

Sony Ericsson

1 (23)

Prepared (also subject responsible if other)

LD/SEMC/BGUG/NM *Ramadan Plicanic*

Approved

Checked

Company Internal
REPORT

No.

GUG/N 04:132

Date

Rev

Reference

LD/SEMC/BGUG/NMC *Mats Hansson*

040628

040625

File

SAR Test Report: Sony Ericsson PY7A1021042

Date of test: *23, 24, May and 15 June, 2004*

Laboratory: Electromagnetic Near Field , SAR Test Laboratory
Sonyericsson Mobile Communications AB
Nya Vatentornet
SE-221 82 LUND, Sweden

Testing Engineer: *Ramadan Plicanic*
Ramadan.Plicanic@sonyericsson.com
+46 46 19 38 62

Sign

Statement of Compliance

Sony Ericsson Mobile Communications AB declares under its sole responsibility that the product

Sony Ericsson Type AAB-1021042-BV; FCC ID: PY7A1021042

to which this declaration relates, is in conformity with the appropriate RF exposure standards recommendations and guidelines. It also declares that the product was tested in accordance with the appropriate measurement standards, guidelines and recommended practices. Any deviations from these standards, guidelines and recommended practices are noted below:

(None)

© Sony Ericsson Mobile Communications AB, 2004

This test report shall not be reproduced except in full, without written approval of the laboratory.

The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report.

Sony Ericsson encourages all feedback, both positive and negative, on this report.

Prepared (also subject responsible if other)

LD/SEMC/BGUG/NM *Ramadan Plicanic*

Approved

Checked

**Company Internal
REPORT**

No.

GUG/N 04:132

Date

Rev

Reference

LD/SEMC/BGUG/NMC *Mats Hansson* 040628

040625

File

1 Table of contents

2 INTRODUCTION	3
3 DEVICE UNDER TEST	3
3.1 ANTENNA DESCRIPTION	3
3.2 DEVICE DESCRIPTION	3
4 TEST EQUIPMENT.....	4
4.1 DOSIMETRIC SYSTEM	4
4.2 ADDITIONAL EQUIPMENT	4
5 ELECTRICAL PARAMETERS ON THE TISSUE SIMULATING LIQUID	5
6 SYSTEM ACCURACY VERIFICATION	5
7 SAR MEASUREMENT UNCERTAINTY	6
8 TEST RESULTS	7
9 REFERENCES	8
10 APPENDIX.....	9
10.1 SAR DISTRIBUTION COMPARISON FOR SYSTEM ACCURACY VERIFICATION	9
10.2 SAR DISTRIBUTION PLOT	14
10.3 PHOTOGRAPHS OF THE DEVICE UNDER TEST.....	18
10.4 DEVICE POSITION ON SAM TWINS PHANTOM	20
10.5 PROBE CALIBRATION PARAMETERS.....	22

Prepared (also subject responsible if other)

LD/SEMC/BGUG/NM *Ramadan Plicanic*

Approved

Checked

**Company Internal
REPORT**

No.

GUG/N 04:132

Date

Rev

Reference

LD/SEMC/BGUG/NMC *Mats Hansson* 040628

040625

File

2 Introduction

In this test report, compliance of the Sony Ericsson PY7A1021042 portable telephone with RF safety guidelines is demonstrated. The applicable RF safety guidelines and the SAR measurement specifications used for the test are described in the *SAR Measurement Specifications of Wireless Handsets* [1].

3 Device Under Test

3.1 Antenna Description

Type	Built In	
Location	Up on the Back	
Dimensions	Max length	35mm
	Max width	20mm
Configuration	PIFA	

3.2 Device description

Device model	PY7A1021042	
Serial number	CB500TBK23	
Mode	GSM 1900	GSM1900-GPRS
Multiple Access Scheme	TDMA	TDMA
Maximum Output Power Setting	30,0dBm	28,0
Factory Tolerance in Power Setting	0,5dB	0,5dB
Maximum Peak Output Power	30,5dBm	28,5dBm
Crest Factor	8	4
Transmitting Frequency Range(MHz)	1850 – 1910	1850 – 1910
Prototype or Production Unit	Prototype	
Device Category	Portable	
RF exposure environment	General population / uncontrolled	

Prepared (also subject responsible if other)

LD/SEMC/BGUG/NM *Ramadan Plicanic*

Approved

Checked

**Company Internal
REPORT**

No.

GUG/N 04:132

Date

Rev

Reference

LD/SEMC/BGUG/NMC *Mats Hansson* 040628

040625

File

4 Test equipment**4.1 Dosimetric system**

SAR measurements were made using the DASY3 professional system (software version 3.1c) with SAM twin phantom, manufactured by Schmid & Partner Engineering AG (SPEAG). The list of calibrated equipment is given below.

Description	Serial Number	Due Date
DASY3 DAE V1	433	04-2005
DASY3 DAE V1	419	03-2005
E-field probe ETDV6	1585	03-2004
E-field probe ETDV6	1569	03-2004
Dipole Validation Kit, D900V2	111	04-2005
Dipole Validation Kit, D1800V2	297	04-2005
Dipole Validation Kit, D1900V2	5d002	04-2005

4.2 Additional equipment

Description	Inventory Number	Due Date
Signal generator ESG-D4000A	INV 462935	09-2004
Directional coupler HP778D	INV 2903	01-2005
Power meter R&S NRV	INV 483920	01-2006
Power sensor R&S NRV-Z5	INV 2333	01-2006
Power sensor R&S NRV-Z5	INV 2334	01-2006
Termination 65N50-0-11	INV 2903	07-2004
Network analyzer HP8753C	INV421671	09-2004
S-parameter test set HP85047A	INV 421670	08-2004
Dielectric probe kit HP8507D	INV 20000053	04-2005

Prepared (also subject responsible if other)

LD/SEMC/BGUG/NM *Ramadan Plicanic*

Approved

Checked

Company Internal
REPORT

No.

