

Prepared (also subject responsible if other)

LD/SEMC/BGUG/NM Hamid Kami Shirazi

Approved Checked LD/SEMC/BGUG/NMC Mats Hansson 031003

GUG/N 03:314

Date Rev Reference
031001 A File

## SAR Test Report: PY7A1021021

**Date of test:** Sep. 22 and 29, 2003

**Laboratory:** Electromagnetic Near Field and Radio Frequency Dosimetry Lab

Sonyericsson Mobile Communications AB

Nya Vatentornet

SE-221 82 LUND, Sweden

Test Responsible: Hamid Kami Shirazi

Test Engineer, EMF & Safety

kami.shirazi@sonyericsson.com

+ 46 46 23 26 44

### **Statement of Compliance**

Sony Ericsson Mobile Communications AB declares under its sole responsibility that the product

### Sony Ericsson Type AAB-1021021-BV; FCC ID: PY7A1021021

to which this declaration relates, is in conformity with the appropriate RF exposure standards recommendations and guidelines. It also declares that the product was tested in accordance with the appropriate measurement standards, guidelines and recommended practices. Any deviations from these standards, guidelines and recommended practices are noted below:

(None)

### © Sony Ericsson Mobile Communications AB, 2003

This test report shall not be reproduced except in full, without written approval of the laboratory.

The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report.

Sony Ericsson encourages all feedback, both positive and negative, on this report.



Nο

Prepared (also subject responsible if other)

LD/SEMC/BGUG/NM Hamid Kami Shirazi

LD/SEMC/BGUG/NMC Mats Hansson

Checked **031003** 

GUG/N 03:314

Date Rev Reference 031001 A File

# 1 Table of contents

| 2  | INT          | FRODUCTION                                                   |   |
|----|--------------|--------------------------------------------------------------|---|
| 3  | DE.          | VICE UNDER TEST                                              | 3 |
| J  |              |                                                              |   |
|    |              | ANTENNA DESCRIPTION                                          |   |
|    |              | DEVICE DESCRIPTION                                           |   |
| 4  | TES          | ST EQUIPMENT                                                 | 4 |
|    |              | Oosimetric system                                            |   |
|    |              | ADDITIONAL EQUIPMENT                                         |   |
|    |              |                                                              |   |
| 5  | EL           | ECTRICAL PARAMETERS ON THE TISSUE SIMULATING LIQUID          | 4 |
| _  | ~=           |                                                              | _ |
| 6  | SYS          | STEM ACCURACY VERIFICATION                                   | 5 |
| 7  | CAI          | R MEASUREMENT UNCERTAINTY                                    |   |
| /  | SAI          | R MEASUREMENT UNCERTAINTY                                    |   |
| 8  | TE           | ST RESULTS                                                   | • |
| o  | LE           | SI RESULIS                                                   |   |
| 9  | RF.          | FERENCES                                                     | s |
| •  | KE.          | FERENCES                                                     |   |
| 1( | ) API        | PENDIX                                                       | 9 |
|    |              |                                                              |   |
|    | 10.1         | SAR DISTRIBUTION COMPARISON FOR SYSTEM ACCURACY VERIFICATION |   |
|    | 10.2<br>10.3 | SAR DISTRIBUTION PLOT                                        |   |
|    | 10.3         | DEVICE POSITION ON SAM TWINS PHANTOM                         |   |
|    | 10.4         | PROBE CALIBRATION PARAMETERS                                 |   |



Rev

Reference

Prepared (also subject responsible if other)

LD/SEMC/BGUG/NM Hamid Kami Shirazi

GUG/N 03:314 Approved Checked

LD/SEMC/BGUG/NMC Mats Hansson 031003 031001 Α File

### Introduction 2

In this test report, compliance of the Sony Ericsson PY7A1021021 portable telephone with RF safety guidelines is demonstrated. The applicable RF safety guidelines and the SARmeasurement specifications used for the test are described in the SAR Measurement of Wireless Specifications Handsets [1].

### **Device Under Test** 3

#### 3.1 **Antenna Description**

| Туре          | Internal antenna           |      |  |
|---------------|----------------------------|------|--|
| Location      | Inside back, at the middle |      |  |
| Dimensions    | Max length                 | 38mm |  |
| Dilliensions  | Max width                  | 14mm |  |
| Configuration | PIFA                       |      |  |

### **Device description** 3.2

| Device model                       | Z200                              |
|------------------------------------|-----------------------------------|
| Serial number                      | TP8100026P                        |
| Mode                               | GSM 1900                          |
| Multiple Access Scheme             | TDMA                              |
| Maximum Output Power Setting       | 29.7dBm                           |
| Factory Tolerance in Power Setting | ± 0.3dB                           |
| Maximum Peak Output Power          | 30dBm                             |
| Crest Factor                       | 8                                 |
| Transmitting Frequency Range       | 1850.2 – 1909.8 MHz               |
| Prototype or Production Unit       | Preproduction                     |
| Device Category                    | Portable                          |
| RF exposure environment            | General population / uncontrolled |



SecurityClass REPORT

No.

