

Prepared (also subject responsible if other)

LD/SEM/GUG/NM/H. Kami Shirazi

Approved

LD/SEM/GUG/NMC/Mats Hansson

Checked

SecurityClass
REPORT

No.

GUG/N03 :352

Date

Rev

031103

A

Reference

File

SAR Test Report: T106 (PY71022101)**Date of test:** January 15 to 22, 2003**Laboratory:** Electromagnetic Near Field and Radio Frequency
Dosimetry Lab Sony Ericsson Mobile Communications AB
Nya Vatentornet
SE-221 82 LUND, Sweden**Test Responsible:** H. Kami Shirazi
Type Approval Engineer
Kami.shirazi@sonyericsson.com + 46 46 23 26 44**Statement of Compliance**

Sony Ericsson Mobile Communications AB declares under its sole responsibility that the product

Sony Ericsson Type 1022101-BV (T106); FCC ID: PY71022101

to which this declaration relates, is in conformity with the appropriate RF exposure standards recommendations and guidelines. It also declares that the product was tested in accordance with the appropriate measurement standards, guidelines and recommended practices. Any deviations from these standards, guidelines and recommended practices are noted below:

(None)

© Sony Ericsson Mobile Communications AB, 2002

This test report shall not be reproduced except in full, without written approval of the laboratory.

The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report.

Sony Ericsson encourages all feedback, both positive and negative, on this report.

Prepared (also subject responsible if other)

LD/SEM/GUG/NM/H. Kami Shirazi

Approved

Checked

**SecurityClass
REPORT**

No.

GUG/NV 03:352

Date

Rev

Reference

LD/SEM/GUG/NMC/Mats Hansson

031103

A

File

1 Table of contents

1	TABLE OF CONTENTS	2
2	INTRODUCTION	3
3	DEVICE UNDER TEST	3
3.1	ANTENNA DESCRIPTION	3
3.2	DEVICE DESCRIPTION	3
4	TEST EQUIPMENT.....	4
4.1	DOSIMETRIC SYSTEM	4
4.2	ADDITIONAL EQUIPMENT	4
5	ELECTRICAL PARAMETERS ON THE TISSUE.....	4
	SIMULATING LIQUID	4
6	SYSTEM ACCURACY VERIFICATION	5
7	SAR MEASUREMENT UNCERTAINTY	6
8	TEST RESULTS	7
9	REFERENCES	8
10	APPENDIX	9
10.1	SAR DISTRIBUTION COMPARISON FOR SYSTEM ACCURACY VERIFICATION	9
10.2	SAR DISTRIBUTION PLOT	13
10.3	PHOTOGRAPHS OF THE DEVICE UNDER TEST.....	18
10.4	DEVICE POSITION ON SAM TWINS PHANTOM.....	21
10.5	PROBE CALIBRATION PARAMETERS.....	23
10.6	Reference SAR value for system validation using body material with No. EUS/CV/R-01:1118/REP	

Prepared (also subject responsible if other)

LD/SEM/GUG/NM/H. Kami Shirazi

Approved

Checked

**SecurityClass
REPORT**

No.

GUG/NV 03:352

Date

Rev

Reference

LD/SEM/GUG/NMC/Mats Hansson

031103

A

File

2 Introduction

In this test report, compliance of the Sony Ericsson T106 portable telephone with RF safety guidelines is demonstrated. The applicable RF safety guidelines and the SAR measurement specifications used for the test are described in the *SAR Measurement Specifications of Wireless Handsets* [1].

3 Device under Test

3.1 Antenna Description

Type	Internal antenna	
Location	Inside the back cover, near the top	
Dimensions	Max length	38mm
	Max width	14mm
Configuration	PIFA	

3.2 Device description

Device model	T106
Serial number	M12C27B13163
Mode	GSM 1900
Multiple Access Scheme	TDMA
Maximum Output Power Setting	29.5dBm
Factory Tolerance in Power Setting	± 0.5dB
Maximum Peak Output Power	30dBm
Crest Factor	8
Transmitting Frequency Range	(1850.2 – 1909.8) MHz
Prototype or Production Unit	Preproduction
Device Category	Portable
RF exposure environment	General population / uncontrolled

Prepared (also subject responsible if other)

LD/SEM/GUG/NM/H. Kami Shirazi

Approved

Checked

**SecurityClass
REPORT**

No.

GUG/NV 03:352

Date

Rev

Reference

LD/SEM/GUG/NMC/Mats Hansson

031103

A

File

4 Test equipment**4.1 Dosimetric system**

SAR measurements were made using the DASY3 professional system (software version 3.1c) with SAM twin phantom, manufactured by Schmid & Partner Engineering AG (SPEAG). The list of calibrated equipment is given below.

Description	Serial Number	Due Date
DASY3 DAE V1	428	4/2003
E-field probe ET3DV6	1584	12/2003
Dipole Validation Kit, D1900 V2	5d002	2/2004
Dipole Validation Kit, D835 V2	438	2/2004

4.2 Additional equipment

Description	Inventory Number	Due Date
Signal generator ESG-D4000A	INV 462935	9/2003
Directional coupler HP778D	INV 2903	1/2003
Power meter R&S NRV	INV 483920	1/2004
Power sensor R&S NRV-Z5	INV 2333	1/2004
Power sensor R&S NRV-Z5	INV 2334	1/2004
Termination 65N50-0-11	INV 2903	1/2003
Network analyzer HP8753C	INV421671	8/2003
S-parameter test set HP85047A	INV 421670	8/2003
Dielectric probe kit HP8507D	INV 20000053	2/2004
Wavetek STABILOK 4031D	INV 421578	7/2003

**5 Electrical parameters on the tissue
Simulating liquid**

Prior to conducting SAR measurements, the relative permittivity, ϵ_r , and the conductivity, σ , of the tissue simulating liquids were measured with the dielectric probe kit. These values are shown in the table below. The mass density, ρ , entered into the DASY3 software is also given. Recommended limits for permittivity ϵ_r , conductivity σ and mass density ρ are also shown.

Prepared (also subject responsible if other)

LD/SEM/GUG/NM/H. Kami Shirazi

Approved

Checked

SecurityClass
REPORT

No.

GUG/NV 03:352

Date

Rev

Reference

LD/SEM/GUG/NMC/Mats Hansson

031103

A

File

Application Note: The head and body tissue dielectric parameter recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table is prepared according to the following receipts. **For 1900MHz Head: Water 54.9%, Salt 0.18% and DGBE 44.92%, For 1900MHz Body: Water 56.1%, DGBE 33.4%, Salt 0.5%**

f (MHz)	Tissue type	Limits / Measured	Dielectric Parameters		
			ϵ_r	σ (S/m)	ρ (g/cm ³)
1900	Head	Measured January 20, 2003	38.1	1.44	1.0
		Recommended	40.0	1.40	1.0
	Muscle	Measured January 21, 2003	50.7	1.55	1.0
		Recommended	53.3	1.52	1.0

6 System accuracy verification

A system accuracy verification of the DASY3 was performed using the dipole validation kit listed in section 3.1. The system verification test was conducted on the same day as the measurement of the DUT. Measurement made in ambient temperature 23.2 °C and humidity 40.8%. The obtained results are displayed in the table below. RF noise had been measured in liquid when all RF equipment in lab was set off. Measured value was 0.001 mW/g in 1g mass.

f (MHz)	Tissue type	Measured / Reference	SAR (W/kg) 1g mass	Dielectric Parameters			t (°C)
				ϵ_r	σ (S/m)	ρ (g/cm ³)	
1900	Head	Measured, January 20, 2003	43.1	38.1	1.44	1.0	23.2
		Reference, February 20, 2002	45.2	39.1	1.47	1.0	-
	Muscle	Measured, January 21, 2003	44.9	50.7	1.55	1.0	23.1
		Reference, February 20, 2002	44.0	51.9	1.58	1.0	-

Prepared (also subject responsible if other)

LD/SEM/GUG/NM/H. Kami Shirazi

Approved

Checked

SecurityClass
REPORT

No.

