

	SecurityClass REPORT		
	No.		
	GUG/N 04:127		
Checked	Date	Rev	Reference
040622	040622	А	File
	Checked	REPOŘT No. GUG/N 04:127 Checked Date	REPORT No. GUG/N 04:127 Checked Date Rev

SAR Test Report: PY7A1021051

	Date of test:	May. 19 to April. 01, 2004
Lab	Laboratory:	Electromagnetic Near Field and Radio Frequency Dosimetry
Lab		Sonyericsson Mobile Communications AB Nya Vatentornet SE-221 82 LUND, Sweden
	Test Responsible:	Hamid kami Shirazi B.SC.E.E Quality & Type approval Engineer <u>kami.shirazi@sonyeicsson.com</u> Phone no. +46 46 232644

Statement of Compliance

Sony Ericsson Mobile Communications AB declares under its sole responsibility that the product

Sony Ericsson Type AAB-1021051-BV ; FCC ID: PY7A1021051

to which this declaration relates, is in conformity with the appropriate RF exposure standards recommendations and guidelines. It also declares that the product was tested in accordance with the appropriate measurement standards, guidelines and recommended practices. Any deviations from these standards, guidelines and recommended practices are noted below:

(None)

© Sony Ericsson Mobile Communications AB, 2003

This test report shall not be reproduced except in full, without written approval of the laboratory.

The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report.

Sony Ericsson encourages all feedback, both positive and negative, on this report.

		SecurityClas REPORT	S	
Prepared (also subject responsible if other)		No.		
LD/SEMC/BGUG/NM Hamid Kami Shira	azi	GUG/N 04:1	27	
Approved	Checked	Date	Rev	Reference
LD/SEMC/BGUG/NMC Mats Hansson	040622	040622	А	File

1 Table of contents

2	ľ	NTRODUCTION	3
3	D	DEVICE UNDER TEST	3
	3.2	ANTENNA DESCRIPTION DEVICE DESCRIPTION	3
4	Т	EST EQUIPMENT	4
	4.1 4.2	Dosimetric system Additional equipment	4
5	E	LECTRICAL PARAMETERS ON THE TISSUE SIMULATING LIQUID	4
6	S	YSTEM ACCURACY VERIFICATION	5
7	S.	AR MEASUREMENT UNCERTAINTY	5
8	Т	EST RESULTS	7
9		REFERENCES	
1() A	PPENDIX	8
	10.1 10.2		8
	10.2		
	10.4		
	10.5	PROBE CALIBRATION PARAMETERS	23

		SecurityClass REPORT	6	
Prepared (also subject responsible if other)		No.		
LD/SEMC/BGUG/NM Hamid Kami Shiraz	zi	GUG/N 04:12	27	
Approved	Checked	Date	Rev	Reference
LD/SEMC/BGUG/NMC Mats Hansson	040622	040622	А	File

2 Introduction

In this report, compliance of the Sony Ericsson PY7A1021051portable telephone with RF safety guidelines is demonstrated. The applicable RF safety guidelines and the SAR measurement specifications used for the test are described in the SAR Measurement Specifications of Wireless Handsets [1].

3 Device Under Test

3.1 Antenna Description

Туре	Internal antenna	Internal antenna			
Location	Inside back, near t	Inside back, near the top			
Dimensions	Max length	38mm			
Dimensions	Max width	14mm			
Configuration	PIFA				

3.2 Device description

Device model	S700i
Serial number	004601/01/485524
Mode	GSM 1900
Multiple Access Scheme	TDMA
Maximum Output Power Setting	29
Factory Tolerance in Power Setting	± 0.5dB
Maximum Peak Output Power	29.5dBm
Crest Factor	8
Transmitting Frequency Range	1850.2 – 1909.8 MHz
Prototype or Production Unit	Preproduction
Device Category	Portable
RF exposure environment	General population / uncontrolled

	SecurityClass REPORT		
	No.		
zi	GUG/N 04:127	,	
Checked	Date	Rev	Reference
040622	040622	А	File
	Checked	REPORT No. Zi GUG/N 04:127 Checked Date	REPOŘT No. ZI GUG/N 04:127 Checked Date Rev

4 Test equipment

4.1 Dosimetric system

SAR measurements were made using the DASY3 professional system (software version 3.1c) with SAM twin phantom, manufactured by Schmid & Partner Engineering AG (SPEAG). The list of calibrated equipment is given below.