GUG/N 04:132

Date

Rev

Reference

LD/SEMC/BGUG/NMC *Mats Hansson* 040628

040625

File

5**Electrical parameters on the tissue simulating liquid**

Prior to conducting SAR measurements, the relative permittivity, ϵ_r , and the conductivity, σ , of the tissue simulating liquids were measured with the dielectric probe kit. These values are shown in the table below. The mass density, ρ , entered into the DASY3 software is also given. Recommended limits for permittivity ϵ_r , conductivity σ and mass density ρ are also shown.

f (MHz)	Tissue type	Limits / Measured	Dielectric Parameters		
			ϵ_r	σ (S/m)	ρ (g/cm ³)
1900	Head	Measured, 23/05/2004	38.5	1.44	1.00
		Recommended	40.0	1.40	1.00
1900	Head	Measured, 24/05/2004	38.5	1.44	1.00
		Recommended	40.0	1.40	1.00
1900	Body	Measured, 15/06/2004	50.0	1.52	1.00
		Recommended	53.3	1.52	1.00

6**System accuracy verification**

A system accuracy verification of the DASY3 was performed using the dipole validation kit listed in section 3.1. The system verification test was conducted on the same day as the measurement of the DUT. Measurement made in ambient temperature 22.0-25.0 °C and humanity 45-38%. The obtained results are displayed in the table below.

RF noise had been measured in liquid when all RF equipment in lab was set off. Measured value was 0.003 mW/g in 1g mass.

f (MHz)	Tissue type	Measured / Reference	SAR (W/kg) 1g/10g	Dielectric Parameters			Liquid t(°C)
				ϵ_r	σ (S/m)	ρ (g/cm ³)	
1900	Head	Measured, 23/05/2004	41.8/21.2	38.5	1.44	1.00	20.5
		Reference	41.6/21.5	38.8	1.44	1.00	-
1900	Head	Measured, 24/05/2004	41.7/21.1	38.5	1.44	1.00	20.5
		Reference	41.6/21.5	38.8	1.44	1.00	-
1900	Body	Measured, 15/06/2004	44.0/22.8	50.0	1.52	1.00	22.0
		Reference	43.2/22.4	51.2	1.59	1.00	-

Prepared (also subject responsible if other)

LD/SEMC/BGUG/NM *Ramadan Plicanic*

Approved

Checked

Company Internal
REPORT

No.

GUG/N 04:132

Date

Rev

Reference

LD/SEMC/BGUG/NMC *Mats Hansson* 040628

040625

File

7 SAR measurement uncertainty**SAR measurement uncertainty evaluation for Sony Ericsson PY7A1021042 phone**

Uncertainty Component	Uncer. (%)	Prob Dist.	Div.	C_i	GSM 1900	GSM-Body 1900
Measurement System						
Probe Calibration	±4.4	N	1	1	±4.4	±4.4
Axial Isotropy	±4.7	R	$\sqrt{3}$	0.5	±1.9	±1.9
Spherical Isotropy	±9.6	R	$\sqrt{3}$	0.5	±3.9	±3.9
Spatial resolution	±0.0	R	$\sqrt{3}$	1	±0.0	±0.0
Boundary effect	±5.5	R	$\sqrt{3}$	1	±3.2	±3.2
Probe linearity	±4.7	R	$\sqrt{3}$	1	±2.7	±2.7
Detection limit	±1.0	R	$\sqrt{3}$	1	±0.6	±0.6
Readout electronics	±1.0	N	1	1	±1.0	±1.0
Response time	±0.8	R	$\sqrt{3}$	1	±0.5	±0.5
Integration time	±1.4	R	$\sqrt{3}$	1	±0.8	±0.8
RF Ambient Conditions	±3.0	R	$\sqrt{3}$	1	±1.7	±1.7
Mech. Constraints of robot	±0.4	R	$\sqrt{3}$	1	±0.2	±0.2
Probe positioning	±2.9	R	$\sqrt{3}$	1	±1.7	±1.7
Extrap, interpolation and integration	±3.9	R	$\sqrt{3}$	1	±2.3	±2.3
Measurement System Uncertainty					±8.3	±8.3
Test Sample Related						
Device positioning	±6.0	N	0.89	1	±6.7	±6.7
Device holder uncertainty	±5.0	N	0.84	1	±5.9	±5.9
Power drift	±2.0	R	$\sqrt{3}$	1	±1.2	±1.2
Test Sample Related Uncertainty					±9.0	±9.0
Phantom and Tissue Parameters						
Phantom uncertainty	±4.0	R	$\sqrt{3}$	1	±2.3	±2.3
Liquid conductivity (meas)	±5.0	R	$\sqrt{3}$	0.6	±1.7	±1.7
Liquid conductivity (target)	±3.9	R	$\sqrt{3}$	0.6	±1.4	±1.4
Liquid Permittivity (meas)	±5.0	R	$\sqrt{3}$	0.6	±1.7	±1.7
Liquid Permittivity (target)	±3.9	R	$\sqrt{3}$	0.6	±1.4	±1.4
Phantom and Tissue Parameters Uncertainty					±3.9	±3.9
Combined standard uncertainty					±12.8	±12.8
Extended standard uncertainty (k=2)					±25.6	±25.6

Prepared (also subject responsible if other)

LD/SEMC/BGUG/NM *Ramadan Plicanic*

Approved

Checked

Company Internal
REPORT

No.