LD/SEMC/BGUG/NM Hamid Kami Shirazi

Approved Checked LD/SEMC/BGUG/NMC Mats Hansson 031003

i GUG/N 03:314
Checked Date

Date Rev Reference 031001 A File

# 4 Test equipment

### 4.1 Dosimetric system

SAR measurements were made using the DASY3 professional system (software version 3.1c) with SAM twin phantom, manufactured by Schmid & Partner Engineering AG (SPEAG). The list of calibrated equipment is given below.

| Description                     | Serial Number | Due Date |
|---------------------------------|---------------|----------|
| DASY3 DAE V1                    | 428           | 4/2004   |
| E-field probe ETDV6             | 1585          | 4/2004   |
| E-field probe ETDV6             | 1582          | 4/2004   |
| Dipole Validation Kit, D1900 V2 | 5d002         | 2/2006   |

# 4.2 Additional equipment

| Description                   | Inventory Number | Due Date |
|-------------------------------|------------------|----------|
| Signal generator ESG-D4000A   | INV 462935       | 9/2004   |
| Directional coupler HP778D    | INV 2903         | 1/2004   |
| Power meter R&S NRVD          | INV 483920       | 1/2004   |
| Power sensor R&S NRV-Z5       | INV 2333         | 1/2004   |
| Power sensor R&S NRV-Z5       | INV 2334         | 1/2004   |
| Termination 65N50-0-11        | INV 2903         | 1/2004   |
| Network analyzer HP8753C      | INV421671        | 8/2004   |
| S-parameter test set HP85047A | INV 421670       | 9/2004   |
| Dielectric probe kit HP8507D  | INV 20000053     | 2/2004   |

# 5 Electrical parameters on the tissue simulating liquid

Prior to conducting SAR measurements, the relative permittivity,  $\boldsymbol{\epsilon}_r$ , and the conductivity,  $\boldsymbol{\sigma}$ , of the tissue simulating liquids were measured with the dielectric probe kit. These values are shown in the table below. The mass density,  $\boldsymbol{\rho}$ , entered into the DASY3 software is also given. Recommended limits for permittivity  $\boldsymbol{\epsilon}_r$ , conductivity  $\boldsymbol{\sigma}$  and mass density  $\boldsymbol{\rho}$  are also shown.



Rev

Reference

Prepared (also subject responsible if other)

LD/SEMC/BGUG/NM Hamid Kami Shirazi

GUG/N 03:314 Approved Checked

LD/SEMC/BGUG/NMC Mats Hansson 031003 031001 Α File

> Application Note: The head and body tissue dielectric parameter recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table is prepared according to the following receipts. For 1900MHz Head: Water 54.9%, Salt 0.18% and DGBE 44.92%, For 1900MHz Body: Water 56.1%, DGBE 33.4%, Salt 0.5%,

| f     | Tissue | Limits / Measured  | Diel           | ectric Parame | eters     |     |
|-------|--------|--------------------|----------------|---------------|-----------|-----|
| (MHz) | type   | Littits / Weasured | ε <sub>r</sub> | σ (S/m)       | ρ (g/cm³) |     |
|       | Head   | Measured, 22/09/03 | 38.0           | 1.47          | 1.0       |     |
| 1900  | lieau  | Heau               | Recommended    | 40.0          | 1.4       | 1.0 |
| 1300  | Muscle | Measured, 29/09/03 | 50.4           | 1.52          | 1.0       |     |
|       |        | Recommended        | 53.3           | 1.52          | 1.0       |     |

### System accuracy verification 6

A system accuracy verification of the DASY3 was performed using the dipole validation kit listed in section 3.1. The system verification test was conducted on the same day as the measurement of the DUT. Measurement made in ambient temperature (24.4-24.8 °C) and humanity 40%. The obtained results are displayed in the table below.

RF noise had been measured in liquid when all RF equipment in lab was set off. Measured value was 0.0008mW/g in 1g mass.

| f     | Tissue | Measured /         | SAR (W/kg) | Diele          | ctric Param | eters     | t (°C) |
|-------|--------|--------------------|------------|----------------|-------------|-----------|--------|
| (MHz) | type   | Reference          | 1g mass    | ε <sub>r</sub> | σ (S/m)     | ρ (g/cm³) | ι ( υ) |
|       | Head   | Measured, 15/09/03 | 44.9       | 38.0           | 1.47        | 1.0       | 22.4   |
|       |        | Reference          | 41.6       | 38.8           | 1.44        | 1.0       | -      |
| 1900  | Muscle | Measured, 16/09/03 | 43.3       | 50.4           | 1.52        | 1.0       | 22.4   |
|       |        | Wiuscie            | Reference  | 43.2           | 51.2        | 1.59      | 1.0    |



Prepared (also subject responsible if other)

