

Prepared (also subject responsible if other) LD/SEMC/BGGI/NM Ramadan Plicanic Approved LD/SEMC/BGGI/NMC Mats Hansson Company Internal REPORT No. BGGIN05:005 Date Rev 050107 A

Reference File

Report issued by Accredited SAR Laboratory

Checked

050110

for

PY7A1031021

Date of test:	22,23,27,28,29 and 30 December, 2004
Laboratory:	Sony Ericsson SAR Test Laboratory Sonyericsson Mobile Communications AB Nya Vattentornet SE-221 82 LUND, Sweden
Testing Engineer:	Ramadan Plicanic Ramadan.Plicanic@sonyericsson.com +46 46 19 38 62
Testing Approval	Mats Hansson Mats.Hansson@sonyericsson.com +46 46 19 33 57

Statement of Compliance

Sony Ericsson Mobile Communications AB declares under its sole responsibility that the product

Sony Ericsson Type AAB-1031021-BV; FCC ID: FY7A1031021

to which this declaration relates, is in conformity with the appropriate RF exposure standards recommendations and guidelines. It also declares that the product was tested in accordance with the appropriate measurement standards, guidelines and recommended practices. Any deviations from these standards, guidelines and recommended practices are noted below: (None)

This laboratory is accredited to ISO/IEC 17025 (SWEDAC accreditation no. 1847).

Laboratories are accredited by the Swedish Board for Accreditation and Conformity Assessment (SWEDAC) under the terms of Swedish legislation. The accredited laboratory activities meet the requirements in SS-EN ISO/IEC 17025 (2000). This report may not be reproduced other than in full, except with the prior written approval of the issuing laboratory. The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report.

Sony Ericsson encourages all feedback, both positive and negative, on this report. @ Sony Ericsson Mobile Communication AB, 2005

		Company Inf REPORT	ernal	
Prepared (also subject responsible if other)		No.		
LD/SEMC/BGGI/NM Ramadan Plicanic		BGGIN05:00	5	
Approved	Checked	Date	Rev	Reference
LD/SEMC/BGGI/NMC Mats Hansson	050110	050107	А	File

1 Table of contents

3 DEVICE UNDER TEST	
3.1 ANTENNA DESCRIPTION	
4 TEST EQUIPMENT	4
 4.1 DOSIMETRIC SYSTEM 4.2 ADDITIONAL EQUIPMENT 	
5 ELECTRICAL PARAMETERS ON THE TISSUE SIMULATING LIQUID	5
6 SYSTEM ACCURACY VERIFICATION	5
7 SAR MEASUREMENT UNCERTAINTY	6
8 TEST RESULTS	
9 REFERENCES	
10 APPENDIX	9
 10.1 SAR DISTRIBUTION COMPARISON FOR SYSTEM ACCURACY VERIFICATION 10.2 SAR DISTRIBUTION PLOT	
 10.4 DEVICE POSITION ON SAM TWINS PHANTOM 10.5 PROBE CALIBRATION PARAMETERS 	

		Company Internal REPORT		
Prepared (also subject responsible if other)		No.		
LD/SEMC/BGGI/NM Ramadan Plicanic		BGGIN05:00)5	
Approved	Checked	Date	Rev	Reference
LD/SEMC/BGGI/NMC Mats Hansson	050110	050107	А	File

2 Introduction

In this test report, compliance of the Sony Ericsson PY7A1031021 portable telephone with RF safety guidelines is demonstrated. The applicable RF safety guidelines and the SAR measurement specifications used for the test are described in the SAR Measurement Specifications of Wireless Handsets [1].

3 Device Under Test

3.1 Antenna Description

Туре	Built In	
Location	Up on the back	
Dimensions	Max length	32 mm
Dimensions	Max width	20 mm
Configuration	PIFA	

3.2 Device description

Device model	PY7A1031021			
Serial number	TP810007VD			
Mode	GSM 835	GSM1900		
Multiple Access Scheme	TDMA	TDMA		
Maximum Output Power Setting (dBm)	33.0 (31.9*)	30.0		
Factory Tolerance in Power Setting (dB)	0.5	0.5		
Maximum Peak Output Power (dBm)	33.5 (32.4*)	30.5		
Crest Factor	8	8		
Transmitting Frequency Range(MHz)	824.2-848.8	1850.2 – 1909.8		
Prototype or Production Unit	Preproduction			
Device Category	Portable			
RF exposure environment	General population / uncontrolled			

* GSM835 on high frequency, maximum output power setting and maximum peak output power is separately.

	Company Internal REPORT			
Prepared (also subject responsible if other)		No.		
LD/SEMC/BGGI/NM Ramadan Plicanic		BGGIN05:00)5	
Approved	Checked	Date	Rev	Reference
LD/SEMC/BGGI/NMC Mats Hansson	050110	050107	А	File

4 Test equipment

4.1 Dosimetric system

SAR measurements were made using the DASY3 professional system (software version 3.1c) with SAM twin phantom, manufactured by Schmid & Partner Engineering AG (SPEAG). The list of calibrated equipment is given below.

