

SAR EVALUATION REPORT PERMISSIVE CHANGE

FCC 47 CFR § 2.1093 IEEE Std 1528-2013

For GSM/WCDMA/LTE Phone with BT, DTS/UNII a/b/g/n/ac & NFC

FCC ID: PY7-54264J

Report Number: 12371499-S1V1 Issue Date: 8/6/2018

Prepared for

SONY MOBILE COMMUNICATIONS INC. 4-12-3 HIGASHI-SHINAGAWA SHINAGAWA-KU,TOKYO, 140-0002, JAPAN

Prepared by

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A.

TEL: (510) 771-1000 FAX: (510) 661-0888

Revision History

Rev.	Date	Revisions	Revised By
V1	8/6/2018	Initial Issue	

Table of Contents

1.	Attestation of Test Results	5
2.	Test Specification, Methods and Procedures	6
3.	Facilities and Accreditation	6
4.	SAR Measurement System & Test Equipment	7
4.1.	. SAR Measurement System	7
4.2.	. SAR Scan Procedures	8
4.3.	. Test Equipment	10
5.	Measurement Uncertainty	10
6.	Device Under Test (DUT) Information	11
6.1.	. DUT Description	11
6.2.	. Wireless Technologies	12
6.3.	General LTE SAR Test and Reporting Considerations	13
6.4.	LTE (TDD) Considerations	14
6.5.	LTE Carrier Aggregation	15
7.	RF Exposure Conditions (Test Configurations)	16
8.	Dielectric Property Measurements & System Check	17
8.1.	. Dielectric Property Measurements	17
8.2.	. System Check	18
9.	Conducted Output Power Measurements	19
9.1.	. LTE	19
9.2.	. LTE Carrier Aggregation	24
10.	Measured and Reported (Scaled) SAR Results	26
10.	1. LTE Band 7 (20MHz Bandwidth)	27
10.2	2. LTE Band 41 (20MHz Bandwidth)	27
11.	SAR Measurement Variability	28
12.	Simultaneous Transmission Conditions	29
12.	1. Simultaneous transmission SAR test exclusion considerations	29
1.	2.1.1. Sum of SAR	29
12.2	2. Sum of the SAR for WWAN & Wi-Fi & BT	29
Appe	ndixes	30
123	371499-S1V1 Appendix A: SAR Setup Photos	30
123	371499-S1V1 Appendix B: SAR System Check Plots	30

 Report No.: 12371499-S1V1
 Issue Date: 8/6/2018

 12371499-S1V1 Appendix C: Highest SAR Test Plots
 30

 12371499-S1V1 Appendix D: SAR Liquid Tissue Ingredients
 30

1. Attestation of Test Results

Applicant Name	SONY MOBILE COMMUNICATIONS INC.				
FCC ID	PY7-54264J				
Applicable Standards	FCC 47 CFR § 2.1093				
		sure KDB procedure	es		
	IEEE Std 1528-201	3			
		SAR Limi	its (W/Kg)		
Exposure Category	Peak spati	al-average	Product specific		
	(1g of tissue)		(10g of tissue)		
General population /	1.6		4		
Uncontrolled exposure					
RF Exposure Conditions	Equipment Class - Highest Reported SAR (W/kg)				
Tr Exposure Conditions	PCE	DTS	NII	DSS	
Head	0.054	0.433	0.458	0.196	
Body-worn	0.211	0.036	0.099	0.006	
Hotspot/Wi-Fi Direct	0.791	0.141	N/A	0.062	
Product specific 10g SAR	N/A	N/A	0.669	N/A	
Simultaneous TX	0.773	0.636	0.773	0.773	
Date Tested	7/6/2018 to 7/11/2018				
Test Results Pass					
I .					

Note: The proposed Permissive Change requires SAR testing for LTE Bands 7 and 41 due to antenna gain differences from the original model. The SAR measurement results from the original filing can be found in FCC SAR report PY7-26828G. This report only contains the SAR values for the modified LTE Bands. Please refer to the original filling for the highest SAR values. The Wi-Fi and BT results from the original filling have been used in this report for simultaneous transmission analysis. The Wi-Fi and BT results from the original filling are listed above.

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government (NIST Handbook 150, Annex A). This report is written to support regulatory compliance of the applicable standards stated above.

Approved & Released By:	Prepared By:	
	AT Vacuum	
Dave Weaver	AJ Newcomer	
Operations Leader	Laboratory Engineer	
UL Verification Services Inc.	UL Verification Services Inc.	

2. Test Specification, Methods and Procedures

The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093, IEEE STD 1528-2013, the following FCC Published RF exposure KDB procedures:

- 447498 D01 General RF Exposure Guidance v06
- o 447498 D03 Supplement C Cross-Reference v01
- 648474 D04 Handset SAR v01r03
- 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04
- 865664 D02 RF Exposure Reporting v01r02
- 941225 D05 SAR for LTE Devices v02r05
- o 941225 D05A LTE Rel.10 KDB Inquiry Sheet v01r02
- o 941225 D06 Hotspot Mode v02r01

In addition to the above, the following information was used:

- TCB workshop April 2015; Page 33, RF Exposure Procedures Update (Overlapping LTE Bands)
- o TCB workshop October 2014; Page 37, RF Exposure Procedures Update (Other LTE Considerations)
- TCB workshop October 2015; Page 6, RF Exposure Procedures (KDB 941225 D05A)
- TCB workshop April 2016; Page 13, RF Exposure Procedures (LTE Carrier Aggregation for DL)
- TCB workshop October 2016; Page 18, RF Exposure Procedures (DUT Holder Perturbations
- o TCB workshop May 2017; Page 9, Broadband Liquid Above 3 GHz

3. Facilities and Accreditation

The test sites and measurement facilities used to collect data are located at

47173 Benicia Street	47266 Benicia Street
SAR Lab A	SAR Lab 1
SAR Lab B	SAR Lab 2
SAR Lab C	SAR Lab 3
SAR Lab D	SAR Lab 4
SAR Lab E	SAR Lab 5
SAR Lab F	SAR Lab 6
SAR Lab G	SAR Lab 7
SAR Lab H	SAR Lab 8

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0.

4. SAR Measurement System & Test Equipment

4.1. SAR Measurement System

The DASY5 system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

4.2. SAR Scan Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

	≤ 3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$	
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°	
	≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm	
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.		

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Zoom Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

			≤ 3 GHz > 3 GHz	
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}			\leq 2 GHz: \leq 8 mm 2 – 3 GHz: \leq 5 mm	$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$
	uniform grid: $\Delta z_{Zoom}(n)$		≤ 5 mm	$3 - 4 \text{ GHz: } \le 4 \text{ mm}$ $4 - 5 \text{ GHz: } \le 3 \text{ mm}$ $5 - 6 \text{ GHz: } \le 2 \text{ mm}$
Maximum zoom scan spatial resolution, normal to phantom surface	graded grid Δz_z	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	$3 - 4 \text{ GHz: } \le 3 \text{ mm}$ $4 - 5 \text{ GHz: } \le 2.5 \text{ mm}$ $5 - 6 \text{ GHz: } \le 2 \text{ mm}$
		Δz _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoom}(n\text{-}1)$	
Minimum zoom scan volume x, y, z		≥ 30 mm	$3 - 4 \text{ GHz:} \ge 28 \text{ mm}$ $4 - 5 \text{ GHz:} \ge 25 \text{ mm}$ $5 - 6 \text{ GHz:} \ge 22 \text{ mm}$	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan (FCC only)

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. In order to get a reasonable extrapolation the extrapolated distance should not be larger than the step size in Z-direction.

^{*} When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

4.3. Test Equipment

The measuring equipment used to perform the tests documented in this report has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

Dielectric Property Measurements

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
S-Parameter Network Analyzer	Agilent	8753ES	MY40000980	5/14/2019
Dielectric Probe kit	SPEAG	DAK-3.5	1082	10/17/2018
Shorting Block	SPEAG	DAK-3.5 Short	SM DAK 200 BA	10/17/2018
Thermometer	Fisher Scientific	Traceable	140562250	11/7/2018

System Check

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Synthezised Signal Generator	Agilent	N5181A	MY50140630	5/25/2019
Power Meter	HP	437B	3125U12345	8/10/2018
Power Meter	HP	437B	3125U11347	8/15/2018
Power Sensor	HP	8481A	1926A27048	8/10/2018
Power Sensor	HP	8481A	3318A92374	8/15/2018
Amplifier	MITEQ	AMF-4D-00400600-50-30P	1795092	N/A
Bi-directional coupler	Werlatone, Inc.	C8060-102	2141	N/A
DC Power Supply	BK Precision	1611	215-02292	N/A

Lab Equipment

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
E-Field Probe (SAR Lab 5)	SPEAG	EX3DV4	7498	5/4/2019
Data Acquisition Electronics (SAR Lab 5)	SPEAG	DAE4	1546	5/3/2019
System Validation Dipole	SPEAG	D2600V2	1036	3/16/2019
Thermometer (SAR Lab 5)	Fisher Sceintific	Traceable	181062300	2/26/2019

Other

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Base Station Simulator	R&S	R&S	164541-CI	2/19/2019

5. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be \leq 30%, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval.

