

1/39)

				1(33)
Prepared (also subject responsible if other)		No.		
SEM/CA Gerard Hayes		SEM/CA -04:0003/REP		
Approved	Checked			
SEM/CA Gerard Hayes				X:\SAR Chamber\FCC reports\T637\Final Reports\T637 Hardware B Regression.doc

Exhibit 11: SAR Test Report of Portable Cellular Phone FCC ID: PY7A1031012 Model : T637 Hardware B Regression Testing

Date of test: March 17-18, 2004

Date of Report:

Laboratory: SAR Testing Laboratory

Sony Ericsson Mobile Communications, Inc.

7001 Development Drive, P.O. Box 13969, Research Triangle Park, NC, 27709, USA

Tested by: Rodney Dixon

Technician III, Product Verification Group

Test Responsible: Gerard Hayes

Consulting Engineer, Antenna/RF Development Group

Accreditation: This laboratory is accredited to ISO/IEC 17025-1999 to perform the following

electromagnetic exposure tests:

Specific Absorption Rate (SAR)

Dielectric parameters RF power measurement

On the following types of products:

Wireless communications devices. A2LA certificate #1650-01

Statement of Compliance:

Sony Ericsson Mobile Communications, Inc declares under its sole responsibility that portable cellular telephone FCC ID PY7A1031012 model T637 with Hardware B modifications to which this declaration relates, is in conformity with the appropriate General Population/Uncontrolled RF exposure standards, recommendations and guidelines (FCC 47 CFR §2.1093). It also declares that the product was tested in accordance with the appropriate measurement standards, guidelines and recommended practices. Any deviations from these standards, guidelines and recommended practices are noted below:

(none)

© Sony Ericsson Mobile Communications, Inc. 2004

Sony Ericsson Mobile Communications encourages all feedback, both positive and negative, on this test report.

This test report shall not be reproduced except in full, without written approval of the laboratory.

The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report.

REPORT

2(39)

FCC ID: **PY7A1031012**

				2(39)
Prepared (also subject responsible if other)		No.		
SEM/CA Gerard Hayes		SEM/CA -04:0003/REP		
Approved	Checked			
SEM/CA Gerard Hayes			Α .	X:\SAR Chamber\FCC reports\T637\Final Reports\T637 Hardware B Regression.doc

Table of Contents

1. Introduction	3
2. Description of the Device Under Test	3
2.1 Antenna description	3
2.2 Device description	3
3. Test Equipment Used	3
3.1 Dosimetric System	3
3.2 Additional Equipment	4
4. Electrical parameters of the tissue simulating liquid	4
5. System Accuracy Verification	5
6. Test Results	6
6.1 Head Adjacent Test Results	6
6.2 Body-Worn Test Results	9
References	10
Appendix 1: SAR distribution comparison for system accuracy verification	11
Appendix 2: SAR distribution plots for Phantom Head Adjacent Use	17
Appendix 3: SAR distribution plots for Body Worn Configuration	24
Appendix 4: Probe Calibration Certificate	29
Annendix 5: Measurement Uncertainty Budget	36

REPORT

3(39)

FCC ID: **PY7A1031012**

				0(00)
Prepared (also subject responsible if other)		No.		
SEM/CA Gerard Hayes		SEM/CA -04:0003/REP		
Approved	Checked			
SEM/CA Gerard Hayes				X:\SAR Chamber\FCC reports\T637\Final Reports\T637 Hardware B Regression.doc

1. Introduction

The Sony Ericsson SAR Laboratory has performed measurements of the maximum potential exposure to the user of portable cellular phone FCC ID PYA1031012 model T637 with "Hardware B" modifications. The Specific Absorption Rate (SAR) of this product was measured. The applicable RF safety guidelines and the SAR measurement specifications used for the test are described in [1].

2. Description of the Device Under Test

2.1 Antenna description

Туре	Internal antenna			
Location	Inside the back cover, near the top			
Dimensions	Width	38 mm		
Dimensions	Length 22 mm			
Configuration	Patch antenna			

2.2 Device description

FCC ID Number / Device Model	PY7A1031012 / T637 Hardware B			
Serial number	BD3012GM1Y	7, BD3012GM2E and	BD3012GKFH	
Mode(s) of Operation	GSM 800	GSM 1800	GSM 1900	
Modulation Mode(s)	TDMA TDMA TDMA			
Target Value for Maximum Output Power Setting	33 dBm 30 dBm 30 dF			
Factory Tolerance Window in Power Setting	$\pm 1.0 \text{ dB}$ $\pm 1.0 \text{ dB}$ $\pm 1.0 \text{ dB}$			
Duty Cycle	1/8 1/8 1/8			
Transmitting Frequency Rang(s)	824-849 MHz 1710-1785 MHz 1850-1910 MI			
Production Unit or Identical Prototype (47 CFR §2908)	Identical Prototype			
Device Category	Portable			
RF Exposure Limits	General Population / Uncontrolled			

3. Test Equipment Used

3.1 Dosimetric System

The Sony Ericsson SAR Laboratory utilizes a Dosimetric Assessment System (Dasy3TM v3.1d) manufactured by Schmid & Partner Engineering AG (SPEAGTM), of Zurich Switzerland. The overall RSS uncertainty of the measurement system is $\pm 10.61\%$ (K=1) with an expanded uncertainty of $\pm 21.22\%$ (K=2). The measurement uncertainty budget is given in Appendix 5. The list of calibrated equipment used for the measurements is shown in the following table.

nc. FCC ID: PY7A1031012
PORT

4(39)

				1(00)
Prepared (also subject responsible if other)		No.		
SEM/CA Gerard Hayes		SEM/CA -04:0003/REP		
Approved	Checked			
SEM/CA Gerard Hayes				X:\SAR Chamber\FCC reports\T637\Final Reports\T637 Hardware B Regression.doc

Description	Serial Number	Cal Due Date
DASY3 DAE V1	369	08-Sep-2004
DASY3 DAE V1	431	18-Jul-2004
E-Field Probe ETDV6	1583	16-Dec-2004
E-Field Probe ETDV6	1586	28-Aug-2004
Dipole Validation Kit, DV835V2	439	21-Jan-2005
S.A.M. Phantom used for 835MHz (Head)	1023	
S.A.M. Phantom used for 835MHz (Body)	1031	
Dipole Validation Kit, DV1800V2	217	21-Jan-2005
Dipole Validation Kit, DV1900V2	537	21-Jan-2005
S.A.M. Phantom used for 1800MHz (Head)	1020	
S.A.M. Phantom used for 1900MHz (Head)	1020	
S.A.M. Phantom used for 1900MHz (Body)	1030	

3.2 Additional Equipment

Description	Serial Number	Cal Due Date
Signal Generator HP8648C	3537A01598	09-Sep-2004
Power Meter 437B	3125U113481	16-May-2004
Power Meter 437B	3125U13729	08-Jan-2005
Power Sensor - 8482H	MY41090240	13-May-2004
Power Sensor - 8482H	MY41090239	13-May-2004
Network Analyzer HP8752C	3410A3105	17-Sep-2004
Dielectric Probe Kit HP85070B	US33020256	23-Oct-2004
Digital Thermometer 61220-601	350078	10-Nov-2004
Thermometer Probe 61220-604	99172351	10-Nov-2004
Digital Hygrometer/ Thermometer	21242911	10-Nov-2004
AR Power Amplifier 5S1G4	19290	21-Jan-2005

4. Electrical parameters of the tissue simulating liquid

Prior to conducting SAR measurements, the relative permittivity, ε_r , and the conductivity, σ , of the tissue simulating liquids were measured with the dielectric probe kit. These values, along with the temperature of the simulated tissue are shown in the table below. A mass density of ρ =1g/cm3 was entered into the system in all the cases. It can be seen that the measured parameters are within tolerance of the recommended limits [1]. During the tests, the ambient temperature of the laboratory was in the range 22.7-23.9°C, the relative humidity was 21.0- 32.9 %, and the liquid depth above the ear reference points was more than 15.0 cm for all the cases. It is seen that the measured parameters are satisfactory for compliance testing.

REPORT

5(39)

FCC ID: **PY7A1031012**

				$\sigma(\sigma_0)$
Prepared (also subject responsible if other)		No.		
SEM/CA Gerard Hayes		SEM/CA -04:0003/REP		
Approved	Checked			
SEM/CA Gerard Hayes				X:\SAR Chamber\FCC reports\T637\Final Reports\T637 Hardware B Regression.doc

			Diele	ectric Para	ameters
f (MHz)	Tissue type	Limits / Measured	$\mathbf{\epsilon}_r$	σ (S/m)	Simulated Tissue Temp (°C)
	Head	Measured, 17-Mar-04	40.7	0.88	22.9
835	пеац	Recommended Limits	41.50	0.90	20-25
033		Measured, 18-Mar-04	55.2	0.97	23.4
	Body	Recommended Limits	55.20	0.97	20-25
1800	Head	Measured, 18-Mar-04	38.4	1.35	22.6
1000	пеац	Recommended Limits	40.00	1.40	20-25
		Measured, 17-Mar-04	38.1	1.46	22.1
1000	Head	Recommended Limits	40.00	1.40	20-25
1900		Measured, 18-Mar-04	51.7	1.53	22.6
	Body	Recommended Limits	53.30	1.52	20-25

The list of ingredients and the percent composition used for the simulated tissue are indicated in the table below.

	800MHz	800MHz	1800/1900MHz	1900MHz
Ingredient	Head	Body	Head	Body
Sugar	57.99%	56.00%		-
DGBE			44.92%	30.82%
Water	39.72%	41.76%	54.90%	68.89%
Salt	1.18%	0.76%	0.18%	0.29%
HEC	0.92%	1.21%		
Bact.	0.19%	0.27%		

5. System Accuracy Verification

A system accuracy verification of the DASY3 was performed using the measurement equipment listed in Section 3.1. The daily system accuracy verification occurs within the flat section of the SAM phantom.