GUG/N 04:132

Date

Rev

Reference

LD/SEMC/BGUG/NMC *Mats Hansson* 040628

040625

File

8 Test results

The measured 1-gram and 10-gram averaged SAR values of the device against the head are provided in Tables 1. The ambient humidity and temperature of test facility were 45.0% - 37.5% and 22.0 °C – 24.5 °C respectively. The depth of the head tissue simulating liquid was 15.5cm. A base station simulator was used to control the device during the SAR measurement. The phone was supplied with full-charged battery for each measurement.

For head measurement, the device was tested on the right-hand phantom (corresponding to the right side of the head) and the left-hand phantom in two phone position, cheek (touch) and tilt (cheek + 15deg). For all modes, the device was tested at the lowest, middle and highest frequencies in the transmit band.

Mode	Chanel (MHz)	Peak Output Power(dBm)	Phone Position	Liquid temp(°C)	SAR (W/kg)	
					Right-hand	Left-hand
					1g mass	1g mass
1900 GSM	512	30,4	Cheek	20.5/20.5	0.48	0.36
			Tilt	20.7/20.7	0.53	0.47
	661	30,5	Cheek	20.5/20.5	0.45	0.33
			Tilt	20.7/20.7	0.45	0.43
	810	30,4	Cheek	20.5/20.5	0.48	0.37
			Tilt	20.7/20.7	0.47	0.45

**Table1: SAR measurement result for Sony Ericsson PY7A1021042 telephone at highest possible output power.
Measured against the head.**

For body measurement, the phone was tested both in speech and data mode. Phone was on 15mm distance from the phantom in two position, back and front of phone to the flat phantom. For data mode phone was only in one position (worst case), i.e. back of the phone to the phantom. Liquid was 16cm deep in flat section of the phantom.

Mode	Chanel (MHz)	Peak Output Pow(dBm)	Phone Position	Liquid temp(°C)	SAR (W/kg)	
					Back to the Phantom	Front to the Phantom
					1g mass	1g mass
1900 GSM	512	30,4 28,5	Speech	22.0/22.3	0,94	0,1
			Data-GPRS	22.5	0,92	-
	661	30,5 28,5	Speech	22.0/22.3	1,05	0,09
			Data-GPRS	22.5	0,91	-
	810	30,4 28,5	Speech	22.0/22.3	1,37	0,11
			Data-GPRS	22.5	1,25	-

Table 2: SAR measurement result for Sony Ericsson PY7A1021042 telephone at highest possible output power.

Measurement against body for speech and data communications.

Prepared (also subject responsible if other)

LD/SEMC/BGUG/NM *Ramadan Plicanic*

Approved

Checked

LD/SEMC/BGUG/NMC *Mats Hansson* 040628**Company Internal
REPORT**

No.

GUG/N 04:132

Date

Rev

Reference

040625

File

9 References

[1] R.Plicanic, "SAR Measurement Specification of Wireless Handsets", Sony Ericsson SAR Test Laboratory internal document GUG/N 03:141

[2] Basic standard for the Measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300MHz-3GHz), European Standard EN 50361, July 2001

[3] FCC, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields: Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radio Frequency Emissions," Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01).

[4] IEEE, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques," Std 1528-2003, June, 2003.

Prepared (also subject responsible if other)

LD/SEMC/BGUG/NM *Ramadan Plicanic*

Approved

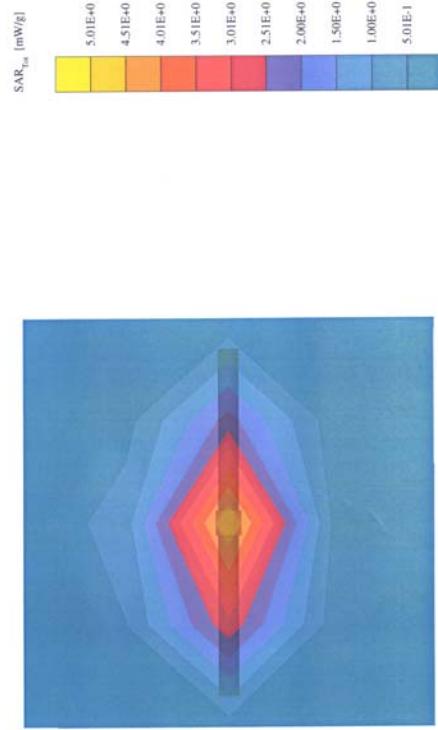
Checked

LD/SEMC/BGUG/NMC *Mats Hansson* **040628****Company Internal
REPORT**

No.