6. Device Under Test (DUT) Information

6.1. DUT Description

	1				
Davis Discouries	This is a Phablet Device (display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm)				
Device Dimension	Refer to Appendix A				
Back Cover	The Back Cover is not	removable			
Battery Options	The rechargeable batte	ry is not user accessible.			
Accessory	Headset				
Maria a Davier (Hat	Wi-Fi Hotspot mode per	mits the device to share its cellular	data connection with other Wi-Fi-enabled devices.		
Wireless Router (Hotspot)					
M/ F' D'	Wi-Fi Direct enabled devices transfer data directly between each other				
Wi-Fi Direct	☑ Wi-Fi Direct (Wi-Fi 2.4 GHz)				
	S/N	IMEI	Notes		
	BH94004FD5	004402458821570	FCC SAR LTE (HB) (conducted)		
Test sample information	BH94005ND5	004402458821370	FCC Cellular (conducted)_CA #1		
	BH94001ZD5	004402458821570	FCC SAR LTE(HB)(Radiated) #1		
Hardware Version	А				
Software Version	0.299				

6.2. Wireless Technologies

Wireless technologies	Frequency bands	Oper	ating mode	Duty Cycle used for SAR testing
GSM	850 1900	Voice (GMSK) GPRS (GMSK) EDGE (8PSK)	Multi-Slot Class: Class 33 - 4 Up, 5 Down	GPRS: 4 Slots: 50%
	Does this device support DTM	(Dual Transfer Mode)? ⊠ Y	′es □ No	•
W-CDMA (UMTS)	Band II Band IV Band V	UMTS Rel. 99 (Voice & Da HSDPA (Rel. 5) HSUPA (Rel. 6) HSPA+ (Rel. 7) DC-HSDPA (Rel. 8)	ata)	100%
LTE	FDD Band 2 FDD Band 4 FDD Band 5 FDD Band 7 FDD Band 12 FDD Band 13 FDD Band 17 FDD Band 26 FDD Band 29 (Rx Only) TDD Band 41 FDD Band 66	QPSK 16QAM 64AQM Rel. 12 Carrier Aggregatio Downlinks). Refer to §6.5.		100% (FDD) 63.3% (TDD) ³ Refer to §6.4
	Does this device support SV-L	, , ,] No	1
	2.4 GHz	802.11b 802.11g 802.11n (HT20)		802.11b ¹ : 99.19% 802.11g ¹ : 98.16% 802.11n (HT20) ¹ : 97.74%
Wi-Fi	5 GHz	802.11a 802.11n (HT20) 802.11n (HT40) 802.11ac (VHT20) 802.11ac (VHT40) 802.11ac (VHT80)		802.11a ¹ : 98.21% 802.11n (HT20) ¹ : 98.05% 802.11n (HT40) ¹ : 93.96% 802.11ac (VHT20) ¹ : 98.05% 802.11ac (VHT40) ¹ : 93.96% 802.11ac (VHT80) ¹ : 88.48%
	Does this device support band		□ No	
	Does this device support Band	l gap channel(s)? ⊠ Yes □	No	
Bluetooth	2.4 GHz	Version 5.0 LE		GFSK ² : 77.03% EDR, LE: N/A ⁴

Notes:

- 1. Duty Cycles for Wi-Fi are referenced from the DTS report 12371351-E4 and U-NII report 12371351-E5.
- 2. Duty Cycle for Bluetooth GFSK mode is referenced from the BT report 12371351-E2.
- 3. This device supports uplink-downlink configuration 0-6. The configuration with the highest duty cycle was used (Subframe Number 0 at 63.3%).
- Measured Duty Cycle is not required due to SAR test exemption.

General LTE SAR Test and Reporting Considerations 6.3.

	Description										
			Fre	equency rang	ge: 2500 - 2570	MHz					
	Band 7			Channe	el Bandwidth						
		20 MHz	15 MHz	10 MHz	5 MHz	3 MHz	1.4 MHz				
		20850	20825	20800	20775						
	Low	2510	2507.5	2505	2502.5						
		21100	21100	21100	21100						
	Mid	2535	2535	2535	2535						
	110	21350	21375	21400	21425						
Frequency range, Channel Bandwidth,	High	2560	2562.5	2565	2567.5						
Numbers and Frequencies			Fre	equency rang	ge: 2496 - 2690	MHz					
	Band 41 ¹			Channe	el Bandwidth						
		20 MHz	15 MHz	10 MHz	5 MHz	3 MHz	1.4 MHz				
	Low		39750	/ 2506.0							
	Low-Mid			/ 2549.5							
	Mid			/ 2593.0							
	Mid-High			/ 2636.5							
	High	High 41490 / 2680.0									
LTE transmitter and antenna	Refer to App	endix A									
implementation	110.0. 107.66										
	Table	6.2.3-1: Maxi	mum Power	Reduction (MPR) for Powe	er Class 1, 2	and 3				
					•						
	Table Modulati	ion C	hannel bandwi	idth / Transm	ission bandwid	th (N _{RB})	and 3				
				idth / Transm	ission bandwid						
	Modulati QPSK	on C 1.4 MHz > 5	hannel bandwi	idth / Transm 5 MHz I	ission bandwid	th (N _{RB})					
	Modulati QPSK 16 QAM	Ton C 1.4 MHz > 5 M ≤ 5	hannel bandwi 3.0 MHz > 4 ≤ 4	idth / Transm 5 MHz I > 8 ≤ 8	ission bandwid 10 15 MHz MHz 12 > 16 12 ≤ 16	th (N _{RB}) 20 MHz > 18 ≤ 18	MPR (dB) ≤ 1 ≤ 1				
Mariana and Aution (MDC)	Modulati QPSK 16 QAN 16 QAN	1.4 MHz > 5 M ≤ 5 M > 5	3.0 MHz > 4 ≤ 4 > 4	5 MHz 1 > 8 2 ≤ 8 3	ission bandwid 10 15 MHz MHz 12 > 16 12 ≤ 16 12 > 16	th (N _{RB}) 20 MHz > 18 ≤ 18 > 18	MPR (dB) ≤ 1 ≤ 1 ≤ 2				
Maximum power reduction (MPR)	Modulati QPSK 16 QAN 16 QAN 64 QAN	1.4 MHz > 5 M \leq 5 M \leq 5 M \leq 5	3.0 MHz > 4 ≤ 4 > 4 ≤ 4	5 MHz I > 8 : 3 ≤ 8 : 3 ≤ 8 : 3	ission bandwid 10 15 MHz MHz > 12 > 16 ≤ 12 ≤ 16 ≤ 12 > 16 ≤ 12 ≤ 16 ≤ 12 ≤ 16	th (N _{RB}) 20 MHz > 18 ≤ 18 > 18 ≤ 18	MPR (dB) ≤ 1 ≤ 1 ≤ 2 ≤ 2				
Maximum power reduction (MPR)	Modulati QPSK 16 QAN 16 QAN 64 QAN 64 QAN	C	3.0 MHz > 4 ≤ 4 > 4	5 MHz I > 8 : 3 \$ 4 8 : 3 \$ 5 8 : 3 \$ 7 8 : 3	ission bandwid 10 15 MHz MHz 12 > 16 12 ≤ 16 12 > 16	th (N _{RB}) 20 MHz > 18 ≤ 18 > 18	MPR (dB) ≤ 1 ≤ 1 ≤ 2 ≤ 2 ≤ 3				
Maximum power reduction (MPR)	Modulati QPSK 16 QAN 16 QAN 64 QAN	C	3.0 MHz > 4 ≤ 4 > 4 ≤ 4	5 MHz I > 8 : 3 ≤ 8 : 3 ≤ 8 : 3	ission bandwid 10 15 MHz MHz > 12 > 16 ≤ 12 ≤ 16 ≤ 12 > 16 ≤ 12 ≤ 16 ≤ 12 ≤ 16	th (N _{RB}) 20 MHz > 18 ≤ 18 > 18 ≤ 18	MPR (dB) ≤ 1 ≤ 1 ≤ 2 ≤ 2				
Maximum power reduction (MPR)	Modulati QPSK 16 QAN 16 QAN 64 QAN 64 QAN	Ton C 1.4 MHz > 5 M ≤ 5 M > 5 M ≤ 5 M > 5 M	3.0 MHz > 4 ≤ 4 > 4 ≤ 4	5 MHz I > 8 : 3 \$ 4 8 : 3 \$ 5 8 : 3 \$ 7 8 : 3	ission bandwid 10 15 MHz MHz > 12 > 16 ≤ 12 ≤ 16 ≤ 12 > 16 ≤ 12 ≤ 16 ≤ 12 ≤ 16	th (N _{RB}) 20 MHz > 18 ≤ 18 > 18 ≤ 18	MPR (dB) ≤ 1 ≤ 1 ≤ 2 ≤ 2 ≤ 3				
Maximum power reduction (MPR)	Modulati QPSK 16 QAN 16 QAN 64 QAN 64 QAN 256 QAI MPR Built-in	on C 1.4 MHz > 5 M ≤ 5 M > 5 M ≤ 5 M > 5 M > 5	3.0 MHz > 4 ≤ 4 > 4 ≤ 4 > 4	5 MHz I > 8 3 ≤ 8 3 ≥ 8 3 ≥ 8 3 ≥ 8 3 ≥ 8 3 ≥ 8 3 ≥ 1	ission bandwid 10 15 MHz MHz > 12 > 16 5 12 ≤ 16 12 > 16 5 12 > 16 5 12 ≤ 16 12 ≤ 16 12 ≤ 16	th (N _{RB}) 20 MHz > 18 ≤ 18 > 18 ≤ 18 > 18	MPR (dB) ≤ 1 ≤ 1 ≤ 2 ≤ 2 ≤ 3 ≤ 5				
Maximum power reduction (MPR)	Modulati QPSK 16 QAN 16 QAN 64 QAN 256 QAI MPR Built-in The manufac	C	hannel bandwi 3.0 MHz > 4 ≤ 4 > 4 ≤ 4 > 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5 MHz I > 8 3 ≤ 8 3 ≥ 8 3 ≥ 8 3 ≥ 8 3 ≥ 8 3 ≥ 8 3 ≥ 1	ission bandwid 10 15 MHz MHz > 12 > 16 ≤ 12 ≤ 16 ≤ 12 > 16 ≤ 12 ≤ 16 ≤ 12 ≤ 16	th (N _{RB}) 20 MHz > 18 ≤ 18 > 18 ≤ 18 > 18	MPR (dB) ≤ 1 ≤ 1 ≤ 2 ≤ 2 ≤ 3 ≤ 5				
Maximum power reduction (MPR)	Modulati QPSK 16 QAN 16 QAN 64 QAN 256 QAI MPR Built-in The manufac	C	hannel bandwi 3.0 MHz > 4 ≤ 4 > 4 ≤ 4 > 4	idth / Transm	Sission bandwid 10	th (N _{RB}) 20 MHz > 18 ≤ 18 > 18 ≤ 18 > 18	MPR (dB) ≤ 1 ≤ 1 ≤ 2 ≤ 2 ≤ 3 ≤ 5				
	Modulati QPSK 16 QAN 16 QAN 64 QAN 256 QAI MPR Built-in The manufact not follow the	C	hannel bandwi 3.0 MHz > 4 ≤ 4 > 4 ≤ 4 > 4	idth / Transm	Sission bandwid 10	th (N _{RB}) 20 MHz > 18 ≤ 18 > 18 ≤ 18 > 18	MPR (dB) ≤ 1 ≤ 1 ≤ 2 ≤ 2 ≤ 3 ≤ 5				
Maximum power reduction (MPR) Power reduction	Modulati QPSK 16 QAN 16 QAN 64 QAN 256 QAI MPR Built-in The manufac not follow the A-MPR (add	C	3.0 MHz > 4 ≤ 4 > 4 ≤ 4 > 4 description 3.0 × 4 ×	State	15 15 15 15 16 15 17 17 18 18 18 18 18 18	th (N _{RB}) 20 MHz > 18 ≤ 18 > 18 ≤ 18 > 18 < 18 m MPR allowa	MPR (dB) ≤ 1 ≤ 1 ≤ 2 ≤ 2 ≤ 3 ≤ 5 ance but may				
	Modulati QPSK 16 QAN 16 QAN 64 QAN 256 QAI MPR Built-in The manufact not follow the A-MPR (add No A properly co	on C 1.4 MHz > 5 M ≤ 5 M > 5 M ≤ 5 M > 5 M Separate Sepa	hannel bandwi 3.0 MHz > 4	Section Sec	Sission bandwid 10	th (N _{RB}) 20 MHz > 18 ≤ 18 > 18 ≤ 18 > 18 MPR alloward	MPR (dB)				
. , ,	Modulati QPSK 16 QAN 16 QAN 64 QAN 256 QAI MPR Built-in The manufact not follow the A-MPR (add No A properly co	on C 1.4 MHz > 5 M ≤ 5 M > 5 M ≤ 5 M > 5 M Separate Sepa	hannel bandwi 3.0 MHz > 4	Section Sec	15 15 15 15 16 15 17 17 18 18 19 19 19 19 19 19	th (N _{RB}) 20 MHz > 18 ≤ 18 > 18 ≤ 18 > 18 MPR alloward	MPR (dB)				
Power reduction	Modulati QPSK 16 QAN 16 QAN 64 QAN 256 QAI MPR Built-in The manufact not follow the A-MPR (add No A properly co	on C 1.4 MHz > 5 M ≤ 5 M > 5 M ≤ 5 M > 5 M Separate Sepa	hannel bandwi 3.0 MHz > 4	Section Sec	Sission bandwid 10	th (N _{RB}) 20 MHz > 18 ≤ 18 > 18 ≤ 18 > 18 MPR alloward	MPR (dB)				