A SAR measurement was performed to see if the measured SAR was within +/- 10% from the target SAR indicated on the dipole certification sheet. These tests were done at 835 MHz and/or 1800MHz/1900MHz. These frequencies are within 100MHz of the mid-band frequency of the test device, according to [1]. The test was conducted on the same days as the measurement of the DUT. The results from the system accuracy verification are displayed in the table below (SAR values are normalized to 1W forward power delivered to the dipole). During the tests, the ambient temperature of the laboratory was in the range 22.5-23.5 °C, the relative humidity was in the range 20.6 – 32.0 % and the liquid depth above the ear reference points was above 150 mm in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values. The SAR distributions are shown in Appendix 1.

Daily, prior to conducting tests, measurements were made with the RF sources powered off to determine the system noise level. The highest system noise was 0.0006 W/kg, which is below the recommended limit in [1].

REPO

6(39)

FCC ID: **PY7A1031012**

				0(33)
Prepared (also subject responsible if other)		No.		
SEM/CA Gerard Hayes		SEM/CA -04:000	3/REP	
Approved	Checked			
SEM/CA Gerard Hayes				X:\SAR Chamber\FCC reports\T637\Final Reports\T637 Hardware B Regression.doc

f	Tissue		SAR (W/kg)	_	ectric neters	Tissue
(MHz)	Type	Description	1g / 10g ′	$\mathbf{\epsilon}_r$	σ (S/m)	Temp (°C)
	Head	Measured, 17-Mar-04	9.32/ 6.08	40.7	0.88	22.9
835		Recommended Limits	9.50 / 6.20	41.50	0.90	20-25
033	Body	Measured, 18-Mar-04	9.62/6.33	55.2	0.97	23.4
	•	Recommended Limits	9.90 / 6.46	55.20	0.97	20-25
1800		Measured, 18-Mar-04	37.7 / 19.9	38.4	1.34	22.6
1000	Head	Recommended Limits	38.1 / 19.80	40.00	1.40	20-25
	Head	Measured, 17-Mar-04	41.6 /21.4	38.1	1.46	22.1
1900		Recommended Limits	39.70 / 20.50	40.00	1.40	20-25
1900	Body	Measured, 18-Mar-04	42.6 /22.5	51.74	1.53	22.6
		Recommended Limits	40.50 / 20.89	53.30	1.52	20-25

6. Test Results

The test samples were operated using a base station simulator and call processing software. For the purposes of this test the unit is commanded to set to the proper channel, transmitter power level and transmit mode of operation. The phone was tested in the configurations stipulated in [1, 2]. The phone was positioned into these configurations using the positioner supplied with the DASY 3.1d SAR measurement system.

The Cellular Phone FCC ID PY7A1031012 has the following battery option: Model #1 – BKB 193 167 Battery This battery was used for SAR testing. The phone was placed in the SAR measurement system with a fully charged battery.

6.1 Head Adjacent Test Results

The SAR results shown in tables 1 through 4 are maximum SAR values averaged over 1 gram and 10 grams of phantom tissue. Also shown are the measured conducted output powers, the temperature of the test facility during the test, the temperature of the simulated tissue, the measured drift, and the extrapolated SAR. The extrapolated SAR corresponds to the measured SAR scaled to the maximum conducted output power.

The humidity and ambient temperature of the test facility were in the ranges 21.5-26.2% and 22.5-23.5°C, respectively. The SAR measurements were performed using the SAM phantoms listed in section 3.1.

The test conditions indicated as bold numbers in the following table are included in Appendix 2. For the purpose of regression analysis, these test conditions indicate the highest measured value for each band of operation (including "Right Cheek" for 800MHz, "Right Cheek" for 1800MHz, and "Right Tilt" for 1900MHz. All other test conditions measured lower SAR values than those included

C. FCC ID: PY7A1031012

				7(39)
Prepared (also subject responsible if other)		No.		
SEM/CA Gerard Hayes		SEM/CA -04:0003	3/REP	
Approved	Checked			
SEM/CA Gerard Hayes				X:\SAR Chamber\FCC reports\T637\Final Reports\T637 Hardware B Regression.doc

			Le	Left Head		(Cheek / Touch Position)			
f (MHz)	Channel/ frequency	Conducted Output Power (dBm)	Measured (W/kg) 1g / 10g	Drift (dB)	Extrapolated (W/kg) 1g / 10g	Ambient Temp (°C)	Simulate Temp (°C)		
000 001	128 / 824	33.83	0.899 / 0.542	0.03	0.935/ 0.564	23.5	21.0		
800 GSM	189 / 837	33.24	0.944 / 0.540	-0.06	0.957/ 0.548	23.5	21.0		
	251 / 849	32.71	0.993 / 0.600	-0.01	1.00 / 0.606	23.5	21.0		
	512 / 1710	30.86	0.652 / 0.387	+0.14	0.673/ 0.400	23.4	21.2		
1800 GSM	699 / 1748	30.22	0.492 / 0.294	+0.05	0.501 /0.299	23.4	21.2		
	885 / 1785	30.93	0.462 / 0.274	-0.16	0.470 /0.278	23.4	21.2		
	512 / 1850	30.90	0.610 / 0.367	-0.02	0.624 /0.376	23.3	21.5		
1900 GSM	660/1880	30.23	0.586 / 0.347	-0.02	0.596 /0.353	23.3	21.5		
	810/1910	30.92	0.607 / 0.358	-0.02	0.618 /0.365	23.3	21.5		

Table 1: SAR measurement results for the portable cellular telephone FCC ID PY7A1031012 model T637 at maximum output power. Measured against the left head in the Cheek/Touch Position.

			Right head		(Cheek / Touch Position)			
f (MHz)	Channel/ frequency	Conducted Output Power (dBm)	Measured (W/kg) 1g / 10g	Drift (dB)	Extrapolated (W/kg) 1g / 10g	Ambient Temp (°C)	Simulate Temp (°C)	
000 001	128 / 824	33.83	0.769 / 0.474	-0.01	0.800/ 0.493	23.3	21.2	
800 GSM	189 / 837	33.24	0.837 /0.485	-0.12	0.849/ 0.492	23.3	21.2	
	251 / 849	32.71	1.02 / 0.574	+0.19	1.03 / 0.579	23.3	21.2	
	512 / 1710	30.86	0.748 / 0.410	-0.11	0.773 /0.423	23.6	22.0	
1800 GSM	699 / 1748	30.22	0.547 / 0.300	-0.04	0.557 /0.306	23.6	22.0	
	885 / 1785	30.93	0.567 / 0.310	+0.01	0.576 /0.315	23.6	22.0	
1000 001	512 / 1850	30.90	0.837 / 0.463	+0.00	0.856 /0.474	23.2	21.4	
1900 GSM	660/1880	30.23	0.794 / 0.441	-0.00	0.807 /0.448	23.2	21.4	
	810/1910	30.92	0.819 / 0.460	-0.00	0.834 /0.469	23.2	21.4	

Table 2: SAR measurement results for the portable cellular telephone FCC ID PY7A1031012 model T637 at maximum output power. Measured against the right head in the Cheek/Touch Position.

F (MHz)	Channel/ frequency	Conducted Output Power (dBm)	Left Head (15° Tilt Position)
---------	-----------------------	------------------------------------	-------------------------------

EPORT

8(39)

FCC ID: **PY7A1031012**

				0(00)
Prepared (also subject responsible if other)		No.		
SEM/CA Gerard Hayes		SEM/CA -04:0003/REP		
Approved	Checked			
SEM/CA Gerard Hayes				X:\SAR Chamber\FCC reports\T637\Final Reports\T637 Hardware B Regression.doc

			Left Head (15° Tilt Position)					
			Measured (W/kg) 1g / 10g	Drift (dB)	Extrapolated (W/kg) 1g / 10g	Ambient Temp (°C)	Simulate Temp (°C)	
000 001	128 / 824	33.83	0.378 / 0.188	-0.05	0.402 / 0.196	23.4	21.0	
800 GSM	189 / 837	33.24	0.415 / 0.259	-0.04	0.421 / 0.263	23.4	21.0	
	251 / 849	32.71	0.488 / 0.307	+0.01	0.493 / 0.310	23.4	21.0	
	512 / 1710	30.86	0.739 / 0.415	-0.06	0.763 / 0.429	23.2	21.3	
1800 GSM	699 / 1748	30.22	0.507 / 0.287	+0.10	0.516 / 0.292	23.2	21.3	
	885 / 1785	30.93	0.538 / 0.301	-0.04	0.547 / 0.306	23.2	21.3	
1000 GGV	512 / 1850	30.90	0.835 / 0.469	-0.04	0.854 / 0.480	23.3	21.2	
1900 GSM	660/1880	30.23	0.767 / 0.441	-0.06	0.779 / 0.448	23.3	21.2	
	810/1910	30.92	0.863 / 0.474	-0.05	0.879 / 0.483	23.3	21.2	

Table 3: SAR measurement results for the portable cellular telephone FCC ID PY7A1031012 model T637 at maximum output power. Measured against the left head in the 15° Tilt Position.

