

Approved

Company Internal REPORT Prepared (also subject responsible if other) No LD/SEMC/BGGI/NM Hamid Kami Shirazi BGGIN05:292 Checked Date Rev Reference LD/SEMC/BGGI/NM Ramadan Plicanic 051010 05-10-10 А File

Report issued by Accredited SAR Laboratory

For

PY7A1022011 (k750i)

Date of test:	3-4-7, 10, 2005	
Laboratory:	Sony Ericsson SAR Test Laboratory Sonyericsson Mobile Communicatio Nya Vattentornet SE-221 82 LUND, Sweden	
Testing Engineer:	Hamid Kami Shirazi <u>Kami.shirazi@sonyericsson.com</u> +46 46 232644	Hasi
Testing Approval	Ramadan Plicanic Ramadan.Plicanic@sonyericsson.c +46 46 19 38 62	Ramadan Plicanic'

Statement of Compliance

Sony Ericsson Mobile Communications AB declares under its sole responsibility that the product

Sony Ericsson AAB-1022011-BV; FCC ID:PY7A1022011;IC:4170B-A1022011

to which this declaration relates, is in conformity with the appropriate RF exposure standards recommendations and guidelines. It also declares that the product was tested in accordance with the appropriate measurement standards, guidelines and recommended practices. Any deviations from these standards, guidelines and recommended practices are noted below:

(None)

This laboratory is accredited to ISO/IEC 17025 (SWEDAC accreditation no. 1847).

Laboratories are accredited by the Swedish Board for Accreditation and Conformity Assessment (SWEDAC) under the terms of Swedish legislation. The accredited laboratory activities meet the requirements in SS-EN ISO/IEC 17025 (2000). This report may not be reproduced other than in full, except with the prior written approval of the issuing laboratory The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report.

Sony Ericsson encourages all feedback, both positive and negative, on this report. © Sony Ericsson Mobile Communication AB, 2005

Sony Ericsson		Company Interr REPORT	nal	
Prepared (also subject responsible if other)		No.		
LD/SEMC/BGGI/NM Hamid Kami Shirazi		BGGIN05:292		
Approved	Checked	Date	Rev	Reference
LD/SEMC/BGGI/NM Ramadan Plicanic	051010	05-10-10	А	File

Table of contents 1

2	INTRODUCTION	3
3	DEVICE UNDER TEST	
	3.1 ANTENNA DESCRIPTION 3.2 DEVICE DESCRIPTION	
4		
	4.1 DOSIMETRIC SYSTEM4.2 ADDITIONAL EQUIPMENT	4 4
5	ELECTRICAL PARAMETERS ON THE TISSUE SIMULATING LIQUID	5
6	SYSTEM ACCURACY VERIFICATION	5
7	SAR MEASUREMENT UNCERTAINTY	6
8	TEST RESULTS	
9	REFERENCES	8
10		
	10.1 Photographs of the device under test	10
	10.2 DEVICE POSITION ON SAM TWINS PHANTOM	12

		Company Interr REPORT	nal	
Prepared (also subject responsible if other)		No.		
LD/SEMC/BGGI/NM Hamid Kami Shirazi		BGGIN05:292		
Approved	Checked	Date	Rev	Reference
LD/SEMC/BGGI/NM Ramadan Plicanic	051010	05-10-10	А	File

2 Introduction

In this test report, compliance of the Sony Ericsson PY7A1022011 portable telephone with RF safety guidelines is demonstrated. The applicable RF safety guidelines and the SAR measurement specifications used for the test are described in the SAR Measurement Specifications of Wireless Handsets [1].