LD/SEMC/BGUG/NM Hamid Kami Shirazi

GUG/N 03:314 Checked

Reference Rev LD/SEMC/BGUG/NMC Mats Hansson 031003 031001 Α File

### **SAR** measurement uncertainty 7

| Error description            | Uncertainty<br>(%) | Distribution | Divisor | c <sub>i</sub><br>1g | Standard Uncertainty<br>Head | Standard Uncertainty<br>Body |
|------------------------------|--------------------|--------------|---------|----------------------|------------------------------|------------------------------|
| Measurement system           | (70)               |              |         | 'y                   | Ticaa                        | Body                         |
| Probe calibration            | ±4.4               | Normal       | 1       | 1                    | ±4.4                         | ±4.4                         |
| Axial isotropy               | ±4.7               | Rectangular  | √3      | $(1-c_p)^{1/2}$      | ±1.9                         | ±1.9                         |
| Spherical isotropy           | ±9.6               | Rectangular  | √3      | $(c_p)^{1/2}$        | ±3.9                         | ±3.9                         |
| Spatial resolution           | ±0.0               | Rectangular  | √3      | 1                    | ±0.0                         | ±0.0                         |
| Boundary effects             | ±5.5               | Rectangular  | √3      | 1                    | ±3.2                         | ±3.2                         |
| Probe linearity              | ±4.7               | Rectangular  | √3      | 1                    | ±2.7                         | ±2.7                         |
| Detection limit              | ±1.0               | Rectangular  | √3      | 1                    | ±0.6                         | ±0.6                         |
| Readout electronics          | ±1.0               | Normal       | 1       | 1                    | ±1.0                         | ±1.0                         |
| Response time                | ±0.8               | Rectangular  | √3      | 1                    | ±0.5                         | ±0.5                         |
| Integration time             | ±1.4               | Rectangular  | √3      | 1                    | ±0.8                         | ±0.8                         |
| RF ambient conditions        | ±3.0               | Rectangular  | √3      | 1                    | ±1.7                         | ±1.7                         |
| Mech. Constraints of robot   | ±0.4               | Rectangular  | √3      | 1                    | ±0.2                         | ±0.2                         |
| Probe positioning            | ±2.9               | Rectangular  | √3      | 1                    | ±1.7                         | ±1.7                         |
| Extrap. and integration      | ±3.9               | Rectangular  | √3      | 1                    | ±2.3                         | ±2.3                         |
| · -                          |                    |              |         |                      | ±8.3                         | ±8.3                         |
| Test sample related          |                    |              |         |                      |                              |                              |
| Device positioning           | ±6.0               | Normal       | 0.89    | 1                    | ±6.7                         | ±6.7                         |
| Device holder                | ±5.0               | Normal       | 0.84    | 1                    | ±5.9                         | ±5.9                         |
| Power drift                  | ±3.3/1.6           | Rectangular  | √3      | 1                    | ±1.9                         | ±0.9                         |
|                              |                    |              |         |                      | ±9.1                         | ±9                           |
| Phantom and setup            |                    |              |         |                      |                              |                              |
| Phantom uncertainty          | ±4.0               | Rectangular  | √3      | 1                    | ±2.3                         | ±2.3                         |
| Liquid conductivity (target) | ±5.0               | Rectangular  | √3      | 0.6                  | ±1.7                         | ±1.7                         |
| Liquid conductivity (meas)   | -5/0               | Rectangular  | √3      | 0.6                  | ±1.7                         | 0                            |
| Liquid permittivity (target) | ±5.0               | Rectangular  | √3      | 0.6                  | ±1.7                         | ±1.7                         |
| Liquid permittivity (meas)   | -5/-5              | Rectangular  | √3      | 0.6                  | ±1.7                         | ±1.7                         |
| Phantom and Tissue           |                    |              |         |                      | ±4.2                         | ±3.7                         |
| parameter Uncertainty        |                    |              |         |                      |                              |                              |
| Combined standard un         |                    |              |         | ±13                  | ±12.8                        |                              |
| Extended standard uncer      |                    |              |         | ±26                  | ±25.6                        |                              |



SecurityClass **REPORT** 

Rev

Reference

LD/SEMC/BGUG/NM Hamid Kami Shirazi

GUG/N 03:314 Approved Checked

LD/SEMC/BGUG/NMC Mats Hansson 031003 031001 Α File

#### 8 **Test results**

The measured 1-gram averaged SAR values of the device against the head and the body are provided in Tables 1 and 2 respectively. The humidity and ambient temperature of test facility were 40% - 45.8% and 24.5 °C - 24.8 °C respectively. The depth of the head tissue simulating liquid was 15.2cm and of the muscle tissue simulating liquid was 15.3cm. A base station simulator was used to control the device during the SAR measurement. The phone was supplied with full-charged battery for each measurement.