			Right Head (15° Tilt Position)					
F (MHz)	Channel/ frequency	Conducted Output Power (dBm)	Measured (W/kg) 1g / 10g	Drift (dB)	Extrapolated (W/kg) 1g / 10g	Ambient Temp (°C)	Simulate Temp (°C)	
	128 / 824	33.83	0.407 / 0.245	-0.05	0.423 / 0.255	23.1	21.2	
800 GSM	189 / 837	33.24	0.381 / 0.235	+0.20	0.386 / 0.238	23.1	21.2	
	251 / 849	32.71	0.538 / 0.324	-0.14	0.543 / 0.327	23.1	21.2	
	512 / 1710	30.86	0.734 / 0.401	+0.03	0.758 / 0.414	23.4	21.9	
1800 GSM	699 / 1748	30.22	0.565 / 0.308	-0.01	0.576 / 0.314	23.4	21.9	
	885 / 1785	30.93	0.552 / 0.304	-0.04	0.561 / 0.309	23.4	21.9	
1000 CCM	512 / 1850	30.90	0.992 / 0.543	-0.12	1.015 / 0.556	23.3	21.5	
1900 GSM	660/1880	30.23	0.932 / 0.510	-0.05	0.947 / 0.518	23.3	21.5	
	810/1910	30.92	0.936 / 0.516	-0.03	0.953 / 0.526	23.3	21.5	

Table 4: SAR measurement results for the portable cellular telephone FCC ID PY7A1031012 model T637 at maximum output power. Measured against the right head in the 15° Tilt Position.

REPORT

9(39)

FCC ID: **PY7A1031012**

				0(00)
Prepared (also subject responsible if other)		No.		
SEM/CA Gerard Hayes		SEM/CA -04:0003/REP		
Approved	Checked			
SEM/CA Gerard Hayes				X:\SAR Chamber\FCC reports\T637\Final Reports\T637 Hardware B Regression.doc

6.2 Body-Worn Test Results

The SAR results shown in table 5 are the maximum SAR values averaged over 1gram and 10 grams of phantom tissue. Also shown are the measured conducted output powers, the temperature of the test facility during the test, the temperature of the simulated tissue after the test, the measured drift and the extrapolated SAR. The extrapolated SAR corresponds to the measured SAR scaled to the maximum conducted output power. The humidity and ambient temperature of the test facility were in the ranges 20.6-31.0% and 22.7-22.9°C, respectively.

A "flat" phantom was used for the body-worn tests. This "flat" phantom corresponds to the flat portion of the SAM phantom. The tissue stimulant depth above the ear canal was verified to be above 150mm in all the measurements. The same device holder described in section 6 was used for positioning the phone. The cellular phone was tested with a headset connected to the device for all body-worn SAR measurements.

For regression analysis, the following body-worn accessory (which measured the highest in the original filling) was tested for this phone: Carry case model ICT-25

For the 800MHz and 1900MHz bands, a full data set output of the test conditions with the highest SAR values from the DASY™ measurement system is included as Appendix 3. The test conditions included are indicated as bold numbers in the following table. All other test conditions measured lower SAR values than those included.

			Body Worn PHF: HPB-20 Carry Accessory: ICT-25 (Back of phone facing body)					
f (MHz)	Channel/ frequency	Conducted Output Power (dBm)	Measured (W/kg) 1g / 10g	Drift (dB)	Extrapolated (W/kg) 1g / 10g	Ambient Temp (°C)	Simulate Temp (°C)	
	128 / 824	33.83	0.645 / 0.427	-0.14	0.671 / 0.444	22.7	22.7	
800 GSM	189 / 837	33.24	0.615 / 0.426	+0.07	0.624 / 0.432	22.7	22.7	
	251 / 849	32.71	0.667 / 0.459	-0.04	0.673 / 0.463	22.7	22.7	
	512 / 1850	30.90	0.932 / 0.513	-0.05	0.954 / 0.525	22.9	22.4	
1900 GSM	660/1880	30.23	0.720 / 0.405	0.00	0.732 / 0.412	22.9	22.4	
	810/1910	30.92	0.699 / 0.402	-0.06	0.715 / 0.409	22.9	22.4	

Table 5: SAR measurement results for the portable cellular telephone FCC ID PY7A1031012 model T637 at maximum output power. Measured against the body with carry accessory ICT-14. Back of the phone facing the flat phantom.

APPLICANT: Sony Ericsson Mobile Communications Inc.

REPORT

10(39)

FCC ID: **PY7A1031012**

				10(00)
Prepared (also subject responsible if other)		No.		
SEM/CA Gerard Hayes		SEM/CA -04:0003/REP		
Approved	Checked			
SEM/CA Gerard Hayes				X:\SAR Chamber\FCC reports\T637\Final Reports\T637 Hardware B Regression.doc

References

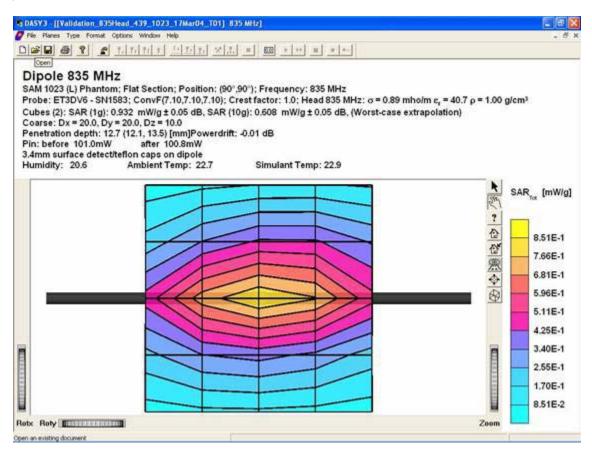
- [1] FCC, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields: Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions," Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01).
- [2] IEEE, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques," Std 1528-200X, Draft 6.5 August 20, 2001.

APPLICANT: Sony Ericsson Mobile Communications Inc.

REPORT

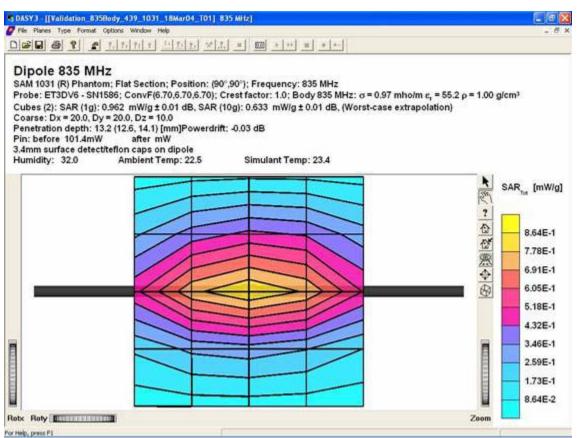
11(39)

FCC ID: **PY7A1031012**


				11(39)
Prepared (also subject responsible if other)		No.		
SEM/CA Gerard Hayes		SEM/CA -04:0003	3/REP	
Approved	Checked			
SEM/CA Gerard Hayes				X:\SAR Chamber\FCC reports\T637\Final Reports\T637 Hardware B Regression.doc

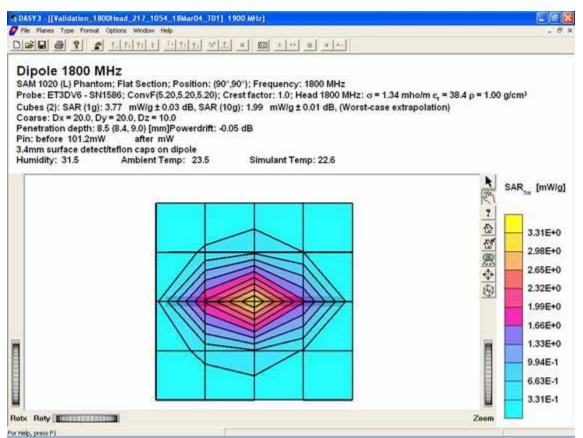
Appendix 1

SAR distribution comparison for the system accuracy verification

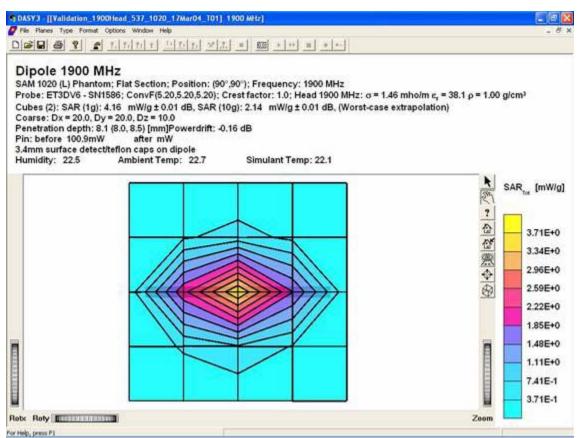


				12(00)
Prepared (also subject responsible if other)		No.		
SEM/CA Gerard Hayes		SEM/CA -04:000	3/REP	
Approved	Checked			
SEM/CA Gerard Hayes				X:\SAR Chamber\FCC reports\T637\Final Reports\T637 Hardware B Regression.doc

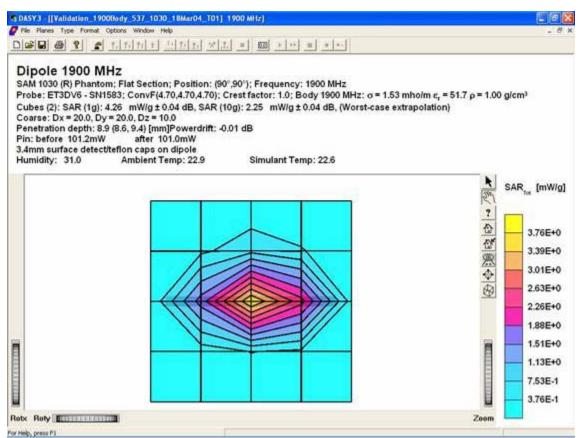
835 MHz SAR distribution of validation dipole antenna from system performance check on March 17, 2004 (Using head tissue).


