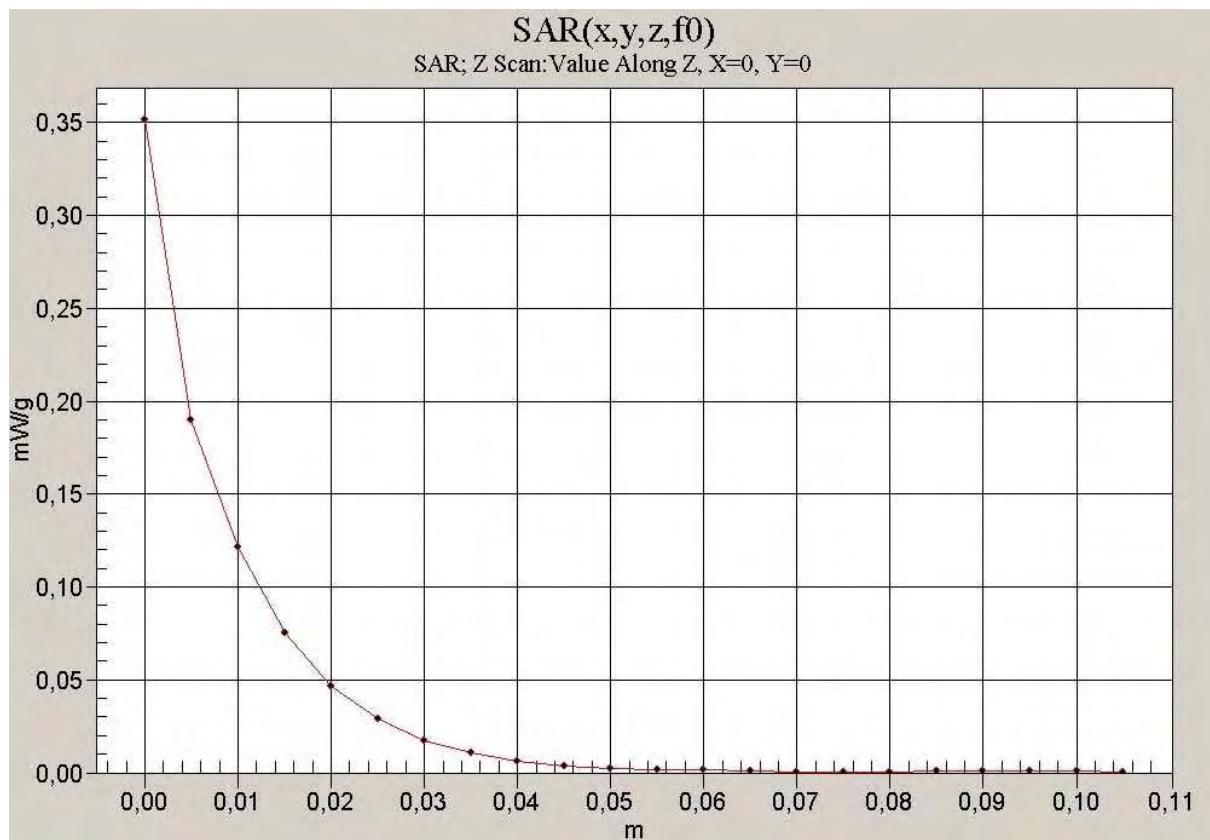

0 dB = 0.204mW/g

Additional information:


position or distance of DUT to SAM (if not standard head positions) : 15 mm

ambient temperature: 22.1°C; liquid temperature: 20.7°C


Annex 2.5 Z-axis scans


850 head

850 body

1900 head

1900 body

Annex 3 Photo documentation

Photo 1: Measurement System DASY 4

Photo 2: DUT - front view

Photo 3: DUT - front view slide opened

Photo 4: DUT - side view

Photo 5: DUT - side view slide opened

Photo 6: DUT - rear view

Photo 7: DUT - rear view slide opened

Photo 8: DUT - rear view (open)

Photo 9: DUT - rear view (open) without battery

Photo 10: DUT - rear view (label)