Description	Serial Number	Due Date
DASY3 DAE V1	419	4/2005
E-field probe ETDV6	1585	4/2005
Dipole Validation Kit, D1900 V2	5d002	2/2006

4.2 Additional equipment

Description	Inventory Number	Due Date
Signal generator ESG-D4000A	INV 462935	9/2004
Directional coupler HP778D	INV 2903	1/2005
Power meter R&S NRVD	INV 483920	1/2005
Power sensor R&S NRV-Z5	INV 2333	1/2005
Power sensor R&S NRV-Z5	INV 2334	1/2005
Termination 65N50-0-11	INV 2903	1/2005
Network analyzer HP8753C	INV421671	8/2004
S-parameter test set HP85047A	INV 421670	9/2004
Dielectric probe kit HP8507D	INV 2000053	2/2005
Radio Communication Tester	INV 74410	4/2005

5 Electrical parameters on the tissue simulating liquid

Prior to conducting SAR measurements, the relative permittivity, $\boldsymbol{\epsilon}_{r}$, and the conductivity, $\boldsymbol{\sigma}$, of the tissue simulating liquids were measured with the dielectric probe kit. These values are shown in the table below. The mass density, $\boldsymbol{\rho}$, entered into the DASY3 software is also given. Recommended limits for permittivity $\boldsymbol{\epsilon}_{r}$, conductivity $\boldsymbol{\sigma}$ and mass density $\boldsymbol{\rho}$ are also shown.

Application Note: The head and body tissue dielectric parameter recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table is prepared according to the following receipts. For 1900MHz Head: Water 54.9%, Salt 0.18% and DGBE 44.92%, and For 1900MHz Body: Water 56.1%, DGBE 33.4%, Salt 0.5%,

		-				
f	Tissue	Limit	s / Measured		Diele	ectric Pa
(8411-)	A		s/iweasureu			- (0)

f	Tissue	Limits / Measured	Diele	ectric Parame	eters
(MHz)	type	Lillins / Measured	٤ _r	σ (S/m)	ρ (g/cm³)
	Head Measured, 01/06/04		39.1	1.47	1.0
1900	neau	Recommended	40.0	1.40	1.0
	Muscle	Measured, 19/05/04	50.6	1.54	1.0
	wuscle	Recommended	53.3	1.52	

		SecurityClas REPORT	s		
Prepared (also subject responsible if other)	No.				
LD/SEMC/BGUG/NM Hamid Kami Shira:	GUG/N 04:12	27			
Approved	Checked	Date	Rev	Reference	
LD/SEMC/BGUG/NMC Mats Hansson	040622	040622	А	File	

System accuracy verification 6

A system accuracy verification of the DASY3 was performed using the dipole validation kit listed in section 3.1. The system verification test has done as the same day as the measurement of the DUT. The measurement made in ambient temperature 25°C and humanity 30%. The obtained results are displayed in the table below. RF noise had been measured in liquid when all RF equipment in lab was set off. Measured

value was 0.0011W/g in 1g mass.

f	Tissue	Measured /	SAR (W/kg)	Dielectric Parameters		t (°C)	
(MHz)	type	Reference	1g mass	٤ _r	σ (S/m)	ρ (g/cm³)	(())
	Head	Measured, 01/06/04	41.9	39.1	1.47	1.0	22
	пеац	Reference	41.6	38.8	1.44	1.0	-
1900	Muscle	Measured, 19/05/04	39.2	50.6	1.54	1.0	22
	wuscle	Reference	43.2	51.2	1.59	1.0	-