				10(00)
Prepared (also subject responsible if other)		No.		
SEM/CA Gerard Hayes		SEM/CA -04:000)3/REP	
Approved	Checked			
SEM/CA Gerard Hayes				X:\SAR Chamber\FCC reports\T637\Final Reports\T637 Hardware B Regression.doc

835 MHz SAR distribution of validation dipole antenna from system performance check on March 18, 2004 (Using muscle/body tissue).


				17(00)
Prepared (also subject responsible if other)		No.		
SEM/CA Gerard Hayes		SEM/CA -04:000)3/REP	
Approved	Checked			
SEM/CA Gerard Hayes				X:\SAR Chamber\FCC reports\T637\Final Reports\T637 Hardware B Regression.doc

1800 MHz SAR distribution of validation dipole antenna from system performance check on March 18, 2004 (Using head tissue).


				10(00)
Prepared (also subject responsible if other)		No.		
SEM/CA Gerard Hayes		SEM/CA -04:000	3/REP	
Approved	Checked			
SEM/CA Gerard Hayes				X:\SAR Chamber\FCC reports\T637\Final Reports\T637 Hardware B Regression.doc

1900 MHz SAR distribution of validation dipole antenna from system performance check on March 17, 2004 (Using head tissue).

				10(00)
Prepared (also subject responsible if other)		No.		
SEM/CA Gerard Hayes		SEM/CA -04:000	3/REP	
Approved	Checked			
SEM/CA Gerard Hayes				X:\SAR Chamber\FCC reports\T637\Final Reports\T637 Hardware B Regression.doc

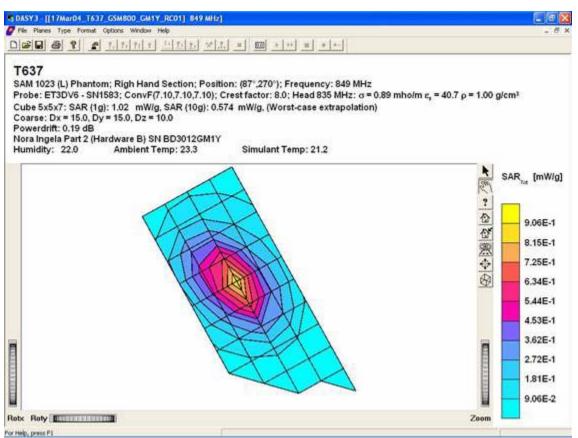
1900 MHz SAR distribution of validation dipole antenna from system performance check on March 18, 2004 (Using muscle/body tissue).

APPLICANT: Sony Ericsson Mobile Communications Inc.

REPORT

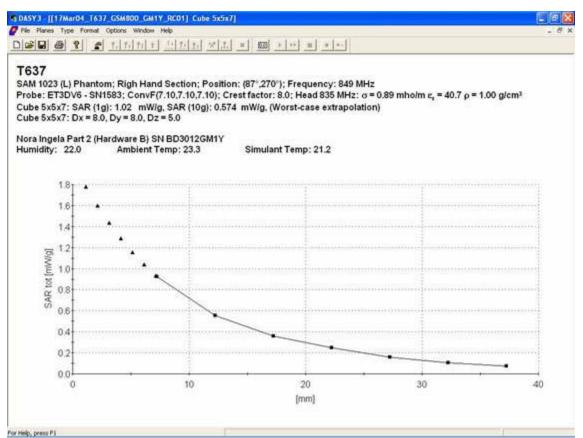
17(39)

FCC ID: **PY7A1031012**

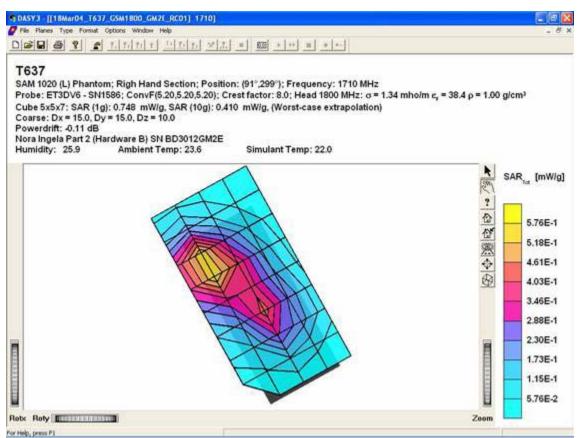

				17(39)
Prepared (also subject responsible if other)		No.		
SEM/CA Gerard Hayes		SEM/CA -04:0003/	REP	
Approved	Checked			
SEM/CA Gerard Hayes				X:\SAR Chamber\FCC reports\T637\Final Reports\T637 Hardware B Regression.doc

Appendix 2

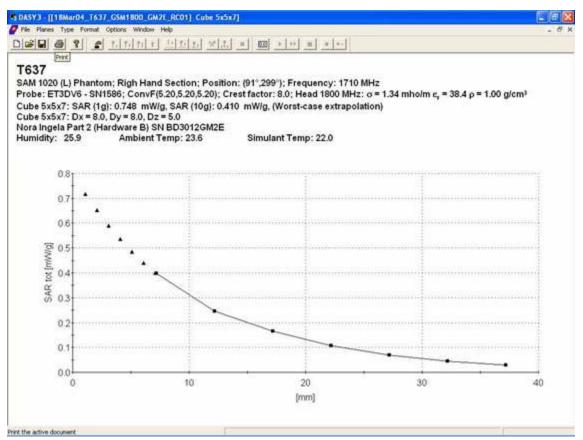
SAR distribution plots for Phantom Head Adjacent Use


				10(00)
Prepared (also subject responsible if other)		No.		
SEM/CA Gerard Hayes		SEM/CA -04:000)3/REP	
Approved	Checked			
SEM/CA Gerard Hayes				X:\SAR Chamber\FCC reports\T637\Final Reports\T637 Hardware B Regression.doc

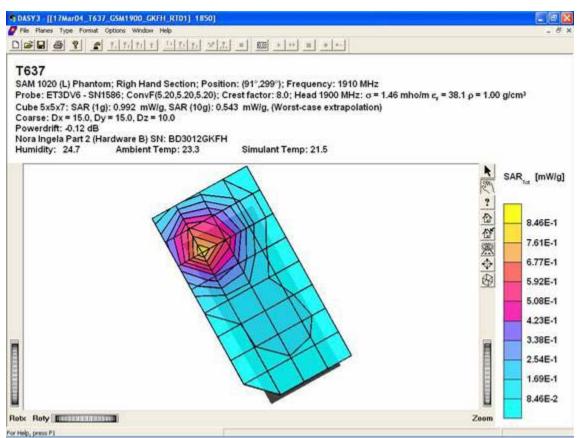
Distribution of maximum SAR in 800 GSM band. Measured against the right hand side of the head in the "Cheek/Touch" position.


				10(00)
Prepared (also subject responsible if other)		No.		
SEM/CA Gerard Hayes		SEM/CA -04:00	003/REP	
Approved	Checked			
SEM/CA Gerard Hayes			Α	X:\SAR Chamber\FCC reports\T637\Final Reports\T637 Hardware B Regression.doc

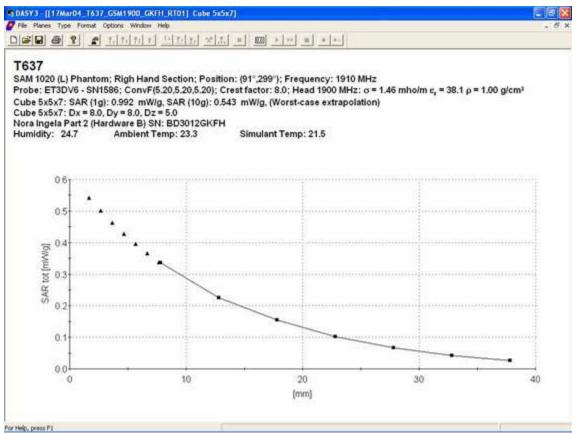
SAR Extrapolation to the phantom inner surface. Measured for Maximum SAR in 800 GSM band, while phone is against the right hand side of the head in the "Cheek/Touch"


				20(00)
Prepared (also subject responsible if other)		No.		
SEM/CA Gerard Hayes		SEM/CA -04:00	003/REP	
Approved	Checked			
SEM/CA Gerard Hayes			Α	X:\SAR Chamber\FCC reports\T637\Final Reports\T637 Hardware B Regression.doc

Distribution of maximum SAR in 1800 GSM band. Measured against the right hand side of the head in the "Cheek/Touch" position.


				21(00)
Prepared (also subject responsible if other)		No.		
SEM/CA Gerard Hayes		SEM/CA -04:0003/I	REP	
Approved	Checked			
SEM/CA Gerard Hayes			Α	X:\SAR Chamber\FCC reports\T637\Final Reports\T637 Hardware B Regression.doc

SAR Extrapolation to the phantom inner surface. Measured for Maximum SAR in 1800 GSM band, while phone is against the right hand side of the head in the "Cheek/Touch" position.


				22(00)
Prepared (also subject responsible if other)		No.		
SEM/CA Gerard Hayes		SEM/CA -04:00	003/REP	
Approved	Checked			
SEM/CA Gerard Hayes			Α	X:\SAR Chamber\FCC reports\T637\Final Reports\T637 Hardware B Regression.doc

Distribution of maximum SAR in 1900 GSM band. Measured against the right hand side of the head in the "Tilt" position.

				20(00)
Prepared (also subject responsible if other)		No.		
SEM/CA Gerard Hayes		SEM/CA -04:00	003/REP	
Approved	Checked			
SEM/CA Gerard Hayes			Α	X:\SAR Chamber\FCC reports\T637\Final Reports\T637 Hardware B Regression.doc

SAR Extrapolation to the phantom inner surface. Measured for Maximum SAR in 1900 GSM band, while phone is against the right hand side of the head in the "Tilt" position.

APPLICANT: Sony Ericsson Mobile Communications Inc.