For head measurement, the device was tested on the right-hand phantom (corresponding to the right side of the head) and the left-hand phantom in two phone position, cheek (touch) and tilt (cheek + 15deg). For GSM 1900 modes, the device was tested at the lowest, middle and highest frequencies in the transmit band.

|             |         | Peak                     |                   |                    | SAR (W/kg) | n 1g mass |      |
|-------------|---------|--------------------------|-------------------|--------------------|------------|-----------|------|
| Mode        | Channel | Output<br>Power<br>(dBm) | Phone<br>Position | Liquid<br>temp(°C) | Right-hand | Left-hand |      |
| 1900<br>GSM | 512     | 512                      | 30                | Cheek              | 22.5/22.5  | 1.34      | 1.06 |
|             |         | 30                       | Tilt              | 22.4/22.5          | 0.36       | 0.39      |      |
|             |         | 661                      | 30                | Cheek              | 22.6/22.6  | 1.11      | 1.02 |
|             | 001     | 30                       | Tilt              | 22.5/22.3          | 0.39       | 0.30      |      |
|             | 810     | 30                       | Cheek             | 22.5/22.3          | 1.09       | 0.34      |      |
|             |         | 30                       | Tilt              | 22.3/22.3          | 0.35       | 0.96      |      |

Table1: SAR measurement result for Sony Ericsson PY7A1021021 telephone. Measured against the head.

For body-worn measurements, the device was tested against flat phantom representing the user body. Under measurement phone was put in a belt holder Sony Ericsson product and measurement provides for both front and back part the phone to the phantom, and also the same measurements has done without belt holder but with 15mm distance from the flat section of the phantom.

| Mode        | Channel | Peak Output<br>Power(dBm) | Phone Position               | Liquid<br>temp(<br>°C)       | SAR(W/kg) in 1g mass |      |
|-------------|---------|---------------------------|------------------------------|------------------------------|----------------------|------|
|             |         | 30                        |                              | Front to Ph<br>Belt holder   | 22.4                 | 0.12 |
|             | 512     |                           | Back to Ph<br>Belt holder    | 22.8                         | 0.35                 |      |
|             |         |                           | Front to Ph<br>15mm distance | 22.4                         | 0.14                 |      |
|             |         |                           | Back to Ph<br>15mm distance  | 22.4                         | 0.29                 |      |
|             | 810     |                           | Front to Ph<br>Belt holder   | 22.8                         | 0.10                 |      |
| 1900<br>GSM |         |                           | 30                           | Back to Ph<br>Belt holder    | 22.8                 | 0.24 |
|             |         |                           | Front to Ph<br>15mm distance | 22.4                         | 0.11                 |      |
|             |         |                           | Back to Ph<br>15mm distance  | 22.4                         | 0.24                 |      |
|             |         |                           | Front to Ph<br>Belt holder   | 22.8                         | 0.07                 |      |
|             |         |                           | Back to Ph<br>Belt holder    | 22.8                         | 0.26                 |      |
|             |         |                           |                              | Front to Ph<br>15mm distance | 22.4                 | 0.11 |
|             |         |                           | Back to Ph<br>15mm distance  | 22.4                         | 0.20                 |      |

Table 2: SAR measurement result for Sony Ericsson PY7A1021021 telephone. Measured against the body.



No.

Checked

031003

Prepared (also subject responsible if other)

LD/SEMC/BGUG/NM Hamid Kami Shirazi

Approved
LD/SEMC/BGUG/NMC Mats Hansson

GUG/N 03:314

Date Rev

031001 A File

Reference

### 9 References

[ 1 ] R.Plicanic, "SAR Measurement Specification of Wireless Handsets", Sony Ericsson internal document LD/SEMC/GUG/N 03:141

[2] FCC, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields: Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radio Frequency Emissions," Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01).

[3] IEEE, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wirelles Communications Devices: Experimental Techniques," Std 1528-200x, Draft 6.5 – August 20, 2001.



SecurityClass REPORT

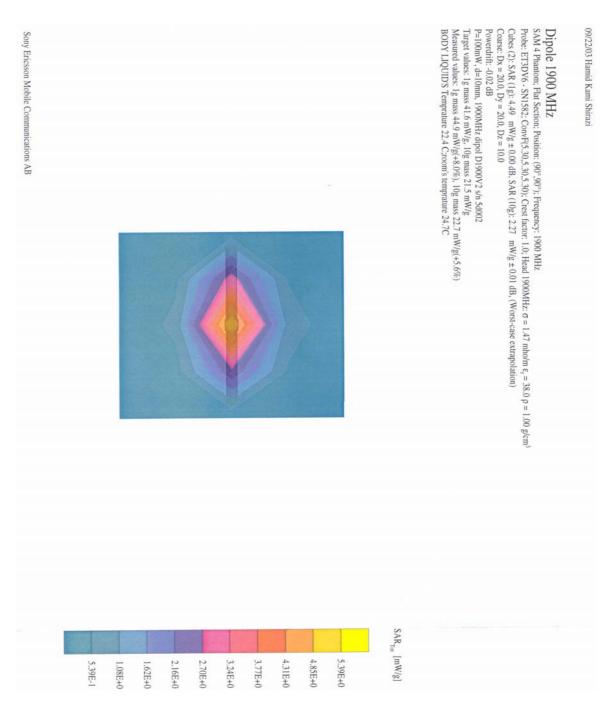
Nο

GUG/N 03:314

GUG/N 03:31

LD/SEMC/BGUG/NMC Mats Hansson

LD/SEMC/BGUG/NM Hamid Kami Shirazi


Checked **031003** 

031001

Rev **A**  Reference File

# 10 Appendix

# 10.1 SAR distribution comparison for system accuracy verification



Validation Dipole, measured with head simulating tissue on 22/09/03



No.