LTE band 41 test channels in accordance with October 2014 TCB workshop for all channels bandwidths. This band was tested using Uplink-Downlink Configuration 0 at 63.3% duty cycle and Special Subframe 7.

LTE QPSK configuration has the highest maximum average output power per 3GPP standard.

SAR Testing for LTE was performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

6.4. LTE (TDD) Considerations

According to KDB 941225 D05 SAR for LTE Devices, for Time-Division Duplex (TDD) systems, SAR must be tested using a fixed periodic duty factor according to the highest transmission duty factor implemented for the device and supported by the defined 3GPP LTE TDD configurations.

LTE TDD Bands support 3GPP TS 36.211 section 4.2 for Type 2 Frame Structure and Table 4.2-2 for uplink-downlink configurations and Table 4.2-1 for Special subframe configurations.

Table 4.2-1: Configuration of special subframe (lengths of DwPTS/GP/UpPTS).

	Nori	mal cyclic prefix in	downlink	Exten	ded cyclic prefix	in downlink
Special	DwPTS	UpPTS		DwPTS	Up	PTS
subframe configuration		Normal cyclic Extended cyclic prefix in uplink prefix in uplink			Normal cyclic prefix in uplink	Extended cyclic prefix in uplink
0	$6592 \cdot T_{\rm s}$			$7680 \cdot T_{\rm s}$		
1	$19760 \cdot T_{\rm s}$			$20480 \cdot T_{\rm s}$	$2192 \cdot T_{\rm s}$	$2560 \cdot T_{\rm s}$
2	$21952 \cdot T_{\rm s}$	$2192 \cdot T_{\rm s}$	$2560 \cdot T_{\rm s}$	$23040 \cdot T_{\rm s}$	2192·1 _s	2300·1 _s
3	$24144 \cdot T_{\rm s}$			$25600 \cdot T_{\rm s}$		
4	$26336 \cdot T_{\rm s}$			$7680 \cdot T_{\rm s}$		
5	$6592 \cdot T_{\rm s}$			$20480 \cdot T_{\rm s}$	$4384 \cdot T_{\rm s}$	$5120 \cdot T_{\rm s}$
6	$19760 \cdot T_{\rm s}$			$23040 \cdot T_{\rm s}$	4364·1 _s	3120·1 _s
7	$21952 \cdot T_{\rm s}$	$4384 \cdot T_{\rm s}$	$5120 \cdot T_{\rm s}$	$12800 \cdot T_{\rm s}$		
8	$24144 \cdot T_{\rm s}$			-	-	-
9	$13168 \cdot T_{\rm s}$			-	-	-

Calculated Duty Cycle

oaloalatoa Baty	-,											
Liplink	Downlink-to-				Sub	frame	Num	nber				
Uplink- Downlink Configuration	Uplink Switch-point Periodicity	0	1	2	3	4	5	6	7	8	9	Calculated Duty Cycle (%)
0	5 ms	D	S	U	U	U	D	S	U	J	J	63.33
1	5 ms	D	S	U	U	D	D	S	U	U	D	43.33
2	5 ms	D	S	U	D	D	D	S	U	D	D	23.33
3	10 ms	D	S	U	U	U	D	D	D	D	D	31.67
4	10 ms	D	S	U	U	D	D	D	D	D	D	21.67
5	10 ms	D	S	U	D	D	D	D	D	D	D	11.67
6	5 ms	D	S	U	U	U	D	S	U	U	D	53.33

Calculated Duty Cycle = Extended cyclic prefix in uplink x (T_s) x # of S + # of U

Example for Calculated Duty Cycle for Uplink-Downlink Configuration 0: Calculated Duty Cycle = $5120 \times [1/(15000 \times 2048)] \times 2 + 6 \text{ ms} = 63.33\%$ where

 $T_s = 1/(15000 \times 2048)$ seconds

Note(s)

This device supports uplink-downlink configurations 0-6. The configuration with highest duty cycle was used for SAR Testing: **Uplink-Downlink Configuration 0** at **63.3% duty cycle** and **Special Subframe 7**.

6.5. **LTE Carrier Aggregation**

	CA						Bandwid	lth (MHz)					
Combination	CA configuration			PC	CC			SCC1					
Configuration		20	15	10	5	3	1.4	20	15	10	5	3	1.4
	7B		√								√		
				√				√					
	7C		√					√	√				
Intra-Band		√						√	√	V			
contiguous					√			√					
	41C			√				√					
	410		√					√	√				
		√						√	√	V	√		
Intra-Band non- contiguous	7A-7A	V	V	V	V			√	V	V	V		

Note(s): For supported channels, please refer to §6.3

7. RF Exposure Conditions (Test Configurations)

Refer to Appendix A for the specific details of the antenna-to-antenna and antenna-to-edge(s) distances.

Wireless	RF Exposure	DUT-to-User	Test	Antenna-to-	SAR	Note
technologies	Conditions	Separation	Position	edge/surface	Required	Note
			Left Touch	N/A	Yes	
	Head	0 mm	Left Tilt (15°)	N/A	Yes	
	Heau	O IIIIII	Right Touch	N/A	Yes	
			Right Tilt (15°)	N/A	Yes	
	Body	15 mm	Rear	N/A	Yes	
WWAN	Dody	13 111111	Front	N/A	Yes	
(Main Ant. 1 & 2)			Rear	< 25 mm	Yes	
			Front	< 25 mm	Yes	
	Hotspot	10 mm	Edge 1 (Top)	> 25 mm	No	1
	Ποισμοί	10 111111	Edge 2 (Right)	< 25 mm	Yes	
			Edge 3 (Bottom)	< 25 mm	Yes	
			Edge 4 (Left)	< 25 mm	Yes	

Notes

- 1. SAR is not required because the distance from the antenna to the edge is > 25 mm as per KDB 941225 D06 Hot Spot SAR.
- 2. For Phablet devices: when Hotspot Mode is not supported, Product Specific 10-g SAR is required for all surfaces and edges with an antenna located at ≤ 25 mm from that surface or edge in direct contact with a flat phantom, to address interactive hand use exposure conditions.
- 3. For Phablet devices: when hotspot mode applies, Product Specific 10-g SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg.
- 4. The WWAN Sub Antenna (AS-Div) does not support FCC bands.