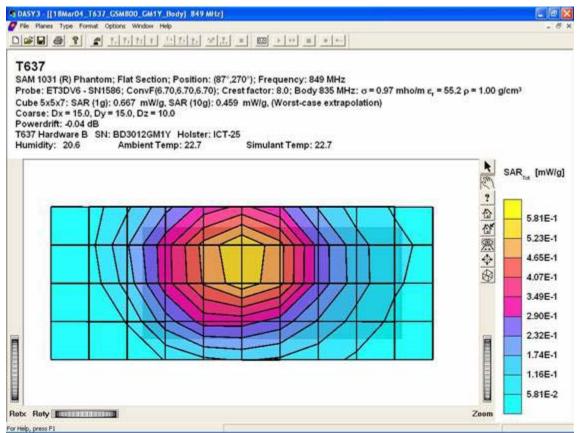
REPORT

24(39)

FCC ID: **PY7A1031012**

				24(39)
Prepared (also subject responsible if other)		No.		
SEM/CA Gerard Hayes		SEM/CA -04:0003	3/REP	
Approved	Checked			
SEM/CA Gerard Hayes				X:\SAR Chamber\FCC reports\T637\Final Reports\T637 Hardware B Regression.doc

Appendix 3

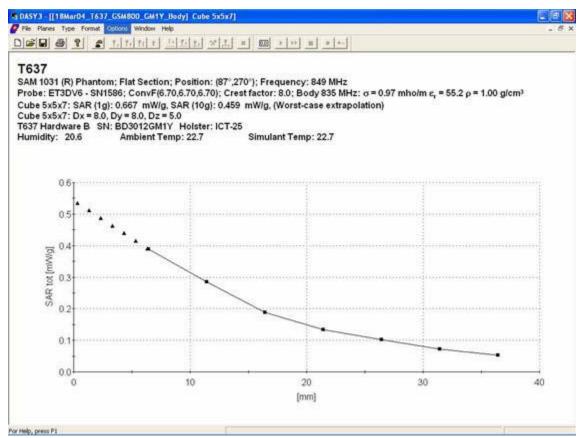

SAR distribution plots for Body Worn Configuration

FCC ID: **PY7A1031012**

25(39)

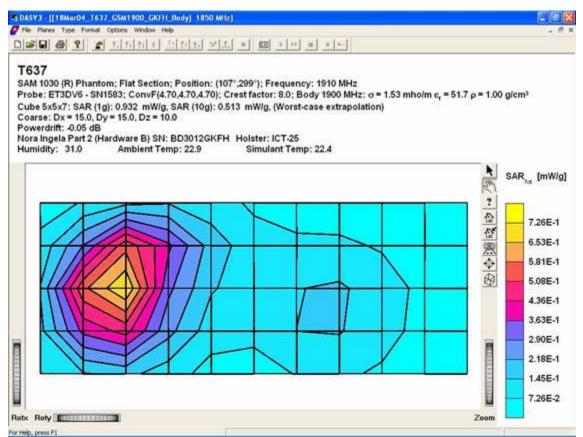
				20(39)
Prepared (also subject responsible if other)		No.		
SEM/CA Gerard Hayes		SEM/CA -04:000	3/REP	
Approved	Checked			
SEM/CA Gerard Hayes				X:\SAR Chamber\FCC reports\T637\Final Reports\T637 Hardware B Regression.doc

Distribution of maximum SAR in 800 GSM band. Measured with back of device facing the body using carry accessory ICT-25 and hands free accessory RLF 501 25/04 (HPE-14).


. RT

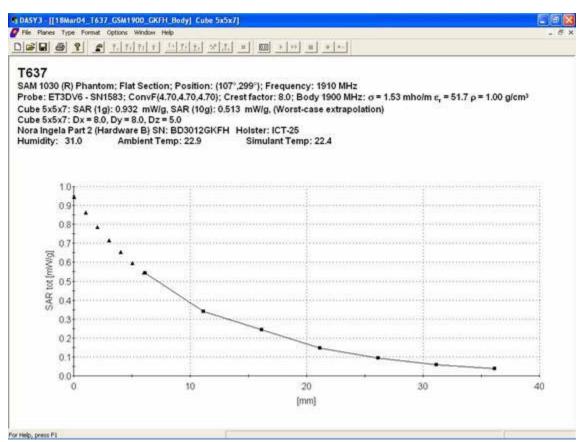
26(39)

FCC ID: PY7A1031012


				20(00)
Prepared (also subject responsible if other)		No.		
SEM/CA Gerard Hayes		SEM/CA -04:00	003/REP	
Approved	Checked			
SEM/CA Gerard Hayes			Α	X:\SAR Chamber\FCC reports\T637\Final Reports\T637 Hardware B Regression.doc

SAR Extrapolation to the phantom inner surface. Measured for maximum SAR in 800 GSM band, while phone is against the body using carry accessory ICT-25 and hands free accessory RLF 501 25/04 (HPE-14).

				21(00)
Prepared (also subject responsible if other)		No.		
SEM/CA Gerard Hayes		SEM/CA -04:00	003/REP	
Approved	Checked			
SEM/CA Gerard Hayes			Α	X:\SAR Chamber\FCC reports\T637\Final Reports\T637 Hardware B Regression.doc



Distribution of maximum SAR in 1900 GSM band. Measured with back of device facing the body using carry accessory ICT-25 and hands free accessory RLF 501 25/04 (HPE-14).

FCC ID: **PY7A1031012**

				20(00)
Prepared (also subject responsible if other)		No.		
SEM/CA Gerard Hayes		SEM/CA -04:000)3/REP	
Approved	Checked			
SEM/CA Gerard Hayes				X:\SAR Chamber\FCC reports\T637\Final Reports\T637 Hardware B Regression.doc

SAR Extrapolation to the phantom inner surface. Measured for maximum SAR in 1900 GSM band, while back of the phone is against the body using carry accessory ICT-25 and hands free accessory RLF 501 25/04 (HPE-14).

APPLICANT: Sony Ericsson Mobile Communications Inc.

REPORT

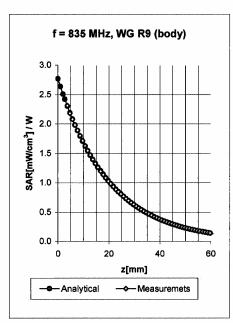
29(39)

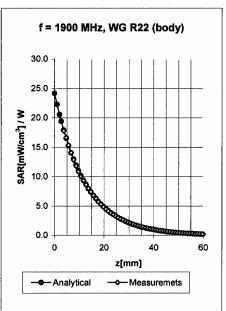
FCC ID: **PY7A1031012**

				29(39)
Prepared (also subject responsible if other)		No.		
SEM/CA Gerard Hayes		SEM/CA -04:00	003/REP	
Approved	Checked			
SEM/CA Gerard Hayes			Α	X:\SAR Chamber\FCC reports\T637\Final Reports\T637 Hardware B Regression.doc

Appendix 4

Probe Calibration Certificate





				30(33 <i>)</i>
Prepared (also subject responsible if other)		No.		
SEM/CA Gerard Hayes		SEM/CA -04:00	003/REP	
Approved	Checked			
SEM/CA Gerard Hayes			Α	X:\SAR Chamber\FCC reports\T637\Final Reports\T637 Hardware B Regression.doc

ET3DV6 SN:1583 December 16, 2003

Conversion Factor Assessment

Body	835 MHz	$\epsilon_{\rm r}$ = 55.2 ± 5%	σ = 0.97 ± 5% mho/m
Valid for f	=750-950 MHz with Body Tissu	e Simulating Liquid acco	ording to OET 65 Suppl. C

ConvF X **6.7** ± 9.5% (k=2) Boundary effect:

ConvF Y **6.7** ± 9.5% (k=2) Alpha **0.32**ConvF Z **6.7** ± 9.5% (k=2) Depth **2.70**

Body 1900 MHz $\epsilon_r = 53.3 \pm 5\%$ $\sigma = 1.52 \pm 5\%$ mho/m

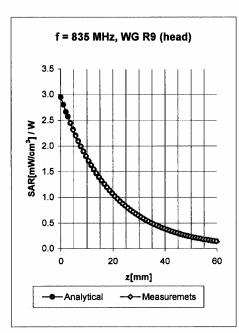
Valid for f=1800-2000 MHz with Body Tissue Simulating Liquid according to OET 65 Suppl. C

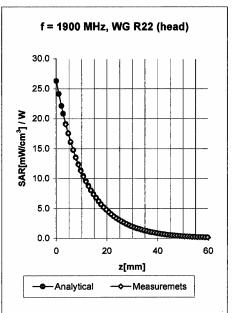
 ConvF X
 4.7 ± 9.5% (k=2)
 Boundary effect:

 ConvF Y
 4.7 ± 9.5% (k=2)
 Alpha
 0.60

 ConvF Z
 4.7 ± 9.5% (k=2)
 Depth
 2.58

Page 8 of 10




	01(00)
Prepared (also subject responsible if other)	No.
SEM/CA Gerard Hayes	SEM/CA -04:0003/REP
Approved Checked	
SEM/CA Gerard Hayes	A X:\SAR Chamber\FCC reports\T637\Final Reports\T637 Hardware B Regression.doc

ET3DV6 SN:1583

December 16, 2003

Conversion Factor Assessment

Head	835 M	Hz	$\varepsilon_{\rm r}$ = 41.5 ± 5%	σ = 0.90 ± 5% mho/m
Valid fo	r f=750-950 MHz wit	h Head Tis	sue Simulating Liquid acc	cording to EN 50361, P1528-200X
	ConvF X	7.1	± 9.5% (k=2)	Boundary effect:
	ConvF Y	7.1	± 9.5% (k=2)	Alpha 0.29