Prepared (also subject responsible if other)

LD/SEMC/BGUG/NM Hamid Kami Shirazi

LD/SEMC/BGUG/NMC Mats Hansson

Approved

Checked **031003** 

GUG/N 03:314

ate Rev

031001

Α

Reference File

Date/Time: 04/09/03 18:49:39

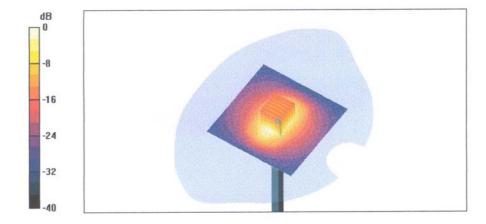
Test Laboratory: SPEAG, Zurich, Switzerland File Name: SN5d002\_SN1507\_HSL1900\_090403.da4

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN5d002 Program: Dipole Calibration

Communication System: CW-1900; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: HSL 1900 MHz ( $\sigma$  = 1.44 mho/m,  $\epsilon_r$  = 38.78,  $\rho$  = 1000 kg/m³) Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1507; ConvF(5.2, 5.2, 5.2); Calibrated: 1/18/2003


- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 - SN411; Calibrated: 1/16/2003

- Phantom: SAM with CRP - TP1006; Type: SAM 4.0; Serial: TP:1006

- Measurement SW: DASY4, V4.1 Build 33; Postprocessing SW: SEMCAD, V1.6 Build 109

Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.2 V/m Peak SAR = 18.2 W/kg SAR(1 g) = 10.4 mW/g; SAR(10 g) = 5.38 mW/g Power Drift = 0.01 dB



1900MHz SAR distribution of validation dipole from reference measurement with head simulating tissue.



LD/SEMC/BGUG/NM Hamid Kami Shirazi

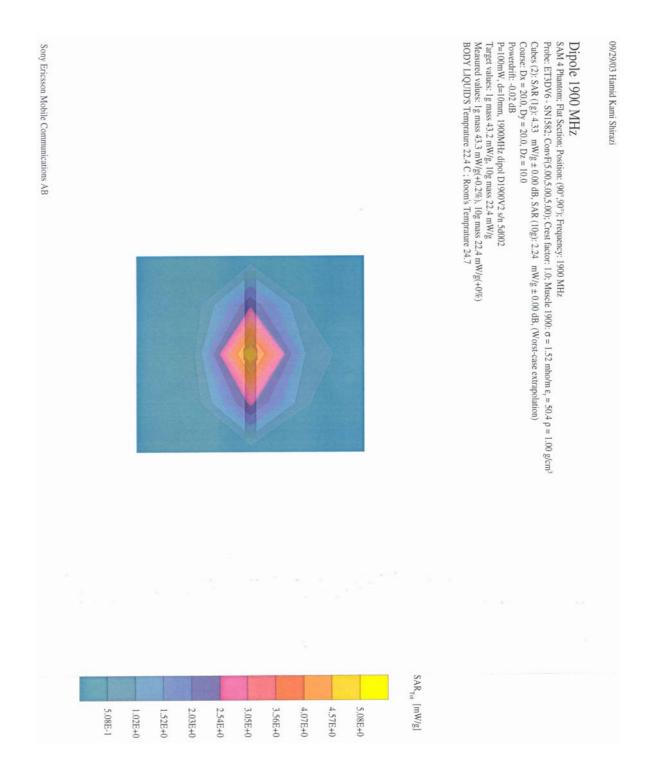
Approved

LD/SEMC/BGUG/NMC Mats Hansson

Checked **031003** 

SecurityClass REPORT

No.


GUG/N 03:314

Date

031001

Rev **A**  Reference

File



Validation Dipole, measured with muscle simulating tissue on 29/09/03



No.