Description	Serial Number	Due Date	
DASY3 DAE V1	433	042005	
E-field probe ETDV6	1569	032005	
Dipole Validation Kit, D835V2	111	052005	
Dipole Validation Kit, D1900V2	5d002	042005	

4.2 Additional equipment

Description	Inventory Number	Due Date
Signal generator ESG-D4000A	INV 462935	092005
Directional coupler HP778D	INV 2903	012006
Power meter R&S NRVD	INV 483920	012006
Power sensor R&S NRV-Z5	INV 2333	012006
Power sensor R&S NRV-Z5	INV 2334	012006
Termination 65N50-0-11	INV 2903	072005
Network analyzer HP8753C	INV421671	092005
S-parameter test set HP85047A	INV 421670	082005
Dielectric probe kit HP8507D	INV 2000053	042005

5

6

		Company Inter REPORT	rnal	
Prepared (also subject responsible if other)		No.		
LD/SEMC/BGGI/NM Ramadan Plicanic		BGGIN05:005		
Approved	Checked	Date	Rev	Reference
LD/SEMC/BGGI/NMC Mats Hansson	050110	050107	А	File

Electrical parameters on the tissue simulating liquid

Prior to conducting SAR measurements, the relative permittivity, $\boldsymbol{\epsilon}_{r}$, and the conductivity, $\boldsymbol{\sigma}$, of the tissue simulating liquids were measured with the dielectric probe kit. These values are shown in the table below. The mass density, $\boldsymbol{\rho}$, entered into the DASY3 software is also given. Recommended limits for permittivity $\boldsymbol{\epsilon}_{r}$, conductivity $\boldsymbol{\sigma}$ and mass density $\boldsymbol{\rho}$ are also shown.

f	Tissue	Limits / Measured	Diel	ectric Parame	eters
(MHz)	type	Limits / Measured	٤ _r	σ (S/m)	ρ (g/cm ³)
835	Head	Measured, 22/12/2004	43.1	0.9	1.00
000	neau	Recommended	41.5	0.9	1.00
835 Head —	Measured, 23/12/2004	43.1	0.9	1.00	
	Recommended	41.5	0.9	1.00	
835 Body	Measured, 29/12/2004	53.9	1.01	1.00	
	Recommended	55.2	0.97	1.00	
1900	Head	Measured, 28/12/2004	39.0	1.46	1.00
1900 Head	Recommended	40.0	1.4	1.00	
1900 Body	Measured, /month/year	52.7	1.56	1.00	
1900	Body	Recommended	53.3	1.52	1.00

System accuracy verification

A system accuracy verification of the DASY3 was performed using the dipole validation kit listed in section 3.1. The system verification test was conducted on the same day as the measurement of the DUT. Measurement made in ambient temperature 22.0 °C and humanity 26-35%. The obtained results are displayed in the table below.

RF noise had been measured in liquid when all RF equipment in lab was set off. Measured value was 0.001 mW/g in 1g mass.

f Tissue		Measured / Reference	SAR (W/kg)	Dielectric Parameters			Liquid
(MHz) type	Measured / Reference	1g/10g	٤ _r	σ (S/m)	ρ (g/cm ³)	t(°C)	
835	Head	Measured, 22/12/2004	9.7/6.22	43.1	0.9	1.00	21
035	пеац	Reference	9.64/6.28	42.8	0.89	1.00	-
835 Head	Head	Measured, 23/12/2004	9.66/6.19	43.1	0.9	1.00	21
	Reference	9.64/6.28	42.8	0.89	1.00	-	
835 Body	Measured, 29/12/2004	10.4/6.60	53.9	1.01	1.00	21	
	Reference	10.0/6.60	54.0	0.96	1.00	-	
1900	Head	Measured, 28/12/2004	40.8/20.5	39.0	1.46	1.00	21
1900 Head	Reference	41.6/21.5	38.8	1.44	1.00	-	
1900 Body -	Measured, 30/12/2004	43.1/22.4	52.7	1.56	1.00	21	
	Bouy	Reference	43.2/22.4	51.2	1.59	1.00	-

7

Company Internal REPORT Prepared (also subject responsible if other) No. BGGIN05:005 LD/SEMC/BGGI/NM Ramadan Plicanic Checked Rev Reference Approved Date LD/SEMC/BGGI/NMC Mats Hansson 050110 050107 А File