Measurement system Probe calibration Axial isotropy Spherical isotropy Spatial resolution	(%) ±4.4 ±4.7 ±9.6	Normal Rectangular	1	1g	Head	Body
Axial isotropy Spherical isotropy Spatial resolution	±4.7 ±9.6		1			
Spherical isotropy Spatial resolution	±9.6	Rectangular		1	±4.4	±4.4
Spatial resolution			√3	$(1-c_p)^{1/2}$	±1.9	±1.9
Spatial resolution		Rectangular	√3	(C _p) ^{1/2}	±3.9	±3.9
	±0.0	Rectangular	√3	1	±0.0	±0.0
Boundary effects	±5.5	Rectangular	√3	1	±3.2	±3.2
Probe linearity	±4.7	Rectangular	√3	1	±2.7	±2.7
Detection limit	±1.0	Rectangular	√3	1	±0.6	±0.6
Readout electronics	±1.0	Normal	1	1	±1.0	±1.0
Response time	±0.8	Rectangular	√3	1	±0.5	±0.5
Integration time	±1.4	Rectangular	√3	1	±0.8	±0.8
RF ambient conditions	±3.0	Rectangular	√3	1	±1.7	±1.7
Mech. Constraints of robot	±0.4	Rectangular	√3	1	±0.2	±0.2
Probe positioning	±2.9	Rectangular	√3	1	±1.7	±1.7
Extrap. and integration	±3.9	Rectangular	√3	1	±2.3	±2.3
Measurement System					±8.3	±8.3
Uncertainty					10.3	10.3
Test sample related						
Device positioning	±6.0	Normal	0.89	1	±6.7	±6.7
Device holder	±5.0	Normal	0.84	1	±5.9	±5.9
Power drift	-0.2/-0.7	Rectangular	√3	1	±0.1	±0.4
Test Sample Related					±8.9	±8.9
Uncertainty						
Phantom and setup		5 ()	10			
Phantom uncertainty	±4.0	Rectangular	√3	1	±2.3	±2.3
Liquid conductivity (target)	±5.0	Rectangular	√3	0.6	±1.7	±1.7
Liquid conductivity (meas)	+5/-1	Rectangular	√3	0.6	+1.7	+0.4
Liquid permittivity (target)	±5.0	Rectangular	√3	0.6	±1.7	±1.7
Liquid permittivity (meas)	-2.2/-5	Rectangular	√3	0.6	-0.8	-1.7
Phantom and Tissue					±3.8	±3.8
parameter Uncertainty Combined standard un	oortaintu				±12.8	±12.8
Extended standard uncer					±12.8 ±25.6	±12.8 ±25.6

. 4-1-4

		REPORT			
Prepared (also subject responsible if other)		No.			
LD/SEMC/BGUG/NM Hamid Kami S	GUG/N 04:1	GUG/N 04:127			
Approved	Checked	Date	Rev	Reference	
LD/SEMC/BGUG/NMC Mats Hansso	on 040622	040622	А	File	

8 Test results

The measured 1-gram averaged SAR values of the device against the head and the body are provided in Tables 1 and 2 respectively. The humidity and ambient temperature of test facility were 30.4% - 36.8% and 24.8 °C - 25.1 °C respectively. The depth of the head tissue simulating liquid was 15 cm and of the muscle tissue simulating liquid was 15.2cm. A base station simulator was used to control the device during the SAR measurement. The phone was supplied with full-charged battery for each measurement.

SocurityClass

For head measurement, the device was tested on the right-hand phantom (corresponding to the right side of the head) and the left-hand phantom in two phone position, cheek (touch) and tilt (cheek + 15deg). For GSM 1900 modes, the Phone was tested when it was open and also when it was close and at the lowest, middle and highest channels in the transmit band. On position and frequency where find max SAR values had been measured SAR with BT ON.

Mode Channel	Channel	Peak Output Power	Phone Position	Linuid terms (80)	SAR (W/kg) in 1g mass	
	(dBm)	Phone Close	Liquid temp(°C)	Right-hand	Left-hand	
	512	29.5	Cheek	22.4/22.8	0.34	0.30
	512 29.5	Tilt	22.4/22.8	0.37	0.41	
4000	661 20 5	Cheek	22.5/22.8	0.33	0.29	
1900 GSM	001	661 29.5	Tilt	22.8/22.8	0.35	0.35
00111	COM		Cheek	22.5/22.6	0.36	0.32
810	810 29.5	Tilt	22.5/22.8	0.39	0.42	
		Tilt(blue tooth On)	22.5/22.8	-	0.41	

Mode Channel ^P	Peak Output Power	Phone Position	Liquid temp(°C)	SAR (W/kg) in 1g mass		
	(dBm)	Phone Open		Right-hand	Left-hand	
	F10	00 5	Cheek	22/22.2	0.26	0.31
	512	29.5	Tilt	22.1/22.3	0.17	0.12
1900	661	20 5	Cheek	22.4/22.6	0.23	0.26
GSM	GSM 661 29.5	29.5	Tilt	22.5/22.6	0.13	0.10
810	810 29.5 -	Cheek	22.5/22.6	0.21	0.20	
		Tilt	22.5/22.8	0.12	0.09	

Table1: SAR measurement result for Sony Ericsson PY7A1021051 telephone. Measured against the head.

For body-worn measurements, the device was tested against flat phantom representing the user body. Under measurement the phone was put under flat section of phantom with 15mm space and the measurement provides for both front and back part of the phone to the phantom. Phone had been pared with Sony Ericsson HBH-60 hands free set. Result is provided in table2, row "Tilt + BT ON".