3 Device under Test

3.1 Antenna Description

Туре	Build in			
Location	Up on the back sid	Up on the back side		
Dimensions	Max length	32mm		
Dimensions	Max width	20mm		
Configuration	PIFA			

3.2 Device description

Device model	PY7A1022011			
Serial number	CB50V0VG16			
Mode	GSM1900	GSM1900(GPRS2TX)		
Multiple Access Scheme	TDMA	TDMA		
Maximum Output Power Setting	30.0dBm 28.5dBm			
Factory Tolerance in Power Setting	±0.5dBm ±0.5dBm			
Maximum Peak Output Power	30,5dBm 29.0dBm			
Crest Factor	8 4			
Transmitting Frequency Range(MHz)	1850.2 – 1909.8	3		
Prototype or Production Unit	Preproduction			
Device Category	Portable			
RF exposure environment	General population	tion / uncontrolled		

		Company Inte REPORT	ernal	
Prepared (also subject responsible if other)		No.		
LD/SEMC/BGGI/NM Hamid Kami Shirazi		BGGIN05:292	2	
Approved	Checked	Date	Rev	Reference
LD/SEMC/BGGI/NM Ramadan Plicanic	051010	05-10-10	А	File

4 Test equipment

4.1 Dosimetric system

SAR measurements were made using the DASY3 professional system (software version 3.1c) with SAM twin phantom, manufactured by Schmid & Partner Engineering AG (SPEAG). The list of calibrated equipment is given below.

Description	Serial Number	Due Date
DASY3 DAE V1	419	March, 2006
E-field probe ET3DV6	1585	March, 2006
Dipole Validation Kit, D1900V2	5d002	March, 2007

4.2 Additional equipment

Description	Inventory Number	Due Date
Signal generator ESG-D4000A	INV 462935	11, 2006
Directional coupler HP778D	INV 2903	11, 2005
Power meter R&S NRVD	INV 483920	01, 2006
Power sensor R&S NRV-Z5	INV 2333	11, 2005
Power sensor R&S NRV-Z5	INV 2334	11, 2005
Termination 65N50-0-11	INV 2903	02, 2006
Network analyzer HP8753C	INV421671	09, 2006
S-parameter test set HP85047A	INV 421670	09, 2006
Dielectric probe kit HP8507D	INV 20 000 053	Self cal
Description	Inventory Number	Due Date

		Company Inte REPORT	ernal	
Prepared (also subject responsible if other)		No.		
LD/SEMC/BGGI/NM Hamid Kami Shirazi		BGGIN05:292	2	
Approved	Checked	Date	Rev	Reference
LD/SEMC/BGGI/NM Ramadan Plicanic	051010	05-10-10	А	File

5 Electrical parameters on the tissue simulating liquid

Prior to conducting SAR measurements, the relative permittivity, \mathcal{E}_r , and the conductivity, σ , of the tissue simulating liquids were measured with the dielectric probe kit. These values are shown in the table below. The mass density, ρ , entered into the DASY3 software is also given.

Recommended limits for permittivity \mathcal{E}_r , conductivity σ and mass density ρ are also shown.

f	Tissue	Limits / Measured	Diele	ectric Parame	eters
(MHz)	type	Linits / Measured	٤r	σ (S/m)	ρ (g/cm ³)
1900 Head -	Measured, 03/10/2005	38.0	1.47	1.00	
	Recommended	40.0	1.40	1.00	
1900	Pody	Measured, 04/10/2005	51.5	1.53	1.00
1900 Body	Бойу	Recommended	53.3	1.52	1.00

6 System accuracy verification

A system accuracy verification of the DASY3 was performed using the dipole validation Kit listed in section 3.1. The system verification test was conducted on the same day as the measurement of the DUT. Measurement made in ambient temperature 22-23 °C and humidity 40-50%. The obtained results are displayed in the table below.