SAR measurement uncertainty

Uncertainty Component	Uncer. (%)	Prob Dist.	Div.	Ci	GSM 835 Head	GSM 835 Body	GSM 1900 Head	GSM 1900 Body
Measurement System								
Probe Calibration	±4.4	Ν	1	1	±4.4	±4.4	±4.4	±4.4
Axial Isotropy	±4.7	R	√3	0.5	±1.4	±1.4	±1.4	±1.4
Spherical Isotropy	±9.6	R	√3	0.5	±2.8	±2.8	±2.8	±2.8
Spatial resolution	±0.0	R	√3	1	±0.0	±0.0	±0.0	±0.0
Boundary effect	±5.5	R	√3	1	±3.2	±3.2	±3.2	±3.2
Probe linearity	±4.7	R	√3	1	±2.7	±2.7	±2.7	±2.7
Detection limit	±1.0	R	√3	1	±0.6	±0.6	±0.6	±0.6
Readout electronics	±1.0	Ν	1	1	±1.0	±1.0	±1.0	±1.0
Response time	±0.8	R	√3	1	±0.5	±0.5	±0.5	±0.5
Integration time	±1.4	R	√3	1	±0.8	±0.8	±0.8	±0.8
RF Ambient Conditions	±3.0	R	√3	1	±1.7	±1.7	±1.7	±1.7
Mech. Constraints of robot	±0.4	R	√3	1	±0.2	±0.2	±0.2	±0.2
Probe positioning	±2.9	R	√3	1	±1.7	±1.7	±1.7	±1.7
Extrap, interpolation and integration	±3.9	R	√3	1	±2.3	±2.3	±2.3	±2.3
Measurement System Uncertainty					±7.7	±7.7	±7.7	±7.7
Test Sample Related								
Device positioning	±6.0	Ν	0.89	1	±6.7	±6.7	±6.7	±6.7
Device holder uncertainty	±5.0	Ν	0.84	1	±5.9	±5.9	±5.9	±5.9
Power drift	±1.6 (all)	R	√3	1	±0.9	±0.9	±0.9	±0.9
Test Sample Related Uncertainty					±9.0	±9.0	±9.0	±9.0
Phantom and Tissue Parameters								
Phantom uncertainty	±4.0	R	√3	1	±2.3	±2.3	±2.3	±2.3
Liquid conductivity (meas)	±5.0	R	√3	0.6	±1.7	±1.7	±1.7	±1.7
Liquid conductivity (target)	±(0/2.4/4.3/ 2.6)	R	√3	0.6	±0.0	±0.8	±1.5	±0.9
Liquid Permittivity (meas)	±5.0	R	√3	0.6	±1.7	±1.7	±1.7	±1.7
Liquid Permittivity (target)	±(3.8/4.1/ 2.5/1.1)	R	√3	0.6	±1.3	±1.4	±0.9	±0.4
Phantom and Tissue Parameters Uncertainty					±3.6	±3.7	±3.8	±3.5
Combined standard uncertainty		•	•		±12.4	±12.4	±12.4	±12.3
Extended standard uncertainty (k=2	2)				±24.8	±24.8	±24.8	±24.6

		REPORT	lemai	
Prepared (also subject responsible if other)		No.		
LD/SEMC/BGGI/NM Ramadan Plicanic		BGGIN05:00)5	
Approved	Checked	Date	Rev	Reference
LD/SEMC/BGGI/NMC Mats Hanss	on 050110	050107	А	File

8 Test results

The measured 1-gram averaged SAR values of the device against the head are provided in Tables 1. The ambient humidity and temperature of test facility were 26% - 35% and 22.0 $^{\circ}$ C – 22.5 $^{\circ}$ C respectively. The depth of the head tissue simulating liquid was 15.6cm. A base station simulator was used to control the device during the SAR measurement. The phone was supplied with full-charged battery for each measurement.

Company Internal

For head measurement, the device was tested on the right-hand phantom (corresponding to the right side of the head) and the left-hand phantom in two phone position, cheek (touch) and tilt (cheek + 15deg). For all modes, the device was tested at the lowest, middle and highest frequencies in the transmit band.

Mode	Chanal	Chanel Peak Output		Liquid	SAR (W/k	g) 1g mass	
Mode	Chanel	Power(dBm)	Position	temp(°C)	Right-hand	Left-hand	
	128	33.3	Cheek	21/21.2	0.76	0.75	
	120	33.3	Tilt	21/21.2	0.47	0.4	
835	190	33.4	Cheek	21/21.2	1.11	1.21	
GSM	190	55.4	Tilt	21/21.2	0.66	0.59	
	251	32.2	Cheek	21/21.2	1.2	1.19	
	201	32.2	32.2	Tilt	21/21.2	0.68	0.69
	512	30.4	Cheek	21/21.2	0.9	0.71	
	512	30.4	Tilt	21.2/21.5	1.03	0.78	
1900	661	30.4	Cheek	21/21.2	0.86	0.6	
GSM	001	30.4	Tilt	21.2/21.5	0.93	0.76	
	810	30.3	Cheek	21/21.2	0.91	0.7	
	010	30.3	Tilt	21.2/21.5	0.99	0.89	

 Table1: SAR measurement result for Sony Ericsson PY7A1031021 telephone at highest possible output power.

 Measured against the head.

For body measurement, the device was tested in three different cases under flat phantom on 15 distances between phone and phantom. In two cases phone was turn with back to the flat phantom and measured with and without portable hands free accessory HPE-14 which is part of the phones kit. In the third case phone was turned with front to the flat phantom.

For all cases and phone position, the device was tested at lowest, middle and highest frequencies in the transmit band. The depth of the head tissue simulating liquid was 15.1cm. Results are provided in Table 2.

Mode	Chanel	Peak Output	Phone Position	Liquid	SAR (W/kg)		
mede	onanoi	Power(dBm)		temp(°C)	1g mass		
			Back with HF	21	0.68		
	128	33.3	Back witho. HF	21	1.29		
			Front witho. HF	21.2	0.45		
835			Back with HF	21	0.68		
GSM	190	33.4	Back witho. HF	21	1.17		
0.511		251 32.2	Front witho. HF	21.2	0.61		
			Back with HF	21	0.5		
	251		Back witho. HF	21	0.71		
				Front witho. HF	21.2	0.67	
			Back with HF	21	0.84		
	512	30.4	Back witho. HF	21	0.72		
					Front witho. HF	21.2	0.26
1900			Back with HF	21	0.7		
GSM	661	30.4	Back witho. HF	21	0.63		
0.01			Front witho. HF	21.2	0.23		
			Back with HF	21	0.69		
	810	30.3	Back witho. HF	21	0.63		
			Front witho. HF	21.2	0.26		

 Table2: SAR measurement result for Sony Ericsson PY7A1031021 telephone at highest possible output power.

 Measured against the body.