GUG/NV 03:352

Date

Rev

Reference

LD/SEM/GUG/NMC/Mats Hansson

031103

A

File

7 SAR measurement uncertainty

SAR measurement uncertainty evaluation for Sony Ericsson T106 phone

Uncertainty Component	Tol. (\pm %)	Prob. Dist.	Div.	GSM 1900 Head	GSM 1900 Body					
Measurement System										
Probe Calibration	2.6	N	1	2.6	2.6					
Axial Isotropy	4.7	R	$\sqrt{3}$	1.9	1.9					
Hemispherical Isotropy	9.6	R	$\sqrt{3}$	3.9	3.9					
Boundary Effect	11.0	R	$\sqrt{3}$	6.4	6.4					
Linearity	4.7	R	$\sqrt{3}$	2.7	2.7					
System Detection Limits	1.0	R	$\sqrt{3}$	0.6	0.6					
Readout Electronics	1.0	N	1	1.0	1.0					
Response Time	0.8	R	$\sqrt{3}$	0.5	0.5					
Integration Time	1.8	R	$\sqrt{3}$	1.1	1.1					
RF Ambient Conditions	3.0	R	$\sqrt{3}$	1.7	1.7					
Probe Positioned Mechanical Tolerance	0.4	R	$\sqrt{3}$	0.2	0.2					
Probe Positioning respect to Phantom Shell	2.9	R	$\sqrt{3}$	1.7	1.7					
Extrapolation, Interpolation and Integration Algorithm for Max. SAR	3.9	R	$\sqrt{3}$	2.3	2.3					
Measurement System Uncertainty										
Test Sample Related										
Test Sample Positioning			R	$\sqrt{3}$	6.7					
Device Holder Uncertainty			R	$\sqrt{3}$	5.9					
Output Power Variation – Drift	GSM1900	0.2/0.4	R	$\sqrt{3}$	0.1					
Test Sample Related Uncertainty										
Phantom and Tissue Parameters										
Phantom Uncertainty (shape and thickness tolerances)	4.0	R	$\sqrt{3}$	2.3	2.3					
Liquid Conductivity (deviation from target value)	GSM1900	2.8/2.0	R	$\sqrt{3}$	1.6					
Liquid Conductivity – measurement uncertainty										
Liquid Permitivity (deviation from target value)	GSM1900	4.7/4.9	R	$\sqrt{3}$	2.7					
Liquid Permitivity – measurement uncertainty										
Phantom and Tissue Parameters Uncertainty										
Combined Standard Uncertainty										
Expanded Uncertainty (95% CONFIDENCE LEVEL)										
			RSS		14.1					
				28.2	28.2					

Prepared (also subject responsible if other)

LD/SEM/GUG/NM/H. Kami Shirazi

Approved

Checked

SecurityClass
REPORT

No.

GUG/NV 03:352

Date

Rev

Reference

LD/SEM/GUG/NMC/Mats Hansson

031103

A

File

8 Test results

The measured 1-gram averaged SAR values of the device against the head and the body are provided in Tables 1 and 2 respectively. The humidity and ambient temperature of test facility were 44.4% - 40.8% and 22.5 °C – 24.2 °C respectively. The depth of the head tissue simulating liquid was 15.1cm and of the muscle tissue simulating liquid was 15.5cm. A base station simulator was used to control the device during the SAR measurement. The phone was supplied with full-charged battery for each measurement.

For head measurement, the device was tested on the right-hand phantom (corresponding to the right side of the head) and the left-hand phantom in two phone position, cheek (touch) and tilt (cheek + 15deg). The device was tested at the lowest, middle and highest frequencies in the transmit band.

Mode	Channel	Peak Output Power(dBm)	Phone Position	Liquid temp(°C)	SAR (w/kg) in 1g/10g mass	
					Right-hand	Left-hand
					Measured	Measured
1900 GSM	512	30	Cheek	22.5/22.7	0.67/0,37	0.89/0,46
			Tilt	22.7/23.0	0.61/0,33	0.82/0,41
	661	29.9	Cheek	22.5/22.8	0.64/0,35	0.86/0,43
			Tilt	22.7/23.0	0.62/0,32	0.79/0,40
	810	29.9	Cheek	22.6/22.9	0.50/0,27	0.70/0,35
			Tilt	22.6/22.9	0.49/0,26	0.62/0,31

Table1: SAR measurement results for Sony Ericsson T106 telephone. Measured against the head.

For body-worn measurements, the device was tested against flat phantom representing the user body. Under measurement the phone was hold under the flat phantom and with 15mm distance, the measurement provides for both front and back part the phone to the phantom.

Mode	Channel	Peak Output Power(dBm)	Phone Position	Liquid temp(°C)	SAR(W/kg) in 1g/10g mass	
					Measured	
1900 GSM	512	30	Back	22.5	0.57/0,35	
			Front	22.7	0.20/0,12	
	661	29.9	Back	22.5	0.47/0,29	
			Front	22.7	0.21/0,12	
	810	29.9	Back	22.6	0.40/0,22	
			Front	22.6	0.17/0,10	

Table 2: SAR measurement results for Sony Ericsson T106 telephone. Measured against the body.

Prepared (also subject responsible if other)

LD/SEM/GUG/NM/H. Kami Shirazi

Approved

Checked

LD/SEM/GUG/NMC/Mats Hansson

**SecurityClass
REPORT**

No.

GUG/NV 03:352

Date

Rev

Reference

031103

A

File

9 References

[1] M.Douglas, "SAR Measurement Specification of Wireless Handsets", Sony Ericsson internal document EUS/CV/R-01:1061/REP

[2] FCC, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields: Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radio Frequency Emissions," Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97- 01).

[3] IEEE, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques," Std 1528-200x, Draft 6.5 – August 20, 2001.

Prepared (also subject responsible if other)

LD/SEM/GUG/NM/H. Kami Shirazi

Approved

Checked

**SecurityClass
REPORT**

No.

GUG/NV 03:352

Date

Rev

Reference

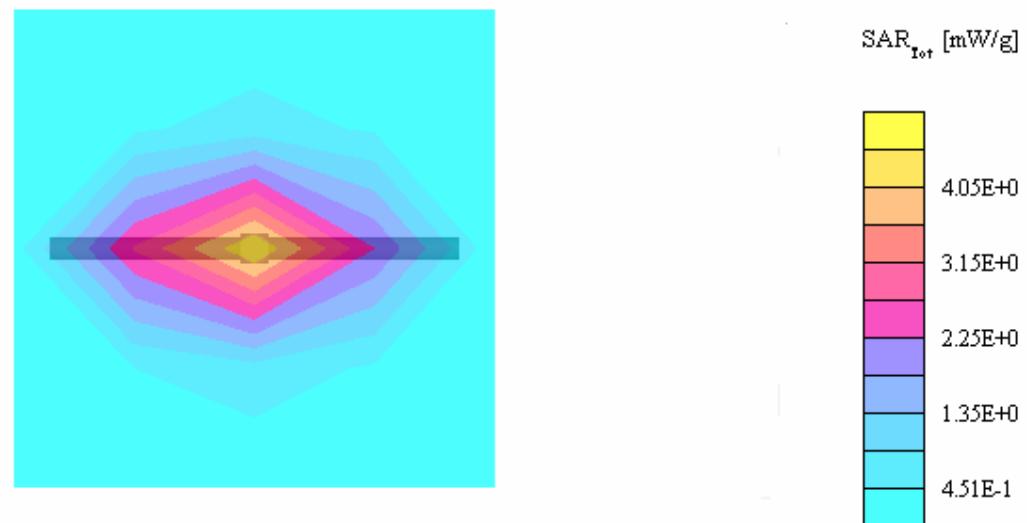
LD/SEM/GUG/NMC/Mats Hansson

031103

A

File

10 Appendix**10.1 SAR distribution comparison for system accuracy verification****Dipole 1900 MHz**


SAM 1800 and 1900 Phantom; Flat Section; Position: (90°,90°); Frequency: 1900 MHz