8. Dielectric Property Measurements & System Check

8.1. Dielectric Property Measurements

The temperature of the tissue-equivalent medium used during measurement must also be within 18° C to 25° C and within $\pm 2^{\circ}$ C of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3-4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

Tissue dielectric parameters were measured at the low, middle and high frequency of each operating frequency range of the test device.

The dielectric constant (ϵ r) and conductivity (σ) of typical tissue-equivalent media recipes are expected to be within \pm 5% of the required target values; but for SAR measurement systems that have implemented the SAR error compensation algorithms documented in IEEE Std 1528-2013, to automatically compensate the measured SAR results for deviations between the measured and required tissue dielectric parameters, the tolerance for ϵ r and σ may be relaxed to \pm 10%. This is limited to frequencies \leq 3 GHz.

Tissue Dielectric Parameters

FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

Target Frequency (MHz)	Н	ead	Bod	ly
raiget Frequency (Miriz)	ε _r	σ (S/m)	ε_{r}	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5000	36.2	4.45	49.3	5.07
5100	36.1	4.55	49.1	5.18
5200	36.0	4.66	49.0	5.30
5300	35.9	4.76	48.9	5.42
5400	35.8	4.86	48.7	5.53
5500	35.6	4.96	48.6	5.65
5600	35.5	5.07	48.5	5.77
5700	35.4	5.17	48.3	5.88
5800	35.3	5.27	48.2	6.00

IEEE Std 1528-2013

Refer to Table 3 within the IEEE Std 1528-2013

Dielectric Property Measurements Results:

SAR		Band	Tissue	Frequency	Relati	ve Permittivi	ty (er)	С	onductivity (σ)
Lab	Date	(MHz)	Туре	(MHz)	Measured	Target	Delta (%)	Measured	Target	Delta (%)
				2600	39.43	39.01	1.07	1.92	1.96	-2.25
5	7/9/2018	2600	Head	2495	39.65	39.14	1.29	1.84	1.85	-0.74
				2690	39.31	38.90	1.06	1.98	2.06	-4.00
				2600	50.32	52.51	-4.17	2.16	2.16	-0.08
5	7/9/2018	2600	Body	2495	50.50	52.64	-4.07	2.06	2.01	2.07
				2690	50.15	52.40	-4.29	2.23	2.29	-2.59

8.2. System Check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are re-measured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

System Performance Check Measurement Conditions:

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm for SAR measurements ≤ 3 GHz and ≥ 10.0 cm for measurements > 3 GHz.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center
 marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the
 phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole
 center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole. For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube.
- Distance between probe sensors and phantom surface was set to 3 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was 100 mW.
- The results are normalized to 1 W input power.

System Check Results

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within 10% of the manufacturer calibrated dipole SAR target.

SAR	Date	Tissue	Dipole Type	Dipole	Measured Results for 1g SAR			Me	Measured Results for 10g SAR			Plot	
Lab	Date	Type	_Serial #	Cal. Due Data	Zoom Scan to 100 mW	Normalize to 1 W	Target (Ref. Value)	Delta ±10 %	Zoom Scan to 100 mW	Normalize to 1 W	Target (Ref. Value)	Delta ±10 %	No.
5	7/9/2018	Body	D2600V2 SN:1036	3/16/2019	5.560	55.60	56.13	-0.94	2.430	24.30	25.04	-2.96	
5	7/9/2018	Head	D2600V2 SN:1036	3/16/2019	5.570	55.70	54.54	2.13	2.500	25.00	24.56	1.79	1,2

9. Conducted Output Power Measurements

9.1. LTE

The following tests were conducted according to the test requirements outlined in section 6.2 of the 3GPP TS36.101 specification.

UE Power Class: 3 (23 +/- 2dBm). The allowed Maximum Power Reduction (MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1 of the 3GPP TS36.101.

Modulation	Cha	nnel bandw	idth / Tra	ansmission	bandwidth (N _{RB})	MPR (dB)
	1.4	3.0	5	10	15	20	
	MHz	MHz	MHz	MHz	MHz	MHz	
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1
16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1
16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2
64 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 2
64 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 3
256 QAM				≥ 1			≤ 5

The allowed A-MPR values specified below in Table 6.2.4.-1 of 3GPP TS36.101 are in addition to the allowed MPR requirements. All the measurements below were performed with A-MPR disabled, by using Network Signaling Value of "NS_01".

Table 6.2.4-1: Additional Maximum Power Reduction (A-MPR)

Network | Requirements | E-UTRA Band | Channel | Resources | A-MPR (dB) |

NS_01	Signalling value	(subclause)	E-UTRA Band	bandwidth (MHz)	Blocks (N _{RB})	A-MPR (dB)
NS_03	NS_01	6.6.2.1.1	Table 5.5-1	1.4, 3, 5, 10, 15, 20	Table 5.6-1	N/A
NS_03					>5	≤1
NS_03				5	>6	≤ 1
NS_04	NS 03	6.6.2.2.1		10	>6	≤1
NS_04 6.6.2.2.2 6.6.3.3.19 41 5.10, 15.20 Table 6.2.4.4, Table 0.2.4-4a NS_05 6.6.3.3.19 1 10,15.20 Table 6.2.4-18 (NOTE1) 15.20 Table 6.2.4-18 (NOTE1) 15.20 Table 6.2.4-18 (NOTE2) 15.20 Table 6.2.4-18 (NOTE3) 10.15 3.44 \$3 \$3 \$3 \$3 \$3 \$3 \$3	_		35, 36, 66, 70	15	>8	
NS_04					>10	
NS_05	NS_04		41			
NS 06			1		(NOTE1)	
NS 06	NS_05	6.6.3.3.1		15, 20	Table 6.2.4	-18 (NOTE2)
NS 06	_		RE (NOTE 2)	10,15,20	≥ 50	≤ 1 (NOTE 1)
NS_07			05 (NOTE 3)	15,20		
NS_0P 6.6.3.3.2 13	NS 06	6.6.2.2.3	12, 13, 14, 17			
NS_08		6.6.2.2.3				
NS_09 6.6.3.3.4 21 10, 15 > 40 ≤ 1 NS_10 20 15, 20 Table 6.2.4.3 NS_11 6.6.3.3.13 23 1.4.3.5, 10, 15, 20 Table 6.2.4.5 NS_12 6.6.3.3.5 26 1.4.3.5, 10, 15 Table 6.2.4.6 NS_13 6.6.3.3.6 26 5 Table 6.2.4.7 NS_14 6.6.3.3.7 26 10, 15 Table 6.2.4.8 NS_15 6.6.3.3.8 26 14.3.5, 10, 15 Table 6.2.4.9 NS_16 6.6.3.3.9 27 3, 5, 10 Table 6.2.4-11, Table 6.2.4-12, Table 6.2.4-13 NS_18 6.6.3.3.11 28 5, 10 Table 6.2.4-13, Table 6.2.4-12, Table 6.2.4-14, Table 6.2.4-12, Table 6.2.4-14, Table 6.2.4-12, Table 6.2.4-14, Table 6.2.4-12, Table 6.2.4-14, Table 6.2.4-12, Table 6.2.	NS 08		19	10. 15	> 44	≤3
NS_09	_					
NS 10	NS_09	6.6.3.3.4	21	10, 15		
NS_11	NS 10		20	15.20		
NS_11		88221				
NS 12 0.6.3.3.6 26 5 Table 6.2.4-7	NS_11		23	15, 20	Table	6.2.4-5
NS 14				15		
NS_15	NS 13	6.6.3.3.6	26	5	Table	6.2.4-7
NS_16	NS 14	6.6.3.3.7	26	10, 15	Table	6.2.4-8
NS_10	NS_15	6.6.3.3.8	26		Table	8.2.4-10
NS_18	NS_16	6.6.3.3.9	27			
NS_18	NS_17	6.6.3.3.10	28	5, 10	Table 5.6-1	N/A
NS_19	NS_18	6.6.3.3.11	28			
NS_20	NS 10	883312	44			
NS_20 6.6.2.2.1 (6.6.3.3.14) 23 5, 10, 15, 20 Table 6.2.4-15 NS_21 6.6.2.2.1 (6.6.3.3.15) 30 5, 10 Table 6.2.4-16 NS_22 6.6.3.3.15 42, 43 5, 10, 15, 20 Table 6.2.4-17 NS_23 6.6.3.3.17 42, 43 5, 10, 15, 20 Table 6.2.4-17 NS_24 6.6.3.3.21 65 (NOTE 4) 5, 10, 15, 20 Table 6.2.4-19 NS_25 6.6.3.3.21 65 (NOTE 4) 5, 10, 15, 20 Table 6.2.4-20 NS_26 6.6.3.3.22 68 10, 15 Table 6.2.4-21 NS_27 6.6.2.2.5 48 5, 10, 15, 20 Table 6.2.4-22 NS_28 6.2.2.4 46 (NOTE 5) 20 Table 6.2.4-23 NS_29 6.2.2.4 46 (NOTE 5) 20 Table 6.2.4-24 0.6.3.3.25 46 (NOTE 5) 20 Table 6.2.4-25 NS_30 6.2.2.A 46 (NOTE 5) 20 Table 6.2.4-26 NS_31 6.2.2.A 46 (NOTE 5) 20 Table 6.2.4-26 NS_32 - - </td <td>145_16</td> <td></td> <td></td> <td>10, 13, 20</td> <td>Table</td> <td>0.2.4-14</td>	145_16			10, 13, 20	Table	0.2.4-14
NS_21	NS_20	6.6.2.2.1	23	5, 10, 15, 20	Table	8.2.4-15
NS 22	NS_21	6.6.2.2.1	30	5, 10	Table	8.2.4-16
NS 23	NS 22		42 43	5 10 15 20	Table	8 2 4-17
NS 24 6.6.3.3.20 65 (NOTE 4) 5. 10. 15. 20 Table 6.2.4-19 NS 25 6.6.3.3.21 65 (NOTE 4) 5. 10. 15. 20 Table 6.2.4-20 NS 26 6.6.3.3.22 68 10. 15 Table 6.2.4-21 NS_27 6.6.3.3.23 48 5. 10. 15. 20 Table 6.2.4-22 NS_28 6.2.2A, 6.3.3.24 46 (NOTE 5) 20 Table 6.2.4-23 NS_29 6.2.2A, 6.2.3.1a, 6.6.3.3.25 46 (NOTE 5) 20 Table 6.2.4-24 NS_30 6.2.2A, 6.6.3.3.26 46 (NOTE 5) 20 Table 6.2.4-25 NS_31 6.2.2A, 6.6.3.3.27 46 (NOTE 5) 20 Table 6.2.4-26 NS_31 6.2.2A, 6.6.3.3.27 46 (NOTE 5) 20 Table 6.2.4-26 NS_32 1 Applicable when the lower edge of the assigned E-UTRA UL channel bandwidth frequency is larger than or equal to the upper edge of PHS band (1915.7 MHz) + 4 MHz						
NS 25						
NS_26	NS 25					
NS_27 6.6.2.2.5, 6.6.3.2.3 48 5, 10, 15, 20 Table 6.2.4-22 NS_28 6.2.2A, 6.6.3.3.24 46 (NOTE 5) 20 Table 6.2.4-23 NS_29 6.2.2A, 6.6.2.3.1a, 6.6.3.3.25 46 (NOTE 5) 20 Table 6.2.4-24 NS_30 6.2.2A, 6.6.3.3.26 46 (NOTE 5) 20 Table 6.2.4-25 NS_31 6.2.2A, 6.6.3.3.27 46 (NOTE 5) 20 Table 6.2.4-26 NS_32 NOTE 1: Applicable when the lower edge of the assigned E-UTRA UL channel bandwidth frequency is larger than or equal to the upper edge of PHS band (1915.7 MHz) + 4 MHz + 4 M						
NS_27 6.6.3.3.23 48 5, 10, 15, 20 Table 6.2.4-22 NS_28 6.2.2A, 6.6.3.3.24 46 (NOTE 5) 20 Table 6.2.4-23 NS_29 6.2.2.1a, 46 (NOTE 5) 20 Table 6.2.4-24 0.6.3.3.25 46 (NOTE 5) 20 Table 6.2.4-24 0.6.3.3.26 46 (NOTE 5) 20 Table 6.2.4-25 NS_30 6.2.2A, 6.6.3.3.26 46 (NOTE 5) 20 Table 6.2.4-26 NS_31 6.2.2A, 46 (NOTE 5) 20 Table 6.2.4-26 NS_32						
NS_28 6.6.3.3.24 46 (NOTE 5) 20 Table 6.2.4-23 (NS_29 6.2.2A, NS_29 6.6.2.3.1a, 6.6.3.3.25 (NS_30 6.2.2A, 6.6.3.3.26 46 (NOTE 5) 20 Table 6.2.4-24 (NS_31 6.2.2A, 6.6.3.3.27 46 (NOTE 5) 20 Table 6.2.4-25 (NS_31 6.2.2A, 6.6.3.3.27 46 (NOTE 5) 20 Table 6.2.4-26 (NS_32 7) (NS_32	NS_27	6.6.3.3.23	48	5, 10, 15, 20	Table	8.2.4-22
NS_29	NS_28	6.6.3.3.24	46 (NOTE 5)	20	Table	8.2.4-23
NS_30 6.6.3.3.26 46 (NOTE 5) 20 Table 6.2.4-26 NS_31 6.2.2A, 6.6.3.3.27 46 (NOTE 5) 20 Table 6.2.4-26 NS_32 NOTE 1: Applicable when the lower edge of the assigned E-UTRA UL channel bandwidth frequency is larger than or equal to the upper edge of PHS band (1915.7 MHz) + 4 MHz +	NS_29	6.6.2.3.1a, 6.6.3.3.25	46 (NOTE 5)	20	Table	8.2.4-24
NS_31 6.6.3.3.27 46 (NOTE 5) 2U Table 6.2.4-26 NS 32	NS_30		46 (NOTE 5)	20	Table	8.2.4-25
NOTE 1: Applicable when the lower edge of the assigned E-UTRA UL channel bandwidth frequency is larger than or equal to the upper edge of PHS band (1915.7 MHz) + 4 MHz +	NS_31		46 (NOTE 5)	20	Table	6.2.4-26
NOTE 1: Applicable when the lower edge of the assigned E-UTRA UL channel bandwidth frequency is larger than or equal to the upper edge of PHS band (1915.7 MHz) + 4 MHz +	NC 22					
	NOTE 1: A	equency is larger th	nan or equal to the up	pper edge of PH	IS band (1915.7	MHz) + 4 MHz +

