

Prediction of MPE limit at given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = \frac{PG}{4\pi R^2}$$

where: S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

The table below is excerpted from Table 1B of 47 CFR 1.1310 titled Limits for Maximum Permissible Exposure (MPE), Limits for General Population/Uncontrolled Exposure:

Frequency Range (MHz)	Power Density (mW/cm ²)	Averaging Time (minutes)
300 – 1500	f/1500	30
1500 - 100.000	1.0	30

where f = frequency in MHz

Prediction

Antenna Type: 0dBi Antenna / 3dBi Antenna / 6 dBi Antenna

		-	
GSM 850		GSM 1900	
30.7	dBm	27.1	dBm
1174,9	mW	512.86	mW
0	dBi	0	dBi
1	numeric	1	numeric
20	cm	20	cm
839	MHz	1880	MHz
1	$\frac{mW}{cm^2}$	1	$\frac{mW}{cm^2}$
0,234	$\frac{mW}{cm^2}$	0,102	$\frac{mW}{cm^2}$
0,467	$\frac{mW}{cm^2}$	0,204	$\frac{mW}{cm^2}$
0,934	$\frac{mW}{cm^2}$	0,408	$\frac{mW}{cm^2}$
6.31	dBi	9.9	dBi
	GSM 850 30.7 1174,9 0 1 20 839 <u>1</u> 0,234 0,467 0,934 6.31	GSM 850 30.7 dBm 1174,9 mW 0 dBi 1 numeric 20 cm 839 MHz 1 $\frac{mW}{cm^2}$ 0,234 $\frac{mW}{cm^2}$ 0,467 $\frac{mW}{cm^2}$ 0,934 $\frac{mW}{cm^2}$ 6.31 dBi	GSM 850 GSM 1900 $30.7 dBm$ 27.1 $1174,9 mW$ 512.86 $0 dBi$ 0 $1174,9 mW$ 512.86 $0 dBi$ 0 $1174,9 mW$ 512.86 $0 dBi$ 0 $1 numeric$ 1 $20 cm$ 20 $839 MHz$ 1880 $1 \frac{mW}{cm^2}$ 1 $0,234 \frac{mW}{cm^2}$ 0,102 $0,467 \frac{mW}{cm^2}$ 0,204 $0,934 \frac{mW}{cm^2}$ 0,408 $6.31 dBi$ 9.9

This predictions demonstrate the following:

- The power density levels at a distance of 20 cm with typical antennas of 0-6dBi are below the maximum levels allowed by the FCC regulations.
- 2) The antenna gain where 1 ^{m²}/_{cm²} would be reached at 20 cm distance, is G= 6.31 dBi for GSM 850
 G= 9.9 dBi for GSM 1900