Company Internal REPORT No Prepared (also subject responsible if other) LD/SEMC/BGGI/NM Ramadan Plicanic BGGIN05:005 Approved Checked Date Rev Reference LD/SEMC/BGGI/NMC Mats Hansson 050110 А 050107 File

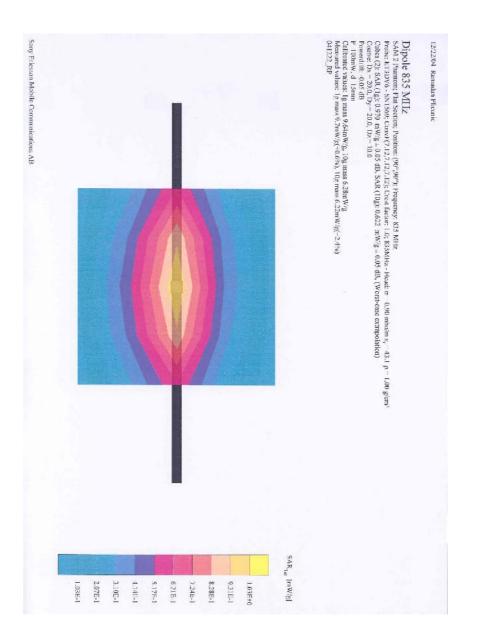
9

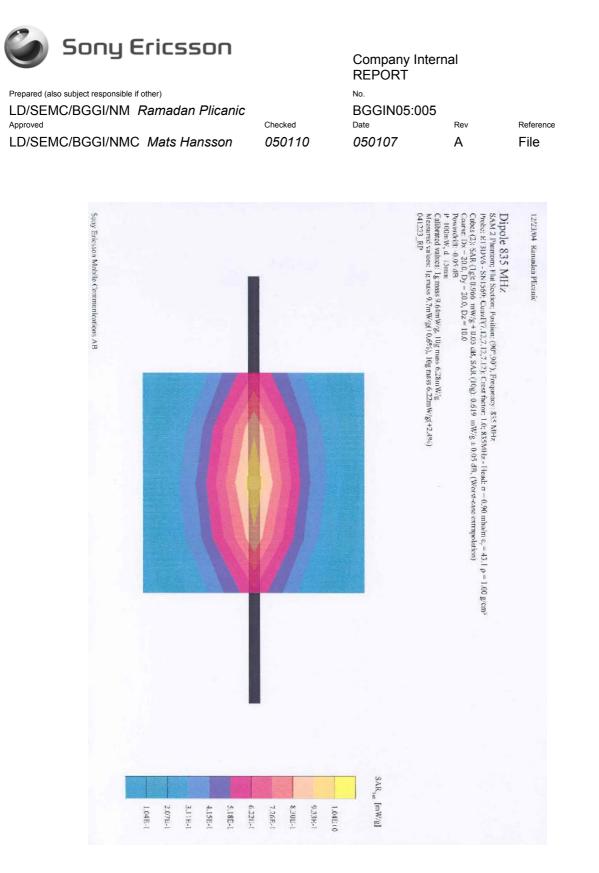
References

[1] R.Plicanic, "SAR Measurement Specification of Wireless Handsets", Sony Ericsson SAR Test Laboratory internal document GUG/N 03:141

[2] Basic standard for the Measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300MHz-3GHz), European Standard EN 50361, July 2001

[3] FCC, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields: Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radio Frequency Emissions," Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01).


[4] IEEE, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques," Std 1528-2003, June, 2003.

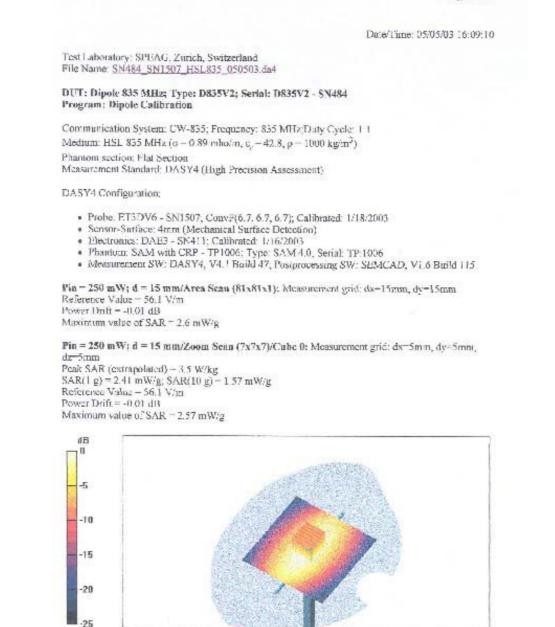

		Company Interr REPORT	al	
Prepared (also subject responsible if other)		No.		
LD/SEMC/BGGI/NM Ramadan Plicanic		BGGIN05:005		
Approved	Checked	Date	Rev	Reference
LD/SEMC/BGGI/NMC Mats Hansson	050110	050107	А	File