Photo 11: The battery

Photo 12: Test position left hand touched

Photo 13: Test position left hand touched

Photo 14: Test position left hand touched

Photo 15: Test position left hand tilted 15°

Photo 16: Test position left hand tilted 15°

Photo 17: Test position left hand touched slide opened

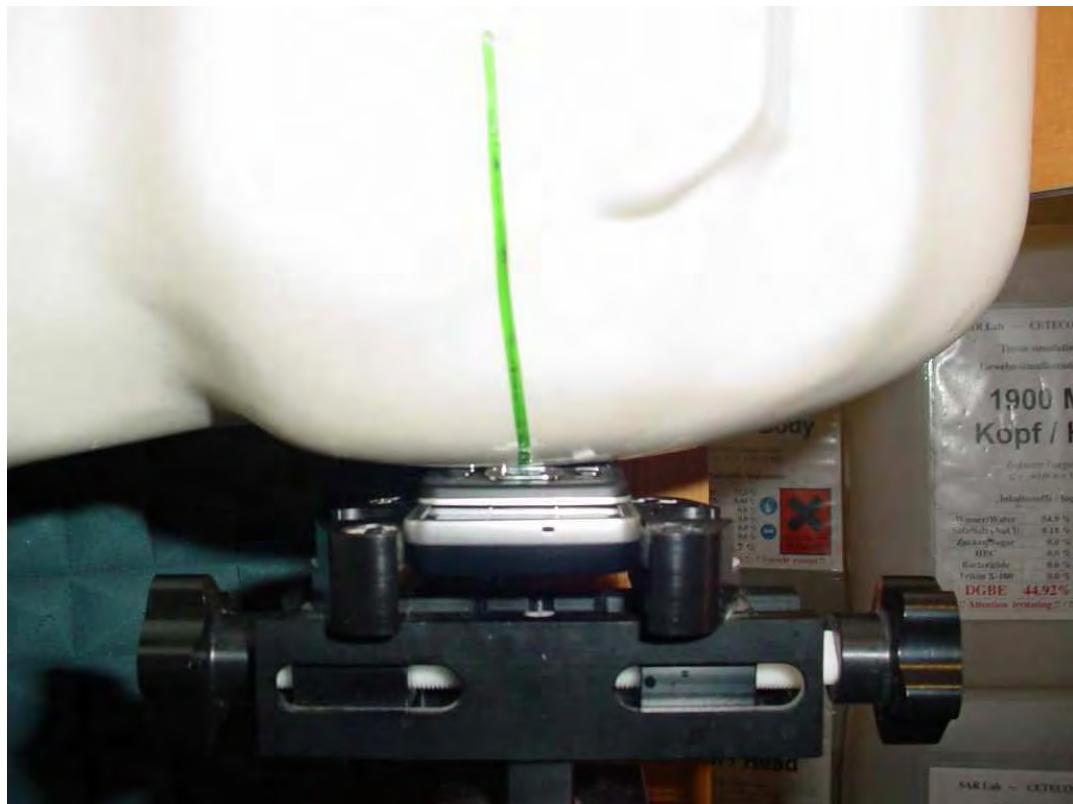


Photo 18: Test position left hand touched slide opened

Photo 19: Test position left hand touched slide opened

Photo 20: Test position left hand tilted 15° slide opened

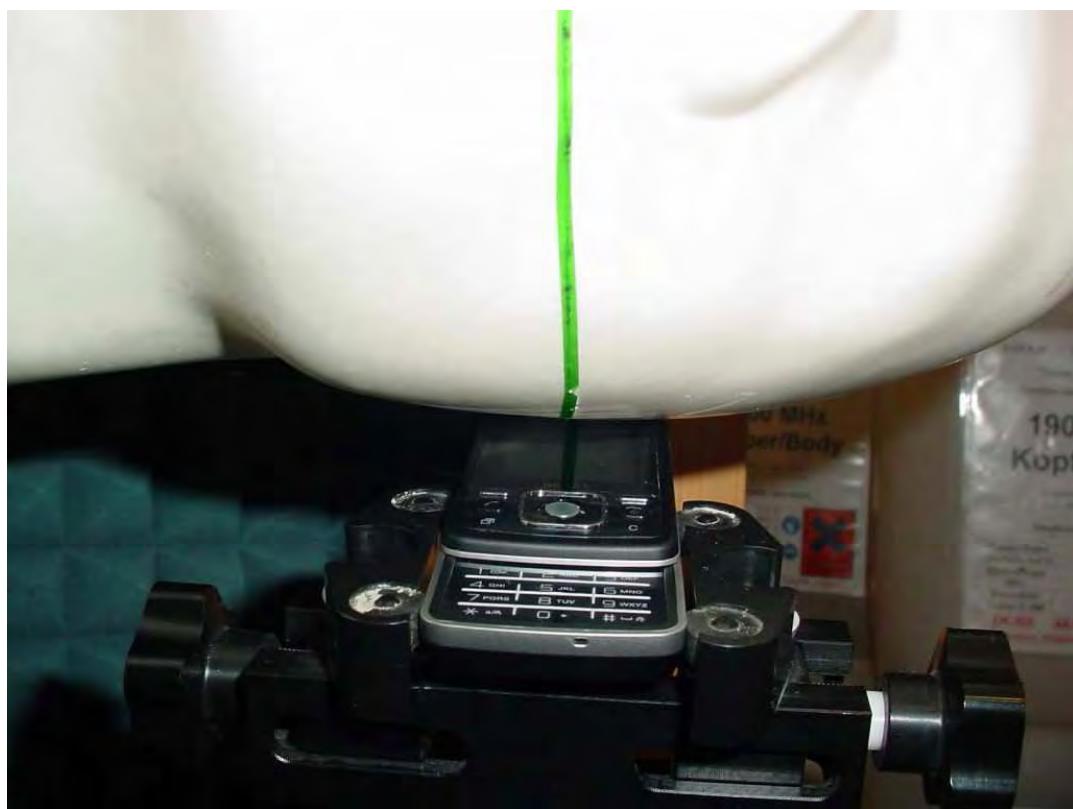


Photo 21: Test position left hand tilted 15° slide opened

Photo 22: Test position right hand touched