Prepared (also subject responsible if other)

LD/SEMC/BGUG/NM Hamid Kami Shirazi

Approved

Checked

GUG/N 03:314

ate Rev

Reference

LD/SEMC/BGUG/NMC Mats Hansson

031003

031001

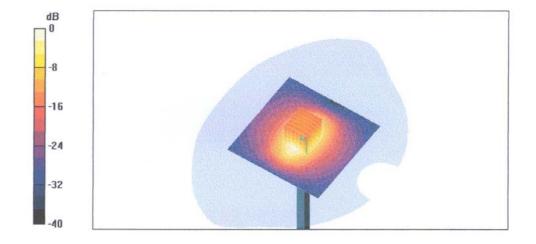
Α

File

Date/Time: 04/08/03 12:31:50

Test Laboratory: SPEAG, Zurich, Switzerland File Name: SN5d002 SN1507 M1900 080403.da4

DUT: Dipole 1900 MHz; Serial: D1900V2 - SN5d002 Program: Dipole Calibration


Communication System: CW-1900; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: Muscle 1900 MHz; ( $\sigma$  = 1.59 mho/m,  $\epsilon_r$  = 51.2,  $\rho$  = 1000 kg/m³)

Phantom section: Flat Section

### DASY4 Configuration:

- Probe: ET3DV6 SN1507; ConvF(4.8, 4.8, 4.8); Calibrated: 1/18/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 SN411; Calibrated: 1/16/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006
- Measurement SW: DASY4, V4.1 Build 33; Postprocessing SW: SEMCAD, V1.6 Build 109

Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 92.8 V/m Peak SAR = 18.9 W/kg SAR(1 g) = 10.8 mW/g; SAR(10 g) = 5.6 mW/g Power Drift = 0.02 dB



1900MHz SAR distribution of validation dipole from reference measurement with muscle simulating tissue.



LD/SEMC/BGUG/NM Hamid Kami Shirazi

Checked 031003

LD/SEMC/BGUG/NMC Mats Hansson

SecurityClass **REPORT** 

GUG/N 03:314

Rev Reference Α 031001 File

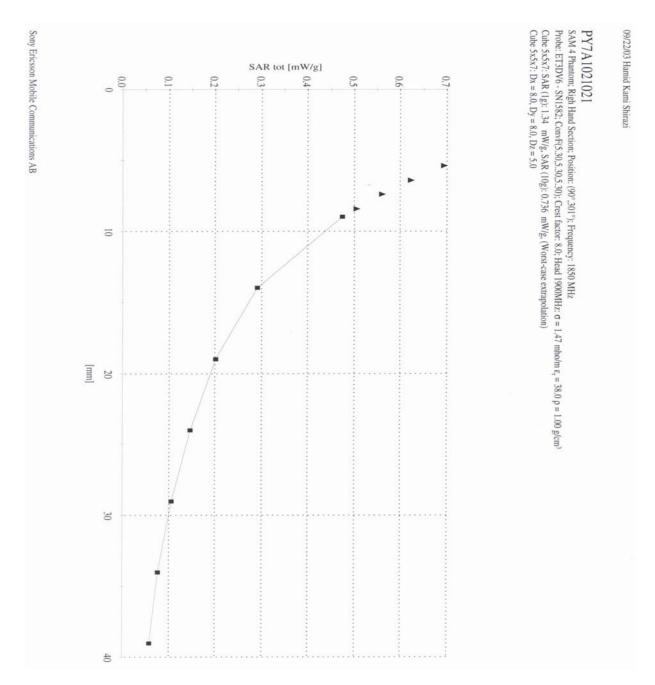
10.2 **SAR** distribution plot TP8100026P, P1A,03w36/A, GSM 1900MHz, freq. 1850MHz(ch512), CHEEK(90°)Phone Position,Right Hand Side, Pout=30.0dBm,Pnor=30.0dBm;030922room's temp.24.8; Liquid's temp. 22.5 C;030922 Cube 5x5x7: SAR (1g): 1.34 mW/g, SAR (10g): 0.736 mW/g, (Worst-case extrapolation) Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0 SAM 4 Phantom; Righ Hand Section; Position; (90°,301°); Frequency: 1850 MHz 09/22/03 Hamid Kami Shirazi Sony Ericsson Mobile Communications AB Probe: ET3DV6 - SN1582: ConvF(5.30,5.30,5.30); Crest factor: 8.0; Head 1900MHz:  $\sigma = 1.47 \text{ mho/m } e_s = 38.0 \text{ p} = 1.00 \text{ g/cm}^3$ SAR<sub>Tot</sub> [mW/g] 9.37E-1 2.68E-1 1.34E+0 5.36E-1 1.21E+0 1.34E-

Distribution of max SAR in GSM 1900 mode at ch512. Measured against the head for Cheek phone position.



LD/SEMC/BGUG/NM Hamid Kami Shirazi

Approved Checked


LD/SEMC/BGUG/NMC Mats Hansson 031003

SecurityClass REPORT

No.

GUG/N 03:314

Date Rev Reference 031001 A File



Z(x) distribution of max SAR in GSM1900 mode at ch512. Measured against the head for Cheek phone position.