ConvF X	7.1 ± 9.5% (k=2)	Boundary effe	ect:
ConvF Y	7.1 ± 9.5% (k=2)	Alpha	0.29
ConvF Z	7.1 ± 9.5% (k=2)	Depth	2.76

Head	1900 MHz	$\varepsilon_r = 40.0 \pm 5\%$	σ = 1.40 ± 5% mh	10/m
Valid for f=1800-200	00 MHz with Head	Tissue Simulating Liquid a	ccording to EN 50361, P1	1528-200X
ConvF	× 5.2	± 9.5% (k=2)	Boundary effe	ect:
ConvF	Y 5.2	± 9.5% (k=2)	Alpha	0.47
ConvF	z 5.2	± 9.5% (k=2)	Depth	2.82

Page 7 of 10

REPORT

32(39)

FCC ID: **PY7A1031012**

				02(00)
Prepared (also subject responsible if other)		No.		
SEM/CA Gerard Hayes		SEM/CA -04:0003	3/REP	
Approved	Checked			
SEM/CA Gerard Hayes			Α	X:\SAR Chamber\FCC reports\T637\Final Reports\T637 Hardware B Regression.doc

ET3DV6 SN:1583

December 16, 2003

DASY - Parameters of Probe: ET3DV6 SN:1583

Sensitivity in Free Space	Diode Compression
---------------------------	-------------------

NormX	1.76 μV/(V/m)²	DCP X	95	mV
NormY	1.95 μV/(V/m) ²	DCP Y	95	mV
NormZ	1.92 μV/(V/m) ²	DCP Z	95	mV

Sensitivity in Tissue Simulating Liquid

835 MHz

Head	835 MHz	ϵ_r = 41.5 ± 5%	σ = 0.90 ± 5% mho	/m
Valid for f=750-950	MHz with Head Tis	ssue Simulating Liquid acco	rding to EN 50361, P1528	-200X
Conv	7.1	± 9.5% (k=2)	Boundary effec	t:
Convi	7.1	± 9.5% (k=2)	Alpha	0.29
Convi	z 7.1	± 9.5% (k=2)	Depth	2.76

пеац	1900 MITIZ	Er - 40.0 1 376	0 - 1.40 ± 3/6 mmo/m
Valid for f=1800-20	000 MHz with Head Tissue	Simulating Liquid accor	ding to EN 50361, P1528-200X

ConvF X	5.2 ± 9.5% (k=2)	Boundary eff	ect:
ConvF Y	5.2 ± 9.5% (k=2)	Alpha	0.47
ConvF Z	5.2 ± 9.5% (k=2)	Depth	2.82

Typical SAR gradient: 5 % per mm

Boundary Effect

Head

Probe Tip	to Boundary	1 mm	2 mm
SAR _{be} [%]	Without Correction Algorithm	8.8	5.1
SAR _{be} [%]	With Correction Algorithm	0.4	0.5

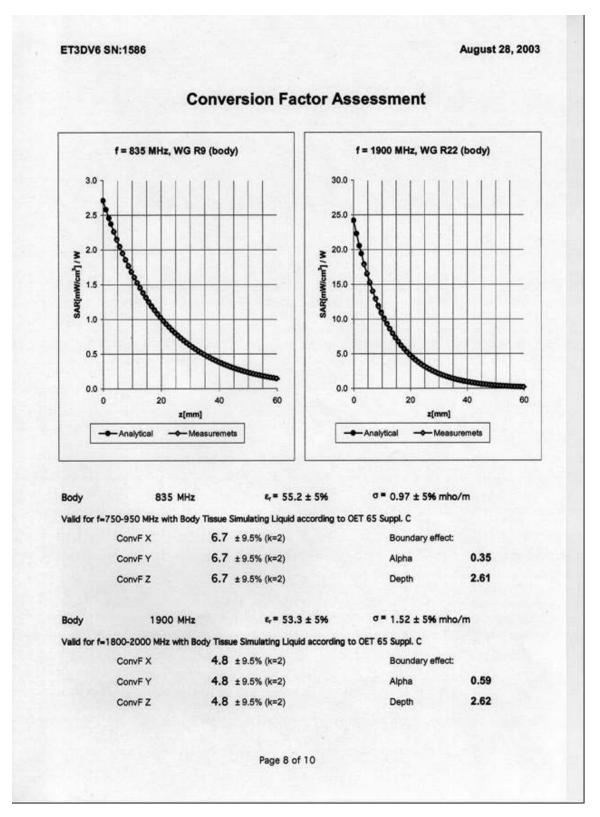
Head	1900 MHz	Typical SAR gradient:	p

Probe Tip to	o Boundary	1 mm	2 mm
SAR _{be} [%]	Without Correction Algorithm	14.1	10.1
SAR _{be} [%]	With Correction Algorithm	0.3	0.3

Sensor Offset

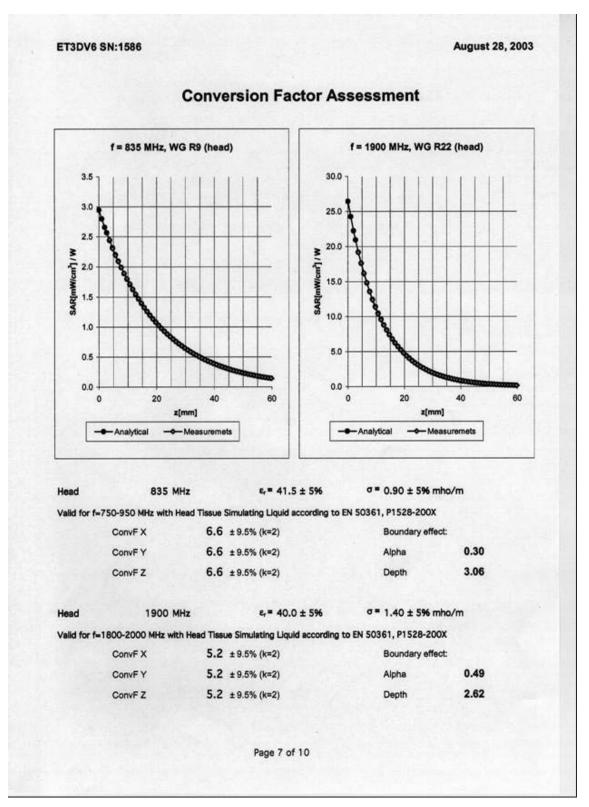
Probe Tip to Sensor Center	2.7	mm
Optical Surface Detection	1.8 ± 0.2	mm

Page 2 of 10


REPORT

33(39)

FCC ID: PY7A1031012


				33(39)
Prepared (also subject responsible if other)		No.		
SEM/CA Gerard Hayes		SEM/CA -04:00	003/REP	
Approved	Checked			
SEM/CA Gerard Hayes			Α	X:\SAR Chamber\FCC reports\T637\Final Reports\T637 Hardware B Regression.doc

FCC ID: **PY7A1031012**

				0 1 (00 <i>)</i>
Prepared (also subject responsible if other)		No.		
OLIVII OTT OCIUI UTIU YCO		SEM/CA -04:0003/REP		
Approved	Checked			
SEM/CA Gerard Hayes			Α	X:\SAR Chamber\FCC reports\T637\Final Reports\T637 Hardware B Regression.doc

FCC ID: **PY7A1031012**

			00(00)
	No.		
	SEM/CA -04:0003	3/REP	
Checked			
			X:\SAR Chamber\FCC reports\T637\Final Reports\T637 Hardware B Regression.doc
	Checked	SEM/CA -04:000	SEM/CA -04:0003/REP