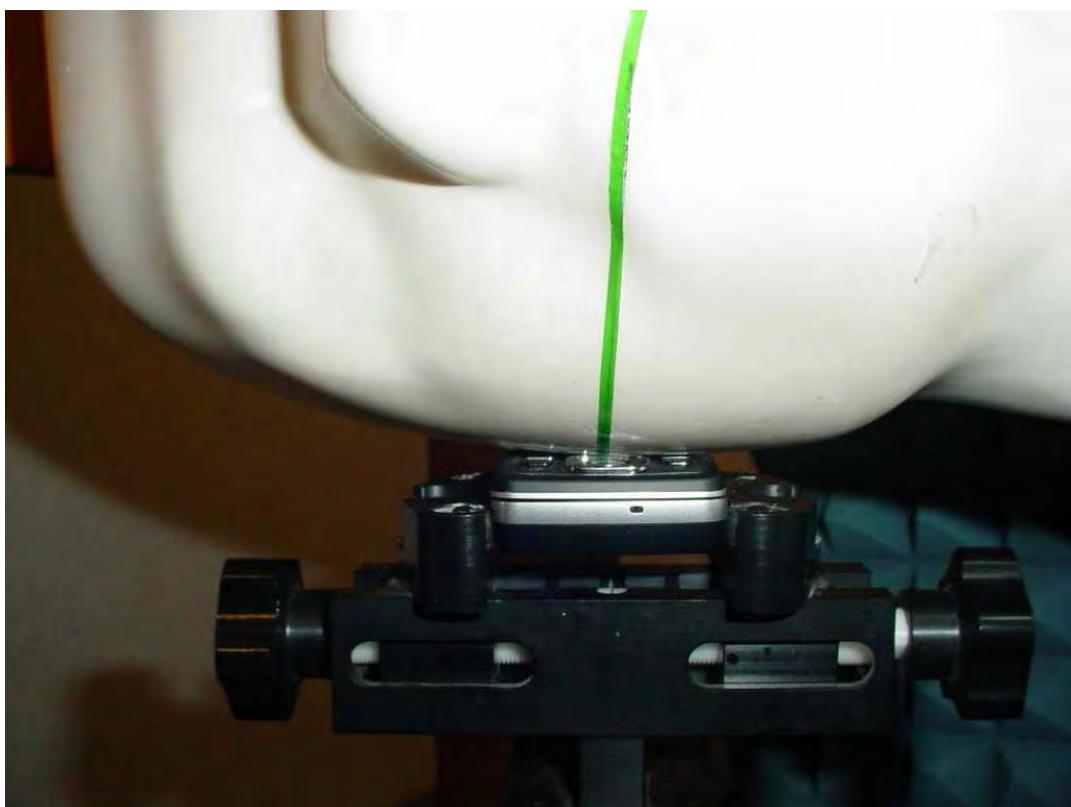


Photo 23: Test position right hand touched

Photo 24: Test position right hand touched

Photo 25: Test position right hand tilted 15°

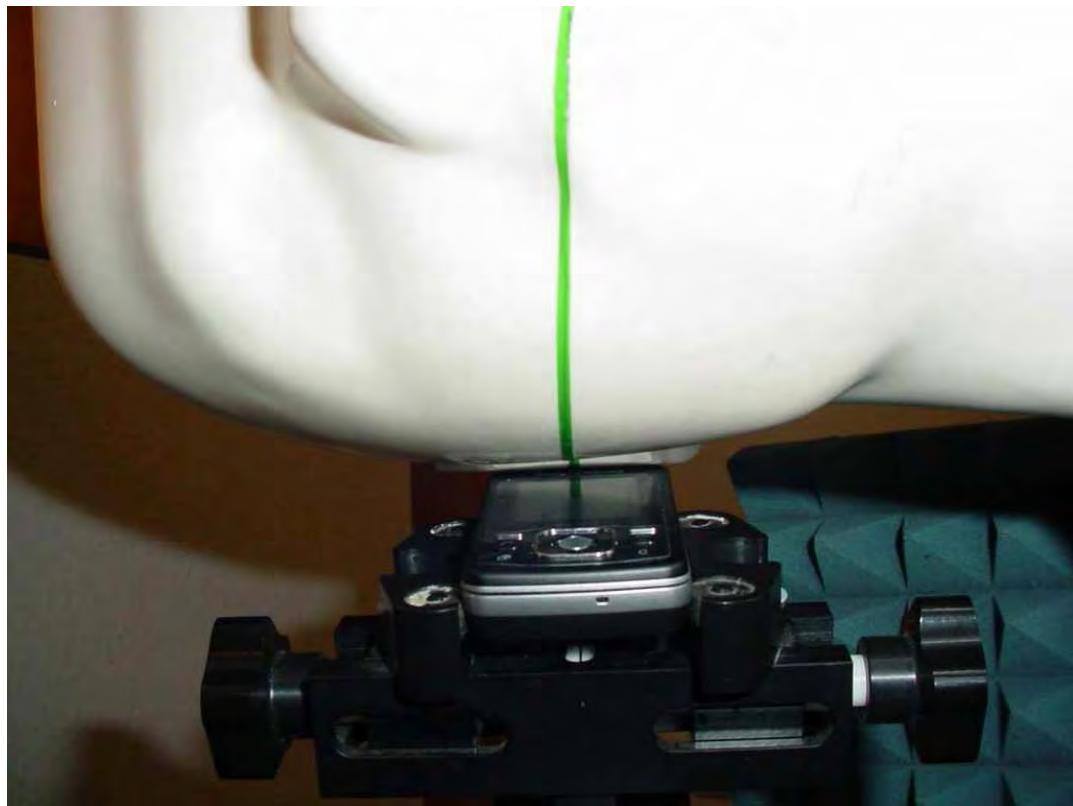


Photo 26: Test position right hand tilted 15°

Photo 27: Test position right hand touched slide opened

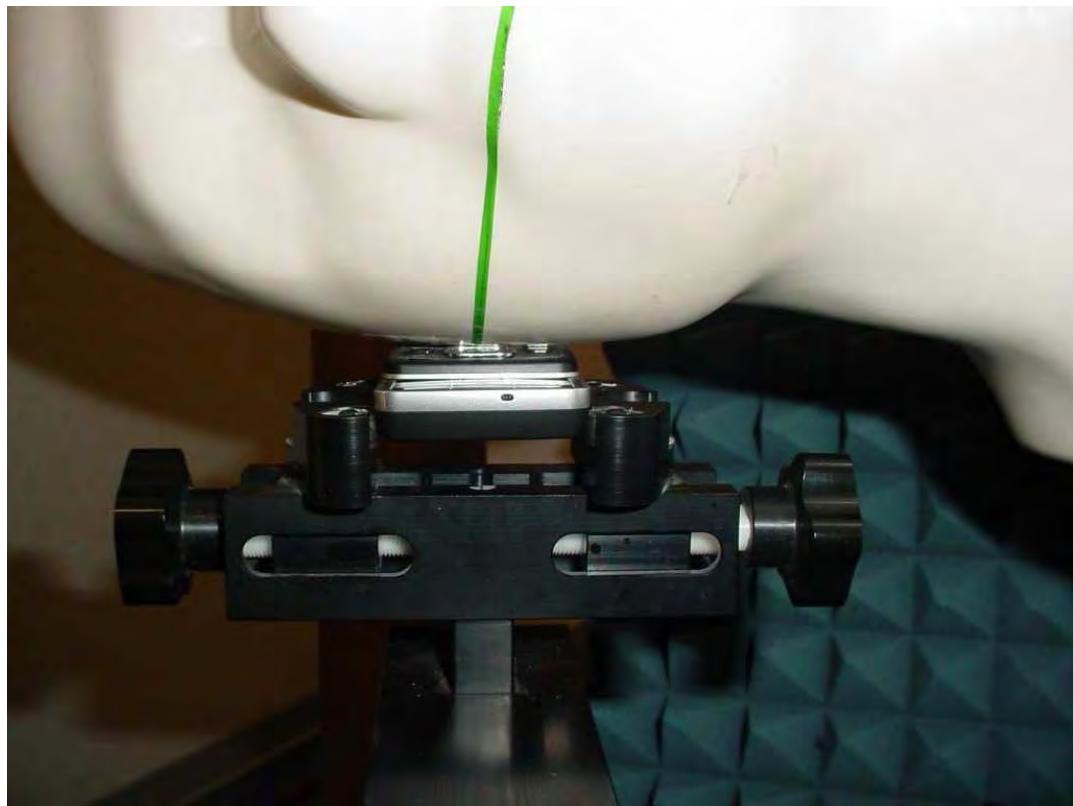


Photo 28: Test position right hand touched slide opened

Photo 29: Test position right hand touched slide opened

Photo 30: Test position right hand tilted 15° slide opened

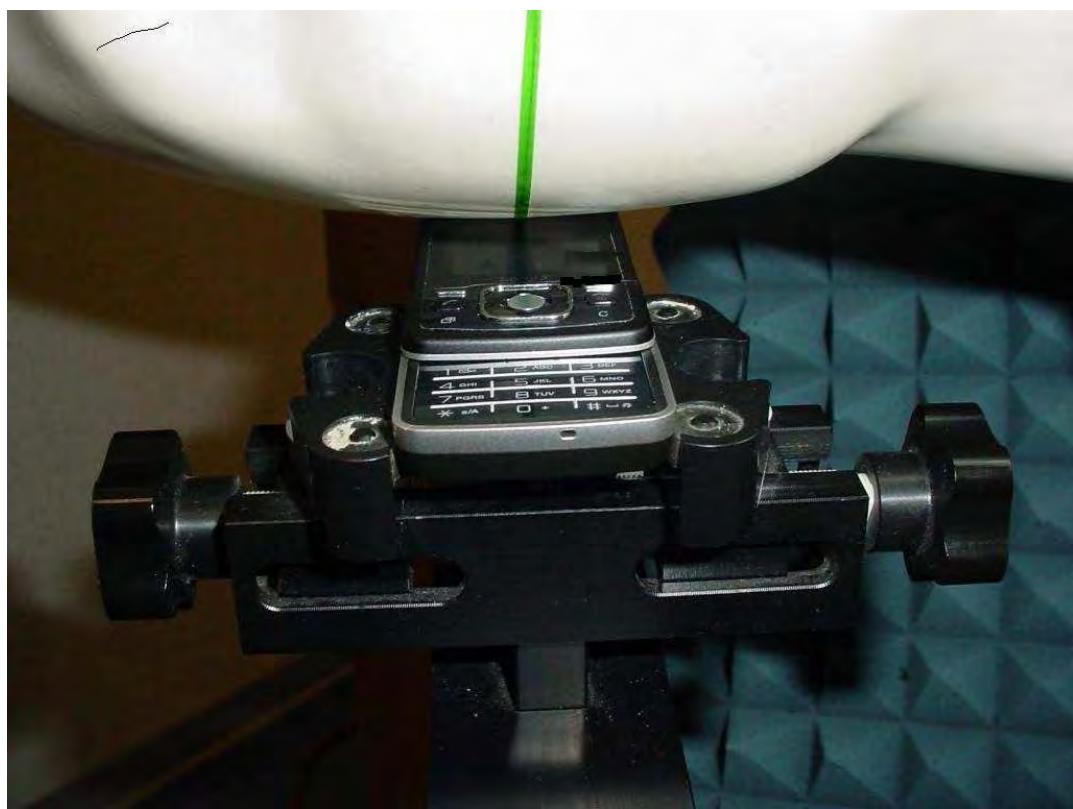


Photo 31: Test position body worn front side (15 mm distance)

Photo 32: Test position body worn front side (15 mm distance)