LTE Band 7 Measured Results

DVA		PD.	DD.		Maximum Ave	erage Power (dB	lm)	
BW (MHz)	Mode	RB Allocation	RB offset	20850	21100	21350	MPR	Tune-up
` ′				2510 MHz	2535 MHz	2560 MHz	WII IX	Limit
		1	0	20.03	20.34	20.33	0	20.5
		1	49	20.14	20.29	20.15	0	20.5
		1	99	20.08	20.21	20.04	0	20.5
	QPSK	50	0	20.18	20.42	20.27	0	20.5
		50	24	20.23	20.39	20.25	0	20.5
		50	50	20.15	20.30	20.16	0	20.5
		100	0	20.20	20.37	20.21	0	20.5
		1	0	19.93	20.35	20.35	0	20.5
		1	49	20.05	20.26	20.18	0	20.5
20 MHz	16QAM	50	99	19.99 19.72	20.24	20.17 19.87	0	20.5
ZU IVITIZ	IOQAW	50	24	19.72	20.03	19.86	0	20.5
		50	50	19.79	19.95	19.76	0	20.5
		100	0	19.79	19.95	19.85	0	20.5
		1	0	19.81	20.50	19.87	0	20.5
		1	49	19.92	20.50	20.07	0	20.5
		1	99	19.86	20.41	19.99	0	20.5
	64QAM	50	0	19.80	20.04	19.98	0	20.5
		50	24	19.85	20.04	19.93	0	20.5
		50	50	19.78	19.97	19.86	0	20.5
		100	0	19.83	19.94	19.87	0	20.5
			,	15155		erage Power (dB		
BW	Mode	RB	RB	20825	21100	21375		Tune-up
(MHz)		Allocation	offset	2507.5 MHz	2535 MHz	2562.5 MHz	MPR	Limit
		1	0	20.19	20.17	20.25	0	20.5
		1	37	20.29	20.15	20.14	0	20.5
		1	74	20.29	20.04	20.04	0	20.5
	QPSK	36	0	20.32	20.26	20.21	0	20.5
		36	20	20.38	20.21	20.18	0	20.5
		36	39	20.33	20.15	20.11	0	20.5
		75	0	20.34	20.23	20.15	0	20.5
		1	0	20.18	19.65	20.15	0	20.5
		1	37	20.09	19.60	20.06	0	20.5
	16QAM	1	74	20.09	19.58	19.98	0	20.5
15 MHz		36	0	19.87	19.85	19.87	0	20.5
		36	20	19.94	19.80	19.80	0	20.5
		36	39	19.85	19.73	19.75	0	20.5
		75	0	19.94	19.77	19.77	0	20.5
		1	0	19.91	20.08	20.40	0	20.5
		1	37	19.93	20.06	20.25	0	20.5
		1	74	19.95	19.98	20.18	0	20.5
	64QAM	36	0	20.00	19.92	19.81	0	20.5
		36	20	20.07	19.86	19.79	0	20.5
		36	39	20.01	19.81	19.74	0	20.5
		75	0	20.00	19.84	19.79	0	20.5
BW		RB	RB			erage Power (dB	lm)	
(MHz)	Mode	Allocation	offset	20800	21100	21400	MPR	Tune-up
				2505 MHz	2535 MHz	2565 MHz		Limit
		1	0	20.07	20.12	20.22	0	20.5
		1	25	20.10	20.16	20.14	0	20.5
	OPCI	1 25	49	20.26	20.15	20.09	0	20.5
	QPSK	25	0	20.19	20.26	20.20	0	20.5
		25	12	20.28	20.24	20.15	0	20.5
		25	25	20.35	20.19	20.11	0	20.5
		50	0	20.28	20.24	20.18	0	20.5
		1	0	19.73	19.62	20.13	0	20.5
		1	25	19.70	19.64	20.05	0	20.5
	•	25	49	19.79	19.58	19.99	0	20.5
10 MU~	160 4 14		0	19.85 19.98	19.84 19.82	19.79 19.78	_	20.5
10 MHz	16QAM		10		19.82		0	20.5
10 MHz	16QAM	25	12		10.70	10.70	Δ.	
10 MHz	16QAM	25 25	25	20.01	19.79	19.72	0	20.5
10 MHz	16QAM	25 25 50	25 0	20.01 19.89	19.79	19.75	0	20.5
10 MHz	16QAM	25 25 50 1	25 0 0	20.01 19.89 19.91	19.79 19.82	19.75 20.00	0	20.5 20.5
10 MHz	16QAM	25 25 50 1	25 0 0 25	20.01 19.89 19.91 19.90	19.79 19.82 19.89	19.75 20.00 19.95	0 0 0	20.5 20.5 20.5
10 MHz		25 25 50 1 1	25 0 0 25 49	20.01 19.89 19.91 19.90 20.02	19.79 19.82 19.89 19.84	19.75 20.00 19.95 19.90	0 0 0	20.5 20.5 20.5 20.5
10 MHz	16QAM	25 25 50 1 1 1 25	25 0 0 25 49	20.01 19.89 19.91 19.90 20.02 19.87	19.79 19.82 19.89 19.84 19.92	19.75 20.00 19.95 19.90 19.80	0 0 0 0	20.5 20.5 20.5 20.5 20.5 20.5
10 MHz		25 25 50 1 1	25 0 0 25 49	20.01 19.89 19.91 19.90 20.02	19.79 19.82 19.89 19.84	19.75 20.00 19.95 19.90	0 0 0	20.5 20.5 20.5 20.5