10 Appendix

10.1 SAR distribution comparison for system accuracy verification

Validation 835MHz Dipole , measured with head simulating tissue on 22/12/2004

Validation 835MHz Dipole , measured with head simulating tissue on 23/12/2004

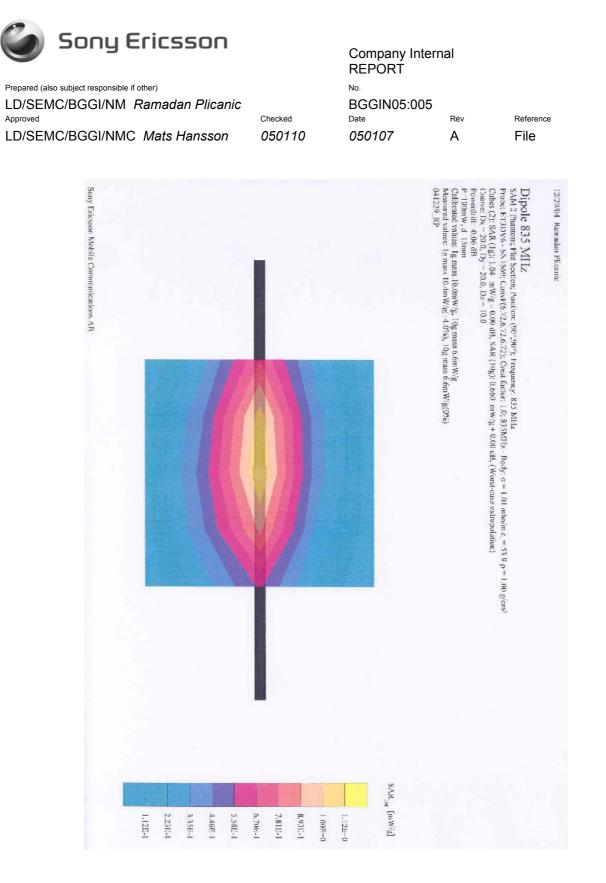

LD/SEMC/BGGI/NMC Mats Hansson

Prepared (also subject responsible if other)

Approved

Company Internal REPORT No. BGGIN05:005 Date Rev Reference 050107 A File

Page 1 of 1



Checked

050110

835MHz SAR distribution of validation dipole from reference measurement on head simulation liquid

0 dB-2.57mW/g

Validation 835MHz Dipole, measured with body simulating tissue on 29/12/2004

LD/SEMC/BGGI/NMC Mats Hansson

Prepared (also subject responsible if other)

Approved

Company Internal REPORT No. BGGIN05:005 Date Rev 050107 A

Reference File

Page 1 of 1

Date/Time: 05/13/03 12:47:00

Test Laboratory: SPEAG, Zurich, Switzerland File Name: SN484_SN1507_M835_130503.da4

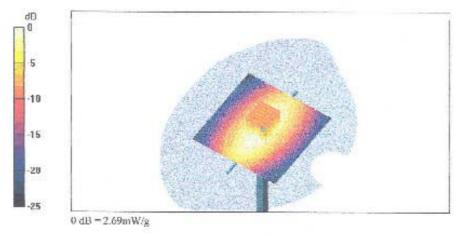
BUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN484 Program: Dipole Calibration

Communication System: CW-835, Frequency: 835 MHz, Duty Cycle: 1:1 Medium: Muscle 835 MHz ($\sigma = 0.96$ mho/m, $\epsilon_{\rm j} = 54.03$, $\rho = 1000$ kg/m³) Phantom section: Flat Section

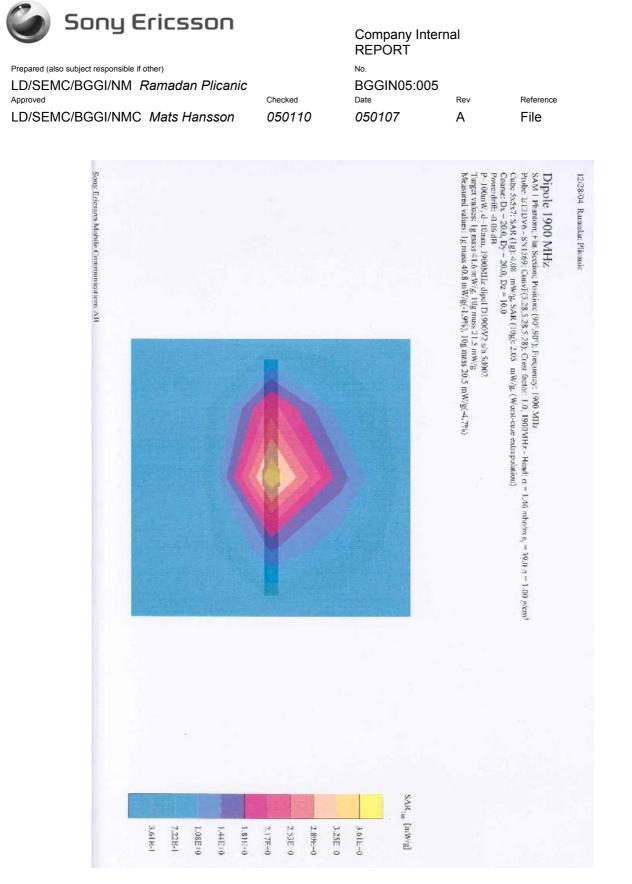
Checked

050110

Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Probe: ET3DV6 SN1507, ConvF(6.3, 5.3, 6.3), Calibrated: 1/18/2003
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAF3 SN411, Calibrated: 1/16/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Haild 115