RF noise had been measured in liquid when all RF equipment in lab was set off. Measured value was 0.0005 m W/g in1g mass

f	Tissue	Measured / Reference	SAR (W/kg)	Dielectric Parameters			Liquid
(MHz)	type	Weasured / Reference	1g/10g	٤r	σ (S/m)	ρ (g/cm³)	t(°C)
		Measured, 03/10/2005	40.4/20.5	38.0	1.47	1.00	22
1900	Head	Measured, 04/10/2005	40,2/20.4	20.4	1.47	1.00	22
		Reference	39.2/20.6	39.6	1.45	1.00	
		Measured, 04/10/2005	40.8/21.1	51.5	1.53	1.00	22
1900	Body	Measured, 07/10/2005	40.4/20.8	51.5	1.53	1.00	22
		Reference	39.6/20.9	51.6	1.58	1.00	

Sony Ericsson		Company Interr REPORT	nal	
Prepared (also subject responsible if other)		No.		
LD/SEMC/BGGI/NM Hamid Kami Shirazi		BGGIN05:292		
Approved	Checked	Date	Rev	Reference
LD/SEMC/BGGI/NM Ramadan Plicanic	051010	05-10-10	А	File

SAR measurement uncertainty 7

SAR measurement uncertainty evaluation for Sonyericsson PY7A1022011 (K750i) phone

Uncertainty Component	Uncer. (%)	Prob Dist.	Div.	Ci	1900 Head	1900 Body
Measurement System						
Probe Calibration	±4.4	Ν	1	1	±4.4	±4.4
Axial Isotropy	±4.7	R	√3	0.5	±1.4	±1.4
Spherical Isotropy	±9.6	R	√3	0.5	±2.8	±2.8
Spatial resolution	±0.0	R	√3	1	±0.0	±0.0
Boundary effect	±5.5	R	√3	1	±3.2	±3.2
Probe linearity	±4.7	R	√3	1	±2.7	±2.7
Detection limit	±1.0	R	√3	1	±0.6	±0.6
Readout electronics	±1.0	Ν	1	1	±1.0	±1.0
Response time	±0.8	R	√3	1	±0.5	±0.5
Integration time	±1.4	R	√3	1	±0.8	±0.8
RF Ambient Conditions	±3.0	R	√3	1	±1.7	±1.7
Mech. Constraints of robot	±0.4	R	√3	1	±0.2	±0.2
Probe positioning	±2.9	R	√3	1	±1.7	±1.7
Extrap, interpolation and integration	±3.9	R	√3	1	±2.3	±2.3
Measurement System Uncertainty					±7.7	±7.7
Test Sample Related						
Device positioning	±6.0	Ν	0.89	1	±6.7	±6.7
Device holder uncertainty	±5.0	Ν	0.84	1	±5.9	±5.9
Power drift	3.7/3.0	R	√3	1	±2,1	±1.7
Test Sample Related Uncertainty					±9.2	±9.1
Phantom and Tissue Parameters						
Phantom uncertainty	±4.0	R	√3	1	±2.3	±2.3
Liquid conductivity (meas)	+5/+0.7	R	√3	0.6	±1.7	±0,2
Liquid conductivity (target)	±5.0	R	√3	0.6	±1.7	±1.7
Liquid Permittivity (meas)	-5/-3.4	R	√3	0.6	±0,9	±1,2
Liquid Permittivity (target)	±5.0	R	√3	0.6	±1.7	±1.7
Phantom and Tissue Parameters Uncertainty					±3.8	±3.5
Combined standard uncertainty						±12.4
Extended standard uncertainty (k=2)					±12.6 ±25.2	±24.8

		Company Inte REPORT	rnal	
Prepared (also subject responsible if other)		No.		
LD/SEMC/BGGI/NM Hamid Kami Shirazi		BGGIN05:292		
Approved	Checked	Date	Rev	Reference
LD/SEMC/BGGI/NM Ramadan Plicanic	051010	05-10-10	А	File

8 Test results

The measured 1-gram and averaged SAR values of the device against the head are provided in Tables 1 and body are provided in Tables 2. The ambient humidity and temperature of test facility were 40% - 50% and 22.0 °C - 23.0 °C respectively. The depth of the head and body tissue simulating liquid were 15.1cm. A base station simulator was used to control the device during the SAR measurement. The phone was supplied with full-charged battery for each measurement.