LD/SEMC/BGUG/NM Hamid Kami Shirazi

Checked LD/SEMC/BGUG/NMC Mats Hansson 031003 SecurityClass **REPORT** 

GUG/N 03:314

Rev Α 031001

File

Reference

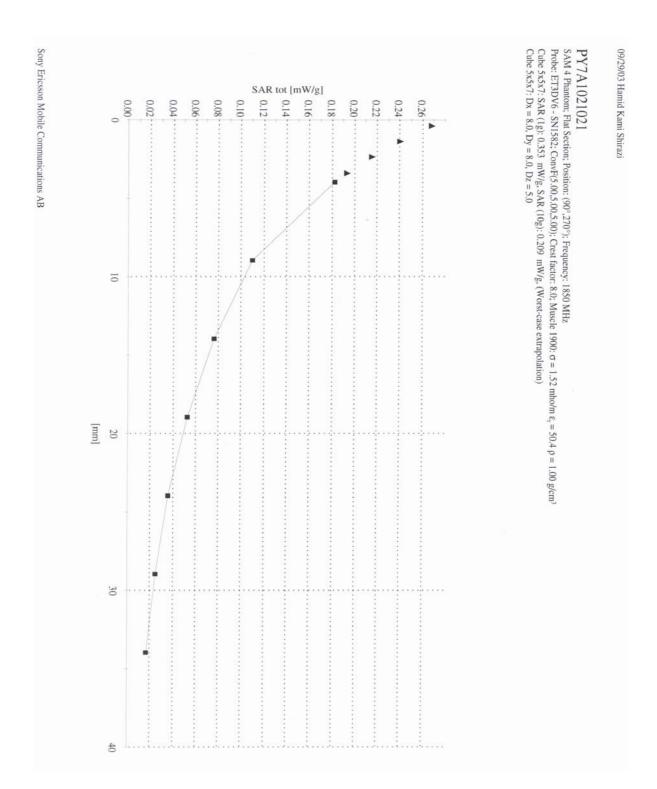
SAM 4 Phantom; Flat Section; Position:  $(90^{\circ},270^{\circ})$ ; Frequency: 1850 MHz Probe: ET3DV6 - SN1582; ConvF(5.00,5.00,5.00); Crost factor: 8.0; Muscle 1900:  $\sigma$  = 1.52 mho/m  $\epsilon_{\nu}$  = 50.4 p =  $1.00 \text{ g/cm}^3$  Cube 5x5x7: SAR (1g): 0.353 mW/g, SAR (10g): 0.209 mW/g, (Worst-case extrapolation) Coarse: Dx = 10.0, Dy = 20.0, Dz = 10.0TP8100026P, P1A,03w36/A, GSM 1900MHz, freq. 1850MHz(ch512), Flat Phantom Position,Back Side Phone in the Beltholder, Pout=30.0dBm,Pnor=30.0dBm;030929 Room's temp. 24.4; Liquid's temp. 22.8 C 09/29/03 Hamid Kami Shirazi PY7A1021021 Sony Ericsson Mobile Communications AB [mW/g] 3.75E-1 3.38E-1 7.50E-2 2.25E-1 2.63E-1 3.00E-1 1.13E-1 1.88E-1 1.50E-1

Distribution of max SAR in GSM1900 mode at ch512. Measured against the body for back phone side to the phantom.



LD/SEMC/BGUG/NM Hamid Kami Shirazi

Approved Checked


LD/SEMC/BGUG/NMC Mats Hansson 031003

SecurityClass REPORT

No.

GUG/N 03:314

Date Rev Reference 031001 A File



Z(x) distribution of max SAR in GSM1900 mode at ch512. Measured against the body .



SecurityClass **REPORT** 

LD/SEMC/BGUG/NM Hamid Kami Shirazi

Checked LD/SEMC/BGUG/NMC Mats Hansson 031003

GUG/N 03:314

Reference Rev 031001 Α File

### 10.3 Photographs of the device under test



1-Front and Back side



LD/SEMC/BGUG/NM Hamid Kami Shirazi

proved Checked

LD/SEMC/BGUG/NMC Mats Hansson

SecurityClass REPORT

No.

GUG/N 03:314

Date Rev Reference
031001 A File



031003

2-Front and Back side



LD/SEMC/BGUG/NM Hamid Kami Shirazi

Checked 031003

LD/SEMC/BGUG/NMC Mats Hansson

SecurityClass REPORT

GUG/N 03:314

Rev Reference 031001 Α File



Left and Right side



LD/SEMC/BGUG/NM Hamid Kami Shirazi

pproved Checked

LD/SEMC/BGUG/NMC Mats Hansson

SecurityClass REPORT

No.

031003

GUG/N 03:314

Date Rev Reference
031001 A File



Battery and Back side



SecurityClass REPORT

No.

LD/SEMC/BGUG/NM Hamid Kami Shirazi

Approved Checked LD/SEMC/BGUG/NMC Mats Hansson 031003

GUG/N 03:314

Date Rev Reference 031001 A File

# 10.4 Device position on SAM Twins Phantom



Device position against the head: Cheek (touch) phone position



LD/SEMC/BGUG/NM Hamid Kami Shirazi

pproved Checked

LD/SEMC/BGUG/NMC Mats Hansson

SecurityClass REPORT

No.

031003

GUG/N 03:314

Date Rev Reference
031001 A File



Device position against the head: Tilt (cheek+15deg) phone position



No.