Probe: ET3DV6 - SN1584; ConvF(5.40,5.40,5.40); Crest factor: 1.0; Head 1900MHz: $\sigma = 1.44 \text{ mho/m}$ $\epsilon_r = 38.1$ $\rho = 1.00 \text{ g/cm}^3$

Cube 5x5x7: SAR (1g): 4.14 mW/g, SAR (10g): 2.12 mW/g, (Worst-case extrapolation)

Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0

Powerdrift: -0.01 dB

Validation Dipole, measured with head simulating tissue on January 20, 2003

Prepared (also subject responsible if other)

LD/SEM/GUG/NM/H. Kami Shirazi

Approved

LD/SEM/GUG/NMC/Mats Hansson

Checked

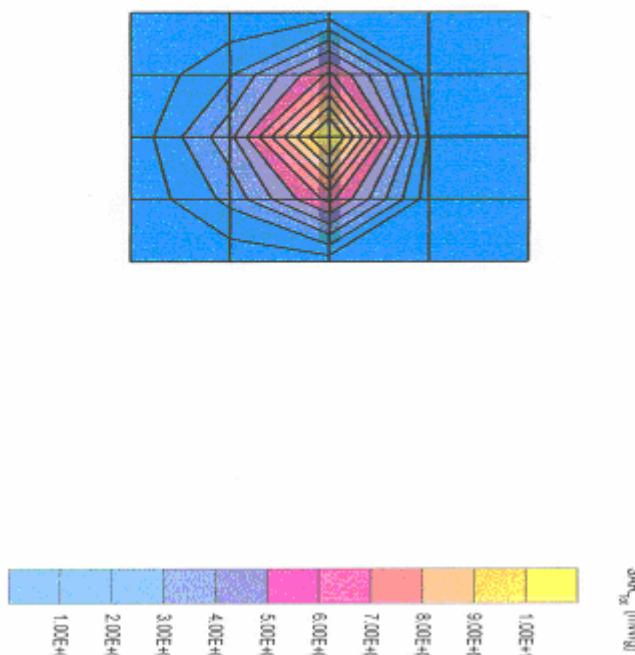
**SecurityClass
REPORT**

No.

GUG/NV 03:352

Date

Rev


Reference

031103

A

File

Validation Dipole D1900V2 SN:5d0002, d = 10 mm
Frequency: 1900 MHz, Antenna Input Power: 250 (mW)
SAU: Prism; Flat Sector; Grid Spacing: Dx = 20.0, Dy = 20.0, Dz = 10.0
Pulse: ET3D6; SN150; ConvF13; 30.5; 30.5; 30.5; IEEE528; 1900 MHz; IEEE528; 1900 MHz; $\sigma = 1.47$ mNm/m; $\epsilon_r = 39.1$; $\rho = 1.00$ g/cm 3
Cubes: 27; Peak: 21.7 mW/g \pm 0.02 dB; SAR (1g): 11.3 mW/g \pm 0.01 dB; SAR (10g): 5.76 mW/g \pm 0.03 dB; (Worst-case extrapolation)
Penetration depth: 7.9 [7.5, 8.8] [mm]
Power diff: -0.07 dB

SAR distribution plot for the 1900 MHz validation dipole antenna. The plot shows the reference data obtained from the DASY3 manufacturer and with brain simulating solution February 20, 2002

Prepared (also subject responsible if other)

LD/SEM/GUG/NM/H. Kami Shirazi

Approved

Checked

**SecurityClass
REPORT**

No.

GUG/NV 03:352

Date

Rev

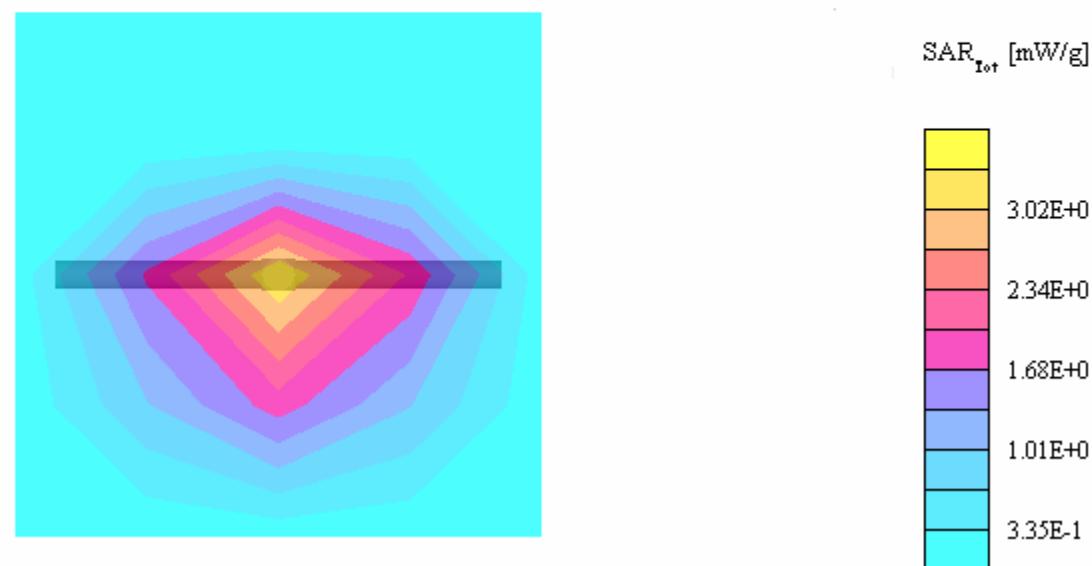
Reference

LD/SEM/GUG/NMC/Mats Hansson

031103

A

File


Dipole 1900 MHz

SAM 1800 and 1900 Phantom; Flat Section; Position: (90°,90°); Frequency: 1900 MHz

Probe: ET3DV6 - SN1584; ConvF(5.00,5.00,5.00); Crest factor: 1.0; Muscle1900 MHz: $\sigma = 1.55 \text{ mho/m}$ $\epsilon_r = 50.7$ $\rho = 1.00 \text{ g/cm}^3$ Cubes (2): SAR(1g): 4.18 mW/g ± 0.05 dB, SAR(10g): 2.19 mW/g ± 0.03 dB, (Worst-case extrapolation)

Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0

Powerdrift: -0.04 dB

Validation Dipole, measured with muscle simulating tissue on January 21, 2003

Prepared (also subject responsible if other)

LD/SEM/GUG/NM/H. Kami Shirazi

Approved

LD/SEM/GUG/NMC/Mats Hansson

Checked

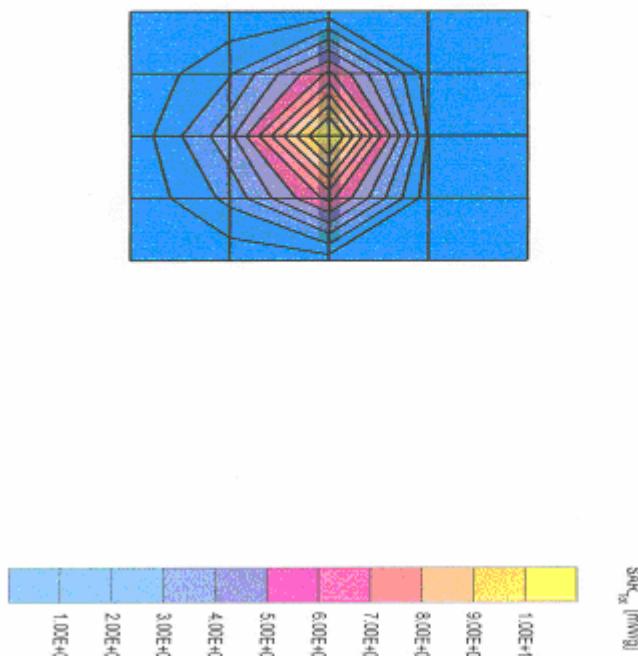
SecurityClass REPORT

No.