GUG/N 04:132

Date


Rev

Reference

040625**File****10****Appendix****10.1****SAR distribution comparison for system accuracy verification**

06/15/04 Ramadan Plicanic

Dipole 1900 MHz
SAM 4 Phantom: Flat Section; Positioner: (90°, 90°); Frequency: 1900 MHz
Probe: ET13DV6 - SN1585; ConvF=5.56;4.56; Crest factor: 1.0; Muscle (900: σ = 1.52 inhom σ = 50.0 p = 1.00 g/cm³
Cube 5x5x7; SAR (1g): 4.40 mW/g; SAR (10g): 2.28 mW/g; (Worst-case extrapolation)
Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0
Powerdift: -4.03 dB

Validation Dipole , measured with head simulating tissue on 23/05/2004

Prepared (also subject responsible if other)

LD/SEMC/BGUG/NM *Ramadan Plicanic*

Approved

Checked

LD/SEMC/BGUG/NMC *Mats Hansson* **040628****Company Internal
REPORT**

No.

GUG/N 04:132

Date

Rev

Reference

040625**File**05/24/04 *Ramadan Plicanic***Dipole 1900 MHz**

SAM 1 Phantom; Flat Section; Position: (90°,90%); Frequency: 1900 MHz
Probe: ET3DV6 - SN1569; ConvF(5.28,5.28); Crest factor: 1.0; Head 1900MHz; $\sigma = 1.44$ mho/m; $\epsilon_r = 38.5$; $\rho = 1.00$ g/cm³
Cubes: (2); SAR (1g): 4.17 mW/g ± 0.06 dB, SAR (10g): 2.11 mW/g ± 0.06 dB, (Worst-case extrapolation)
Course: Dx = 20.0, Dy = 20.0, Dz = 10.0
Powerdistr: -0.04 dB

Validation Dipole , measured with head simulating tissue on 24/05/2004

Prepared (also subject responsible if other)

LD/SEMC/BGUG/NM *Ramadan Plicanic*

Approved

Checked

Company Internal REPORT

No.

GUG/N 04:132

Date

Rev

Reference

LD/SEMC/BGUG/NMC *Mats Hansson* 040628

040625

File

Page 1 of 1

Date/Time: 04/09/03 18:49:39

Test Laboratory: SPEAG, Zurich, Switzerland
File Name: [SN5d002_SN1507_HSL1900_090403.da4](#)

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN5d002
Program: Dipole Calibration

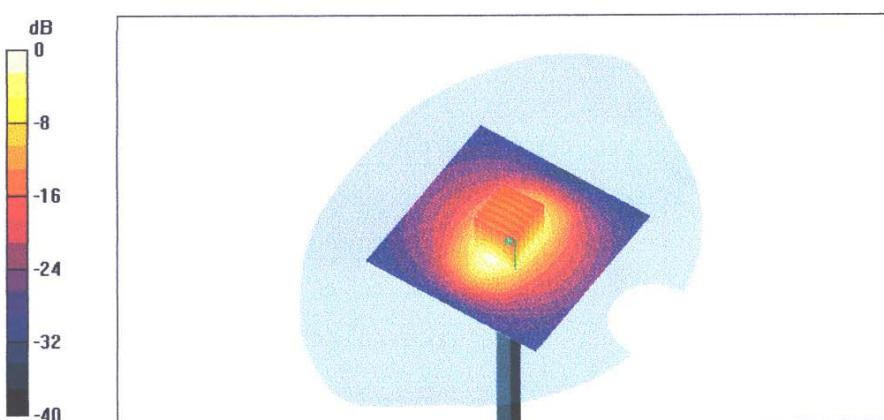
Communication System: CW-1900; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL 1900 MHz ($\sigma = 1.44 \text{ mho/m}$, $\epsilon_r = 38.78$, $\rho = 1000 \text{ kg/m}^3$)

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1507; ConvF(5.2, 5.2, 5.2); Calibrated: 1/18/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 - SN411; Calibrated: 1/16/2003
- Phantom: SAM with CRP - TP1006; Type: SAM 4.0; Serial: TP:1006
- Measurement SW: DASY4, V4.1 Build 33; Postprocessing SW: SEMCAD, V1.6 Build 109


Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm
Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.2 V/m

Peak SAR = 18.2 W/kg

SAR(1 g) = 10.4 mW/g; SAR(10 g) = 5.38 mW/g

Power Drift = 0.01 dB

1900MHz SAR distribution of validation dipole from reference measurement

Prepared (also subject responsible if other)

LD/SEMC/BGUG/NM *Ramadan Plicanic*

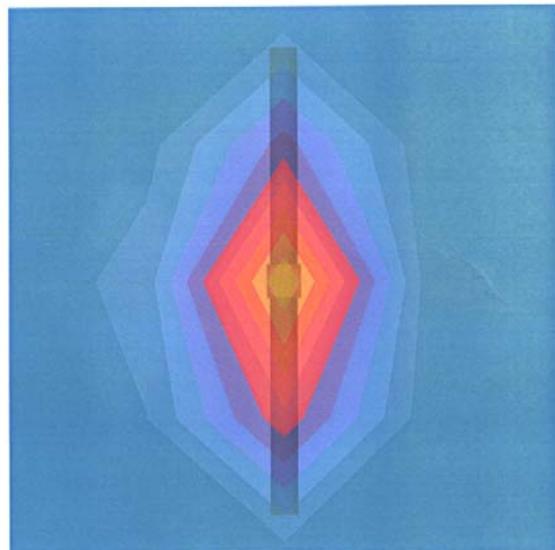
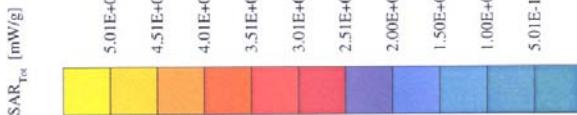
Approved

LD/SEMC/BGUG/NMC *Mats Hansson*

Checked

040628**Company Internal
REPORT**

No.