For head measurement, the device was tested on the right-hand phantom (corresponding to the right side of the head) and the left-hand phantom in two phone position, cheek (touch) and tilt (cheek + 15deg).

For body measurement phone was tested on the antenna to the phantom and back to the phantom in GPRS 2 TX mode and with 15mm distance against flat section of phantom. For all modes, the device was tested at the lowest, middle and highest frequencies in the transmit band. For Blue Tooth mode, phone was pared with Sony Ericsson HBH-60 Blue Tooth head sets and measured on worst case speech mode body position.

		Power		Liquid	SAR (V	V/kg)
Mode	Channel	(dB)	Phone Position	t (°C)	Right-hand	Left-hand
				()	1g mass	1g mass
	512	30.3	Cheek	22-23	0.49	0.42
	512	30.5	Tilt	22-23	0.54	0.49
1900	661	30.3	Cheek	22-23	0.67	0.58
GSM	001	30.3	Tilt	22-23	0.71	0.65
GOW			Cheek	22-23	0.69	0.51
	810	30.4	Tilt-Blue tooth	22-23	0.74	-
			Tilt	22-23	0.73	0.66

Table1: SAR measurement result for Sony Ericsson PY7A1022011 (K750i) telephone at highest possible output power. The phone has measured against the head.

Mode	Channel	Power (dBm)	Phone Position	Liquid t (°C)	SAR (W/kg) in 1 g mass
		30.3	Front to phantom	22-23	0.07
	512	30.3	Antenna to phantom	22-23	0.52
		29.0	Antenna to phantom, GPRS 2 Slots	22-23	0.75
GSM		30.3	Front to phantom	22-23	0.10
1900	661	30.3	Antenna to phantom	22-23	0.73
Body		28.9	Antenna to phantom, GPRS 2 Slots	22-23	0.90
		30.4	Front to phantom	22-23	0.11
	810	50.4	Antenna to phantom	22-23	0.87
		28.7	Antenna to phantom, GPRS 2 Slots	22-23	0.99

Table2: SAR measurement result for Sony Ericsson PY7A1022011 (K750i) telephone at highest possible output power. The phone has measured against the Body.

		Company Internal REPORT			
Prepared (also subject responsible if other)		No.			
LD/SEMC/BGGI/NM Hamid Kami Shirazi		BGGIN05:292			
Approved	Checked	Date	Rev	Reference	
LD/SEMC/BGGI/NM Ramadan Plicanic	051010	05-10-10	А	File	

9 References

[1] R.Plicanic, "SAR Measurement Specification of Wireless Handsets", Sony Ericsson SAR Test Laboratory internal document GUG/N 03:141

[2] Basic standard for the Measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300MHz-3GHz), European Standard EN 50361, July 2001

[3] FCC, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields: Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radio Frequency Emissions," Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01).

[4] IEEE, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques," Std 1528-2003, June, 2003.

		Company Internal REPORT		
Prepared (also subject responsible if other)		No.		
LD/SEMC/BGGI/NM Hamid Kami Shirazi		BGGIN05:292	2	
Approved	Checked	Date	Rev	Reference
LD/SEMC/BGGI/NM Ramadan Plicanic	051010	05-10-10	А	File

10 Appendix

10.1 Photographs of the device under test

Front side

Down Connector

🍯 Sor	y Ericsson
-------	------------

ny Internal T	
05:292	
Rev F	Reference
0 A F	-ile
)5:292 _{Rev} F



Back side with battery

		Company Inte REPORT	ernal	
Prepared (also subject responsible if other)		No.		
LD/SEMC/BGGI/NM Hamid Kami Shirazi		BGGIN05:292	2	
Approved	Checked	Date	Rev	Reference
LD/SEMC/BGGI/NM Ramadan Plicanic	051010	05-10-10	А	File