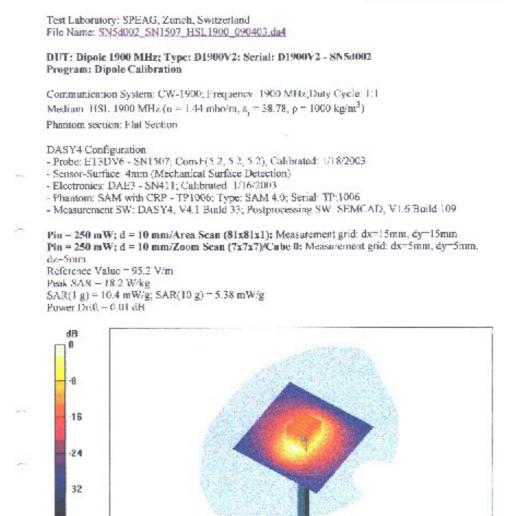

Pin = 250 mW; d = 15 mm/Area Sean (81x81x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 55 3 V/m Power Drift = -0.009 dB Maximum value of SAR = 2.72 mW/g

Pin = 250 mW; d = 15 mm/Zoom Scan (7x7x7)/Cube 0; Measurement grid; dx=5mm, dz=5mm

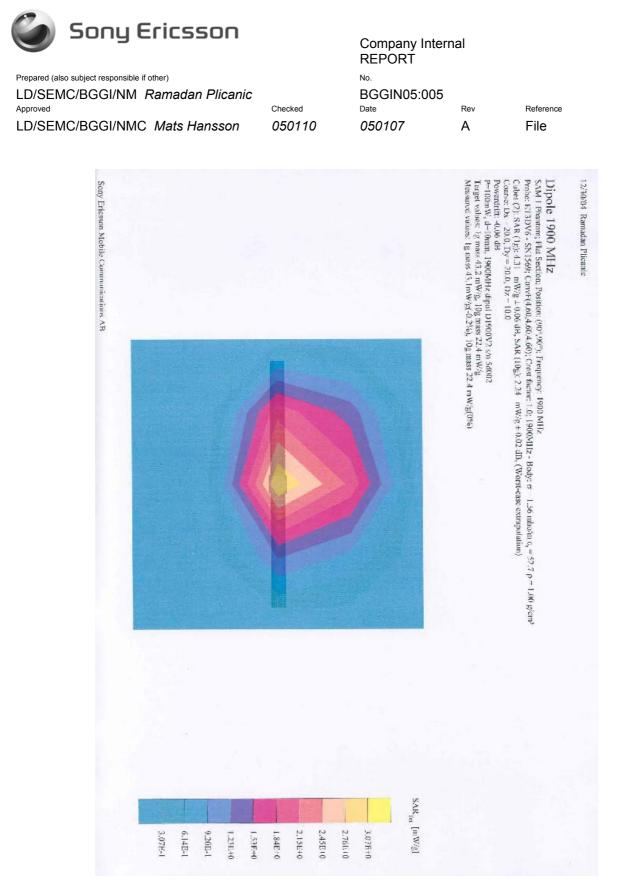
 $\begin{array}{l} Peak SAR (extrapolated) = 3.54 \ W/kg \\ SAR(1|g) = 2.51 \ mW/g; \ SAR(10|g) = 1.65 \ mW/g \\ Reference \ Value = 55.3 \ V/m \\ Power Drift = -0.009 \ dB \\ Meximum \ value \ of \ SAR = 2.69 \ mW/g \end{array}$

835MHz SAR distribution of validation dipole from reference measurement on body simulation liquid

Validation 1900MHz Dipole , measured with head simulating tissue on 28/12/2004



Approved

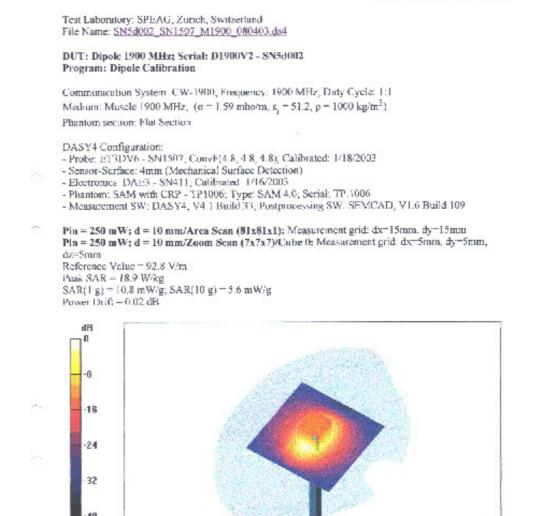

Company Internal REPORT No Prepared (also subject responsible if other) LD/SEMC/BGGI/NM Ramadan Plicanic BGGIN05:005 Checked Date Rev Reference LD/SEMC/BGGI/NMC Mats Hansson 050110 А 050107 File

Page I of I

Date/Time 04/09/03 18:49:39

1900MHz SAR distribution of validation dipole from reference measurement on head simulation liquid

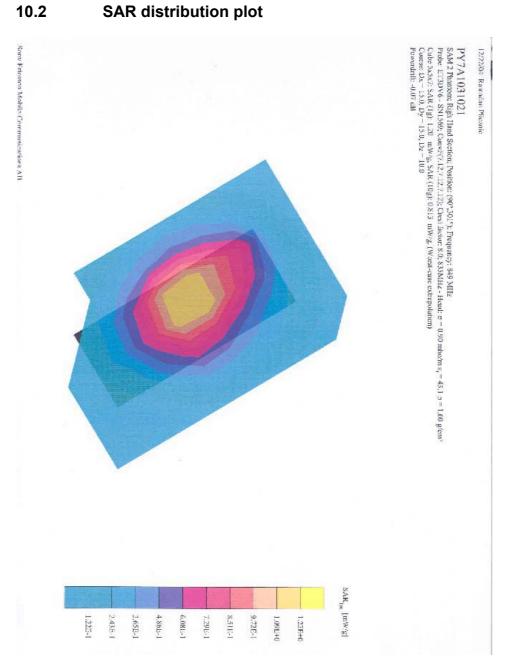
Validation 1900MHz Dipole, measured with body simulating tissue on 30/12/2004