GUG/N 04:132

Date

040625

Rev

Reference

File06/15/04 *Ramadan Plicanic***Dipole 1900 MHz**

SAM 4 Phantom; Flat Section; Position: (90°,90°); Frequency: 1900 MHz.
Probe: ET3DY6 - SNI585; ConvF(4.56,4.56); Crest Factor: 1.0; Muscle 1900: $\sigma = 1.52 \text{ mho/m}$ $\epsilon_r = 50.0$ $\rho = 1.00 \text{ g/cm}^3$
Cube 5x5x7 SAR (1g): 4.40 mW/g, SAR (10g): 2.28 mW/g, (Worst-case extrapolation)
Course: Dx = 20.0, Dy = 20.0, Dz = 10.0
Powerdrift: -0.03 dB

Validation Dipole, measured with muscle simulating tissue on 15/06/2004

Prepared (also subject responsible if other)

LD/SEMC/BGUG/NM *Ramadan Plicanic*

Approved

Checked

Company Internal REPORT

No.

GUG/N 04:132

Date

Rev

Reference

LD/SEMC/BGUG/NMC *Mats Hansson* 040628

040625

File

Page 1 of 1

Date/Time: 04/08/03 12:31:50

Test Laboratory: SPEAG, Zurich, Switzerland
File Name: [SN5d002_SN1507_M1900_080403.da4](#)

DUT: Dipole 1900 MHz; Serial: D1900V2 - SN5d002
Program: Dipole Calibration

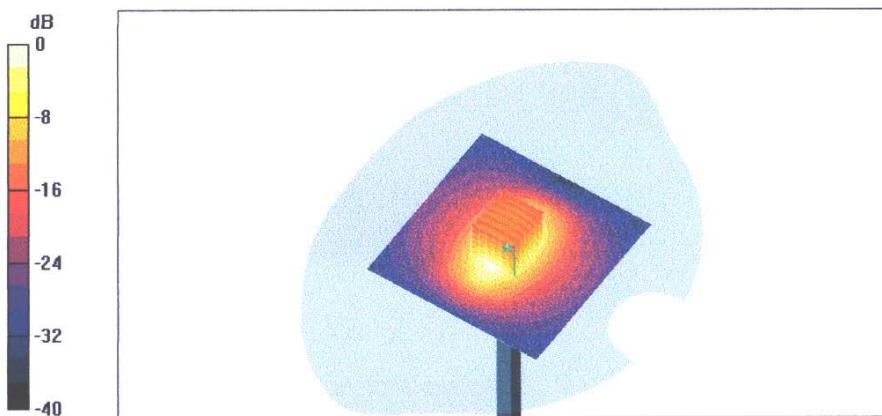
Communication System: CW-1900; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: Muscle 1900 MHz; ($\sigma = 1.59 \text{ mho/m}$, $\epsilon_r = 51.2$, $\rho = 1000 \text{ kg/m}^3$)

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1507; ConvF(4.8, 4.8, 4.8); Calibrated: 1/18/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 - SN411; Calibrated: 1/16/2003
- Phantom: SAM with CRP - TP1006; Type: SAM 4.0; Serial: TP:1006
- Measurement SW: DASY4, V4.1 Build 33; Postprocessing SW: SEMCAD, V1.6 Build 109


Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm
Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 92.8 V/m

Peak SAR = 18.9 W/kg

SAR(1 g) = 10.8 mW/g; SAR(10 g) = 5.6 mW/g

Power Drift = 0.02 dB

**1900MHz SAR distribution of validation dipole from reference measurement
with muscle simulating tissue**

Prepared (also subject responsible if other)

LD/SEMC/BGUG/NM *Ramadan Plicanic*

Approved

Checked

**Company Internal
REPORT**

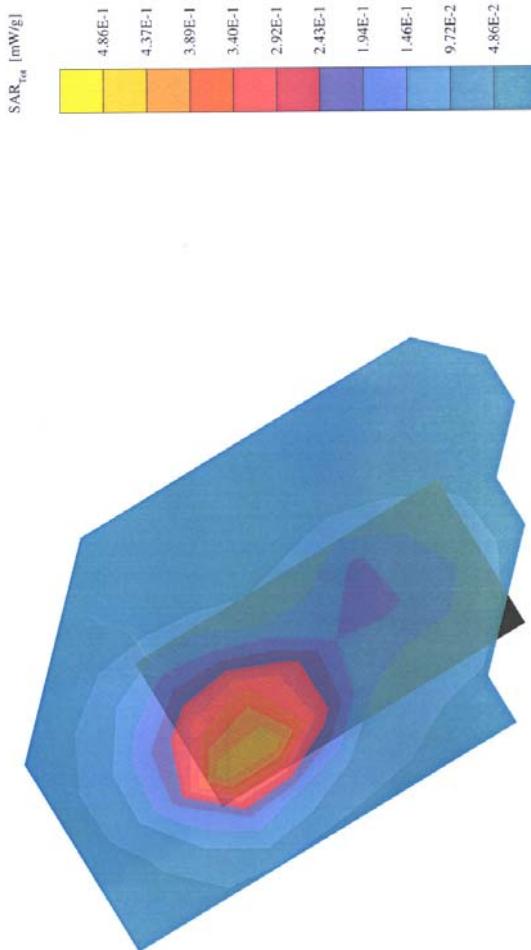
No.