10.2 **Device position on SAM Twins Phantom**

Device position against the head: Cheek (touch) phone position

Device position against the head: Tilt (cheek+15deg) phone position

LD/SEMC/BGGI/NM Hamid Kami Shirazi

LD/SEMC/BGGI/NM Ramadan Plicanic 051010

Checked

Prepared (also subject responsible if other)

Approved

Company Int REPORT	Company Internal REPORT				
No.					
BGGIN05:29	2				
Date	Rev	Reference			
05-10-10	А	File			

Device position against the body

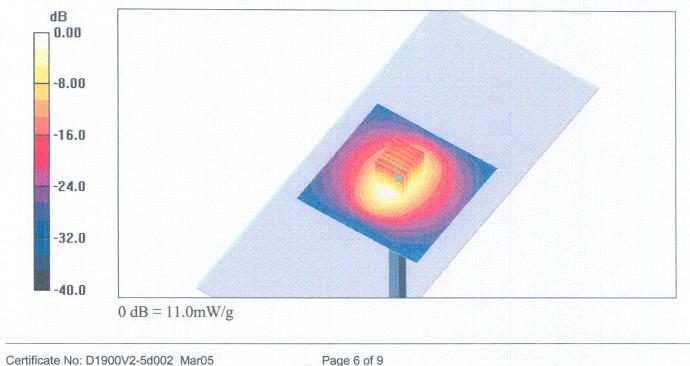
DASY4 Validation Report for Head TSL

Date/Time: 09.03.2005 15:20:45

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d002

Communication System: CW-1900; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: HSL 1900 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.46$ mho/m; $\epsilon_r = 39.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Probe: ET3DV6 SN1507; ConvF(4.96, 4.96, 4.96); Calibrated: 26.10.2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.01.2005
- Phantom: Flat Phantom 5.0; Type: QD000P50AA; Serial: 1001;
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 11.4 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 91.4 V/m; Power Drift = 0.037 dBPeak SAR (extrapolated) = 16.9 W/kgSAR(1 g) = 9.81 mW/g; SAR(10 g) = 5.15 mW/gMaximum value of SAR (measured) = 11.0 mW/g

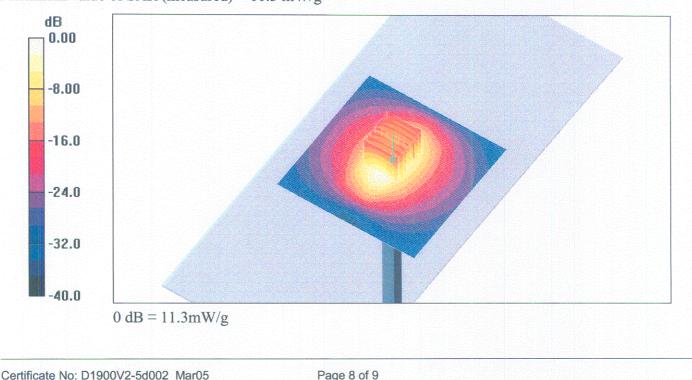
DASY4 Validation Report for Body TSL

Date/Time: 15.03.2005 15:20:32

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d002

Communication System: CW-1900; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: MSL 1900 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.57$ mho/m; $\epsilon_r = 52.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Probe: ET3DV6 SN1507; ConvF(4.43, 4.43, 4.43); Calibrated: 26.10.2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.01.2005
- Phantom: Flat Phantom 5.0; Type: QD000P50AA; Serial: 1001;
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 11.4 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 87.3 V/m; Power Drift = 0.061 dBPeak SAR (extrapolated) = 16.8 W/kgSAR(1 g) = 9.91 mW/g; SAR(10 g) = 5.23 mW/gMaximum value of SAR (measured) = 11.3 mW/g