GUG/NV 03:352

Date

031103


Rev

A

Reference

File

Validation Dipole D1900V2 SN15d002, $d = 10$ mm
Frequency: 1900 MHz, Antenna Input Power: 250 mW
SAU Phantom, Flat Section, Grid Spacing: $D_x = 20.0$, $D_y = 20.0$, $D_z = 10.0$
Probe: ET304B-SN1507, ConnF1530.5/30.5/30 at 1800 MHz, IEEE1528:1990 MHz, $\sigma = 1.47$ ohm, $t_c = 39.1$ μ , $\rho = 1.00$ g/cm^3
Cubes (2): Peak: 21.7 mW/g ± 0.02 dB, SAR (1g): 11.3 mW/g ± 0.01 dB, SAR (10g): 5.76 mW/g ± 0.03 dB, (Worst-case extrapolation)
Repetition depth: 7.9 (7.5, 8.6) [mm]
Powerdiff: -0.07 dB

SAR distribution plot for the 1900 MHz validation dipole antenna. The plot shows the reference data obtained from the DASY3 manufacturer and with muscle simulating solution
February 20, 2002

Prepared (also subject responsible if other)

LD/SEM/GUG/NM/H. Kami Shirazi

Approved

LD/SEM/GUG/NMC/Mats Hansson

Checked

**SecurityClass
REPORT**

No.

GUG/NV 03:352

Date

031103

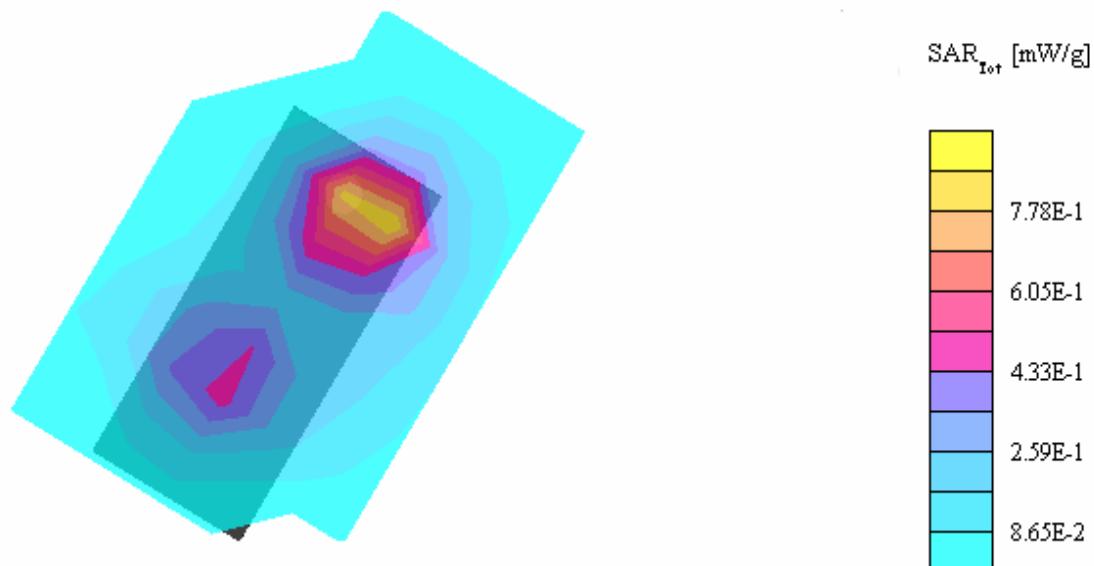
Rev

A

Reference

File

10.2 SAR distribution plot**T106**


SAM 1800 and 1900 Phantom; Left Hand Section; Position: (91°,59°); Frequency: 1850 MHz

Probe: ET3DW6 - SN1584; ConvF(5.40,5.40,5.40); Crest factor: 8.0; Head 1900MHz: $\sigma = 1.44 \text{ mho/m}$ $\epsilon_r = 38.1$ $\rho = 1.00 \text{ g/cm}^3$

Cube 5x5x7: SAR (1g): 0.891 mW/g, SAR (10g): 0.456 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0

Powerdrift: -0.01 dB

Distributions of max SAR in GSM1900 mode at 1850.2MHz. Measured against the head for cheek phone position January 20, 2003

Prepared (also subject responsible if other)

LD/SEM/GUG/NM/H. Kami Shirazi

Approved

Checked

**SecurityClass
REPORT**

No.

GUG/NV 03:352

Date

Rev

Reference

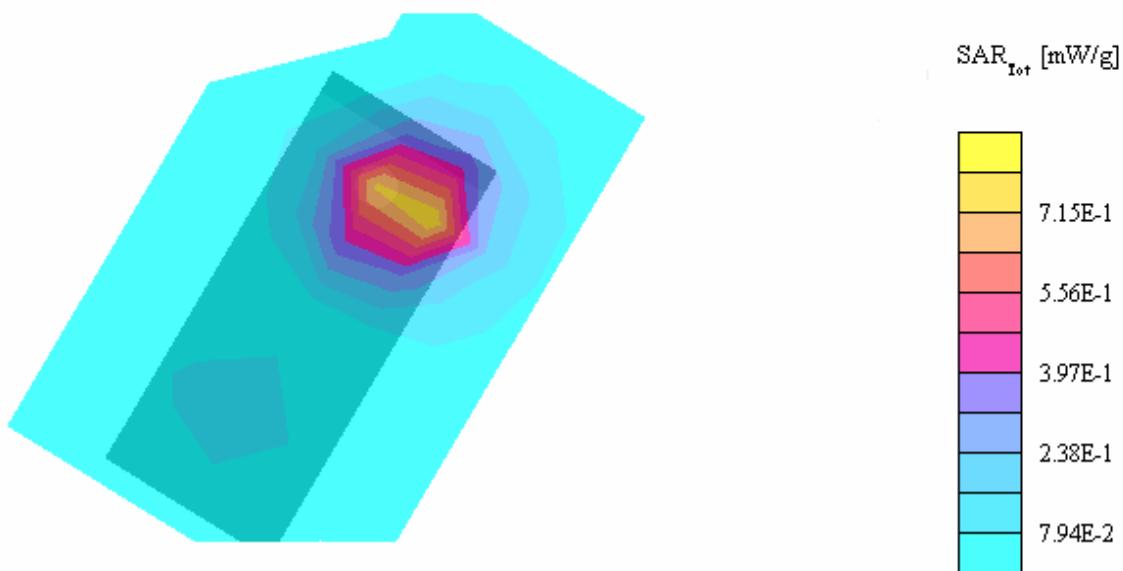
LD/SEM/GUG/NMC/Mats Hansson

031103

A

File

T106


SAM 1800 and 1900 Phantom; Left Hand Section; Position: (106°,59°); Frequency: 1850 MHz

Probe: ET3DV6 - SN1584; ConvF(5.40,5.40,5.40); Crest factor: 8.0; Head 1900MHz: $\sigma = 1.44 \text{ mho/m}$ $\epsilon_r = 38.1$ $\rho = 1.00 \text{ g/cm}^3$

Cube 5x5x7: SAR (1g): 0.821 mW/g, SAR (10g): 0.414 mW/g, (Worst-case extrapolation)

Coarse: Dx = 15.0, Dy = 15.0, Dz = 10.0

Powerdrift: -0.14 dB

Distributions of max SAR in GSM1900 mode at 1850.2MHz. Measured against the head for tilt phone position January 20, 2003

Prepared (also subject responsible if other)

LD/SEM/GUG/NM/H. Kami Shirazi

Approved

Checked

**SecurityClass
REPORT**

No.