GUG/N 04:132

Date

Rev

Reference


LD/SEMC/BGUG/NMC *Mats Hansson* 040628

040625

File

10.2 SAR distribution plot05/23/04 *Ramadan Plicanic*

PY7A1021042
SAM1 Phantom; Rich Hand Section; Position: (90°,301°); Frequency: 1850 MHz
Probe: ET3DV6 - SNI569; ConvF(5.28,5.38,5.28); Crest factor: 8.0; Head 1900MHz: σ = 1.44 mho/m ε_r = 38.5 p = 1.00 g/cm³
Cube 5x5x7; SAR (1g): 0.475 mW/g; SAR (10g): 0.256 mW/g; (Worst-case extrapolation)
Coarse: Dx = 15.0, Dy = 15.0, Dz = 15.0
Powerdrift: -0.09 dB

Distribution of max SAR in GSM1900 mode at 1850MHz. Measured against the head for cheek phone position

Prepared (also subject responsible if other)

LD/SEMC/BGUG/NM *Ramadan Plicanic*

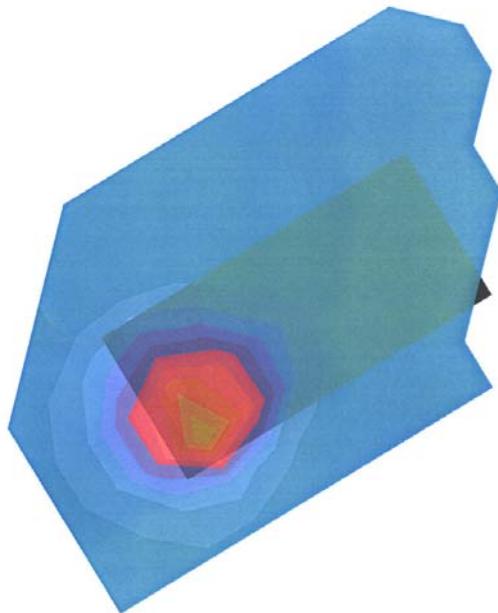
Approved

Checked

**Company Internal
REPORT**

No.

GUG/N 04:132


Date

Rev

Reference

LD/SEMC/BGUG/NMC *Mats Hansson* **040628****040625****File**05/23/04 *Ramadan Plicanic***PY7A1021042**

SAM 1 Phantom, Right Hand Section, Position: (105°,301°), Frequency: 1850 MHz
Probe: ET3DV6 - SN1569; ConvF(5.28,5.28); Crest factor: 8.0; Head: 1900MHz; $\sigma = 1.44$ mho/m $\epsilon_r = 38.5$ $\rho = 1.00$ g/cm³
Cube 5x5x7: SAR (1g): 0.526 mW/g; SAR (10g): 0.281 mW/g. (Worst-case extrapolation)
Coarse: Dx = 15.0, Dy = 15.0, Dz = 15.0
Powerdrift: -0.08 dB

Distribution of max SAR in GSM1900 mode at 1850MHz. Measured against the head for tilt phone position

Prepared (also subject responsible if other)

LD/SEMC/BGUG/NM *Ramadan Plicanic*

Approved

LD/SEMC/BGUG/NMC *Mats Hansson*

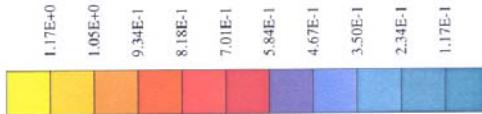
Checked

040628**Company Internal
REPORT**

No.

GUG/N 04:132

Date


040625

Rev

Reference

File06/15/04 *Ramadan Plicanic***PY7A1021042**

SAM 4 Phantom; Flat Section; Position: (270°, 90°); Frequency: 1910 MHz
Probe: ET3DV6 - SN1585; ConvF4.56x4.56; Crest factor: 4.0; Muscle (9000, $\sigma = 1.52$ mho/m, $\epsilon_r = 50.0$, $\rho = 1.00$ g/cm³,
Cube 5x5x7; SAR (1g): 1.37 mW/g; SAR (10g): 0.733 mW/g; (Worst-case extrapolation)
Course: Dx = 20.0, Dy = 20.0, Dz = 10.0
Powerdrift: -0.05 dB

SAR_{10g} [mW/g]**Distribution of max SAR in GSM1900 speech mode at 1910MHz. Measured against the body for back phone position to the phantom**

Prepared (also subject responsible if other)

LD/SEMC/BGUG/NM *Ramadan Plicanic*

Approved

Checked

Company Internal REPORT

No.