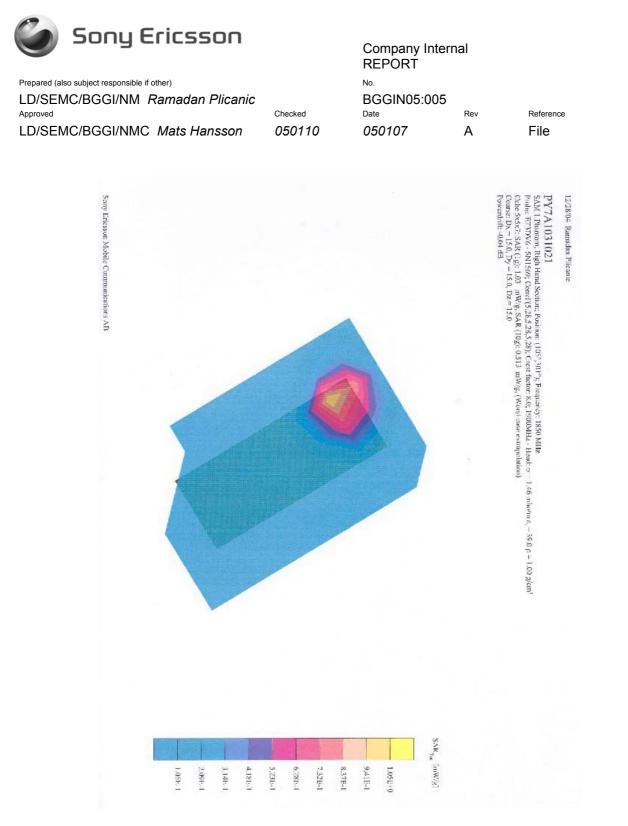


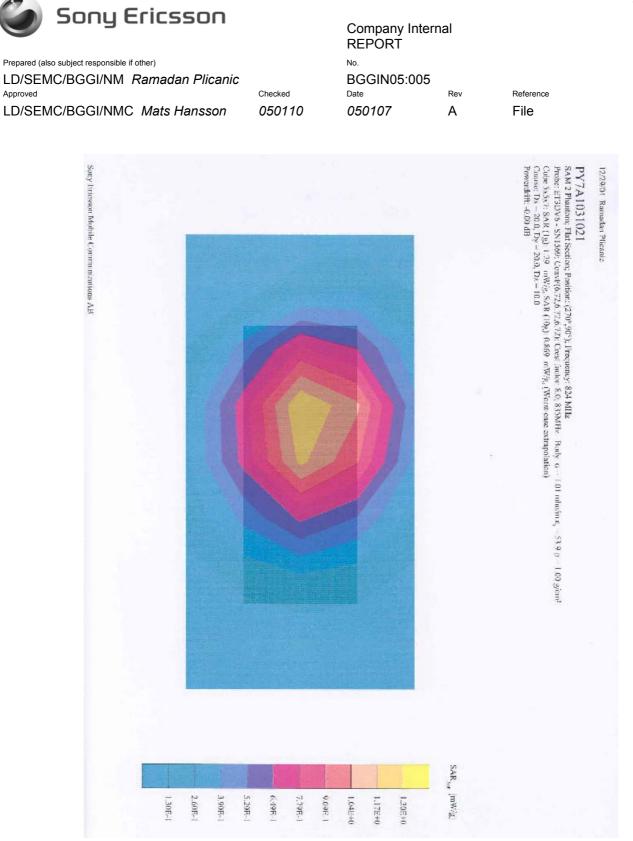
Approved

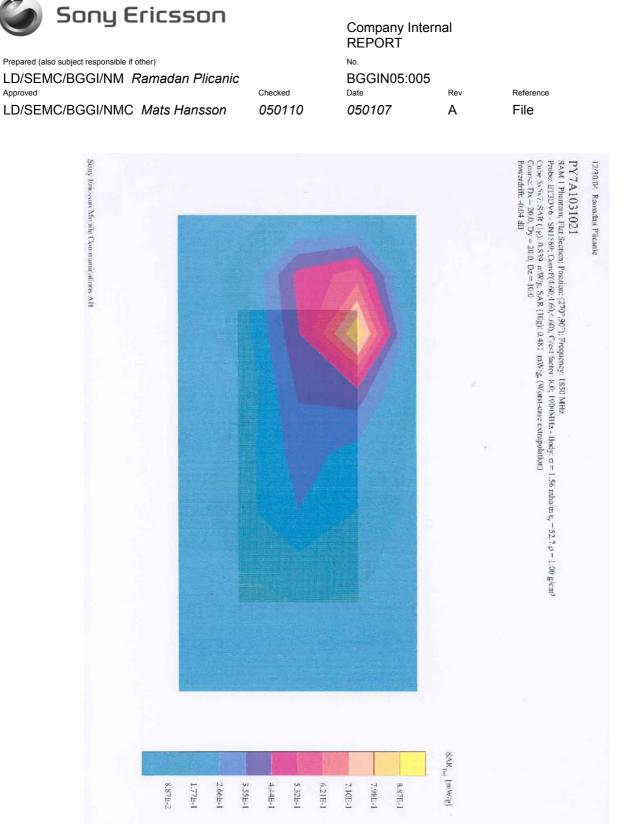
Company Internal REPORT No Prepared (also subject responsible if other) LD/SEMC/BGGI/NM Ramadan Plicanic BGGIN05:005 Checked Date Rev Reference LD/SEMC/BGGI/NMC Mats Hansson 050110 А 050107 File