We did GPRS measurement only for back part of the phone to find the max SAR value. This Was done in flat section of the phantom while the devise was either inside the belt holder or 15mm space from phantom. Data communication was sent in two time slots by using a base station.

		SecurityClas REPORT	S		
Prepared (also subject responsible if other)	No.				
LD/SEMC/BGUG/NM Hamid Kami Shira	izi	GUG/N 04:1	27		
Approved	Checked	Date	Rev	Reference	
LD/SEMC/BGUG/NMC Mats Hansson	040622	040622	А	File	

Mode	Chanel	Peak Output Power(dBm)	Phone Position	Liquid temp(°C)	SAR(W/kg) in 1g mass
			Front to Phantom 15mm space	23.2	0.08
	512	29.5	Back to Phantom 15mm space	23.2	0.16
	20,0	20,0	Back to Phantom 15mm space Data communication mode	23.2	0.30
		661 29,5	Front to Phantom 15mm space	23.2	0.08
	661		Back to Phantom 15mm space	23.2	0.12
1900 GSM	001		Back to Phantom 15mm space Data communication mode	23.2	0.24
			Front to Phantom 15mm space	23.2	0.09
			Back to Phantom 15mm space	23.2	0.12
	810	29,5	Back to Phantom 15mm space Data communication mode	23.2	0.24
			Back to Phantom 15mm space Blue tooth measurement	23.2	0.41

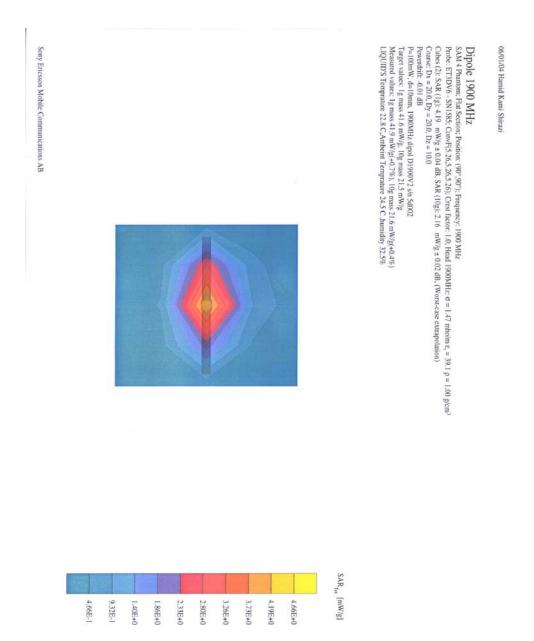
Table 2: SAR measurement result for Sony Ericsson PY7A1021051 telephone. Measured against the body.

References

9

[1] R.Plicanic, "SAR Measurement Specification of Wireless Handsets", Sony Ericsson internal document LD/SEMC/GUG/N 03:141

[2] FCC, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields: Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radio Frequency Emissions," Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97- 01).


[3] IEEE, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques," Std 1528-200x.

		SecurityClass REPORT				
Prepared (also subject responsible if other)		No.				
LD/SEMC/BGUG/NM Hamid Kami Shirazi	i	GUG/N 04:127				
Approved	Checked	Date	Rev	Reference		
LD/SEMC/BGUG/NMC Mats Hansson	040622	040622	А	File		

10 Appendix

10.1 SAR distribution comparison for system accuracy verification

Validation Dipole, measured with head simulating tissue on 04/06/04

Approved

SecurityClass REPORT Prepared (also subject responsible if other) No LD/SEMC/BGUG/NM Hamid Kami Shirazi GUG/N 04:127 Checked Date Rev Reference LD/SEMC/BGUG/NMC Mats Hansson 040622 А 040622 File

Date/Time: 04/09/03 18:49:39

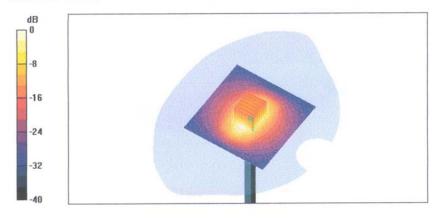
Test Laboratory: SPEAG, Zurich, Switzerland File Name: SN5d002_SN1507_HSL1900_090403.da4

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN5d002 Program: Dipole Calibration