DASY - Parameters of Probe: ET3DV6 SN:1586	ET3DV6 S	N:1586					Aug	96 mV 96 mV 96 mV 0.30 3.06 0.49 2.62 2 mm 6.0 0.7
NormX	DASY -	Param	eters of	Probe: ET3	DV6 SN:1	1586		
NormY 1.82 μV/(V/m) ² DCP Y 96 mV	Sensitivi	ty in Free	Space		Diode Co	ompressi	on	
NormZ		NormX	1.88	μV/(V/m) ²		DCP X	96	mV
Sensitivity in Tissue Simulating Liquid Head 835 MHz € = 41.5 ± 5% σ = 0.90 ± 5% mho/m Valid for f=750-950 MHz with Head Tissue Simulating Liquid according to EN 50361, P1 528-200X ConvF X 6.6 ± 9.5% (k=2) Boundary effect: ConvF Y 6.6 ± 9.5% (k=2) Alpha 0.30 ConvF Z 6.6 ± 9.5% (k=2) Depth 3.06 Head 1900 MHz € = 40.0 ± 5% σ = 1.40 ± 5% mho/m Valid for f=1800-2000 MHz with Head Tissue Simulating Liquid according to EN 50361, P1 528-200X ConvF X 5.2 ± 9.5% (k=2) Boundary effect: ConvF Y 5.2 ± 9.5% (k=2) Alpha 0.49 ConvF Z 5.2 ± 9.5% (k=2) Depth 2.62 Boundary Effect Head 835 MHz Typical SAR gradient: 5 % per mm Probe Tip to Boundary 1 mm 2 mm SAR ₅₀ [%] Without Correction Algorithm 10.3 6.0 SAR ₅₀ [%] With Correction Algorithm 0.5 0.7 Head 1900 MHz Typical SAR gradient: 10 % per mm Probe Tip to Boundary 1 mm 2 mm SAR ₅₀ [%] Without Correction Algorithm 13.3 9.1 SAR ₅₀ [%] Without Correction Algorithm 13.3 9.1 SAR ₅₀ [%] With Correction Algorithm 0.2 0.2 Sensor Offset Probe Tip to Sensor Center 2.7 mm		NormY	1.82	μV/(V/m) ²		DCPY	96	mV
Head 835 MHz ε₁ = 41.5 ± 5% σ = 0.90 ± 5% mho/m Valid for f=750-950 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X ConvF X 6.6 ± 9.5% (k=2) Boundary effect: ConvF Y 6.6 ± 9.5% (k=2) Alpha 0.30 ConvF Z 6.6 ± 9.5% (k=2) Depth 3.06 Head 1900 MHz ε₁ = 40.0 ± 5% σ = 1.40 ± 5% mho/m Valid for f=1800-2000 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X ConvF X 5.2 ± 9.5% (k=2) Boundary effect ConvF X 5.2 ± 9.5% (k=2) Boundary effect Depth 2.62 ConvF Z 5.2 ± 9.5% (k=2) Depth 2.62 Boundary Effect Head 835 MHz Typical SAR gradient: 5 % per mm Probe Tip to Boundary 1 mm 2 mm SAR₀₀ [%] With Correction Algorithm 0.5 0.7 Head 1900 MHz Typical SAR gradient: 10 % per mm 1 mm 2 mm SAR₀₀ [%] Without Correction Algorithm 13.3 9.1 SAR₀₀ [%] Without Correction Algorithm 0.2 0.2 <td></td> <td>NormZ</td> <td>1.83</td> <td>μV/(V/m)²</td> <td></td> <td>DCP Z</td> <td>96</td> <td>mV</td>		NormZ	1.83	μV/(V/m) ²		DCP Z	96	mV
Head 835 MHz ε₁ = 41.5 ± 5% σ = 0.90 ± 5% mho/m Valid for f=750-950 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X ConvF X 6.6 ± 9.5% (k=2) Boundary effect: ConvF Y 6.6 ± 9.5% (k=2) Alpha 0.30 ConvF Z 6.6 ± 9.5% (k=2) Depth 3.06 Head 1900 MHz ε₁ = 40.0 ± 5% σ = 1.40 ± 5% mho/m Valid for f=1800-2000 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X ConvF X 5.2 ± 9.5% (k=2) Boundary effect ConvF X 5.2 ± 9.5% (k=2) Boundary effect Depth 2.62 ConvF Z 5.2 ± 9.5% (k=2) Depth 2.62 Boundary Effect Head 835 MHz Typical SAR gradient: 5 % per mm Probe Tip to Boundary 1 mm 2 mm SAR₀₀ [%] With Correction Algorithm 0.5 0.7 Head 1900 MHz Typical SAR gradient: 10 % per mm 1 mm 2 mm SAR₀₀ [%] Without Correction Algorithm 13.3 9.1 SAR₀₀ [%] Without Correction Algorithm 0.2 0.2 <td>Sensitivit</td> <td>y in Tissue</td> <td>Simulatin</td> <td>g Liquid</td> <td></td> <td></td> <td></td> <td></td>	Sensitivit	y in Tissue	Simulatin	g Liquid				
ConvF X 6.6 ± 9.5% (k=2) Boundary effect: ConvF Y 6.6 ± 9.5% (k=2) Alpha 0.30 ConvF Z 6.6 ± 9.5% (k=2) Depth 3.06 Head 1900 MHz \$\varphi_{\text{r}} = 40.0 ± 5% G = 1.40 ± 5% mho/m Valid for f=1800-2000 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X ConvF X 5.2 ± 9.5% (k=2) Boundary effect: ConvF Y 5.2 ± 9.5% (k=2) Alpha 0.49 ConvF Z 5.2 ± 9.5% (k=2) Depth 2.62 Boundary Effect Head 835 MHz Typical SAR gradient: 5 % per mm Probe Tip to Boundary Typical SAR gradient: 5 % per mm Probe Tip to Boundary Typical SAR gradient: 10 % per mm Probe Tip to Boundary Typical SAR gradient: 10 % per mm Probe Tip to Boundary Typical SAR gradient: 10 % per mm Probe Tip to Boundary Typical SAR gradient: 10 % per mm SAR ₀₀ [%] Without Correction Algorithm 13.3 9.1 SAR ₀₀ [%] Without Correction Algorithm 0.2 0.2 Sensor Offset Probe Tip to Sensor Center 2.7 mm					5% 0	0.90 ± 59	6 mho/m	
ConvF Y 6.6 ± 9.5% (k=2) Alpha 0.30 ConvF Z 6.6 ± 9.5% (k=2) Depth 3.06 Head 1900 MHz € = 40.0 ± 5% Ø = 1.40 ± 5% mho/m Valid for f=1800-2000 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X ConvF X 5.2 ± 9.5% (k=2) Boundary effect: ConvF Y 5.2 ± 9.5% (k=2) Alpha 0.49 ConvF Z 5.2 ± 9.5% (k=2) Depth 2.62 Boundary Effect Head 835 MHz Typical SAR gradient: 5 % per mm Probe Tip to Boundary 1 mm 2 mm SAR₀₀ [%] Without Correction Algorithm 10.3 6.0 SAR₀₀ [%] With Correction Algorithm 0.5 0.7 Head 1900 MHz Typical SAR gradient: 10 % per mm Probe Tip to Boundary 1 mm 2 mm SAR₀₀ [%] Without Correction Algorithm 13.3 9.1 SAR₀₀ [%] Without Correction Algorithm 0.2 0.2 Sensor Offset Probe Tip to Sensor Center 2.7 mm	Valid for f=75	60-950 MHz w	th Head Tissue	Simulating Liquid accor	ding to EN 50361,	P1 528-200	x	
ConvF Z 6.6 ±9.5% (k=2) Depth 3.06		ConvF X	6.6	±9.5% (k=2)		Boundary	effect:	
Head 1900 MHz ε₁ = 40.0 ± 5% σ = 1.40 ± 5% mho/m Valid for f=1800-2000 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X ConvF X 5.2 ± 9.5% (k=2) Boundary effect: ConvF Y 5.2 ± 9.5% (k=2) Alpha 0.49 ConvF Z 5.2 ± 9.5% (k=2) Depth 2.62 Boundary Effect Head 835 MHz Typical SAR gradient: 5 % per mm Probe Tip to Boundary SAR₀₅ [%] Without Correction Algorithm 10.3 6.0 SAR₀₅ [%] With Correction Algorithm 0.5 0.7 Head 1900 MHz Typical SAR gradient: 10 % per mm Probe Tip to Boundary SAR₀₅ [%] Without Correction Algorithm 13.3 9.1 SAR₀₅ [%] With Correction Algorithm 0.2 0.2 Sensor Offset Probe Tip to Sensor Center 2.7 mm		ConvF Y	6.6	± 9.5% (k=2)		Alpha	0.30	
Valid for f=1800-2000 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X ConvF X 5.2 ±9.5% (k=2) Boundary effect: ConvF Y 5.2 ±9.5% (k=2) Alpha 0.49 ConvF Z 5.2 ±9.5% (k=2) Depth 2.62 Boundary Effect Head 835 MHz Typical SAR gradient: 5 % per mm Probe Tip to Boundary 1 mm 2 mm SAR _{be} [%] With Correction Algorithm 10.3 6.0 SAR _{be} [%] With Correction Algorithm 0.5 0.7 Head 1900 MHz Typical SAR gradient: 10 % per mm Probe Tip to Boundary 1 mm 2 mm SAR _{be} [%] With Correction Algorithm 13.3 9.1 SAR _{be} [%] With Correction Algorithm 0.2 0.2 Sensor Offset Probe Tip to Sensor Center 2.7 mm		ConvF Z	6.6	± 9.5% (k=2)		Depth	3.06	
ConvF X 5.2 ± 9.5% (k=2) Alpha 0.49 ConvF Y 5.2 ± 9.5% (k=2) Depth 2.62 Boundary Effect Head 835 MHz Typical SAR gradient: 5 % per mm Probe Tip to Boundary 1 mm 2 mm SAR _{be} [%] Without Correction Algorithm 10.3 6.0 SAR _{be} [%] With Correction Algorithm 0.5 0.7 Head 1900 MHz Typical SAR gradient: 10 % per mm Probe Tip to Boundary 1 mm 2 mm SAR _{be} [%] Without Correction Algorithm 13.3 9.1 SAR _{be} [%] Without Correction Algorithm 13.3 9.1 SAR _{be} [%] With Correction Algorithm 0.2 0.2 Sensor Offset Probe Tip to Sensor Center 2.7 mm								
ConvF Y 5.2 ±9.5% (k=2) Depth 2.62	Valid for f=18	800-2000 MHz	with Head Tiss	ue Simulating Liquid ac	cording to EN 503	61, P1528-2	00X	
Boundary Effect		ConvF X	5.2	± 9.5% (k=2)		Boundary	effect:	
Boundary Effect Head 835 MHz Typical SAR gradient: 5 % per mm Probe Tip to Boundary 1 mm 2 mm SAR _{be} [%] Without Correction Algorithm 10.3 6.0 SAR _{be} [%] With Correction Algorithm 0.5 0.7 Head 1900 MHz Typical SAR gradient: 10 % per mm Probe Tip to Boundary 1 mm 2 mm SAR _{be} [%] Without Correction Algorithm 13.3 9.1 SAR _{be} [%] Without Correction Algorithm 0.2 0.2 Sensor Offset Probe Tip to Sensor Center 2.7 mm		ConvF Y	5.2	± 9.5% (k=2)		Alpha	0.49	
Probe Tip to Boundary		ConvF Z	5.2	± 9.5% (k=2)		Depth	2.62	
Probe Tip to Boundary 1 mm 2 mm SAR₀₀ [%] Without Correction Algorithm 10.3 6.0 SAR₀₀ [%] With Correction Algorithm 0.5 0.7 Head 1900 MHz Typical SAR gradient: 10 % per mm Probe Tip to Boundary 1 mm 2 mm SAR₆₀ [%] Without Correction Algorithm 13.3 9.1 SAR₆₀ [%] With Correction Algorithm 0.2 0.2 Sensor Offset Probe Tip to Sensor Center 2.7 mm	Boundar	y Effect						
SAR % Without Correction Algorithm 10.3 6.0 SAR % With Correction Algorithm 0.5 0.7	Head	83	55 MHz	Typical SAR gradie	nt: 5 % per mm			
SAR With Correction Algorithm 0.5 0.7		Probe Tip to	Boundary			1 mm	2 mm	
Head				ection Algorithm		10.3	6.0	
Probe Tip to Boundary 1 mm 2 mm SAR _{be} [%] Without Correction Algorithm 13.3 9.1 SAR _{be} [%] With Correction Algorithm 0.2 0.2 Sensor Offset Probe Tip to Sensor Center 2.7 mm		SAR _{be} [%]	With Correct	ion Algorithm		0.5	0.7	
SAR _{be} [%] Without Correction Algorithm 13.3 9.1 SAR _{be} [%] With Correction Algorithm 0.2 0.2 Sensor Offset Probe Tip to Sensor Center 2.7 mm	Head	190	00 MHz	Typical SAR gradie	nt: 10 % per mm			
SAR _{be} [%] Without Correction Algorithm 13.3 9.1 SAR _{be} [%] With Correction Algorithm 0.2 0.2 Sensor Offset Probe Tip to Sensor Center 2.7 mm		Probe Tip to	Boundary			1 mm	2 mm	
SAR _{be} [%] With Correction Algorithm 0.2 0.2 Sensor Offset Probe Tip to Sensor Center 2.7 mm				ection Algorithm				
Probe Tip to Sensor Center 2.7 mm		SAR ₅₀ [%]	With Correct	ion Algorithm		0.2	0.2	
	Sensor (Offset						
Ontical Surface Detection 18+02 mm		Probe Tip to	Sensor Center		2.7		mm	
Cytical delicered 110 2 0.2 Hall		Optical Surfa	ace Detection		1.8 ± 0.2		mm	
Page 2 of 10				Page 2 of 10)			