GUG/NV 03:352

Date

Rev

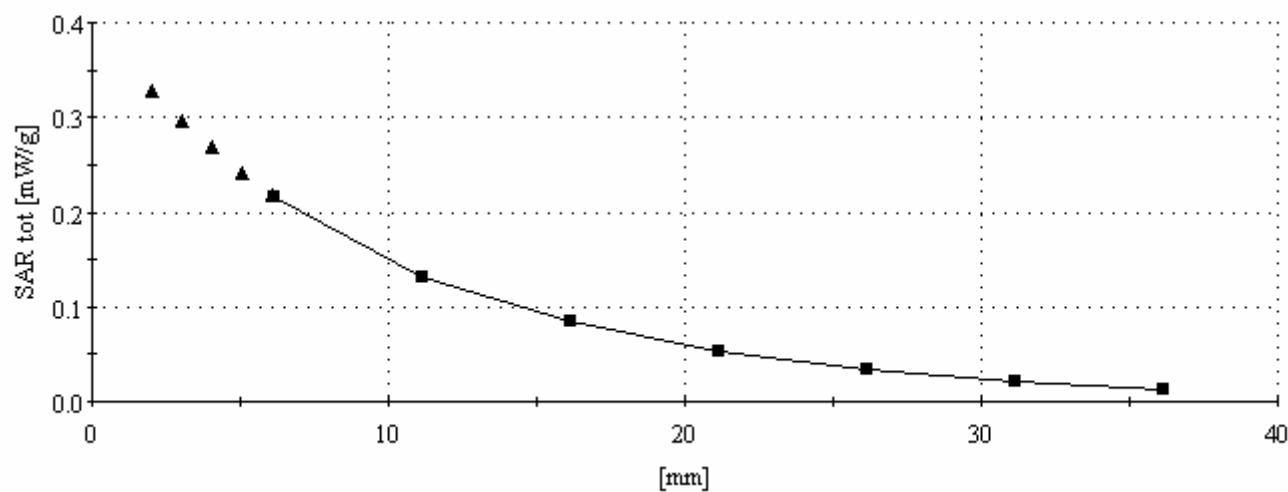
Reference

LD/SEM/GUG/NMC/Mats Hansson

031103

A

File


T106

SAM 1800 and 1900 Phantom; Left Hand Section; Position: (91°,59°); Frequency: 1850 MHz

Probe: ET3DV6 - SN1584; ConvF(5.40,5.40,5.40); Crest factor: 8.0; Head 1900MHz: $\sigma = 1.44 \text{ mho/m}$ $\epsilon_r = 38.1$ $\rho = 1.00 \text{ g/cm}^3$

Cube 5x5x7: SAR (1g): 0.891 mW/g, SAR (10g): 0.456 mW/g (Worst-case extrapolation)

Cube 5x5x7: Dx = 8.0, Dy = 8.0, Dz = 5.0

Z(x) distribution of max SAR in GSM1900 mode at 1850.2MHz. Measured against the head for cheek phone position January 20, 2003

Prepared (also subject responsible if other)

LD/SEM/GUG/NM/H. Kami Shirazi

Approved

LD/SEM/GUG/NMC/Mats Hansson

Checked

**SecurityClass
REPORT**

No.

GUG/NV 03:352

Date

031103

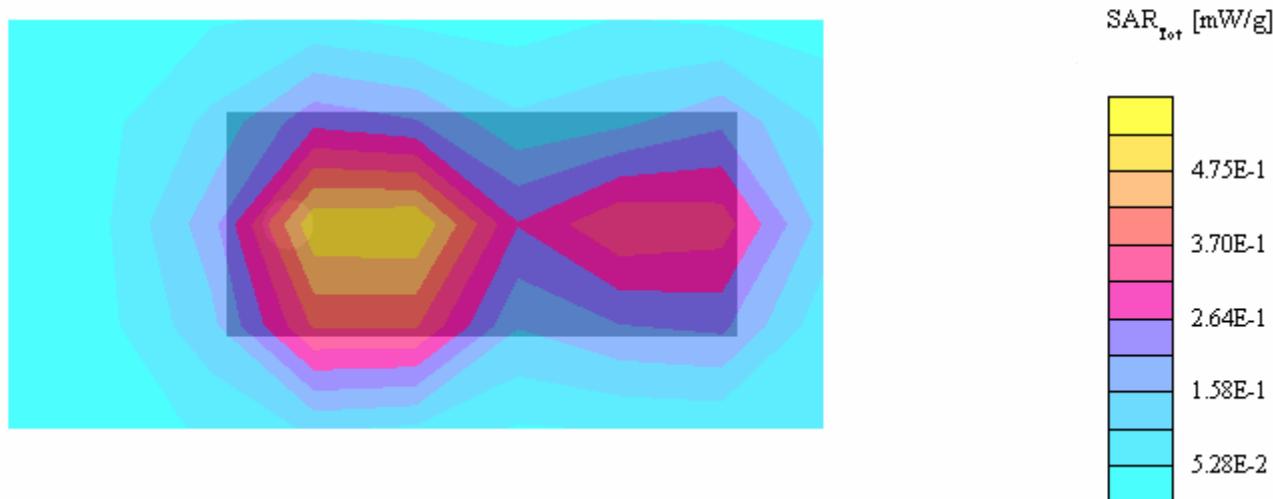
Rev

A

Reference

File

T106


SAM 1800 and 1900 Phantom; Flat Section; Position: (90°,270°); Frequency: 1910 MHz

Probe: ET3DV6 - SN1584; ConvF(5.00,5.00,5.00); Crest factor: 8.0; Muscle1900 MHz: $\sigma = 1.55 \text{ mho/m}$ $\epsilon_r = 50.7$ $\rho = 1.00 \text{ g/cm}^3$

Cube 5x5x7: SAR(1g): 0.569 mW/g, SAR(10g): 0.350 mW/g, (Worst-case extrapolation)

Coarse: Dx = 20.0, Dy = 20.0, Dz = 10.0

Powerdrift: -0.16 dB

Distributions of max SAR in GSM1900 mode at 1850.2 MHz. measured against the body for back phone+15mm distance from flat position of the phantom January 21, 2003

Prepared (also subject responsible if other)

LD/SEM/GUG/NM/H. Kami Shirazi

Approved

Checked

**SecurityClass
REPORT**

No.