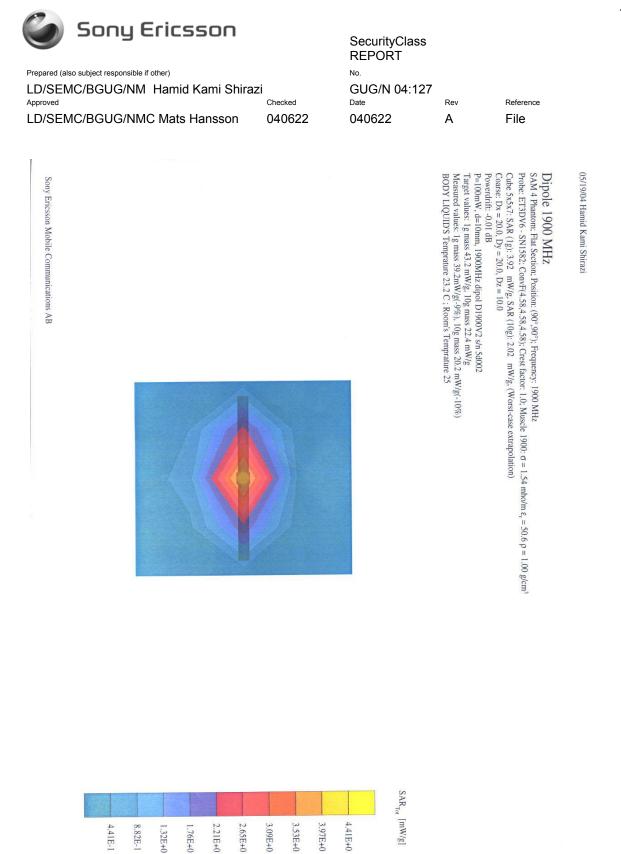
Communication System: CW-1900; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL 1900 MHz ($\sigma = 1.44$ mho/m, $\varepsilon_r = 38.78$, $\rho = 1000$ kg/m³) Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1507; ConvF(5.2, 5.2, 5.2); Calibrated: 1/18/2003


- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 - SN411; Calibrated: 1/16/2003


- Phantom: SAM with CRP - TP1006; Type: SAM 4.0; Serial: TP:1006 - Measurement SW: DASY4, V4.1 Build 33; Postprocessing SW: SEMCAD, V1.6 Build 109

Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.2 V/m Peak SAR = 18.2 W/kg SAR(1 g) = 10.4 mW/g; SAR(10 g) = 5.38 mW/gPower Drift = 0.01 dB

1900MHz SAR distribution of validation dipole from reference measurement with head simulating tissue

Validation Dipole, measured with muscle simulating tissue on 19/05/04

LD/SEMC/BGUG/NM Hamid Kami Shirazi

LD/SEMC/BGUG/NMC Mats Hansson

Prepared (also subject responsible if other)

Approved

SecurityClass
REPORTNo.GUG/N 04:127DateRev040622AFile

Date/Time: 04/08/03 12:31:50

Test Laboratory: SPEAG, Zurich, Switzerland File Name: <u>SN5d002_SN1507_M1900_080403.da4</u>

DUT: Dipole 1900 MHz; Serial: D1900V2 - SN5d002 Program: Dipole Calibration

Communication System: CW-1900; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: Muscle 1900 MHz; ($\sigma = 1.59$ mho/m, $\varepsilon_r = 51.2$, $\rho = 1000$ kg/m³) Phantom section: Flat Section

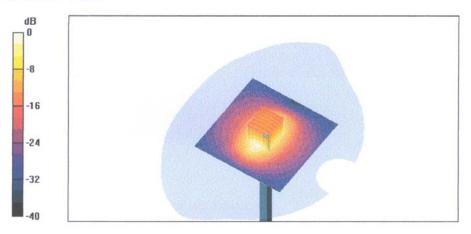
Checked

040622

DASY4 Configuration:

- Probe: ET3DV6 - SN1507; ConvF(4.8, 4.8, 4.8); Calibrated: 1/18/2003

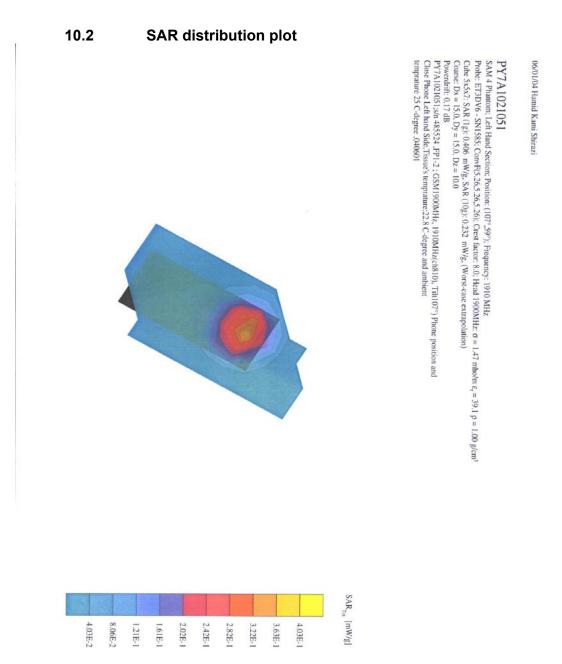
- Sensor-Surface: 4mm (Mechanical Surface Detection)