GUG/N 04:132

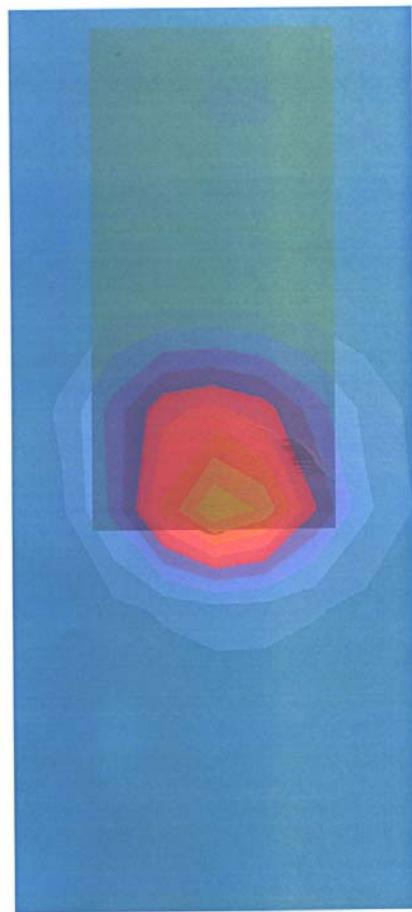
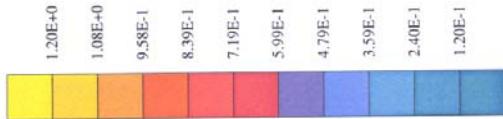
Date

Rev

Reference

LD/SEMC/BGUG/NMC *Mats Hansson* 040628

040625



File

06/15/04 *Ramadan Plicanic*

PY7A1021042

SAM 4 Phantom, Flat Section, Position: (270°,90°), Frequency: 1910 MHz,
Probe: ET3DV6 - SN1585; ConnF74.56.4.56.4.56; Crest factor: 4.0; Muscle 1900: $\sigma = 1.52$ mho/m $\epsilon_r = 50.0$ $\rho = 1.00$ g/cm³
Cube: 5x5x7; SAR (1g): 1.25 mW/g, SAR (10g): 0.692 mW/g, (Worst-case extrapolation)
Coarse: Dx = 10.0, Dy = 20.0, Dz = 10.0
Powerdrift: 0.01 dB

SAR_{Tot} [mW/g]

Distribution of max SAR in GSM1900 GPRS with 2Tx slot data mode at 1910MHz. Measured against the body for back phone position to the phantom

Sony Ericsson

18 (23)

Prepared (also subject responsible if other)

LD/SEMC/BGUG/NM *Ramadan Plicanic*

Approved

Checked

**Company Internal
REPORT**

No.

GUG/N 04:132

Date

Rev

Reference

LD/SEMC/BGUG/NMC *Mats Hansson*

040628

040625

File

10.3 Photographs of the device under test

Front and back side

Left side

Sony Ericsson

Prepared (also subject responsible if other)

LD/SEMC/BGUG/NM *Ramadan Plicanic*

Approved

Checked

LD/SEMC/BGUG/NMC *Mats Hansson* 040628

Company Internal
REPORT

No.

GUG/N 04:132

Date

Rev

Reference

040625

File

Back side and battery

Prepared (also subject responsible if other)

LD/SEMC/BGUG/NM *Ramadan Plicanic*

Approved

Checked

**Company Internal
REPORT**

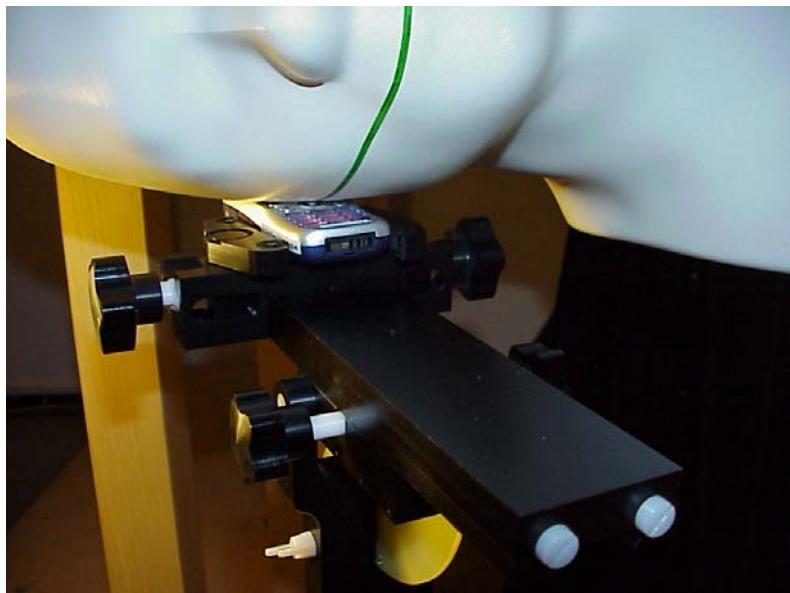
No.

GUG/N 04:132

Date

Rev

Reference


LD/SEMC/BGUG/NMC *Mats Hansson* 040628

040625

File

10.4

Device position on SAM Twins Phantom

Device position against the head: Cheek (touch) phone position

Device position against the head: Tilt (cheek+15deg) phone position

Sony Ericsson

21 (23)

Prepared (also subject responsible if other)

LD/SEMC/BGUG/NM *Ramadan Plicanic*

Approved

Checked

Company Internal
REPORT

No.