LTE Band 7 Measured Results (continued)

5111		20	20		Maximum Ave	erage Power (dBi	n)			
BW (MHz)	Mode	RB Allocation	RB offset	20775	21100	21425	MPR	Tune-up		
(**** 12)		711100011011	Olloot	2502.5 MHz	2535 MHz	2567.5 MHz	IVIFIC	Limit		
		1	0	20.14	20.07	20.14	0	20.5		
		1	12	20.21	20.15	20.14	0	20.5		
		1	24	20.18	20.12	20.13	0	20.5		
	QPSK	12	0	20.13	20.21	20.12	0	20.5		
		12	7	20.15	20.20	20.15	0	20.5		
		12	13	20.13	20.17	20.13	0	20.5		
		25	0	20.15	20.18	20.14	0	20.5		
		1	0	19.83	20.16	19.83	0	20.5		
		1	12	19.85	20.22	19.78	0	20.5		
		1	24	19.81	20.16	19.73	0	20.5		
5 MHz	16QAM	12	0	19.80	19.87	19.79	0	20.5		
		12	7	19.81	19.91	19.75	0	20.5		
				12	13	19.79	19.86	19.77	0	20.5
		25	0	19.76	19.81	19.68	0	20.5		
		1	0	19.58	19.92	19.93	0	20.5		
		1	12	19.65	19.97	19.94	0	20.5		
		1	24	19.63	19.94	19.88	0	20.5		
	64QAM	12	0	19.80	19.84	19.68	0	20.5		
		12	7	19.79	19.86	19.68	0	20.5		
		12	13	19.76	19.80	19.63	0	20.5		
		25	0	19.71	19.75	19.69	0	20.5		

LTE Band 41 Measured Results

LIED	anu 4	ivieas	<u>urea</u>	<u>Results</u>						
						Maximum Ave	rage Power (dB	m)		
BW	Mode	RB	RB	39750	40185	40620	41055	41490		Tune-up
(MHz)		Allocation	offset	2506 MHz	2549.5 MHz	2593 MHz	2636.5 MHz	2680 MHz	MPR	Limit
		1	0	24.42	24.41	24.50	24.50	24.50	0	24.5
		1	49	24.32	24.34	24.50	24.46	24.35	0	24.5
		1	99	24.38	24.35	24.46	24.48	24.22	0	24.5
	ODCK			23.94						
	QPSK	50	0		23.96	24.00	23.98	23.95	0.5	24
		50	24	23.98	23.94	24.00	24.00	23.88	0.5	24
		50	50	23.89	23.95	24.00	23.94	23.81	0.5	24
		100	0	23.96	23.99	24.00	24.00	23.89	0.5	24
		1	0	23.59	23.44	23.52	23.72	23.58	0.5	24
		1	49	23.47	23.37	23.46	23.63	23.37	0.5	24
		1	99	23.53	23.40	23.39	23.63	23.26	0.5	24
20 MHz	16QAM	50	0	22.57	22.52	22.69	22.59	22.49	1.5	23
-		50	24	22.62	22.50	22.64	22.64	22.42	1.5	23
		50	50	22.54	22.47	22.59	22.56	22.33	1.5	23
									_	
		100	0	22.56	22.56	22.63	22.55	22.44	1.5	23
		1	0	22.55	22.38	23.00	22.63	22.47	1.5	23
		1	49	22.46	22.31	22.94	22.55	22.28	1.5	23
		1	99	22.49	22.37	22.87	22.55	22.16	1.5	23
	64QAM	50	0	21.60	21.55	21.70	21.55	21.46	2.5	22
1	1	50	24	21.65	21.55	21.63	21.59	21.44	2.5	22
		50	50	21.60	21.54	21.60	21.55	21.34	2.5	22
		100	0	21.64	21.57	21.63	21.62	21.41	2.5	22
		100	-	21.04	21.07				2.0	
BW	Mode	RB	RB	39750	40185	40620	rage Power (dB 41055	41490		T
(MHz)	Mode	Allocation	offset						MPR	Tune-up
				2506 MHz	2549.5 MHz	2593 MHz	2636.5 MHz	2680 MHz		Limit
		1	0	24.41	24.47	24.49	24.49	24.48	0	24.5
		1	37	24.31	24.34	24.47	24.44	24.32	0	24.5
		1	74	24.37	24.37	24.41	24.46	24.24	0	24.5
	QPSK	36	0	23.91	23.90	24.00	23.91	23.89	0.5	24
		36	20	23.97	23.87	24.00	24.00	23.83	0.5	24
		36	39	23.86	23.92	23.97	23.91	23.79	0.5	24
		75	0	23.93	23.99	24.00	23.95	23.85	0.5	24
		1	0							24
			_	23.43	23.58	23.59	23.50	23.60	0.5	
		1	37	23.38	23.44	23.52	23.47	23.42	0.5	24
		1	74	23.43	23.50	23.47	23.53	23.35	0.5	24
15 MHz	16QAM	36	0	22.49	22.52	22.65	22.45	22.47	1.5	23
		36	20	22.56	22.49	22.61	22.57	22.44	1.5	23
		36	39	22.48	22.52	22.51	22.50	22.36	1.5	23
		75	0	22.54	22.56	22.60	22.57	22.42	1.5	23
		1	0	22.05	22.37	22.85	22.12	22.38	1.5	23
		1	37	22.00	22.24	22.80	22.08	22.22	1.5	23
		1	74	22.04	22.29	22.73	22.09	22.15	1.5	23
	64QAM	36	0	21.59	21.45	21.72	21.52	21.43	2.5	22
		36	20	21.64	21.42	21.69	21.62	21.39	2.5	22
		36	39	21.57	21.46	21.61	21.53	21.33	2.5	22
		75	0	21.56	21.57	21.61	21.52	21.42	2.5	22
						Maximum Ave	rage Power (dB	m)		
BW (MHz)	Mode	RB Allocation	RB	39750	40185	40620	41055	41490		Tune-up
(IVITIZ)		Allocation	offset	2506 MHz	2549.5 MHz	2593 MHz	2636.5 MHz	2680 MHz	MPR	Limit
		1	0	24.37	24.42	24.45	24.50	24.43	0	24.5
1	1	1	25	24.30	24.32	24.50	24.44	24.32	0	24.5
		1	49	24.37	24.26	24.43	24.42	24.29	0	24.5
1	OBSK									
	QPSK	25	0	23.89	23.89	24.00	24.00	23.92	0.5	24
		25	12	23.95	23.87	24.00	24.00	23.89	0.5	24
1	1	25	25	23.93	23.85	24.00	23.96	23.84	0.5	24
		50	0	23.95	23.86	24.00	23.96	23.84	0.5	24
		1	0	23.44	23.58	23.54	23.55	23.63	0.5	24
1		1	25	23.36	23.50	23.55	23.49	23.50	0.5	24
		1	49	23.42	23.48	23.54	23.43	23.50	0.5	24
10 MHz	16QAM	25	0	22.47	22.50	22.61	22.56	22.44	1.5	23
	,	25	12	22.56	22.50	22.61	22.56	22.45	1.5	23
		25	25		22.44				1.5	23
				22.50		22.55	22.53	22.36	_	
1		50	0	22.59	22.48	22.57	22.56	22.46	1.5	23
1	1	1	0	22.05	22.49	22.81	22.17	22.56	1.5	23
		1	25	22.00	22.45	22.83	22.08	22.43	1.5	23
1	1	1	49	22.07	22.43	22.78	22.05	22.40	1.5	23
1	64QAM	25	0	21.53	21.40	21.58	21.58	21.35	2.5	22
		25	12	21.63	21.40	21.56	21.57	21.31	2.5	22
1	1	25	25	21.57	21.38	21.55	21.55	21.29	2.5	22
1	1	50	0	21.61	21.45	21.56	21.56	21.38	2.5	22
		50	U	21.01	Z 1.40	21.00	21.00	21.30	2.0	

LTE Band 41 Measured Results (continued)

D.W.		20	22			Maximum Ave	rage Power (dB	m)		
BW (MHz)	Mode	RB Allocation	RB offset	39750	40185	40620	41055	41490	MPR	Tune-up
(WII 12)		raiocation	Oliset	2506 MHz	2549.5 MHz	2593 MHz	2636.5 MHz	2680 MHz	IVIPK	Limit
		1	0	24.30	24.28	24.50	24.46	24.26	0	24.5
		1	12	24.28	24.25	24.50	24.43	24.24	0	24.5
		1	24	24.37	24.22	24.50	24.43	24.21	0	24.5
	QPSK	12	0	23.85	23.83	24.00	23.96	23.87	0.5	24
		12	7	23.96	23.86	24.00	23.99	23.86	0.5	24
		12	13	23.94	23.83	24.00	23.96	23.85	0.5	24
		25	0	23.94	23.87	24.00	23.95	23.87	0.5	24
		1	0	23.48	23.31	23.56	23.62	23.32	0.5	24
		1	12	23.46	23.30	23.57	23.60	23.29	0.5	24
		1	24	23.57	23.29	23.54	23.57	23.26	0.5	24
5 MHz	16QAM	12	0	22.51	22.44	22.58	22.62	22.43	1.5	23
		12	7	22.60	22.47	22.61	22.62	22.40	1.5	23
		12	13	22.54	22.42	22.54	22.56	22.40	1.5	23
		25	0	22.54	22.45	22.63	22.55	22.37	1.5	23
		1	0	22.15	22.57	22.98	22.26	22.54	1.5	23
		1	12	22.12	22.54	22.96	22.24	22.51	1.5	23
		1	24	22.20	22.51	22.93	22.20	22.44	1.5	23
	64QAM	12	0	21.46	21.38	21.66	21.54	21.31	2.5	22
		12	7	21.57	21.41	21.69	21.55	21.30	2.5	22
		12	13	21.55	21.36	21.69	21.50	21.27	2.5	22
		25	0	21.58	21.36	21.56	21.55	21.25	2.5	22

9.2. LTE Carrier Aggregation

The following tests were conducted according to the test requirements outlined in section 6.2 of the 3GPP TS36.101 specification.