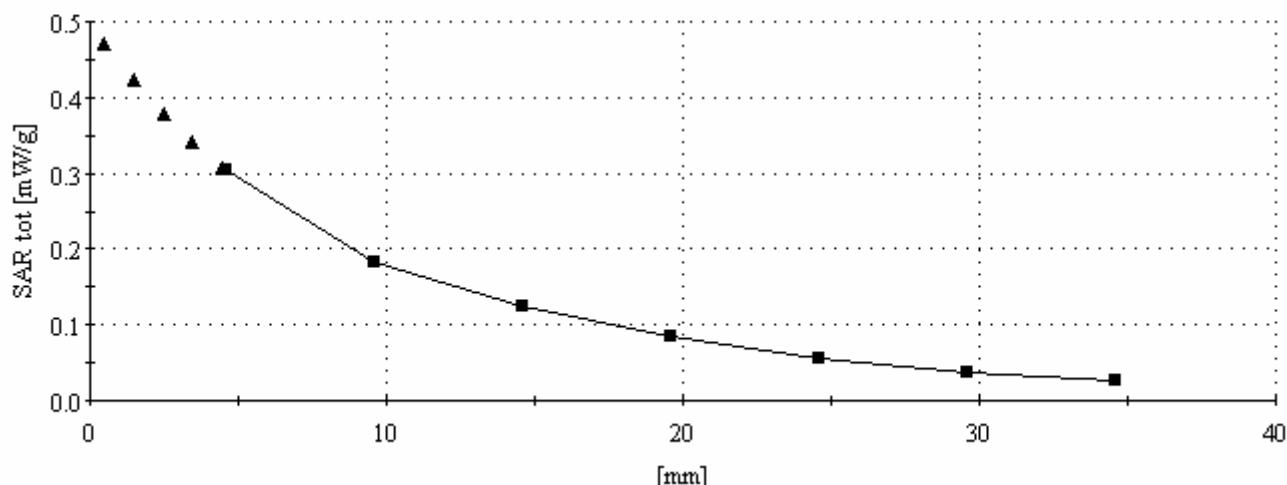
GUG/NV 03:352

Date

Rev

Reference

LD/SEM/GUG/NMC/Mats Hansson


031103

A

File

T106

SAM 1800 and 1900 Phantom; Flat Section; Position: (90°,270°); Frequency: 1910 MHz
Probe: ET3DV6 - SN1584; ConvF(5.00,5.00,5.00); Crest factor: 8.0; Muscle1900 MHz: $\sigma = 1.55 \text{ mho/m}$ $\epsilon_r = 50.7$ $\rho = 1.00 \text{ g/cm}^3$
Cube 5x5x7: SAR (1g): 0.569 mW/g, SAR (10g): 0.350 mW/g. (Worst-case extrapolation)
Cube 5x5x7: Dx = 8.0, Dy = 8.0, Dz = 5.0

Z(x) distribution of max SAR in GSM1900 mode at 1850.2MHz.measured against the body for back phone+15mm distance from flat position of the phantom Jan 21, 2003

Sony Ericsson

18 (24)

Prepared (also subject responsible if other)

LD/SEM/GUG/NM/H. Kami Shirazi

Approved

LD/SEM/GUG/NMC/Mats Hansson

Checked

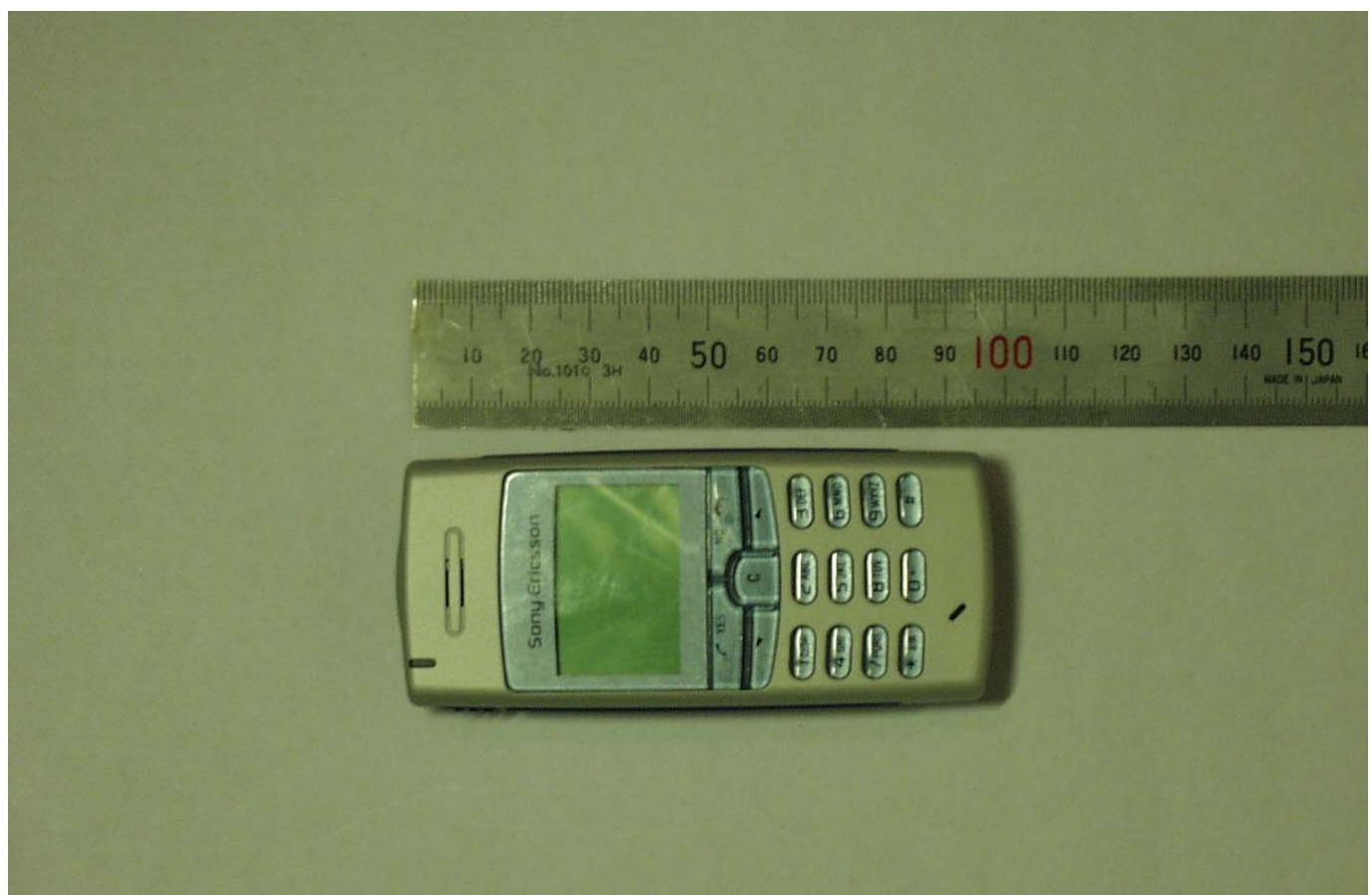
**SecurityClass
REPORT**

No.

GUG/NV 03:352

Date

031103


Rev

A

Reference

File

10.3 Photographs of the device under test

Front side

Sony Ericsson

Prepared (also subject responsible if other)

LD/SEM/GUG/NM/H. Kami Shirazi

Approved

LD/SEM/GUG/NMC/Mats Hansson

Checked

**SecurityClass
REPORT**

No.