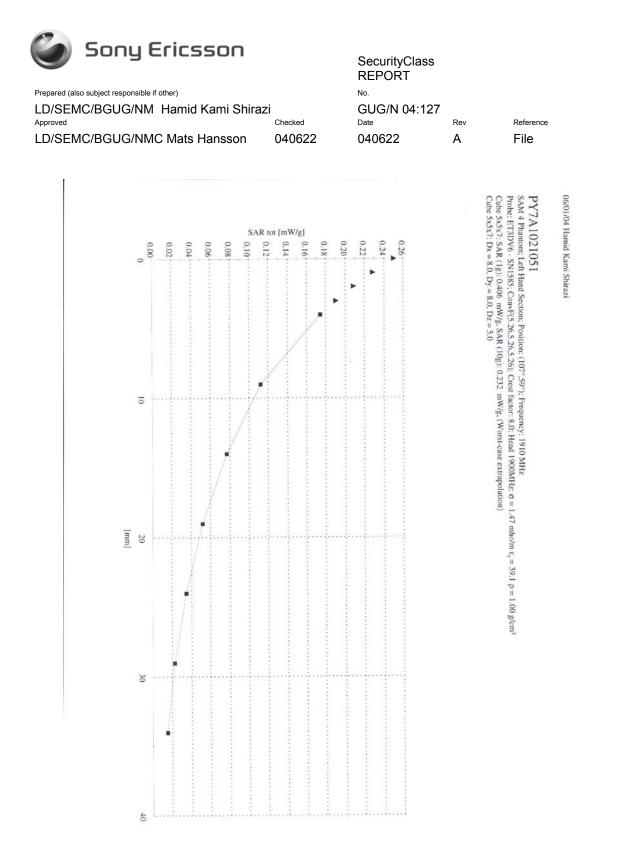

- Electronics: DAE3 - SN411; Calibrated: 1/16/2003

- Phantom: SAM with CRP - TP1006; Type: SAM 4.0; Serial: TP:1006

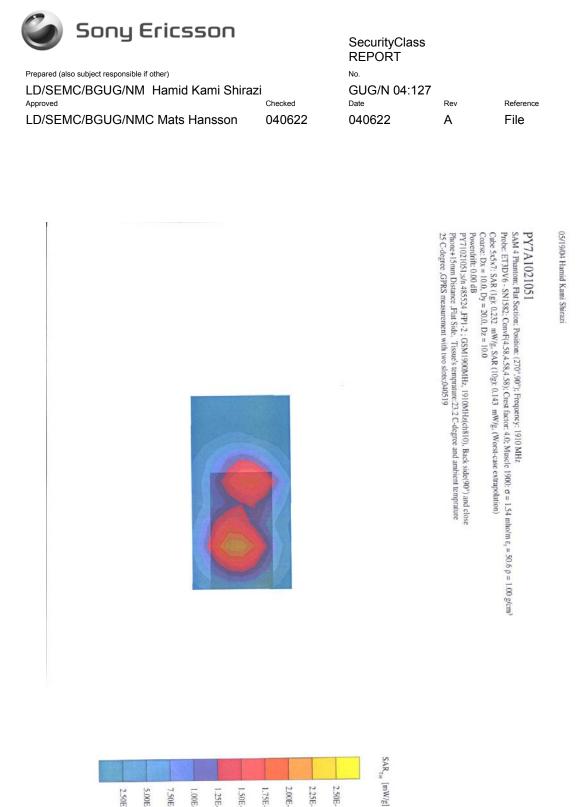
- Measurement SW: DASY4, V4.1 Build 33; Postprocessing SW: SEMCAD, V1.6 Build 109

 $\begin{array}{l} \textbf{Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): } Measurement grid: dx=15mm, dy=15mm \\ \textbf{Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: } Measurement grid: dx=5mm, dy=5mm, dz=5mm \\ \end{array}$


Reference Value = 92.8 V/m Peak SAR = 18.9 W/kg SAR(1 g) = 10.8 mW/g; SAR(10 g) = 5.6 mW/g Power Drift = 0.02 dB