For inter-band carrier aggregation with uplink assigned to one E-UTRA band (Table 5.6A-1), the requirements in subclause 6.2.3 apply.

For inter-band carrier aggregation with one component carrier per operating band and the uplink active in two E-UTRA bands, the requirements in subclause 6.2.3 apply for each uplink component carrier.

For intra-band contiguous carrier aggregation the allowed Maximum Power Reduction (MPR) for the maximum output power applicable to the DUT in table below. In case the modulation format is different on different component carriers then the MPR is determined by the rules applied to higher order of those modulations.

Modulation	Com	dwidth Class ponent Carr Bandwidth C	ier Transmi configuration	ssion n	MPR (dB)
	25 RB	50 RB	75 RB	100 RB	
QPSK	> 8 and ≤	> 12 and	> 16 and	> 18 and	≤ 1
0.501/	25	≤ 50	≤ 75	≤ 100	
QPSK	> 25	> 50	> 75	> 100	≤ 2
16 QAM	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1
16 QAM	> 8 and ≤	> 12 and	> 16 and	> 18 and	≤ 2
	25	≤ 50	≤ 75	≤ 100	
16 QAM	> 25	> 50	> 75	> 100	≤ 3
64 QAM	≤ 8 and	≤ 12 and	≤ 16 and	≤ 18 and	≤ 2
	allocation	allocation	allocation	allocation	
	wholly	wholly	wholly	wholly	
	contained	contained	contained	contained	
	within a	within a	within a	within a	
	single CC	single CC	single CC	single CC	
64 QAM	> 8 or	> 12 or	> 16 or	> 18 or	≤ 3
	allocation	allocation	allocation	allocation	
	extends	extends	extends	extends	
	across	across	across	across	
	two CC's	two CC's	two CC's	two CC's	

For PUCCH and SRS transmissions, the allowed MPR is according to that specified for PUSCH WPDK modulation for the corresponding transmission bandwidth.

For intra-band contiguous carrier aggregation bandwidth class C with non-contiguous resource allocation, the allowed Maximum Power Reduction (MPR) for the maximum output power in Table 6.2.2A-1 is specified as follows

$$MPR = CEIL \{min(M_A, M_{IM5}), 0.5\}$$

Where MA is defined as follows

 $\begin{array}{lll} M_A = & 8.2 & ; 0 \leq A < 0.025 \\ 9.2 - 40A & ; 0.025 \leq A < 0.05 \\ 8 - 16A & ; 0.05 \leq A < 0.25 \\ 4.83 - 3.33A & ; 0.25 \leq A \leq 0.4 \\ 3.83 - 0.83A & ; 0.4 \leq A \leq 1 \end{array}$

and M_{IM5} is defined as follows

 $M_{\text{IM5}} = 4.5$; $\Delta_{\text{IM5}} < 1.5 * BW _{\text{Channel_CA}}$

6.0 ; 1.5 * BW Channel_CA $\leq \Delta_{IM5} < BW$ Channel_CA/2 + Δf_{ooB}

M_A ; $\Delta_{\text{IM5}} \ge BW _{\text{Channel_CA}}/2 + \Delta f_{\text{ooB}}$

Where

 $A = N_{RB_alloc} / N_{RB_agg}$

$$\Delta_{\text{IM5}} = \max(\left| F_{\text{C}_agg} - (3*F_{\text{agg}_alloc_low} - 2*F_{\text{agg}_alloc_high}) \right|, \left| F_{\text{C}_agg} - (3*F_{\text{agg}_alloc_high} - 2*F_{\text{agg}_alloc_low}) \right|)$$

CEIL{M_A, 0.5} means rounding upwards to closest 0.5dB, i.e. MPR \in [3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5]

For intra-band carrier aggregation, the MPR is evaluated per slot and given by the maximum value taken over the transmission(s) on all component carriers within the slot; the maximum MPR over the two slots is then applied for the entire subframe.

For intra-band non-contiguous carrier aggregation with one uplink carrier on the PCC, the requirements in the subclause 6.2.3 apply. For intra-band non-contiguous aggregation with two uplink carriers the MPR is defined tfor those E-UTRA bands where maximum possible $W_{GAP} \le 42.2$ MHz as follows

$$MPR = CEIL\{M_A, 0.5\}$$

Where M_N is defined as follows

 $M_N = -0.125N + 18.25$; $2 \le N \le 50$ -0.0333 N + 13.67 ; $50 < N \le 200$

Where $N = N_{RB}$ alloc is the number of allocated resource blocks.

For the UE maximum output power modified by MPR, the power limits specified in subclause 6.2.5A apply.

LTE Carrier Aggregation Measured Results

The following power measurements were performed with a single carrier uplink. CA is only supported in the downlinks. The DUT supports downlink CA combinations up to one (1) Uplink and four (4) Downlinks. Below are the measured results for the modified LTE bands.

_	LTE CA	LTE CA combinations			PCC (UL)					SCC (DL)		LTE Rel 8	LTE Rel 13	
Туре	PCC	+	scc	Mode	BW (MHz)	Channel	Freq. (MHz)	RB/Offset	BW (MHz)	Channel	Freq. (MHz)	Tx. Power [dBm]	Tx. Power [dBm]	Delta
		7B		QPSK	15	21076	2532.6	1,0	5	3169	2661.9	19.76	19.82	0.3%
Intra-Band Contiguous		7C		QPSK	20	21001	2525.1	1,0	20	3199	2664.9	19.88	19.92	0.2%
J. J.		41C		QPSK	20	39750	2506.0	1,0	20	39948	2525.8	24.33	24.34	0.0%
Intra-Band Non- Contiguous	7A	+	7A	QPSK	20	20850	2510.0	1,0	20	3350	2680.0	19.88	19.82	-0.3%

Note

Per KDB 941225 D05A LTE Rel. 10 KDB Inquiry Sheet: SAR is excluded for Carrier Aggregation when measured power does not exceed LTE Release 8 by more than a $^{1}/_{4}$ dBm

Page 25 of 30

10. Measured and Reported (Scaled) SAR Results

SAR Test Reduction criteria are as follows:

- Reported SAR(W/kg) for WWAN = Measured SAR *Tune-up Scaling Factor
- Reported SAR(W/kg) for Wi-Fi and Bluetooth = Measured SAR * Tune-up scaling factor * Duty Cycle scaling factor
- Duty Cycle scaling factor = 1 / Duty cycle (%)

KDB 447498 D01 General RF Exposure Guidance:

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

KDB 648474 D04 Handset SAR:

With headset attached, when the reported SAR for body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

KDB 648474 D04 Handset SAR (Phablet Only):

When hotspot mode does not apply, Product Specific 10-g SAR is required for all surfaces and edges with an antenna located at ≤ 25 mm from that surface or edge in direct contact with a flat phantom, to address interactive hand use exposure conditions. When hotspot mode applies, Product Specific 10-g SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg.

KDB 941225 D05 SAR for LTE Devices:

SAR test reduction is applied using the following criteria:

- Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB, and 50% RB allocation, using the RB offset
 and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle
 and lower edge of each required test channel.
- When the reported SAR is > 0.8 W/kg, testing for other Channels is performed at the highest output power level for 1RB, and 50% RB configuration for that channel.
- Testing for 100% RB configuration is performed at the highest output power level for 100% RB configuration across the Low,
 Mid and High Channel when the highest reported SAR for 1 RB and 50% RB are > 0.8 W/kg. Testing for the remaining required channels is not needed because the reported SAR for 100% RB Allocation < 1.45 W/kg.
- Testing for 16-QAM modulation is not required because the reported SAR for QPSK is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of QPSK.
- Testing for the other channel bandwidths is not required because the reported SAR for the highest channel bandwidth is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of the highest channel bandwidth.
- For LTE bands that do not support at least three non-overlapping channels in certain channel bandwidths, test the available
 non-overlapping channels instead. When a device supports overlapping channel assignment in a channel bandwidth
 configuration, the middle channel of the group of overlapping channels should be selected for testing; therefore, the
 requirement for H, M and L channels may not fully apply.