GUG/N 04:132

Date

Rev

Reference

LD/SEMC/BGUG/NMC *Mats Hansson* 040628

040625

File

Device position against the body

Prepared (also subject responsible if other)

LD/SEMC/BGUG/NM *Ramadan Plicanic*

Approved

Checked

LD/SEMC/BGUG/NMC *Mats Hansson* 040628**Company Internal
REPORT**

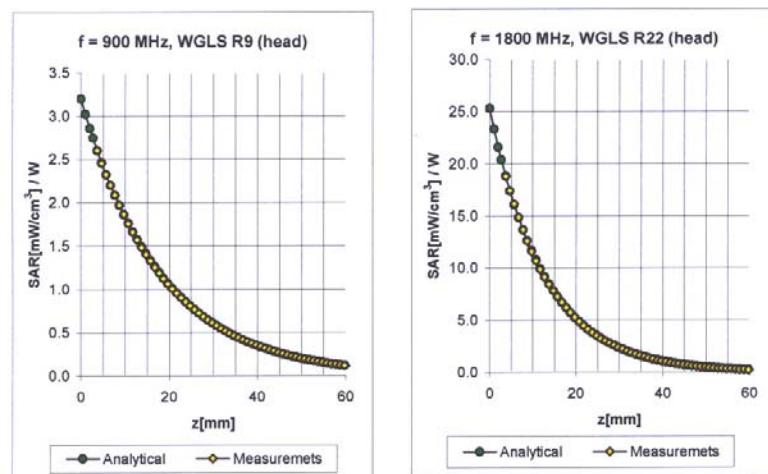
No.

GUG/N 04:132

Date

Rev

Reference


040625

File

10.5 Probe calibration parameters

ET3DV6 SN:1569

March 18, 2004

Conversion Factor Assessment

f [MHz]	Validity [MHz] ⁸	Tissue	Permittivity	Conductivity	Alpha	Depth	ConvF	Uncertainty
835	785-885	Head	41.5 ± 5%	0.90 ± 5%	0.57	1.76	7.12	± 9.7% (k=2)
900	850-950	Head	41.5 ± 5%	0.97 ± 5%	0.49	1.98	6.95	± 9.7% (k=2)
1750	1700-1800	Head	40.0 ± 5%	1.40 ± 5%	0.43	2.75	5.56	± 9.7% (k=2)
1900	1850-1950	Head	40.0 ± 5%	1.40 ± 5%	0.44	2.97	5.28	± 9.7% (k=2)
2000	1950-2050	Head	40.0 ± 5%	1.40 ± 5%	0.47	2.73	5.05	± 9.7% (k=2)
2450	2400-2500	Head	39.2 ± 5%	1.80 ± 5%	0.79	2.03	4.72	± 9.7% (k=2)
835	785-885	Body	55.2 ± 5%	0.97 ± 5%	0.39	2.28	6.72	± 9.7% (k=2)
900	850-950	Body	55.0 ± 5%	1.05 ± 5%	0.51	1.92	6.60	± 9.7% (k=2)
1750	1700-1800	Body	53.3 ± 5%	1.52 ± 5%	0.51	2.83	4.79	± 9.7% (k=2)
1900	1850-1950	Body	53.3 ± 5%	1.52 ± 5%	0.55	2.90	4.60	± 9.7% (k=2)
2000	1950-2050	Body	53.3 ± 5%	1.52 ± 5%	0.63	2.51	4.44	± 9.7% (k=2)
2450	2400-2500	Body	52.7 ± 5%	1.95 ± 5%	1.01	1.64	4.34	± 9.7% (k=2)

⁸ The total standard uncertainty is calculated as root-sum-square of standard uncertainty of the Conversion Factor at calibration frequency and the standard uncertainty for the indicated frequency band.

Prepared (also subject responsible if other)

LD/SEMC/BGUG/NM *Ramadan Plicanic*

Approved

Checked

LD/SEMC/BGUG/NMC *Mats Hansson* **040628****Company Internal
REPORT**


No.

GUG/N 04:132

Date

Rev

Reference

040625**File****ET3DV6 SN:1585****March 18, 2004****Conversion Factor Assessment**

f [MHz]	Validity [MHz] ^b	Tissue	Permittivity	Conductivity	Alpha	Depth	ConvF	Uncertainty
835	785-885	Head	41.5 ± 5%	0.90 ± 5%	0.43	2.18	6.91	± 9.7% (k=2)
900	850-950	Head	41.5 ± 5%	0.97 ± 5%	0.58	1.83	6.67	± 9.7% (k=2)
1750	1700-1800	Head	40.0 ± 5%	1.40 ± 5%	0.45	2.67	5.57	± 9.7% (k=2)
1900	1850-1950	Head	40.0 ± 5%	1.40 ± 5%	0.45	2.94	5.26	± 9.7% (k=2)
2000	1950-2050	Head	40.0 ± 5%	1.40 ± 5%	0.45	3.21	4.96	± 9.7% (k=2)
2450	2400-2500	Head	39.2 ± 5%	1.80 ± 5%	0.80	2.03	4.74	± 9.7% (k=2)
835	785-885	Body	55.2 ± 5%	0.97 ± 5%	0.46	2.10	6.58	± 9.7% (k=2)
900	850-950	Body	55.0 ± 5%	1.05 ± 5%	0.81	1.51	6.38	± 9.7% (k=2)
1750	1700-1800	Body	53.3 ± 5%	1.52 ± 5%	0.52	2.86	4.77	± 9.7% (k=2)
1900	1850-1950	Body	53.3 ± 5%	1.52 ± 5%	0.56	2.88	4.56	± 9.7% (k=2)
2000	1950-2050	Body	53.3 ± 5%	1.52 ± 5%	0.65	2.45	4.45	± 9.7% (k=2)
2450	2400-2500	Body	52.7 ± 5%	1.95 ± 5%	1.01	1.60	4.36	± 9.7% (k=2)

^b The total standard uncertainty is calculated as root-sum-square of standard uncertainty of the Conversion Factor at calibration frequency and the standard uncertainty for the indicated frequency band.