1900MHz SAR distribution of validation dipole from reference measurement with muscle simulating tissue

Sony Ericsson

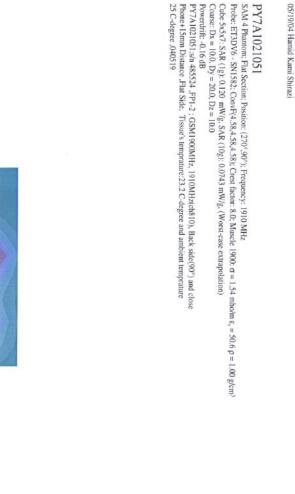

		SecurityClass REPORT					
Prepared (also subject responsible if other)			No.				
zi	GUG/N 04:12	27					
Checked	Date	Rev	Reference				
040622	040622	А	File				
	Checked	REPOŘT _{No.} zi GUG/N 04:12 _{Checked Date}	REPOŘT No. ZI GUG/N 04:127 Checked Date Rev				

Distribution of max SAR in GSM 1900 mode at ch810, Measured against the head for tilt phone position

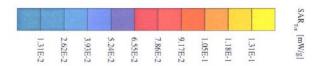
Z(x) distribution of max SAR in GSM1900 mode at ch810, Measured against the head for tilt phone position

2.50E-1

5.00E-2 7.50E-2 1.00E-1

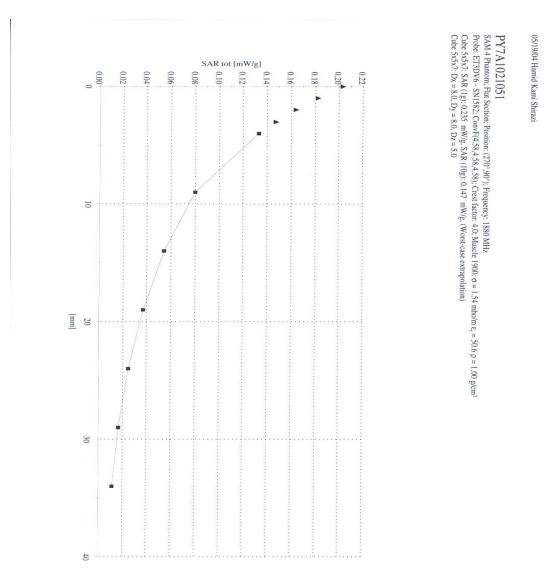

2.50E-2

1.50E-1 1.75E-1 2.00E-1 2.25E-1


1.25E-1

6	Sony	Ericsson
---	------	----------

		SecurityClas REPORT	S		
Prepared (also subject responsible if other)		No.			
LD/SEMC/BGUG/NM Hamid Kami Shir	azi	GUG/N 04:127			
Approved	Checked	Date	Rev	Reference	
LD/SEMC/BGUG/NMC Mats Hansson	040622	040622	А	File	



Distribution of max SAR in GSM1900 mode at ch810, Measured against the body for back phone part With 15mm space to phantom .

	SecurityClass REPORT		
	No.		
	GUG/N 04:127		
Checked	Date	Rev	Reference
040622	040622	А	File
	Checked	REPORT No. GUG/N 04:127 Checked Date	REPOŘT No. GUG/N 04:127 Checked Date Rev

Z(x) distribution of max SAR in GSM1900 mode at ch810, Measured against the body

		SecurityClas REPORT	S	
Prepared (also subject responsible if other)		No.		
LD/SEMC/BGUG/NM Hamid Kami Shira:	zi	GUG/N 04:12	27	
Approved	Checked	Date	Rev	Reference
LD/SEMC/BGUG/NMC Mats Hansson	040622	040622	А	File

10.3 Photographs of the device under test

Front and back (phone closed)

Front and back (phone open)

6	Sony	Ericsson
---	------	----------

		SecurityClass REPORT		
Prepared (also subject responsible if other)		No.		
LD/SEMC/BGUG/NM Hamid Kami Shirazi	i	GUG/N 04:127		
Approved	Checked	Date	Rev	Reference
LD/SEMC/BGUG/NMC Mats Hansson	040622	040622	А	File

Sides

Battery

		SecurityClass REPORT		
Prepared (also subject responsible if other)		No.		
LD/SEMC/BGUG/NM Hamid Kami Shirazi		GUG/N 04:127		
Approved	Checked	Date	Rev	Reference
LD/SEMC/BGUG/NMC Mats Hansson	040622	040622	А	File