Photo 33: Test position body worn rear side (15 mm distance)

Photo 34: Test position body worn rear side (15 mm distance)

Annex 3.1 Liquid depth

Photo 35: Liquid depth 850 MHz head simulating liquid

Photo 36: Liquid depth 850 MHz body simulating liquid

Photo 37: Liquid depth 1900 MHz head simulating liquid

Photo 38: Liquid depth 1900 MHz body simulating liquid

Annex 4 RF Technical Brief Cover Sheet acc. to RSS-102

1. COMPANY NUMBER: 4170B

2. MODEL NUMBER: A1032091

3. MANUFACTURER: Sony Ericsson Mobile Communications AB

4. TYPE OF EVALUATION:

(a) SAR Evaluation: Device used in the Vicinity of the Human Head

- **Multiple transmitters:** Yes No
- **Evaluated against exposure limits:** General Public Use Controlled Use
- **Duty cycle used in evaluation:** 12.5 %
- **Standard used for evaluation:** RSS-102 Issue 2 (2005-11)
- **SAR value:** 0.694 W/kg. Measured Computed Calculated


(b) SAR Evaluation: Body-worn Device

- **Multiple transmitters:** Yes No
- **Evaluated against exposure limits:** General Public Use Controlled Use
- **Duty cycle used in evaluation:** 25 %
- **Standard used for evaluation:** RSS-102 Issue 2 (2005-11)
- **SAR value:** 1.110 W/kg. Measured Computed Calculated

Annex 4.1 Declaration of RF Exposure Compliance

ATTESTATION: I attest that the information provided in Annex 4 is correct; that a Technical Brief was prepared and the information it contains is correct; that the device evaluation was performed or supervised by me; that applicable measurement methods and evaluation methodologies have been followed and that the device meets the SAR and/or RF exposure limits of RSS-102.

Signature:

Date: 2008-04-24

NAME : Thomas Vogler

TITLE : Dipl.-Ing. (FH)

COMPANY : CETECOM ICT Services GmbH

Annex 5 Calibration parameters

Calibration parameters are described in the additional document :

Appendix to test report no. 2-4883-26-02/08‘

**Calibration data, Phantom certificate
and detail information of the DASY4 System**