Page 1 of 1


Date/Time: 04/08/03 12:31:50


1900MHz SAR distribution of validation dipole from reference measurement on body simulation liquid


		Company Internal REPORT			
Prepared (also subject responsible if other)		No.			
LD/SEMC/BGGI/NM Ramadan Plicanic		BGGIN05:005			
Approved	Checked	Date	Rev	Reference	
LD/SEMC/BGGI/NMC Mats Hansson	050110	050107	А	File	


Distribution of max SAR in GSM835 mode at 848.8MHz. Measured against the head for cheek phone position

Distribution of max SAR in GSM1900 mode at 1850.2MHz. Measured against the head for tilt phone position

Distribution of max SAR in GSM835 mode at 824.2MHz. Measured against the body

Distribution of max SAR in GSM1900 mode at 1850.2MHz. Measured against the body

		Company Int REPORT	ernal	
Prepared (also subject responsible if other)		No.		
LD/SEMC/BGGI/NM Ramadan Plicanic		BGGIN05:00	5	
Approved	Checked	Date	Rev	Reference
LD/SEMC/BGGI/NMC Mats Hansson	050110	050107	А	File

10.3 Photographs of the device under test

Front side

System Connector

LD/SEMC/BGGI/NMC Mats Hansson

Prepared (also subject responsible if other)

Approved

	Company Internal REPORT			
	No.			
	BGGIN05:005			
Checked	Date	Rev	Reference	
050110	050107	А	File	

Back side with battery

Portable Hand Free HPE-14

		Company Inter REPORT	nal	
Prepared (also subject responsible if other)		No.		
LD/SEMC/BGGI/NM Ramadan Plicanic		BGGIN05:005		
Approved	Checked	Date	Rev	Reference
LD/SEMC/BGGI/NMC Mats Hansson	050110	050107	А	File

10.4 Device position on SAM Twins Phantom

Device position against the head: Cheek (touch) phone position

Device position against the head: Tilt (cheek+15deg) phone position

LD/SEMC/BGGI/NMC Mats Hansson

Company Inte REPORT	ernal	
No.		
BGGIN05:00	5	
Date	Rev	Reference
050107	А	File

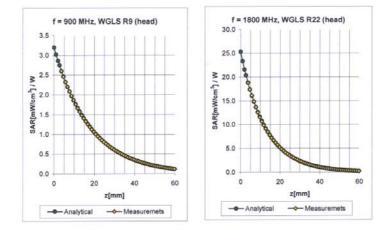
Checked

050110

Device position against the body: Phone's back to the phantom without HF

Prepared (also subject responsible if other)

Approved



		Company Inf REPORT	ernal	
Prepared (also subject responsible if other)		No.		
LD/SEMC/BGGI/NM Ramadan Plicanic		BGGIN05:00	5	
Approved	Checked	Date	Rev	Reference
LD/SEMC/BGGI/NMC Mats Hansson	050110	050107	А	File

10.5 Probe calibration parameters

ET3DV6 SN:1569

March 18, 2004

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^B	Tissue	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
835	785-885	Head	41.5 ± 5%	0.90 ± 5%	0.57	1.76	7.12 ± 9.7% (k=2)
900	850-950	Head	41.5 ± 5%	0.97 ± 5%	0.49	1.98	6.95 ± 9.7% (k=2)
1750	1700-1800	Head	40.0 ± 5%	1.40 ± 5%	0.43	2.75	5.56 ± 9.7% (k=2)
1900	1850-1950	Head	40.0 ± 5%	1.40 ± 5%	0.44	2.97	5.28 ± 9.7% (k=2)
2000	1950-2050	Head	40.0 ± 5%	1.40 ± 5%	0.47	2.73	5.05 ± 9.7% (k=2)
2450	2400-2500	Head	39.2 ± 5%	1.80 ± 5%	0.79	2.03	4.72 ± 9.7% (k=2)
B35	785-885	Body	55.2 ± 5%	0.97 ± 5%	0.39	2.28	6.72 ± 9.7% (k=2)
900	850-950	Body	55.0 ± 5%	1.05 ± 5%	0.51	1.92	6.60 ± 9.7% (k=2)
1750	1700-1800	Body	53.3 ± 5%	1.52 ± 5%	0.51	2.83	4.79 ± 9.7% (k=2)
1900	1850-1950	Body	53.3 ± 5%	1.52 ± 5%	0.55	2.90	4.60 ± 9.7% (k=2)
2000	1950-2050	Body	53.3 ± 5%	1.52 ± 5%	0.63	2.51	4.44 ± 9.7% (k=2)
2450	2400-2500	Body	52.7 ± 5%	1.95 ± 5%	1.01	1.64	4.34 ± 9.7% (k=2)

⁸ The total standard uncertainty is calculated as root-sum-square of standard uncertainty of the Conversion Factor at calibration frequency and the standard uncertainty for the indicated frequency band.

Page 7 of 8