10.4 Device position on SAM Twins Phantom

Device position against the head: Tilt phone position (phone closed)

Device position against the head: Tilt phone position (phone opened)

🍯 s	ony Er	icsson
-----	--------	--------

		SecurityClass REPORT	S	
Prepared (also subject responsible if other)		No.		
LD/SEMC/BGUG/NM Hamid Kami Shiraz	zi	GUG/N 04:12	27	
Approved	Checked	Date	Rev	Reference
LD/SEMC/BGUG/NMC Mats Hansson	040622	040622	А	File

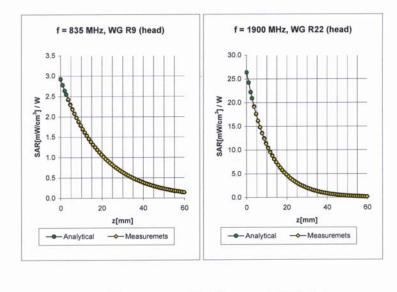
Device position against the head: Cheek phone position (phone opened)

Device position against the head: Cheek phone position (phone closed)

6	Sony	Ericsso	n
---	------	---------	---

		SecurityClas REPORT	S	
Prepared (also subject responsible if other)		No.		
LD/SEMC/BGUG/NM Hamid Kami Shira:	zi	GUG/N 04:12	27	
Approved	Checked	Date	Rev	Reference
LD/SEMC/BGUG/NMC Mats Hansson	040622	040622	А	File

Device position against the body: Phone with 15mm space under phantom



		SecurityClass REPORT		
Prepared (also subject responsible if other)		No.		
LD/SEMC/BGUG/NM Hamid Kami Shiraz	i	GUG/N 04:127		
Approved	Checked	Date	Rev	Reference
LD/SEMC/BGUG/NMC Mats Hansson	040622	040622	А	File

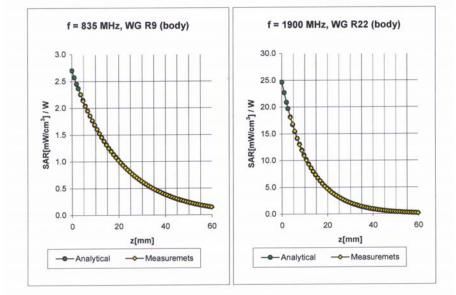
10.5 Probe calibration parameters

ET3DV6 SN:1582

April 16, 2003

Conversion Factor Assessment

Head	835 MHz		$\varepsilon_r = 41.5 \pm 5\%$	σ = 0.90 ± 5% n	nho/m
	ConvF X	7.4	± 8.9% (k=2)	Boundary ef	ffect:
	ConvF Y	7.4	± 8.9% (k=2)	Alpha	0.28
	ConvF Z	7.4	± 8.9% (k=2)	Depth	2.79
Head	1900 MHz		ε_r = 40.0 ± 5%	σ = 1.40 ± 5% mho/m	
	ConvF X	5.3	± 8.9% (k=2)	Boundary et	ffect:
	oonn /				
	ConvF Y	5.3	± 8.9% (k=2)	Alpha	0.49


Page 7 of 12

		SecurityClass REPORT		
Prepared (also subject responsible if other)		No.		
LD/SEMC/BGUG/NM Hamid Kami Shiraz	zi	GUG/N 04:127	7	
Approved	Checked	Date	Rev	Reference
LD/SEMC/BGUG/NMC Mats Hansson	040622	040622	А	File

ET3DV6 SN:1585

April 16, 2003

Conversion Factor Assessment

Body	835 MHz		$\epsilon_r = 55.2 \pm 5\%$	σ = 0.97 ± 5% mho/m	
Valid for f=800	-1000 MHz wi	th Body T	issue Simulating Liquid acc	ording to OET 65 Sup	pl. C
C	ConvF X 6.7		± 9.5% (k=2)	Boundary effect:	
C	onvF Y	6.7	± 9.5% (k=2)	Alpha	0.34
C	onvF Z	6.7	± 9.5% (k=2)	Depth	2.48
Body	v 1900 MHz		ε, = 53.3 ± 5%	σ = 1.52 ± 5% mho/m	
	0-1910 MHz v	with Body	Tissue Simulating Liquid ac	cording to OET 65 Su	ppl. C
C	ConvF X 4.8		± 9.5% (k=2)	Boundary effect:	
C	onvF Y	4.8	± 9.5% (k=2)	Alpha	0.59
0				Depth	2.55

Page 9 of 12