GUG/NV 03:352

Date

031103

Rev

A

Reference

File

Left side

Sony Ericsson

20 (24)

Prepared (also subject responsible if other)

LD/SEM/GUG/NM/H. Kami Shirazi

Approved

LD/SEM/GUG/NMC/Mats Hansson

Checked

**SecurityClass
REPORT**

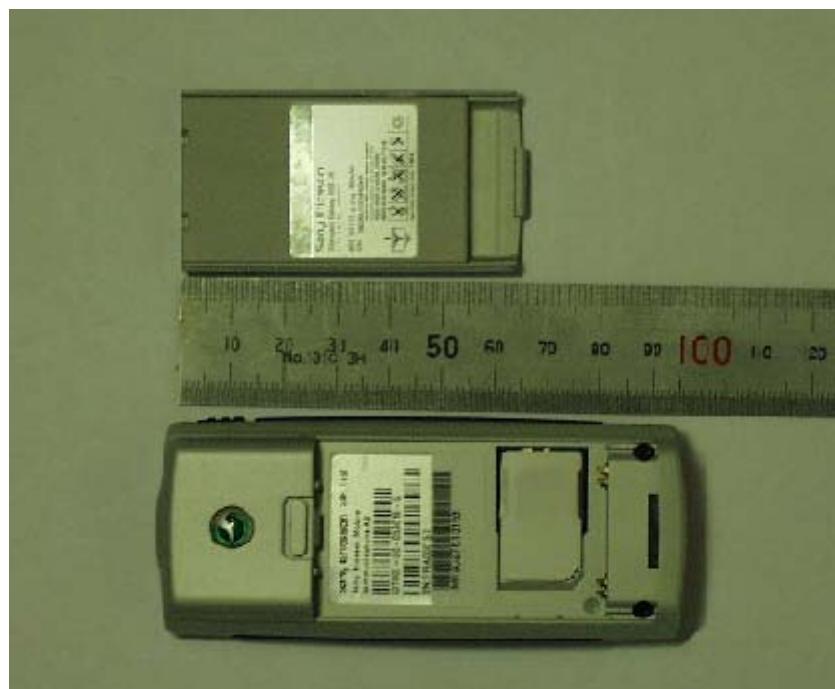
No.

GUG/NV 03:352

Date

031103

Rev


A

Reference

File

Back side

Battery

Prepared (also subject responsible if other)

LD/SEM/GUG/NM/H. Kami Shirazi

Approved

LD/SEM/GUG/NMC/Mats Hansson

Checked

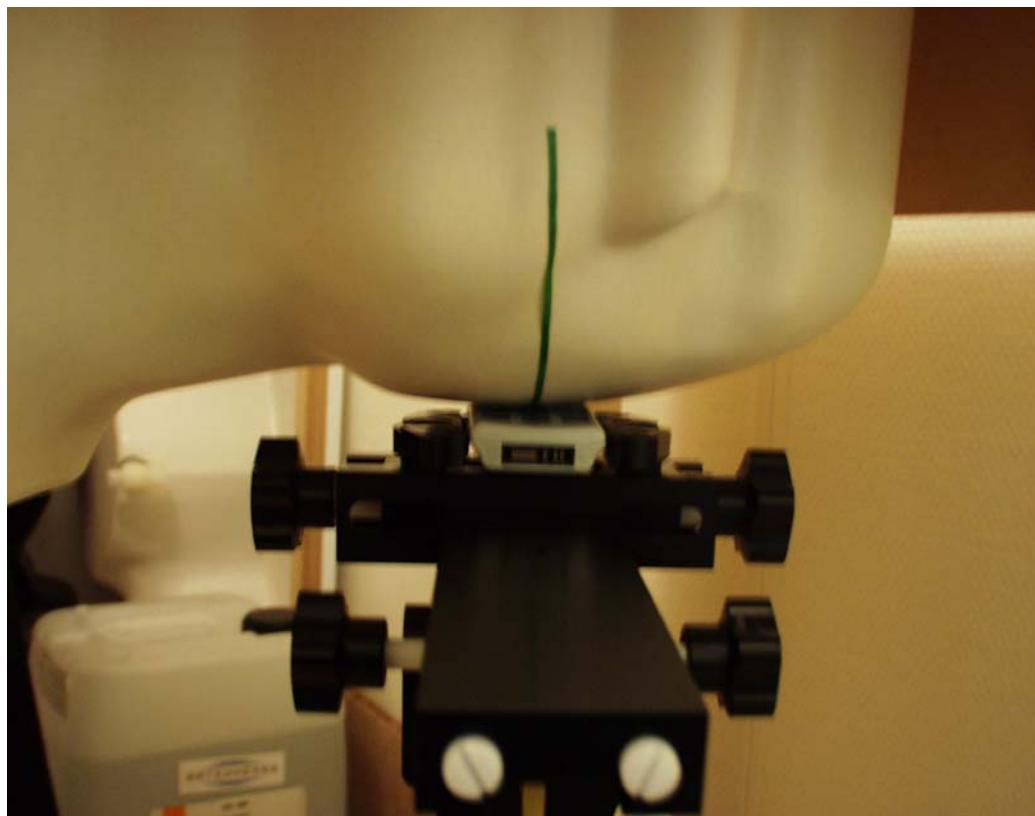
SecurityClass REPORT

No.

GUG/NV 03:352

Date

031103


Rev

A

Reference

File

10.4 Device position on SAM Twins Phantom

Device position against the head: Cheek (touch) phone position

Sony Ericsson

22 (24)

Prepared (also subject responsible if other)

LD/SEM/GUG/NM/H. Kami Shirazi

Approved

LD/SEM/GUG/NMC/Mats Hansson

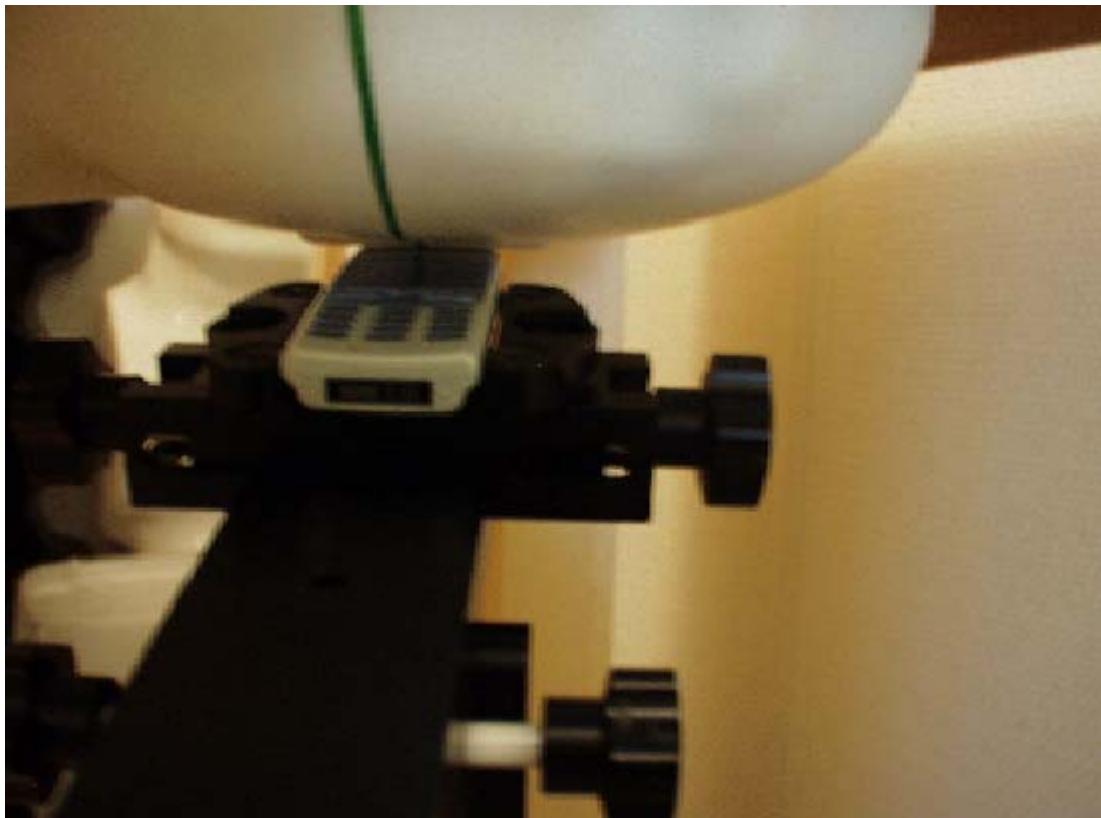
Checked

**SecurityClass
REPORT**

No.