GUG/N 03:314

Date R

Prepared (also subject responsible if other)

LD/SEMC/BGUG/NM Hamid Kami Shirazi

LD/SEMC/BGUG/NMC Mats Hansson

Checked **031003** 

031001 A File

Reference



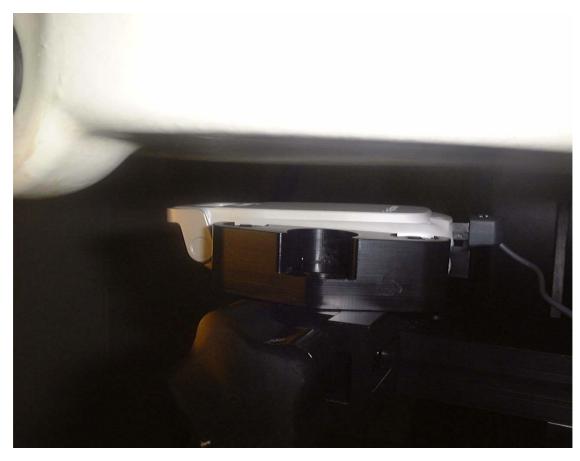
Device position against the body: Phone with belt holder under phantom and hand free connection.



LD/SEMC/BGUG/NM Hamid Kami Shirazi

proved Checked

LD/SEMC/BGUG/NMC Mats Hansson


SecurityClass REPORT

No.

031003

GUG/N 03:314

Date Rev Reference
031001 A File



Device position against the body: Back side Phone with 15mm distance under phantom and hand free connection.



SecurityClass REPORT

No.

LD/SEMC/BGUG/NM Hamid Kami Shirazi

proved Checked

LD/SEMC/BGUG/NMC Mats Hansson 031003

GUG/N 03:314

Date Rev Reference
031001 A File



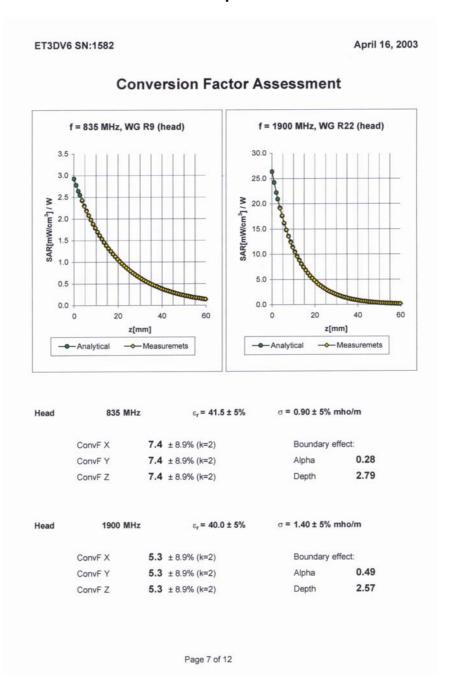
Device position against the body: Front side Phone with 15mm distance under phantom and hand free connection.



LD/SEMC/BGUG/NM Hamid Kami Shirazi

Approved Checked

LD/SEMC/BGUG/NMC Mats Hansson 031003


SecurityClass REPORT

Nο

GUG/N 03:314

Date Rev Reference 031001 A File

# 10.5 Probe calibration parameters





LD/SEMC/BGUG/NM Hamid Kami Shirazi

Approved Checked

LD/SEMC/BGUG/NMC Mats Hansson

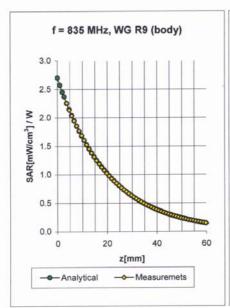
SecurityClass REPORT

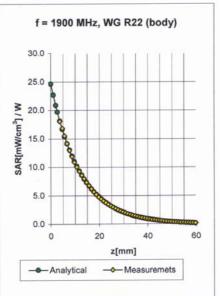
No.

GUG/N 03:314

Date Rev Reference

031001


Α


File



031003

## **Conversion Factor Assessment**





Body 835 MHz

 $\varepsilon_{\rm r}$  = 55.2 ± 5%

 $\sigma$  = 0.97 ± 5% mho/m

Valid for f=800-1000 MHz with Body Tissue Simulating Liquid according to OET 65 Suppl. C

ConvF X

6.7 ± 9.5% (k=2)

Boundary effect:

ConvF Y

**6.7** ± 9.5% (k=2) **6.7** ± 9.5% (k=2) Alpha Depth 0.34 2.48

Body

1900 MHz

 $\varepsilon_r = 53.3 \pm 5\%$ 

 $\sigma$  = 1.52 ± 5% mho/m

Valid for f=1710-1910 MHz with Body Tissue Simulating Liquid according to OET 65 Suppl. C

ConvF X

4.8 ± 9.5% (k=2)

Boundary effect:

ConvF Y

4.8 ± 9.5% (k=2)

Alpha

ConvF Z

4.8 ± 9.5% (k=2)

Depth

0.59 2.55