APPLICANT: Sony Ericsson Mobile Communications Inc.
REPORT

36(39)

FCC ID: **PY7A1031012**

				30(39)		
Prepared (also subject responsible if other)		No.				
SEM/CA Gerard Hayes		SEM/CA -04:00	03/REP			
Approved	Checked					
SEM/CA Gerard Hayes				X:\SAR Chamber\FCC reports\T637\Final Reports\T637 Hardware B Regression.doc		

Appendix 5

Measurement Uncertainty Budget

FCC ID: **PY7A1031012**

37(39)

				01(00)
Prepared (also subject responsible if other)		No.		
SEM/CA Gerard Hayes		SEM/CA -04:000	03/REP	
Approved	Checked			
SEM/CA Gerard Hayes				X:\SAR Chamber\FCC reports\T637\Final Reports\T637 Hardware B Regression.doc

1. Table 1. Uncertainty Budget for System Performance Check (Dipole & flat phantom)

а	b	С	d	e = f(d,k)	f	g	h = c x f/e	i= cxg/e	k
Uncertainty Component	Sec.	Tol. (± %)	Prob. Dist.	Div.	c _i (1-g)	c _i (10-g)	1-g <i>u_i</i> (±%)	10-g <i>u_i</i> (±%)	Vi
Measurement System									
Probe Calibration (<i>k</i> =1)	E2.1	4.8	N	1	1	1	4.8	4.8	∞
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	∞
Hemispherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	∞
Boundary Effect	E.2.3	8.3	R	1.73	1	1	4.8	4.8	∞
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	× ×
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	~
Readout Electronics	E.2.6	1.0	N	1	1	1	1.0	1.0	×
Response Time	E.2.7	0.0	R	1.73	1	1	0.0	0.0	∞
Integration Time	E.2.8	0.0	R	1.73	1	1	0.0	0.0	∞
RF Ambient Conditions	E.6.1	3.0	R	1.73	1	1	1.7	1.7	8
Probe Positioner Mechanical Tolerance(corresponds to the mechanical constrains of the robot)	E.6.2	0.4	R	1.73	1	1	0.2	0.2	∞
Probe Positioning with respect to Phantom Shell	E.6.3	2.9	R	1.73	1	1	1.7	1.7	8
Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	E.5	3.9	R	1.73	1	1	2.3	2.3	×
Dipole									
Dipole Axis to Liquid Distance	8, E.4.2	1.0	R	1.73	1	1	0.6	0.6	×
Input Power and SAR Drift Measurement	8, 6.6.2	5.0	R	1.73	1	1	2.9	2.9	8
Phantom and Tissue Parameters									
Phantom Uncertainty - shell thickness tolerance	E.3.1	4.0	R	1.73	1	1	2.3	2.3	8
Liquid Conductivity - deviation from target values (5)	E.3.2	4.3	R	1.73	0.64	0.43	1.59	1.07	8
Liquid Conductivity - measurement uncertainty (6)	E.3.3	6.20	R	1.73	0.64	0.43	2.29	1.54	8
Liquid Permittivity - deviation from target values (5)	E.3.2	3.7	R	1.73	0.6	0.49	1.28	1.05	8
Liquid Permittivity - measurement uncertainty (6)	E.3.3	6.08	R	1.73	0.6	0.49	2.11	1.72	8
Combined Standard Uncertainty			RSS				10.61	10.31	
Expanded Uncertainty (95% CONFIDENCE LEVEL)							21.22	20.62	

REPORT

38(39)

FCC ID: **PY7A1031012**

				30(33 <i>)</i>
Prepared (also subject responsible if other)		No.		
SEM/CA Gerard Hayes		SEM/CA -04:000)3/REP	
Approved	Checked			
SEM/CA Gerard Hayes				X:\SAR Chamber\FCC reports\T637\Final Reports\T637 Hardware B Regression.doc

2. Table 2. Uncertainty Budget for the Device Under Test

а	b	с	d	e = f(d,k)	f	g	h = c x f/e	i= cxg/ e	k
Uncertainty Component	Sec.	Tol. (± %)	Prob. Dist.	Div.	c _i (1-g)	c _i (10-g)	1-g u; (±%)	10-g u _i (±%)	Vi
Measurement System									
Probe Calibration (k=1)	E2.1	4.8	N	1	1	1	4.8	4.8	∞ ∞
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	×
Hemispherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	×
Boundary Effect	E.2.3	8.3	R	1.73	1	1	4.8	4.8	∞
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	∞
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	∞
Readout Electronics	E.2.6	1.0	N	1	1	1	1.0	1.0	∞
Response Time	E.2.7	0.8	R	1.73	1	1	0.5	0.5	∞
Integration Time	E.2.8	1.4	R	1.73	1	1	0.8	0.8	-x
RF Ambient Conditions	E.6.1	3.0	R	1.73	1	1	1.7	1.7	00
Probe Positioner Mechanical Tolerance(corresponds to the mechanical constrains of the robot)	E.6.2	0.4	R	1.73	1	1	0.2	0.2	8
Probe Positioning with respect to Phantom Shell	E.6.3	2.9	R	1.73	1	1	1.7	1.7	_∞
Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	E.5	3.9	R	1.73	1	1	2.3	2.3	×
Test sample Related									
Test Sample Positioning	E.4.2	1.8	N	1	1	1	1.8	1.8	4
Device Holder Uncertainty	E.4.1	1.6	R	1.73	1	1	0.9	0.9	4
Output Power Variation - SAR drift measurement (4)	6.6.2	5.0	R	1.73	1	1	2.9	2.9	œ
Phantom and Tissue Parameters									
Phantom Uncertainty (shape and thickness tolerances)	E.3.1	4.0	R	1.73	1	1	2.3	2.3	∞
Liquid Conductivity - deviation from target values (5)	E.3.2	4.3	R	1.73	0.64	0.43	1.6	1.1	8
Liquid Conductivity - measurement uncertainty (6)	E.3.3	6.20	R	1.73	0.64	0.43	2.3	1.5	8
Liquid Permittivity - deviation from target values (5)	E.3.2	3.7	R	1.73	0.6	0.49	1.3	1.0	× ×
Liquid Permittivity - measurement uncertainty (6)	E.3.3	6.08	R	1.73	0.6	0.49	2.1	1.7	8

FCC ID: **PY7A1031012**

39(39)

Prepared (also subject responsible if other) SEM/CA Gerard Hayes		No. SEM/CA -04:0003	3/REP	
Approved SEM/CA Gerard Hayes	Checked			X:\SAR Chamber\FCC reports\T637\Final Reports\T637 Hardware B Regression.doc

Combined Standard Uncertainty		RSS		10.83	10.54	
Expanded Uncertainty	RSS K=2		21.67	21.08		
(95% CONFIDENCE LEVEL)		N-2		21.07	21.00	

Table 4a. Values for ϵ '

Uncertainty Component	Toleranc e (±%)	Probability Distribution	Divisor	C i	Standard Uncertainty (±%)	v _i or v _{eff}
Repeatability (n repeats)	0.97	N	1	1	0.97	4
Network analyzer uncertainty	8.38	R	1.73	1	4.83	∞
sources						
Dielectric Error Sources	5.93	R	1.73	1	3.42	8
Combined standard					6.08	
uncertainty						

Table 4b. Values for σ

Uncertainty Component	Toleranc e (±%)	Probability Distribution	Divisor	C i	Standard Uncertainty (±%)	V _i or V _{eff}
Repeatability (n repeats)	1.85	N	1	1	1.85	4
Network analyzer uncertainty sources	8.38	R	1.73	1	4.83	8
Dielectric Error Sources	5.93	R	1.73	1	3.42	8
Combined standard uncertainty					6.20	