GUG/NV 03:352

Date


031103

Rev

A

Reference

File

Device position against the head: Tilt (cheek+15deg) phone position

Device position against the body: Backside Phone holds 15cm away from the flat position of phantom

Prepared (also subject responsible if other)

LD/SEM/GUG/NM/H. Kami Shirazi

Approved

Checked

LD/SEM/GUG/NMC/Mats Hansson

SecurityClass
REPORT

No.

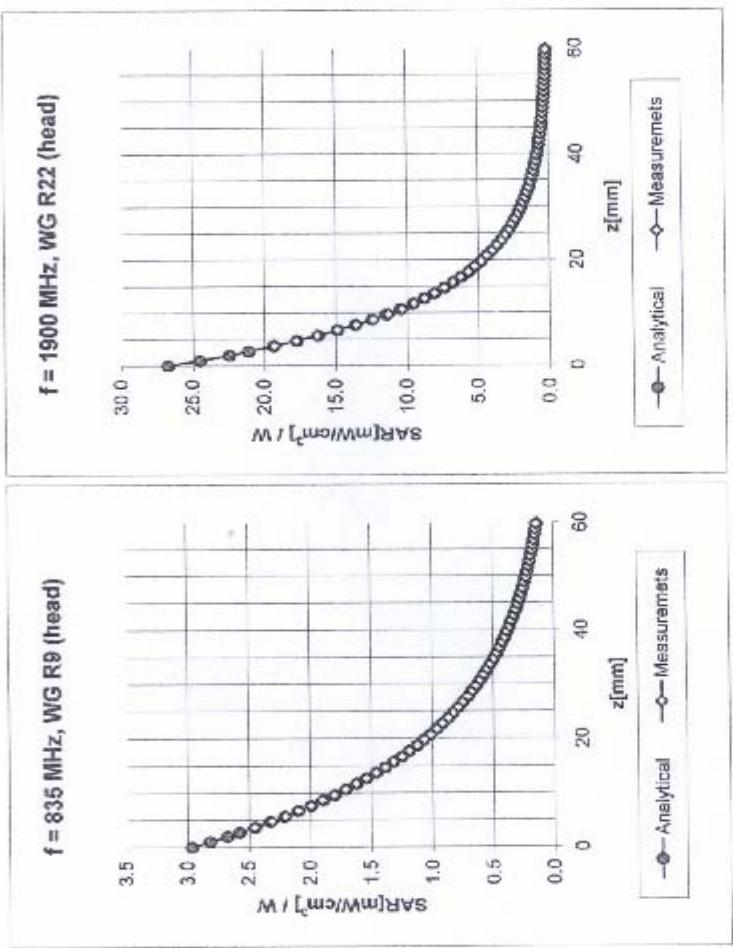
GUG/NV 03:352

Date

Rev

Reference

031103


A

File

Conversion Factor Assessment

10.5

Probe calibration parameters

Head	835 MHz	$\epsilon_r = 41.5 \pm 5\%$	$\sigma = 0.90 \pm 5\% \text{ mho/m}$
Head	900 MHz	$\epsilon_r = 41.5 \pm 5\%$	$\sigma = 0.97 \pm 5\% \text{ mho/m}$
ConvF X	7.0	$\pm 9.5\% \text{ (k=2)}$	Boundary effect.
ConvF Y	7.0	$\pm 9.5\% \text{ (k=2)}$	Alpha 0.37
ConvF Z	7.0	$\pm 9.5\% \text{ (k=2)}$	Depth 2.32

Head	1800 MHz	$\epsilon_r = 40.0 \pm 5\%$	$\sigma = 1.40 \pm 5\% \text{ mho/m}$
Head	1800 MHz	$\epsilon_r = 40.0 \pm 5\%$	$\sigma = 1.40 \pm 5\% \text{ mho/m}$
ConvF X	5.4	$\pm 9.5\% \text{ (k=2)}$	Boundary effect.
ConvF Y	5.4	$\pm 9.5\% \text{ (k=2)}$	Alpha 0.51
ConvF Z	5.4	$\pm 9.5\% \text{ (k=2)}$	Depth 2.36

Head	1900 MHz	$\epsilon_r = 40.0 \pm 5\%$	$\sigma = 1.40 \pm 5\% \text{ mho/m}$
Head	1800 MHz	$\epsilon_r = 40.0 \pm 5\%$	$\sigma = 1.40 \pm 5\% \text{ mho/m}$
ConvF X	5.4	$\pm 9.5\% \text{ (k=2)}$	Boundary effect.
ConvF Y	5.4	$\pm 9.5\% \text{ (k=2)}$	Alpha 0.51
ConvF Z	5.4	$\pm 9.5\% \text{ (k=2)}$	Depth 2.36

Prepared (also subject responsible if other)

LD/SEM/GUG/NM/H. Kami Shirazi

Approved

Checked

LD/SEM/GUG/NMC/Mats Hansson

SecurityClass
REPORT

No.

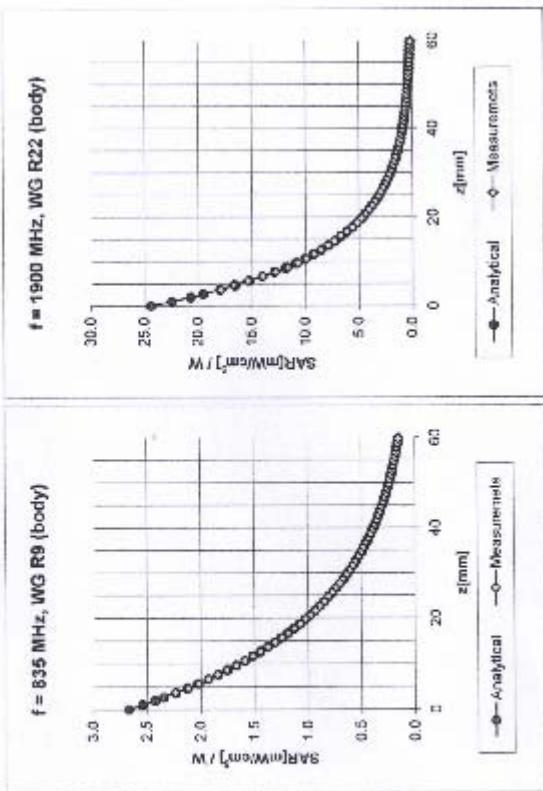
GUG/NV 03:352

Date

Rev

Reference

031103


A

File

ET3DV6 SN:1684

December 19, 2002

Conversion Factor Assessment

Body	835 MHz	$r_t = 55.2 \pm 5\%$	$\sigma = 0.57 \pm 6\% \text{ mho/m}$	$\alpha = 1.05 \pm 5\% \text{ mho/m}$
Body	1900 MHz	$r_t = 55.0 \pm 5\%$	$\sigma = 1.05 \pm 5\% \text{ mho/m}$	Boundary effect:
ConvF X	6.6	$\pm 9.5\% (n=2)$	Alpha	0.35
ConvF Y	6.6	$\pm 9.5\% (n=2)$	Depth	2.50
ConvF Z	6.6	$\pm 9.5\% (n=2)$		
Body	1900 MHz	$r_t = 53.3 \pm 5\%$	$\sigma = 1.62 \pm 6\% \text{ mho/m}$	$\alpha = 1.62 \pm 5\% \text{ mho/m}$
Body	1900 MHz	$r_t = 53.3 \pm 5\%$	$\sigma = 1.62 \pm 5\% \text{ mho/m}$	Boundary effect:
ConvF X	5.0	$\pm 8.5\% (n=2)$	Alpha	0.67
ConvF Y	5.0	$\pm 9.5\% (n=2)$	Depth	2.14
ConvF Z	5.0	$\pm 9.5\% (n=2)$		