10.1. LTE Band 7 (20MHz Bandwidth)

RF Exposure		Dist.	Test		Freq.	RB	RB	Power	(dBm)	1-g SAF	R (W/kg)	Plot		
Conditions	Mode	(mm)	Position	Ch #.	(MHz)	Allocation	offset	Tune-up limit	Meas.	Meas.	Scaled	No.		
			Left Touch	21100	2535.0	1	0	20.5	20.3	0.027	0.028			
			Left Todell	21100	2000.0	50	0	20.5	20.4	0.027	0.028			
			Left Tilt	21100	2535.0	1	0	20.5	20.3	0.012	0.012			
Head	QPSK	0	LOIT THE	21100	2000.0	50	0	20.5	20.4	0.012	0.012			
rieau	QI OIX	o l	Right Touch	21100	2535.0	1	0	20.5	20.3	0.031	0.032	1		
			Right Touch	21100	2000.0	50	0	20.5	20.4	0.031	0.032			
			Right Tilt	21100	2535.0	1	0	20.5	20.3	0.005	0.005			
			Tagar Tar	21100	2333.0	50	0	20.5	20.4	0.004	0.004			
			Rear	21100	2535.0	1	0	20.5	20.3	0.100	0.104			
Body-worn	QPSK	PSK 15				50	0	20.5	20.4	0.113	0.115			
Body-Worn	QI OIX		Front	21100	2535.0	1	0	20.5	20.3	0.122	0.127	2		
			TTOIL	21100	2000.0	50	0	20.5	20.4	0.123	0.125			
			Rear	21100	2535.0	1	0	20.5	20.3	0.182	0.189			
			rtcai	21100	2000.0	50	0	20.5	20.4	0.181	0.184			
			Front	21100	2535.0	1	0	20.5	20.3	0.222	0.230			
			TIOIL	21100	2000.0	50	0	20.5	20.4	0.223	0.227			
Hotspot	QPSK	/ 10	K 10	(10	Edge 2	21100	2535.0	1	0	20.5	20.3	0.136	0.141	
Ποισμοί	QI OIL	10	Luge 2	21100	2000.0	50	0	20.5	20.4	0.134	0.136			
			Edge 3	21100	2535.0	1	0	20.5	20.3	0.579	0.601	3		
			Luge 5	21100	2000.0	50	0	20.5	20.4	0.569	0.580			
			Edge 4 2	21100	2535.0	1	0	20.5	20.3	0.028	0.029			
			Luge 4	21100	2000.0	50	0	20.5	20.4	0.028	0.029			

10.2. LTE Band 41 (20MHz Bandwidth)

RF Exposure		Dist.	Test		Freq.	RB	RB	Power	(dBm)	1-g SAF	R (W/kg)	Plot
Conditions	Mode	(mm)	Position	Ch #.	(MHz)	Allocation	offset	Tune-up limit	Meas.	Meas.	Scaled	No.
			Left Touch	40620	2593.0	1	0	24.5	24.5	0.050	0.050	
			Lent Todon	40020	2090.0	50	0	24.0	24.0	0.049	0.049	
			Left Tilt	40620	2593.0	1	0	24.5	24.5	0.028	0.028	
Head	QPSK	0	Len Till	40020	2090.0	50	0	24.0	24.0	0.022	0.022	
Tieau	QI OIX	0	Right Touch	40620	2593.0	1	0	24.5	24.5	0.054	0.054	4
			rtight rouch	40020	2090.0	50	0	24.0	24.0	0.045	0.045	
			Right Tilt	40620	2593.0	1	0	24.5	24.5	0.008	0.008	
			Night Tilt	40620	2030.0	50	0	24.0	24.0	0.011	0.011	
			Rear	40620	2593.0	1	0	24.5	24.5	0.165	0.165	
Body-worn	QPSK	15	rteal	40020	2090.0	50	0	24.0	24.0	0.131	0.131	
Body-Wolli		13	Front	40620	2593.0	1	0	24.5	24.5	0.211	0.211	5
			HOIR	40020	2393.0	50	0	24.0	24.0	0.169	0.169	
			Rear	40620	2593.0	1	0	24.5	24.5	0.308	0.308	
			iteai	40020	2090.0	50	0	24.0	24.0	0.262	0.262	
			Front	40620	2593.0	1	0	24.5	24.5	0.409	0.409	
			110111	40020	2393.0	50	0	24.0	24.0	0.332	0.332	
Hotspot	QPSK	10	Edge 2	40620	2593.0	1	0	24.5	24.5	0.282	0.282	
riotspot	QFSIN	10	Luge 2	40020	2393.0	50	0	24.0	24.0	0.232	0.232	
			Edge 3	40620	2593.0	1	0	24.5	24.5	0.791	0.791	6
			Euge 3	40020	2090.0	50	0	24.0	24.0	0.615	0.615	
			Edge 4 4	40620	0500.0	1	0	24.5	24.5	0.054	0.054	
			Luge 4	40020	2593.0	50	0	24.0	24.0	0.042	0.042	

11. SAR Measurement Variability

In accordance with published RF Exposure KDB 865664 D01 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- Repeated measurement is not required when the original highest measured SAR is <0.8 or 2 W/kg (1-g or 10-g respectively); steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.8 or 2 W/kg (1-g or 10-g respectively), repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 or 3.6 W/kg (~ 10% from the 1-g or 10-g respective SAR limit).
- 4) Perform a third repeated measurement only if the original, first, or second repeated measurement is ≥ 1.5 or 3.75 W/kg (1-g or 10-g respectively) and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Frequency Band (MHz)	Air Interface	RF Exposure Conditions	Test Position	Repeated SAR (Yes/No)	Highest Measured SAR (W/kg)
2500	LTE Band 7	Hotspot	Edge 3	No	0.579
2600	LTE Band 41	Hotspot	Edge 3	No	0.791

Note(s):

Repeated Measurement is not required since the Highest measured SAR is < 0.8 W/kg.

12. Simultaneous Transmission Conditions

Case	Cellular	WLAN Chain0 / BT	WLAN Chain1
1	GSM/GPRS/EDGE	BT/BLE	(None)
2	GSM/GPRS/EDGE	WLAN 2.4G	WLAN 2.4G
3	GSM/GPRS/EDGE	WLAN 5G	WLAN 5G
4	UMTS/HSPA	BT/BLE	(None)
5	UMTS/HSPA	WLAN 2.4G	WLAN 2.4G
6	UMTS/HSPA	WLAN 5G	WLAN 5G
7	LTE	BT/BLE	(None)
8	LTE	WLAN 2.4G	WLAN 2.4G
9	LTE	WLAN 5G	WLAN 5G
10	(Nana)	BT/BLE	
10	(None)	WLAN 5G	WLAN 5G
11	GSM/GPRS/EDGE	BT/BLE	
''	GSW/GPRS/EDGE	WLAN 5G	WLAN 5G
12	UMTS/HSPA	BT/BLE	
12	UMTS/HSFA	WLAN 5G	WLAN 5G
13	LTE	BT/BLE	
13	LIC	WLAN 5G	WLAN 5G
14	GSM/GPRS/EDGE	WLAN 2.4G	WLAN 5G
15	UMTS/HSPA	WLAN 2.4G	WLAN 5G
16	LTE	WLAN 2.4G	WLAN 5G

Note(s):

- 1. BT and WLAN 2.4G function can be used at the same time, but the antenna switch is shared for both RF paths.
- 2. Simultaneous cases other than Cases 1-16 (in above table) are not supported in this device.

12.1. Simultaneous transmission SAR test exclusion considerations

KDB 447498 D01 General RF Exposure Guidance provides two procedures for determining simultaneous transmission SAR test exclusion: Sum of SAR and SAR to Peak Location Ratio (SPLSR)

12.1.1. Sum of SAR

To qualify for simultaneous transmission SAR test exclusion based upon Sum of SAR the sum of the reported standalone SARs for all simultaneously transmitting antennas shall be below the applicable standalone SAR limit. If the sum of the SARs is above the applicable limit then simultaneous transmission SAR test exclusion may still apply if the requirements of the SAR to Peak Location Ratio (SPLSR) evaluation are met.

12.2. Sum of the SAR for WWAN & Wi-Fi & BT

			S	tandalone	SAR (W/kg	3)		∑1-g SAR (W/kg)							
RF Exposure	Test Position	WWAN	Dī	rs	U-	NII	BT	WWAN+BT	WWAN + DTS	WWAN+DTS	WWAN + DTS + U- NII	WWAN+ U-NII	WWAN+U-NII+BT	U-NII+BT	
conditions		1	Chain 0	Chain 1	Chain 0	Chain 1	Chain 0	1+6	1+2	1+2+3	1+2+5	1+4+5	1+4+5+6	4+5+6	
	Left Touch	0.050	0.301	0.046	0.415	0.065	0.055	0.105	0.351	0.397	0.416	0.530	0.585	0.535	
Head	Left Tilt	0.028	0.301	0.046	0.415	0.065	0.063	0.091	0.329	0.375	0.394	0.508	0.571	0.543	
riead	Right Touch	0.054	0.433	0.046	0.458	0.065	0.196	0.250	0.487	0.533	0.552	0.577	0.773	0.719	
	Right Tilt	0.011	0.325	0.046	0.244	0.065	0.166	0.177	0.336	0.382	0.401	0.320	0.486	0.475	
Body-worn	Rear	0.165	0.036	0.031	0.081	0.099	0.005	0.170	0.201	0.232	0.300	0.345	0.350	0.185	
Body-Wolli	Front	0.211	0.036	0.031	0.081	0.099	0.006	0.217	0.247	0.278	0.346	0.391	0.397	0.186	
	Rear	0.308	0.141	0.086			0.030	0.338	0.449	0.535					
	Front	0.409	0.141	0.086			0.019	0.428	0.550	0.636					
Hotspot	Edge 1		0.141				0.008			0.141					
Hotspot	Edge 2	0.282		0.086						0.368					
1	Edge 3	0.791													
	Edge 4	0.054	0.141				0.062	0.116	0.195						

Appendixes

Refer to separated files for the following appendixes.

12371499-S1V1 Appendix A: SAR Setup Photos

12371499-S1V1 Appendix B: SAR System Check Plots

12371499-S1V1 Appendix C: Highest SAR Test Plots

12371499-S1V1 Appendix D: SAR Liquid Tissue Ingredients

12371499-S1V1 Appendix E: SAR Probe Calibration Certificates

12371499-S1V1 Appendix F: SAR Dipole Calibration Certificates

END OF REPORT